

A Simple Test Case for Error Reduction of Black-Box Coupling Schemes

Valentina Schüller¹, Benjamin Rodenberg¹, Benjamin Uekermann², Hans-Joachim Bungartz¹

¹Technische Universität München, Department of Informatics

²University of Stuttgart, Usability and Sustainability of Simulation Software

9th GACM Colloquium on Computational Mechanics Essen, September 22, 2022

Why black-box coupling?

Why study the numerics of coupling schemes?

- order degradation: the coupling scheme can decrease the achievable convergence order in time
- additional impacts on stability, energy conservation

 \Rightarrow isolate and study these phenomena systematically (this talk)

 \Rightarrow support more sophisticated black-box coupling schemes in preCICE (\rightarrow Outlook)

The oscillator example

$$\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{pmatrix} \ddot{u}_1 \\ \ddot{u}_2 \end{pmatrix} + \begin{bmatrix} k_1 + k_{12} & -k_{12} \\ -k_{12} & k_2 + k_{12} \end{bmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = 0$$

or, in shorthand notation,

$$M\ddot{\mathbf{u}} + K\mathbf{u} = 0$$

some properties of this system:

- analytical solution simple to compute
- energy conservation

The oscillator example: Convergence study

4 time integration methods:

- $O(\Delta t)$: semi-implicit Euler (SIE)
- $O(\Delta t^2)$: implicit midpoint
- $O(\Delta t^2)$: Newmark- β
- $O(\Delta t^4)$: classical Runge-Kutta (ERK4)

decreasing time step sizes Δt

measure error w.r.t. analytical solution $||e||_{\infty}$

The oscillator example: Partitioned system

$$\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{pmatrix} \ddot{u}_1 \\ \ddot{u}_2 \end{pmatrix} + \begin{bmatrix} k_1 + k_{12} & -k_{12} \\ -k_{12} & k_2 + k_{12} \end{bmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = 0$$

Idea: cut through the connecting spring k_{12}

 \Rightarrow interface forces and two decoupled initial value problems:

$$m_1 \ddot{u}_1 = -(k_1 + k_{12})u_1 + F_2(t)$$

$$m_2 \ddot{u}_2 = -(k_2 + k_{12})u_2 + F_1(t)$$

with $F_{i}(t) = k_{12}u_{i}(t)$

Naive coupling: A parallel scheme

conventional parallel staggered (CPS) scheme (Farhat and Lesoinne 1998) achievable convergence order: $O(\Delta t)$

Naive coupling: A parallel scheme

conventional parallel staggered (CPS) scheme (Farhat and Lesoinne 1998) achievable convergence order: $O(\Delta t)$

Strang splitting

achievable convergence order: $O(\Delta t^2)$ (Strang 1968)

Strang splitting

achievable convergence order: $O(\Delta t^2)$ (Strang 1968) \Rightarrow What is surprising?

Waveform iterations

 $m_1 \ddot{u}_1 = -(k_1 + k_{12})u_1 + \mathbf{F_2}(\mathbf{t})$ $m_2 \ddot{u}_2 = -(k_2 + k_{12})u_2 + \mathbf{F_1}(\mathbf{t})$

new approach: (Rüth et al. 2018, 2021)

- exchange polynomial interpolants of boundary terms (F₁, F₂) instead of single values
- initial guess: constant interpolation
- *iterate* until convergence

Waveform iterations: Convergence study

here: implementation with linear interpolant

Waveform iterations: Convergence study

here: implementation with linear interpolant

Energy Conservation

$$E = \frac{1}{2} \dot{\mathbf{u}}^T M \dot{\mathbf{u}} + \frac{1}{2} \mathbf{u}^T K \mathbf{u}$$

 \rightarrow visualize the solution in phase space

 \rightarrow use methods with good energy conservation properties (semi-implicit Euler, implicit midpoint)

Energy Conservation

Summary & Outlook

- coupling schemes and time integration methods interact
- simple coupling schemes lead to order degradation and worse behavior regarding energy conservation most of the time
- Strang splitting is a cheap way to get a better solution in both aspects most of the time
- waveform iterations are an expensive way to get a better solution *reliably*
 - more potential for applications with multiscale characteristics (cf. slide 17)

Summary & Outlook

- coupling schemes and time integration methods interact
- simple coupling schemes lead to order degradation and worse behavior regarding energy conservation most of the time
- Strang splitting is a cheap way to get a better solution in both aspects most of the time
- waveform iterations are an expensive way to get a better solution reliably
 - more potential for applications with multiscale characteristics (cf. slide 17)

 \Rightarrow experimental linear waveform iterations are already part of preCICE v2.4 \Rightarrow quadratic, cubic,... waveform iterations will be part of preCICE v3 (\sim start of 2023) more info + tutorials: https://precice.org/, or talk to me!

Full paper

"A Simple Test Case for Convergence Order in Time and Energy Conservation of Black-Box Coupling Schemes." Schüller et al. 2022, DOI: 10.23967/wccm-apcom.2022.038.

Thank you!

Questions?

References / Further Reading

- Farhat, Charbel and Michel Lesoinne (Jan. 1998). "Higher-Order Staggered and Subiteration Free Algorithms for Coupled Dynamic Aeroelasticity Problems". In: *36th AIAA Aerospace Sciences Meeting and Exhibit*. Reno, NV, USA: American Institute of Aeronautics and Astronautics. DOI: 10.2514/6.1998-516.
- Rüth, Benjamin et al. (2018). "Time Stepping Algorithms for Partitioned Multi-Scale Multi-Physics in preCICE". In: ECCOMAS ECFD-ECCM 2018. Glasgow, UK, p. 12.
- Rüth, Benjamin et al. (2021). "Quasi-Newton Waveform Iteration for Partitioned Surface-Coupled Multiphysics Applications". In: International Journal for Numerical Methods in Engineering 122.19, pp. 5236–5257. ISSN: 1097-0207. DOI: 10.1002/nme.6443.
- Schüller, Valentina et al. (July 2022). "A Simple Test Case for Convergence Order in Time and Energy Conservation of Black-Box Coupling Schemes". In: *WCCM-APCOM 2022*. Yokohama, Japan. DOI: 10.23967/wccm-apcom.2022.038.
- Strang, Gilbert (Sept. 1968). "On the Construction and Comparison of Difference Schemes". In: SIAM Journal on Numerical Analysis 5.3, pp. 506–517. ISSN: 0036-1429, 1095-7170. DOI: 10.1137/0705041.

Appendix

The oscillator example: Analytical solutions

Valentina Schüller (TUM) | September 22, 2022 | A Simple Test Case for Error Reduction of Black-Box Coupling Schemes

Naive coupling: A parallel scheme with iterations

Fixed-point iterations over the CPS scheme:

 $\left\|\left(u_{i}^{n+1}\right)^{k+1}-\left(u_{i}^{n+1}\right)^{k}\right\|\leq\varepsilon.$

"implicit CPS" (Farhat and Lesoinne 1998) Achievable convergence order: $O(\Delta t)$ (but higher stability)

Naive coupling: A parallel scheme with iterations

Fixed-point iterations over the CPS scheme:

 $\left\|\left(u_{i}^{n+1}\right)^{k+1}-\left(u_{i}^{n+1}\right)^{k}\right\|\leq\varepsilon.$

"implicit CPS" (Farhat and Lesoinne 1998) Achievable convergence order: $O(\Delta t)$ (but higher stability)

 \Rightarrow What happened here?

