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For haul truck drivers it is becoming increasingly difficult to find appropriate parking at the
end of a shift. Proper, legal, and safe overnight parking spots are crucial for truck drivers in
order for them to be able to comply with Hours of Service regulation, reduce fatigue, and
improve road safety. The lack of parking spaces affects the backbone of the economy
because 70% of all United States domestic freight shipments (in terms of value) are
transported by trucks. Many research projects provide real-time truck parking occupancy
information at a given stop. However, truck drivers ultimately need to know whether
parking spots will be available at a downstream stop at their expected arrival time. We
propose a machine-learning-based model that is capable of accurately predicting
occupancy 30, 60, 90, and 120min ahead. The model is based on the fusion of
Extreme Gradient Boosting (XGBoost) and Long Short-Term Memory (LSTM) with the
help of a feed-forward neural network. Our results show that prediction of truck parking
occupancy can be achieved with small errors. Root mean square error metrics are 2.1, 2.9,
3.5, and 4.1 trucks for the four different horizons, respectively. The unique feature of our
proposed model is that it requires only historic occupancy data. Thus, any truck
occupancy detection system could also provide forecasts by implementing our model.
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1 INTRODUCTION

Long-haul truck drivers have two main objectives towards the end of their operational hours. First,
they need to reach their daily driving target (i.e., achieve a certain distance) to avoid losing
productivity (Mahmud et al., 2020). Second, they need to find a safe parking space, preferably
next to the motorway without spending much time searching (Smith et al., 2005). However, there is a
hard constraint with respect to both objectives: The Hours of Service (HOS) regulation, which limits
the daily and weekly hours truck drivers are allowed to spend driving and working. In the
United States, for example, driving time is limited to 11 h after 10 consecutive hours off duty
(Federal Motor Carrier Safety Administration, 2011). Other industrialized countries such as
members of the EU, Canada, and Australia also have HOS regulations in place (Jensen and
Dahl, 2009). Drivers must therefore weigh the probabilities of finding a parking spot against
reaching their daily driving target. The later a search is started, the less likely a suitable parking spot
will be found. This is due to a general lack of truck parking spots along motorways (Garber et al.,
2004; Sun et al., 2018; Nevland et al., 2020), which is predicted to become even worse because of
increased commercial traffic (Bayraktar et al., 2014). The situation is illustrated by the example of the
United States but also applies to other countries. Easily finding a proper, legal, and safe parking spot
at the end of a working day for a night’s rest is crucial for truck drivers to be able to comply with HOS
regulations, reduce fatigue, and improve road safety (Boris and Brewster, 2018; Nevland et al., 2020).
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However, predictive information of available parking spots
downstream is currently not available, and only limited
research exists. Therefore, the research question is whether
truck parking occupancy can be predicted with sufficient
accuracy based on noisy historical data.

We are particularly interested in the potential of machine-
learning-based approaches. Machine-learning techniques have
demonstrated to be well suited for forecasting in other traffic
research domains such as travel time or traffic flow prediction
(Vlahogianni et al., 2004; Lv et al., 2015; Polson and Sokolov,
2017; Zhao et al., 2017). However, they have hardly been applied
in the truck parking domain. Data availability, data quality, and
resources for preprocessing are pivotal for the success of
prediction algorithms (Vlahogianni et al., 2004). Our aim is
therefore to develop a machine-learning-based approach that
has sparse data requirements in order to be widely applicable.
Ideally, such an approach should use only historical occupancy
data, and no additional data sources such as traffic volumes and
weather data should be required. Sparse data requirements are in
line with work from Sadek et al. (2020) and Tavafoghi et al.
(2019), who also rely on only historical occupancy data.
Moreover, the objective is to present a prediction pipeline
(PP) that not only works in lab conditions but which can also
be applied to real world data with all its complexities. A pipeline is
defined as a “fixed sequence of steps in processing the data”
(Pedregosa et al., 2011). By a prediction pipeline, we mean a
pipeline that processes the raw data, trains the submodels, and
performs the necessary steps for model fusion. At the end of the
prediction pipeline, the actual predictions can be made. The key
contributions of our paper are:

• Development of an XGB-LSTM (Extreme Gradient
Boosting-Long Short-Term Memory) truck parking
prediction model

• Evaluation of different forecasting horizons
• Benchmark with classical prediction techniques

The remainder of the paper is structured as follows. Under
Related Work, a literature review on parking prediction is
presented, and the research gap is derived from this. The
underlying mathematical concepts of the prediction principle
are described in XGBoost and LSTM Model Fusion. In Prediction
Pipeline, we present the full prediction pipeline with a focus on
the necessary data preprocessing steps. Under Results, we answer
the research question by evaluating the performance of our
proposed truck parking prediction model with real world data.
Finally, Conclusion and Discussion summarizes the main results,
relates them to other existing findings, and briefly discusses the
limitations of our research.

2 RELATED WORK

The literature is split into two categories: reviews of parking
prediction in urban environments and reviews of truck parking
prediction along motorways, each with their respective
shortcomings. The terms truck stop and rest area are used

interchangeably, even though there might be a distinction for
some readers.

2.1 Urban Car Parking Prediction
A basic approach using spatio-temporal clustering is proposed by
Richter et al. (2014). The data used for validation of the approach
is from on-street and gated off-street parking in San Francisco
and covers 5 months. The data is clustered using different models:
a one-day model, a three-day model, and a seven-day model per
street segment. The underlying assumption is that there are
general trends that can be extracted with varying degrees of
granularity. Instead of predicting numerical values, the authors
decided to predict parking spot availability classes: low, medium,
and high. The results show that the seven-day model performs
best in predicting the right availability class.

Yu et al. (2015) propose an Autoregressive Moving Average
Model (ARIMA) to predict parking occupancy. The data source is
the central mall underground parking facility in Nanjing. Data is
collected for 1 month with a resolution of 15 min intervals. The
authors follow the traditional steps in forecasting with ARIMA
models. First, the data is smoothed and made stationary. Then a
grid search over possible parameter combinations is performed,
and the model with the smallest Akaike information criterion
(AIC) and Bayesian information criterion (BIC) is selected. The
results show that the suggested ARIMA model can outperform
the benchmark model, which is a neural network.

Zheng et al. (2015) investigated three different machine
learning algorithms: a Regression Tree, a Support Vector
Regression (SVR), and a neural network for urban parking.
The objective is to compare the algorithms with different
feature sets on two data sets. The first data set consists of on-
street and controlled off-street parking lots in the city of San
Francisco collected over 1.5 months. The second data set consists
of approximately 1 year of data from in-ground sensors in the
CBD of Melbourne. The Regression Tree performs best for both
data sets. The authors also conclude that feature vectors which
include occupancy at previous timesteps improve the predictive
performance.

Ji et al. (2015) propose a wavelet neural network model for
short-term urban parking prediction and compare the
performance to the largest Lyapunov exponents (LEs). Short-
term is defined as up to 5 min. The data used for the model
validation comes from several car parking lots in Newcastle upon
Tyne and has high resolution with 1–5 min intervals. Generally,
the wavelet neural network outperforms the LEs in terms of
accuracy and efficiency. Another key finding is the training
strategy used because weekdays and weekends showed
different characteristics in the descriptive data analysis,
training of the wavelet neural network was performed with
corresponding weekday training data.

In conclusion, the literature which we reviewed on urban
parking prediction is dominated by general time series prediction
techniques such as ARIMA, Regression Trees, and neural
networks. This might be due to the universal applicability of
these methods. In contrast, the truck parking prediction literature
which we reviewed is more inclined towards domain-knowledge-
supported prediction methods.
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2.2 Truck Parking Prediction Along
Motorways
Heinitz and Hesse (2009) propose a traffic model approach that
relies on origin and destination cells. The basis is a traffic model
that provides average weekly heavy goods vehicle (HGV) origin-
destination pairs. With this information available,
transformations are performed in order to obtain hourly
originating traffic volumes of the relevant traffic cells. The aim
is to get hourly HGV traffic volumes approaching truck rest areas
along the section under investigation. The predicted truck
occupancy for a particular rest area and hour is the product of
expected HGV traffic volume and a rest-area-specific choice
probability. The probability is calculated using a multinomial
logit model considering location with respect to the origin, service
level, and fees of the rest area. The main objective of the model is
to predict truck long-term parking demand. However, the
authors also briefly show the use case of truck parking
occupancy prediction. The model performs well, but the
validation was done for only one night and one rest area.
However, the biggest disadvantage is the need for a well
maintained and updated transport model that delivers weekly
average HGV origin-destination matrices. There is also no
feedback loop with actual occupancy measurements and
therefore no possibility to account for irregular events.

Bayraktar et al. (2014) propose a Kalman Filter approach.
The work focuses not only on truck parking occupancy
prediction but also on a “Smart-Parking Management
System”. The truck parking occupancy prediction section is
thus limited. The core idea of the chosen approach is to use
historical average occupancy data for a particular day and hour.
The day is split into periods of 8 h in which a particular trend
(e.g., increasing) prevails. The prediction is based on all
available historical data for the specific day and hour as well
as the measurements of the current day up to the previous hour
(i.e., the actual trend). The approach taken by Bayraktar et al.
seems interesting, but unfortunately only limited validation
possibilities seem to be available. Training data is collected
for approximately 2 months, even though the authors state
that a year of data is needed for a fully working algorithm.
Another limiting aspect is the size of the rest area, which is only
13 truck parking spaces.

Tavafoghi et al. (2019) present aM(t)/G(t)/∞ queuing model
approach for probabilistic forecasts of parking occupancy. The
model assumes a non-homogenous Poisson arrival process at rate
M(t). The parking duration follows a general distribution G(t)
and is considered as the service time of the queuing model. The
model assumes an unlimited number of servers, which means
that there are always free parking spaces available. The authors
acknowledge that the assumption of unlimited capacity only
applies if parking occupancy does not reach 100%.
Nevertheless, the approach taken by Tavafoghi et al. is
interesting because the arrival and the service process are
time-dependent. Both inter-arrival times and service times are
drawn from probability distributions that are estimated from the
available data. The ability to make probabilistic forecasts is
another feature of this model. However, the model remains

limited to situations where finding a parking space is not a
problem.

A Fourier Transformation approach is proposed by Sadek
et al. (2020). The key idea is to extract weekly patterns for each
day of the week by averaging historical data and applying Fourier
Transformation. The harmonics, defined by frequency,
amplitude, and phase are combined by superposition in order
to obtain the prediction for a specific weekday. The authors
recognize that there are variations in daily patterns and therefore
introduce surplus, discharge, holiday, and weekend corrections.
These allow predictions to be corrected if the error exceeds a
threshold for a parameterized time period. The evaluation is done
with data from a trucking logistics facility with 600–800 truck
parking spots, where truck drivers check in and check out with
staff. The data is therefore of “high quality, high-time resolution,
and highly accurate”. Unfortunately, this is usually not the case
for conventional truck stops, which is also mentioned by the
authors. Table 1 shows a summary of the reviewed literature. It
can be seen that the work on urban parking prediction tends to
predict free parking spaces, while the work on truck parking
prediction tends to report occupancy values. In general, parking
data for urban parking prediction exhibits shorter update
intervals compared to parking data for truck parking
prediction. Work on truck parking prediction tends to focus
on longer prediction horizons (i.e., 1 h ahead) compared to work
on urban parking prediction (i.e., 5–15 min ahead).

2.3 Research Gap
Truck parking occupancy prediction research along highways
seems to be dominated by domain-knowledge-supported
prediction methods as shown in the previous section. The
models perform well, but are either limited to a specific
environment, need extensive additional data sources
(i.e., other than historic occupancy data), or could not be
extensively validated. On the other hand, parking prediction
work in urban environments tends to use more generic time
series clustering and forecasting techniques, which require less
domain knowledge but focus on shorter forecasting horizons or
work only with availability classes (low, medium, high). This
work closes the gap by addressing the shortcomings of today’s
truck parking prediction work by leveraging domain-
knowledge-light generic forecasting techniques. The objective
is to propose a model that requires neither additional data
sources (other than historic truck parking occupancy) nor
clustering of days with similar trends yet still provides high
accuracy. A literature review performed in other traffic domains
(i.e., in travel time and traffic flow prediction) suggests that
machine-learning models are well suited for time series
prediction by accounting for complex non-linearities
(Vlahogianni et al., 2004; Lv et al., 2015; Mori et al., 2015;
Polson and Sokolov, 2017; Zhao et al., 2017; Zhang et al., 2019;
Ting et al., 2020). However, in our literature review, we could
not find any extensive work on truck parking prediction based
on machine-learning. This is somewhat surprising given the
urgency of the truck parking issue. We therefore pursue two
objectives:
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• Applying XGBoost, which is one of the most promising
algorithms in other traffic forecasting domains (Dong et al.,
2018; Mei et al., 2018; Ting et al., 2020), and comparing it to
classical time series prediction techniques.

• Developing a meta model with improved prediction
accuracy by fusing XGBoost with LSTM

By meta model, also known as meta-learner, we mean model
stacking (Breiman, 1996). The aim of a meta model is to
combine individual base learners to obtain improved
performance. We use a feed-forward neural network as meta
model. It combines the XGBoost model and the LSTM model,
which represent the individual base learners. For more
information on stacking and meta-learners, see Zhou (2012).
LSTM models are considered suitable for time series prediction
in general (Gers et al., 1999) and, in addition to XGBoost, also
show good performance in other traffic domains (Altché and de
La Fortelle, 2017; Zhao et al., 2017; Park et al., 2018). By
developing a robust and accurate meta prediction model, the
many research initiatives concerning automatic truck counting
technology (Garber et al., 2004; Haghani et al., 2013; Sun et al.,
2018) for real time information could easily provide reliable
prediction information with our data-economic approach.
Automatic truck counting technology is the basis of
Intelligent Truck Parking (ITP), which “is concerned with
the management of information related to Truck Parking
Area (TPA) operations for HGV” (Sochor and Mbiydzenyuy,
2013). The benefits of ITP, according to Bayraktar et al. (2014),
are increased operational efficiency of the drivers, reduced
parking on shoulders, reduced fatigue-related crashes, and
the reduction of diesel emissions.

In general, patterns exist in parking (Richter et al., 2014; Ji
et al., 2015; Tavafoghi et al., 2019; Sadek et al., 2020), but these
must be linked to the current occupancy to obtain accurate
forecasts. We extract parking patterns from the data and
always compare our models to these patterns. This approach
allows us to show the performance gains that can be achieved by
taking current occupancy into account.

3 XGBOOST AND LONG SHORT-TERM
MEMORY MODEL FUSION

This section describes the mathematical foundations of Extreme
Gradient Boosting and Long Short-Term Memory. We then
connect both estimators with the help of a neural feed-forward
network in order to obtain a meta-model capable of reliable
multi-step occupancy predictions.

3.1 Extreme Gradient Boosting
XGBoost is a powerful ensemble learning technique that achieves state-
of-the-art results in various machine learning competitions (Chen and
Guestrin, 2016). Ensemble learning techniques combine several weak
(er) base learners to obtain a strong learner (i.e., model). Boosting refers
to training the base learners in a sequential manner by reducing the
error made by the previous combination of base learners (Friedman,
2002). In the following, the XGBoost is explained according to Chen
and Guestrin (2016) with second order Taylor expansion for
approximation of the loss function (Friedman et al., 2000).

Let X ∈ Rn×m be the feature matrix and y ∈ Rn the target
vector, each with n training samples. {xi ∈ Rm, yi ∈ R} denotes a
single training instance. Let the base learners be regression trees
and the function space be F � {f (x) � wq(x)}, where w ∈ RT is
the vector of leaf weights. There are T leaves, and wj denotes the
jth leaf score. Each tree is represented by q : Rm → {1, 2, . . . ,T}
that maps xi to the corresponding leaf score wq(x)�j. The model
output thus consists of K combined base learners:

ŷi � ∑
k�1

K

fk(xi) with fk ∈ F (1)

Let t be the prediction iteration variable. ŷti then denotes the
prediction at the tth iteration for the ith training instance. The
regularized loss function for the tth iteration is given by:

Lt � ∑
i�1

n

l(yi, ŷt−1i + ft(xi)) + Ω(ft)
(2)

Ω(f ) � cT + 0.5λ‖w‖2

TABLE 1 | Summary literature review: Parking prediction.

Category Author Method Parking data Prediction

Urban car
parking

Richter et al. (2014) Advanced spatio-temp. Hierarchical
clustering

5 months from San Francisco (5 min interval) Availability classes

Yu et al. (2015) Autoregressive moving average (ARIMA) 1 month from Nanjing (15 min interval) Free parking spaces
Zheng et al. (2015) Regression tree, support vector reg., neural

network
2 data sets: 1.5 months from SF, 1 year from
Melbourne (15 min interval)

Occupancy (rate)

Ji et al. (2015) Wavelet neural network 8 months from Newcastle upon Tyne (1 min interval) Free parking spaces truck
parking

Truck parking Heinitz and Hesse,
(2009)

Model-based with origin/destination cells 2 months multiple rest areas along A4 (GER) (1 h
interval)

Occupancy

Bayraktar et al.
(2014)

Kalman filter 2 months from Leon County rest area (1 h interval) Occupancy

Tavafoghi et al.
(2019)

Queuing model with time-dependent arrival/
service process

16 months from 29 rest areas West Coast
(United States) (real-time)

Occupancy

Sadek et al. (2020) Hybrid model based on fourier
transformation

1 year from logistics facility in California (1 min interval) Occupancy
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The loss function of predicted values and target values is l(·, ·).
Ω(f ) denotes the regularization term, the parameter c denotes
the minimum loss required for further splitting, and the
parameter λ denotes the classical regularization term
concerning the leaf scores. The prediction ŷi is improved
by the tth additive function ft(xi). The objective at this
stage is to find the ft that minimizes the overall loss
function L(t). In order to be applicable for a general loss
function, approximation with second order Taylor expansion
can be used.

~Lt
≈ ∑

i�1

n [l(yi, ŷt−1i ) + zŷi(t−1) l(yi, ŷt−1i ) ft(xi) + 1
2
zŷi(t−1)
2

l(yi, ŷt−1i ) f 2t (xi)] +Ω(ft)
(3)

The approximated loss function can be simplified by removing
constant terms. Furthermore, all training instances belonging
to leaf j can be written as belonging to the set Ij � {i∣∣∣∣q(xi) � j}.
The first and second order derivatives can be subsumed as
gi � zŷi(t−1) l(yi, ŷt−1i ) and hi � z2ŷi(t−1) l(yi, ŷt−1i ). Additionally
expanding the regularization term Ω(ft) leads to:

~Lt � ∑
i�1

n [gift(xi) + 1
2
hif

2
t (xi)] + cT + 0.5λ∑

j�1

T

w2
j

� ∑
j�1

T ⎡⎢⎢⎢⎣⎛⎝∑
i∈Ij

gi⎞⎠wj + 0.5w2
j
⎛⎝∑

i∈Ij

hi + λ⎞⎠⎤⎥⎥⎥⎦ + cT (4)

For a given tree structure q(x), the optimal weight for leaf j is
computed as follows:

z~Lt

zwj
� 0 wp

j � − ∑i∈Ij gi∑i∈Ij hi + λ
(5)

The optimal valuew*
j can be substituted in Eq. 4 in order to obtain

metrics for the respective tree structure. Eq. 6 describes how good
or bad the tree is in being able to reduce the loss function.

~Lt(q) � −0.5∑
j�1

T (∑i∈Ij gi)2

∑i∈Ij hi + λ
+ cT (6)

The loss function depends on a particular tree structure q.
Different tree structures can be checked either by trying
out all possible structures, which might be infeasible
for large data sets, or by using intelligently picked split
points.

3.2 Long Short-Term Memory
LSTM networks were proposed by Hochreiter and Schmidhuber
(1997) and have been further improved since then. LSTMs are
recurrent neural networks that are well suited to handle sequence
data for which past timesteps and the context matter for the next
timestep. One of the main advantages of LSTMs compared with
ordinary recurrent networks is the ability to better handle the
exploding and vanishing gradient problem (Hochreiter and
Schmidhuber, 1997; Pascanu et al., 2013). An LSTM Network

consists of LSTM blocks, which have input i, forget f, and output o
gates. The output of the previous block is recurrently fed into the
next block as block input z and, together with the three gates,
updates the cell state. LSTM may exist with or without peephole
connections, which allow the gates to get information from the
cell state (Gers et al., 2003). In the following, a forward pass with
peephole connections is described according to Greff et al. (2017)
with a few notional changes.

Let x � (x0, x1,/, xT) have T timesteps with xt ∈ Rm being
the input vector at timestep t. The number of LSTMmemory cells
is denoted by N. Let σ(x) be the point-wise applied logistic
sigmoid and g(x) � h(x) be the point-wise applied hyperbolic
tangent. The Hadamard product is denoted by ⊙. Let the weights
be defined as follows:

Weight matrices for inputs :Wz ,Wi,Wf ,Wo ∈ Rn×m

Recurrent weight matrices : Rz ,Ri,Rf ,Ro ∈ Rn×m

Bias weight vectors : bz , bi, bf , bo ∈ Rn

Peephole weight vectors : pi, pf , oo ∈ Rn

3.2.1 Forward Propagation
The block input features the input vector xt , the previous step
output yt−1, and the respective bias.

z t � Wzx
t + Rzy

t−1 + bz
z t � g(z t) (7)

The input and forget gates look similar but also feature respective
peephole connections that look at the cell state. The two gates are
used to update the cell state. The output gate already looks at the
updated cell state through the peephole connection.

i
t � Wixt + Riyt−1 + bi + pi ⊙ ct−1

it � σ(it)
f
t � Wf xt + Rf yt−1 + bf + pf ⊙ ct−1

f t � σ(f t)
ct � z t ⊙ it + ct−1 ⊙ f t

ot � Woxt + Royt−1 + bo + po ⊙ ct
ot � σ(ot)

(8)

Finally, the block output is given by:

yt � h(ct)⊙ ot (9)

After the forward propagation, backpropagation through time
is needed to adjust the weights. For the interested reader, this is
described in the Supplementary Material under Backpropagation
Through Time.

3.3Model FusionWith Feed-Forward Neural
Network
Our model fusion is based on a feed-forward neural network. We
take the predicted output of (I) XGBoost and (II) LSTM in
combination with a subset of the original features used for
training I and II to develop an even stronger meta-model.
Model training for both XGBoost and LSTM is performed
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with mean-square error (MSE) loss function averaging
multioutput uniformly. Let ŷih and yih be the predicted
occupancy and the true occupancy of instance i ∈ {1, . . . ,N}
and forecasting step h ∈ {1, . . . ,M}, respectively. MSE for
multioutput is then defined as:

L(ŷ, y) � ΣN
i�1ΣM

h�1(ŷih − yih)2
M × N

(10)

The feed-forward neural network is trained with the same loss
function. The resulting model is referred to as the Truck
Parking Prediction (TPP) model. With this type of model
fusion, the feed-forward neural network learns to
dynamically weight the predictions of the XGBoost and the
LSTM model.

The architecture of the TPP model is shown in Figure 1. On
the bottom left, the LSTM model consists of an encoder layer
with 30 memory units and a decoder layer with 50 memory
units. In both layers, a hyperbolic tangent activation function is
used. The two layers are connected by a repeat layer in order to
match the three-dimensional input requirements of the decoder
layer. The final layer is a time-distributed, densely connected
layer with linear activation function, which is typically used for
regression tasks. It is not the unrolled version of the LSTM but
rather a high level perspective focusing on the number of units
(also known as cells) that is shown. The encoder-decoder model
follows the sequence-to-sequence architecture: many-to-many.
The efficient and widely used adam (adaptive moment
estimation) algorithm (Kingma and Ba, 2017) is used for
optimization. Details of the model architecture and training

parameters such as training epochs and batch size are found
using grid search, which is described under LSTM Grid Search
Results. The XGBoost model is shown on the bottom right.
There are 80 decision trees with a maximum depth of four for
boosting the prediction accuracy. Minimum child weight is set
to 3.0, minimum loss reduction gamma to 4.0, and L2 lambda
regularization to 3.0. The specific values of the parameters
mentioned are again derived from an extensive grid search.
The mean-square error loss function for multioutput is used for
training.

The predictions of the LSTM and the XGBoost model are
combined with time-dependent features before they are used as
input in the feed-forward neural network. Let the output at
timestep t for the LSTM and the XGBoost model be defined
as ŷLSTMt+h|t and ŷXGBt+h|t for h � {1, 2, 3, 4}, respectively. Notation-wise,
we drop |t in matrix notation for convenience. The following
time-dependent features are included.

• xocct : � occupancy of timestep t
• xslt : � occupancy slope (i.e., occupancy change xocct − xocct−1)
• xbant : � binary variable signaling whether a driving ban is in
place at time t

• x◇ sin
t : � sine encoded time variables,
with ◇ ∈ {month, weekday, hour}

• x◇ cos
t : � cosine encoded time variables,
with ◇ ∈ {month, weekday, hour}

The feature input matrix of the feed-forward neural network is
defined as follows. N denotes the number of available instances:

FIGURE 1 | Truck parking prediction model.
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X �⎛⎜⎜⎜⎝ ŷLSTM1,t+1 . . . ŷLSTM1,t+4 ŷXGB1,t+1 . . . ŷXGB1,t+4 x◇ sin
1,t x◇ cos

1,t xsl1,t xban1,t xocc1,t

« « « « « « « « «
ŷLSTMN,t+1 . . . ŷLSTMN,t+4 ŷXGBN ,t+1 . . . ŷXGBN ,t+4 x◇ sin

N ,t x◇ cos
N,t xslN,t xbanN,t xoccN ,t

⎞⎟⎟⎟⎠
(11)

The output for the four prediction steps 30, 60, 90, and 120 min
are as follows:

Y �
ŷTPP1,t+1 . . . ŷTPP1,t+4
« «

ŷTPPN ,t+1 . . . ŷTPPN ,t+4

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠ (12)

The feed-forward neural network consists of three layers
with rectified linear activation functions in the first two layers
and a linear activation function in the final layer. No grid
search is performed at this stage; this implies that the TPP
results could be further improved. In summary, the overall
idea of our model fusion is based on model stacking that
improves upon the individual base leaners and which is also
known as super learner (Breiman, 1996; van der Laan et al.,
2007). Stacking is enriched by including additional temporal
features.

3.4 Input Data Details
Here, the TPPmodel structure is defined conceptually. However, the
input data for both the LSTM and the XGBoost must be elaborated
in order for the model description to be complete. The starting point
is a univariate, timestamp-indexed series of occupancy values, which
comes from automatic truck counting technology or any other
suitable data source. Let xocc(t) � {xocct ; t ∈ T} denote such a
time series. First, feature engineering is performed in order to
prepare the data to be used in a supervised learning procedure.
Temporal features are created from the timestamps by encoding
information of the month, weekday, and hour with sine and cosine.
Formore information regarding temporal feature encoding, see 4.1.5
Feature Engineering. A pattern feature that provides average
occupancy values for the corresponding day of the week and
time of the day is also included. Finally, an occupancy slope
feature and a driving ban feature are added analogously to the
explanation in the previous section. The intermediate matrix is as
follows:

A�⎛⎜⎜⎜⎝xmonth sin
t xmonth cos

t xweekd sin
t xweekd cos

t xhour sin
t xhour cos

t xpattt xslt xbant xocct

« « « « « « « « « «
xmonth sin
T xmonth cos

T xweekd sin
T xweekd cos

T xhour sin
T xhour cos

T xpattT xslT xbanT xoccT

⎞⎟⎟⎟⎠
(13)

Regarding the LSTM model, the intermediate matrix must be
transformed into a three dimensional tensor Lα,β,c, with α : �
number of samples, β: � number of timesteps per sample, and
γ : � number of features. The number of samples depends on the
data available, β � 336, which corresponds to one week with step
size of 30 min, and c � 10, as can be seen from Eq. 13. For more
information on the chosen step size, please refer to
Downsampling. Care must be taken that the corresponding
output matrix is always ahead of the last input timestep of the
respective sample. In the XGBoost model, the intermediate
matrix is transformed into a shifted version. The previous
12 timesteps are used as input.

XXGB � ⎛⎜⎜⎝ xmont sin
t−11 / xocct−11 xmont sin

t / xocct

« « « «
xmont sin
T−4−11 / xoccT−4−11 xmont sin

T−4 / xoccT−4

⎞⎟⎟⎠ (14)

Only values up to T − 4 can be used in XXGB because the
remaining four values {xoccT−3, xoccT−2, xoccT−1, xoccT } are needed for the
output matrix. The analogous is true for the LSTM tensor. The
number of previous timesteps (336 for LSTM and 12 for
XGBoost) provided as inputs performed well in our case study
but may have to be adapted for rest areas in other locations.

4 PREDICTION PIPELINE

This section focuses on challenges of missing and incorrect data
that come when dealing with real-world truck parking data. Data
must be cleaned and preprocessed so that it can be used in
machine-learning algorithms. The prediction pipeline is shown in
Figure 2.

4.1 Data Preprocessing
4.1.1 Outlier Handling
Outliers are common for real-world data, and common strategies
are to exclude them or to impute them with median values.
Outliers first have to be identified (e.g., with bounds based on
interquartile ranges). However, for time series data, this is not
trivial. First, outliers may be difficult to find. They are not easily
detectable in the overall distribution because the time domain
must be considered in parallel. Second, outliers cannot simply be
dropped because models such as the LSTM need continuous
sequence data to learn from unless more sophisticated model
structures with masking layers are used. For detecting outliers, we
use a Hampel Filter (HF) with window half-width of 30 min and
bounds ± 3σ. A HF uses a centered sliding window approach and
calculates the rolling median and the estimated standard
deviation σ � 1.4826 × MAD of the window. Let
{xocc1 , xocc2 , . . . , xoccW } denote the occupancy values of a univariate
time series window with W entries; MAD then denotes
the median absolute deviation and is given by: MAD �
median(∣∣∣∣xocc1 − ~x

∣∣∣∣, . . . , ∣∣∣∣xoccW − ~x
∣∣∣∣) with ~x � median(xocc1 , . . . , xoccW ).

We flag data points lying outside of ±3 σ as outliers and impute
them with the median of the respective centered window.

4.1.2 Calibration Handling
Trucks and other vehicles can enter and exit rest areas on the
same ramp. Upon entry and exit, each vehicle is classified as a
truck or a non-truck by the automatic truck parking detection
system (ATPDS). Only if it is classified as a truck, the vehicle is
counted with respect to the current occupancy. During the
classification process, errors can occur which result in
miscounts. The total error increases over time. For this reason,
the ATPDSmust be calibrated every now and then. To do this, the
trucks are recounted manually and compared with the number of
trucks counted by the ATPDS. If the deviation before the
calibration is large, the occupancy value jumps suddenly
during calibration. There are other ATPDSs based on vehicle
presence measurements, for example through in-pavement
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sensors (Sun et al., 2018) or machine vision (Modi et al., 2011).
Here, no manual calibration is necessary, and this preprocessing
step may be skipped.

First, calibration times must be identified. Times where the
occupancy curve rises or drops sharply from subsequent intervals
are assumed to be manual calibrations. Our framework uses a
threshold value tv > |xt − xt−1| for identification. The threshold
value depends on the sampling rate of raw data. Our raw data
comes in 1 min intervals and we use a hybrid approach of physical
plausibility and 99%-quantile to identify the threshold value. We
remove 30 min before and after the identified calibration times
(calibration removal window) in order to smooth occupancy
shocks of manual calibrations.

4.1.3 Missing Values
Missing values can occur in two ways. First, removal of
calibration times is accompanied by missing values within
the calibration removal window. Second, technical
malfunctions may also lead to missing values - possibly also
for longer times if the issue is difficult to solve. We propose two
approaches to deal with absent values depending on the length
of the missing time window. If the missing time window is
smaller than a threshold parameter tm, simple linear
interpolation can be used. We found that a threshold value
of tm � 3 h performs well. However, because of the daily
pattern of truck parking occupancy we recommend not
exceeding 8 h. This is also supported by the analysis of
Bayraktar et al. (2014).

Missing time windows exceeding tm can not be imputed with
linear interpolation because the periodic nature of truck
occupancy curves will not be covered. We propose that the
average occupancy for the corresponding day of the week and
time of the day (weekday pattern curve) be used for filling the
missing time window. The data set is therefore grouped by
weekday and sampling time interval. The missing time
windows are then filled with the respective parts of the
weekday pattern curve. This step might introduce occupancy
shocks at the transitions from available to imputed data points.

However, this issue is alleviated by the following
downsampling step.

4.1.4 Downsampling
ATPDSs along a motorway stretch may have different time
intervals for updating occupancy values of rest areas that can
be harmonized through downsampling. More importantly,
machine learning models predict multiples of the intervals
they were trained with. In the following, we refer to the
interval used in the input data as the step size. In the
literature review, forecasting horizons ranging from a few
minutes (usually in the urban parking context) to 1 h can be
found. Technically, one could use a 1 min step size and
forecasting multiples of 1 min. However, the prediction error
tends to increase the more forecasting steps are needed.
Consequently, predicting 1 h ahead may not be feasible. A
downsampling step size of 30 min, which lies in the middle of
the values found in literature, is therefore selected. This step size
seems to be a good tradeoff between the ability to forecast 1 h or
2 h ahead and the flexibility to frequently incorporate updated
occupancy information in the model. Forecasting horizons of up
to 2 h, as tested in our study, is our informed guess of what is
needed by truck drivers because the distribution when truck
drivers start with their search remains a research gap. A study
from Chen et al. (2002) merely suggests that 83% of truck drivers
decide where to park while they are driving.

4.1.5 Feature Engineering
Important features for time series prediction are temporal
components (e.g., month, day, hour). These features are
extracted from the timestamps of the ATPDS. However, the
features cannot be used in raw form. For example, the raw
format for hour � {1, . . . , 24} would attribute 24 times the
weight for the last hour of the day compared with the first
hour. Moreover, the cyclical nature is not reflected; this means
that themodel is unable to infer that hour 24 is closer to one than to
20. Let ◇ be element of the set {month, weekday, hour, minute}
and t◇ the vector of the respective time feature (each time feature is

FIGURE 2 | Prediction pipeline overview.
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assumed to start with 0 not with one e.g., month � {0, . . . , 11}).
The cyclical encoding with sine and cosine is thus as follows:

x◇ cos
i � cos( 2πt◇i

max(t◇))
x◇ sin
i � sin( 2πt◇i

max(t◇)) (15)

Theoretically, one could provide more features to the model
(e.g., traffic volumes, environmental data, and economic data).
However, our aim is to develop a widely applicable model that does
not depend on difficult to obtain additional data sources. We
therefore focus on easily engineered features from raw data. During
feature selection, minute-related sine and cosine encoding are
found to have no significant effect on model performance and
are therefore dropped in order to reduce model complexity.

4.1.6 Feature Scaling
Features can be scaled. Scalingmight be needed only for LSTMmodel
training because the tree based XGBoost is invariant of feature scale.
The target outputs do not need to be scaled because we deal with a
regression task in which a linear activation is used in the final dense
layer. In our case study, feature scaling did not have significant positive
effects regarding the final meta-model and is therefore not used.

4.2 Model Training and Testing
The preprocessed data set is divided into two equal parts. The first
part (training set) is used for optimizing hyper-parameters by
cross-validated grid search. Grid search is performed
independently for XGBoost and LSTM before the models are
fused into the meta-model. In order to thoroughly tune hyper-

parameters, cross-validation with 5-fold blocked time series splits
is carried out (Figure 3). The data is not shuffled, and each
validation set is always ahead of the training set. 5-fold means that
the process is performed five times until the end of the hyper
parameter tuning set is reached. Blocked time series splits are an
improvement over ordinary time series splits in the sense that
possible leakage from future timesteps into the model is
prevented. The error metric mean-square error is used for
scoring. In summary, grid search is performed in order to find
the best set of hyper-parameters. By using cross-validation
restricted to the first half of the data, we ensure that no
knowledge about the hold out test set is leaked into the TPP
model. The actual grids tested are explained in Results.

The hyper-parameters found in grid search are used for
training the final XGBoost and LSTM model on the entire
training set. Predictions are then made for the test set. These,
in turn, serve as features for the feed-forward neural network.
Testing of the meta model is conducted using 3-fold cross-
validation with blocked time series splits on the test set. A
typical train-test split (e.g., 70:30) should not be used at the
beginning because only a small portion of data would be available
for cross-validation of the TPP model on the test set.

4.2.1 Benchmark Models
We test the TPP model against five different benchmark models.
The first twomodels are based on historical occupancy values and
are thus independent of the forecasting horizon. They cannot
account for current occupancy levels. The PatternPrevWeek
model predicts occupancy based on the previous week’s
occupancy on the same day of the week and at the same time
of the day. The PatternWeekday model predicts occupancy by

FIGURE 3 | Blocked cross-validation.
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calculating the average occupancy for the corresponding day of
the week and time of the day from the available training data.

The third is a naive model that predicts the future occupancy
value ŷt+h|t � yt . The true occupancy value at time step t is given
by yt . Predictions are made for t + h time steps with
h ∈ {1, 2, 3, 4}. For example, t + 1 represents the point in time
30 min into the future of t because the step size is 30 min. The
prediction 30 min ahead is given by ŷt+1|t . The expression ŷt+h|t �
yt means that the current occupancy is taken and used as
prediction for the four different forecasting steps. This model
serves as upper bound. Any model that considers current
occupancy levels and performs worse should not be
considered a valid model for the truck parking occupancy
prediction problem. The model is referred to as the Simple
Benchmark Model.

The fourth model is Holt-Winters Triple Exponential
Smoothing. The general idea of Simple Exponential Smoothing
is to give newer data relatively more weight and older data
relatively less weight (i.e., the weights are exponentially
decreasing with time). If Simple Exponential Smoothing is
extended to incorporate trend and seasonality, it leads to Holt-
Winters Triple Exponential Smoothing. We use the non-state-
space implementation of statsmodels (v. 0.11.0) with the trend
component set to false and optimized parameter estimation. A
detailed explanation of the model workings can be found in
Hyndman and Athanasopoulos (2018).

The fifth model is SARIMA model, which stands for Seasonal
Auto Regressive Integrated Moving Average. It was developed by
Box and Jenkins (Box et al., 2015). The idea is that future
timesteps of a time series can be predicted by a regression
model that uses its own lag values as independent variables
(AR part). The model also incorporates lagged forecast errors
and can consider them when predicting future timesteps (MA
part). A prerequisite for the model to work is a stationary time
series, which may be achieved by differencing. Detailed
explanation of the model workings can be found in Hyndman
and Athanasopoulos (2018). We use a combination of auto-
correlation function (ACF) plots, partial auto-correlation
function (PACF) plots, and a grid-search-like approach with
pmdarima (v. 1.5.3) in order to find the best values for p � 2,
d � 1, and q � 0 as well as for the seasonal counterparts P � 0,
D � 1, and Q � 2. The seasonality is restricted to one day
(i.e., m � 48, with step size 30 min) because computational
resource demand becomes infeasible for one week
(i.e., m � 336) in our development environment.

4.2.2 XGBoost
As described under Research Gap, our first objective is to apply
XGBoost, which is one of the most promising algorithms in other
traffic forecasting domains, and to compare it to classical time
series prediction techniques. The hypothesis is that the XGBoost
model shows superior performance compared with classical time
series techniques. This is the first time that classical and machine-
learning-based models have been evaluated side by side with
respect to the truck parking prediction problem. Furthermore, if
the hypothesis holds true, the XGBoost model can serve as a tight
upper bound for our newly developed TPP model. The XGBoost

model is trained with the best hyper-parameters found during
grid search. The model details are described under XGBoost Grid
Search Results.

4.2.3 Testing
All models, except the two pattern models and the naive
model, are 3-fold cross-validation with blocked time series
splits on the test set. The testing of the two pattern models is
done by ordinary validation on the test set and works as
follows. The PatternPrevWeek model is validated on the
entire test set by considering the occupancy levels of the
previous week. The PatternWeekday model is “trained” with
the entire training set and then applied to the test set. With this
approach, the PatternWeekday model has more historical
training data available which is crucial for a model based
only on historical values. The naive model is also validated
with the entire test data set, but no public holidays are
excluded. With respect to the Holt-Winters and the
SARIMA model, testing within the test set of each fold is
carried out as follows: at timestep t predictions
{ŷt+1|t , ŷt+2|t , ŷt+3|t , ŷt+4|t} are made and evaluated. The true
occupancy value of xocct+1 is then included by refitting the
models, and the subsequent predictions {ŷt+1|~t , ŷt+2|~t , ŷt+3|~t , ŷt+4|~t}
are evaluated. ~t denotes t which is shifted forward by 30 min.
The procedure is repeated until the end of the test set of the
respective fold is reached. With this approach, a fair comparison
of all models is guaranteed.

5 RESULTS

5.1 Data Background
We collected occupancy data of a truck parking facility in Bavaria
with 1 min resolution over one entire year. The rest area is called
OffenbauWest, has 50 truck parking spaces (overcrowding occurs
frequently), and is situated along the motorway between the two
biggest cities in Bavaria: Nuremberg and Munich. The rest area is
equipped with a high accuracy truck parking detection system
consisting of laser and radar measurements at the entrance and
exit of the rest area. From January 1, 2019 12:01 a.m. to December
31, 2019 11:59 p.m. we gathered 499,500 data records, each
consisting of a local timestamp and an occupancy value. Only
5% of data records are missing. This is mainly due to technical
failures, communication issues, or short interruptions for
maintenance. In total, 14 outliers were detected and three
calibration times were identified. With respect to calibration
detection, we found that a threshold value of 12 trucks works
well for us; this is an equivalent of two trucks coming in or going
out every 10 s. Missing data, outliers, and calibration times are
handled by the PP as described in Data Preprocessing. Figure 4
shows two weeks of training data as an example to explain the
general characteristics. The first two lines represent raw data and
preprocessed data from March 25, 2019 to April 8, 2019. The
analysis of the data shows that truck parking occupancy data
exhibits weekday and weekend patterns. Truck drivers depart
from the rest area in the morning hours between 4:30 a.m. and 8:
00 a.m. and arrive in the evening hours between 4:00 p.m. and 12:
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30 a.m. during weekdays. During weekdays, between 9:00 a.m.
and 3:00 p.m., the occupancy stays relatively stable at a low level.
The weekend pattern differs from the weekday pattern; fewer
trucks need parking, and only 30–70% of the available capacity is
used. Furthermore, less change in occupancy is seen on Sundays
because trucks are not allowed to drive in Germany by law unless
the driver holds a special permit. In summary, the occupancy
patterns are in line with observations from other countries (Sun
et al., 2018). The third line in Figure 4 shows the weekday pattern
(i.e., the average occupancy for the corresponding day of the week
and time of the day). All available data, not just the training data,
is used to illustrate the best possible weekday pattern curve.
Normally, training and test data sets are kept strictly separate, but
in this case an exception is made. Public holidays are excluded to
avoid distortions. It can be seen that the occupancy values in the
first week fit better than in the second week. In particular in the
second week towards the end, the values deviate. In general, the
weekday pattern cannot fully capture the dynamics of truck
parking. Hence, more complex models are needed to obtain
reliable predictions (Sadek et al., 2020). However, predictions
based on historical patterns can represent an upper bound as
shown in Figure 5.

5.2 XGBoost Grid Search Results
In order to find the best hyper-parameters, grid search is carried
out using 5-fold blocked time series split cross-validation on the
training set. MSE is calculated for multistep output n � 4
(i.e., forecasts 30, 60, 90, and 120 min). 5,760 hyper-parameter
combinations were tested regarding the XGBoost model. For the
implementation, we used XGBoost (v. 0.90) with the scikit-learn
library, which provides convenient parallel grid search
capabilities. The search is performed on Ubuntu 18.04 LTS
server with AMD EPYC 7702P 64-Core CPU, 768GB RAM,
and Nvidia GeForce RTX 3090 24 GB. The grid consists of:

• Maximum depth of trees: DTrees � {3, 4, 5, 6}
• Minimum child weight: WChild � {3, 3.5, . . . , 6.5}
• Minimum loss reduction gamma: c � {0, 0.5, . . . , 4.5}
• L2 regularization lambda: λ � {1, 2, 3}
• Number of gradient boosted trees: K � {80, 100, . . . , 180}

The best parameter combination found is: d*Trees � 4,w*
Child � 3.0,

c* � 4.0, λ* � 3.0 and k* � 80 with MSE � 20.27 and standard
deviation s � 6.79. Grid search only took about 1 h because we were
able to take advantage of our multicore server, and the XGBoost
implementation is generally quite fast (Chen and Guestrin, 2016).

5.3 LSTM Grid Search Results
We used TensorFlow in combination with scikit-learn for the
implementation of the LSTM grid search. During the search,
256 hyper-parameter combinations were tested. The grid
consisted of:

• Units LSTM encoder layer: NUnitEnLayer � {20, 30, 40, 50}
• Dropout encoder layer: DEnLayer � {0.0, 0.1}
• Units LSTM decoder layer: NUnitDeLayer � {20, 30, 40, 50}
• Dropout decoder layer: DDeLayer � {0.0, 0.1}
• Batch size: B � {4, 8}
• Epochs: E � {35, 40}

The best parameter combination found consists of:
n*UnitEnLayer � 30, d*EnLayer � 0.1, n*UnitDeLayer � 50, d*DeLayer � 0.1, b* �
4 and e* � 40 withMSE � 20.02 and standard deviation s � 5.61. At
this point, grid search could be extended with more sophisticated
methods and with more parameter combinations. However,
sufficient computational resources would be needed. Our grid
search with 256 hyper-parameter combinations took about
2.5 days. There are mainly two reasons for the exponentially
longer grid search time compared with XGBoost. First, LSTM

FIGURE 4 | Occupancy raw data example.
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training takes longer than XGBoost training. Second, training is
performed on a single GPU compared with the multicore CPU
training. Both MSE and standard deviation of the two models are
close. However, the training time of the XGBoost model is
significantly faster.

5.4 Model Performance Results
5.4.1 Regression Metrics
Four different error metrics are used to evaluate the performance
of the models (Botchkarev, 2019): Root-Mean-Square Error
(RMSE), Mean-Square Error (MSE), Mean-Absolute Error
(MAE) and Median-Absolute Error (MedAE). RMSE and MSE
differ only by a square root. RMSE has the advantage of indicating
errors in the same units as the target variable, whereas MSE is
often used as objective function in the training procedure. We
therefore include both metrics. MedAE is included because it is a
more robust measure with respect to outliers (Morley et al., 2018).
The general definitions are as follows:

RMSE(y, ŷ) � ������������
1
N
∑
i�1

N (yi − ŷi)2
√√

(16)
MSE(y, ŷ) � 1

N
∑
i�1

N (yi − ŷi)2
MAE(y, ŷ) � 1

N
∑
i�1

N ∣∣∣∣yi − ŷi
∣∣∣∣

MedAE(y, ŷ) � median(∣∣∣∣yi − ŷi
∣∣∣∣) for i ∈ N

The error metrics are applied for each forecasting step
respectively. The reported values are calculated by averaging
the results from cross-validation on the test set. The following
explanation of the results is mainly based upon the error metrics
RMSE. In Figure 5, the results of the TTP model in comparison

with the other models are shown. The figure indicates RMSE for
forecasting horizons of 30, 60, 90, and 120 min. An overview of
RMSE and MAE is shown in Table 2. All computed model
metrics can be found in the Supplementary Material in
Supplementary Table S2.

The PatternPrevWeek model represents the upper bound with
RMSE of about 10 trucks. The PatternWeekday model can
improve the prediction by about one truck. The errors refer
equally to all “forecasting horizons” because the occupancy is
derived from historical values for the corresponding day of the
week and time of the day. As expected, the performance of all
remaining models decreases with longer forecasting horizons.
The Simple Benchmark model shows a nearly linear increase in
RMSE that intersects with the pattern models at the end. The
Holt-Winters model can improve the prediction quality
significantly compared to the Simple Benchmark model,
particularly for longer forecasting horizons. Regarding 30 min
forecasts, there are only small differences (3.3 vs 3.0 trucks)
noticeable, whereas for 120 min forecasts, Holt-Winters can
improve by about three trucks. The SARIMA model shows
improved performance compared with Holt-Winters and
exhibits similar prediction errors compared with the XGBoost
model with respect to shorter prediction horizons (2.3 vs 2.2
trucks). However, when the prediction horizons are increased, the
XGBoost model clearly outperforms SARIMA. The SARIMA
model can achieve RMSE metrics of 6.3 trucks, whereas the
XGBoost model reaches 5.0 trucks. To our best knowledge, we
are the first to apply XGBoost to the truck parking prediction
problem.

With these findings, our first research objective as described
under Research Gap is achieved. Our second research objective is
to investigate whether predictions of the XGBoost model can be
further improved by model fusion. We therefore fused the
XGBoost and LSTM model with the help of a feed-forward

FIGURE 5 | Prediction performance.
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neural network. The TPP model shows the best performance of all
models because it can make the most accurate predictions for all
forecast horizons. The RMSE metrics for the four different horizons
are 2.1, 2.9, 3.5, and 4.1 trucks, respectively. This means that the
predictions of the TPP model are 50% better than those of the
PatternWeekday model in terms of 120min forecasts. However, the
performance improvement comes at the cost of increased
computational resources for training the model. The average
model training times resulting from cross-validation on the test
set are depicted in Table 3. No training times are presented for the
two pattern models because training is not needed. The calculation
of the TPPmodel consists of two steps because of themore complex,
stacked training procedure. First, the training times for XGBoost and
LSTM on the training set are measured. Second, these training times
are added to the average training times of the TPP model resulting
from cross-validation. The results indicate that our TPP model has
the highest training times of all models, which is the price of high
accuracy predictions. XGBoost has the lowest training times.
However, training times in the order of magnitude of under
30 min might not make a big difference in practice. First, it
remains to be researched how often retraining of the model is
needed. Second, even if retraining is needed on a daily basis, it could
be performed during nights, when most truck drivers are asleep. In
summary,machine-learning-basedmodels outperform classical time
series techniques. In terms of training speed, the XGBoost model
outperforms all other models. The proposed TPP model performs
best with respect to prediction accuracy.

5.4.2 Classification Metrics
In addition to the regression metrics, type I and type II errors are
evaluated. All models are set up to predict occupancy values
(regression task). Predicting occupancy instead of free parking
spaces has advantages when the maximum (legally) allowed

capacity is often exceeded. Our investigated rest area has 50
official truck parking spaces. However, Figure 4 shows, as an
example, that there are more than 60 trucks regularly parked
during working days (also see the pattern curve). This leads to a
general discussion about the maximum capacity of a rest area.
The main point of this discussion is, how much overcrowding
should be tolerated. In addition, the question arises as to whether
it is permissible to display the tolerated overcrowding capacity
(legal implications). The prediction of remaining free parking

TABLE 2 | Model metrics.

Model 30 min 60 min 90 min 120 min

RMSE PatternPrevWeek 9.804047
PatternWeekday 8.798979
Simple benchmark 3.268052 5.763026 8.024546 10.205124
Holt-winters 2.979698 4.735306 6.070601 7.211797
SARIMA 2.283056 3.841305 5.077306 6.286302
XGBoost 2.260276 3.589594 4.303076 4.970891
TPP 2.056726 2.874644 3.484494 4.137681

MAE PatternPrevWeek 7.203230
PatternWeekday 6.682250
Simple benchmark 2.246165 3.892200 5.319942 6.724896
Holt-winters 2.204438 3.477655 4.394437 5.175507
SARIMA 1.750452 2.909968 3.769992 4.601279
XGBoost 1.754806 2.776708 3.301792 3.748249
TPP 1.546750 2.148218 2.602984 3.048105

TABLE 3 | Model training times.

Simple benchmark (s) Holt-winters (s) SARIMA (s) XGBoost (s) TPP (s)

Training time 0.00 190.73 230.68 0.62 1,468.72

TABLE 4 | Type I and type II error. The best values of the respective prediction
horizon are marked in bold.

Model Error 30 min 60 min 90 min 120 min

PatternPrevWeek Type I 0.2021
Type II 0.0474

PatternWeekday Type I 0.1819
Type II 0.0329

Simple benchmark Type I 0.0619 0.1211 0.1797 0.2383
Type II 0.0123 0.0241 0.0358 0.0474

Holt-winters Type I 0.0597 0.0697 0.1045 0.1294
Type II 0.0045 0.0058 0.0065 0.0091

SARIMA Type I 0.0398 0.0498 0.0746 0.1194
Type II 0.0058 0.0104 0.0117 0.0149

XGBoost Type I 0.0299 0.0547 0.0945 0.1045
Type II 0.0084 0.0084 0.0110 0.0104

TPP Type I 0.0488 0.0610 0.0671 0.0610
Type II 0.0013 0.0039 0.0077 0.0110

The best values of the respective prediction horizon are marked in bold.
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spaces means that a maximum capacity threshold must be set. If
the official maximum capacity is taken, truck drivers will most
likely not trust the prediction. Moreover, the information is lost
by how much the official capacity limit is exceeded. We therefore
decided to predict occupancy values because this is the most
objective way. In order to evaluate type I and II errors, the
problem is transformed into a binary classification task. For
this, a capacity threshold must be assumed above which the
rest area is considered full. The threshold is assumed to be 50
parking spaces according to the official maximum capacity. The
predicted occupancy values are transformed by a binary mapper.
One means that there are still free parking spaces, whereas zero
indicates that the rest area is closed. Table 4 shows type I and II
errors for all models and forecasting horizons. The best values are
marked in bold. Type I error (false positive) indicates that the
model incorrectly predicts free spaces, while the rest area will be
full in reality. Type II error (false negative) indicates that the
model incorrectly predicts a full rest area, while it will not be full
in reality.

Table 4 shows an increasing trend for type I and II errors for
all models (where applicable) as the prediction horizon becomes
longer. Type I errors are larger than type II errors for all models.
This means that the probability of incorrectly predicting an open
rest area is higher than the probability of incorrectly predicting a
closed rest area. Type I error is more severe from the truck
driver’s point of view. The TPP model is the only model that
manages to keep the type I error relatively stable below 7% for
longer prediction horizons. However, the XGBoost and the
SARIMA model perform better than the TPP model with
respect to shorter prediction horizons. In terms of type II
errors, the TPP model performs best for shorter prediction
horizons, whereas the Holt-Winters model performs slightly
better for longer horizons. In conclusion, type I and type II

error evaluation shows that predictions based on historical
patterns are outperformed by the other models. Regarding the
more severe type I error, the TPP model exhibits a more stable
behavior with respect to longer prediction horizons than the
other models. However, the overall picture is not as clear as when
evaluating the regression metrics. The problem was set up as a
regression task that accurately predicts occupancy values. Hence,
the clear picture when evaluating the regression metrics. Figure 6
shows the binary confusion matrix for the TPP model with
respect to the different forecasting horizons. The largest error
rate of 1.6% is reported for 120 min forecasts. The confusion
matrices of the remaining models can be found in the
Supplementary Material.

6 CONCLUSION AND DISCUSSION

We show that truck parking occupancy prediction is still in its
infancy. This is surprising given how pressing the issue of truck
parking is. Machine-learning-based prediction models have
received little attention from researchers in the field so far,
even though they show promising results in other traffic
related problems, such as travel time and traffic flow
prediction. However, the data availability and resources
needed for preprocessing the data determine the success of
data-driven machine-learning models. The aim of this study
was therefore to develop a prediction model that does not
require additional data sources other than historic truck
parking occupancy yet still provides high accuracy.
Furthermore, the model should be able to deal with real-world
data with all its complexities. For our case study, we collected real-
world data from a rest area along the motorway A9 in Germany
over 1 year. The occupancy data collected consists of a timestamp

FIGURE 6 | Binary confusion matrix TPP model.
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and occupancy value in 1-min intervals. We show that even for
one data source, intensive data preprocessing is necessary, and we
systematically describe the steps required to achieve this.

With the preprocessed data available, we applied XGBoost and
compared the performance with classical time series prediction
techniques Holt-Winters and SARIMA. The results indicate that
XGBoost outperforms the benchmark models with respect to
both accuracy and training time. We also investigated whether
the model fusion of two different machine-learning models can
further improve prediction accuracy. We therefore fused the
XGBoost and LSTM model with the help of a feed-forward
neural network. The resulting TPP meta-model is compared to
all other models with respect to various regression error metrics.
All error metrics tested indicate that our proposed TPP model
outperforms the other forecasting models, including the XGBoost
model. The RMSE metrics for the four different horizons 30, 60,
90, and 120 min are 2.1, 2.9, 3.5, and 4.1 trucks, respectively.
Predicting whether a free parking space will be available requires
assuming a maximum capacity of the rest area. In practice, this is
not an easy task because it is a trade-off between the
trustworthiness of the prediction and the legal constraints. The
prediction of available parking spaces also allows the evaluation
of type I and type II errors. With respect to the more severe type I
error, the TPP model exhibits a more stable behavior than the
other models in terms of longer prediction horizons. However,
the overall picture is not as clear as when evaluating the regression
metrics. We hypothesize that treating the problem as a
classification task instead of a regression task could lead to a
further increase in performance. However, other benchmark
models would be needed to represent the classification task
and to obtain suitable upper bounds. In summary, our TPP
model appears to be well suited for predicting the occupancy
of rest areas along motorways and could thus partially relieve
truck drivers from the stress of searching for a suitable overnight
parking space. The unique feature of our proposed model is that
only readily available data is used as input. This, in turn, makes it
readily applicable in practice. With our work, the many research
initiatives concerning automatic truck counting technology for
ITP could provide reliable prediction information on top of the
current capabilities.

In conclusion, the overall motivation of the study was to
improve the truck parking problem. In general, there are two
approaches to solving the truck parking issue according to Smith
et al (I) increase parking supply (i.e., building more parking
spaces): and (II) better match supply and demand. Building more
parking spaces is capital-intensive and might sometimes not be
feasible. A more cost-effective and practical solution is to better
match supply and demand by the use of ITP (Smith et al., 2005).
The benefits of ITP include increased driver operational
efficiency, reduced parking on shoulders, reduced fatigue-
related crashes, and the reduction of diesel emissions
(Bayraktar et al., 2014). Prediction information is considered
an important feature of ITP (Smith et al., 2005; Bayraktar et al.,
2014) because truck drivers need to know whether parking spots
will be available at a downstream stop at their expected arrival
time. Our TPP model provides accurate occupancy forecasts

enabling better-informed parking decisions than with historical
pattern curves or traditional time series methods.

One of the biggest questions, however, remains when truck
drivers start looking for parking. While the literature suggests
that truck drivers decide while they are driving, the distribution
would be of great importance so that predictions for the
required horizons can be optimized. Another important
aspect is second order effects of predictions (i.e., whether
and how prediction information changes parking choice),
which in turn affects the forecasts. In principle, the problem
is known in traffic research. For example, when studying
alternative routing information in the case of traffic jams.
We hope that machine-learning-based approaches, which
can be trained online, will be part of the solution. As a next
step, we seek to collect data from other truck parking detection
systems in different countries in order to show the
generalization of our TPP model. We are also interested in
studying type I and type II errors in more detail when the
problem is set up as a classification task.
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