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Abstract: The generation of F-actin bundles is controlled by the action of actin-binding proteins.
In Drosophila bristle development, two major actin-bundling proteins—Forked and Fascin—were
identified, but still the molecular mechanism by which these actin-bundling proteins and other
proteins generate bristle actin bundles is unknown. In this study, we developed a technique that
allows recapitulation of bristle actin module organization using the Drosophila ovary by a combination
of confocal microscopy, super-resolution structured illumination microscopy, and correlative light
and electron microscope analysis. Since Forked generated a distinct ectopic network of actin bundles
in the oocyte, the additive effect of two other actin-associated proteins, namely, Fascin and Javelin
(Jv), was studied. We found that co-expression of Fascin and Forked demonstrated that the number of
actin filaments within the actin bundles dramatically increased, and in their geometric organization,
they resembled bristle-like actin bundles. On the other hand, co-expression of Jv with Forked
increased the length and density of the actin bundles. When all three proteins co-expressed, the actin
bundles were longer and denser, and contained a high number of actin filaments in the bundle. Thus,
our results demonstrate that the Drosophila oocyte could serve as a test tube for actin bundle analysis.

Keywords: actin bundles; bristle; Drosophila; Fascin; oocyte

1. Introduction

Parallel actin bundles are composed of tightly packed filaments, all with the same
polarity, crosslinked by an actin-bundling protein [1–3]. These actin bundles are key
components of eukaryotic cytoskeleton structures, such as the brush border of intestinal
epithelial cells [4–6], stereocilia of hair cells of the vertebrate and ear [7,8], Sertoli cell-
spermatid ectoplasmic specialization [9,10], the nurse-cell strut in Drosophila eggs [11,12],
and insect epidermal cell types, such as bristles and scales [13–15]. These actin bundles
appear to function in part as scaffolds that help support or stabilize cellular protrusions. In
each cytoskeleton structure, the generation of F-actin bundles is tightly controlled by the
sequential action of multiple actin-binding proteins [16].

Drosophila bristle cells have been used to study actin bundle formation since alterations
in their morphology are simple to follow using live imaging. The bristle cytoplasm contains
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actin filament bundles, which are essential for bristle growth [17–20]. These actin bundles
within the bristle cells are organized in a unique manner, where they are evenly spaced
around the outer perimeter of the bristle just inside the membrane, extending from the
base of the bristle to its tip. Bristle actin bundles are among the largest such structures in
nature, containing more than 500 actin filaments packed together. It has been shown that
these bundles in bristles are composed of a series of short modules attached end to end.
Accordingly, it has been shown that two actin crosslinker proteins—Forked (human epsin
protein homologue) and Singed (the Drosophila Fascin homologue, hereafter referred to in
the text as Fascin)—are involved in bristle actin bundle formation. It was suggested that
Forked functions at early stages in this formation, and then Fascin appears later, displacing
Forked to form more regular, more tightly packed filament bundles [21]. In vitro model
systems have demonstrated that actin bundles formed by Fascin are limited in size due to
an intricate balance of twisting and crosslinking binding energies [22]. Only an additional
crosslinking protein enables the formation of thick bundles, as found in bristles [22].

Although Forked and Fascin were found to be the major actin-bundling proteins in
bristle formation, it was suggested that there is at least one actin filament-to-membrane
connector, and possibly even a third bundling protein, which remains to be identified [23].
One possible candidate for a novel actin bundle protein is Javelin (Jv), which is an actin-
associated protein that specifically affects bristle actin formation [24]. Moreover, we demon-
strated that Jv is a novel actin-bundling protein; however, further experiments are necessary
to understand the bundling propensity of this actin-binding protein.

Recent work from our lab revealed that ectopic expression of a truncated form of GFP-
Forked generated a distinct asymmetric actin bundle network in the Drosophila oocyte [25].
This localization pattern resembled that reported for the polarized MT network and,
indeed, we demonstrated that Forked associates with Short stop and Patronin foci, which
assemble non-centrosomal MT-organizing centers. In this study, we decided to use this
ectopic Forked-dependent actin bundle network as a model system to study actin bundle
formation. Given that Forked is the main actin crosslinker in the Drosophila bristle, we tried
to understand its interaction with other actin-associated genes that have a role in bristle
actin bundle formation, namely, Fascin and Jv. Using a combination of confocal microscopy,
super-resolution structured illumination microscopy (SR-SIM), and correlative light and
electron microscope analysis (CLEM), we revealed that in the oocyte, Forked and Fascin
are sufficient for generating bristle-like actin bundles and that Jv may have a role in actin
bundle stabilization and elongation.

2. Results
2.1. The Combination of Jv, Fascin, and Forked Generate Unique Actin Bundles in the
Drosophila Oocyte

Previously, we were able to show that Forked generated a distinct ectopic network
of an asymmetric network that co-localized with actin (Baskar et al., 2019, Figure 1A).
Thus, we decided to use the Drosophila ovary as a system to study the combinational
effects of bristle-actin-bundling proteins—namely, Forked, Fascin, and Javelin—on actin
bundling. In contrast to Forked (Figure 1A, arrowhead shows the asymmetric actin bundles
network), expression of Fascin (Figure 1B) or Jv (Figure 1C) revealed that the proteins were
distributed throughout the oocyte during mid-oogenesis, with Fascin showing a noticeable
accumulation on the oocyte membrane. Next, we generated transgenic fly lines that would
allow combinatorial co-expression of Jv, Forked, and Fascin. We showed that none of the
single, double, or triple expression combinations affected female fertility (Table 1). We
found that the expression of GFP-Fascin with mCherry-Forked affected mCherry-Forked
asymmetric network organization. Whereas in the egg chamber from the mid-oogenesis
stage, the Forked asymmetric network is restricted to the anterolateral region of the oocyte
cortex (Figure 1A), in the egg chamber co-expressing GFP-Fascin with mCherry-Forked,
the Forked-Fascin network was restricted to the anterior end of the oocyte (arrowheads
in Figure 1D).
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Figure 1. The combination of Jv, Fascin, and Forked generates unique actin bundles in the Drosophila oocyte. However, 
Forked on its own (not Fascin and Javelin) generates asymmetric actin bundles in the Drosophila oocyte. Confocal projec-
tions of egg chambers from flies ectopically expressing (A) mCherry-Forked, (B) GFP-Fascin, (C) GFP-Javelin, (D) GFP-
Fascin and mCherry-Forked, (E) GFP-Javelin and mCherry-Forked, and (F) GFP-Fascin, GFP-Javelin, and mCherry-Forked 
with alpha-tub. In (D), actin bundles are restricted to the anterior side (arrows) of the oocyte, and in (E), Jv and Forked 
decorate the actin bundles (arrows point to one such bundle). In (F), combination of the three proteins generates wider 
and longer actin bundles (arrows point to one such bundle). In all images, the posterior part of the oocyte is on the right. 

2.2. Super-Resolution Microscopy Revealed the Co-Localization of the Actin-Bundling Proteins 
To further understand the spatial organization of the actin network, and also to de-

termine the localization of Forked on the ectopic oocyte actin bundles, we conducted a 
super-resolution structure illumination (SR-SIM) analysis (Figure 2). To quantify the de-
gree of co-localization between actin and Forked, the Pearson’s correlation coefficient was 
calculated. In oocytes expressing mCherry-Forked alone, actin (Figure 2A) was highly co-
localized with Forked (Figure 2B), with a Pearson’s correlation coefficient > 0.9 (p value < 
0.05, Figure 2C’,C’’). Using SR-SIM, the organization of actin bundles at the anterior end 
of the oocyte could not be resolved. 

In ovaries expressing mCherry-Forked and GFP-Jv, our SR-SIM analysis revealed 
that the actin bundles were denser. Indeed, the distance between actin bundles in oocytes 
expressing both mCherry-Forked (Figure 2E) and GFP-Jv (Figure 2F) was significantly (p 
< 0.01) reduced to 0.73 ± 0.06 µm (Figure 2G) compared to the average. 

Distance between actin bundles was 2.18 ± 0.15 µm (Table 2) in oocytes expressing 
mCherry-Forked alone (Figure 2C). Moreover, using SR-SIM, we found that that actin and 
Forked were still co-localized (Pearson’s correlation coefficient was above 0.7 with a p 
value < 0.05), but interestingly, Jv was found to only partially decorate the actin-Forked 
filaments, showing a shift towards the sides of the filament (Figure 2G’,G’’). Indeed, the 
Pearson's correlation coefficient for Jv with reference to both actin and Forked was above 
0.4, suggesting a low-to-moderate correlation; in other words, Jv was found to be partially 
co-localized either with actin or Forked. 

We also found that in oocytes expressing Forked, Fascin, and Jv (Figure 2H,H’), the 
actin bundles were tightly packed, with the distance between the filaments being just 0.34 
± 0.15 µm. 

Figure 1. The combination of Jv, Fascin, and Forked generates unique actin bundles in the Drosophila oocyte. However,
Forked on its own (not Fascin and Javelin) generates asymmetric actin bundles in the Drosophila oocyte. Confocal projections
of egg chambers from flies ectopically expressing (A) mCherry-Forked, (B) GFP-Fascin, (C) GFP-Javelin, (D) GFP-Fascin
and mCherry-Forked, (E) GFP-Javelin and mCherry-Forked, and (F) GFP-Fascin, GFP-Javelin, and mCherry-Forked with
alpha-tub. In (D), actin bundles are restricted to the anterior side (arrows) of the oocyte, and in (E), Jv and Forked decorate
the actin bundles (arrows point to one such bundle). In (F), combination of the three proteins generates wider and longer
actin bundles (arrows point to one such bundle). In all images, the posterior part of the oocyte is on the right.

Table 1. Overexpression of Forked, Fascin, and Jv and their combinations in the germline using alpha-tub-GAL4 do not
affect female fertility. Tukey’s test for post hoc analysis shows that the percentage of relative fertility had no significant
difference when compared statistically to the control group. a Same letter in the column indicates no significant statistical
difference among the groups.

S. No. Genotype Average No. of Progeny
from 24 h Egg Collection % Relative Fertility

1 Kr/CyO; alpha-tub 87 ± 6.1 100 a

2 mCherry-Forked/CyO; alpha-tub 77 ± 1.7 88.5 a

3 GFP-Fascin/CyO; alpha-tub 74.6 ± 7.6 85.8 a

4 GFP-Javelin/CyO; alpha-tub 76 ± 5.1 87.3 a

5 GFP-Fascin/GFP-Javelin; alpha-tub 73.3 ± 9.3 84.2 a

6 GFP-Fascin/CyO; mCherry-Forked/alpha-tub 74 ± 4.7 85.1 a

7 GFP-Javelin/CyO; mCherry-Forked/alpha-tub 72.3 ± 9.2 83.1 a

8 GFP-Fascin/GFP-Javelin;
mCherry-Forked/alpha-tub 70.6 ± 8.1 81.2 a

Then we tested the effect of expressing GFP-Jv on mCherry-Forked ectopic actin bun-
dle formation, and found that this led to a dramatic change in the actin bundle organization
(Figure 1E, Table 2). This time, the actin bundles were much longer and wider (arrowheads
in Figure 1E) than in the mCherry-Forked network. The average length (calculated from
confocal projections) and width (calculated from the SR-SIM projections) of the ectopic
actin bundles in oocytes expressing mCherry-Forked alone (Figure 1A) were 6.17 ± 1.2 µm
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and 0.25 ± 0.006 µm, respectively (Table 2). In contrast to that, upon additional expressing
of Jv, a highly significant increase (p < 0.0001) in ectopic actin bundle length (16.1 ± 3.4 µm)
and width (0.47 ± 0.01 µm) was evident (Figure 1E, Table 2).

Table 2. Table showing the actin bundle lengths from confocal projections. Tukey’s test for post hoc analysis shows that a, b,
and c are statistically significant to each other (p < 0.01). The table also shows the width and inter-actin bundle distance
from SR-SIM projections. Tukey’s test for post hoc analysis for both inter-bundle distance and width shows that a, b, and
c are statistically significant to each other (p < 0.01). Seven oocytes were taken for the analysis, and ten actin bundles
from each were used for measurement. a–c Different letters in all the columns indicate significant statistical difference
among the groups.

Confocal Projections SR-SIM Projections

S. No. Genotype Length (µm) Interbundle Distance (µm) Width (µm)

1 mCherry Forked 6.17 ± 1.2 a 2.18 ± 0.15 a 0.25 ± 0.006 a

2 mCherry Forked_GFP Javelin 16.17 ± 3.4 b 0.73 ± 0.06 b 0.47 ± 0.017 b

3 mCherry Forked_GFP
Fascin_ GFP Javelin 23.96 ± 1.11 c 0.34 ± 0.15 c 0.67 ± 0.023 c

Interestingly, when all three proteins—namely, mCherry-Forked, GFP-Jv, and GFP-
Fascin (Figure 1F)—were co-expressed, the bundle networks were much denser than in all
other conditions, most notably at the posterior part of the oocyte. In addition, a significant
increase (p < 0.0001) in ectopic actin bundle length (23.9 ± 1.11 µm) and a significant
increase in width (0.67 ± 0.023 µm) was seen (Table 2).

2.2. Super-Resolution Microscopy Revealed the Co-Localization of the Actin-Bundling Proteins

To further understand the spatial organization of the actin network, and also to de-
termine the localization of Forked on the ectopic oocyte actin bundles, we conducted a
super-resolution structure illumination (SR-SIM) analysis (Figure 2). To quantify the de-
gree of co-localization between actin and Forked, the Pearson’s correlation coefficient
was calculated. In oocytes expressing mCherry-Forked alone, actin (Figure 2A) was
highly co-localized with Forked (Figure 2B), with a Pearson’s correlation coefficient > 0.9
(p value < 0.05, Figure 2C’,C”). Using SR-SIM, the organization of actin bundles at the
anterior end of the oocyte could not be resolved.

In ovaries expressing mCherry-Forked and GFP-Jv, our SR-SIM analysis revealed
that the actin bundles were denser. Indeed, the distance between actin bundles in oocytes
expressing both mCherry-Forked (Figure 2E) and GFP-Jv (Figure 2F) was significantly
(p < 0.01) reduced to 0.73 ± 0.06 µm (Figure 2G) compared to the average.

Distance between actin bundles was 2.18 ± 0.15 µm (Table 2) in oocytes expressing
mCherry-Forked alone (Figure 2C). Moreover, using SR-SIM, we found that that actin
and Forked were still co-localized (Pearson’s correlation coefficient was above 0.7 with a
p value < 0.05), but interestingly, Jv was found to only partially decorate the actin-Forked
filaments, showing a shift towards the sides of the filament (Figure 2G’,G”). Indeed, the
Pearson’s correlation coefficient for Jv with reference to both actin and Forked was above
0.4, suggesting a low-to-moderate correlation; in other words, Jv was found to be partially
co-localized either with actin or Forked.

We also found that in oocytes expressing Forked, Fascin, and Jv (Figure 2H,H’), the
actin bundles were tightly packed, with the distance between the filaments being just
0.34 ± 0.15 µm.
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(B,B’) mCherry-Forked, and merged pictures of A and B (C,C’). Intensity profile of both channels along the actin bundle 
(C’’) normalized using the same color code as SIM-merged images. Actin and Forked are found to be co-localized. SR-SIM 
analyses of an egg chamber from GFP-Javelin and mCherry-Forked with alpha-tub (D–G). (D,D’) Phalloidin, (E,E’) 
mCherry-Forked, (F,F’) GFP-Javelin, and (G,G’) a merged picture of all three channels. Intensity profile of all the channels 
along the actin bundle (G’’) normalized using the same color code as SIM-merged images quantifies the localization pat-
tern of the proteins. Actin and Forked are found to be co-localized, but Jv is only partially co-localized with Forked and 
actin. SR-SIM analyses of phalloidin staining from GFP-Fascin-, mCherry-Forked-, and GFP-Javelin-expressing oocytes 
(H,H’). As observed in (H’), the actin bundles are packed comparatively very tightly close to each other. 

2.3. Analysis of the Internal Organization of the Ectopic Oocyte Actin Bundles Generated by 
Forked, Javelin, and Fascin by CLEM 

To better understand and characterize the internal ultrastructure of actin bundles in 
3D, we used correlative light and electron microscope analysis (CLEM). Drosophila ovaries 
expressing mCherry-Forked alone, GFP-Jv and mCherry-Forked, GFP-Fascin and 
mCherry-Forked, GFP-Jv, and GFP-Fascin were subjected to high-pressure freezing and 
thin sectioning. The 300 nm sections were stained by toluidine blue (Supplemental Figure 
S1) to ensure that the sections comprised oocytes and not nurse cells. They were then first 
visualized by fluorescence microscopy to locate areas of interest for electron tomography 
analysis, followed by 3D reconstruction of the actin bundles (Figures 3–5). 

Figure 2. Super-resolution microscopy reveals localization pattern. Super-resolution structure illumination microscopy
(SR-SIM) images of actin bundles from flies expressing mCherry-Forked in the oocyte (A–C). (A,A’) Phalloidin (actin),
(B,B’) mCherry-Forked, and merged pictures of A and B (C,C’). Intensity profile of both channels along the actin bundle
(C”) normalized using the same color code as SIM-merged images. Actin and Forked are found to be co-localized. SR-
SIM analyses of an egg chamber from GFP-Javelin and mCherry-Forked with alpha-tub (D–G). (D,D’) Phalloidin, (E,E’)
mCherry-Forked, (F,F’) GFP-Javelin, and (G,G’) a merged picture of all three channels. Intensity profile of all the channels
along the actin bundle (G”) normalized using the same color code as SIM-merged images quantifies the localization pattern
of the proteins. Actin and Forked are found to be co-localized, but Jv is only partially co-localized with Forked and actin.
SR-SIM analyses of phalloidin staining from GFP-Fascin-, mCherry-Forked-, and GFP-Javelin-expressing oocytes (H,H’). As
observed in (H’), the actin bundles are packed comparatively very tightly close to each other.

2.3. Analysis of the Internal Organization of the Ectopic Oocyte Actin Bundles Generated by
Forked, Javelin, and Fascin by CLEM

To better understand and characterize the internal ultrastructure of actin bundles
in 3D, we used correlative light and electron microscope analysis (CLEM). Drosophila
ovaries expressing mCherry-Forked alone, GFP-Jv and mCherry-Forked, GFP-Fascin and
mCherry-Forked, GFP-Jv, and GFP-Fascin were subjected to high-pressure freezing and
thin sectioning. The 300 nm sections were stained by toluidine blue (Supplemental Figure
S1) to ensure that the sections comprised oocytes and not nurse cells. They were then first
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visualized by fluorescence microscopy to locate areas of interest for electron tomography
analysis, followed by 3D reconstruction of the actin bundles (Figures 3–5).

In ovaries expressing mCherry-Forked, the bundles were composed of an average of
4 ± 0.16 filaments, and the average space between them was 11.7 ± 0.5 nm (Figure 3D,
Table 3, Supp. Movie S1). Thus, the total width of the actin bundles was 47.8 ± 2.6 nm.
In ovaries expressing mCherry-Forked and GFP-Jv, similar actin bundles were identified
(Figure 3H), with an average number of 5 ± 0.22 filaments in each bundle. The space
between the filaments was 10.3 ± 0.6 nm, with a total width of 52.6 ± 2.3 nm (Table 3,
Supp. Movie S1). Thus, although our SR-SIM analysis showed that there was an increase
in the width of the actin bundles upon overexpression of mCherry-Forked and GFP-Jv, our
CLEM analysis revealed no change in the width and number of the actin filaments within
the bundle compared to oocytes expressing mCherry-Forked.
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S. No. Genotype Interfilament Distance (nm) Total Width (nm) 
1 mChFk 11.7 ± 0.5 a 47.8 ± 2.6 
2 mChFk_GFPJv 10.3 ± 0.6 b 52.6 ± 2.3 
3 mChFk_GFPFascin 10.4 ± 0.3 b 81.1± 4.2 
4 mChFk_GFPJv_GFPFascin 10.9 ± 0.3 b 75.1 ± 3.7 

In sections from ovaries expressing both mCherry-Forked with GFP-Fascin, actin 
bundles at the anterior end of the oocyte could be detected both longitudinally (Figure 4B) 

Figure 3. On-section correlative light and electron microscope analysis (CLEM) of Drosophila melanogaster oocytes overex-
pressing mCherry-Forked and mCherry-Forked with GFP-Javelin. Cross-section of an egg chamber for flies ectopically
expressing mCherry-Forked (A) or mCherry-Forked and GFP-Javelin (E) with alpha-tub, visualized by fluorescence mi-
croscopy (FLM) of an in-resin-retained fluorescence signal. Fluorescently labeled structures of interest i.e., highlighted
in (A’,E’) were identified in the transmission electron microscope by overlaying prominent landmarks in both FLM and
EM imaging modalities and subjecting them to high-resolution dual-axis electron tomography. Per condition, 25 tomo-
grams were acquired. (B,F) represent a tomographic slice for each condition (the same conditions were also done for
Figures 4 and 5). After tomogram reconstruction, a CLEM overlay of both imaging modalities was performed with high
accuracy (C,G). A 3D model representation of actin filaments forming bundles (red) was performed manually in Amira.
The overexpression of mCherry-Forked (D,D’) and mCherry-Forked with GFP-Javelin (H,H’) forms single thick ectopic
actin bundles (from ~4 to 5 actin filaments per bundle).



Int. J. Mol. Sci. 2021, 22, 4006 7 of 15

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 15 
 

 

and in cross-section (Figure 4E, Supp Movie S1). Measuring the number of actin filaments 
of each of the longitudinal sections revealed a dramatic and highly significant increase in 
the number of actin filaments (Figure 4D, 9 ± 0.37) compared to mCherry-Forked alone 
(Figure 3D, 4 ± 0.16, Supp Movie S1). The distance between the actin filaments was 10.4 ± 
0.3 nm, and their total width equaled 81.1 ± 4.2 nm. Interestingly, measuring the average 
number of individual actin filaments at each single cross-sectional area showed that it 
contained up to 95 ± 9.23 (Figure 4E’). Moreover, closer examination revealed that these 
actin bundles geometrically resembled those corresponding to the ones seen in the cross-
section of a Drosophila bristle during elongation (Figure 4F). We could not correctly meas-
ure the distance between the actin filaments by conventional room temperature EM prep-
arations; thus, further analysis using cryo-EM is needed. 

 
Figure 4. On-section CLEM of Drosophila melanogaster oocytes overexpressing mCherry-Forked with GFP-Fascin and 
mCherry-Forked with GFP-Fascin and GFP-Javelin. Cross-section of an egg chamber for flies ectopically expressing 
mCherry-Forked with GFP-Fascin (A) and mCherry-Forked, GFP-Fascin, and GFP-Javelin (G,G’) with alpha-tub visual-
ized by fluorescence microscopy (FLM) of an in-resin-retained fluorescence signal. (B,E,H), represent a tomographic slice 
for each condition. After tomogram reconstruction, a CLEM overlay of both imaging modalities was performed with high 
accuracy (C,I). In this condition (A), the actin bundles run in both longitudinal (A’) and transverse (A’’) fashion. The 
overexpression of mCherry-Forked with GFP-Fascin (D,D’) forms thick ectopic actin bundles (~9 actin filaments per bun-
dle) as shown in the longitudinal section. On the other hand, (E,E’) represents a tomographic slice with a cross-sectional 
actin bundle of about ~95 actin filaments in one cross-sectional area on the bundle. Interestingly, the cross-section of the 
actin bundle resembles the actin bundles occurring in the cross-section of a Drosophila bristle (F) during elongation. The 
overexpression of mCherry-Forked, GFP-Javelin, and GFP-Fascin (J,J’) forms a dense actin filament network. Many par-
allel actin bundles (~8 actin filaments in each bundle) are organized in large patches. (J,J’) show the segmentation of actin 
filaments in just one tomogram slice (because of bundle overcrowding when all the slices were included). 

In addition, a dramatic change in actin bundle spatial organization was noticeable in 
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Figure 4. On-section CLEM of Drosophila melanogaster oocytes overexpressing mCherry-Forked with GFP-Fascin and
mCherry-Forked with GFP-Fascin and GFP-Javelin. Cross-section of an egg chamber for flies ectopically expressing
mCherry-Forked with GFP-Fascin (A) and mCherry-Forked, GFP-Fascin, and GFP-Javelin (G,G’) with alpha-tub visualized
by fluorescence microscopy (FLM) of an in-resin-retained fluorescence signal. (B,E,H), represent a tomographic slice for each
condition. After tomogram reconstruction, a CLEM overlay of both imaging modalities was performed with high accuracy
(C,I). In this condition (A), the actin bundles run in both longitudinal (A’) and transverse (A”) fashion. The overexpression
of mCherry-Forked with GFP-Fascin (D,D’) forms thick ectopic actin bundles (~9 actin filaments per bundle) as shown
in the longitudinal section. On the other hand, (E,E’) represents a tomographic slice with a cross-sectional actin bundle
of about ~95 actin filaments in one cross-sectional area on the bundle. Interestingly, the cross-section of the actin bundle
resembles the actin bundles occurring in the cross-section of a Drosophila bristle (F) during elongation. The overexpression
of mCherry-Forked, GFP-Javelin, and GFP-Fascin (J,J’) forms a dense actin filament network. Many parallel actin bundles
(~8 actin filaments in each bundle) are organized in large patches. (J,J’) show the segmentation of actin filaments in just one
tomogram slice (because of bundle overcrowding when all the slices were included).
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Figure 5. Structure–function analysis of Javelin protein. (A) Schematic representation of the domain structures of Javelin
that were used to generate transgenic flies: Javelin full length, Javelin N-terminus, and Javelin C-terminus. Each contains the
coiled–coil domain (CCD) and is fused to EGFP at its N-terminus end. (B–D) Confocal projections showing the localization
pattern of Jv-full length (B), Jv N-terminus (C), and Jv-C-terminus (D) in Drosophila oocytes upon expression with alpha-tub.
In all images, the posterior part of the oocyte is on the right. Full-length Jv generates thick brush-shaped actin bundles
around the nurse-cell nucleus (pointed arrows), whereas the Jv-N-terminus part is found inside the nurse-cell nuclei.
Jv C-terminus generates actin bundles around the nurse-cell nucleus. Confocal projections of egg chambers from flies
ectopically expressing GFP-Javelin and mCherry-Forked (E–G), GFP-N-terminus Javelin and mCherry-Forked (H–J), and
GFP-C-terminus Javelin and mCherry-Forked (K–M) with alpha-tub. Expression of GFP-N-terminus Javelin (H) suppresses
mCherry-Forked actin bundle activity (I). Expression of GFP-C-terminus Javelin (K) affects mCherry-Forked actin bundle
activity (L); instead of creating a directly aligned network, as seen with full-length Javelin (E–G), the actin bundles form
radiating masses.
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Table 3. Table showing the width and inter-actin-filament distance measurements from the tomo-
grams of ovaries expressing mCherry-Forked, mCherry-Forked with GFP-Jv, mCherry-Forked with
GFP-Fascin, and mCherry-Forked with GFP-Jv and GFP-Fascin under CLEM conditions. Tukey’s test
for post-hoc analysis shows that a and b are statistically significant to each other (p < 0.01), whereas
groups 2, 3, and 4 show no significant difference in terms of interfilament distance. Eight oocyte
sections were taken for the analysis, and 25 tomograms were acquired. Four actin bundles from
each were used for measurement. a,b Different letters in the column indicate significant statistical
difference among the groups.

S. No. Genotype Interfilament Distance (nm) Total Width (nm)

1 mChFk 11.7 ± 0.5 a 47.8 ± 2.6
2 mChFk_GFPJv 10.3 ± 0.6 b 52.6 ± 2.3
3 mChFk_GFPFascin 10.4 ± 0.3 b 81.1± 4.2
4 mChFk_GFPJv_GFPFascin 10.9 ± 0.3 b 75.1 ± 3.7

In sections from ovaries expressing both mCherry-Forked with GFP-Fascin, actin
bundles at the anterior end of the oocyte could be detected both longitudinally (Figure 4B)
and in cross-section (Figure 4E, Supp. Movie S1). Measuring the number of actin filaments
of each of the longitudinal sections revealed a dramatic and highly significant increase in
the number of actin filaments (Figure 4D, 9 ± 0.37) compared to mCherry-Forked alone
(Figure 3D, 4 ± 0.16, Supp. Movie S1). The distance between the actin filaments was
10.4 ± 0.3 nm, and their total width equaled 81.1 ± 4.2 nm. Interestingly, measuring the
average number of individual actin filaments at each single cross-sectional area showed
that it contained up to 95 ± 9.23 (Figure 4E’). Moreover, closer examination revealed that
these actin bundles geometrically resembled those corresponding to the ones seen in the
cross-section of a Drosophila bristle during elongation (Figure 4F). We could not correctly
measure the distance between the actin filaments by conventional room temperature EM
preparations; thus, further analysis using cryo-EM is needed.

In addition, a dramatic change in actin bundle spatial organization was noticeable in
ovaries expressing all three proteins (Figure 4J; Supp. Movie S1). A denser actin bundle
network was primarily found as small, crowded patches in many areas of the cryo-sections.
The orientation of these patchy bundles was arbitrary, and they were seen to extend in
all directions. We found that the average number of actin filaments in each actin bundle
(8 ± 0.1) with space between them was 10.9± 0.3 nm, and their total width was 75.1± 3.7 nm.

To conclude, our results demonstrate that the Drosophila oocyte could serve as a model
tissue to recapitulate bristle-like actin module organization. Moreover, this model system
allowed us to reveal a new function for Fascin and Forked, confirming the necessity of
combining two crosslinking proteins to obtain thicker bundles, as predicted from an in vitro
model system [22].

2.4. Structure–Function Analysis of Javelin Protein

At this stage, we decided that we could also use this tool for further structure–function
analysis of the Jv protein. Structure analysis showed that Jv consists of 1912 amino-
acid residues with only one functional domain—the coiled–coil domain (CCD)—located
between amino acids 759 and 832 (Figure 5). A structure–function analysis was performed
to understand more about the Jv function and its role in actin bundling. We showed that
the GFP-fused Jv protein, ectopically expressed in the germline, is found at the anterior
region of the oocyte and in the nurse cells. In addition, the protein forms an ectopic actin
network close to the nurse-cell nuclei and is found at their ring canals (Shapira et al.,
2011; Figure 5B). We cloned both the N-terminal part (1–832 aa) and the C-terminal part
(759–1912 aa) fused to the EGFP protein; thus, each of the truncated forms included the
CCD domain. We found that when the Jv N-terminus was expressed in the germline, the
GFP-fused truncated protein was within the nurse-cell nucleus (Figure 5C). On the other
hand, the C-terminus truncated Jv protein was found to form an ectopic actin network close
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to the nucleus, similar to that of the full-length Jv, and it was also found at the nurse-cell
ring canals (Figure 5D).

Next, we examined the ability of each of the GFP-Jv fused truncated proteins to
generate actin-bundle networks with Forked protein. We found that, in contrast to the
expression of Forked protein with full-length Jv, where long actin bundles could be detected
in the oocyte (Figure 5E–G), co-expression of the Jv N-terminus with Forked protein
suppressed Forked actin bundle activity (Figure 5H–J). On the other hand, Jv C-terminus
truncated protein co-expression with Forked produced unique patterned actin bundles
(Figure 5K–M). Most noticeably, while actin bundles in co-expression of Forked and full-
length Jv protein oocytes were directly aligned, the actin bundles in oocytes from flies
expressing Jv C-terminus truncated protein with mCherry-Forked formed radiating masses.

3. Discussion
3.1. The Drosophila Ovary as a Model Tissue to Study Bristle Actin Bundle Formation

Using in vitro studies helps us to understand the mechanism of actin bundle forma-
tion [2,26]. These studies illustrate the physical, chemical, and biomechanical driving
forces that generate these unique structures. In vitro studies require purified actin proteins,
as well as purified proteins of interest. In our attempts to understand the function of
Jv and Forked proteins in constructing actin bundles, we encountered one of the most
common problems in in vitro studies: the inability to express and purify these proteins
from either bacteria, insect, or mammalian cells. Previously, such studies on Fascin [27–30],
Forked [30,31], and Jv mutant flies [24] revealed only part of these gene functions. To
better understand the function of these proteins, we decided to use the Drosophila ovaries
as a model. Our previous study demonstrated that the expression of Forked protein in
Drosophila ovaries generates a unique actin-bundle network [25]. In this study, we demon-
strate that the Drosophila ovary could serve as a model tissue to study bristle actin bundle
formation for the following reasons: (1) Generating actin bundle networks that can be
clearly analyzed by several methods is specific to the oocyte, and our study revealed
dramatic and informative changes in actin bundle networks upon combined expression of
proteins. (2) Ectopic expression of any single protein or combination of proteins did not
affect the organism’s fertility or oocyte development. In addition, the structure of the oocyte
remained intact despite the heavy protein load. (3) Our attempts to repeat these results
in other cell types, such as follicle cells, Schneider cells (Drosophila embryonic cells), and
salivary glands failed to generate similar results. (4) Using confocal microscopy, SR-SIM,
and CLEM allow us to determine the organization of the actin bundles in the oocyte and
also to analyze the bundles on the ultrastructure level. (5) Future studies using genetic
tools such as loss and gain of functions could easily be used in the ovaries. Finally, (6) the
findings in this study shed new light on the function of two proteins, Fascin and Jv, in actin
bundle formation. To conclude, we have demonstrated that the Drosophila oocyte could
serve as a model tissue to recapitulate bristle-like actin module organization, which opens
a new window on understanding the mechanism of other bristle-actin-associated proteins.

3.2. Fascin Acts Not Only in Hexagonal Packing of Actin Bundles, But Also Enhances Forked
Actin Crosslinking Activity

Genetic and biochemical studies on the role of Fascin and Forked in bristle devel-
opment have generated a model to describe the way these two actin crosslinkers act in
bristle actin bundle formation [18,21]. It was suggested that Forked and Fascin act in a
sequential action [32]. In the first stages of bristle development, Forked is responsible for
the crosslinking of tiny actin filament bundles at the newly emerging bristle tip. Forked
protein also acts to aggregate these tiny bundles into larger membrane-associated bundles.
In the next step, Fascin, by Forked facilitation, enters the bundles to perform the final
crosslinking to generate tight hexagonally packed actin bundles. The functions of these two
proteins are spatially, temporally, and molecularly regulated. Generation of bristle actin
bundles is controlled spatially from the tip region [33], by the level of Forked protein [30],



Int. J. Mol. Sci. 2021, 22, 4006 11 of 15

and by the activation of Fascin protein [18]. This tight regulation could not be achieved in
our ovary system. Still, our results support one aspect of the suggested model, showing
that the addition of Fascin protein into actin bundles formed by Forked generates tightly
bundled actin filaments that resemble the geometrical structure (close hexagonal packag-
ing) of bristle actin bundles. Moreover, the dramatic increase in actin filament number
upon the addition of Fascin into Forked-made actin bundles reveals a new and not yet
described function for Fascin in generating actin bundles, namely enhancing Forked actin
crosslinking activity. This underlines the physical basis of the synergistic role of the two
crosslinking proteins: where the necessary twist of filaments for hexagonal packing limits
the bundle growth, it can be overcome by the addition of a second crosslinking protein [22].

3.3. Jv May Have a Role in Actin Bundle Compactization and Elongation

Jv is a spontaneous mutation that was identified in 1947. Previous work from our lab
demonstrated that Jv is a novel gene that encodes an actin-associated protein [24]. The
only phenotype associated with the Jv mutant is defects in bristles, where they do not
taper like bristles in WT flies—instead, presenting a small enlargement before the tip. Our
studies revealed that in Jv mutants, bristle actin bundles are affected where the loss of
actin filaments within the bundles affects their triangular structure [24]. Still, the molecular
function of Jv in bristle actin bundle formation was unclear. In this study, we found that
the additional expression of Jv protein in the oocyte to either ectopic expression of Forked,
or Forked and Fascin, resulted in longer actin bundles and elevated the density of the actin
bundles within the oocyte. On the other hand, whereas previously our confocal microscopy
analysis suggested that Jv is co-localized with actin, our SR-SIM analysis revealed that
it is only partially co-localized with actin and Forked. What could be the function of Jv
in actin bundle formation? We found that ectopic expression of Jv with either Forked, or
Forked and Fascin, led to a dramatic increase in the compactization of actin bundles in the
oocyte as the distance between the actin bundles decreased. There are several options for
explaining this observation. The first is that Jv stabilizes Forked-generated actin bundles;
thus, we could detect more of them close to each other. The other option is that Jv, either
directly or indirectly, leads to actin bundle aggregation. That the actin bundles, in Jv mutant
bristles, lack a proper triangular structure due to the loss of actin filaments within the
bundles supports the possibility that Jv is required for actin bundle stabilization. Our study
also reveals another possible function of Jv in actin bundle construction. We found that it
significantly enhances the length of the actin bundles. This may suggest that Jv is required
for actin bundle elongation. In support of this possibility, our previous results showed that
the actin bundles in the Jv mutant bristle were shorter and disordered, and ran in different
directions along the bristle shaft, rather than straight, as found in the WT bristle. That
Fascin can regulate actin elongation factors, specifically Enabled (Ena) processivity [34],
suggests that Jv may also stabilize Fascin in bundles, thus increasing Ena processivity and
leading to filament elongation.

The presented results may lead to a better understanding of the molecular organization
of higher-order structure formation processes.

4. Materials and Methods
4.1. Drosophila Stocks

The following transgenic flies were used: GFP-Javelin [24], mCherry-Forked [25], GFP-
Fascin, and mCherry-Fascin [35]. Germline expression was performed with P{matα4-GAL4-
VP16} V37 (herein referred to as alpha-tub) obtained from the Bloomington Stock Center.

4.2. Fertility Assay

Three virgin females of the respective genotypes were mated with two wild-type (WT)
males in a vial containing yeast for two days. Matings were performed in triplicate for
each genotype. The flies were transferred to new vials containing fresh yeast for one day to
lay eggs. The flies were discarded, and the progeny resulting from the eggs after ten days
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at 25 ◦C were collected and counted. The progeny per female and the average number
and standard deviation of progeny per genotype were calculated from each vial. Finally, a
percentage of relative fertility was calculated [36].

4.3. Confocal Microscopy

Drosophila ovaries were dissected in PBS, fixed for 10 min in 4% PFA, and washed
3× times in PBS with 0.1% Tween. The ovarioles were transferred onto a glass slide with
citifluor antifadent mountant solution (Electron Microscopy Sciences) and gently separated
for better imaging. All images were taken with an Olympus FV1000 laser-scanning confocal
microscope. The length and width of the actin bundles were measured using Fiji/ImageJ
software with the straight-line tool. This tool allows the creation of line selections, followed
by calculation of the length of the same.

4.4. SR-SIM Imaging

Drosophila ovaries were dissected in PBS and fixed for 10 min in 4% PFA. All the
samples were stained with Alexa Fluor 633 phalloidin dye (Molecular Probes, Oregon,
USA) to stain the endogenous actin and washed 3× times in PBS with 0.1% Tween. The
ovarioles were transferred onto a glass slide with citifluor antifadent mountant solution
and gently separated for better imaging. Thin z-stacks of high-resolution images were col-
lected using an ELYRA PS.1 microscope (Carl Zeiss MicroImaging, Oberkochen, Germany)
at three rotations in five phases. Images were then reconstructed using ZEN software
(Carl Zeiss MicroImaging, Oberkochen, Germany) based on the structured illumination
algorithm developed by Heintzmann and Cremer [37]. All measurements were performed
on reconstructed super-resolution images of single z-sections using ZEN software.

All images were subjected to channel alignment using four-color beads, and the
measurements were performed on reconstructed super-resolution images of single z-
sections with ZEN software. The distance between the actin bundles was measured using
Fiji/ImageJ software with the straight-line tool.

Co-localization of fluorescence signals was analyzed from their intensity profiles with
the ZEN software. The co-localization value (Pearson’s coefficient) was manually calculated
from five representative images for each genotype in Microsoft Excel.

4.5. On-Section CLEM
4.5.1. Sample Preparation

Drosophila melanogaster ovarioles were dissected from ovaries in Schneider’s medium
(+10% FCS and 1% insulin). The ovarioles were transferred to the medium contain-
ing an additional 20% Ficoll (PM 70), and Stage 10 oocytes were separated for cryo-
immobilization. High-pressure freezing was performed with HPM-010 (Abra-Fluid), where
two oocytes were cryo-immobilized in a 200-µm deep type-A carrier (Wohlwend) imbibed
with 1-hexadecene and covered with 20% Ficoll (PM 70) in Schneider’s medium as a
cryo-protectant. All samples were further processed by freeze-substitution (FS) and flat-
embedding in a temperature-controlling device (EM-AFS2, Leica Microsystems). FS was
carried out at −90 ◦C for 52 h with 0.1% (w/v) uranyl acetate in glass-distilled acetone
(EMS). The temperature was then raised to −45 ◦C (3.5 ◦C/h), and samples were fur-
ther incubated for 5 h. After rinsing in acetone, samples were infiltrated with increasing
concentrations (10, 25, 50, and 75%; 4 h each) of Lowicryl HM20 resin (EMS) in acetone,
while the temperature was further raised to −25 ◦C. 100% Lowicryl was exchanged three
times in 10 h steps, and samples were UV polymerized at −25 ◦C for 48 h, after which
the temperature was raised to 20 ◦C (5 ◦C/h), and UV polymerization continued for 6 h.
Cross-section 300 nm thick of the anterior to the central part of the oocyte were cut with an
ultra-microtome (UC7, Leica) and a diamond knife (ultra semi, DiATOME) and picked up
on carbon-coated 200-mesh copper grids (S160, Plano). Targeting of the oocyte was carried
out using toluidine blue sections. The Stage 10 oocyte was readily distinguishable from
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the nurse cells by certain anatomical landmarks such as peripheral follicle cells and huge
yolk particles.

4.5.2. Fluorescence Microscopy Imaging

Ultramicrotomy and acquisition of the in-resin-retained fluorescence within the sec-
tions are best performed on the same day to avoid bleaching of the fluorescence. Thus,
the fluorescence microscopy (FM) imaging of the sections was carried out as previously
described [38] using a wide field fluorescence microscope (Olympus IX81) equipped with
an Olympus PlanApo 100X 1.40 NA oil immersion objective.

4.5.3. Electron Tomography

Dual-axis tilt series (1◦ increment, −60◦ to 60◦) of the areas of interest were acquired
using an FEI TECNAI F30 TEM operated at 300 kV and a fast Gatan OneView 4K camera.
Tomograms were reconstructed at a final voxel size of 1.55 nm using patch tracking and
weighted-back projection algorithms of the software package IMOD [39].

4.5.4. Correlation and Segmentation

Correlation between light and electron micrographs was carried out with the plugin
ec-CLEM [40] of the software platform Icy [41]. The coordinates of pairs of correspond-
ing features in the two imaging modalities (autofluorescent uranyl-acetate-stained yolk
granules, mitochondria, vesicles) were used to calculate a linear transformation that al-
lowed mapping the coordinates of the fluorescent spots of interest to overlay them on the
electron micrograph. Electron tomograms were displayed and analyzed using the IMOD
software package [39]. The interfilament distance and bundle width were also measured
using IMOD. Manual segmentation of the actin filaments was performed within Amira
visualization software [42].

4.6. Constructs and Transgenic Flies

The GFP gene was cloned into plasmid pUASp-attB using the KpnI and XbaI restriction
sites by Gibson assembly (hereafter, the constructs are designated as plasmids pUASp-
GFP). DNA encoding Jv N-terminus (residues 1–853) and Jv C-terminus (residues 706–1912)
were then cloned into plasmid pUASp-GFP using the XbaI restriction sites. The following
primers were used: Jv N-terminus Forward primer 5′-ATGGGCAACGGATATTTTCG-
3′, Jv N-terminus Reverse primer 5′-AGTCGTCCTCAGCCTCTTCC-3′, Jv C-terminus
Forward primer 5′-TGGTCACTGCCAACAAGTC-3′, and Jv C-terminus Reverse primer
5′-TACATTTTGTCATCCAGGCTG-3′. P-element-mediated germline transformation of
these constructs into the attP site (ensuring equal expression levels of each construct) was
carried out by BestGene.

4.7. Data Analyses

Actin bundle lengths were measured by confocal microscopy, and their width and the
distance between them were measured by SR-SIM. The number of actin filaments within
the bundles, the inter-actin-filament distance within the bundles, and their total width
were measured by CLEM. Quantitative data are expressed as mean ± standard error of the
mean (SEM). All the statistical analyses were performed using a one-way ANOVA, and
p values ≤ 0.05 were considered significant for all analyses. The statistical significance was
checked with a pairwise post hoc Tukey HSD. All the statistical analyses were performed
using STATISTICA, version 10.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22084006/s1, Figure S1: Toluidine blue-stained sections of an ovariole expressing GFP-
Fascin and mCherry-Forked. Movie S1, CLEM animation: Animation showing a 3D-EM rendering of
ectopic actin bundles within the Drosophila oocyte analyzed by CLEM (Amira software).

https://www.mdpi.com/article/10.3390/ijms22084006/s1
https://www.mdpi.com/article/10.3390/ijms22084006/s1
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