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Ride hailing (RH) services have become a common mode of transportation in the last
decade. Usually, statistical tools are used to improve their performance, whereby the tools
typically divide the whole operational area intomultiple regions. These tools usually assume
that the regions are independent of each other even though vehicles from one region can
be used to serve neighboring regions, thereby a method is required that consistently
relates vehicle demand and supply between geographically neighboring regions or to the
whole operating area. This hinders tapping into the full potential of region-based
performance improvement techniques like the repositioning of idle vehicles. Therefore,
we develop an innovative reachability function-based method that coherently builds a
relation among all regions in the form of a spatial density of the measured quantity. We use
it to calculate the differences of vehicle supply and demand for the whole operational area
in the form of an imbalance density. Based on this, we derive a novel repositioning
formulation that significantly reduces both the overall vehicle imbalances and the total
distance of repositioning trips, and thus improves the long-term RH performance. We test
the approach in an agent-based simulation for an RH scenario with automated vehicles,
using open-source New York City taxi data as demand. The approach shows a remarkable
improvement over the state of the art repositioning strategies that balance the fleet over the
individual regions. Furthermore, we introduce kernel-based key performance indicators
(KPIs) that can be calculated at the time of making repositioning decisions. We also show
the correlation of the KPIs with long-term performance gains. We expect that these KPIs
can benefit future statistical (machine learning) approaches for repositioning.

Keywords: repositioning, correlation, vehicle imbalance, vehicle distribution, ride sharing, ride hailing, kernel density
estimation, mobility on demand

1 INTRODUCTION

In the last decade, the widespread usage of smartphones coupled with the availability of high-speed
mobile internet has led to many new and innovative use cases. Among these applications, the
emergence of private-sector mobility service providers (MSPs)—also known as transportation
network companies (TNCs) like Uber, Lyft, and DiDi—is a major development in how people
interact with transportation networks.

Competitive prices, ease of transport, and seamless steps from requesting a ride to the final
payment has caused wide-spread acceptance and large-scale usage of MSPs for regular trips.
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Especially in areas with a poor public transport system, these
services represent a viable alternative to private vehicles.
However, the easy to use apps and public availability of MSP
vehicles has significantly induced additional demand
contributing to an increase of vehicle kilometers traveled
(VKT) and possibly an increase in congestion (Henao and
Marshall, 2019; Kaltenhäuser et al., 2020). To reduce the
overall VKT, spatially and temporally overlapping customers
can be combined into single trips, i.e., shared-ride Mobility on
Demand (MOD), which could be strengthened by regulation
(Dandl et al., 2021). However, non-shared rides still contribute
the most in current MOD services (Henao and Marshall, 2019;
Hyland and Mahmassani, 2020). We also focus on a non-shared
MOD servicemodel and refer to it as a ride hailing (RH) service in
the current contribution.

With the increasing share of MSPs for passenger
transportation, there is also a significant growth in the
scientific literature for improving their efficiency. The majority
of these studies focuses on improving the aspect of online
matching or the dynamic assignment of vehicles to customer
requests. Simulation studies compare various dynamic
assignment strategies to improve the overall service quality
and profit of the MSPs. Some of them also utilize the
repositioning of idle vehicles to vehicle-deficient regions to
increase the number of served customers; this process is also
denoted by rebalancing or relocation in the literature. In the
current work, we use the words zones and regions interchangeably
for a disjoint set cover of the whole operation area.

The periodic repositioning of idle vehicles to appropriate
regions generally increases the number of total customers
served at the expense of empty VKT (Dandl et al., 2019). It
requires the selection of idle vehicles and their respective
destinations. Generally, repositioning methods do not integrate
the granularity level of raw coordinates because 1) it makes the
solution space intractable and 2) forecasts of supply and demand
are not available at this resolution. Hence, the general approach is
to divide the city into various regions and make repositioning
decisions according to forecasts for these regions. However, many
region-based repositioning methods do not consider spatial
proximity of the regions when comparing forecasts of demand
and supply. Because a customer in a region without vehicles can
also be picked up by a vehicle from a surrounding region it might
not be necessary to equalize the demand and supply imbalance in
each individual region, but consider a bigger picture and the
relations of regions depending on the sizes of regions and the
acceptable user waiting time. Although some works indirectly
considered inter-regional relations with reinforcement learning
(RL) strategies, an explicit relationship based on inter-regional
distances is still lacking (Mao et al., 2020). More importantly, a
clear-cut optimization formulation is needed that consistently
considers the impact of a repositioning decision on the
destination region as well as on its surrounding regions.

Therefore, the primary purpose of this study is to develop a
general repositioning procedure that coherently looks at the
spatio-temporal vehicle-demand imbalances of regions
considering their respective surrounding regions. We
introduce a novel heat-map or kernel density estimation

(KDE)-based repositioning strategy that considers the impact
of repositioning decisions on the regions idle vehicles originate
from and drive to as well as their surrounding regions. Even
though we study the developed repositioning approach on the RH
scenario with autonomous vehicles (AVs), the fundamental
procedure of using KDE is general and can be applied to
other MOD service models as well.

The rest of the paper is structured as follows. The next section
presents the necessary background and literature review of the
dynamic assignment problem along with a brief delineation of
current work. Then, Section 2 presents details of the studied
MOD mode and associated repositioning problem. Section 3
describes the adoption of KDE for the density-based
repositioning method and the related computational
complexity when used for general repositioning without
regions. Afterward, we present a computationally feasible
procedure to the above method using regions. Subsequently,
Section 4 shows the numerical experiments used to evaluate
the effectiveness of the presented repositioning approach. The last
section then presents the summary, limitations, and possible
future directions.

1.1 Background
The core operational problem for MODs is part of the class of
stochastic dynamic vehicle routing problems (SDVRP), or more
specifically it is related to the well known multi-depot dynamic
dial-a-ride problem (D-DARP), where the current location of a
vehicle can be assumed to be the depot for that specific vehicle
(Agatz et al., 2012; Toth and Vigo, 2014). Commonly, studies use
rolling horizon strategies which are also referred to as batching to
deal with the dynamic aspect of SDVRP. The requests are
temporally accumulated for specific time periods and then the
same methods as used for the static problems (where all the
customer requests are known in advance) are applied. Therefore,
there is a growing interest in operations research for both static
and dynamic variants of DARP (Ho et al., 2018).

Generally, research dealing directly with the SDARP focused
on comparatively small sized artificial data with a significantly
large time horizon for acceptance or rejection of a request. The
large time horizon exponentially increases the number of possible
combinations, making the problem much more difficult to solve.
MOD services in large cities deal with thousands of vehicles and
customers, but the time window for replying to a customer is
considerably short and customers do not accept long waiting
times. This highly dynamic behavior of MOD services makes the
assignment problem much easier to solve than a traditional
multi-depot SDARP, allowing significant pruning of the search
space for the MOD assignment problem.

A significant number of works used the above observation for
simulating MOD scenarios with actual data. Hyland and
Mahmassani (2018) and Maciejewski et al. (2016) studied
various batch-based assignment strategies for vehicle
assignment. Alonso-Mora et al. (2017a) presented an
interesting general approach for a large scale ride sharing (RS)
scenario inside Manhattan using open source New York City
(NYC) taxi data with a 30 s batching period. They explicitly
pruned the search space by first developing a graph of possible
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trips and then solving a set cover problem for assigning trips to
vehicles. Engelhardt et al. (2019) developed a similar algorithmic
approach for a shared ride scenario with lower demand densities
on a larger operating area in Munich, Germany. Some other
researchers tried using DARP metaheuristic approaches for
dynamic simulation of real data (Syed et al., 2019b; Erdmann
et al., 2019).

It is generally known from operations research literature that
including statistical information inside the dynamic problem
significantly improves the overall solution quality (Toth and
Vigo, 2014). We see a growing interest of using past
experiences to improve the overall MOD performance. Two
general approaches in this regard are 1) explicitly using
modern machine learning (ML) techniques and 2) specific
rule-based incorporation of the statistical information. The
ML-based approaches are still comparatively new to the field.
Works by Nazari et al. (2018), Hamzehi et al. (2019) tried to solve
the basic assignment problem using reinforcement learning (RL)
while (Syed et al., 2019a; Hottung and Tierney, 2019) improved
ALNS using ML methods. Al-Kanj et al. (2020) developed a
dynamic programming approach for a combined dispatch,
recharge, and repositioning problem and tested it on a regular
grid inside New Jersey. Mao et al. (2020) presented an RL-based
approach for the repositioning problem inside Manhattan using
NYC taxi data and NYC taxi zones as repositioning regions. They
showed that the trained RL agent produced results within
analytical upper and lower bounds of the optimal solution.
However, both Al-Kanj et al. (2020) and Mao et al. (2020)
used a simplified customer-vehicle assignment due to a very
low temporal resolution of 15 min. Besides, these approaches
require thousands of iterations in order to learn a good policy
which makes it difficult to directly adopt bigger agent-based
simulations with thousands of requests and small time steps.

Due to the rule-based utilization of statistical information, a
majority of works used the repositioning or efficient routing of
vehicles. Usually the objectives include either serving more
customers or increasing the overall profit with the least
possible increase in VKT. One strategy is to use short-term
forecasts alongside the batch assignment problem to move idle
vehicles to demand-intensive regions (Sayarshad and Chow,
2017; Dandl et al., 2019) or to maneuver the en-route vehicles
in RS through regions expecting new customers (Alonso-Mora
et al., 2017b). Repositioning aims at moving idle vehicles from
areas where no demand is expected to areas where vehicles are
likely needed. The idea is the same as relocation in carsharing
systems (Weikl and Bogenberger, 2013; Weikl and Bogenberger,
2015), but do not require staff and are therefore much cheaper
and frequent. RH studies periodically solve repositioning
problems that are completely separate from the batch
optimization (Pavone et al., 2012; Fagnant et al., 2015; Dandl
and Bogenberger, 2019; Winter et al., 2020). They solve an
optimization problem to determine the number of idle vehicles
that needs to be repositioned from one region to another. To solve
a single instance of the problem, some of the works use heuristics
to distribute the vehicles to neighboring zones (Fagnant and
Kockelman, 2014), while the majority use some commercial
solver to solve discrete optimization problems (Alonso-Mora

et al., 2017a; Wallar et al., 2018; Dandl and Bogenberger,
2019). The objective function generally includes a combination
of repositioning VKT and a measure of regional imbalances.

Whether the repositioning is done alongside the batch
optimization or completely separately, most of the
repositioning formulations do not consider the size and
proximity of the regions to determine the imbalance in the
system. This leads to two major issues:

• Region-based repositioning algorithms try to balance as
many regions as possible with minimum extra VKT
(Pavone et al., 2012) or balance adjacent regions
(Fagnant and Kockelman, 2014), while ignoring the fact
that for many smaller regions a vehicle from the
neighboring regions can be assigned to the customer. As
shown in Figure 1, many smaller regions in the center and
the lower town could be balanced by sending vehicles to
only some of the regions. Instead, the algorithms tried to
balance all regions independently, irrespective of proximity.

• As a consequence of the above point, short repositioning
trips are prioritized, which can lead to larger areas (such as
the Upper West Side and Upper East Side in Figure 1)
remaining highly imbalanced although idle vehicles could
have been repositioned there.

Perhaps some of the ML-based repositioning works by Al-
Kanj et al. (2020), Mao et al. (2020) could be said to have
implicitly considered the above observations. However, the
exact regional relationships and why they are built during the
training process remain unclear. Combined request-assignment
and repositioning approaches (Sayarshad and Chow, 2017;
Hyland et al., 2019) consider the assignment to nearby regions
explicitly. However, it is possible that operators might want to
keep request assignment and repositioning separate as they have
very different dynamics: requests require immediate actions
whereas forecasts of demand and supply for a longer time
horizon evolve much slower over time. In a separate
repositioning approach, Pouls et al. (2020) introduced a binary
reachability parameter, which is 1 if a vehicle from one region can
reach another region within a maximum waiting time.

1.2 Contribution
We use a concept partially similar to Pouls et al. (2020), but
instead of time-based reachability, we use distance-based
reachability to introduce a 2D vehicle density function. The
function consistently models inter-regional relationships while
considering the sizes and proximity of individual regions and
resolves both of the above issues. It uses ideas from KDE to better
model distance-based inter-regional relationships than spatially
independent zones. The general nature and simple formulation of
the density term provides the major advantage of linking any
regional measurement that is expected to affect other regions and
the overall operational area; thus, it can significantly improve the
performance of any future MOD contribution that uses
measurements based on inter-regional relations.

Second, we apply the density term to the repositioning of idle
vehicles in the MOD services. First, the regional vehicle
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imbalances are measured using customer forecasts and the
available idle vehicles. A positive or negative regional weight is
assigned according to the surplus or deficiency of vehicles,
respectively. Next, a 2D linear kernel or vehicle reachability
function (VRF), representing the area from which a vehicle at
the center of the region can pick up a customer, is used as the
reachability function inside the above mentioned density method.
Then, we formulate a multi-objective repositioning problem,
where the importance of the imbalance density has to be
optimized against the repositioning VKT. This whole
procedure is analogous to the balancing of weights inside a
weighted KDE, where the imbalance density can be looked at
as a 2D heat-map of the vehicle imbalance.

Finally, the repositioning approach presented can pave the
way for more advanced operational strategies. Even though we
use pre-defined regions for computational efficiency, the method
will probably show its full potential with a more refined forecast
granularity and artificial intelligence (AI)-based algorithms. The
introduced instant repositioning rewards are likely to help AI-
based (and non-myopic dynamic programming) algorithms
because it is generally difficult to evaluate the long-term
effectiveness of repositioning decisions at a given time.
Therefore, we present the correlations of served customers and
density-based KPIs which can be used as indicators of long-term
rewards in an AI-based algorithm.

We compare the performance with multiple methods to
study the benefits of the developed repositioning methods.
Since there is no comprehensive study comparing the
performance of major repositioning strategies on the NYC
dataset, we resorted to our own testing of multiple methods.
Due to the required implementation effort and the number of
iterations required for training, it is difficult to compare against
dynamic programming and RL-based methods. Therefore, the
first method chosen is the min-distance approach by Pavone
et al. (2012). It was originally named the adaptive real-time
rebalancing policy by Pavone et al. (2012) and aims at equally

distributing excess vehicles among regions with minimal
repositioning VKT. The second method by Wallar et al.
(2018) maximizes the number of customers received by
repositioned vehicles after reaching the destination zone. We
also test the commonly used heuristic method of Fagnant and
Kockelman (2014) which tries to balance the expected demand
and idle vehicles in the neighboring zones. The dynamic
simulation experiments of min-distance performed
significantly better than the other two methods. For
presentation purposes, the current paper only includes the
results of the min-distance method, and the descriptions and
comparisons with all methods are attached as Supplementary
Material.

2 SERVICE DEFINITIONS AND PROBLEMS

This section presents the formal definitions, assumptions, and the
dynamic MOD service problems focused on in the current study.

2.1 Studied Mobility on Demand Service
Definition
The studied RH service has the following characteristics:

• Each customer i dynamically requests a ride at time ti via an
app providing the pick-up (pi) and the drop-off (di)
locations.

• A customer can only be picked up within the maximum
waiting time, ΔTmax, starting from ti.

• Any customer that cannot be picked up before ΔTmax + ti is
rejected.

• A customer pick-up delay is defined as the difference
between the actual arrival time of the vehicle at pi and ti.

• The fleet consists of homogeneous AVs that do not need
recharging or refueling.

FIGURE 1 | An instance of the mid-term repositioning insideManhattan, New York City usingmethods of Pavone et al. (2012), Wallar et al. (2018), and Fagnant and
Kockelman (2014). The positive values represent taxi zones with surplus of vehicles while negative values correspond to zones with a deficiency of vehicles. The
algorithms treated each zone independently and preferred repositioning to zones around the surplus zones while leaving the areas in the upper west and east sides highly
deficient.
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• The assignment of vehicles to customers is controlled by a
central fleet controller (FC).

• A fleet of fixed size n.
• Only a single customer request can be served at a time.

The dynamic setting means that at time t, the FC is not aware
of requests i with ti > t. The FC addresses this problem by
repeatedly adapting the routing assignments of its vehicles.
Such an approach is bound to perform worse than an FC in a
static setting, in which all customer requests are known
beforehand. In the static setting, variant ti would be
interpreted as the earliest pick-up time, and the optimal
solution—assuming that an algorithm is available that solves
the problem optimally—would provide vehicle routes and
schedules for the entire time horizon without compromising
any of the above constraints. However, in an actual MOD
service, neither all the customer requests are known in
advance nor an efficient optimization method exists that
would provide an optimal solution for the entire time horizon,
with millions of customer requests, in a meaningful
computation time.

The FC in a dynamic setting tries to get as close as possible to
the static optimal solution by proactively sending vehicles to
regions where higher customer demands are expected rather than
assigning it to an explicitly known customer demand. Therefore,
we define two problems that the FC should address: the vehicle
assignment problem, where vehicles are assigned routes that
include picking-up and dropping-off requests, and the vehicle

repositioning problem, where vehicles are moved within the
operating area based on expected demand. As expected
demand is stochastic, assignments to explicit customer
requests are typically prioritized.

Figure 2 illustrates the dynamism related to the control of
the MOD fleet. Based on the vehicle states (positions, on-
board customers, and assigned routes), the set of known
requests, and the forecasts of future demand, the FC tries
to find optimal solutions to the vehicle assignment and
repositioning problems, and plans vehicle routes. The
vehicles follow these plans until the control process is
performed again.

2.2 Service Quality Measurement
The overall performance or effectiveness of a specific strategy can
only be evaluated after all the customer requests are received.
Therefore, we quantify the service quality in terms of total
monetary profit based on traveled distances as overall
objective of the dynamic RH scenario. We study a system, in
which every served customer i must pay a fixed cost ζ and a
variable cost of f D per kilometer for the distance dpdi between
locations pi to di. On the cost side, we consider the per kilometer
cost cD as well as repair costs cF (total value for the simulation
period for, e.g., leasing and insurance) for the vehicles. We also
assume that every non-served customer might not use the service
again in future, leading to non-popularity of the service.
Therefore, we also use a constant cost ξ for each customer not
served.

FIGURE 2 | Dynamic fleet control for a MOD service.
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With the above definitions, for a set of all the served customer
requests Rs, unserved customers Rns, and vehicle fleet V, the
overall profit of the service is given as:

∑
i∈Rs

(ζ + f D · dpdi ) −∑
v∈V

(cD · dv + cF) − ∑
i∈Rns

ξ (1)

where dv is the total distance traveled by vehicle v. Customer pick-
up delays are implicitly evaluated by this measure; since
customers accept all wait times up until ΔTmax , the priority of
the FC is to assign a vehicle that can pick up the customer before
that threshold.

2.3 Vehicle Assignment Problem
We batch the new requests for 30 s before assigning them to the
vehicles. The FC solves an optimization problem on the batched
requests, which we refer to as vehicle control optimization
(VCO). Since the superordinate problem is dynamic and the
overall objective of the FC is to maximize the profit in Eq. 1, the
objective function in VCO can be different from Eq. 1 with
additional terms for statistical data. However, we keep the
objective in VCO the same as the actual profit for the sake of
simplicity. Thus, the batch optimization problem is described as
follows.

The FC first checks for the availability of the vehicles, i.e., the
time and the position when and where a vehicle could be assigned
a new task. If the vehicle is already serving some customers, then
it finds the drop-off time and location of the last customer in the
vehicle’s path (Hyland and Mahmassani, 2018). Then the VCO
maximizes Eq. 1 for the batched requests Rb with the following
constraints:

• Each request is served at most by one vehicle.
• At most one pick-up is assigned to each vehicle.
• For a served request i the pick-up time is before ti + ΔTmax.

We assume that any request that could not be matched with a
vehicle in the current batch, will be most likely not matched in the
future batches as well. Since vehicles en-route to drop off
customers are viewed as available, this assumption would be
invalid only if another customer was both picked up and dropped
off within this time frame and the respective vehicle would be very
close to the request’s pick-up location. For simplicity, all the
unassigned requests are immediately rejected and removed from
future batches.

2.4 General Repositioning Problem
In a dynamic MOD scenario, the spatio-temporal distributions of
customer demand and vehicle availability play a major role in
improving the overall service quality. After dropping off a
customer, vehicles might wait a long time before getting
another customer, despite the fact that there are many
unserved customers in other parts of the city. Therefore, a
general repositioning problem tries to minimize this supply
and demand gap by routing the idle vehicles to areas with
expected vehicle deficit. Ideally, a repositioning algorithm
should consider every possible coordinate inside the city for

this purpose. However, demand (and for larger forecast
horizons, supply as well) forecasts are usually not available on
such a fine granularity, and dealing with an algorithm on such a
level poses a significant computational challenge.

2.5 Region-Based Repositioning Problem
Typically, vehicle supply and demand are forecast for discrete
regions or zones within the operational area. The region-based
approach also limits the possible destinations of repositioning
vehicles. Let Z denote a disjoint set of regions in the operating
area. As shown in Figure 2, the FC periodically calls its
repositioning algorithm after every ΔTr to determine new
repositioning trips.

Let t be the simulation time when the repositioning algorithm
is performed. First, the supply and demand are forecast in each
zone for a temporal horizon ΔTh. Let sets R(+,t)

z and R(−,t)
z

represent the forecasts of customer drop-off and pick-up
locations for zone z ∈ Z. In the current study, we use forecasts
with perfect accuracy, i.e., we use the simulated historical trips
between interval [t, t + ΔTh] in zone z to calculate R(+,t)

z and R(−,t)
z .

Next, the FC calculates the regional supply-demand imbalance
weights ωt

z ∈ W for each zone z ∈ Z. We count vehicles that will
be available after dropping off a customer inside a region z as
positive and subtract the number of trips starting from z. We use
the difference of sets R(+,t)

z and R(−,t)
z for this purpose. Besides the

forecast values, we include information of the current state at time
t: we add the idle vehicles in zone z, denoted by V(+,t)

z , and the
repositioning vehicles en-route to zone z from the previous
repositioning cycle, represented by V(r,t)

z . Thus, ωt
z is

computed as:

ωt
z �

∣∣∣∣V(+,t)
z

∣∣∣∣ + ∣∣∣∣V(r,t)
z

∣∣∣∣ + ∣∣∣∣R(+,t)
z

∣∣∣∣ − ∣∣∣∣R(−,t)
z

∣∣∣∣ (2)

Let surplus zones Z+4Z and deficiency zones Z−4Z
represent the zones with positive and negative weights ωz ,
respectively. Then the repositioning algorithm returns a flow
matrix u(t) :� (u(t)ij ) ∈ Z

|Z+|×|Z−|
≥0 representing the number of

vehicles that need to be repositioned from vehicle surplus to
vehicle deficiency zones. Note that some repositioning methods
can support the full flow of vehicles without any zonal restriction,
in which case u(t) ∈ Z

|Z|×|Z|
≥0 .

Based on the zone-based solution u(t), a greedy algorithm
determines which vehicle will be sent exactly where in the
destination zone. The greedy algorithm is described in the
Supplementary Material.

It should be noted that most region-based repositioning
algorithms assume that a single repositioned vehicle changes
the weight imbalance by one:

ρtz � ωt
z +∑

i∈Z
u(t)
iz −∑

j∈Z
u(t)zj (3)

where ρtz denotes the post-repositioning system state. This is a
simplification as the vehicle will only be available for a part of the
time horizon ΔTh or not at all if the distance between regions i
and z is too large to be reached within ΔTh.

The subsequent section derives a vehicle density-based
repositioning method for calculating the flow matrix u(t) using

Frontiers in Future Transportation | www.frontiersin.org June 2021 | Volume 2 | Article 6814516

Syed et al. Density Based Repositioning Strategies

https://www.frontiersin.org/journals/future-transportation
www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation#articles


ωt
z . Since it is clear from the above description as well as from

Figure 2 that we solve the repositioning problem after every ΔTr ,
from now on we drop the superscript t for better presentation.
Whenever the repositioning algorithm is applied at simulation
time t, the parameters u, ωz , V+

z , V
r
z , R

+
z , and R−

z refer to u(t), ωt
z ,

V(+,t)
z , V(r,t)

z , R(+,t)
z , and R(−,t)

z , respectively.

3 METHODOLOGY

This section presents the solution approaches used in the current
study. It starts with a brief description of the KDE and how it is
modified to obtain a density term for MOD services. Then it uses
the density term for the repositioning of idle vehicles. Finally, it
introduces KDE-based KPIs to evaluate repositioning
assignments.

3.1 Kernel Density Estimation (KDE)
KDE is a well known non-parametric probability density function
(pdf) estimator first introduced by Parzen (1962), Chen (2017).
KDE tries to automatically adopt itself to the shape of the
underlying density function. If x1, x2, . . . , xN ∈ Rd are a set of
independent data points drawn from an actual probability density
function p(x), then a KDE is calculated as

p̂(x) � 1

NV(k)
d hd

∑N
i�1

k(x, xi, h) (4)

k(x, xi, h) � K(x − xi
h

) (5)

where K : Rd1R is a smooth kernel function, h> 0 is the
bandwidth for smoothness, and xi is a data point. Vk

d is a
kernel- and dimension-dependent normalization factor so that
the integral ∫ p̂(x)dx � 1 (Wang, 2005).

There are many smooth kernels that are generally used in
KDE, e.g., triangular, Gaussian, triweight, etc. However, we
interpret the kernel function in terms of an approximation to
the maximum reachable distance by a single vehicle. Any vehicle
located at the center of the kernel will have the highest probability
of serving a customer at the center, that will become smaller as the
Euclidean distance of the customer pick-up location increases.
Thus, in this study we use the simple triangular function, given as:

K(x) � { 1 − xs, if ‖x‖s ≤ 1
0, otherwise

(6)

We use the Euclidean norm in the above equation, i.e., s � 2,
for which V(k)

d is π
3 (Wang, 2005).

3.2 Adopting KDE for the Repositioning
Problem
The fundamental usage of KDE is to estimate the underlying pdf
of a dataset without any assumption that the pdf belongs to a
parametric family. KDE adopts the shape of the estimated pdf
directly from the data, making it a very useful tool for data drawn
from complicated distributions. The most important parameter

of a KDE, i.e., h, is usually calculated automatically using various
approaches to reduce the asymptotic mean integrated square
error (AMISE). The data are center and the overall spread of the
estimated pdf is heavily dependent on the choice of bandwidth h
(the spread of a single data point) (Grodzevich and Romanko,
2006).

The motivation of using a KDE-inspired approach for the
repositioning problem is to balance the distribution of available
vehicles (supply) according to the customer distribution
(demand), such that the maximum number of customers
could be served with least VKT. KDE seamlessly combines the
impacts of neighboring data points through kernels. Since the
bandwidth h defines the spread of the kernel function, we can
interpret it as an approximation of the maximum reachable
(servable) distance of a single vehicle (customer request).
Similarly, we can refer to the kernel function as reachability
(servability) function for the vehicles (customer requests). This
naturally eliminates the fundamental limitation of region-based
repositioning approaches that treat each region separately
without due regard to the proximity of other regions.
However, using the above mentioned KDE formulation and
approach directly leads to some major inconsistencies as
described below:

1. The major focus of bandwidth selection algorithms in KDE is
to find a h that would improve the estimate of the underlying
probability density function of the random variable. Thus, in
the case of customer and vehicle geographical locations, it
would only mean to estimate a h that would provide a good
estimate of the probability density for generating the
customer and vehicle locations. Such a h would not
correspond with our interpretation of h as the reachable
distance of the vehicle.

2. The customer and vehicle data in an RH scenario are dynamic
and thus the underlying density of their location is expected to
change in every repositioning throughout the day and week
and thus, the value of h derived from bandwidth estimation
algorithms can vary significantly, which may lead to long-term
inconsistent decisions.

3. Even for a single instance of the repositioning problem, the
values of bandwidth h obtained from an algorithm might be
significantly different for the customer and vehicle
distributions. Thus, even if we reposition idle vehicles to
close the gap between the customer and vehicles KDE, the
repositioned vehicles still may not serve the intended customer
because of different bandwidths. For example, consider the
case when customers’ and vehicles’ KDE have bandwidths of
500 m and 2 km, respectively. The algorithm will falsely
reposition very few vehicles assuming that the vehicles have
a reachability of 2 km, which may not be applicable due to the
average speed in the area of operation.

4. Since the KDE is normalized with the number of available data
points (Eq. 4) to make the integral unity, the scales of
customers and vehicles KDE might be significantly
different. For example, consider a case with 100 expected
customers and 300 idle vehicles with KDEs calculated using
Eq. 4. The algorithm would try to unnecessarily send a high
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number of vehicles close to the expected customers, as the
customers KDE would be on a similar scale as the idle vehicles
KDE due to normalization.

To resolve issues 1 and 2, instead of using a data-driven value
of h calculated through bandwidth estimation algorithms, we
select h according to the network state (size of the operating area,
average speed, etc.) and RH service quality (maximum waiting
time). For issue 3, we notice that a major problem is caused by
normalization of the KDE on the same scale such that ∫ p̂dx � 1,
irrespective of the number points, which is usually required
because the KDE is estimating a pdf. However, for our
purpose, estimating a pdf is not as important as using a
consistent scale for customers and vehicles. Thus, Eq. 4 is
modified as:

p(x) � 3
πhd

∑N
i�1

k(x, xi, h) (7)

where k is the triangular kernel given in Eq. 6. The above equation
does not represent a pdf, however, it has a useful property of∫ p(x)dx � N . It represents the spatial density of the data points.
If it is calculated for customer requests then it represents the
demand density, and if it is calculated for the available vehicles
then it represents the supply density.

If individual points are aggregated in a set of points {xi}, then a
weighted version of the above density function is given as:

p(x) � 3
πhd

∑N
i�1

wik(x, xi, h) (8)

with ∫ p(x)dx � ∑N
i wi. The density expression in both Eqs 7 and

8 is general and can be used to express any regional MOD
measurement in terms of 2D density function. Equation 8 is
especially important for MOD forecasts as they are already
aggregated over disjoint regions. Thus, the following section

uses Eq. 8 to derive a density-based repositioning method
using a pre-defined set of forecast regions.

3.3 Reachability Function-Based
Repositioning With Regions
Ideally, density-based repositioning should use raw coordinates
of forecast customers in Eq. 7 to distribute the idle vehicles.
However, such a repositioning method would not be
computationally feasible even if the exact locations of the
future customers are known (see Supplementary Material for
a more elaborate discussion). Therefore, this section derives a
reachability function-based repositioning with regions (RFRR)
approach based on Eq. 8. The derived RFRR formulation is also
applicable to any regional forms, e.g., predefined equidistant bins.
However, we use the centroids of the official taxi zones in the
historical dataset for aggregation. Figure 3 presents the general
flow of the overall procedure. The aggregated supply and demand
are first assigned to zone centroids, which are then used to
calculate an imbalance density function using Eq. 8. Afterward
a multi-objective repositioning problem—as described in this
section—is solved which minimizes the imbalance density and
repositioning VKT.

We first introduce a general version that purely aims at
minimizing the supply-demand imbalance density and the
repositioning distance objectives without any restriction on
zones—contrary to the traditional restriction of sending
vehicles only from surplus to deficiency regions. Because of
the ability to send vehicle to or from any region, we will refer
to the formulation in the current section as RFR with regions and
full flow (RFRRf). The next section will introduce a formulation
with constraints on origin and destination regions.

Consider a region-based repositioning problem as defined in
Section 2.5. Let {xz1, xz2, . . . , xz|Z|} be the zone centroids. Instead of
calculating the densities for customers and idle vehicles
separately, we first accumulate the imbalances for each zone as

FIGURE 3 | The flow of the reachability function-based repositioning (RFR) strategy with vehicle supply and demand aggregated over zone centroids.
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given in Eq. 2, and then consider a combined imbalance density
using a weighted density formulation (Eq. 8). Thus, the multi-
objective optimization problem for the RFRRf technique is
given as:

min
δω,̂u

f̂ (δω), ĝ(û) (9a)

s.t. ∑
i∈Z
δω+

i −∑
i∈Z
δω−

i � 0 (9b)

∑
j∈Z
ûij � δω−

i ∀i ∈ Z (9c)

∑
i∈Z
ûij � δω+

j ∀j ∈ Z (9d)

δω−
i ≤

∣∣∣∣V+
i

∣∣∣∣ ∀i ∈ Z (9e)

δω+
i ≤∑

j∈Z

∣∣∣∣∣V+
j

∣∣∣∣∣ ∀i ∈ Z (9f)

δω+
i · δω−

i ≥ 0 ∀i ∈ Z (9g)

δω :� δω+ − δω−

δω+, δω− ∈ Z|Z|
≥0

û ∈ Z|Z|×|Z|
≥0

ĝ(û) � ∑
i,j

ĉijûij (9h)

f̂ (δω) � F⎛⎝a∑nz
i�1
(∣∣∣∣R+

i

∣∣∣∣ + ∣∣∣∣V+
i

∣∣∣∣ + ∣∣∣∣Vr
i

∣∣∣∣ + δωi)k(x, xzi , h),
a∑nz

i�1

∣∣∣∣R−
i

∣∣∣∣k(x, xzi , h)⎞⎠ (9i)

where û is a flow matrix with each element ûij representing the
number of idle vehicles repositioned from zone i to zone j, δω is a
vector representing the overall change in the weight of a zone, and
a � 3

πh2. The changes in the zone weights δω are broken into
positive δω+ and negative δω− changes to the zone weights; thus,
Eq. 9gmakes sure that either of them are not simultaneously non-
zero for each zone. Ĉ :� (ĉij) ∈ R

|Z|×|Z|
≥0 is the matrix of traveling

costs between zone centroids. Equations 9c and 9d guarantee
that the total numbers of vehicles leaving a zone and entering
other zones are in accordance with positive and negative changes
to zone weights, respectively. Equation 9e ensures that the
negative changes to a zone weight (number of vehicles leaving
the zone) is restricted by the number of vehicles available in the
zone. On the contrary, the main purpose of the constraint on δω+
in Eq. 9f is to prune the search space as the total increase in a zone
weight cannot be more than the total available vehicles.

For calculating the difference between supply and demand
densities in Eq. 9i, we use the integral of squared deviation as it
puts more importance on high imbalance values than other
metrics, e.g., the integral of absolute deviation. Additionally, it
significantly reduces the computational effort as described below:

f̂ (δω) � a2 ∫⎡⎢⎢⎢⎣∑
i∈Z

⎛⎝∣∣∣∣R+
i

∣∣∣∣ + ∣∣∣∣V+
i

∣∣∣∣ + ∣∣∣∣Vr
i

∣∣∣∣ − ∣∣∣∣R−
i

∣∣∣∣︸����������︷︷����������︸
�ωi

+δωi
⎞⎠k(x, xzi , h)⎤⎥⎥⎥⎦

2

dΩ

(10)

� a2∑
i∈Z
∑
j∈Z

(ωi + δωi)(ωj + δωj)︸���������︷︷���������︸
constant for integration

∫ k(x, xzi , h)k(x, xzj , h)dΩ (11)

With the definition of matrix A ∈ R
|Z|×|Z|
≥0 : (A)ij �∫ k(x, xzi , h)k(x, xzj , h)dΩ, the above equation can be written as:

f̂ (δω) � a2(ω + δω)TA(ω + δω)
� a2(ωTAω + (2ωT + δωT)Aδω)
� a2(2ωT + δωT)Aδω + Const (12)

The constant term Const � a2ωTAω can be ignored for the
optimization problem. The major advantage of the formulation
arises from the matrix A as fixed zones can be easily preprocessed
using different numerical methods. We use the simplest mid-
point rule for this purpose. Thus, A is given as:

A � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∑
l,m

k̂(xz1, h)k̂(xz1, h) . . . ∑l,mk̂(xz1, h)k̂(xznz , h)
. . .∑

l,m

k̂(xznz , h)k̂(xz1, h) . . . ∑l,mk̂(xznz , h)k̂(xznz , h)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ΔxΔy

(13)

where k̂(xzi , h) is the evaluation of the kernel function k(x, xzi , h)
on a discretized two-dimensional grid with step sizes Δx and Δy.

Furthermore, another advantage of the formulation is that it is
not even necessary to use the same bandwidth h for all zones or
the complete day. According to the statistics of the zone, the
bandwidth or reachability can be chosen differently. For example,
for the outskirts of a city or low traffic zones, we can choose a
larger bandwidth as the vehicle can pick up a customer from
larger distances. Conversely, for the zones with lower traffic
speeds (near the city center), we can choose smaller bandwidths.

It should also be noted that as h approaches zero (no overlap of
the kernel functions),A becomes the unity matrix and then Eq. 12
reduces to:

f̂ (δω) � a2 ∑nz
i�1

(ωi + δωi)2 (14)

In this form, the measurement of the imbalance of a region is
independent of the imbalances in other regions. However, it is still
quite different from the traditional repositioning formulation that
applies the balancing of regions as constraints of the optimization
problem and minimizes the repositioning VKT (Pavone et al., 2012;
Alonso-Mora et al., 2017a). Because of themulti-objective formulation
in Eq. 9 and the square of zone weights in Eq. 14, the obtained
repositioning problem will give a higher preference to balancing the
regions with higher imbalances—allowing the vehicles to be sent to far
off regions as well, in contrast to traditional repositioning that limits it
to the closest regions as described in Section 1.1.

3.4 Repositioning Formulations With Zone
Restrictions
Since the vehicle supply and demand densities are more general
than the regional surplus and deficiency, the flow of vehicles in
the RFRRf formulation was kept general—to and from all regions
irrespective of local imbalances—to allow the minimization of
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overall density. However, since we use integral squared deviation
to reduce the computational effort for the density objective (Eq.
12), even small differences in the density objective could be
overemphasized during the optimization process. Secondly, the
regional demands vary significantly during night and day hours;
during the early morning hours with little to no demand, the
RFRRf formulation would try to distribute all vehicles evenly
throughout the city to decrease the imbalance density. This could
lead to increased repositioning of vehicles without a significant
increase in the overall performance. Thus, this section presents
formulations that restrict the flow of vehicles from certain regions
based on local imbalance to lower the above effects. We put these
restrictions in two steps:

1. Since the RFRRf formulation is general, it even allows for the
repositioning of vehicles from deficiency zones to other zones.
This will lower the short-term density, but may make even
available vehicles in the deficient zones busy with
repositioning; ultimately, leading to decreased performance
gain. Thus, we limit this effect by changing the constraint in
Eq. 9e with the following:

δω−
i ≤ min(max(0,ωi),

∣∣∣∣V+
i

∣∣∣∣) ∀i ∈ Z (15)

The above constraints restrict the negative changes in a zone
(the outflow of vehicles) at zero if the original zone weight is
negative (i.e., deficient zone). Since this formulation only
allows for the outflow of vehicles from surplus (zones with
positive weights), we refer to this formulation as RFRRp.
2. As final step to zone-based restrictions, we only allow the

repositioning of vehicles from surplus to deficiency zones.
We refer to this formulation simply by RFRR. The
previously described RFRRp allowed the repositioning
from surplus zones to all zones which could still cause
excessive repositioning VKT. Even though bringing a
higher number of vehicles to a zone can benefit if
demand and supply forecasts contain uncertainties, it can
cause unnecessary repositioning especially when most zones
are not balanced. Therefore, the following RFRR approach
can limit unnecessary repositioning further while
simultaneously simplifying the formulation the number
of variables and the required matrix sizes are decreased.

min
δω,̂u

f̂ (δω), ĝ(û) (16a)

s.t. ∑
i∈Z
δωi � 0 (16b)

∑
j∈Z−

ûij � −δωi ∀i ∈ Z+ (16c)

∑
i∈Z+

ûij � δωj ∀j ∈ Z− (16d)

0≥ δωi ≥ −min(ωi,
∣∣∣∣V+

i

∣∣∣∣) ∀i ∈ Z+ (16e)

0≤ δωi ≤ −ωi ∀i ∈ Z− (16f)

δω ∈ Z|Z|

û ∈ Z|Z+|×|Z−|
≥0

Notice the decrease in the size of flow variables matrix û and
traveling costs matrix Ĉ from |Z| × |Z| in RFRRf and RFRRp to
|Z+| × |Z− | for RFRR. The requirement for breaking the δω into
positive and negative parts is also removed, as the changes in zone
weights of deficiency and surplus zones could be only positive
(Eq. 16f) and negative (Eq. 16e), respectively. Thus, Eqs 16c, 16d
directly use δω to ensure that the changes in zone weights are
consistent with the number of idle vehicles and furthermore
prunes the solution space according to current weights.
Condition 16b guarantees the conservation of weight changes.

3.5 Implemented Optimization Approaches
The presented repositioning approach in Eq. 9 is a multi-
objective optimization problem. We first present the approach
where we give the highest preference to the density objective. In
the subsequent section we formulate the problem for finding the
pareto fronts.

3.5.1 Prioritized Balanced Density (PBD)
If the priority of objectives is known beforehand in a multi-
objective optimization problem, the lexicographic method is
generally used (Chang, 2015). One major advantage of the
method is that it gives a pareto optimal solution without the
need of scaling the individual objectives. In a lexicographic
method, the problem is solved separately, first for the highest
priority objective. Then, the already solved objectives with the
optimal values are put as constraints while solving the problem
for the next objective. Since we use separate variables δω and û for
the density and VKT objectives, respectively, we can first solve the
optimization problem for f̂ (δω) completely separately for
optimal δω and then put these optimal values as constraints
on δω when solving for ĝ(û).

3.5.2 Normalized Weighted Sum
The weighted sum method is a well known multi-objective
method, where individual objectives are multiplied by constant
weights for relative importance. The assigned weights help to
move over pareto front solutions. However, as the units and the
magnitude of the individual objectives may vary for different
problem instances, it requires a meaningful scaling of the
individual objectives. In the current study, we use the well-
known approach of scaling the objectives using nadir and
utopian values (Grodzevich and Romanko, 2006). Thus, the
multi-objective function in Eq. 16a can be written as:

min
δω,̂u

c
f̂ (δω) − f̂ utopia

f̂ nadir − f̂ utopia
+ (1 − c) ĝ(û) − ĝutopia

ĝnadir − ĝutopia
(17)

where c ∈ [0, 1) is a constant weight for the relative importance of
balanced density and distance objectives. The value of γ cannot
perfectly be 1 as this causes the repositioning formulation to only
have density as the objective, leading to multiple optimal
solutions with random distance objectives and flow variables.
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c � 0, on the other hand, always has the unique solution of no
repositioning. An MOD service operator can choose between
different values of γ according to the willingness to invest in extra
VKT for repositioning.

The utopian and nadir points are obtained from the pareto
optimal set of solutions. This set is usually obtained by optimizing
the individual objectives with the original constraints. The lower
bounds of the individual objectives form the utopian point and
the upper bounds form the nadir point.

In the current problem formulation, it is sufficient to
consider two extreme pareto solutions for finding the utopian
and nadir points. The distance objective ĝ(û) results in the
minimum when there is no movement, i.e., no repositioning
vehicles: ĝutopia � 0. This solution results in the worst density
objective along the pareto front and is equal to the initial value,
i.e., f̂ nadir � f̂ initial . Similarly, the other extreme pareto optimal
solution with a minimum density objective is produced when we
use the PBD approach described in the previous section.
Therefore, f̂ pbd and ĝpbd denote the objective values of
density and distance objective after solving with PBD
approach, then Eq. 17 is given as:

min
δω,̂u

c
f̂ (δω) − f̂ pbd

f̂ initial − f̂ pbd
+ (1 − c) ĝ(û)

ĝpbd
(18)

3.6 Long-Term Key Performance Indicator
(KPIs)
Generally, because of the dynamic nature of RH services, the
benefits of a repositioning decision cannot be evaluated until
the realization of the actual customer demand in the system.
For a repositioning algorithm, it is usually difficult to evaluate
the long-term impacts of a decision. Therefore, the goal is to
empirically show the correlations between various KPIs and
long-term repositioning performance. Following the same
zone definitions as in Section 2.5, we introduce the
following KPIs:

K≥0 � ∫
Ω+

p(x; ρ)dΩ Ω+ � {x ∈ Ω : p(x; ρ)≥ 0} (19)

K≤0 � ∫
Ω−
p(x; ρ)dΩ Ω− � {x ∈ Ω : p(x; ρ)≤ 0} (20)

p(x; ρ) � 3
πh2

∑nz
i�1

ρzi k(x, xzi , h)(Spatial density of imbalance)
where ρzi ∈ {ωi,ωi + δωi} can be the pre- or post-repositioning
weight for zone i ∈ Z. K≥0 and K≤0 correspond to the total amount
of vehicle surplus and the total amount of vehicle deficiency in the
whole operating area, respectively. For the current study, we use the
mid-point rule for calculating the integrals.

In this study, the correlation of these KPIs, which can be
evaluated instantaneously (before and after the decision to
reposition), and long-term fleet performance are analyzed. In
general, repositioning only generates costs for sending the
vehicle to another place in the operating area at the time of

the decision. Assigning instantaneous rewards, which estimate
the benefits over the course of time, can be very useful for
approximate dynamic programming approaches like
reinforcement learning.

4 NUMERICAL EXPERIMENTS ON STATIC
PROBLEM INSTANCES

Before applying the suggested methods in a dynamic simulation,
it is useful to understand the basic principles and differences of
the various suggested approaches on concrete static instances.
This is also very important for analyzing the aggregated long-
term simulation outcomes. Therefore, the current section
presents numerical experiments on static instances.

4.1 Description
We use the open source NYC taxi data to generate the static
repositioning scenario from November 13, 2018. The data are
geographically aggregated into NYC taxi zones for privacy
reasons. The definition and shape of these zones are already
provided and for consistency we use the same zones for
repositioning. We only considered the trips originating and
ending in the Manhattan area of the city, which constitutes 63
taxi zones.

Since the geographical distribution of customer origins and
destinations varies significantly between morning and evening,
we generate test cases by accumulating the customer requests
from two time periods: from 9 to 9:15 am and from 6 to 6:15 pm.
For the two periods, we generate idle cars by taking the
destination zones of randomly picked customer requests from
the 1 h period before 9 am and 6 pm, respectively. According to
the trip data, we have a total of 3,265 and 4,409 customers for
9 am and 6 pm, respectively.

In this section, we keep the bandwidth h as 1.5 km, which
equals a maximum allowed pick-up delay of ΔTmax � 6 min at the
average speed of the network.We will discuss varying bandwidths
in the next section where we study dynamic simulations as the
impact of bandwidth is network speed-dependent.

4.2 Results of Static Instances
We first experiment with increasing values of γ. As shown in
Figure 4, the repositioning problem has conflicting objectives
which is apparent from the pareto front in distance vs. density
plots. With varying values of γ, the solution values build the
pareto front. As described in Section 3.5.2, the PBD solutions
form the end points of the pareto front for each method. It can be
observed that the region-focused min-distance method is not on
the pareto fronts of either method and RFRRf provides the best
compromise between the two objectives. Thus, VRF-based
methods provide a better compromise of the vehicle balance
density and distance objectives.

Figure 4 also shows that with c � 0 no vehicles are
repositioned as the objective is to minimize the repositioning
VKT only. With increasing value of γ, all VRF-based methods try
to minimize the density objective while giving relative importance
to the total repositioning distance. As γ approaches 1, the VRF
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methods converge to their PBD solutions. Generally the
computation time for RFRR is observed to be better than the
other VRF variants, as the RFRR only sends vehicles from |Z+| to
|Z−| (smaller search space). However, as γ approaches 1, the
problem becomes difficult to solve due to the drastic increase in
the search space. For the calculations in Figure 4, we put a time
limit of 5 min, still for the region near c ≡ 1, some of the problems
were not able to be solved optimally. However, for such a high
value of γ, there was not much difference between the weighted
sum and PBD solution qualities. It should also be noted that as

described in Section 3.5.2, the PBD has to be calculated first for
the normalized weighted sum approach. Thus, the consistent low
computational time of PBD is also beneficial for it.

Figure 4 also shows that as more zone restrictions are put in
the RFRRf formulation via RFRRp and RFRR, the density
objective becomes worse. However, RFRRf (and RFRRp to a
lesser degree) achieves slightly better density objectives by
compromising a significant number of repositioning vehicles
and VKT. This is apparent from the pareto front in Figure 4,
where the difference of ĝ(û) between RFRRf (PBD) and RFRR

FIGURE 4 | The impacts of increasing γ on the suggested RFRR methods for the static problem instances taken from morning (9 a.m.) and evening (6 p.m.). The
instances use 500 idle vehicles and RFRR bandwidths (h) of 1.5 km. The calculation time does not include the time required for the PBD step, which is provided
separately in the plots.

FIGURE 5 | Results of various repositioning methods for a 9 am static case. The first row shows the zone counts for the idle vehicles and the imbalances while the
second row shows the heat-map of densities calculated using Eq. 8 with h � 1.5 km. The unit of density is vehicles per km2.
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(PBD) is significantly large for a small decrement in density
objective. This might keep the vehicles busy with repositioning
and lead to degraded performance in a dynamic simulation.

For the 9 am scenario, we see that all VRF-based approaches
produce better density objectives than the min-distance method.
The same PBD solutions of Figure 4 are visualized on the map in
Figure 5. It can be seen that the min-distance strategy treated the
regions individually and tried to distribute the excess vehicles
equally among regions while minimizing the VKT. This left the
zones in the upper east and west side regions highly deficient. In
comparison, VRF-based methods focus on the overall distribution,
and thus, send more vehicles to the upper east and west sides.
Notice that since the RFRRf can send vehicles from and to all
possible combinations of regions to decrease the density objective,
the RFRRf minimum region deficiency weight in Figure 5 is even
less than the original zone imbalance weights. The reason is that the
RFRRf method even repositioned some idle vehicles from the
deficiency regions to minimize the imbalance density.

In the dynamic simulation, the number of available idle
vehicles keeps changing according to customer demands.
Therefore, Figure 6 shows the experiment with a growing
number of idle vehicles. We generate new vehicles using the
same procedure as described in the previous section and
incrementally add them to the idle vehicle weights. The most
important observations are:

• Looking at the density objective, we observe that for all the
VRF methods there is a critical number of vehicles at which
the density objective is the least, and the possible benefit
from the applied repositioning method is maximum. We
will refer to this point as vehicle saturation point (VSP).

• We also observe that the VRF-based methods can change
the absolute value of imbalance density ΔKabs much more
than the min-distance method, especially for smaller fleet
sizes. This shows that with the same fleet size, the
repositioned vehicles are able to cover bigger areas.
However, with increasing fleet size the benefits of all the
methods converge because the larger fleet can already cover
a bigger area.

• For fleet sizes larger than the VSP, the density objective
increases as the additional vehicles contribute more toward
increasing the surplus then being used to fulfill the vehicle
deficiency, which is evident by comparing the values of total
surplus K≥0 and deficiency K<0 for the original problem and
the kernel-based repositioning methods. Near VSP,K<0 gets
close to zero, and the decrease rate of deficiency K<0 is less
than the increase rate of surplus K≥0.

• Compared to the min-distance method, the VRF-based
methods perform much better for balancing the
deficiency value K<0. The advantage of VRF methods is
higher for a smaller number of idle vehicles. However, such
an advantage also depends on the initial distribution of the
idle vehicles and original zone imbalance, as is apparent for
the 6 pm case where the advantage is lower than for the
9 am case.

• Since we use integral square deviation for the density
objective in Eq. 9i, all the VRF-based methods are
equally sensitive for both surplus and deficiency, not just
for deficiency. Therefore, we observe that RFRRp and
RFRRf keep repositioning more vehicles to balance the
surplus density for the added vehicles even when K< 0
has reached zero. The strategy of RFRRp and RFRRf
might be beneficial when we do not have an accurate
prediction of future requests and have a limited amount
of idle vehicles. However, if there are a lot of idle vehicles,
this may lead to keeping many idle vehicles busy due to
repositioning with overall non-profitable VKT.
Comparatively, the min-distance strategy of balancing
excess vehicles among regions requires significantly more
vehicles than all VRF approaches to bring K<0 close to zero.

• The RFRR method provides the best compromise among all
methods. With a lower number of idle vehicles, it
repositions enough vehicles—more than the min-distance
method and similar in amount to RFRRf and RFRRp—to
reduce vehicle deficiency, i.e., K<0. Additionally, after
reaching VSP when there is not much benefit in
repositioning additional vehicles, the RFRR decreases the
repositioning vehicles and VKT. In contrast, all other

FIGURE 6 | The impacts of increasing the number of idle vehicles on the suggested RFRR methods for the static problem instances taken from morning (9 a.m.)
and evening (6 p.m.). The values of the original position correspond to the values without any repositioning. Additionally, ΔKabs is the difference of Kabs after and before
repositioning, where Kabs � K≥0(overall surplus) + K≤0(overall deficiency). Thus, ΔKabs represents the overall reduction in the imbalance density by the application of a
specific strategy.
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methods—including min-distance—keep repositioning
more vehicles as more vehicles are added to the system.

5 NUMERICAL EXPERIMENTS ON
DYNAMIC PROBLEM INSTANCES

5.1 Simulation Environment
We use an agent-based simulation environment for our
experiments. The environment consists of three types of
agents: operator, customers, and vehicles controlled by the
operator. Each scenario with particular parameter setting is
simulated for one week of data. For the first day of the
simulation, the same initial vehicle positions are used for all
the scenarios. However, considering that the simulation takes
some time to warm up and distribute the vehicles more naturally
than the initial distribution, the simulations include a warm-up
period of 1 h.

In each simulation step, the time t is incremented by 1 s and
the system state is updated accordingly. For the vehicle-customer
assignment, the system state consists of vehicles’ current
locations, the newly generated customers, and the information
regarding currently serving, fulfilled, or expired customer
requests. The new requests are batched every 30 s after which
the batch assignment problem is solved. Similarly, after every ΔTr

the batch assignment problem is followed by solving the
repositioning problem, for which the system state is extended
by the demand and supply forecasts.

For solving the optimization problems, we use the commercial
MIP solver CPLEX with its Python API. The rest of the data
processing and simulation is written in Python 3.7.

5.2 Simulation Data and Street Network
We use the same NYC taxi data from November 12, 2018 to
November 18, 2018. As described in Section 4.1, the data do not
provide the exact start and end location of a trip, rather the trips
are aggregated over areas of different sizes called NYC taxi zones.
The trip data and the definition and shape of these zones are
provided by the authorities and for consistency we use the same
zones for repositioning. We only considered the trips originating
and ending in the Manhattan borough. Furthermore, we filtered
probable false trip records in the data with speeds below 1 m/s or
above 30 m/s.

We extract the drivable street network from OpenStreetMap
data using the Python library called OSMnx (Boeing, 2017). For
reducing the computational efforts, we first simplify the network
using the built in OSMnx simplification procedure that keeps
only the intersection and end-point nodes. We define all nodes as
boarding nodes that are only connected to roads of the classes
“living street”, “residential”, “primary”, “secondary”, and
“tertiary”. The NYC taxi data are disaggregated by assigning
the pick-up and drop-off locations of the aggregated customers
data to boarding nodes in the respective zones randomly.

We assign link travel times using the free-flow speeds already
provided for the links. If any link does not have speed information
we set it as 25 mph (approximately 40 km/h). In order to replicate
realistic travel times, the speeds of all links were scaled after every

15 min according to the average speeds by comparing the free-
flow and recorded travel times of the actual trips from the NYC
taxi data in the last 15 min (see Section 1 of Supplementary
Material for details of the scaling procedure). Additionally, we
use a maximum customer waiting time ΔTmax of 6 min in the
following experiments.

5.3 Varying Relative Importance of
Imbalance Density and Repositioning
Distances
Following a similar experimental approach to the static results
section, we first concentrate on the long-term impacts of the
presented repositioning approaches with varying values of γ and
the total fleet size while keeping a fixed kernel bandwidth h of
1.5 km. We also fix the profit parameters in Eq. 1,
i.e., (ζ , f D, cD, cF , ξ) � (0.25 $/served customer, 0.5 $/km,
0.25 $/km, 25 $/vehicle per day, 0.25 $/unserved customer).

Figure 7 shows the overall results of the simulated week. As
shown in Figure 7A, the repositioning distance, served
customers, and the overall profit increases with γ. The
performances of all the presented kernel-based methods
surpass that of the traditional min-distance strategy for higher
values of γ. Additionally, the value of γ gives a good benchmark
on how much an MSP is willing to reposition vehicles for long-
term profit gains.

In the studied framework, en-route repositioning vehicles
cannot be re-assigned by myopic customer-vehicle batch
optimizations (unaware of demand and supply forecasts)
before coming close to the destination. Therefore, increasing
vehicle balance through repositioning has two trade-offs: 1)
these vehicles are not available for customer assignment
thereby reducing the effective fleet size; 2) the repositioning
trips are empty thereby generating costs without immediate
revenue. Only if these trips generate additional revenue by
serving more customers, can more profit can be achieved.
Therefore, we notice that in Figure 7A the extra repositioning
distances in RFRRp and RFRRf kept vehicles more busy than
RFRR for all values of γ, leading to fewer served customers and
less profit than the RFRR approach.

Figure 7B compares the performance with varying fleet size.
The first observation is the profit term. For all the repositioning
methods, increasing the fleet sizes increases the overall profit as the
operator can serve more customers. However, after the saturation
points (i.e., 4,500 vehicles), increasing the fleet size decreases the
profit because of the increase in the maintenance costs with fleet
size without more customers to serve. We also observe that the
presented kernel-based approaches outperform the min-distance
strategy for all fleet sizes. RFRR (PBD) performs the best among
them indicating a higher priority to eradicate vehicle deficits than
to balance vehicle surplus over the operating area.

Interestingly, even though the major aim of the min-distance
method is to reduce the repositioning VKT, the focus on strictly
distributing the excess vehicles equally among regions and
reducing immediate repositioning VKT ultimately leads to
more repositioning VKT in the long-term. There are a few
reasons contributing to this result. First, the density-based
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FIGURE 7 | Results of one week of simulation on NYC data from November 12–18, 2018. The empty distance consists of both customer pick-up and the
repositioning distances. In (A) the plots only include evaluations until c � 0.99. As PBD solutions provided best results, (B) only compares PBD solutions for increasing
fleet sizes.
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algorithms aim to minimize the overall imbalance in the whole
operating area instead of individual zones, which can produce
better vehicle distributions and therefore less repositioning for
the subsequent repositioning problem instances. Moreover, some
short repositioning trips between small neighboring zones might
not improve the overall balance of demand and supply and are
not recommended by the density-based algorithms. Additionally,
it might be sufficient to choose a destination that is closer to the
idle vehicles than a small-sized deficit zone as vehicles from the
nearby zone can cover that area as well. Furthermore, as observed
in Section 4.2, the min-distance strategy repositions
unnecessarily more vehicles with an increasing number of idle
vehicle to balance excess vehicles equally. This would be
especially problematic at off-peak times when there is a higher
number of idle vehicles. In light of the above observation, the
superior performance of the RFRRmethod (PBD) in Figure 7B is
clearly understandable, where the repositioning distances are less
and served customers are more than the min-distance method.
The better customer coverage inherent in the RFRRmethod leads
to overall decreased repositioning distances in the long-term.

Lastly, we evaluate the impacts of increasing repositioning on
the profit components. Figure 8 evaluates the performance of the
whole week for increasing value of base price (ζ), unserved
penalty (ξ), and c while keeping distance-based fare (f D �
0.5 $/km), distance-based costs (cD � 0.25 $/km), and vehicle
repair costs (cF � 25 $/vehicle per day) constant. We observe that
unless there is a base fare, the system remains unprofitable
regardless of repositioning. The generated revenues are not
sufficient to compensate the costs for driving and
maintenance. Additionally, the choice of γ also affects the
profits. Lower values of γ lead to less repositioning and fewer
served customers. Thus, we see that with the base fare the system
shifts from unprofitable at c � 0.25 to profitable at c � 0.5 due to
increased repositioning and served customers. For c> 0.5, the
revenue and cost components remain rather stable and the
increase in total profit is relatively small. However, these small
changes are quite significant for the MSP. For example, the total
profit increase when moving from c � 0.5 to c � 0.99 for a base
fare of 1.25$ and 2.5$ is 0.114 million $ and 0.231 million $,
respectively; as Figure 7 illustrates the results of one week, this

translates to yearly profit increases of around 5.96 million $ and
12.0 million $, respectively.

5.4 Correlation With the Long-Term Effects
of Repositioning
Using the simulation of the week, we study the correlation of KPIs
in Section 3.6 with the long-term effect of repositioning
decisions. Every time a repositioning algorithm is called, we
calculate the KPIs using the zone weights returned from the
repositioning solution. Then we look at the correlation of
calculated KPIs with the actual number of served or unserved
customers within different time periods after the repositioning
step; the different time periods can have different correlations,
since it takes some time for vehicles to reach their destinations.

Figure 9 shows the correlations of KPIs with the customer
statistics. Since we simulated multiple fleet sizes, we also observe
correlations by scaling the customer stats by fleet sizes. As shown
in Figure 9B, K≥0 shows a stronger correlation with the number
of served customers than K≤0 with the number of unserved
customers. K≥0 is the integral of the positive areas of the 2D
imbalance densities, which makes it a representative of the total
surplus vehicles. Usually, surplus vehicles mean that the vehicles
are already available in the vicinity of potential future customers,
and can immediately serve them, leading to a quick change of
surplus vehicle distribution. This is also evident from the
decreasing correlation of K≥0 with served customers as the
considered time period increases. A near zero value of K≥0
would mean that all the vehicles are at an approachable
distance to potential future customers. This is evident from a
near one ratio of served customers to fleet size when K≥ 0 is zero
and the ratio decreases almost linearly as K≥0 increases, as shown
in Figure 9B. However, this one-to-one relation of K≥0 and
served customers does not hold true with the number of unserved
customers. A higher value of K≥0 could either mean that there are
no future customers (hence no unserved customers in the near
future) or that there are potential future customers but the
vehicles are not in their vicinity (and hence a higher number
of unserved customers). Similarly, a near-zero K≥0 only shows
that the customers equivalent to fleet size can be served

FIGURE 8 | Impact of increasing the relative importance of density objective (c), base customer fare (ζ ), and the future adjustment cost for not serving a
customer (ξ).
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(no surplus), but it does not guarantee that there will not be any
unserved customers.

K≤0 is the integral of negative areas of 2D imbalance
density, and thus, represents the deficiency of vehicles in
the whole operation area. In contrast to K≥0, K≤0 has a
relation with unserved customers. Since repositioning
vehicles have to travel for some time before arriving at their
destination, the impacts of repositioning decisions taken at
time td require some time to manifest; in this case study for
Manhattan, repositioning trips often last 15–30 min. However,
at t � td + ΔTr (where ΔTr � 15 min for the current study), the
next repositioning tasks are assigned to vehicles. Hence, the
applied policy affects the correlations as well, which can
explain outliers by certain policies. Nevertheless, K≤0 is a
good instantaneous KPI to evaluate expected unserved
demand.

The comparison of K≤0 for various bandwidth parameters h
illustrates that the choice of 1.5 km, which was derived from the
maximum waiting time and the average velocity, generates the
highest correlation and makes sense.

5.5 Relation of Kernel Bandwidth and
Max–Wait Time
Lastly, we study the relation of kernel bandwidths (h) and the
maximum allowed customer pick-up time (ΔTmax). Since the
value of h determines the reachable distance of vehicle to
customer location, the value of ΔTmax plays an important role
for the effectiveness of a specific h. A small ΔTmax and large h
would mean that idle vehicles are repositioned with the
assumption that they can pick up customer from larger
distances while in reality the customer request may expire
before the repositioned vehicle can actually pick up the
expected customer due to a small ΔTmax. This would lead to a
higher number of expired customers.

Figure 10 presents results for a fleet size of 4,500 vehicles. It
indeed illustrates that for a very short waiting time of 2 min, a
kernel bandwidth h of 2 km serves approximately 3–4% fewer
customers. For larger maximum waiting times, the number of
served customers converges for different bandwidths.
Simulations with smaller fleet sizes (unsaturated demand)
showed the same behavior.

For accurate forecasts, the bandwidth parameter generates a
trade-off between empty repositioning and pick-up distances.
For larger bandwidths, vehicle repositioning considers the area
that a vehicle can cover for a pick-up trip—defined as the empty
VKT a vehicle has to make to pick up an assigned customer
request. For a larger h, the pick-up VKT will be increased as the
vehicles will have to cover a larger area. Figure 10 shows that the
sum of pick-up and repositioning in our simulations is nearly
constant for different bandwidth values, which is a sign that the
forecast accuracy is really high; in this case study, future trip
data within the future horizon of 30 min were aggregated
thereby producing a forecast with perfect accuracy for the
given spatial and temporal precision. As the forecasts
typically show stochastic errors, prioritizing pick-up distance
over repositioning distance should typically produce lower
shares of empty miles in practice.

6 CONCLUSION

6.1 Summary
In conclusion, we presented a kernel or reachability function-
based repositioning approach for RH services. Using 2D kernel
functions, we introduced the concept of a 2D imbalance density,
which consistently describes the imbalances of the overall
operation area irrespective of the definition of individual
zones. The density function naturally takes into account the
proximity and inter-region distances. This method was utilized

FIGURE 9 | Correlation of instantaneous integral KPIs with long-term customer service quality.
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to introduce an innovative repositioning formulation that
removed a fundamental problem in earlier repositioning
approaches; they considered each zone individually whereas
our approach considers the proximity of other regions.

With the 2D density function, we presented three
repositioning formulations: RFRR, RFRRp, and RFRRf, which
showed a significant improvement over the state of the art
strategies. Among all the methods, RFRR performed the best
from which we concluded that even though the presented
formulations take into account the overall operation area in
the form of density, the performance is further increased by
restricting the flow of vehicles from surplus to deficiency
regions only.

We also introduced kernel-based KPIs and showed their
correlations with long-term fleet performance.

6.2 Limitations and Future Work
The service models and operational forms of MOD services are
vast. The study design clearly demarcates the assumed MOD
mode (AV-based RH service without pooling), the associated
profit objective, and the experimented NYC taxi dataset. For
simplicity, we derived the future customer regional statistics
directly from the data; in real RH applications, such perfect
knowledge of future customers may not be available. The
performance of the presented strategy should be evaluated
with realistic, erroneous forecasts using techniques like
machine learning (Ke et al., 2017). Additionally, the
assignment of a vehicle to a customer in the studied scenario
is a highly dynamic problem. We used a specific strategy with a
specific objective function for assignment. A different
assignment strategy can also change the results. Similarly, we
used simplistic scaling of travel times using the ratio of total
travel duration. While such scaling is more realistic than free-
flow speeds, it does not represent reality. It is possible that a
simulated vehicle is able to pick up a customer on time, but in
reality, it is not able to do that. Thus, the simulated performance
for specific fleet size can differ from the actual Manhattan data.
Lastly, there is also no guarantee that the approach will behave
similarly in other cities with a much larger operating area, as the
Manhattan area is small compared to other cities, in which RH
services are operated.

With the above limitations, the presented work is a significant
scientific step toward improved repositioning and a better fleet
utilization. Future research should focus on using the presented
approach in different operation areas with more realistic travel

times, datasets, and vehicle assignment objectives to confirm the
usefulness of the presented strategy.

In the current work, we also limited the kernel bandwidths to
fixed lengths, while in reality, the reachable distance of vehicles
differs significantly throughout the day. Future works should
focus on using an adaptive kernel bandwidth according to the
current network speed. In theory, the method could even work
with different speeds and thereby differing reachability
bandwidths for the areas in the network. Similarly, we used a
specific forecast period (30 min) and definition of zone
imbalances for measuring the 2D imbalance density. We
expect that studying different forecast periods and zone
weights can improve the performance further. It might also be
interesting to consider available parking spots (as in Winter et al.,
2020) and define the reachability around likely parking locations
to find suitable destinations of repositioning vehicles.

Finally, the density model can be applied whenever stochastic
spatio-temporal information is used. This could help to further
improve other recent developments like multiple repositioning
time horizons (e.g., Albert et al., 2019; Dandl et al., 2020) or
combined assignment and repositioning with dynamic
programming (e.g., Al-Kanj et al., 2020). Moreover, with the
presented definition of the 2D imbalance density and the long-
term performance KPIs, we expect that modern machine
learning algorithms can benefit significantly. These
algorithms have proven performance for learning relations
among multitudes of variables. Since an effective fleet control
and repositioning strategy will have to consider multiple short-
term and long-term performance indicators, we expect that a
statistical technique can significantly improve the overall
performance.
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