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Dynamic Traffic Assignment (DTA) models represent fundamental tools to forecast traffic

flows on road networks, assessing the effects of traffic management and transport

policies. As biased models lead to incorrect predictions, which can cause inaccurate

evaluations and huge social costs, the calibration of DTA models is an established

and active research field. When it comes to estimating Origin-Destination (OD) demand

flows, perhaps the most important input for DTA models, one algorithm suggested to

outperform all the others for real-time applications: the Kalman Filter (KF). This paper

introduces a non-linear Kalman Filter framework for online dynamic OD estimation that

reduces the number of variables and can easily incorporate heterogeneous data sources

to better explain the non-linear relationship between traffic data and time-dependent

OD-flows. Specifically, we propose amodel that takes advantage of Principal Component

Analysis (PCA) to capture spatial correlations between variables and better exploit

the local nature of a specific KF recently proposed in literature, the Local Ensemble

Transformed Kalman filter (LETKF). The main advantage of the LETKF is that the Kalman

gain is not explicitly formulated which means that, differently from other approaches

proposed in the literature, there is no need to compute the assignment matrix or

its approximation. The paper shows that the LETKF can easily incorporate different

data sources, such as traffic counts and link speeds. Additionally, thanks to the

PCA, the model can identify local patterns within the data and better explain the

correlation between variables and data. The effectiveness of the proposed methodology

is demonstrated first through synthetic experiments where non-linear functions are used

to benchmark the model in different conditions and then on the real-world network of

Vitoria, Spain (2,884 nodes, 5,799 links) using the mesoscopic simulator Aimsun. Results

show that the proposed method leads to better state estimation performances with

respect to other Ensemble-based Kalman filters, providing improvements as high as 64%

in terms of traffic data reproduction with a 17-fold problem dimensionality reduction.

Keywords: origin-destination estimation/prediction, online calibration, Kalman Filter, Local Ensemble Transformed

Kalman Filter, principal component analysis
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INTRODUCTION

Due to the rapid growth of road traffic, all major cities of the
world are facing severe congestion problems. It is clear that
simply increasing the infrastructure supply is not physically
or economically feasible. The ever-growing pressure of travel
demand on existing transport facilities generates significant
societal, environmental and economic losses, due to the increase
of pollutant emissions and travel times. To tackle this issue,
practitioners and researchers in the transportation field rely on
traffic simulation models to evaluate and implement efficient
measures, ranging from off-line planning to real-time traffic
management solutions. However, the efficiency of these tools
depends on their ability to correctly predict traffic conditions.

Travel demand is arguably the most important input for
traffic simulation models, as both the planning and management
of traffic solutions require good knowledge of current and
forecasted demand. In dynamic models, demand is usually
discretized in the form of Origin-Destination (OD) matrices,
where each cell represents all trips from an origin zone to a
destination zone started during a specific time interval. A widely
adopted procedure uses traffic counts to estimate these matrices,
seeking the best possible approximation of OD flows that
minimizes the error between simulated and available traffic data.
The relation between OD matrices and traffic counts is generally
expressed through assignment matrices, which are hard to obtain
and impose a simple linear relationship between link and demand
flows (Frederix et al., 2013). Traditionally, this procedure can
be applied off-line (for medium to long term planning) or
on-line (for real-time traffic prediction). The Dynamic OD
demand Estimation problem leads to two different approaches:
simultaneous or sequential (Cascetta et al., 1993; Cantelmo and
Viti, 2020). In the latter approach, matrices are individually
estimated, from the first-time interval to the last one, while
keeping the matrices calculated in the previous intervals fixed. By
pursuing a sequential approach, the computational complexity
of the problem decreases as the problem itself can be split
into a set of simpler sub-problems and every estimated matrix
can be used as the starting estimate for the next time interval.
Thus, the sequential approach is a must for online applications,
where computational times are an important constraint in the
estimation process.

One algorithm that has been proven to outperform all the
others for the Online Dynamic Demand Estimation (ODDE)
problem is the Kalman Filter (Chang and Wu, 1994; Van
der Zijpp and Hammerslag, 1994; Ashok, 1996; Zhou and
Mahmassani, 2007). The Kalman Filter uses a series of measures
obtained over time to estimate the most likely status of an
unknown variable. In the case of on-line estimation of demand,
time-dependent OD flows are the unknown variables and
observed traffic conditions are the data. However, despite more
than 20 years of intense research efforts, the ODDE has not
yet been solved in such an effective way to be applied for real
problems. Based on the literature, we can distinguish between
three main sources of complexity in ODDE:

1. Number of variables: the ODDE procedure generally returns
effective results when the number of observations (traffic data)
is similar to the number of unknowns (OD flows). However,
as this usually does not occur in practice, dimensionality
reduction techniques should be deployed to avoid this issue
(Marzano et al., 2009; Djukic et al., 2012; Xia et al., 2018).

2. Non-linear relationships between variables: there are two main
ways of considering non-linearity within the ODDE, which
ideally should be jointly considered. One way is to include
different data sources in order to increase the observability of
the system. For instance, jointly considering speeds, densities
and counts can help to better understand traffic phenomena
(Balakrishna et al., 2007; Frederix et al., 2011; Yang
et al., 2017). Secondly, describing non-linear systems entails
deploying non-linear models. The conventional Kalman Filter
is a simple linear model, thus several non-linear extensions
have been proposed (Antoniou et al., 2007).

3. Demand structure: mobility demand derives from the demand
for activities, and thus, it has a structure. Different models
should be used to target different components of the demand,
including random fluctuations, structural, and seasonal
trends, as well as regular trends (Zhou andMahmassani, 2007;
Cantelmo et al., 2019; Behara et al., 2020).

This paper introduces a non-linear Kalman Filter framework for
ODDE, that considers the three sources of complexity previously
reported. Through the adoption of Principal Component
Analysis (Jolliffe, 2002)(Jolliffe, 2002), it works on exploiting
the demand structure and on reducing the number of variables.
It is assignment matrices-free, which means that it can
easily incorporate heterogeneous data sources to better explain
the non-linear relationship between traffic data and time-
dependent OD-flows.

The remainder of the paper is structured as follows. Section
Literature Review provides a brief literature review of the ODDE
problem solved through the Kalman filter and its non-linear
extensions. The model, an extension of the Local Transformed
Ensemble Kalman Filter (LTEKF) proposed in Carrese et al.
(2017) is then presented in section The Model: PCA-Local
Transformed Ensemble Kalman Filter. Section Applications and
Results shows the numerical results on a synthetic experiment
and on the real-world network of the city of Vitoria, Spain.
Lastly, section Conclusions provides some concluding statements
and remarks.

LITERATURE REVIEW

Online Dynamic Demand Estimation
Travel demand refers to the entirety of trips between all the
traffic zones of a transport network, taking into account the
different travel purposes, time frames and modes of transport
(Cascetta, 1984). From a modeling perspective, travel demand
consists mainly of an origin-destination (OD) matrix with
each cell representing all trips from an origin zone O to a
destination zone D.
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In the dynamic case, the temporal OD demand is usually
represented by a sequence of matrix “slices” where each demand
slice corresponds to a departure time interval. Estimation of
temporal OD demand can be performed for both within-
day (intra-period) and day-to-day (inter-period) dynamic
frameworks, as well as for off-line (medium-long term planning
and design) and on-line (real-time management) applications
(Cipriani and Nigro, 2017).

In the on-line within-day formulation, OD flows are estimated
as a sequence of separated intervals adopting a rolling-horizon
approach. This is called sequential approach and it is formulated
as follows:

d∗nh = argmin[f1(xnh, x
∗
nh)+ f2(tnh(xnh|d

∗
1 . . . .d∗nh), t

∗
nh)] (1)

The objective in (1) is to find the matrix d∗nh for each time
interval nh of the planning horizon T, minimizing: (i) a measure
of distance f1 between the unknown ODs xnh and some a priori
target matrix x∗nh (seed matrix); (ii) a measure of distance f2
between simulated traffic data tnh and traffic measurements t∗nh.

Simulated traffic data derive by the Dynamic Traffic
Assignment (DTA) of the unknown ODs, fixing the ODs
of previous time slices. The first component f1in (1) allows
to overcome the non-uniqueness of the solution of the
demand estimation problem, where in on-line dynamic
formulations, off-line dynamic matrices are usually adopted as
the target ones.

Kalman Filter and Non-linear Extensions
for ODDE
One of the most established approaches for ODDE is to re-
formulate the problem as a state-space model and, successively,
to adopt a Kalman Filtering (KF) approach (Okutani and
Stephanedes, 1984) to solve it. The state-space model is a useful
abstraction for dynamic systems that describes the behavior of
said systems through three equations:

1. The transition equations, which capture the evolution of the
system over time;

2. The measurement equations, which map the state variables to
the observed data;

3. The analysis equation, which corrects the estimate derived
by the transition equations through the results of the
measurements equations and the Kalman gain.

The KF algorithm (Kalman, 1960) (Kalman, 1960)is based on
the solution of a least-square cost function in an incremental
way, allowing to update the OD flows when new traffic data
is available. In order to include the structure of the demand
within the estimation framework, Ashok and Ben-Akiva (1993)
formulated the KF in terms of deviations between the actual and
the historical OD flows.

The KF algorithm represents one of the most widely adopted
solution framework for the online OD estimation problem
(Barcelo and Montero, 2015; Zhang et al., 2017; Marzano
et al., 2018; Krishnakumari et al., 2019; Liu et al., 2020).
However, its application to the online OD estimation problem
has several drawbacks. Firstly, both the transition equation and

the measurement equation assume a linear relation between
variables. In the case of the transition equation, this relation
is usually represented in the form of an autoregressive process
(Ashok, 1996), while the assignment matrices are usually used
to feed the measurement equation. However, the assignment
matrices are then assumed as fixed in the measurement equations
to simplify the process and, lastly, standard KF is not able to
handle a large number of variables, as it requires intensive linear
algebra computations (Bierlaire and Crittin, 2004).

As these formulations poorly represent traffic dynamics,
non-linear models need to be deployed in real cases
(Antoniou et al., 2007).

This paper will focus on the family of Ensemble Kalman
filters (EnKF), introduced by Evensen (2003). EnKF chooses an
ensemble of initial conditions around the current estimate and
propagates each ensemble member based on a non-linear model.
Thus, the uncertainty of the estimation is propagated from one
time interval to the next and the ensemble is used to parametrize
the distribution of the state variables.

The size of the ensemble has to be chosen so that it is
statistically representative of the model (Kalnay, 2002) and must
span the model sub-space adequately (Oke et al., 2007) or the
system may be undersampled and thus lead to unwanted errors,
such as inbreeding, filter divergence, and spurious correlations
(Whitaker andHamill, 2002; Lorenc, 2003; Furrer and Bengtsson,
2007). Several approaches have been implemented to avoid
the problems caused by undersampling, such as covariance
inflation (Anderson and Anderson, 1999) and localization
(Hamill et al., 2001).

The size of the ensemble also affects the computational time
of the EnKF. All the Ensemble-based Kalman filters tend to be
computationally expensive as the state variables ensemble must
be maintained throughout the entire time horizon. Furthermore,
when computing the dependency between OD flows and
observed measurements, for each time interval k runs of the DTA
model are required, where k is the number of the elements in
the ensemble. Since the DTA performance is highly dependent
on the number of OD pairs on the network, to obtain a
sustainable prediction time for Ensemble-based Kalman filters
algorithm, some computational time reduction approaches must
be pursued, such as accelerating the solution algorithm of the
DTA or reducing the dimensionality of the problem.

An interesting extension of the EnKF is the Local Ensemble
Transformed Kalman filter (LETKF) (Hunt et al., 2007), which
efficiently deals with non-linear problems, large-scale models and
datasets combining the advantages of two ensemble-based filters:
the Local Ensemble Kalman filter and the Ensemble Transformed
Kalman filter (ETKF) (Bishop et al., 2001; Wang et al., 2004).

The LETKF adds two extension to the basic EnKF. First,
it allows to minimize the Kalman filter cost function in the
ensemble space, thus reducing the dimension of the problem
and the problem complexity (it is “transformed”). Second, it
provides a framework for data assimilation that allows a system-
dependent localization strategy, breaking down the problem into
sub-problems to be solved in a parallel fashion (it is “local”).
As in all the EnKFs, the LETKF avoids the linearization of the
dependency between OD flows and observed measurements, by
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implicitly capturing it through a traffic simulator rather than
through an analytic formula.

As pointed out in Hunt et al. (2007) and Carrese et al. (2017),
the LETKF provides a framework for data assimilation that allows
a localization strategy, i.e., cutting off longer range correlations
at a specified distance. Generally, it is performed by applying
a Schur product with a correlation function with local support,
meaning that the function will be dependent on the Euclidean
distance between variables and will be non-zero only in a small
local region. However, this idea holds true only for the prediction
process of selected dynamic systems, such as weather forecasting,
where the spatial correlation between variables does depend on
the Euclidean distance between them. Since traffic is sprawled
everywhere on the network, the same does not hold for traffic
dynamic systems, as OD flows are not directly correlated by
Euclidean distance. For the ODDE, the “local” approach means
dividing the network into subnetworks and the demand matrix
into submatrices, each submatrix containing the ODs that mostly
affect the traffic measurements in the corresponding subnetwork.
This is something that has already been tested for the off-line OD
estimation problem (Cantelmo et al., 2014; Antoniou et al., 2015).
However, similarly to methods that explicitly use the assignment
matrix, this entails developing procedures to explicitly map the
relative weight of the information (e.g., how ODs and link flows
are correlated).

Contribution Statement
It is well-known that the ODDE is a highly non-linear, highly
undetermined, and computationally demanding problem. Based
on the analysis of the state of the art, it emerges that there is a clear
need for efficient and robust solution methods able to handle
large networks and heterogeneous data sources.

LETKF represents a recent development of EnKF for the
ODDE problem, as it is suitable for highly non-linear problems
and large-scale networks and datasets. So far, the model has been
used for small networks only, thus, the “local” peculiarity of
LETKF, which has only been mentioned but not implemented
in Carrese et al. (2017), remains one of the main and most
interesting research lines for the applicability of the model on
large-scale world networks. To fill this gap, this paper introduces
a methodology that combines the Principal Component Analysis
and the LETKF (PCA-LETKF). Differently from the methods
proposed in Cantelmo et al. (2014) and Antoniou et al. (2015),
the Principal Component Analysis (PCA) allows in fact to
capture spatial correlations between variables without the need to
explicitly map these relationships. The PCA is a powerful tool for
data analysis that aims to identify patterns in high-dimensional
datasets and reduce the number of dimensions without much loss
of information. This is achieved by transforming the dataset into
a new set of variables—the Principal Components (PCs)—which
are uncorrelated and ordered so that the first few retain most of
the variation present in all of the original variables (Jolliffe, 2002).
PCA is an assumption-free procedure that already calculates how
ODs are correlated (Prakash et al., 2018; Qurashi et al., 2019). As
showed byDjukic et al. (2012) and Prakash et al. (2018), replacing
the OD demand with its Principal Components reduces the
problem complexity thus making the ODDE problem simpler.

This paper shows that the PCA also identifies the variables that
are highly correlated and provides a good classification for the
localization framework. Thus, by finding the spatial correlation
between variables, the PCA empowers the LETKFmodel to better
exploit its “local” nature.

We show that, for transport applications, the proposed
PCA-LETKF outperforms conventional EnKF, including the
LETKF. The reason is that the PCA finds spatial correlations
between variables, which leads to a smaller number of ensembles
required, with respect to the conventional EnKF, to achieve
better estimates.

THE MODEL: PCA-LOCAL TRANSFORMED
ENSEMBLE KALMAN FILTER

The road traffic network is modeled by a directed graph G =
{

n, l
}

where n is the set of nodes and l is the set of links. The
simulated horizon T is divided in equal time intervals h= 1, . . . , t.

Creation of the Starting Dataset
According to Prakash et al. (2018), multiple estimates of the OD
flows are required to obtain the principal components of an OD
flow vector. One reasonable approach would be using an offline
calibration procedure to estimate the OD flows over multiple
days and compose a m × nOD data matrix X, where m is the
number of estimates used and nOD is the number of OD pairs
in the network. In practice, every xi estimate is created from the
seed matrix x (having dimension nOD × nh) as:

xi = x×
(

1− qiR∆
)

(2)

where R is a normally distributed random vector with mean 0
and values between 0 and 1, 1 is a ±1 Bernoulli distribution
random vector used to randomize the increase or decrease of each
estimate xi. Lastly, qi is a random coefficient to specify the scale
of randomization.

A centered data matrix X̃ is obtained by subtracting the mean
X from each column of the matrix X, since having a zero mean
dataset simplifies the problem.

Generation of the PC Components
A Singular Valued Decomposition (SVD) is performed on the
matrix X̃:

X̃ = U
∑

VT (3)

where
∑

is am× nOD matrix with positive values called singular
values, U is a m × m matrix with orthogonal column vectors
called the left singular vectors and V is a nOD × nOD matrix with
orthogonal column vectors called the right singular vectors.

The column of the matrix V are the principal component
directions, which represent the eigenvectors of the sample
covariance matrix 1

m X̃TX̃. The first r PC-directions—sorted
highest to lowest according to the values of the

∑

vector—that
explain more than 95% variance of the data matrix are selected to
form the nOD × r matrix V .

V = [v1 v2 . . . vr−1 vr] (4)
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where v1 represents the PC direction with the largest sample
variance, v2 represents the PC direction with the largest sample
variance that is orthogonal to v1 and so on.

Then, the PCs for the time interval h− 1 are generated as:

za
h−1

= VTxa
h−1 (5)

where xa
h−1

are the a priori OD flows (of the seed matrix)
containing all the trips departing during the time interval h− 1.

It must be taken into account that the principal components,
as computed above, capture the structural spatial relationship
between the OD flows and not their temporal relationships. As
OD demand can change through the day, it would be desirable to
compute several matrices Vh relative to the specific time interval
h. But calculating time-interval specific principal components
can have high data requirements, hence why the feature vector
V is considered constant across intervals, implying that the
statistical correlation between OD flows is constant through
the chosen time frame. This is considered to be an acceptable
approximation when, for example, the estimation time frame
corresponds to only the morning hours (i.e., from 7:00 a.m. to
12:00 p.m., as in the case studies discussed in the following
sections), whereas, if the entire day demand is considered, issues
may arise as the afternoon peak hours may affect the correlation
in the morning peak hours and vice versa.

Generation of the a priori Ensemble
Given the a priori PCs za

h−1
, an ensemble is generated:

zh−1 =
{

zi
h−1

: i = 1 . . . k
}

(6)

where k is the number of members of the ensemble. In ensemble-
based filters, the ensemble can be obtained “offline,” from the
last matrices estimated during iterations of an off-line adjustment
process or several matrices obtained from off-line adjustment
conducted for several days. In this paper, as we are generating an
ensemble of PCs, the ensemble is generated by perturbing the a
priori PCs za

h−1
through a randomization vector Si (containing

normally distributed values from 0 to the arbitrarily chosen
maximum percentage error given to the PCs) and a Bernoulli
distributed vector.

zi
h−1

= za
h−1

× (1− Si∆) (7)

Transition Equations
From eachmember of the a priori ensemble zi

h−1
, the background

state estimate for the following time interval h is obtained as:

zi
h|h−1

= Fh|h−1z
i
h−1 (8)

Fh|h−1 is the propagation map, that captures the evolution of
the system over time through an autoregressive process, as
proposed in Ashok (1996)(Ashok, 1996). Several approaches can
be found in literature, with one of them being a polynomial
approximation that interpolates each a priori vector by the
average of the a priori ensemble from one time interval to
the next. Furthermore, as ach ensemble is forecasted into the

future time interval independently, this makes this formulation
well-suited for parallel processing.

The mean value zh|h−1, the deviation ∆Zi
h|h−1

and the

covariance matrix Ph|h−1 are then computed.

Ph|h−1 =
(

k− 1
)−1

k
∑

i=1

(

∆Zi
h|h−1

) (

∆Zi
h|h−1

)T
(9)

And the PCs background ensemble zh|h−1 is transformed
back into OD flows to perform the assignment through a
DTA simulator:

xi
h|h−1

= Vzi
h|h−1 (10)

The formulation (10) is an approximation as we reduced the
dimensionality of the PC-directions matrix V. Thus, when
reconstructing the data, the dimensions that have been discarded
are lost.

Measurement Equations
The state variables until time interval h are mapped onto the
simulated measurements y at time h:

yi
h
= H

(

xi1, . . . , x
i
h−1

, xi
h|h−1

)

(11)

yi
h
is a vector that contains all measurements chosen, such as link

flows, speeds, etc. . . H represents the non-linear model that maps
the OD flows to the traffic measurements. It is not required for H
to have an analytic formulation as in the LETKF algorithm the
Kalman gain is not explicitly formulated. For the linear Kalman
filter and other ensemble based Kalman filters, H consisted of
the assignment matrix, whereas for the LETKF model H is
considered a “black box” that contains a DTA procedure used to
simulate the traffic measurements that will be the outputs of the
measurement equations (11).

Then, the mean yh and deviation 1Yh are computed. The
covariance matrix of the measurements R is usually assumed
constant across time intervals.

Coordinate Change
A coordinate change from the PCs space (r dimension space)
to the ensemble space (k dimension space) takes place. The
covariance matrix for the analysis state in the k-dimension
space becomes:

P̃h =
[(

k− 1
)

I + (∆Yh)
T R−1∆Yh

]−1
(12)

where I is the identity matrix (k × k dimension). The average of
the analysis state in the k-dimension space is:

wh = P̃h (∆Yh)
T R−1(y0

h
− yh) (13)

where y0
h

are the observed traffic counts for the time

interval h and P̃h (∆Yh)
T R−1 represents the Kalman gain. This

transformation allows dealing with a Kalman gain that is not
function of either H or its Jacobian, which is usually required in
other KF approaches.
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Return to the PCs Space
The background PCs ensemble zh|h−1 is corrected and the a priori
ensemble for the next time interval zh and its covariance matrix
Ph are obtained as:

zh = zh|h−1 + ∆Zh|h−1wh (14)

zih = zh|h−1 + ∆Zh|h−1

[

wh + [
(

k− 1
)

P̃h
]

1
2 ] (15)

Ph = ∆Zh|h−1P̃h
(

∆Zh|h−1

)T
(16)

APPLICATIONS AND RESULTS

Experimental Design
The proposed PCA-LETKF has been tested firstly on a synthetic
network and then on the real-world network of the city of
Vitoria, Spain.

For the application of the PCA-LETKF algorithm, a data
matrix of 100 previous estimates of the starting demand is
generated and the PC-directions are calculated through PCA and
then reduced until the remaining PC-components contain 95%
of the variance of the data matrix.

The synthetic network consists of 3,249 OD pairs and
395 detectors. A starting demand resulting in an uncongested
network has been firstly considered, while different degrees of
randomization of the starting demand have been finally tested.
Traffic counts have been considered the only measurements
available and the number of ensembles varying from 5 to 50. The
synthetic model uses two possible non-linear functions to map
the complex relationship betweenODs and traffic counts; the first
one is:

Yi =
∑

n∈ODs
w1Xn + w2X

2
n (17)

where Yi represents the general detector i and Xn represents the
demand for the OD pair n. The two matrices w1 and w2 are
randomly generated weights that relate link and demand flows
for each OD/detector.

The second function increases the non-linearity and
complexity of the relation between OD flows and link flows.
It has been obtained by incorporating the random weights w1

and w2 in the Styblinski-Tang function (Styblinski and Tang,
1990), a commonly used benchmark objective function for
optimization methods:

Yi =
∑

n∈ODs w1(X4
n+5X5)+w2(−16X2

n)
2

(18)

In the synthetic experiment, PCA-LETKF results have been
compared with those obtained with the standard EnKF and
LETKF models.

Concerning the real-world experiment, the city of Vitoria is
the capital of the Basque Autonomous Community in northern
Spain and represents the typical middle-sized European city in
terms of dimension and structure, composed of a city center, a
motorway, and suburb areas. Its network consists of 57 traffic
zones, 2,884 nodes, and 5,799 links (Figure 1); 395 detectors
provide traffic counts data.

FIGURE 1 | Network of Vitoria, Spain.

The mesoscopic simulator Aimsun (2017), a commercial
software adopted by practitioners all over the world for planning
and real-time management, has been adopted to map the
OD flows to the traffic measurements through a Dynamic
Traffic Assignment process. The simulations are run with a
stochastic route choice scenario and path assignment fixed
through dynamic user equilibrium.

In this experiment, the morning demand has been
considered—from 7:00 a.m. to 12:00 p.m., for a total of 20
time intervals. Two different demand scenarios are considered,
one resulting in an uncongested network (84,089 vehicles) and
one resulting in a congested network (158,644 vehicles).

In the real-world experiment, PCA-LETKF results have been
compared with those obtained with the LETKF model.

For the evaluation of the performance of the tested algorithms,
the Normalized Root Mean Square (RMSN) error (19) is used,
which has been previously chosen as the evaluation criteria in
many research papers (Ashok and Ben-Akiva, 2000; Prakash
et al., 2018).

RMSN =

√

n
∑n

i=1(ŷi−yi)
2

∑n
i=1 yi

(19)

Synthetic Experiments Results
Results in terms of estimated link flows and OD flows at the end
of the model runs adopting the non-linear function (17) in the
uncongested case are shown in Figure 2, where the red dashed
line represents the initial error.

In the figure, the x-axis represents the number of ensembles
used by each model. Intuitively, larger values are associated
with better predictions but also higher computational times.
The y-axis indicates the quality of the prediction associated
with a specific number of ensembles in terms of RMSN. As
expected, both the LETKF and PCA-LETKF outperform the
traditional EnKF. Despite being a quite advanced model capable
of handling non-linearity, even when using 50 ensembles, the
EnKF only reduces the error from 0.45 to 0.34 (black dotted
line). It is also important to point out that—in order to capture
non-linear phenomena—each ensemble requires to perform an
objective function evaluation. This entails running the map
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FIGURE 2 | Error in terms of link flows (left) and OD flows (right) for each model.

FIGURE 3 | Error in terms of link flows for the two mapping functions.

linking OD flows to traffic counts 50 times for each time
interval, one for each ensemble member. The main reason is
that we only have 395 detectors to explain 3,249 variables.
In similar conditions, the LETKF provides better results in
terms of link flows, however, the PCA-LETKF (black dash-
dotted line) performs better already with 5 ensembles, while the
normal LETKF only provide good results (RMSN ≈ 0.2) for
more than 25 ensembles, where again more ensembles mean
more computational time. The reason is that as of now the
LETKF is not exploiting any localization strategy. This means
that more ensembles are needed to learn the structure of the
data. Additionally, the PCA-LETKF also performs better in
terms of OD flows for most of the cases. This usually happens
for a low number of ensembles—between 5 and 25—which
suggests that larger ensample values increase the probability
of overfitting.

Comparing previous results with those obtained by the
adoption of the non-linear function (18), it can be observed
a similar pattern (Figure 3), with the PCA-LETKF model
maintaining a constant RMSN value of∼0.2 (56% decrease from
initial error) for the first function and of ∼0.45 (65% decrease
from initial error) for the second function. The estimated link
flows error for the LETKF model decreases as the number of
ensembles increases, until it converges to the results of PCA-
LETKF for more than 20 ensemble members. This suggests that
LETKF and PCA-LETKF potentially converge on similar results
but also that LETKF is four times more demanding in terms of
computational time.

Finally, Figures 2, 3 show a final error of 15–20%, which is
too high for real time applications. Real-time applications usually
start from a good historical matrix which is then corrected using
models, such as the Kalman Filter. In Figures 2, 3, however,
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FIGURE 4 | Error in terms of link flows (left) and OD flows (right) for each model using a 5-member ensemble.

the initial error is 45%. This is unrealistic, as the Kalman filter
will hardly manage to correct such a large error. To consider
the impact of the initial (seed) matrix on the performances, the
models have also been tested with function (17) considering
varying degrees of randomization of the initial error between the
real matrix and the seedmatrix. A series of seedmatrices has been
created off the real matrix:

xk
seed

= xreal ×
(

1− R ∗ ∆
100

)

(20)

where R is a normally distributed random vector withmean 0 and
values ranging between 0 and the arbitrarily chosen parameter E,
which represents the maximum percentage error given to each
OD pair. ∆ is a ±1 Bernoulli distribution random vector, which
randomizes the reduction or the increase for each value OD pair.

In Figure 4 the results obtained with a 5-member ensemble
and the maximum percentage error E given to the OD pairs
ranging from 100 to 10% are shown.

It can be observed that the PCA-LETKF outperforms the
other models, both in terms of link flows and OD flows, when
5 ensembles are used in the estimation. In particular, in terms of
link flows, the LETKF results show a 22.5% improvement, when
the maximum percentage error E between real and seed matrix
is 100%, and a 42% improvement, when E is 10%. Whereas,
the PCA-LETKF results show a 49.5% improvement for E =

100% and a 67% improvement for E = 10% in terms of link flows,
and a 35% improvement in terms of OD flows.

The scatter chart of the results obtained for the 3 models
using a 5-member ensemble and a starting maximum percentage
error E of 15%, resulting in an initial link flows error of ∼0.2,
is highlighted in Figure 5. Figure 5A compares the values of the
real ODmatrix and the seed ODmatrix, Figure 5B compares the
values of the observed link flows and the simulated link flows
obtained from the assignment of the initial seed matrix. Then,

Figures 5C–E show the distance between the observed link flows
and the estimated link flows obtained through EnKF, LETKF, and
PCA-LETKF, respectively.

Vitoria Network Results
We tested the PCA-LETKF for both congested and uncongested
conditions. The results of the tests performed on the uncongested
scenario are firstly presented in Figures 6, 7. The seed ODmatrix
has been created assuming a maximum percentage error E given
to each OD pair of 50% from the real OD matrix, resulting in a
starting RMSN between seed and real OD flows of 1.29 and a 0.34
RMSN between observed link flows and simulated link flows.

In terms of link flows, the LETKF algorithm shows a 9%
improvement for a 5-member ensemble that increases up to
16% for a 25 member ensemble, whereas the PCA-LETKF’s
improvement stays in the 30–33% range regardless of the
ensemble dimension. As for the OD flows, the LETKF algorithm
presents unsatisfactory results, although the error seems to be
decreasing for larger-sized ensembles. The PCA-LETKF, on the
other hand, shows an improvement in terms of OD flows
between 24 and 27%. Lastly, the LETKF algorithm presents
an improvement in terms of observed speeds that ranges
between 5 and 8%, whereas the PCA-LETKF presents a 11–14%
improvement for the uncongested scenario.

The scatter chart of the results obtained for the models using a
5-member ensemble and a starting maximum percentage error
E of 50%, resulting in an initial link flows error of 0.24, is
highlighted in Figure 8. Figure 8A compares the values of the
real OD matrix and the seed OD matrix, Figure 8B compares
the values of the observed link flows and the simulated link
flows obtained from the assignment of the initial seed matrix.
Then, Figures 8C,D show the distance between the observed link
flows and the estimated link flows obtained through PCA-LETKF
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FIGURE 5 | (A–E) Scatter chart of the error obtained with a 5-member ensemble and E = 15%.

and LETKF, respectively, while Figures 8E,F show the distance
between the real OD flows and the estimated OD flows for the
two models.

The models have then been tested with varying degrees of
reliability of the seed OD matrix, considering values of the
maximum percentage error E between OD pairs that vary
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FIGURE 6 | Error in terms of link flows (left) and OD flows (right) for the uncongested network.

FIGURE 7 | Error in terms of speeds (left) and computational times (right) for the uncongested network.

between 50 and 10%. The results are shown in Figures 9, 10.
PCA-LETKF presents an improvement in term of link flows that
varies between 28% (for a higher error between the real OD
matrix and the seed OD matrix) and 47%, whereas the LETKF
algorithm barely shows any improvement (4–9%) as 5 ensembles
are way too little to statistically represent a large network, and the
same applies to speeds. It follows that LETKF also fails to provide
satisfactory results when it comes to OD flows, while the PCA-
LETKF, instead, provides an improvement in terms of OD flows
ranging between 24 and 35% and an improvement in terms of
speeds between 11 and 14%.

The same experiments have been repeated on the congested
network, as shown in Figures 11, 12. The seed OD matrix has
been created from the real OD matrix assuming a maximum
percentage error of 15% given to each OD flow, even so, the
initial error between the simulated link flows obtained from
assigning the seed matrix onto the network and the observed

counts is much higher than what has been observed for the
uncongested scenario.

Consistently with what has been observed on the synthetic
network, the PCA-LETKF performance is more or less
constant regardless of the size of the ensemble, whereas
the LETKF model results are better when more members
of the starting ensembles are used. In terms of link flows,
the PCA-LETKF improves the RMSN by 34–36%, whereas
the LETKF shows an improvement that goes from only 7–
28% when 25 ensembles are used. In terms of OD flows,
both algorithms show unsatisfactory results, with the PCA-
LETKF not improving nor worsening the results compared
to the seed matrix, unlike the LETKF model which shows
a 10–16% increase of the RMSN between OD flows. As
for speeds, the LETKF starts from a 2% improvement
when 5 ensembles are used up to a 10% improvement
when 25 ensembles are used, whereas the PCA-LETKF
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FIGURE 8 | (A–F) Scatter chart of the error obtained with a 5 member ensemble and E = 50%.
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FIGURE 9 | Error in terms of link flows (left) and OD flows (right) for each model using a 5-member ensemble.

FIGURE 10 | Error in terms of speeds for each model using a

5-member ensemble.

shows a 14–15% improvement. The scatter chart of the
results obtained using 5 member ensembles are shown
in Figure 13.

Lastly, LETKF and PCA-LETKF have then been tested with
varying degrees of reliability of the seedODmatrix, with values of
the maximum percentage error E between OD pairs starting from
15% and then going down to 3%, while the number of ensemble
members is kept constant (k = 5) throughout the tests. Results
are shown in Figures 14, 15.

In terms of link flows, the PCA-LETKF results improve
by 36–37% for E = 15% and E = 10% and by 20–22% for
E = 5% and E = 3%, whereas the LETKF improvements
stay in the 6–8% range throughout. As for OD flows, instead,

the LETKF shows unsatisfactory results, whereas for the
PCA-LETKF the results vary depending on the seed matrix:
in some instances, the error between real OD flows and
estimated OD flows is not higher nor lower than the starting
error, while in other instances improvements up to 22% are
observed. As for speeds, the error decreases from 2 to 6%
for the LETKF algorithm and between 9 and 14% for the
PCA-LETKF algorithm.

CONCLUSIONS

This paper introduces a ODDE approach that combines Principal
Component Analysis and the Local Ensemble Transformed
Kalman Filter (PCA-LETKF). The advantages of this approach
are 2-fold:

- PCA-LETKF does not require an analytical formulation of
the assignment matrix, which is implicitly captured by the
DTA simulator. This means that multiple data sources can be
utilized in the measurement equations. In this work, traffic
counts and speeds have been utilized, but the approach allows
for other sources, such as FCD.

- PCA-LETKF exploits the “local” peculiarity of LETKF
algorithm by finding the spatial correlation that exists between
the variables, through the implementation of the Principal
Component Analysis to reduce the dimensionality of the
problem. In the case studies presented in this thesis, the initial
3,249 variables x to estimate have been reduced to 195 variables
z, which contain 95% of the variance. The dimensionality of the
problem has been thus reduced by 17 times.

Reducing the dimensionality of the problem tackles two
major issues when it comes to the applicability of ensemble
Kalman filters to online applications: computational times and
undersampling. Computational time, for the online dynamic
OD estimation, is a major constraint which generally make
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FIGURE 11 | Error in terms of link flows (left) and OD flows (right) for the congested network.

ensemble-based filters impractical for anything but very small
networks. For a medium-large sized network like the network
of the city of Vitoria, both the EnKF and LETKF require
a large ensemble to correctly explain the system dynamics,
making them computationally unfeasible for online applications,
as every ensemble member requires a run of the DTA
simulator—the most computationally expensive part of the
model. Additionally, deciding the right number of ensembles
is a challenging task. Both the EnKF and LETKF show
that a small number of ensembles is not sufficient to
generate accurate predictions while a large number leads
to overfitting. The PCA-LETKF, on the other hand, is
much more robust in terms of outputs and less prone
to overfitting.

The PCA-LETKF approach shows positive results that
outperform those of the EnKF and LETKF for as low as 5
ensembles members, with the estimation of the OD flows over
a 5-h long time horizon taking about 5 h as well, meaning that
the estimation process of the OD flows of a single time interval
takes roughly the same amount of time of the interval itself.

One of the limits of ensemble-based Kalman filters is that if
an ensemble that is too small to statistically represent the state
and span the sub-space adequately is chosen, the system will
be undersampled, which generally leads to a series of unwanted
errors affecting the performance of the ensemble filters (spurious
correlation, inbreeding, filter divergence). This explains the
unsatisfactory results of EnKF and LETKF when it comes to
correctly estimate the OD flows, using small ensembles. As for
PCA-LETKF, instead, its variables z (the Principal Components)
already contain the information of 100 data samples computed
beforehand (i.e., the outputs of 100 previous offline calibrations),
hence why for all the tests conducted on both the synthetic
and the Vitoria network, PCA-LETKF outperforms both EnKF
and LETKF. The tests show good results when it comes to
better predict the actual traffic conditions on the network.

FIGURE 12 | Error in terms of speeds for the congested network.

As for OD flows, the EnKF and LETKF show unsatisfactory
results for small ensembles, whereas the PCA-LETKF’s results
are mixed.

The way traffic counts and speeds—whose variances can
be very different—are jointly inserted in the equations could
be fine-tuned to better exploit the role that speeds play
into representing actual traffic conditions when it comes to
congested networks. All kinds of data can be incorporated in
the proposed model, however, so far, we have only addressed
how to incorporate data on a link-level scale, whereas the
incorporation of point-to-point data, such as travel times,
could be a future development. Furthermore, the assignment
part of the algorithm could be also speed up further. In the
transition equations, a simple polynomial interpolation has
been used to forecast the variables from one time interval
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FIGURE 13 | (A–F) Error in terms of link flows (left) and OD flows (right) for each model using a 5-member ensemble.
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FIGURE 14 | Error in terms of link flows (left) and OD flows (right) for each model using a 5-member ensemble.

FIGURE 15 | Error in terms of speeds for each model using a 5-member

ensemble.

to the next, as the definition of the best-possible transition
equation is outside the scope of this paper. However, several
autoregressive models have been already proposed in literature
and many more have yet to be applied to the OD estimation

problem specifically, such as Gaussian processes, for example.
Therefore, future developments will cover an evaluation of the
best approach to maximize predictive performance of PCA-
LETKF. Lastly, an optimal covariance inflation factor could be
defined for the Victoria network, as it has only been tested for the
synthetic experiment.
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