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In yeast, aging is widely understood as the decline of physiological function and the

decreasing ability to adapt to environmental changes. Saccharomyces cerevisiae has

become an important model organism for the investigation of these processes. Yeast is

used in industrial processes (beer and wine production), and several stress conditions

can influence its intracellular aging processes. The aim of this review is to summarize

the current knowledge on applied stress conditions, such as osmotic pressure, primary

metabolites (e.g., ethanol), low pH, oxidative stress, heat on aging indicators, age-related

physiological changes, and yeast longevity. There is clear evidence that yeast cells are

exposed to many stressors influencing viability and vitality, leading to an age-related shift

in age distribution. Currently, there is a lack of rapid, non-invasive methods allowing

the investigation of aspects of yeast aging in real time on a single-cell basis using the

high-throughput approach. Methods such as micromanipulation, centrifugal elutriator,

or biotinylation do not provide real-time information on age distributions in industrial

processes. In contrast, innovative approaches, such as non-invasive fluorescence

coupled flow cytometry intended for high-throughput measurements, could be promising

for determining the replicative age of yeast cells in fermentation and its impact on

industrial stress conditions.

Keywords: yeast, stress response, cell age, replicative aging, aging, age distribution

INTRODUCTION

Yeasts are indispensable organisms in various industrial processes, such as wine, cider, and
beer making and, more recently, in biofuel production. Many single-cell organisms propagate
by symmetrical splitting into two virtually identical entities that do not age and are, therefore,
considered potentially immortal. While these cells can die due to non-age-related causes, such as
disease or injury, they do not die due to senescence (Petralia et al., 2014). The life cycle of budding
yeast differs from this process, as it does not propagate by symmetrical cell division. Hence, there is
a need to define aging in yeast cells.

In general, aging is defined as the ability of an organism to adapt to environmental changes
(Martin and Hofer, 2004). Aging and age-associated physiological processes have been intensively
investigated in numerous scientific studies in recent years (Leupold et al., 2019; Chen et al., 2020;
Kim and Benayoun, 2020). Given this fact, three major theories, namely the reactive oxygen species
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theory, hyperfunction theory, and damage-centric model,
have evolved (Figure 1). These theories deal with the
characterization and explanation of aging. Relevant questions
include how aging can be observed within different populations
and between other species, as well as its psychological, social, and
physiological aspects. Not all of these theories are transferable
to the aging of yeast cells. Moreover, daughter yeast cells are
theoretically immortal as long as the environmental stress does
not influence homeostasis.

In industrial processes, the yeast cultures face multiple parallel
factors that may decrease cell viability and result in the aging of
yeast cells due to disrupted homeostasis. Current methods for
investigating cell aging in yeast cultures are mainly based on
time-consuming processes or cell separation, but not on yeast
culture fractionation, for the measurement of distributions of
yeast cell ages in whole populations.

In the past years, many reviews were published focusing on
the impact of telomere length (Liu et al., 2019; Harari et al.,
2020), oxidative stress (Eleutherio et al., 2018), DNA and cell size
(Veitia, 2019), and genetics (He et al., 2018; Lee and Ong, 2021),
metabolic pathways (Leupold et al., 2019) to replicative aging
and cellular senescence of budding yeast. Furthermore, only a
few reviews focus on models for the analysis of aging (Denoth
Lippuner et al., 2014; O’Laughlin et al., 2020). However, there is a
lack of publications focusing on the impact of stress on replicative
aging and fast determination methods, analyzing the replicative
age distribution in populations.

This review focuses on the interconnection of physiological
changes and aging of yeast populations, including the impact
of industrial relevant stressors on replicative aging and
their determination.

GENERAL ASPECTS OF AGING

Differences in Aging Theories
In the past years, different approaches evolved to explain aging
in humans. One approach assumes that reactive oxygen species
(ROS) and reactive nitrogen species (RNS), which are formed
during several metabolic processes under aerobic conditions,
damage cellular structures (e.g., DNA and proteins). These ROS
and RNS accumulate over time, leading to loss of physiological
cellular, tissue, and organ function. Hence, they can be used as
markers of aging (Beckman and Ames, 1998). Cells can defend
themselves against ROS and RNS by enzymatic pathways, such as
the glutathione peroxidase pathway, superoxide dismutase, and
catalase, and non-enzymatic endogenous antioxidants, such as
vitamin C (ascorbic acid), vitamin E (α-tocopherol), bilirubin,
and uric acid (Liguori et al., 2018). Furthermore, there is strong
evidence that reactive oxygen and nitrogen species (RONS) and
oxidative stress lead to cellular senescence with a characteristic
and irreversible senescence-associated secretory phenotype (Pole
et al., 2016).

The hyperfunction theory states that the cellular programs
necessary for development and growth continue to work after
completion of the growth phase, thereby driving senescence as
a run-on of cellular growth (Gems and de la Guardia, 2013).
Interestingly, substances (e.g., rapamycin and metformin) that

target the associated cellular pathways can retard aging in cell
cultures (Blagosklonny, 2012). According to this theory, the aging
process in yeast cells leads to significant changes and defects at
various levels that reflect the adaptation of yeast cells to multiple
kinds of stressors.

The third theory of aging focuses on damages induced
by the reaction of cells to stressors. It states that, in
the course of life, a multitude of smaller cellular damages
is acquired and accumulated in the organism, eventually
leading to the collapse of the organism and its death. This
theory relies on molecular biological changes that can be
observed in aging organisms (Zimniak, 2012), e.g., oxidative
(Koc et al., 2004), and genetic (Failla, 1958; Partridge,
2007) damages. Thus, native cultures of mammalian cells
eventually become proliferative and enter a state of senescence.
Moreover, the number of senescent cells in older organisms
increases in all tissues compared with younger ones (Baker
et al., 2011). Models of accumulation of acquired damage
over time can be described as damage-centric models that
focus on particular types of damage (Kirkwood and Austad,
2000).

Not all of these theories are transferable to the aging of yeast
cells in industrial processes. As shown above, a definition of the
general lifespan from birth until death is not suitable for yeast.
Hence, the age of yeast cells is not only aligned to the course from
budding to death (chronological lifespan); instead, it additionally
involves a number of cell divisions until the onset of senescence
of the mother cell (replicative lifespan) (Mortimer and Johnston,
1959; Longo et al., 2012). The following section focuses on
aspects of the third theory, which deals with the characteristics
of acquired and accumulating molecular changes within the
organism. Yeast has become an important model organism in
aging research, and aging-specific aspects are discussed below
(Breitenbach et al., 2011).

Mechanisms of Aging
Various mechanisms of aging are being investigated to explain
aging and aging-related processes in yeast as well as higher
organisms. These include an alternation of telomeres with age
and an increase in oxidative stress, which eventually lead to
molecular damage, epigenetic regulation, genomic stability, and
DNA repair linked to oxidative stress. These processes are
explained in the following sections in more detail.

Telomeres and Telomerase Complex
The role of telomeres and the telomere-synthesizing enzyme
complex telomerase has attracted attention early during the
investigation of aging and age-related processes (D’Mello and
Jazwinski, 1991; Blackburn et al., 2006) in yeast. With each
replication, the ends of the chromosomes shorten by ∼25–200
bp. Therefore, telomeres appear to determine the maximum
number of cell divisions and can be referred to as “mitotic
clock” (Allsopp et al., 1992). Together with specialized proteins,
telomeres comprise the ends of linear chromosomes that exist as
repetitive non-protein coding tandems of 300± 75 bp (Wellinger
and Zakian, 2012), protecting the chromosomes against sequence
loss due to incomplete DNA replication (Bertuch and Lundblad,
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FIGURE 1 | Comparative illustration of the three main aging theories for higher organisms; left: reactive oxygen species damaging cellular structures; middle:

hyperfunction theory; right: damage-centric model.

1998) and consequent shortening. In this way, telomeres and
telomere proteins play a crucial role in protecting DNA from
degradation or fusion events; thus, they serve genomic integrity
(Bianchi and Shore, 2008; Wellinger, 2009). Since telomeres
are shortened with each cell division cycle, they eventually
reach a critical length with age (Harley et al., 1990; Jay et al.,
2016), at which cellular senescence is initiated; this state is
known as replicative senescence (Barrientos-Moreno et al., 2018).
Through a genomic damage signal cascade, apoptosis is finally
induced (Hayflick and Moorhead, 1961; Allsopp et al., 1992;
Maser and DePinho, 2004; Rice and Skordalakes, 2016). The
telomerase complex can influence these telomeres to control
their length (Greider and Blackburn, 1985, 1987). It consists
of the telomerase reverse transcriptase of telomerase RNA
(TR), which serves as a template for synthesis (Greider and
Blackburn, 1989; Feng et al., 1995; Lingner et al., 1997).
Damage due to inactivation of telomerase results in a DNA
damage checkpoint response, which leads to changes in size,

morphology, and cellular senescence in Saccharomyces cerevisiae
(S. cerevisiae) cells after ∼60–70 cell cycles (Ghanem et al.,
2019).

Endogenous Oxidative Stress
Another contributor to age-acquired molecular damage is a state
referred to as oxidative stress. This state is the result of RONS (see
section Differences in Aging Theories) produced during normal
cellular metabolism (Ceriello et al., 2016) and their accumulation
over time, which damages the intracellular enzymes. Endogenous
sources of such reactive species include the enzymatic activity of
nicotinamide adenine dinucleotide phosphate oxidase (Salisbury
and Bronas, 2015). The resulting enzymatic product leads to
the conversion of the radical superoxide anion to H2O2 by
superoxide dismutase.

RONS affect the intracellular components, including the lipids
of plasma membranes, proteins, carbohydrates (Kaludercic and
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Giorgio, 2016) negatively. RONS also impair the DNAmolecules,
resulting in mutations, and cytotoxicity (Kay et al., 2019).

To avoid such cell damage, dysfunction, and death (Kaludercic
and Giorgio, 2016), RONS are rapidly removed via enzymatic
degradation. Some of the common examples of RONS include
superoxide, alkoxyl, hydrochlorous acid, hydrogen peroxide
(H2O2), nitric acid, peroxynitrite, and nitrogen dioxide (Li et al.,
2016; Möller et al., 2019).

Epigenetic Regulation
Closely linked to the effects of oxidative stress on senescence-
associated secretory phenotype is the question of the genomic
integrity of a cell. Generally, genomic stability is considered
an essential factor in cellular aging (López-Otín et al., 2013).
Hence, the maintenance of genomic integrity is regarded as an
important factor in describing the process of aging in various
species. DNA damage is crucial for genomic stability (e.g.,
mediated through RONS). As mentioned above, RONS are
largely produced during normal cellular metabolism, and some
authors believe that RONS cause >10,000 DNA lesions daily
(Lindahl, 1993; Martin, 2008; Cadet and Wagner, 2013). As
with oxidative stress, eukaryotic cells have a large set of defense
mechanisms to neutralize the effects of DNA damage and a DNA
repair mechanism. In unicellular and higher organisms, these
defense mechanisms are crucial for the prevention of premature
aging and degenerative diseases, cellular homeostasis, and pre-
and post-natal development (Abbas et al., 2013; Vijg and Suh,
2013; Maynard et al., 2015). These mechanisms can repair a
variety of DNA lesions, e.g., single- and double-strand breaks,
cross-links, and base-pair mismatches (Ciccia and Elledge, 2010;
O’Driscoll, 2012; Chong et al., 2019).

The relationship between genomic integrity and health can
be shown through genomic instability syndromes, which affect
one or more DNA damage repair mechanisms. For example,
heterozygosity for mutations in specific mismatch repair proteins
p53 and BRCA1/2 (Roy et al., 2011; Peña-Diaz and Jiricny,
2012; Sorrell et al., 2013; Williams and Schumacher, 2016) can
be associated with chromosomal instabilities, predisposition to
cancer, degeneration of particular tissues, or hypersensitivity to
DNA-damaging agents (O’Driscoll, 2012; Maynard et al., 2015).
Nevertheless, besides cancer, cardiovascular ormetabolic diseases
may also develop as a result of the loss of such DNA damage
repair mechanisms (Shimizu et al., 2014).

Besides telomeres and oxidative damage, also epigenetic
regulation mechanisms appear to be involved in the individual
aging process of an organism. One epigenetic aspect crucial for
the aging process appears to be the expression of core histones,
which are critical to chromatin structure, and linked to DNA
replication and repair (Cavalli and Misteli, 2013). In yeast,
the expression of core histones is decreased during replicative
aging. A reduction in histone expression is associated with
reduced nucleosome packaging density and, hence, upregulation
of associated genes (Hu et al., 2014). Furthermore, it has been
shown that complexes control histone expression, as well as
the exchange and deposition on the chromatin, positively, and
negatively influence the replicative lifespan of yeast (Feser et al.,
2010).

In addition, it was shown that the methylation status of
CpG dinucleotides (classically linked to transcriptional silencing)
varies in senescent and actively cycling human cell cultures
(Wilson and Jones, 1983; Cruickshanks et al., 2013). In contrast,
such an epigenetic modification does not exist in aging yeast
cells (Capuano et al., 2014). Although the absence of DNA
methylation in several yeast strains remains unclear, it could
be assumed that yeast lineages lost this epigenetic control
mechanism early in evolution (Zemach et al., 2010).

As shown in the sections above, there is likely no singular
aging mechanism in higher species, such as yeasts. Thus,
aging may be understood as the synergistic result of several
physiological processes, changes, damages, and repair events.
Aging has extensively been studied in the S. cerevisiae, the
budding yeast, and significant findings will be discussed in
this review.

Aging in Yeast
Alternatively, aging is theorized as a programmed cellular process
that can be accelerated or retarded, but not arrested. Cellular
growth path, such as the target of rapamycin, a regulatory
path of growth and protein translation (Kennedy and Lamming,
2016), have been implicated in controlling this programmed,
chronological aging. In replicative aging, the number of divisions
a cell undergoes is considered a molecular clock. It allows a given
cell to undergo a fixed number of cell divisions before it dies
(Mortimer and Johnston, 1959; Longo et al., 2012). This model
is true for mammalian cells in tissue culture, but applies to yeast
cells only when modified.

In yeast, aging is influenced by several simultaneous
events, such as (1) telomeres and telomere replication protein
complex, (2) endogenous oxidative stress, and (3) epigenetic
regulation mechanisms. These mechanisms have impact on
the chronological and replicative aging of yeast cells. One
of the first experiments to study the replicative lifespan
of individual yeast cells was described by Mortimer and
Johnston (1959). Through microdissection, explained in section
Micromanipulation Techniques, they revealed that the number
of divisions is limited in yeast. Bud scars, accumulating on the
surface of the mother cell where the bud developed, distinguish
mother and daughter cells. It was described that, at the side of
the scar, there is no development of new buds; therefore, the
non-scarred cell surface at least limits the lifespan of yeast cells.
Starting with 36 mother cells, the observed mean lifespan was
23.9 generations, with a standard deviation of 8.3 generations.
This experiment was the first to show that yeast cells are
mortal. Depending on the specific strain, the lifespan varies
between 25 and 35 budding events (Johnston, 1966; Müller,
1971). In addition, the replicative lifespan is influenced by
the conditions under which the yeast cultures are maintained.
Figure 2 illustrates single-cell lineages and the classification of
cell types into mother and daughter cells under ideal conditions.
This demonstrates a non-normal distribution of the yeast cell age
in whole populations influenced by the molecular mechanisms
occurring in every single cell.

It is known, that in yeast, the corresponding tandem sequence
varies within the genus Saccharomyces (Cohn et al., 1998). It
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FIGURE 2 | Illustration of the age distribution in yeast cell populations. Owing to the budding process of a mother cell, a daughter cell is created and the mother cell

results in a mother cell of the subsequent generation. Thus, a cell culture theoretically consists of 50% daughter cells, 25% mother cells of the first generation, 12.5%

of the second generation, and so on.

consists of double-stranded G-rich base-pair arrays of irregular
repeats (McEachern and Blackburn, 1994), such as (TG)1−4G2−3

in S. cerevisiae (Cohn et al., 1998; Förstemann and Lingner, 2001),
and 12–16 G-bases at the 3′ end as a G-overhang (Wellinger
et al., 1993). This sequence is highly conserved in yeast by
a unique protein complex termed Cdc13p–Stn1p–Ten1p. This
complex plays an essential role in providing chromosome end
protection and maintaining telomere homeostasis. Cdc13p is
the main protein of this homeostatic mechanism, binding to
single-strand DNA and regulating telomere replication (Pennock
et al., 2001). It also associates with Stn1p and Ten1p to assemble
the Cdc13p–Stn1p–Ten1p complex for telomere protection (Ge
et al., 2020). This complex additionally ensures that the ends of a
chromosome are not inadvertently recognized as a DNA strand
break by the cellular DNA repair mechanisms. Interestingly,
overlengthened telomeres have no impact on yeast chronological
life span (Harari et al., 2017). It could also be shown that the
exposure of yeast to low concentrations of ethanol results in a
high telomere elongation (Romano et al., 2013).

Another contributor to cellular stress and a variation in
replicative lifespan is oxidative stress. In 2001, Davidson and
Schiestl demonstrated that lethal heat stress (exposure to 50◦C)

is also associated with elevated endogenous oxidative stress,
possibly resulting in an increased nuclear mutation frequency
(Davidson and Schiestl, 2001). The authors assumed the
involvement of the mitochondrial respiratory electron carriers.
Therefore, they investigated the heat vulnerability of coenzyme
Q- and nicotinamide adenine diphosphate dehydrogenase-
deficient yeast strains. They also demonstrated that cells lacking
coenzyme Q secreted up to 30-fold higher levels of H2O2 at 42◦C
than at 30◦C. In contrast, nicotinamide adenine diphosphate
dehydrogenase-deficient cells did not secrete H2O2. Therefore,
they concluded that heat stress results in oxidative stress
originating from the mitochondria and nuclear mutations.

Concerning yeast, caloric restriction (<2% of glucose)
(Weinberger et al., 2007) and catalase inactivation (Mesquita
et al., 2010) are approaches to extending its lifespan. These
approaches elevate the concentration of H2O2 through
the activation of superoxide dismutase, inhibiting the
accumulation of ROS (Mesquita et al., 2010). The accumulating
concentration of H2O2 is markedly below the threshold of
toxicity. Furthermore, it could be shown that yeast cells in the
stationary phase are more resistant to H2O2 than those in the
exponential phase (Mesquita et al., 2010).
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The third contributor to cellular stress are different epigenetic
regulation pathways. Importantly, different yeast strains vary in
their epigenetic stability. For example, S. cerevisiae have lost the
ancient epigenetic pathways (e.g., methylation) and, thus, employ
reduced epigenetic machinery compared with higher eukaryotic
systems (Zemach et al., 2010). Another example of epigenetic
instability is S. pastorianus, which is particularly unstable due to
its chromosome copy number variation (Gorter De Vries et al.,
2019).

As shown, yeast cell age can vary under different
growth conditions.

Besides the above shownmechanisms of aging and age-related
processes in yeast, relevant exogenous stressors as they appear
in the industrial processing of yeast cultures will be discussed
below.

AGING EFFECTS IN YEAST CULTURES
UNDER INDUSTRIAL PROCESSING

Yeast cultures are widely used in industrial processes, e.g.,
in wine production or breweries. Within such processes, the
used yeast cultures face multiple parallel factors that may affect
cellular vitality, viability, and the maximal cell age. Because
aging is a similar process that is common to all eukaryotes
with highly conserved pathways, Frenk et al. hypothesized that
the negative aspects of aging might be counterbalanced by
making aged yeast cells more adaptable to new and stressful
environments. In support of their hypothesis, the researchers
were able to demonstrate that although younger yeast cells
outcompeted older yeast cells of the same strain under optimal
growth conditions in the metabolism of glucose, the older cells
outcompeted the younger cells when alternative carbon sources,
such as galactose, were solely available (Frenk et al., 2017). The
underlying mechanism might be an increased stress response in
the older cells that allows them to be more competitive in the
presence of other environmental stressors.

While the influence of the environmental conditions and the
yeast strains used on the formation of these aromatic substances
has been investigated (Verstrepen et al., 2003), the significance
of the yeast cell age on these components remains unknown.
However, cellular factors and physiological functions have been
shown to deteriorate with increasing cell age (Knorre et al.,
2018). The consequences include a decrease in the synthesis and
activity of ribosomes (Motizuki and Tsurugi, 1992; Reverter-
Branchat et al., 2004), decreased growth and substrate uptake
(Leupold et al., 2019) and the downregulation of genes encoding
enzymes involved in glucose and energymetabolism. An example
for such genes is LAT1, coding for components of the pyruvate
dehydrogenase complex enzymes (Kamei et al., 2014). However,
these enzymes are also essential for the synthesis of the three
most important groups of aromatic compounds, namely higher
alcohols, acetate, and ethyl esters, or the important precursor
molecule acetyl-CoA for ester formation. However, what is
missing in all these studies is how these fermentation by-
products are influenced by cell age and the associated decrease
in physiological function.

Exogenous Stress
Sugar Stress
Yeast cultures are often used for the conversion of different
kinds of carbohydrates through alcoholic fermentation. It is well-
established that high concentrations of sugar in the surrounding
liquid media may be a source of stress to the yeast cultures,
since glucose is a possible inhibitor of cellular respiration
(Crabtree effect) (Ibsen, 1961). Landolfo et al. (2008) showed
that hypoxic alcoholic fermentation of high-sugar media was
associated with increased levels of ROS. Thus, a resulting
oxidative stress response negatively influenced the viability of the
cell culture. Furthermore, they found that yeast cultures began
to accumulate trehalose. Trehalose exerts protective effects on
yeast cultures, which are mediated by two pathways. Firstly,
it supports the integrity of the cell wall by binding to polar
groups of phospholipids and substituting water in the cell
wall. Secondly, it serves as a chaperone, thus preventing the
aggregation of denatured proteins and stabilizing those in
their native state. Accordingly, deficiencies in the synthesis
of trehalose are associated with lower viability of fermenting
cultures and lower production of ethanol (Trevisol et al., 2011).
Furthermore, there is evidence that trehalose protects yeast
cultures, particularly membranes, from lipid peroxidation during
conditions of oxidative stress (Herdeiro et al., 2006).

Another important stressor in industrial processing is
carbonyl stress resulting from the reaction of sugars, such
as glucose or fructose with native proteins. It is suggested
that this process results in advanced glycation end products.
Studies in yeast have demonstrated that glycation inhibitors,
like aminoguanidine, decrease the concentration of advanced
glycation end products, extending chronological lifespan (Kazi
et al., 2016). Similar data exist concerning carbonyl stress in
yeast cultures mediated by fructose, resulting in higher levels of
oxidative stress, α-dicarbonyl compounds, and carbonyl groups
of proteins. It was proposed that these effects may explain the
lower viability and reproductive capacity as well as higher cell
mortality in fructose- vs. glucose-supplemented growth media
(Semchyshyn et al., 2011).

pH Stress
Although yeast cultures show a broad tolerance for pH between
3.0 and 11.0 (Rogowska et al., 2018), viability and cell size are
greatly influenced by the pH of the growth medium. Therefore, a
differentiation between the inner pH in the yeast cell and impact
of extracellular pH is necessary. The impact of the intracellular
pH value due to proton pumps is explained later in this review.
The impact of extracellular pH is explained below. The largest
cell size and viability values were reported at pH 4.0 (Rogers
et al., 2016; Salari and Salari, 2017). The best growth rate was
determined to be at a pH of 5.0 (Aguilar-Uscanga and François,
2003). However, evidence suggests that these acidic conditions
are not optimal for cell aging in terms of the chronological and
replicative lifespan of yeast. Ongoing extracellular acidification
of the culture medium reduces the replicative lifespan because
acetic acid, an organic acid produced by fermentation, can
cross the yeast plasma membrane resulting in acidification of
the cytosol (Burtner et al., 2009) and a lower intracellular
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pH value. This effect can be compensated when the culture
medium is buffered to a pH level of 6.0 (Burtner et al., 2009;
Murakami et al., 2012) or by reducing the glucose concentration
to 0.5%, leading to a decreased acetic acid formation and
reduced medium acidification (Burtner et al., 2009). These
data are consistent with the results obtained by extracellular
acidification in other eukaryotic cell models, suggesting a
common conserved eukaryotic stress pathway (Morgunova et al.,
2017). The reasons responsible for the increase in chronological
lifespan through dietary restriction or medium buffering are
not elucidated. Caloric reduction results in extension of the
replicative and chronological lifespan by changing molecular
and cellular mechanisms (Leonov et al., 2017). Some of these
mechanisms involve adjustments of the ethanol metabolism and
growth rate (Tahara et al., 2013), trehalose metabolism (Kyryakov
et al., 2012), mitochondrial morphology (Goldberg et al., 2009),
and mitochondrial functionality. Moreover, they are linked to
maintenance of ROS homeostasis (Goldberg et al., 2009; Ruetenik
and Barrientos, 2015), cell cycle regulation (Leonov et al., 2017),
reduction in ribosomal DNA (rDNA) recombination (Banerjee
et al., 2020) and apoptotic markers due to fragmentation of the
mitochondrial tubular network (Goldberg et al., 2009).

Salt Stress
There is also evidence that yeast cultures react differently to
osmotic shifts in the exponential vs. the stationary growth
phase. Cells in the exponential growth phase show a lower
turgor pressure (0.05 MPa) and a greater relative cell volume
decrease under hyperosmotic conditions than stationary phase
cells (turgor pressure: 0.2 MPa) (de Marañon et al., 1996).
However, the reported values of turgor for heterogenous yeast
cultures ranged from 0.2 to 1.0 MPa (Proctor et al., 2012),
and single-cell prediction suggested a turgor value of 0.2 MPa
(Goldenbogen et al., 2016). Nevertheless, the direct measurement
of cell turgor is currently not possible. Another research group
showed that hyperosmotic growth conditions are associated with
DNA strand breakage, a reduction in the number of cristae,
mitochondrial swelling, chromatin condensation along with the
nuclear envelope, and perturbances of the plasma membrane
integrity. These effects appear to be mediated via metacaspase-
and mitochondria-dependent apoptosis pathways (Silva et al.,
2005). Finally, osmotic stress and ethanol stress have been
reported to impact yeast cell morphology through a change in
cell volume, resulting in yeast cell shrinkage and a rough surface
(Pratt et al., 2003; Canetta et al., 2006).

Ethanol and Acetaldehyde Stress
To cope with alcohol and acetaldehyde stress, yeast cultures
express several converting enzymes for detoxification. An
important family of these enzymes comprises the aldehyde
dehydrogenases with mitochondrial enzymes (ALD4 and ALD5)
and their cytosolic counterparts (ALD2, ALD3, and ALD6)
(Dickinson, 1996; Meaden et al., 1997). It was shown that
the regulation and activity of these detoxifying genes vary
significantly between different growth conditions and strains,
and may partially be induced by supplementation with ethanol
and acetaldehyde in the growth medium (Aranda and del
Olmo, 2003). Furthermore, it was found that different heat

shock proteins (HSPs) (e.g., Hsp104p) are involved in the stress
response to ethanol and acetaldehyde stress, suggesting a typical
stress response to different extracellular stressors (Aranda et al.,
2002).

Another essential molecule involved in stress tolerance against
ethanol and acetaldehyde is the Batten disease protein 2 (Btn2p).
This protein is involved in intracellular protein trafficking and,
thus, the localization control of several intracellular proteins
(Kama et al., 2007). Under acetaldehyde stress, the expression
of BTN2 is increased; however, it is reduced in the presence
of ethanol. Surprisingly, the increased vulnerability to ethanol
could be compensated by supplementation with arginine in the
growth medium. It has been reported that BTN2 deletion leads
to increased vulnerability of yeast to higher concentrations of
ethanol (Espinazo-Romeu et al., 2008). Thus, BTN2 may be an
important regulator of viability and vitality in yeast experiencing
acetaldehyde or ethanol stress.

According to the literature, the consequences on yeast cell
morphology and physiology are similar to those caused by
hyperosmotic stress and ethanol stress, such as cell shrinkage and
disrupted cell division (Gibson et al., 2007).

Oxidative Stress
As already mentioned, oxidative stress to yeast cells may
occur endogenously and exogenously. Endogenous sources of
RONS include the enzymatic activity of nicotinamide adenine
dinucleotide phosphate oxidase (Salisbury and Bronas, 2015).
Like mentioned in section Mechanisms of Aging, exogenous,
non-oxidative stressors may trigger endogenous oxidative stress
because, for example, high extracellular sugar concentrations
may provoke an oxidative stress response (Landolfo et al., 2008;
Semchyshyn et al., 2011).

As mentioned in Sugar Stress, strong connection exists
between sugar and alcohol metabolism is evident in yeast.
During the aging of yeast cultures, it was found that some
proteins are oxidatively modified, thus reducing the in-vivo
activity of these enzymes. A target of such oxidative damage is
the alcohol dehydrogenase 1 gene promoter (Adh1p), catalyzing
acetaldehyde conversion to ethanol (Reverter-Branchat et al.,
2004). It was shown that an extra copy of the adh1 gene is
associated with prolonged survival in the stationary growth
phase (as a surrogate marker of chronological lifespan)
and a 30% extension of replicative lifespan determined by
micromanipulation. It is assumed that Adh1p is oxidatively
modified, and an extra copy results in a longer induction of
antioxidant enzymes, such as superoxide dismutase and catalase
(Reverter-Branchat et al., 2007).

Aging yeast cells also show noticeable signs of oxidative stress
even without further external stressors. By comparing 5-day-
and 3-month-old stationary yeast cultures, it was demonstrated
that older cultures exhibit significantly lower glutathione levels,
as well as superoxide dismutase and catalase activity. In line
with lower antioxidative activity, the cultures showed increased
protein oxidation and increased levels of protein carbonyl
groups (Jakubowski et al., 2000). Regarding cultures consisting
of chronologically aged mother cells and younger daughter cells,
there is evidence that markers of oxidative stress are retained in
mother cells during budding (Laun et al., 2001). Experimental
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data suggest that the cellular respiratory chain is a crucial
regulator of endogenously-derived oxidative stress (Heeren et al.,
2004; Drakulic et al., 2005). Notably, there is a strong connection
between response to heat and oxidative stress (Davidson and
Schiestl, 2001).

Heat Stress
In 1998, it was reported by Shama et al. that mild, non-lethal
heat stress with two shocks of 2 h each extended the replicative
lifespan of yeast cultures moderately from 19.4 to 21.3 budding
events (p= 0.013) (Shama et al., 1998). In this case, the replicative
lifespan was also determined by micromanipulation. The authors
hypothesized that this effect may be conferred by the Hsp104p,
which is assumed to be responsible for life extension due to
transient heat stress. In previous work, it was shown that protein
Hsp104p is also involved in yeast radiation stress responses
(Boreham and Mitchel, 1994). Furthermore, it is established
that Hsp104p is involved in replicative lifespan extension due
to asymmetric cell division during budding. In this context,
Hsp104p retains damaged proteins and cell structures in the
mother cell (Higuchi-Sanabria et al., 2014) to rejuvenate the
daughter cell.

Besides Hsp104p, there is also evidence that trehalose may be
involved in the heat shock response of yeast, since the trehalose
phosphate synthase genes (TPS1 and TPS2) are activated by heat
shock. In this analysis, a wild-type yeast strain was cultured for
72 h in sequence at 32, 34, 36, and 38◦C. This culture resulted
in a thermotolerant yeast strain (Kuroda and Ueda, 2018)
reacting less sensitively to heat shocks due to the upregulation
of stress-responsive genes, such as HSP-encoding and trehalose
synthesis genes.

Within this context, trehalose may act as a protector
(as mentioned earlier) to stabilize the native structure of
proteins (Kuroda and Ueda, 2018) and prevent protein
aggregation (Magalhães et al., 2018). After heat shock,
trehalose is decomposed within ∼1 h (Kuroda and Ueda,
2018), resulting in protein aggregation and assembly
inside cells by interactions of unfolded and folded domains
(Chiesa et al., 2020).

A more recent study conducted by Chernova et al. (2017)
on heat shock reaction revealed a transgenerational memory
for heat stress. This memory is mediated by the cytoskeleton
protein Lsb2, which forms a metastable prion during heat stress,
thereby triggering the conversion of other Lsb2 proteins into
the prion form. In this context, prion formation is linked to the
heat shock response, which contributed to maintaining protein
homeostasis and protecting cells from the impacts of exposure to
stress (Vabulas et al., 2010).

However, thus far, there is no empirical evidence regarding the
potential influence of this heat stress memory on the resilience
of yeast against new heat shocks or other types of stressors
(Chernova et al., 2017).

Mechanical Stress
By pumping yeast cells into the fermentation vessel, as well as
outside of the vessel at the end of the fermentation process,
yeast cells were exposed to high mechanical stress. In addition,

movements during the beer fermentation process, such as
multiphase flow for the transport of nutrients, heat (Meironke
and Böttcher, 2014), and agitation (Stoupis et al., 2003), suggest
mechanical stress of the cells, influencing the process itself.

At present, there is limited knowledge regarding the impact
of mechanical stress and shear stress on yeast cell aging. It has
been shown that only the temperature and medium composition
significantly affect the mechanical properties of the cell. Of
note, stirrer speed or aeration rate do not affect the mechanical
properties and cell wall strength of yeasts (Overbeck et al., 2015).
Instead, mechanical shear stress has an impact on yeast cell
morphology, metabolism, and viability. It is established that S.
cerevisiae yeast is very tolerant to shear stress with a threshold
of >1,292 Pa, resulting in non-significant loss of viability (Lange
et al., 2001). Higher shear stress results in a significant increase
in yeast cell death. Mechanical and hydrodynamic shear stress
results in a decreased physiological state, reduced flocculation
intensity, and increased levels of yeast extracellular proteinase A
(PrA) (Stewart, 2018).

It was also revealed that cell-cell and cell-matrix contacts,
mechanical forces, or environmental factors (e.g., changes in
osmolarity, temperature, and pH) affect the function and activity
of cells (Brewster et al., 1993; Dhanasekaran and Reddy, 1998;
Chen and Thorner, 2007). Most of these processes lead to the
modification of transcription factors in the cell nucleus. This
process alters the gene expression pattern, ultimately initiating
a reaction to the received signals.

Proteins of the extracellular signal-regulated kinase/mitogen-
activated protein kinase (ERK/MAPK) pathway play an
important role in signal transduction. These pathways are
activated by stimuli in the form of the aforementioned
environmental factors via membrane-associated receptors
and regulate different cellular processes, such as growth,
differentiation, apoptosis, and stress regulation (Guo et al.,
2020).

In most organisms, the MAPK signal cascade is comprised
of three essential enzymes (Guo et al., 2020) that are connected
to a G protein. These enzymes activate the following in
sequence: (I) a serine/threonine-specific MAPK kinase kinase
(MAPKKK) (membrane shuttle kinase), which phosphorylates
and activates (II) a MAPK kinase (MAPKK) (dual-specificity
kinase), which in turn activates (III) a specific serine/threonine
MAPK (nuclear shuttle kinase) through serine/threonine and
tyrosine phosphorylations (Dhanasekaran and Reddy, 1998;
Kolch, 2000; Cargnello and Roux, 2011). This MAPK usually
translocates directly into the cell nucleus to modify transcription
factors or other target proteins.

This pathway is activated by high osmolality in the form of the
protein kinase high osmolarity glycerol (HOG1), which triggers
the activation of the MAPK pathway in sequence (Brewster
et al., 1993). In contrast, the chemical and physical stress of
the cell wall results in activation of the cell wall integrity
pathway, which activates a MAPK module (Lee et al., 2020).
The only difference in these two activation cascades is the
initiating step of the G protein-coupled receptor. Therefore, the
signal cascades of mechanical stress and osmotic pressure appear
markedly similar.
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Endogenous Stress
Genomic and Epigenomic Stability
The effects of aging on yeast cells can be determined through
changes in cell wall composition. Furthermore, changes in
membrane fluidity are also evident in aging yeast cells in
addition to extrachromosomal rDNA circles, aneuploidy, and
nucleolus organization, which function as surrogate markers for
the genomic and epigenomic stability of yeast cells.

Aneuploidy and nucleolus disorganization are associated with
decreases in the chronological lifespan of yeast. Yeasts have
numerous molecular pathways to stabilize the DNA content
and maintain a stable genome allowing mutation tolerance
(Skoneczna et al., 2015). However, these systems are not fail-safe.
In a study investigating the targeted loss-of-function mutations
of several cell cycle checkpoint control genes (e.g., spindle
assembly checkpoint MAD1, serine/threonine-protein kinase
BUB1 and TEL1, and mitotic checkpoint BUB2), the impact of
these mutations was examined in the context of changes in the
structure and function of the nucleolus that is mediated by aging.
Nucleolus fragmentation and differences in size, as well as in the
size ratio of the nucleus to the nucleolus, were associated with
aging in the affected yeast strains. Additionally, these changes
indicated increased levels of oxidative stress, DNA damage, and
aneuploidy (i.e., chromosomal number aberrations rather than
translocations and other structural chromosomal damage). All
mutated yeast strains showed a decreased chronological lifespan,
with the BUB1 mutant being the most robust effect inducing
both aneuploidy and a decrease in lifespan. Researchers also
reported that aging increased the nucleolus size, which may have
caused the observed aging-related nucleolus fragmentation. In
contrast, aging-related oxidative stress may cause chromosome
XII instability, leading to rDNA-instability and aneuploidy events
(Lewinska et al., 2014).

Extrachromosomal rDNA circles also determine the
replicative lifespan of yeast cells, since they arise from the
150 ± 50 copies of rDNA and are found on chromosome XII in
yeast (Sinclair and Guarente, 1997). As a result of recombination,
copies are “cut out” and appear as plasmids in the cell nucleus.
Since each copy also contains an origin of replication (Clyne
and Kelly, 1997) [“autonomous replicating sequence” (Sinclair
and Guarente, 1997)], these circles can reproduce independently
of the chromosomes (“self-replicating”). Such “plasmids”
preferentially remain in the mother cell during mitosis since
older yeast cells contain a higher number of circles and show a
reduced lifespan compared with younger cells (Falcón and Aris,
2003).

Furthermore, extrachromosomal ribosomal DNA circles
accumulate with age. However, other high-copy protein-coding
circular DNAs accumulate during yeast cell aging, indicating
that the environment influences yeast cell genetics (Hull et al.,
2019). This extrachromosomal circular DNA accumulation may
serve as a pool of heterogeneous genetic material, allowing rapid
adaptation of aged cells to environmental changes (Hull and
Houseley, 2020).

In this context, researchers further assumed that the
replication of extrachromosomal rDNA circles contributes to
nucleolar fragmentation and plays an essential role in limiting the

lifespan of yeast cells (Sinclair and Guarente, 1997; Johnson et al.,
1998; Lewinska et al., 2014). According to Kobayashi and Sasaki
(Kobayashi and Sasaki, 2017), the regulation of rDNA stability
and integrity is a complex process as observed from a sample of
4,800 budding yeast strains after examining 700 diverse types of
genes. Additionally, ∼50 genes highly involved in regulating the
rDNA copy numbers were identified, and some mutants showed
abnormalities in other chromosomes than chromosome XII due
to unstable rDNA (Kobayashi and Sasaki, 2017). Therefore, it can
be concluded that ERCs are not the only factor affecting aging.
Instead, rDNA instability also affects aging in yeast to a great
extent. Perhaps rDNA instability has a much higher impact than
ERCs, especially in higher organisms (Lee and Ong, 2021).

Besides rDNA stability and copy number, telomere length
has an impact on yeast cell morphology. Telomere senescence
resulted in an increase in the diameters of unbudded cells from
5.2 to 8.2µm and of budded cells from 6.3 to 10.1µm, indicating
an increase of 58 and 60%, respectively (Ghanem et al., 2019).
This change in cell diameter negatively influences the optimal
ratio of DNA:cytoplasm, supporting the observed non-optimal
cell function (Neurohr et al., 2019). Additionally, a shift in
flocculation behavior and the loss of growth capability could
be determined (Ghanem et al., 2019) due to telomere-induced
cellular senescence.

Mitochondrial Dysfunction
Mitochondrial aging, which is characterized by decreased
mitochondrial DNA content and extensive oxidative damage
in mitochondrial proteins, is associated with chronological aging
both in mammals and yeast cells. Mitochondrial aging can act as
an independent stress factor for yeast in the commercial brewing
process, underscoring the importance of the involvedmechanism
(Powell et al., 2000a). Mitochondria are relatively independent
of the cellular mechanism; they replicate independently within
the cells and contain independent repair mechanisms (RAD-
52 related recombinase system) to repair DNA double-strand
breaks (Chen, 2013). Nevertheless, some nuclear genes regulate
the mitochondrial DNA content (Zhang and Singh, 2014). Aging
cells accumulate progressive alterations to their biosynthetic
and oxidative metabolism. These aging processes are conserved
between yeast and mammalian cells and contribute to the
increasing metabolic dysfunction of aging cells (Baccolo et al.,
2018).

Oxidative stress in mitochondria results in overproduction
of ROS. These ROS induce DNA mutations and damage the
mitochondrial respiratory chain (Guo et al., 2013). Damaged
mitochondria result in the accumulation of ROS, which is also
associated with cellular dysfunction and reduced replicative
lifespan by disrupting protein homeostasis in yeast (Yi et al.,
2018). Leadsham et al. showed that mitochondrial dysfunction
results in accumulation of ROS and suppresses the endoplasmic
reticulum-associated degradation. This degradation leads to
higher ROS production from the endoplasmic reticulum due
to the suppression of the antioxidant defense and endoplasmic
reticulum-resident nicotinamide adenine dinucleotide phosphate
oxidase (Leadsham et al., 2013). This upregulated superoxide
production results in the accumulation of a higher concentration
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of H2O2, thereby leading to loss of redox homeostasis.
Furthermore, respiratory-deficient cells exhibit reduced RLS due
to the intracellular ROS and higher amount of oxidatively
damaged proteins, resulting from mitochondrial dysfunction (Yi
et al., 2018).

Oxidative Damage to Proteins and Protein

Aggregates
The levels of ROS in yeast influence the mitochondrial
function and protein homeostasis. Besides, these ROS lead to
oxidative modifications of proteins, affecting their function and
conformation. Oxidative modifications can change the protein
function by either directly reducing/inhibiting the function or
changing the conformation of the protein (Kikis et al., 2010).
These changes in activity and conformation decrease protein
stability. Oxidized and misfolded proteins tend to form protein
aggregates, which are potentially cytotoxic for the cell and
directly associated with accelerated aging (Grune et al., 2004;
Hartl et al., 2011). A recent study showed that with increasing
age, damaged proteins are increasingly retained, and this process
is directly linked to the asymmetric division of the yeast cell
(Borgqvist et al., 2020).

Exogenous and Endogenous Stress on
Yeast Cells
As discussed earlier in this review, there is limited knowledge
regarding the cumulative effect of multiple stressing influences
during the industrial processing of yeast. Evidence exists that
different stressors trigger metabolic pathways associated with
intracellular acidification or an increase of ROS resulting
in damaged proteins and mitochondria (Figure 3). Hence, it
can be assumed that the stressors exert an influence on the
chronological and reproductive age of yeast cells, as well as
their physiological state. Factors influencing this physiological
state are the intracellular pH value due to an impaired
proton transfer across the cell membrane, the oxidative effect
on proteins leading to lower enzyme activity, or damaged
mitochondria resulting in more ROS oxidative effects in the
yeast cell.

There is evidence that cell cycle duration, cell volume, and
the number of budding events per time unit differs significantly
under different stress conditions. In industrial processes, yeast
environmental conditions can be extremely harsh in particular,
through the accumulation of desiredmetabolites, such as ethanol,
causing premature aging. However, it is also possible that yeast
strains adapt to stressors by the increased stress response, and
aneuploidy might be a factor in the upregulation of stress
responses. A study evaluating yeast in a long-term culture
with sublethal ethanol concentrations showed that yeast cells
indeed accumulate age-related changes. However, throughout
100 generations, yeast cells showed gains in numbers of
chromosomes I, III, and VI and increase in copy numbers
in genes that were involved in stress responses and metabolic
processes. Moreover, through the action of ROS, sub-cytotoxic
ethanol concentrations increased growth rates in yeast and
increased the expression of several sirtuin proteins, namely Sir1p,

Sir2p, and Sir3p, as well as transcription factor Rap1p (Adamczyk
et al., 2016).

Sirtuins form a family of conserved protein deacetylases that
are NAD+-dependent. Sir2 was the first characterized sirtuin
and functions as a histone deacetylase, enabling the silencing
of heterochromatin. This function prolongs by an incompletely
understood mechanism in the replicative life span of yeast. Its
deletions accelerate replicative aging, whereas increased gene
dosage inhibits replicative aging (Wierman and Smith, 2014).

These results suggest that adaptive stress response can include
acquiring additional chromosomes and genes if they are coding
for the protein necessary to mitigate the stress. Nevertheless,
similar to mammalian cells, in yeast cells, there appears to
be an optimal cell size, DNA content, and cell size/DNA
content ratio for optimal life span, which might differ depending
on environmental conditions (Veitia, 2019). Furthermore, the
retention of damaged protein in themother cell has a high impact
on the maximum replicative lifespan of yeast cells (Borgqvist
et al., 2020).

Some further stressors that are tightly linked to the aging
process are ROS and RNS, which in yeast can be shown
to accelerate senescence, similar to what occurs in other
eukaryotic cells when yeast is grown under aerobic conditions.
The ability of yeast to grow under anaerobic conditions using
fermentation only allows it to grow in an environment with
low-to-negligible ROS concentrations, enabling researchers to
examine the influence of other environmental stressors on the
aging process (Eleutherio et al., 2018). In addition, the industrial
process produces several intense environmental stressors that
influence the aging process of yeast, although they are still
incompletely understood.

However, as shown in the sections above, most research
has been performed to determine the replicative age and stress
reactions to singular stress conditions. In industrial processes,
the yeast cell is confronted with multiple parallel stress factors
affecting its metabolic pathways and physiological state. Thus,
there is a lack of evidence on the interaction of multiple stress
conditions and their impact on yeast cells’ replicative aging
and lifespan.

IMPACT OF AGING ON YEAST CELLS

As mentioned above, yeast cells and cultures are utilized as
models for the investigation of the aging processes. Against
this background, several aspects appear as significant changes
when aging yeast cells are examined (Figure 4). Firstly, some
alterations can be found in the wall composition of yeast
cells. This aspect appears particularly important concerning the
replicative aging of yeast. Secondly, the intracellular pH value will
be discussed as a surrogate marker for yeast vitality and longevity.
As the last aspect of aging processes in yeast cells, alterations
in membrane fluidity can be found in aging yeast cells and are
mainly involved in ethanol tolerance and replicative events.

Alterations in Cell Wall Composition
Alterations in replicative aging in yeast are influenced by
environmental and genetic factors, resulting in different protein
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FIGURE 3 | Schematic representation of the impact of different industrial stress conditions on the yeast cell. (A) Singular stress conditions altering the metabolic

pathways and resulting in consequences, such as DNA strand breakage, protein oxidation, carbonyl stress, or ethanol oxidation, thereby producing different

intermediates. Collectively, these effects reduce the replicative lifespan of yeast cells. (B) A more detailed view of the intracellular processes and endogenous stress,

such as damaged mitochondria or ROS impact on proteins. Additionally, the telomere length until a critical length and the accumulation of extrachromosomal, rDNA

circles reduce the replicative lifespan. Impairment of proton transfer from the inner to the extracellular space results in intracellular acidification, non-optimal enzyme

activity and, thus, a shorter lifespan. (C) Visualization of protein oxidation; left: native protein; middle: unfolded protein due to oxidative effects; right: heavily oxidized

protein without further function. rDNA, ribosomal DNA; ROS, reactive oxygen species.

impairments and slight changes in the composition of the
cell wall.

Concerning cell wall composition, Bulawa and Osmond
(1990) assumed that the septum contains large amounts of
polysaccharide chitin, resulting from the replicative capacities of

yeast cells. Initially, it was thought that chitin was synthesized by
chitin synthase; however, cloning experiments proved that chitin
synthase 1 (CHS1) was not essential for chitin synthesis.

Cabib et al. (1989) showed that lysis of CHS1-deficient cells
occurred at the end of the cell cycle, as a result of a cell wall lesion
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FIGURE 4 | Illustration of different intracellular changes in daughter cells, mother cells, and changes during the aging process.

in the center of the birth scar. Of note, membranous material
appeared to escape from this hole. This lesion was not found in
wild-type strains.

Subsequently, it was shown that the total amount of chitin
in yeast septa is low; nevertheless, chitin is crucial for cell
viability (Cid et al., 1995; Cabib et al., 2001). Furthermore,
there were reports that yeast cells lacking CHS1 and CHS2
show average growth, chitin content, and cell division, which
led to the discovery of CHS3 (Bulawa and Osmond, 1990).
Emerging evidence suggested, in the following years, that
chitin synthases may play a crucial role in the replication
and viability of yeast cells. Specifically, at bud emergence, a
chitin ring is formed at the neck of the cell (Figure 5) through
a CHS3-dependent process (Shaw et al., 1991). Nevertheless,
the formation of the primary and secondary septum requires
Chs2p activity rather than Chs3p activity (Cabib et al., 1996,
2001). Further investigations by Cabib and Schmidt (2003)
aimed at elucidating the role of CHS3 in CHS2-deficient cells.
Using cell cycle synchronization with inhibition of CHS3 by
nikkomycin Z in CHS2-deficient cells, they showed that only
chitin synthesis during septa formation is essential for the
viability of yeast cells. They concluded that construction of
the chitin ring is crucial for the integrity of the mother-bud
neck (Cabib and Schmidt, 2003).

These results imply an involvement of the cell wall and
septa composition in the viability and replicative capacities of

FIGURE 5 | Scanning electron microscope image of lager yeast (TUM 34/70)

with bud scars. During the budding process, a daughter cell is created, and

the surface, on which the bud formed, is covered by a chitin ring, a marker of

replicative aging. The inner surface of the chitin ring consists of beta-glucan.

yeast cells. However, there is growing evidence that specific cell
wall properties (e.g., cell wall composition, surface wrinkling
or thickness) may be age-related (Egilmez et al., 1990; Cabib
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et al., 1997; Powell et al., 2000b). Based on this evidence,
Molon et al. (2018) investigated the influence of different genes
associated with cell wall formation and integrity maintenance
on the replicative aging of yeast as the number of reproduction
events against the reference strain BY4741 used as control.
They tested five gene deletions concerning the impact of
the encoded proteins on cell wall composition: (I) chs31;
(II) chitinase 1 (cts11); (III) 1,3-β-glucan synthase (fks11);
(IV) transcriptional regulator of cell wall chitin and glucan
synthesis (knr41) and; (V) protein for the synthesis of α-1,6-
mannan (mnn91).

Molon et al. suggested that the impairment of genes
involved in cell wall protein mannosylation (mnn91)
and chitin synthesis (chs31) decreased budding lifespan,
whereas impairment of knr4 significantly increased lifespan
(Molon et al., 2018).

Eigenfeld et al. showed that industrial stress conditions have
an impact on the morphology of yeast cells. Scanning electron
microscope images have indicated a change in cell morphology
from the smooth surface of pure yeast to a rough deformed
surface with indentations of repitched yeast cells (Eigenfeld et al.,
2020).

Furthermore, protein impairment and morphological
changes are not the only impacts of stress on cell wall
composition and morphology. Moreover, it was shown
that the overall cell wall composition varies significantly
in terms of β-1,3-glucan, 1-6-glucan, mannan, and chitin
content depending on different culture parameters, such
as carbon source, pH, temperature, aeration, and nitrogen
limitation (Aguilar-Uscanga and François, 2003). Based
on these results, it can be concluded that environmental
parameters and stress conditions result in impairment of:
(I) proteins for mannosylation and chitin synthesis and
(II) regulation factors for chitin and glucan synthesis. This
impairment results in an increase or decrease in replicative
lifespan.

Yeast Vitality and Intracellular pH
Plasma membrane ATPase, which regulates the intracellular pH,
is crucial for the growth of yeast cells (Serrano et al., 1986).
This could be because the uptake of molecules, e.g., amino
acids (Eddy and Nowacki, 1971; Seaston et al., 1973; Cockburn
et al., 1975) and maltose (Serrano, 1977), are interconnected with
the uptake of H+. The first experiment regarding intracellular
pH and viability was conducted in 1995 by Imai and Ohno
(1995). They found a strong positive correlation between the
viability of brewer’s yeast and intracellular pH when a low
external pH was applied (r = 0.960; p = 0.001). The same
correlation was also observed for S. cerevisiae yeast (r = 0.950;
p = 0.001). Thus, it can be concluded that a high intracellular
pH is a pivotal surrogate marker of the vitality of yeast. On the
other hand, it could be assumed that intracellular acidification
is associated with cellular senescence and lysis of yeast cells
due to a non-optimal environment for intracellular enzyme
activity. Therefore, a low intracellular pH is associated with low
yeast vitality.

Indeed, it was found that amiodarone, a potent inducer of
apoptosis in yeast, exerts its effects through the mitochondrial
protein Ysp2. This protein is involved in cellular apoptosis caused
by intracellular acidification following excessive ROS production
and death (Sokolov et al., 2006). Furthermore, it was shown that
Na+ (K+)/H+ exchanger Nhx1p is crucial for intracellular pH
to control vesicle trafficking and associated metabolic processes.
NHX1-deficient yeast cells are more vulnerable against external
low pH stress, showing signs of intracellular acidification and
trafficking defects (Brett et al., 2005) and, thus, younger cell age
due to earlier acidification.

Furthermore, an interconnection between the age and
metabolic activity of yeast cells was revealed. Aged mother
cells are more resistant to osmotic stress and have higher
vitality than old daughter cells, as measured by an increased
respiration rate (Svenkrtova et al., 2016). The respiration
rate and sugar consumption were also used to measure
vitality in a study showing that loss-of-function mutation
of thioredoxins leads to reduced vitality of yeast cells. This
underscores the importance of redox-systems, which are
often affected by aging processes, for yeast vitality (Picazo
et al., 2019). Although environmental acetic acid and ethanol
concentrations decrease yeast vitality, some genes involved
in the aging process can also reduce the production of
acetic acid and increase ethanol tolerance (Orozco et al.,
2013).

Alternations in Membrane Fluidity
The composition of different membranes markedly influences
membrane fluidity. In yeast, sterols are prominent compounds
found in numerous plasma membranes and determine
membrane fluidity. Of note, they are also involved in
protein sorting, vesicle formation, cytoskeleton organization,
endocytosis, or replicative events (Heese-Peck et al., 2002;
Tiedje et al., 2007; Aguilar et al., 2010; Jacquier and Schneiter,
2012; Caspeta et al., 2014). Kodedová and Sychrová (2015)
examined the effects of disruption of different genes involved
in the biosynthesis of ergosterol on membrane potential, salt
tolerance, and other vital characteristics of yeast cells. It was
shown that disruption of erg4 and erg6 exerted a crucial effect
on the integrity of the plasma membrane, indicating strong
hyperpolarization. The relative membrane potential of the
erg5-depleted mutant showed a similar membrane potential to
that of wild-type cells.

Furthermore, the strains showed different responses to
osmotic and pH stressors (0.8 and 1.2M NaCl; 2.5M glucose,
2.8M sorbitol, and pH 3.0). In all cases, the wild-type strain
BY4741 and the erg5-deficient strain showed the highest
tolerance, while the other strains exhibited a significantly
impaired tolerance against these stressors (Kodedová and
Sychrová, 2015). On the other hand, there is evidence that
membrane fluidity and yeast cell viability are positively correlated
based on the ethanol tolerance of yeast cells. There is evidence
that low membrane fluidity is correlated with higher ethanol
tolerance and, thus, an increased viability (Ishmayana et al.,
2017).
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METHODS FOR ASSESSING
AGING-RELATED POPULATION
DYNAMICS

Although several mechanisms of yeast aging are known,
techniques for the precise assessment and quantification of the
proportion of aging cells in a yeast population are essential.
Such methods are important for industrial applications that rely
on defined metabolic and genomic processes of microorganisms
that differ in the singular cell age. As shown in section
Aging Effects in Yeast Cultures Under Industrial Processing,
stress conditions have an impact on the maximum cell age.
Furthermore, the available sugars influence the age distribution,
resulting in varying amounts of aroma compounds. Therefore,
a detailed evaluation of the quantitative age distribution
in yeast populations is necessary for deep understanding
of the interconnection between singular cell age and the
course of the fermentation process. The techniques used to
quantify the maximal bud scar number of yeast and novel
technological approaches for age determination are presented in
the following sections.

Micromanipulation Techniques
Since there is no precise mechanism for estimating the age of
higher species, aging is measured as a cumulative result of various
physiological processes and changes that involve damage and
repair events. Early experiments to estimate the lifespan of yeast
cells by micromanipulation and counting of budding events in
mother cells revealed that mother cells could be distinguished
from daughter cells based on scars on their surface (Mortimer
and Johnston, 1959). According to this technique, the aging
process of the mother cell is studied after separation from
daughter cells during a budding event throughout a microscopic
single-cell observation process. The mean lifespan was 23.9± 8.3
generations, indicating that yeast cells are mortal.

However, classical micromanipulation is unsuitable for
determining the age distribution in yeast due to the time involved
in the process and focus on total lifespan of single yeast cells (Liu
et al., 2015; Hohnadel et al., 2018).

Centrifugal Elutriator
A fundamental method for the enrichment of older yeast cells,
the centrifugal elutriator, was published in 1995 (Woldringh
et al., 1995). The machine is filled with a defined culture of
yeast cells, which are separated by centrifugal forces based
on their size (daughter cell: 2–4µm, mother cell: 6µm)
(Svenkrtova et al., 2016). New daughter cells are thereby
washed out of the chamber, and the system yields older or
senescent yeast cells. Asymmetric cell separation is associated
with a size discrepancy between the daughter and mother
cell, resulting in a difference in sedimentation coefficient and
cell size (Marbouty et al., 2014). The advantage of using
this method is that a high number of daughter cells can
be separated and also a continuous separation of daughter
cells is possible.

Disadvantages of themethod are (I) the dilution factor (Figdor
et al., 1984), (II) the size-dependent fractionation (mother cells

vary in their absolute size) (Kukhtevich et al., 2020) and (III)
the varying size of the total population due to exogenous
factors e.g., nutrient availability (Leitao and Kellogg, 2017).
Therefore, fractionation using centrifugal elutriation may not
provide robust results (Svenkrtova et al., 2016).

Physical Immobilization, Mother
Enrichment Program and Microfluidic
Devices
Physical immobilization by tagging mother cells with biotin
and immobilizing them using streptavidin-covered magnetic
beads or streptavidin-covered columns is used in another
approach (Denoth Lippuner et al., 2014). After separation,
purification of >99% of old cells was determined and used
for the subsequent analysis of telomeres in old cells (Smeal
et al., 1996) or yeast age control in batch or continuous
fermentation (Kurec et al., 2009).

Recently, genetic systems have been developed to separate
younger from older yeast cells. TheMother Enrichment Program
is based on the expression of a beta-estradiol induction Cre
recombinase, which occurs only in daughter cells (Lindstrom and
Gottschling, 2009). Two essential genes, namely ubiquitin carrier
protein 9 (UBC9) (encoding the SUMO-conjugating enzyme)
and cell division control protein 20 (CDC20) (encoding an
activator of the anaphase-promoting complex), were disrupted.
This process led to a LOX-mediated selection against daughter
cells due to the growth of both mother and daughter cells
in the absence of the inducer. In contrast, only mother cells
will continue to divide after induction, whereas the daughter
cells will be arrested at the M-phase. This kind of mother-
daughter separation uses genetic modified systems for analyzing
the genetic instability on chromosome XII (Lindstrom et al.,
2011) or age-related epigenetic changes (Feser et al., 2010).

However, there are also microfluidic dissection platforms,
trapping mother cells under soft elastomers resulting in the
microscopic monitoring of yeast cells throughout the whole
lifespan (Lee et al., 2012). This method enables the monitoring
of 50 cells simultaneously. Another approach is the use
of novel microfluidic device retaining mother cells in the
chamber and flushing away daughter cells, allowing a single-
cell observation (Xie et al., 2012). Through such systems,
which mostly utilize microfluidic devices, it is possible to
examine the morphologies of cells and organelles, cell cycle
dynamics, and various molecular markers and track individual
cells over the whole lifespan, which is typically up to 3 days
(Lee et al., 2012; Xie et al., 2012). The limitation of this
approach in yeast age measurements is the lack of high-
throughput measurements of replicative aging in representative
cell numbers as well as age distributions. Furthermore, this
method is limited due to the size difference between mother
and daughter cells. Instead, these methods focus on single-
cell events and the tracking of individual cells throughout
their lifespan.

A novel approach for the high-throughput analysis of
replicative aging is a microfluidic platform known as high-
throughput yeast aging analysis chip (HYAA-Chip) (Jo et al.,
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2015). Using this method, a maximum of 8000 individual yeast
cells can be trapped in cup-shaped structures and retained for
replicative lifespan analysis. Compared with the abovementioned
methods, the system works independent of the cell size and
works with high trapping efficiencies. However, quantitative
analysis of age distribution is possible neither using the classical
microdissection nor using the previously published microfluidic
designs because information regarding the exact replicative age of
the initial mother cells and composition of mother and daughter
cells is unknown.

Previous analyses have always involved constant singular
stress conditions to understand the aging of yeast cells. However,
studies of the effects of multiple parallel stress conditions, which
can also interact and influence replicative growth, have not been
performed.

Fluorescence Coupled Flow Cytometric
Methods
Flow cytometric methods have been employed to determine
the population dynamics of yeast cultures. During this process,
different dyes can be bound to specific sub-populations and
quantified by their fluorescence signals at a single cell stage
(Davey and Winson, 2003; Calvert et al., 2008; Ambriz-Aviña
et al., 2014). Of advantage is the possibility of high-throughput
screening through real-time analysis techniques by using a range
of physiological markers, such as the yeast cell cycle, viability
and vitality. With this method, it is generally possible to get
insight into the propagation and morphological characteristics
of budding yeast cells (Lee et al., 2012; Xie et al., 2012). Here, it
was possible to examine various gene expression patterns under
different growth conditions, and yeast viability is assessed after
differentiating between viable and dead cells.

Therefore, the advantage of flow cytometry is the fast
measurement of statistically significant numbers of cells, as
well as the simultaneous measurement of more than one
physiological, metabolic or morphological parameter. Still, there
is the limitation regarding the availability of fluorescence dyes in
specific wavelength, as well as the fact that most fluorescence dyes
were irreversible and invasive.

Kurec et al. (2009) used bud scar staining for the first time
in high-throughput (analysis of 5,000 cells) combined with
flow cytometry. Two fractions of yeast cells were generated
using biotinylation. Bud scars were irreversible stained using
Alexa Fluor 488-coupled wheat-germ agglutinin, followed by
the subsequent measurement of fluorescence intensity. The
number of bud scars of 50 cells was microscopically counted
and correlated with the average fluorescence intensity, indicating
a linear relationship, which allows a mean cell age estimation.
Furthermore, by use of the average fluorescence intensity and
the linear relationship, the calculated absolute number of bud
scars could be used to estimate the time point of replacing the
aged biocatalyst during long-term continuous beer fermentations
(Kurec et al., 2009). Still there is room for improvement,
because as described in section Aging in Yeast the distribution
of each age fraction are non-normal distributed, so average
intensities seem prone to errors. Furthermore, yeast cells show

an autofluorescence (Surre et al., 2018) which was not taken into
account in the calculations of fluorescence intensities.

To date to the best of our knowledge, a non-invasive
approach for quantitative yeast cell age determination in
heterogeneous cultures has not been conducted using high-
throughput methods. The development of novel methods
is necessary to overcome the challenges in analyzing and
determining the exact age of yeast cells. Counting of the budding
scar formations can serve as a useful tool to understand age-
related transformations in yeast cells as these scar formations
are considered a potential marker for analyzing the replicative
aging process.

To sum it up, all methods presented in chapter 5 have one
or more of the following disadvantages in each, thus limiting
a holistic and reliable age fractionation. These are the (I) lack
of high-throughput capacity, (II) not selective separation of
heterogeneous yeast cells in more than two age fractions, and
(III) use of genetic modified organisms for separation instead
of wild-type strains, used in industrial processes of beverages.
Furthermore, (IV) the cost and availability of suitable dyes or
fluorochromes linked to antibodies present a practical limitation
(Sendid et al., 2008).

Therefore, a new approach for fluorescence coupled flow
cytometry could fill the gap of high-throughput, non-invasive
determination of yeast cell age. A possible future approach
comprising the advantages and minimizing the disadvantages
shown could be the use of binding domains combined with
fluorescent proteins for bud scar staining of yeast cells due
to the non-invasiveness of binding proteins, as well as the
possibility of protein modification. The resulting stained yeast
cells can (I) be measured in flow cytometry for high-throughput
measurements, resulting in real time analysis of significant
numbers of yeast cells and their corresponding single cell
fluorescence data. Furthermore, (II) the non-invasive reversible
attached protein linker could serve as tool for fractionation
in more than daughter and mother fractions by use of
protein specific interactions. Especially yeast cells bound with
a binding domain-containing protein can serve as a basis for
the fluidic manipulation of yeast cells by age clusters. This
manipulation results in different-aged cells by replicative age,
which can serve as calibration standards in flow cytometry.
Therefore, the fluorescence intensities of defined aged cells
were used for the quantitative analysis of cell populations
instead of the average numbers of bud scars, resulting in an
improvement. Additionally, (III) no genetic modification of
yeast cells for separation is necessary, so yeast samples from
industrial processes could be directly analyzed and fractionated
yeasts can be used for further applications. (IV) The protein
linker could be expressed in a recombinant way, so there is
no limitation in its availability, as well as there is a possibility
of further optimization by using fluorophore wavelength with
low autofluorescence. To summarize, a designed protein for
the visualization of bud scars of yeast cells has huge potential
in industrial fermentation processes due to versatility. Using
the described new approach, a detailed quantitative analysis of
cellular age distributions in yeast populations would be possible,
as well as new separation techniques.
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CONCLUSIONS

According to the currently available literature, the aging process
of yeast cells depends on epigenomic integrity, mitochondrial
dysfunction, and damaged proteins due to stressors, such as
sugar, salt, pH value, ethanol, heat, and mechanics. There
are currently few approaches for the high-throughput analysis
of the impact of these stress factors on replicative aging in
complex media. At present, there is limited research concerning
the cumulative effect of multiple stressors in yeast cells
during industrial processes. Nevertheless, research studies have
illustrated the influence of different stressors, such as oxidative
stress, pH, and heat on the metabolic pathways of yeast cells
upon an increase in the intracellular levels of RONS. Therefore, it
can be asserted that individual stressors exert significant effects
on the reproductive and chronological aging of yeast cultures,
mainly affecting the duration of the cell cycle, cell size, and
budding events. Compared with established procedures, which

are either time consuming, less sensitive, invasive, use genetically
modified organisms, or focus only on daughter cell fractions, the
use of fluorescence coupled flow cytometry as a high-throughput
method could accurately estimate the aging of yeast cultures in
industrial processes. This approach would assist in analyzing the
impact of stress conditions on age-related population dynamics.
The usefulness of this method is based on the availability of
a calibration standard for yeast cell age through, for example,
fractionation of yeast cell populations by singular cell age.
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