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MicroRNAs (miRs) have gained scientific attention due to their importance in
the pathophysiology of allergic diseases as well as their potential as
biomarkers in allergen-specific treatment options. Their function as post-
transcriptional regulators, controlling various cellular processes, is of high
importance since any single miR can target multiple mRNAs, often within the
same signalling pathway. MiRs can alter dysregulated expression of certain
cellular responses and contribute to or cause, but in some cases prevent or
repress, the development of various diseases. In this review article, we
describe current research on the role of specific miRs in regulating immune
responses in epithelial cells and specialized immune cells in response to
various stimuli, in allergic diseases, and regulation in the therapeutic
approach of allergen-specific immunotherapy (AIT). Despite the fact that AIT
has been used successfully as a causative treatment option since more than
a century, very little is known about the mechanisms of regulation and its
connections with microRNAs. In order to fill this gap, this review aims to
provide an overview of the current knowledge.
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Introduction

As upper and lower airways are considered a morphologic and functional unit, not

only do allergic rhinitis and asthma share mechanisms of allergic inflammation (1, 2).

Also transition of allergic rhinitis into asthma can represent a steady continuum

depending on endotype and is therefore of relevance with respect to allergic

pathomechanisms (3, 4). Allergic diseases are characterized by an uncontrolled

immune reaction towards harmless environmental antigens to which the body is

exposed either via airways, as seen in allergic rhinitis and allergic asthma (5).

Type 2-driven diseases are characterized by the infiltration of inflammatory cells

into the lung, elevated IgE serum levels, mucus hypersecretion, bronchial

hyperresponsiveness (BHR), airway obstruction, and chronic inflammation (6, 7).
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Type 2 cytokines including interleukin-4 (IL-4), IL-5, IL-13,

IL-24, and IL-33 mediate allergic inflammation and airway

eosinophil infiltration, which affect the function of airway

wall epithelial and smooth muscle cells (1, 4, 8). These

mediators can be detected in different biomatrices, which

can be assessed more or less invasively (8). A functional

connection between miR expression and the pathogenesis of

asthma was reported for a high number of genes (9).

Importantly, mRNA transcripts of multiple genes can be

targeted by a single miR (9), which enables miRs to act

broadly on controlling cell function.

98% of the human genome consists of non-coding DNA

sequences (10). Non-coding RNAs (ncRNAs) have various

functions such as gene regulation and can be divided into

different groups. Long non-coding RNAs (lncRNA) are

defined by being composed of more than 200 nucleotides

and not being translated into protein. Their function is

often not clear, because it is a big and heterogenous group.

One process lncRNAs are involved in is gene regulation on

the epigenetic level via chromatin remodelling (11–13).

Small nucleolar RNAs (snoRNAs) are responsible for the

fine-tuning of the ribosome and spliceosome function. They

do this mostly by post-transcriptional regulation of

ribosomal RNA (rRNA) and small nuclear RNA (snRNA)

(14, 15). Another group are the circular RNAs (ciRNAs),

which are single-stranded, covalently closed RNA

molecules. They were first discovered in 1976 and thought

to be viroids, pathogens of certain plants (16). The first

detection in humans was in the human cancer cell line

HeLa by electron microscopy in 1979 (17). The most

prominent and best-investigated group are miRs, which are

about 22 nucleotides long and function as post-

transcriptional suppressors of gene expression by binding to

a complementary mRNA sequence (18). miRs are

transcribed mostly by RNA polymerase II (19), only a few

by RNA polymerase III (20). They carry a 5′-cap and are

polyadenylated at the 3′ tail (21). miRs are processed by

RNAase II enzymes DROSHA and DICER to result in their

mature form (22, 23). Its precursors are located most

frequently in intergenic regions and introns of protein-

coding genes (24). It is also known that one miR can have

multiple mRNAs as its target (25).

miRs have been associated with different disease

phenotypes. The role of miRs in human diseases has

primarily been studied in cancer, showing that defects in

their processing can lead to huge damage. This highlights

the role of the let-7 miR family, which targets oncogenes

and is reduced in cancer cells (26). This reduced post-

transcriptional suppression leads to increased expression of

oncogenes and thus supports tumour growth (27–29).

However, the role of non-coding RNAs in allergic diseases

and in central pathways of allergy pathophysiology remains

largely unknown.
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Non-coding RNAs in allergic airways

Allergic diseases are caused by an excessive response to

pathogens, allergens, or toxins. Allergic rhinitis, allergic

asthma, and atopic dermatitis are the most common allergic

diseases (30). Asthma is a very heterogenous chronic airway

disease characterized by airway hyperreactivity, smooth

muscle hyperresponsiveness and inflammation (31). It is

characterized by a type 2 immune response that includes

prototypic type 2 cytokines and elevated levels of eosinophils

and IgE. miRs can contribute to the development of asthma

by regulating inflammation, cell migration, and proliferation,

which was shown in animal models and isolated human cells

(8, 32–34). In allergic diseases characterized by a cytokine

milieu dominated by type 2 mediators such as IL-4 and IL-13,

epithelial cells may express miRs (Table 1), which may also

be associated with a decline in lung function parameters (4).

Recently, it was shown that small extracellular vesicles (sEV)-

associated epithelial miRNAs are involved in regulating the

immune responses by underlying dendritic cells (DCs) (35).

Decreased levels of miR-92b, miR-210, and miR-34a in

epithelial-derived sEVs upon asthma development, would

allow DCs to polarize Th2 cells, perpetuating the asthmatic

phenotype in the lung microenvironment (35). Furthermore,

an association of certain miRs with airway obstruction

measurements as well as with the gene expression amplitude

of their predicted target genes was found. The latter are

relevant to type 2 airway polarization in children and

therefore suggest a role for miRs in the development of

asthma. In addition, airway remodeling and loss of epithelial

integrity in asthma affect airway obstruction and

hyperreactivity, which may be regulated by epithelial small

extracellular vesicles containing specific miRs.

Since asthma is a disease that occurs at a young age, some

studies have focused on circulating miRs correlated to lung

function parameters: such as miR-15b, -126, -139, -142, -186,

-191, -342, -409, -660, -942, -1290 (36). The identification of

these miRs, their sex-dependent association with lung

function parameters as well as their interactions could be

useful in finding a treatment option for type 2-related

diseases. A functional associaten between miR expression and

the pathogenesis of asthma has been reported for miR-1248,

miR-1291, miR-570-3p, and the previously mentioned miR

let-7a, which were specifically expressed in affected lungs of

asthmatic patients when compared to healthy subjects (37).

The let-7 family is known as a modulator in Th2

inflammation and is believed to have a pro-inflammatory

effect as it is abundantly expressed in the airway tissues of

asthmatic patients and is involved in regulating the expression

of IL-33 (38, 39). In a mouse model, miR-21 was found to be

increased and to regulate IL-12, which is known to propagate

Th1 polarization (28). By analyzing the serum levels of miR-

21 and IL-4 in asthmatic patients and healthy controls, a
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TABLE 1 Micro-RNAs in type 2-driven diseases.

miRNA Function in pathogenesis Predicted Targets References

let-7a Regulates IL-13 expression IL-13 (39)

let-7d Decreases expression of IL-13, IL-6 and TLR4 IL-13 (58)

miR-19 promotes TH2 cell cytokine production through direct targeting of the signaling inhibitors PTEN,
SOCS1, and TNFAIP3 (A20)

PTEN, SOCS1, TNFAIP3 (47)

miR-21 upregulated in allergic airway inflammation; correlated with disease risk, severity, and inflammation
of AR

IL-12p35 (110, 111)

Upregulated by IL-4 (112)

miR-34 Down-regulated in asthma (38)

miR-34/449 Repressed IL-13 NOTCH1 (48)

miR-126 Positively correlated with the severity of the asthma; increased expression of GATA3 in T cells;
associated with increased levels of IL-4 and Th17 cells

IL-4, GATA3 (113)

miR-133a Alleviates airway remodeling in asthma through PI3K/AKT/mTOR signaling pathway IGF1R IGF1R (52)

miR-139 Activates the JAK3/STAT5 signaling pathway, associated with increased levels of TNF-α, IL-6, IL-8
and IL-1β

JAK3/STAT5 (114)

miR-141 Interferes with IL-13; increased goblet cell proportions, MUC5AC expression and increased secreted
mucus

IL-13 (115)

miR-142-3p Associated with aberrant WNT signaling during airway remodeling in asthma WNT (68)

miR-143 Increased expression of FoxP3, stimulated proliferation of CD25+ CD4 + lymphocytes,
downregulated IL-13.

IL-13, FoxP3 (116)

miR-145 Promoted type 2 inflammation; induced upon allergen exposure HMGB2, OCT4, KLF4, MUC1,
JAM-A, FSCN1, IRS1

(117)

miR-155 High miR-155 levels were strongly associated with high IFN-γ production, increased airway Th1
cytokine polarization (IFN-γ/IL-4 ratios) and increased pro-inflammatory responses.

SHIP1 (118)

miR-182 Differentiation of Th17 cells IL6ST, IL31RA, FoxO1, FoxO3 (55)

Regulates proliferation of T cells and Treg cells function (12, 107)

miR-186 Regulation of PTEN IL1R1, IL13RA1, PTEN, HMGB1 (119)

miR-187 Downregulated in allergic rhinitis. RUNX2, TEAD1, DMRT3, E2F2,
PRDM1

(120)

Upregulated in asthma (89)

miR-190 Upregulated in allergic rhinitis Not defined (121)

miR-191 Correlated with FEV1% pred., eosinophil and neutrophil counts in blood ADAM9, MAPK9, NOTCH2 (122)

miR-192-5p Attenuated airway remodeling and autophagy in asthma by targeting MMP-16 and ATG7 CXCL2, CXCR5, (54)

miR-204 Regulates bronchial smooth muscles cells proliferation IL7R (105)

miR-221 Correlated with airway eosinophilia in asthma; increased CCL-24, CCL-26, and POSTN in airway
epithelial cells via downregulation of CXCL17

CXCL17 (45)

miR-299 Downregulated in asthma TGIF1, ARNT2, FOSB, OAS2 (50)

miR-342 Suppressed inflammation response in human macrophages THP-1 cells (123, 124)

Regulates Treg function. Targets NFκβ NFκβ (108)

miR-375 Upregulation of TSLP in human bronchial epithelial cells SOCS (56)

Blocked expression of TLR7 in asthmatic patients (125)

Upregulated in bronchial epithelial cells in pollutants-induced exacerbations of asthma (56)

miR-379 Induced by IL-13, regulated cell surface receptor linked signal transduction ROR1, YBX1, CXCL11 (106)

miR-409-3p Sex-specific association with FEV1/FVC in asthmatic boys YBX1 HEY2, AhR, CCL28, TLR5 (36)

miR-485 Upregulated in asthma; modulated the TGF-β/SMAD3 Signaling Pathway TGF-β1, SMAD3 (126)

miR-489 Upregulated in mice model of allergic rhinitis Not defined (122)

miR-498 Correlates with IFNγ in asthmatics IFNγ (89)

miR-570-3p Upregulation of CCL4, CCL5, TNFα, and IL-6 CCL4, CCL5, TNFα, IL-6 (37)

miR-628 Dowregulated in rhinosinusitis Not defined (127)

miR-643 Regulates expression of IL-17 IL-17, RORA, RORB (128)

(continued)
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TABLE 1 Continued

miRNA Function in pathogenesis Predicted Targets References

miR-660-5p Sex-specific association with FEV1/FVC in asthmatic boys SCL46A3, ZNF273 (36)

miR-942 Sex-specific association with FEV1/FVC in asthmatic boys Not defined (36)

miR-1180 Activates NFκβ NFκβ (129)

miR-1248 positive regulator to increase IL-5 expression IL-5 (49)

miR-1248 Negatively correlates with lung function in asthma Not defined (49)

miR-1290 associated with asthma and atopy during pregnancy, interacts with TGF-β signaling TGF-β1 (130)

Sex-specific association with FEV1/FVC in female asthma patients NAPSA (36)

miR-1303 Regulates gene ADAM33, which is related to bronchial hyperreactivity ADAM33 (59)

miR-3935 suppression of the PGE2-PTGER3 axis PTGER3 (98)

Jakwerth et al. 10.3389/falgy.2022.993937
strong positive correlation was detected, as both were

significantly higher expressed in asthmatic patients (40). miR-

21 is expressed at high levels in different cell types and can be

increasingly be induced via STAT3 and NF-κB (41).

miR-19a contributes to the production of Th2 cytokines and

was found to be upregulated in airway infiltrating T cells in vitro

differentiation experiments. It interacts with mRNAs encoding

PTEN, SOCS1, and A20 (TNFAIP3) by deregulating and

derepressing their signalling pathways (42). Another mechanism

involved in maintaining Th1/Th2 balance is the impact of miR-

155 on macrophages. Its targets have been shown to include IL-

13, SOCS1, and SHIP1. When miR-155 is reduced in

macrophages, STAT6 becomes more active, resulting in an

alternative M2 phenotype (43). In a miR-155 knockout mouse

model, mice tended to develop asthmatic inflammation and

increased levels of IL-4 and IL-5 in T cells (44). In addition, an

association between miR-3935 and its predicted target gene, the

prostaglandin E3 receptor, was revealed, which could mediate

allergen-specific immunotherapy (AIT) effects through

suppression of the PGE2-PTGER3 axis (8). Furthermore, miR-

221 was found to be reduced in epithelia and sputum of asthma

patients and associated with eosinophilic airway inflammation.

Therefore, miR-221 might serve a potential biomarker in

allergic inflammation. In house dust mite-challenged mice,

airway overexpression of miR-221 suppressed CXCL17

expression and thereby enhanced expression of CCL24, CCL26

and POSTN (45). This could potentially affect the epithelial

cytokine-mediated priming of epithelial cells towards an E1 or

E2 epithelial response, a phenomenon named after the causative

Th1 and Th2-derived cytokines (1, 3, 4, 46).
Non-coding RNAs of airway
epithelial cells in type-2 diseases

A major factor in the pathogenesis of asthma are changes in

gene expression and secreted protein patterns in the airway

epithelium (1, 46). Several studies have examined the expression

pattern of miRs in airway epithelial cells of type 2-related diseases
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targeting genes such as TNF-α, IL-8, or IL-6 (34). MiR-19, a well-

studied microRNA is able to promote type 2 cytokine production

of IL-33, IL-5, and IL-13 through direct targeting of the signaling

inhibitors PTEN, SOCS1, and TNFAIP3 (A20) (47). These

signaling inhibitors are not only regulators of Th2 cells but also

of ILC2 cells (47). Further, miR-449 is able to repress the

expression of IL-13 in asthma (48). Interestingly, also some miRs

are known to correlate with changes in lung function parameters

in a sex-specific manner, such as miR-485, miR-660-5p, or miR-

942 (36). miR-1248, which can increase the expression of IL-5,

was also described to negatively correlate with lung function

parameters in asthma (49). However, also miRs like miR-34 (38)

or miR-299 (50) downregulated in asthma are known.

Downregulation of miR-133a contributed to upregulation of

RhoA in bronchial smooth muscle cells of asthmatic patients (51)

and alleviates airway remodeling in asthma by targeting IGF1R

(52). miR-192 expression was reduced in the peripheral blood of

asthmatic patients undergoing allergen inhalation challenge (53).

It is further able to attenuated airway remodeling and autophagy

in asthma by targeting MMP-16 and ATG7 (54). miR-21 has

been shown to be upregulated in allergic airway inflammation

and to regulate IL-12p35 expression, which appears to promote

Th2 and attenuates Th1 responses by targeting IL-12 expression

(28). An important regulator of Th17 responses was identified

with miR-182, which was shown to be upregulated upon Th17

differentiation, targeting FoxO family members 1 and 3 (55).

miR-375 is associated with an increase in the expression of TSLP

in primary bronchial epithelial cells, a key cytokine in asthmatic

airway inflammation (56). Moreover, miR-221 was described to

correlate with airway eosinophilia in asthma and further

increased CCL-24, CCL-26, and POSTN in asthmatic airways

(45). Counterregulatory mechanisms could be induced by

upregulation of miR-146a, which could potentially enhance the T

regulatory (Treg) cell-mediated suppression of Th1 responses

and result in unhindered Th2 activation (57). The let-7 family

members appear to target IL-13 expression, as downregulation of

let-7 could enhance Th2 responses by upregulating IL-13

expression (39, 58). However, also regulators of epithelial genes

are known. A prominent example is miR-1303, which regulates
frontiersin.org
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the epithelial-derived ADAM33 known to be involved in asthma

and related bronchial hyperreactivity (59). Taken together,

miRNAs are involved in a number of regulatory processes in

airway epithelial cells during inflammation.
Non-coding RNAs in airway
remodeling processes

In addition to airway inflammation, airway remodeling is also

a pathological hallmark in asthma, driven by eosinophils,

neutrophils, and other inflammatory cells (60–62). Increasing

evidence suggests that airway remodeling can occur early in

childhood, concomitantly with, but not necessarily subsequent

to, airway inflammation. Features of airway remodeling include

increased smooth muscle cell mass, thickening of airway walls,

and epithelial barrier dysfunction (63). In the remodeling

process, matrix metalloproteinases (MMPs) were implicated in

the degradation of the extracellular matrix in the process of

tissue remodeling. MMP-2 and MMP-9 activities were increased

around inflamed airways, which were the main site of tissue

remodeling (64). In addition, miR-192-5p can alleviate airway

inflammation and airway remodeling in asthma by targeting

MMP-16 (54). Furthermore, it has also been reported that

airway inflammation and airway remodeling are exacerbated by

activation of JNK1/2-MMP-9 pathway associated with ORMDL3

knockdown in asthmatic mice, suggesting that miR-192-5p

mediates airway remodeling and autophagy by other signaling

pathways (65). Abnormal expression has been reported for miR-

451a in pulmonary diseases associated with remodeling

processes, as elevated levels of expression have been

demonstrated in patients with chronic obstructive pulmonary

disease (COPD) (66). Several miRs, such as miR-19a, miR-142,

and miR-221, have been found to be differentially expressed in

asthma and associated with airway remodeling (67–69). miR-

142-3p in bronchial biopsies from patients with early- or late-

onset severe asthma was consistent with a differential WNT

signature, suggesting that miR-142 is involved in regulating the

balance between proliferation and differentiation of airway

smooth muscle cells in asthma, possibly via control of WNT

signaling (68). Also involved in the WNT pathway is β-catenin,

which has been shown to be elevated in Aspergillus fumigatus-

associated asthma, as the 3′-UTR of the β-catenin transcript is a

genuine miR-3162-3p binding site (70). Endogenous miR-3162-

3p could aggravate the severity of allergic asthma caused by

miR-3162-3p antagomir by alleviating the reduction in β-catenin

expression in asthmatic mice and suppressing airway

hyperresponsiveness and airway inflammation (70).

Furthermore, miR-221 is hypothesized to play a crucial role in

driving the differentiation of the Th17/Treg ratio via RORγt/

Foxp3 by targeting SOCS1 (69). In addition, mir-221 reduced

the Th17 cell function by directly inhibiting RORγt/SOCS1 and

promoted the function of Treg cells via induction of Foxp3/
Frontiers in Allergy 05
SOCS1 in asthma (69). Asthma-related airway remodeling was

reduced by miR-451a overexpression, which was been shown to

target ETS1, while miR-451a downregulation promotes

differentiation of CD4+ T Cells towards Th2 cells through ETS1

upregulation in childhood asthma (71). Among these phases, the

airway remodeling phase is irreversible, and directly related to

the prognosis of affected children (61).

Additionally, the extracellular matrix plays an important role in

asthma-inducedairway remodeling, including type I collagen (COL-

I) and fibronectin (FN), since secretion of COL-I and FN results in

thickening of the basal membrane and subcutaneous fibrosis of

the airway, eventually leading to airway remodeling (61). MiR-

146a and miR-146b are negative regulators of inflammatory gene

expression in lung fibroblasts, epithelial cells, monocytes, and

endothelial cells. They negatively regulate the expression of

cyclooxygenase-2 (COX-2) and IL-1β (72). These findings suggest

that miR-146a and/or miR-146b are able to modulate the

expression of inflammatory mediators in airway smooth muscle

cells, thereby contributing to the pathogenesis of asthma (72).

Elevated levels of miR-378 in the serum of asthmatic children have

been shown to promote cell proliferation and resistance to

apoptosis. Upregulation of miR-378 promotes smooth muscle cell

proliferation and resistance to apoptosis, and increases the

expression of COL-I and FN proteins (61).

Thymic stromal lymphopoietin (TSLP) acts as a key epithelial-

derived cytokine involved in remodeling of the asthmatic airway.

Decreased TSLP expression reduced the production of

inflammatory cytokines and thereby inhibited STAT3 expression

and phosphorylation. STAT3 upregulation and activation in the

airways are closely associated with the onset and development of

asthma, while STAT3 activation facilitates TSLP in asthma-

associated airway remodeling (73). TSLP can be negatively

regulated by miR-19b by binding to the upstream non-coding

region of TSLP (74). Therefore, miR-19b is able to reduce airway

remodeling, airway inflammation, and levels of oxidative stress by

inhibiting TSLP signaling through STAT3. Since TSLP as well as

the other epithelium-derived alarmins IL-25 and IL-33 also affect

the expression and secretion of IL-5 and IL-13 from innate

lymphoid cells type-2 (ILC2), it directly influences the miR-

mediated regulation of immune cells.
Non-coding RNAs of immune cells in
type-2 diseases

The function of ILC2s by targeting TSLP can be regulated by

miR-375, which has been reported to be downregulated in

patients with Th2-associated diseases such as atopic dermatitis,

ulcerative colitis and allergic rhinitis (75). Systemic miR-15b

levels were shown to be associated with lung function, while

miR-16-5p levels correlated with bronchial hyperresponsiveness

(BHR). Local T cells from asthma patients expressed

diminished levels of miR-19a-3p, the upregulated levels of
frontiersin.org
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which promote the production of Th2 cytokines (42). miR-126

increases GATA-3 expression in T cells in an indirect manner

that might promote a Th2 response and is believed to increase

IL-13 levels. This suggests that it is associated with an excessive

activation of Th2 cells in asthmatic children (76). In contrast,

miR-21-3p detected in exhaled breath condensate of asthmatics

showed reduced levels compared to healthy controls (77). In

addition, a pediatric study observed elevated levels of miR-191-

5p targeting CEBPB, which correlated with the lung function

parameter FEV1/FVC (Tiffeneau) (36). Furthermore, miR-223-

3p was elevated in asthmatics compared to healthy controls

and correlated with lung function parameters (36). MiR-210-3p

has been shown to be involved in mast cell activation (78),

while miR-223-3p is involved in neutrophil maturation and

function by inhibiting IL-18 expression in macrophages,

suggesting a fine-tuned mechanism involving inflammatory IL-

18-induced neutrophil extracellular traps (NETs) (79).

Since both the innate and adaptive immune responses show

altered IL-13 levels, the expression of the interlinked microRNA

could also be altered. IL-13, produced by Th2 cells but also by

group 2 ILC2s, has been found to increase neutrophil-derived

PGE2 levels by upregulating COX-2 gene expression (8). The

suppressive effects of AIT on type-2 immune responses not only

affect Th2 cells but also induce a shift from ILC2 to ILC1. For

example, miR-155 can affect the Th1/Th2 balance by targeting IL-

13RA, SOCS1, and SHIP1 of macrophages, since specific

modulation of miR-155 expression may be able to reduce

exaggerated inflammation (80). In addition, IL-10 induces miR-

187, which is able to negatively regulate the expression of the pro-

inflammatory mediators TNF-α, IL-6 and IL-12p40, as it directly

affects the stability and translation of TNF-α mRNA targets and

indirectly decreases IL-6 and IL-12p40 expression via down-

modulation of IκBζ, a major regulator of the transcription of these

two cytokines (81). Furthermore, miR-21 expression increased

remarkably in an OVA-induced asthma model and suppressed

the expression of IL-12/STAT4 proteins (82). Therefore, miR-21

expression increased significantly and both IL-12p70 and IL-

12p35 were down-regulated in mice with OVA-induced asthma

(82). In addition, suppression of miR-21 by intranasal

administration of the antagomir improved asthma symptoms

including airway inflammation and BHR, inhibited Th2

polarization of CD4+/CD8− cells, and altered cytokine levels in

BAL fluid (83). These immune cell-related regulatory changes are

key targets of treatment options such as AIT, which also initiate

changes in miR expression and regulation.
Non-coding RNAs in allergen-
specific immunotherapy for inhalant
allergens

miRs have been intensively studied in recent years in the

context of allergic and respiratory diseases (9, 84). There is a
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wealth of research focusing on the role of miRs in the

pathogenesis of asthma and allergies, and thus to our

understanding and delineation of disease endotypes (85) in

preclinical (28) and clinical (86) settings.

No less important was the work aimed at elucidating the

differences in specific miR levels in health and disease (40),

revealing the association between specific miRs and disease

risk, severity (71, 87) and exacerbation (88). Further, also

characterizing of miR profiles of patients presenting with one

or two allergic comorbidities (89), and lastly predicting the

clinical remission of childhood disease in early adulthood

(71). Further, the effect of prophylactic sublingual

immunotherapy revealed changes of miRs in asymptomatic

subjects, who were sensitized to cedar pollen (90). As cedar

pollinosis is the predominant seasonal allergic rhinitis in

Japan, it is of interest that miR-223 was significantly up-

regulated in pollen season and let-7b was down-regulated in

sensitized subjects and may possibly mirror the exposure to

antigen during pollen season (90). Another important line of

research lies in the investigation of miRs as potential

biomarkers for monitoring allergy treatments and therapeutic

outcomes, particularly in relation to resource-intensive

therapies, such as AIT (Figure 1; Table 2).

Allergen-specific immunotherapy is an effective disease-

modifying therapy used for the treatment of allergic

sensitizations, however of limited use in severe or uncontrolled

asthma. Targeting specialized treatment regimens, individual

genetics, environment, and lifestyle must be incorporated in

therapeutic decision-making (91). These include comprehensive

and accurate allergy diagnostic testing tools, a better

understanding of the mechanisms, the identification of

biomarkers to predict and monitor response, and the

development of safe, effective, affordable and convenient

treatments (91). In addition to changes in decreased allergen-

specific IgE and increased allergen-specific IgG production, AIT

has been associated with several other immunological events,

including alterations in allergen-specific T- and B-cell

population and associated cytokine responses, production of

antibodies capable of blocking allergen presentation, thought to

be of the IgG4 subset, reduction in tissue eosinophils and mast

cells, as well as decreased basophil activation (91–93). Some

published works observed these immunological events take

place at different time points in the AIT course (93, 94). As

mast cell and basophil desensitization are early events in AIT

treatment, they are followed by the induction of IL-10

producing T and B regulatory cells that induce a B cell isotype

switch that shifts the immunoglobulin production from IgE to

IgG. There is also a shift in cytokine production which results

in suppression of effector type 1 and type 2 cells reflecting the

antagonistic cytokine pattern (1, 93, 95). These changes in the

cytokine milieu are in turn affecting also e.g. the airway

epithelium, which was shown to express an antagonistic

response following a cytokine-dependent polarization (1, 2, 93).
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FIGURE 1

MicroRNA interactions in allergic inflammation and allergen-specific immunotherapy (AIT). Several miRs play a crucial role in regulating multiple
processes and characteristics of allergy-associated disease pathology. Deregulation of multiples miRs affects to inflammatory processes, Th1/Th2
response balance, cytokine, chemokine, lipid mediator production, and remodelling processes. However, miRs up-regulated by immunotherapy
such as Let-7d or miR-143 can also alleviate airway inflammation and decrease pro-allergic cytokine production by promoting regulatory T cells
(Tregs). These miRs directly inhibit type 2 key mediators such as IL-13. Further, negative regulatory association of miR-3935 and its predicted
target gene, the PGE2 receptor EP3, revealed this miR as a potential AIT-mediated mechanism in the airways of AA patients. Moreover, there is
also evidence for miRs targeting regulatory factors of asthma such as ADAM33.
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AIT has been used in clinical practice for more than 100 years,

and although it has been used very successfully to treat severe

insect sting reactions with a response rate of approximately

90%, it has variable responses in patients with respiratory

allergies and is considered moderately effective (96). However,

considering this fact, it must be taken into account that the

efficacy of therapy for insect venom allergy and allergies to

inhaled allergens are assessed in different ways. Insect venom

allergy is a disease with infrequent or even absent allergen

exposure for years and the efficacy of VIT is assessed based on

the lack of systemic sting reaction. In contrast, allergies to

inhalant allergens are characterized by seasonal or perennial

allergen exposure, and treatment efficacy is assessed based on a

symptom and/or medication score. Due to these differences,

the efficacy of VIT and AIT with inhalant allergens is difficult

to compare in a purposeful manner. With the advent and rapid

development of miR technologies, the question of AIT efficacy

in airway diseases and its biomarkers thas been revisited in

several studies. Specjalski et al. determined the expression of 48

miRs in whole blood samples from 16 allergic rhinitis (AR)
Frontiers in Allergy 07
patients receiving grass pollen AIT and seven healthy controls

to establish the possible correlation between miR upregulation

and clinical outcomes (97). AR patients showed upregulation of

miR-136, miR-208, and miR-190 compared to healthy controls,

but no differences between good and poor responders were

observed after six months of treatment, despite the overall

reduction in pro-inflammatory miRs.

Recently, Jakwerth et al. sought to decipher the effects of

grass pollen AIT on miR expression in the sputum of AR

patients with or without asthma (98). While over two thousand

miRs were upregulated in patients compared to controls, this

number was only four in AIT-treated individuals. The

prostaglandin EP3 receptor, which is the target of one of those

upregulated miRs, was downregulated in AIT-treated compared

to untreated patients. Of note, PGE2 levels were elevated even

in the AR group, decreased after AIT, and correlated with type

2 markers in sputum and symptom severity.

Although miR-based approaches have enabled considerable

progress in improving our understanding of the role of finely

tuned mechanisms regulating gene expression in health and in
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TABLE 2 Micro-RNAs involved in pathogenic mechanisms of allergen immunotherapy.

miRNA Potential function in pathomechanism Regulation by AIT References

let7d Decreased expression of TLR-4, IL-6, and IL-13 Up (104)

miR-18a Decreased levels in asthma Unchanged (104)

miR-23a Associated with tolerogenic dendritic cell activity and Treg responses Up (104)

miR-29c Differentiation of T cells, regulation of cell proliferation and apoptosis Up (104)

miR-34b Down-regulated in asthma Up (104)

miR-143 Stimulation of FoxP3, stimulates proliferation of CD25+ CD4+ lymphocytes, downregulated IL-13 Up (104, 116)

miR-182 Differentiation of Th17 cells Down (55, 104)

miR-190 Upregulated in allergic rhinitis Down (97)

miR-204 Regulates bronchial smooth muscles cells proliferation Up (100, 105)

miR-208 Upregulated in allergic rhinitis Down (97)

miR-299 Downregulated in asthma, Up (50, 100)

miR-342 Regulates Treg function, targets NFκβ Down (100, 108)

miR-375 Upregulation of TSLP in human bronchial epithelial cells, decreased by VIT Down (56, 104)

miR-379 Induced by IL-13, regulated cell surface receptor linked signal transduction Up (100, 106)

miR-485 Upregulated in asthma; modulated the TGF-β/SMAD3 Signaling Pathway Down (100, 126)

miR-489 Upregulated in mice model of allergic rhinitis Down (100, 122)

miR-601 Upregulated in allergic rhinitis Unchanged (104)

miR-628 Controls TLR signaling Up (100, 131)

miR-643 Regulates expression of IL-17 Down (104, 128)

miR-1201 Upregulated in allergic rhinitis Unchanged (104)

miR-1303 Regulates gene ADAM33, which is related to bronchial hyperreactivity Up (59, 104)

miR-136 Upregulated in allergic rhinitis Down (97)

miR-3176 Downregulated in asthma Up (98, 132)

miR-3935 Mediated AIT effects through suppression of the PGE2-PTGER3 axis Up (98)

miR-4664-3p Linked with HIF1A Up (98, 133)

miR-6824-3 Associated with TLR pathway genes Up (98, 134)
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a variety of allergic diseases, there remains an unmet need for

large-cohort double-blind placebo-controlled AIT studies to

determine which miR signatures are the most promising

candidates for identifying therapy responders and predicting

treatment outcomes in the clinical practice.
Non-coding RNAs in venom-specific
immunotherapy

Like AIT with inhalant allergens, venom-specific

immunotherapy (VIT) is a highly effective causative treatment for

allergy that can restore allergen tolerance and protect the patients

against future potentially fatal allergic sting (99). In contrast to

allergy e.g. to airborne allergen sources, venom allergy is not

considered an atopic disease. To date, very few studies addressed

changes in the expression of miRs over the course of VIT (Table 2).

A 2016 study examined the changes in 740 miRs 24 h after

completion of the up-dosing phase of VIT using an ultra-rush

protocol in seven patients with yellow jacket venom allergy

(100). Out of the 740 miRs, 440 could be detected in the

peripheral blood of the patients. Five miRs had significantly
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altered expression 24 h after completion of the up-dosing phase

compared to baseline. A significant increase was observed for

miR-299 and miR-29c and significant decreases for miR-370,

miR-539, and miR-502-3p, none of which were previously

mentioned in the context of allergen-specific immunotherapy.

Interestingly, the miR-29 family is expressed in T and B cells

and thus might be involved in a variety of immunological

responses (101, 102), while miR-502-3p is induced by IL-4

(103). In addition, the same study found another 62 miRs that

changed 2-fold in some patients, although these changes were

not significant. Nevertheless, these miRs could be interesting

candidates in connection with the protective effect of VIT,

since they are associated with e.g. stimulation of FoxP3

expression and CD4 +CD25+ lymphocyte proliferation (up-

regulation of miR-143) or inhibition of IL-13 and IL-13Rα1

expression (up-regulation of let-7d and miR-143) (58, 73).

In a follow-up study, the same authors addressed changes in

miR expression after three months of the maintenance phase in

5 patients with yellow jacket venom allergy (104). At this time

point, six miRs showed significantly lower and 11 higher

expressions compared to the baseline before the start of VIT.

Again, it was found that miR-143 and let-7d are up-regulated
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by VIT. Additionally, among the most upregulated miRs was

miR-34b, which has been shown to be downregulated in

asthma (38) and suppressed by IL-13 (48). Other upregulated

miRs included amongst others miR-1303, which regulates

ADAM33 (59), miR-204, which regulates bronchial smooth

muscle cell proliferation (105), miR-299, which is down-

regulated in asthma (49), IL-13-induced miR-379 (106) and

miR-485 up-regulated in asthma (102). Significantly down-

regulated miRs included miR-182, which promotes clonal

expansion of activated Th cells and regulates Treg function

(12, 107), miR-342, which regulates Treg function (108), and

miR-375 up-regulated in bronchial epithelial cells during

pollutant-induced asthma exacerbations (56).

Limitations of the studies described above in elucidating

potential miR-associated mechanisms contributing to the high

therapeutic efficacy of VIT and long-lasting allergen tolerance

include the small patient numbers and early sampling time

points. Karpinski et al. compared the expression pattern of

2549 miRs from 13 patients with venom allergy one year after

the start of VIT with the baseline values before VIT (109).

Here, both correlation and principal component analysis

indicated a limited effect of VIT on the overall miR

expression pattern. After 12 months of VIT, the expression

pattern in whole blood was broadly similar to that observed

before VIT. Taking into account the differences between the

studies, the authors conclude that the short- and long-term

effects of VIT on the miR pattern appear to differ. Therefore,

larger controlled studies are needed to examine the

contribution of miRs to the tolerogenic effects of VIT in both

immediate and long-lasting effects.
Conclusion

New techniques have led to major advances in the field of

miR research, resulting in a deluge of information and long

lists of potentially interesting miRs. However, mechanistic

studies on miR targeting and function are often lacking.

Furthermore, miRs alone may not or only rarely be the key to

explaining the pathology of asthma or allergic diseases, so that

complex interaction networks are required to elucidate the

pathogenesis of diseases and their heterogeneity. The

expression of miR in certain cell populations, in defined

disease states, in therapy models and in certain phenotypes

must also be researched intensively to decode the

pathophysiological consequences of altered miR expression,

for example in allergic diseases. However, this review article

summarizes the critical role of miR in the pathogenesis of

asthma and allergic diseases and their associated
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comorbidities, making them interesting targets for therapeutic

interventions such as allergen-specific immunotherapy. Since

asthma and allergies are very heterogeneous diseases and

current treatments are still ineffective in controlling severe

forms of these diseases, there is a great need for precise and

more effective therapies based on a deep understanding of the

disease-underlying mechanisms. Interest in using miR profiles

as biomarkers in lung diseases continues to grow. However, in

order to implement the use of miRs as biomarkers, they

should be very specific for certain signaling pathways or sub-

cell types that, through their association with the disease or

therapy underlying mechanisms, allow for a more detailed

characterization of particular disease phenotypes. The position

that the individual miRs can have in the hierarchy as

biomarkers for predicting the course of a disease or the

response to therapeutic interventions must be clarified in the

coming years.
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