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Abstract

Over the last 5 years, RNA sequencing (RNA‐seq) has been established and is

increasingly applied as an effective approach complementary to DNA sequenc-

ing in molecular diagnostics. Currently, three RNA phenotypes, aberrant

expression, aberrant splicing, and allelic imbalance, are considered to provide

information about pathogenic variants. By providing a high‐throughput,

transcriptome‐wide functional readout on variants causing aberrant RNA

phenotypes, RNA‐seq has increased diagnostic rates by about 15% over

whole‐exome sequencing. This breakthrough encouraged the development of

computational tools and pipelines aiming to streamline RNA‐seq analysis for

implementation in clinical diagnostics. Although a number of studies showed the

added value of RNA‐seq for the molecular diagnosis of individuals with

Mendelian disorders, there is no formal consensus on assessing variant

pathogenicity strength based on RNA phenotypes. Taking RNA‐seq as a

functional assay for genetic variants, we evaluated the value of statistical

significance and effect size of RNA phenotypes as evidence for the strength of

variant pathogenicity. This was determined by the analysis of 394 pathogenic

variants, of which 198 were associated with aberrant RNA phenotypes and 723

benign variants. Overall, this study seeks to establish recommendations for

integrating functional RNA‐seq data into the the American College of Medical

Genetics and Genomics and the Association for Molecular Pathology guidelines

classification system.
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1 | INTRODUCTION

1.1 | ACMG guidelines to standardize clinical
variant interpretation

Routine clinical implementation of whole‐exome (WES), whole‐

genome, and panel sequencing have led to the detection of

thousands of rare variants per patient, shifting the major challenge

of genetic testing from variant detection toward variant interpreta-

tion. To standardize the diagnostic process, the American College of

Medical Genetics and Genomics and the Association for Molecular

Pathology (ACMG/AMP) established guidelines for the interpretation

of genetic variants identified by DNA sequencing (DNA‐seq) in 2015

(Richards et al., 2015). The ACMG/AMP guidelines comprise 28

criteria stratified by the type and level of strength of evidence of

variant pathogenicity. When combined, these criteria contribute to

the classification of variants into a five‐tiered system: pathogenic (P),

likely pathogenic (LP), variant of uncertain significance (VUS), likely

benign (LB), or benign (B) (Figure 1a).

1.2 | Variant types and their pathogenicity

While less than 20% of the variants submitted to ClinVar (Landrum

et al. 2014, 2016), a public server of genetic variants and their clinical

significance, are classified as likely pathogenic/pathogenic and about

30% are likely benign/benign, more than 50% fall into the category of

VUS (Figure 1a) (Pérez‐Palma et al., 2019). Protein truncating variants

(PTVs; nonsense, frameshift, canonical splice sites [±1 or ±2 intronic

positions], initiation codon, and deletion) represent the most frequent

type of variants in the pathogenic and likely pathogenic categories.

Pathogenic PTVs result in the absence of a functionally important

part of the expressed protein or trigger nonsense‐mediated RNA

decay (NMD) leading to no/minimal amounts of the expressed

truncated protein (Brandt et al., 2020) (Figure 1b). Therefore, PTVs

are the only variant type that can be assigned with the very strong

level of pathogenicity (PVS1) purely based on computational

predictions. In combination with at least one moderate criterion, like

matching a patient's phenotype, such variants are classified as likely

pathogenic (Richards et al., 2015).

F IGURE 1 Distribution of clinically relevant variants reported in the ClinVar database. (a) The proportion of variants reported in ClinVar was
stratified by their clinical significance. (b) The proportion of Pathogenic/Likely Pathogenic variants stratified by the variant types. (c) The
proportion of VUS stratified by their variant types. UTR, synonymous, intronic, PTV and duplication variants have the potential to affect RNA
phenotypes and are indicated by the gray line. The indicated percentages are according to the data extracted from Simple ClinVar on May 31,
2021. The dashed gray line indicates the 25%, expected proportion of missense variants having the potential to alter RNA phenotypes (Cartegni
et al., 2002; Dionnet et al., 2020; Savisaar & Hurst, 2017). PTV variants include nonsense, frameshift, splice donor, splice acceptor, and deletion
variants. VUS, variant of uncertain significance; PTV, protein‐truncating variants; UTR, untranslated region.
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1.3 | Variants of uncertain significance

Variants with less clearly predicted molecular consequences and

insufficient or conflicting evidence are classified as VUS (Figure 1c).

The largest fraction of VUS is missense and inframe indel (insertion/

deletion) variants. For those variants, the prediction of the functional

consequences and clinical relevance has low accuracy. Moreover,

VUS in the noncoding regions (intronic, intergenic, untranslated

region [UTR], etc.), are rarely prioritized by diagnostic pipelines but

have the potential to affect gene expression or splicing and cause

aberrant RNA phenotypes resulting in clinically relevant reduced

protein function. Through the widespread usage of high‐throughput

DNA‐seq techniques, variant detection is outpacing the ability of

variant interpretation, consequently leading to a constantly increas-

ing amount of VUS (Starita et al., 2017). According to ACMG/AMP

guidelines, VUS can not be the basis for clinical decision making but

additional evidence is required for clarification of the functional

consequences of these variants.

1.4 | Functional assays for reclassifying VUS and
limitations

Functional data has been shown to be one of the best types of evidence

for the reclassification of VUS. Hence the ACMG/AMP framework

determines well‐established in vivo or in vitro functional studies as strong

evidence (PS3/BS3) for variant interpretation (Brnich et al., 2018;

Richards et al., 2015). However, as functional assays are typically gene‐

specific and require special knowledge and equipment, they are only

rarely established in routine clinical diagnostics (Gelman et al., 2019). In

addition, variants are often private to each patient and have not been

tested beforehand. High‐throughput functional assays are needed to test

the full spectrum of genetic variants in each gene. Such assays have been

developed for some genes focussing on coding variants (Findlay

et al., 2018; Matreyek et al., 2018) but are much more difficult for

noncoding variants. Hence, novel strategies helping variant interpretation

are required.

1.5 | RNA sequencing (RNA‐seq) as transcriptome‐
wide functional read‐out

RNA‐seq, a genome‐wide tool for functional characterization and

quantification of transcript levels and isoforms, can aid variant

interpretation when applied on a patient sample. It serves for the

quantification of gene expression or splicing and allows for the detection

of relative changes in RNA phenotypes within patient cohorts. RNA‐seq

analysis facilitates validation of regulatory effects of VUS located in

coding and noncoding regions on RNA phenotypes for thousands of

genes in a single standardized assay. Depending on the tissue this may

cover up to 90% of known disease genes (Gonorazky et al., 2019; Yépez

et al., 2022). Moreover, the comprehensive transcriptome‐wide analysis

may discover disease‐relevant RNA phenotypes not expected based on

the interpretation of genome sequences. The universal functional readout

aids to streamline the functional interpretation of variants and provides at

the same time information on the normal physiological range of RNA

phenotypes for all expressed genes not affected by the disease. Statistical

analysis of RNA‐seq data thereby enables the systematic identification of

aberrant RNA phenotypes, defined as (1) genes expressed at aberrant

levels, (2) monoallelic expressed variants, and (3) aberrantly spliced genes

(Figure 2) (Cummings et al., 2017; Frésard et al., 2019; Gonorazky

et al., 2019; Kremer et al., 2017). The ability to detect these outlier events

deems RNA‐seq an invaluable tool for the reclassification of VUS.

2 | ABERRANT RNA PHENOTYPES

2.1 | Aberrant expression

Aberrant expression, identified as gene expression outliers outside

the physiological range, often presents with low levels of gene

expression (Kremer et al., 2017). Depending upon whether one or

both alleles are affected, a moderate or severe reduction in gene

expression and consequently protein function is observed. Tran-

scripts with nonsense variants are frequently degraded via nonsense‐

mediated decay, which can be detected by aberrant underexpression

of genes. Besides nonsense and frameshift variants, also splice

variants often result in the creation of premature termination codons.

Additionally, noncoding variants in regulatory regions such as

promoters, enhancers, or suppressors, variants in the untranslated

or intronic region, or large deletions have the potential to cause

aberrant underexpression of disease genes (Ferraro et al., 2020).

Gene expression levels are quantified by the number of read

counts mapping to transcript isoforms of genes. These read counts

thereby allow measuring the impact of variants on steady‐state RNA

expression level. Within the first study applying RNA‐seq in rare

disease diagnostics, outliers were originally called by DESeq2, a

method developed for differential gene expression analysis (Kremer

et al., 2017; Love et al., 2014). Other studies did not apply a formal

statistical test, but computed z‐scores on the log‐transformed gene‐

length‐normalized read counts and used manually defined threshold

to define aberrant expression (Cummings et al., 2017; Gonorazky

et al., 2019). Later, specific methods such as OUTRIDER (OUTlier in

RNA‐seq fInDER, Brechtmann et al., 2018) have been developed for

the systematic detection of expression outliers in RNA‐seq data.

2.2 | Monoallelic expression (MAE)

Apart from aberrant expression, RNA‐seq provides information about

allele‐specific expression, whereby primarily one allele out of the two

alleles is expressed (at least 80% of reads as defined by Yepez, Mertes,

et al., 2021) and can be detected as MAE. MAE is a specific form of

aberrant expression and an extreme form of allelic imbalance. It often

escapes detection by aberrant expression since expression of mainly one

allele does not always result in expression levels outside the physiological
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range (Yépez et al., 2022). Nevertheless, MAE can indicate the presence

of a clinically relevant situation. Under the assumption of a recessive

inheritance model, rare monoallelic DNA variants are not prioritized.

Thereby, detection of MAE of a rare variant indicates a previously

unidentified defect of the second allele, such as a promoter variant

resulting in loss of expression of the second allele. Hence, MAE can

reprioritise rare heterozygous variants detected by DNA‐seq. The reasons

for reduced expression of an allele in MAE can be diverse and may be due

to genetic as well as epigenetic reasons, such as inactivation of the X

chromosome and imprinting of autosomal genes (Bartolomei, 2009;

Ferraro et al., 2020; J. T. Lee & Bartolomei, 2013; Lyon, 1961). Using

RNA‐seq monoallelic events are detected by counting the reads aligned

to each expressed allele at genomic positions of heterozygous single‐

nucleotide variants. Different methods have been developed for MAE

detection, including negative binomial test (Kremer et al., 2017) and

ANEVA‐DOT (ANalysis of Expression Variation‐Dosage Outlier Test)

(Mohammadi et al., 2019). While the negative binomial test uses a fixed

dispersion for all genes, ANEVA‐DOT takes into account gene‐specific

variance that promises better performance. However, as ANEVA‐DOT is

not applicable for all genes so far, the negative binomial test has been

mostly applied for MAE detection.

2.3 | Aberrant splicing

Finally, aberrant splicing of a gene is a long‐known cause of genetic

diseases, which can be detected by RNA‐seq (Scotti & Swanson, 2016;

Singh & Cooper, 2012; Tazi et al., 2009). The majority of human genes are

spliced, usually resulting in multiple transcript isoforms. Being a tightly

regulated process, various variant types can disrupt splicing. The most

canonical example, splice site variants, located at the exon−intron

boundary, frequently, but not always lead to clear splice defects. In

addition, intronic and coding variation can lead to splicing disruption.

Quantitative predictions of aberrant splicing, based on genetic variants

outside the splice regions, are usually inaccurate and rarely provide

sufficient evidence for assessing the variants' pathogenicity (Ferraro

et al., 2020). RNA‐seq allows quantification of splicing events by

detection of split reads, whose ends align to distinct sequence elements.

For accurate detection of aberrant splicing for diagnostic purposes,

different methods including FRASER (Find Rare Splicing Events in RNA‐

seq) (Mertes et al., 2021), SPOT (SPlicing Outlier deTection) (Ferraro

et al., 2020), and LeafCutter/LeafCutterMD (LeafCutter for Mendelian

disease) (Jenkinson et al., 2020; Y. I. Li et al., 2018) have been established.

2.4 | Introduction of RNA‐seq data into the
ACMG/AMP variant interpretation framework using
evidence strength

Across RNA‐seq studies, different statistical methods, metrics and

thresholds were used to identify outliers and subsequently provide

pathogenicity evidence to underlying variants. In addition, various

technical and biological factors can have an impact on RNA‐seq

readout, bringing uncertainty in evidence strength. Although the

F IGURE 2 RNA phenotypes caused by genetic defects. RNA‐seq enables the detection of aberrant RNA phenotypes via (1) aberrant
expression, (2) monoallelic expression, and (3) aberrant splicing. Aberrant RNA phenotypes can be caused by a broad spectrum of distinct
variants in exonic, intronic, and regulatory regions. Different outlier detection methods have been adapted or developed for the analysis of RNA‐
seq data. Aberrant RNA phenotypes are labeled in purple. ANEVA‐DOT, ANalysis of Expression VAriation‐Dosage Outlier Test; FRASER, Find
RAre Splicing Events in RNA‐seq; OUTRIDER, Outlier in RNA‐Seq Finder; PTV, protein‐truncating variant; RNA‐seq, RNA sequencing; SPOT,
SPlicing Outlier deTection; UTR, untranslated region.
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diagnostic benefit in aiding variant interpretation in rare diseases has

been shown within these studies, no detailed thresholds and

recommendations exist. Aiming to standardize diagnostic procedures

and integrate RNA‐seq analysis in the ACMG/AMP framework, we

evaluated quantitative metrics of RNA phenotypes and provide

recommendations on RNA‐seq application in clinical practice. Our

recommendations on quantitative RNA‐seq data interpretation are

based on the evidence strength evaluation proposed by Brnich et al.

(2019) by evaluation of the performance of RNA phenotypes to

classify variants as pathogenic or benign.

3 | MATERIALS AND METHODS

3.1 | Public data acquisition and analysis cohort

For the analysis of the diagnostic power of clinical RNA‐seq, we

collected data from eight studies systematically detecting RNA

phenotypes with a minimum of 25 cases (Cummings et al., 2017;

Frésard et al., 2019; Gonorazky et al., 2019; Kopajtich et al., 2021;

Kremer et al., 2017; H. Lee et al., 2020; Murdock et al., 2021; Yépez

et al., 2022; Supporting Information: Table S1). Causal gene and

variant information, as well as available data on RNA phenotypes,

from 178 genetically diagnosed cases were extracted from the text

and the Supporting Information Material of the corresponding studies

(Supporting Information: Table S2).

This data set includes 119 cases fromYépez et al. (2022) study, from

which WES and RNA‐seq data was available in‐house. All individuals

included in the study or their legal guardians provided written informed

consent before evaluation, in agreement with the Declaration of Helsinki

and approved by the ethical committees of the centers participating in

this study, where biological samples were obtained.

3.2 | Whole exome sequencing data and analysis

Variant annotation of WES data was performed as described in

(Yépez et al., 2022). In brief, reads were aligned to the human

reference genome (UCSC build hg19) using the Burrows−Wheeler

Aligner (BWA) v0.7.5a (H. Li & Durbin, 2009). Variants were called

with Genome Analysis ToolKit (GATK) v3.8 (Van der Auwera

et al., 2013) and annotated with Variant Effect Predictor (VEP)

v1.32.0 (McLaren et al., 2016). In addition, automatic interpretation

of rare variants (minor allele frequency < 0.01; MAF) with ACMG

guidelines was performed with InterVar software using default

parameters (Li & Wang, 2017).

3.3 | RNA‐seq data analysis

For quantification and analysis of RNA phenotype metrics, the

compendium of RNA‐seq data described in Yépez et al. (2022) was

used. The compendium includes 70 individuals from Kremer et al.

(2017), 152 individuals from Kopajtich et al. (2021), and 81 additional

individuals recruited by Yépez et al. (2022). The data set consists of

303 fibroblast cell lines derived from patients with suspected

Mendelian disorders. Gene expression and splicing counts are

available via Zenodo: strand‐specific (Yepez, 2021) and nonstrand

specific (Yepez, et al., 2021). Aberrant RNA phenotypes were

detected as described in the Yépez et al. (2022) study using

the DROP pipeline. In brief, aberrant expression was detected using

the OUTRIDER package (Brechtmann et al., 2018), and four metrics

were obtained: fold‐change, z‐score, p value and p adjusted. For this

study OUTRIDER was selected for aberrant expression detection as it

has been shown to outperform other methods based on the z‐score

transformation of RNA‐seq data in three different benchmarks

(Brechtmann et al., 2018). Aberrant splicing was called with the

FRASER package (Mertes et al., 2021), resulting in the following

metrics: delta PSI (delta percent spliced in, Δψ) and delta Theta (delta

of splicing efficiency, Δθ) calculated for both 5′ and 3′ splices sites, as

well as p value and p adjusted. Algorithm utilizes RNA‐seq split reads,

non‐contiguous reads whose ends align to two separated genomic

locations of the same chromosome strand and are, therefore,

evidence of splicing events. The percent‐spliced‐in (ψ) is calculated

as the ratio between split‐reads spanning the given intron and all

split‐reads sharing the same donor (5′) or acceptor site (3′),

respectively. The splicing efficiency (θ) is calculated as the ratio of

all split‐reads and the full read coverage at a given splice site.

Although other methods exist for calling aberrant splicing events,

such as SPOT and LeafCutterMD, FRASER was the method of choice

for this study. Within a benchmarking study of three different

aberrant splicing detection methods, FRASER obtained the highest

enrichment of rare splice variants (Mertes et al., 2021). MAE was

detected using the negative binomial test (Kremer et al., 2017)

computing, for each heterozygous variant, an alternative allele ratio, p

value and p adjusted. Allelic ratio is defined for each heterozygous

variant as the ratio of reads mapped to alternative allele in relation to

the total number of reads mapped at this position. No formal

benchmarking has been done to evaluate the performance of

methods detecting MAE. However, since ANEVA‐DOT (v.0.1.1) is

currently limited only to 6365 genes expressed in fibroblasts, the

negative binomial test was chosen for the detection of monoallelic

events.

3.4 | Variant classification based on predicted
functional consequence

A series of variant categorizations were performed based on the

predicted functional consequence. First, for the analysis of variants

reported in the ClinVar database, nonsense, frameshift, canonical

splice sites (±1 or ±2 intronic positions), initiation codon, single or

multiexon deletions were categorized as “PTV.” Next, for the variants

reported pathogenic in the eight RNA‐seq studies, we grouped

promoter, 5′ untranslated region (5′ UTR), 3′ UTR, in‐frame indel, and

start‐loss variants as category “Other” due to the small number of
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individuals carrying them. For all posterior analyses variants were

divided into four types based on their location and predicted

functional consequence. “PTV” included nonsense, frameshift, dele-

tion, and start‐loss variants, “Splice” combined canonical splice sites,

and variants in splice region, refers to variants in the first/last

nucleotide of an exon, the +3 to +6 intron position (splice donor site)

and variants generating a new AG‐dinucleotide directly upstream of a

splice acceptor site (AG). While the “Non‐coding” type comprised

intronic, promoter, 5′ UTR, 3′ UTR, copy number variation and

intergenic variants. Finally, the “Coding” category included missense,

synonymous, stop‐loss and inframe insertion and deletion variants.

3.5 | Calculation of OddsPath

The magnitude of evidence strength provided by RNA phenotypes

was estimated based on a framework proposed by Brnich et al.

(2019) and calculation of the odds of pathogenicity (OddsPath,

Tavtigian et al., 2018). OddsPath was computed as OddsPath = [P2 ×

(1 − P1)]/[(1 − P2) × P1], where P1 is the prior probability, calculated

as the proportion of pathogenic variants in the overall data. P2 is the

posterior probability, defined as the proportion of pathogenic

variants with functionally abnormal (aberrant) RNA phenotypes.

A set of known benign and pathogenic variants is required for the

OddsPath calculation. A total of 394 pathogenic variants were

selected for the OddsPath calculations based on two inclusion

criteria: (1) pathogenic variants located in genes expressed in

fibroblasts and reported as disease‐causing for the 119 genetically

diagnosed individuals described by Yépez et al. (2022). (2) ClinVar

pathogenic or likely pathogenic variants located in genes expressed in

fibroblasts and detected across the full cohort of 303 individuals

(Yépez et al., 2022) (Supporting Information: Table S3). A total of 723

benign variants were selected based on the following two criteria: (1)

rare variants with a MAF < 0.01 reported benign or likely benign in

the ClinVar database (Landrum et al., 2014, 2016) and classified

as benign or likely benign according to ACMG/AMP criteria as

implemented in the InterVar software (Li and Wang, 2017). (2) as the

first procedure resulted in a low number of PTV variants, nonsense

and frameshift variants detected in causal genes with a MAF > 0.05

were additionally included, as suggested by Brnich et al. (2019)

(Supporting Information: Table S3).

OddsPath analysis was performed separately for monoallelic and

biallelic genetic defects. Homozygous and compound heterozygous

variants were considered biallelic, heterozygous as monoallelic. An

exception was made for nonmissense variants compound heterozy-

gous with missense alleles, which were considered as monoallelic

because missense variants typically do not result in aberrant RNA

phenotypes. For each RNA phenotype, the OddsPath was calculated

given different thresholds and was interpreted based on the evidence

strength equivalents provided by Brnich et al. (2019). An OddsPath >

2.1 was considered as PS3 supporting, OddsPath > 4.3 as PS3

moderate, OddsPath > 18.7 as PS3 (strong), and OddsPath > 350 as

PS3 very strong.

4 | RESULTS

4.1 | Overview of studies implementing clinical
RNA‐seq

To date, eight studies applied RNA‐seq in large‐scale, with at least 70

individuals in the cohort and a minimum of 25 affected individuals, aiming

to reclassify VUS or to identify disease‐causing genes and variants

(Cummings et al., 2017; Frésard et al., 2019; Gonorazky et al., 2019;

Kopajtich et al., 2021; Kremer et al., 2017; LHee et al., 2020; Murdock

et al., 2021; Yépez et al., 2022; Supporting Information: Table S1). The

median reported RNA‐seq diagnostic rate is 15% (Figure 3a). For 74%

(132/178) of cases, pathogenic variants were identified in genes

associated with diseases with an autosomal recessive mode of inheri-

tance. We extracted variant and RNA phenotype information from 178

genetically diagnosed cases from the corresponding literature (Supporting

Information: Table S2). In 120 out of the 178 cases at least one RNA

phenotype was detected. Aberrant expression and aberrant splicing were

the most common RNA phenotypes contributing to diagnosis in 64% and

62% of cases, respectively, (Figure 3b). In addition, as aberrant splicing

often created premature stop codons causing NMD, almost in half of

these cases it also led to aberrant expression. Detection of MAE

contributed to diagnosis in 27% of cases.

4.2 | Variants underlying RNA phenotypes

Across all studies, pathogenic variants were discovered in genes with

known loss‐of‐function mechanisms for recessive disorders or

haploinsufficiency for dominant diseases (Supporting Information:

Table S2). Although RNA‐seq could potentially discover genetic

defects with the gain‐of‐function mechanism by calling overexpres-

sion outliers, it was not described in any of these studies. Intronic,

splice site and frameshift variants represented the three most

common variant types causing pathogenic RNA phenotypes

(Figure 3c). Notably, intronic variants are often not prioritized by

WES and have been identified following prioritization by RNA‐seq

analysis. Intronic variants were found to cause aberrant expression

and splicing phenotypes. Among cases where no RNA phenotype was

detected, missense variants were the most frequent cause of the

disease (Figure 3c). Though missense variants were detected in

around 10% of cases with an aberrant RNA phenotype, in most of

these cases the missense variant was compound heterozygous with a

PTV or noncoding variant.

5 | RECOMMENDATIONS FOR VARIANT
INTERPRETATION WITH RNA‐SEQ

Based on the analysis of available data, and the recommendations

provided by Brnich et al. (2019), we propose the following

recommendations for the analysis of RNA‐seq data and interpreta-

tion of RNA phenotypes in the context of ACMG/AMP guidelines.

SMIRNOV ET AL. | 1061



5.1 | General considerations

5.1.1 | Assay description

RNA‐seq is a transcriptome‐wide assay of RNA sequence providing

qualitative and quantitative characteristics. It is the method of choice

to study predicted RNA phenotypes (Figure 3, Supporting Informa-

tion: Table S1 and S2). Here, we focus on the interpretation of

transcriptome‐wide RNA‐seq data and do not address the single‐

gene RNA assays. Universal readout of RNA‐seq provides evidence

to a large fraction of genes, however, clinical interpretation implies

gene‐specific considerations. These considerations include mode of

inheritance and described mechanisms of variant action like a loss‐ or

gain‐ of function. Still, for the majority of the genes, common rules

could be applied, allowing transcriptome‐wide approaches to be used

for high‐throughput variant interpretation.

5.1.2 | Mechanism of the disease and mode of
inheritance

These recommendations are specific for diseases with a loss‐of‐

function pathomechanism, characterized by reduced or abolished

gene product function. RNA‐seq is well established to validate

predicted RNA effects of rare variants by detecting aberrant low

expression, MAE, and splice defects, resulting in reduced or abolished

gene activity.

Disorders with characterized loss‐of‐function due to variants

causing aberrant RNA phenotypes include autosomal recessive,

autosomal dominant, and X‐linked modes of inheritance. The

interpretation of mtDNA variants, and thereby maternal inheritance,

is not covered by these guidelines. However, given that mitochon-

drial RNA processing defects are caused by nuclear gene mutations,

their consequence may indeed be detected by RNA‐seq.

F IGURE 3 Power of RNA‐seq in diagnostics of rare Mendelian disorders. (a) Scatterplot showing number of cases diagnosed by RNA‐seq
and initial undiagnosed cohort size across eight studies. Numbers underlying this figure, as well as diagnostic rates, can be found in Supporting
Information: Table S1. (b) Frequency of detection of aberrant expression, aberrant splicing and monoallelic expression of causal genes across 120
genetically diagnosed individuals with at least one aberrant RNA phenotype detected. (c) Proportions of pathogenic alleles causing aberrant RNA
phenotypes. Proportions were calculated separately for each RNA phenotype and for cases with detected and not detected aberrant RNA
phenotypes. For mono‐allelic expression, only alleles causing this phenotype were considered. Missense variants are indicated in gray as they
typically do not cause aberrant RNA phenotypes. Data underlying panels (b) and (c) can be found in Supporting Information: Table S2. RNA‐
seq, RNA sequencing.
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5.1.3 | RNA‐seq in patient‐derived material, tissue
specificity, and artificial systems

For the RNA phenotype analysis by RNA‐seq, patient‐derived

material or an artificially generated system is needed. RNA‐seq

performed in patient‐derived material captures the physiological

context and thereby allows quantification of disease‐relevant genetic

and epigenetic effects, otherwise missed in artificial systems.

However, patient‐derived material is not informative if the gene or

transcript isoform potentially affected by the variant of interest is not

expressed in this tissue. Furthermore, variant effects could be

modified by tissue‐specific factors. Hence, for tissue prioritization,

it is important to consider not only tissue‐specific characteristics of

gene expression but also transcript isoform‐specific variant effects

(Cummings et al., 2020).

The disease‐affected tissue is considered to be most informative,

however, often not available. Among clinically accessible tissues, skin

fibroblasts, and muscle biopsies have proven to be valuable for

clinical RNA‐seq, expressing ~70% of known Mendelian disease

genes (Yépez, Mertes, et al., 2021). Conversely and regrettably,

blood, the most frequently clinically available tissue, has been

described to be of limited value for Mendelian disease diagnostics,

especially concerning the detection and quantification of aberrant

splicing events (Gonorazky et al., 2019; Murdock et al., 2021). If the

gene of interest is not expressed in the available tissue, induced

pluripotent stem cell lines (Bonder et al., 2021) could be differenti-

ated into nonaccessible tissues (Burke et al., 2020).

When patient‐derived material is not available, RNA‐seq can be

performed on artificial systems, such as cell lines with CRISPR‐

introduced genetic variants (Adli, 2018; Meng et al., 2020;

Sterneckert et al., 2014; Xie et al., 2020). Artificial systems with

introduced variants directly probe the effect of defined variants on

the RNA phenotype and are therefore applied to define the causative

variant or combination of variants in complex haplotypes. However,

interpretation of the results obtained in such artificial systems should

be undertaken with caution as potential disease‐relevant effects on

transcripts, influenced by physiological context, could be missed.

Here, we provide recommendations for the interpretation of

RNA phenotypes detected in patient‐derived material. Artificial

systems are not further discussed.

5.1.4 | Consequences on protein level

Genetically caused aberrant RNA phenotypes likely result in a

functionally abnormal protein. However, as exemplified by Brnich

et al. (2019), aberrant splicing can result in truncated proteins with

intact functional properties. In addition, the effects of variants

leading to aberrant RNA phenotypes, such as aberrant under-

expression, can be compensated on the protein level by protein

buffering mechanisms (Battle et al., 2015; Ishikawa et al., 2017; Vogel

& Marcotte, 2012).

5.1.5 | Terminology

Here, “functionally abnormal” RNA phenotypes are defined as

“aberrant” expression level, “aberrant” splicing, or MAE. Their

detection was made possible by the generation of robust control

data to define the “functionally normal” physiological range for all

expressed genes.

5.1.6 | Statistical power to detect aberrant RNA
events

A minimal number of samples is needed to estimate the normal

physiological range. Thereby, the power and accuracy of detecting

aberrant RNA‐phenotypes increase with sample size. According to

Brechtmann et al. (2018), the minimum sample size for the robust

calling of aberrant RNA expression is 50. According to Mertes et al.

(2021), a minimum of 30 samples is needed for the detection of

aberrant splicing. Conversely, MAE is called on a per‐sample basis

and is therefore not affected by sample size but by coverage of the

variant, thereby no minimum sample size is required. The minimal

coverage at the variant position to estimate MAE is 10 reads Yépez

et al. (2022). Sequencing depth also correlates with the statistical

power for the detection of aberrant RNA phenotypes. As shown by

Yépez, Mertes, et al. (2021), reduction of total sequencing depth from

~86 million reads to ~30 million reads results in the loss of 12% of

true positive aberrant expression hits and 54% of pathogenic

aberrant splicing events. This indicates that some pathogenic events

could be missed due to insufficient power to reach statistical

significance. For validation of RNA phenotypes, a manual inspection

of the locus is therefore always recommended.

In the setting of a small sample size, it is therefore suggested to

integrate publicly available RNA‐seq data to increase the power and

accuracy of the detection of aberrant RNA phenotypes (Frésard

et al., 2019; Yépez, Mertes, et al., 2021). However, the caveat of this

approach is the introduction of sample co‐variations that need to be

controlled for, as demonstrated by several studies (Brechtmann

et al., 2018; Frésard et al., 2019; Mertes et al., 2021).

6 | EVIDENCE PROVIDED BY RNA
PHENOTYPES

6.1 | Evaluation of functional evidence of
pathogenicity provided by RNA phenotypes

According to the ACMG/AMP guidelines, genetic variants with a

certainty of pathogenicity greater than 90% should be considered as

likely pathogenic. This concept was further extended by Tavtigian

et al. (2018) by defining 99% certainty for pathogenic variants and by

the implementation of ACMG/AMP guidelines as a Bayesian

framework. In line with this, Brnich et al. (2019) suggested estimating
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the magnitude of evidence strength that is appropriate for a given

functional assay by calculating the OddsPath.

Here, to assess the functional evidence for pathogenicity

provided by RNA phenotypes, WES and skin fibroblasts RNA‐seq

data from 303 individuals were analyzed (Yepez, Gusic,

et al., 2021; Yepez, 2021). The total of 394 pathogenic and 723

benign detected variants were used to calculate the OddsPath

(Methods, Supporting Information: Table S3). Subsequently, variants

were divided into four variant types based on their location and

predicted functional consequence: “PTV,” “splice,” “noncoding,” and

“coding.” Due to the fact that aberrant expression and splicing

quantify variant effect on the gene level, OddsPath analysis was

performed separately for genes with mono‐ and biallelic variants to

correctly estimate thresholds. This stratification resulted in 104

biallelic and 290 monoallelic pathogenic variants. The Bayesian

framework was applied to each RNA phenotype to investigate how

different thresholds affect the strength of functional evidence (see

Section 3). Corresponding RNA phenotypes were detected using the

DROP pipeline, which includes OUTRIDER packages for aberrant

expression analysis, FRASER package for aberrant splicing and

negative binomial test for MAE detection.

6.2 | Evidence of pathogenicity provided by MAE

MAE is calculated by the ratio of two alleles, due to a variant causing

reduced expression of the allele in cis while the second allele in trans

is still expressed (Figure 4). Information about both alleles provides

evidence of pathogenicity that can be applied in the clinical

interpretation of the variants. For variants causing MAE of the allele

in trans, OddsPath was calculated for different significance thresh-

olds and allelic ratios (Suppoting Information:Figure S1a, S1b). MAE

provides strong evidence of pathogenicity to all significant PTVs

(p < 0.05). For noncoding and splice variants, the number of

pathogenic variants with MAE was insufficient for robust OddsPath

calculation. The vast majority of coding variants did not show an

effect on gene expression and therefore can not be interpreted with

gene expression as functional evidence. In addition, OddsPath was

calculated for different effect size thresholds. Strong evidence for

allelic imbalance was achieved if the reference allele represented

more than 60% of all transcripts (Supporting Information: Figure S1c).

Besides the variant effect on gene expression on the allele in cis,

MAE provides allelic evidence of the expressed allele in trans. According

to the ACMG/AMP recommendations, for recessive disorders, moderate

evidence of pathogenicity (PM3), can be assigned to a variant located in

transwith known pathogenic variant (Richards et al., 2015). We evaluated

evidence strength for monoallelically expressed variants and identified

that moderate allelic evidence of pathogenicity (PM3) could be provided

to coding variants with significant (p<0.05) MAE (Supporting Informa-

tion: Figure S1c, S1d). For clinical evaluation, manual validation of

identified MAE defects using IGV is useful.

6.3 | Aberrant expression as functional evidence of
pathogenicity PS3

Across studies applying RNA‐seq for diagnostics of Mendelian

disorders, aberrant expression was defined based on one of two

metrics, p value or z‐score. Aberrantly expressed genes defined by

p value should be interpreted in combination with the effect size,

while the z‐score, which represents a combination of both parame-

ters, can be interpreted alone. The z‐score distribution of benign and

pathogenic variants stratified by p value, nominal significance and

variant type is shown in Figure 4a. All nominal significant expression

outliers are covered by a z‐score threshold of −2 and vice versa. The

OddsPath was calculated for a series of z‐score thresholds for each

F IGURE 4 Definition of functional evidence strength provided by MAE. Alternative allele ratio distribution for pathogenic and benign
variants, stratified by variant type. Benign variants are indicated in gray. For pathogenic variants, variants causing MAE, underrepresented alleles,
are highlighted in green and monoallelic expressed variants, overrepresented alleles, in blue. Only pathogenic variants reported disease‐causing
in Yepez et al. (2022) are shown in the figure. Datapoint shape indicates the genotype. Datapoint size indicates nominal significance. Horizontal
dashed lines indicate effect size thresholds suggested by Yepez, Mertes et al. (2021). MAE, Monoallelic expression; PTV, protein‐truncating
variant.
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variant type and for mono‐ and biallelic defects. A z‐score threshold

of <−2 provides strong evidence of pathogenicity for biallelic and

monoallelic PTV and monoallelic noncoding variants (Figure 5b,

Supporting Information: Figure S2b). For biallelic splice and non-

coding variants, a more stringent z‐score threshold of <−3 is needed

to provide strong evidence of pathogenicity. For a z‐score <−2 and

more stringent thresholds monoallelic splice variants could be

provided with supporting evidence of pathogenicity at most.

Next, an analogous analysis for different p value cut‐offs was

performed. Aberrant expression defined with a conventional signifi-

cance threshold of p < 0.05 supports only a moderate level of

pathogenicity, while more stringent thresholds provide strong

evidence of pathogenicity to all variant types except for coding and

heterozygous splice variants (Figure 4d, Supporting Information:

Figure S2d). For the clinical interpretation, it is important to consider

effect size. Therefore, the fold‐change distribution of pathogenic

variants with and without strong evidence of pathogenicity was

analyzed. As shown in Figure 4c and Supporting Information:

Figure S2c even small changes in the gene expression can support

strong evidence of pathogenicity assigned based on the significance

or z‐score threshold. This finding supports the fact that for genes

with tight regulation even small changes in gene expression can be

pathogenic. For genome‐wide analyses of aberrant expression and

prioritization of candidate genes more stringent thresholds defined

by multiple testing corrected p value are typically applied. Based on

the OddsPath analysis mono‐ and biallelic PTV and noncoding

variants can be provided with strong evidence of pathogenicity under

the threshold of false discovery rate (FDR) < 0.1 (FDR; Supporting

Information: Figure S3). Biallelic splice variants can be also provided

with strong evidence of pathogenicity under the threshold of

FDR < 0.1.

6.4 | Aberrant splicing as functional evidence of
pathogenicity PS3

Aberrant splicing is characterized by two metrics, statistical signifi-

cance and effect size. Effect size is typically represented as four

F IGURE 5 Definition of functional evidence strength provided by aberrant expression to biallelic variants. (a) Aberrant expression z‐score
distribution for biallelic pathogenic and benign variants, stratified by variant type. Pathogenic variants are indicated in purple, benign <in gray.
Datapoint shape indicates the genotype. Datapoint size indicates the nominal significance of aberrant expression. The dashed line indicates the
z‐score of −2, representing a typical threshold applied to define aberrant expression (Supporting Information: Table S1). (b) OddsPath calculated
for different z‐score thresholds. Thresholds are ordered according to their stringency. Colors indicate variant types. Horizontal dashed lines and
datapoint shapes indicate evidence strength equivalent. (c) Fold change distribution of pathogenic variants with (red) and without (gray) strong
evidence for pathogenicity. Strong evidence for pathogenicity was attributed based on the corresponding thresholds identified in panel (c). PTV:
z‐score <−2. Noncoding: z‐score <−2.5. Splice: z‐score <−3. Coding: no strong evidence of pathogenicity. Datapoint shape indicates the
genotype. Variant evidence strength is marked by colors (red: PS3, gray: no strong evidence). Datapoint size indicates the nominal significance of
aberrant expression. Horizontal dashed line indicates 50% reduction of corresponding transcript. (d) OddsPath calculated for different p value
significance thresholds. Thresholds are ordered according to their stringency. Colors indicate variant types. Horizontal dashed lines and
datapoint shapes indicate evidence strength equivalent. PTV, protein‐truncating variant.
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intron‐centric metrics used to quantify different splice events: delta

PSI (delta percent spliced in, Δψ) and delta theta (delta of splicing

efficiency, Δθ) calculated for both 5′ and 3′ splices sites (Mertes

et al., 2021; Pervouchine et al., 2013). Delta PSI represents the

percent of transcripts that are spliced differently at a given splice site

in comparison to the population mean. Delta theta is a metric

introduced to cover intron retention events (Mertes et al., 2021). An

effect size (delta PSI) of 30% is equivalent to 30% of transcripts

showing aberrant splicing at a given splice site. Since splice defects

can be complex and affect more than one splice site, the significance

is calculated gene‐wise. The effect size distribution of pathogenic and

benign variants stratified by variant type and nominal significance is

shown in Figure 6a. OddsPath calculation for significant splicing

events (p < 0.05) revealed that strong evidence of pathogenicity can

be assigned to monoallelic splice variants with an |effect size| >0.15

and biallelic noncoding variants with an |effect size| >0.45 (Figure 6b,

Supporting Information: Figure S4). For biallelic noncoding variants

with an |effect size| >0.35 strong evidence of pathogenicity was

provided. Though it is known that coding variants can have an impact

on splicing, the majority of them showed only weak effects on

aberrant splicing and hence can not be assigned with functional

evidence of pathogenicity according to our results.

For genome‐wide analysis of aberrant splicing, a FDR threshold <0.1

is suggested by Mertes et al. (2021). Calculation of OddsPath based on a

FDR threshold <0.1 threshold indicated monoallelic splice and noncoding

variants achieve the strong level of pathogenicity independent of the

effect size threshold (Supporting Information: Figure S5b). For biallelic

splice and noncoding variants effect size thresholds for FDR significant

aberrant splicing events were consistent with results obtained under

nominal significance (Supporting Information: Figure S5a, Figure 6b).

Strong evidence of pathogenicity can be provided to biallelic splice

variants with an |effect size| >0.45 and biallelic noncoding variants with

an |effect size| >0.35. For clinical evaluation, manual validation of

identified splice defects using IGV and sashimi plots is mandatory as

regions with low coverage could appear as false positives in aberrant

splicing analysis.

7 | CLINICAL APPLICATION OF THE
GUIDELINES AND RECOMMENDATIONS

Following a comprehensive analysis, we determined thresholds for

each RNA phenotype for strong or moderate functional evidence of

pathogenicity (PS3) or moderate allelic evidence (PM3) (Figure 7).

This framework informs important elements of the ACMG/AMP

guidelines, however, all relevant criteria proposed by ACMG/AMP

should be considered together for clinical interpretation of variant

pathogenicity. In cases where several RNA phenotypes caused by the

variant(s) under investigation are detected, only one, strongest

criteria should be assigned. Notably, though detection of aberrant

RNA phenotypes can provide strong or moderate evidence to

support the pathogenic designation of a variant, RNA‐seq can not

capture the full spectra of potential functional consequences of the

variants. Therefore, the absence of aberrant RNA phenotypes does

not necessarily serve as an indication for the benign nature of the

variant and therefore we do not recommend the assignment of

benign evidence of pathogenicity (BS3). Due to the differences in the

statistical procedures implemented in the different methods for

aberrant RNA phenotype calling, these criteria are approved only for

detection methods implemented in the DROP pipeline.

We hope that these recommendations will help to take advantage of

NGS technologies not only on the DNA but also on RNA levels to

advance molecular diagnostics by integrating functional evidence evalua-

tion in a high‐throughput manner. This study also provides a guideline on

F IGURE 6 Definition of functional evidence strength provided by aberrant splicing to biallelic variants. (a) Distribution of the absolute value
of aberrant splicing effect size (Δψ and Δθ) for biallelic pathogenic or benign variants, stratified by variant type. Pathogenic variants indicated in
purple, benign in gray. Datapoint shape indicates the genotype. Datapoint size indicates the nominal significance of aberrant splicing. The dashed
line indicates an effect size of 0.3, the suggested effect size threshold by Mertes et al. (2021). (b) OddsPath calculated for nominal significant
splicing events considering different effect size thresholds. Thresholds are ordered according to their stringency. Colors indicate variant types.
Horizontal dashed lines and datapoint shapes indicate evidence strength equivalent. PTV, protein‐truncating variant.
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how to evaluate functional evidence provided by short‐read RNA‐seq and

could be used as a blueprint for evaluation of the evidence provided by

other OMICs techniques. As power for detection and accuracy for calling

aberrant RNA phenotypes increases with the number of sequencing data

sets available from different tissues, we encourage sharing of count and

split‐read count data from RNA‐seq studies. To ensure updates of the

current guidelines with an increasing number of pathogenic variants and

size of the RNA‐seq data set, we developed a web resource

functionalOMICs (prokischlab.github.io/functionalOMICs/), providing an

overview of recommendations for the application of RNA‐seq in the

ACMG/AMP framework.
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