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Abstract
We study a variety of quantum many body systems characterized by local Z2
gauge invariance. In one spatial dimension we focus on quantum phases of single-
component fermions, with particular attention to confinement of U(1) symmetric
matter and edge physics of a Z2 gauged version of Kitaev’s chain. In certain
strongly coupled limits these systems are described by an emergent constrained
integrable model, which we study in great detail. The same model emerges as
a particular integrable sector of the Ising chain in a weakly tilted field, which
allows to obtain exact results about its late times dynamics by means of the
generalized hydrodynamics. In two spatial dimensions we discover that the interplay
between spinless fermions and Z2 gauge fields results in an intricate quantum phase
diagram. This includes a dimerized Mott insulating state, a Dirac-deconfined phase
and a regime where all the particles combine into large, slowly moving clusters.
At half filling we find signatures of a novel type of quantum criticality, where
confinement and translational symmetry breaking occur simultaneously. From the
methodological point of view, in this thesis we develop a local mapping between Z2
gauge theories with matter and gauge-invariant spin 1/2 systems. This provides
new conceptual insight and significant computational advantages. The models
that we study have relevant applications in the rapidly evolving field of digital and
analog quantum simulation.





Kurzfassung
Wir untersuchen eine Vielzahl von Quantenvielteilchensystemen, die durch lokale
Z2-Eichinvarianz gekennzeichnet sind. In einer Raumdimension konzentrieren
wir uns auf Quantenphasen von Einkomponenten-Fermionen, mit besonderem
Augenmerk auf den Einschluss von U(1)-symmetrischer Materie und die Randphysik
einer Z2-geeichten Version der Kitaev-Kette. In bestimmten, stark gekoppelten
Grenzfällen werden diese Systeme durch ein emergentes, beschränkt integrables
Modell beschrieben, das wir sehr detailliert untersuchen. Dasselbe Modell taucht
als ein besonderer integrabler Sektor der Ising-Kette in einem schwach geneigten
Feld auf. Dies ermöglicht es, mit Hilfe der verallgemeinerten Hydrodynamik, exakte
Ergebnisse über seine Spätzeitdynamik zu erhalten. In zwei Raumdimensionen
entdecken wir, dass das Zusammenspiel zwischen spinlosen Fermionen und Z2-
Eichfeldern zu einem komplizierten Quantenphasendiagramm führt. Dazu gehören
ein dimerisierter Mott-Isolatorzustand, eine Dirac-Deconfinement Phase und ein
Zustand, in dem sich alle Teilchen zu großen, sich langsam bewegenden Clustern
zusammenschließen. Bei halber Füllung finden wir Anzeichen für eine neuartige
Quantenkritikalität, bei der Confinement und Translationssymmetriebrechung
gleichzeitig auftreten. Aus methodischer Sicht entwickeln wir in dieser Arbeit ein
lokales Mapping zwischen Z2-Eichtheorien mit Materie und eichinvarianten Spin-1/2
Systemen. Dies bietet neue konzeptionelle Einsichten und erhebliche rechnerische
Vorteile. Die von uns untersuchten Modelle haben relevante Anwendungen auf dem
sich schnell entwickelnden Gebiet der digitalen und analogen Quantensimulation.
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Chapter 1

Introduction

1.1 Overview
This thesis revolves for the most part around a specific type of many-body quantum
systems, namely Z2 lattice gauge theories1 (LGT) in one and two spatial dimensions.
Depending on their background, the reader might find the subject somewhat
mundane at first sight. Why even consider the Z2 group, when our universe is
understood in terms of the intricate non-abelian gauge groups that underlie the
Standard Model of particle physics? To our luck, years of research revealed that
models with Z2 gauge symmetry are far from trivial, and can be of interest to
a very broad audience. To the high energy physicist elementary examples of
gauge theories -with simpler gauge groups or in lower dimensions- can provide
useful insight into mechanisms of confinement, that resemble the phenomenology of
quantum chromodynamics (QCD). From the condensed matter physicist point of
view these models find applications in the theory of high-Tc superconductors and,
more in general, in the description of fractionalized phases of matter where the Z2
gauge redundancy can be attributed to the splitting of the constituents into partons
that behave independently. More recently, Z2 LGT emerged as paradigmatic
examples of systems exhibiting quantum topological order, a discovery that deeply
influenced our way of classifying quantum phases of matter. In this context, they
emerge naturally as a description of the low-energy properties of gapped Z2 spin
liquids. Together with a number of exotic phenomena that characterize strongly-
correlated quantum systems, topological order is manifestation of emergence [1].
This fascinating concept is the statement that the behavior of a large number
of interacting particles2 cannot be traced back in any meaningful way to the
constituents, but rather exhibits entirely new phenomenology that arises from
their interplay. Popular examples of this principle are Bose-Einstein condensates,
superfluids/superconductors and the fractional quantum Hall effect.

Another connection to a thriving area of research is given by the emergence of
quantum integrable models as limits of one dimensional Z2 lattice gauge theories.
This allows to extract an unexpected amount of exact results and apply powerful

1These are often referred to as Ising lattice gauge theories in the literature, for reasons that
will soon become apparent.

2Of the order of the Avogadro number NA ≈ 6 · 1023.
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Chapter 1. Introduction

analytical tools to obtain physically relevant information about quantum dynamics.
The modern understanding of many-body systems relies heavily on their rich
entanglement structure. Indeed, a now ubiquitous perspective that originates
form quantum information theory aims at representing quantum states as tensor
networks (TN), i.e. graphs of tensors that encode symmetries and local degrees
of freedom. Besides its conceptual relevance this representation proved to be an
exceptional computational tool, and it is at the heart of many numerical algorithms
which enormously increased our ability to tackle many-body systems. Even in this
context, Z2 lattice gauge theories are in the spotlight. Due to their discrete nature
and small local Hilbert space, they are natural candidates to test theoretical and
numerical advances of tensor network based techniques. While in this thesis details
about numerical methods are relegated to the appendix, many of the results that
we present would not be possible without the tremendous progress made by the
community in the recent years.

Having conveyed to the reader the theoretical importance of such models, we
now turn to their experimental realizations. At the present time a considerable
effort is directed towards the analog simulation of condensed matter systems. This
has rapidly evolved into an extremely rich experimental field, which employs a wide
array of ingenious methods to reproduce specific interacting quantum systems in
the controlled environment of a laboratory. The most successful implementations
involve ultracold atoms in optical lattices, trapped ions or Rydberg atoms. While
quantum simulation is by no means limited to LGT, one of its most ambitious
goals is to simulate gauge theories which are relevant to the Standard Model of
particle physics. Such goal can only be achieved step by step, and a successful
implementation of Z2 lattice gauge theories in more than one dimension can
constitute a significant breakthrough.

A bird’s-eye view of this thesis
The rest of this introductory chapter aims at giving the reader some necessary
background information, so that our results can be understood under a more
general perspective. We first provide some relevant historical information, starting
with how gauge theories developed in the context of fundamental interactions and
then focusing on their condensed matter applications. Chapter 2 is dedicated to
one-dimensional Z2 lattice gauge theories, and it includes an introduction to the
most relevant technical aspects. Chapter 3 can be seen as a slight detour from
the main theme of the thesis, since it focuses on a particular integrable model, a
constrained version of the celebrated XXZ chain. This model plays a prominent
role in our research, since it emerges in certain limits of Z2 lattice gauge theories
but also as an integrable sector of the Ising chain in a tilted field. In Chapter 4 we
move on to two dimensions. Here we introduce some of the most relevant models
in the literature, including Franz Wegner’s pure Z2 LGT and systems where the Z2
gauge fields mediate interactions between (hardcore) bosonic and fermionic matter
fields. In the last section of the chapter, we give an account of our original results
and unveil the intricate phase diagram of a model which was unexplored until now.
To conclude, Chapter 5 is dedicated to a powerful and fascinating analytical tool,
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1.2. Gauge theories: development and generalities

i.e. the duality between Z2 LGT and spin 1/2 systems. We provide details on such
mapping, and highlight its usefulness in a number of contexts.

1.2 Gauge theories: development and generalities
It is safe to say that gauge theories are a cornerstone in our understanding of
Nature. The Standard Model of particle physics, which describes to unprecedented
accuracy the electromagnetic, weak and strong interactions, is the prime example
of gauge theory [2–4]. Local gauge invariance appears, in a different guise, in
Einstein’s theory of gravity, the General Relativity [5]. It is therefore no surprise
that the concept plays a key role in the frontiers of research, which try to combine
what we know about phenomena that occur on infinitely small and infinitely large
length scales. Such “theories of everything” include String Theory [6] and Loop
Quantum Gravity [7]. While gauge theories can be regarded as the undisputed
protagonists of 20th century physics, they roots are even older and can be traced
back already to Maxwell’s equations.

1.2.1 Gauge invariance in classical electrodynamics
The first instance of gauge invariance appeared historically in the context of classical
electrodynamics [8]. It follows from this observation: the equations expressing the
electric and magnetic fields in terms of potentials,

E = −∇ϕ− ∂A
∂t

B = ∇ × A, (1.1)

are invariant under the local transformation

A → A + ∇f ϕ → ϕ− ∂f

∂t
(1.2)

where f is an arbitrary scalar function of coordinates and time (hence the local
character of the transformation). In the four-dimensional Lorentz invariant notation,
where the scalar and vector potentials are combined into a four-vector Aµ = (ϕ,A),
this reads Aµ → Aµ + ∂µf , i.e. the electromagnetic potential is defined up to a
total divergence.

Understandably, at this stage it is hard to see gauge invariance as something
more than a mathematical curiosity characterizing the solutions of Maxwell’s equa-
tions. Indeed, it took a long time to appreciate how this innocuous transformation
provides an extremely powerful guiding principle in the formulation of the most
successful theories of fundamental interactions. A first application of this principle
in a broader context was made by Hermann Weyl, in an unsuccessful attempt to
unify electromagnetism with gravity [9].3 The picture started to become clearer
in the context of Lagrangian field theory, where symmetries are operations that
leave the action of the system invariant. Since the subsequent quantum theories

3This is also where the expression gauge is first used.
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Chapter 1. Introduction

rely on this approach, let us quickly review it in its classical version.4 The electric
and magnetic fields can be combined into the rank two antisymmetric space-time
tensor

Fµν = ∂µAν − ∂νAµ (1.3)

whose components correspond to different spatial components of E and B.5 The
Lagrangian for the pure Maxwell theory (without any sources) reads

LEM = −1
4FµνF

µν = E2 − B2

2 . (1.4)

From this, the celebrated Maxwell’s equations can be derived using the principle
of least action. The gauge invariance of LEM follows from the manifest gauge
invariance of (1.3). A crucial point is to be made here. While it is perfectly possible
to express LEM in terms of the physical fields E and B, we choose to give more
importance to the most elegant and compact description in terms of the potential
Aµ, which we refer to as a gauge field. While here this choice appears to be merely
aesthetic, it turns out that Aµ is the object that naturally couples to matter fields6

and it is in this sense to be preferred. This has deep implications: the “best”
description of Nature we can think of is not directly in terms of the electric and
magnetic fields that we experience everyday, but rather of the unphysical object Aµ.
But gauge field configurations related by the transformations (1.2) are physically
equivalent: in exchange for formal simplicity, we have accepted to describe our
universe with redundant degrees of freedom.

1.2.2 Quantum electrodynamics
The advent of quantum physics brought up the revolutionary idea that particles
can sometimes have wave-like character and vice-versa. For instance, by zooming in
sufficiently, one will see that electromagnetic radiation is constituted by elementary
quanta, the photons. Indeed, the modern understanding is that all elementary
forces are mediated by bosonic particles which are quanta of the corresponding
gauge fields. These are the photons for electromagnetism, the W± and Z bosons
for the weak interactions and gluons for the strong interactions [2, 4].7 How to
fit the wave-particle duality of quantum mechanics into the relativistic setup that
electromagnetism entails was however far from clear. After considerable efforts
it was understood how to correctly quantize free photons and electrons [10], but
a theory describing the interactions between light and matter was still plagued
by serious theoretical problems. While systematic methods were developed [11]
to “canonically” quantize Lagrangian theories by going through the Hamiltonian
formalism first, the resulting models did not seem to make physical sense. In

4The following review is by no means exhaustive, and serves the sole purpose of making
the historical discussion less abstract. In particular we will be very cavalier when it comes to
prefactors and indexes. The reader should refer to the cited literature for details.

5One can easily verify this by using equations (1.1). For instance Ftx = ∂tAx − ∂xϕ = Ex.
6For instance, the coupling to a classical current jµ takes the form δL = Aµj

µ.
7Matter fields, on the other hand are all described by fermionic fields. These are the leptons

and quarks.
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1.2. Gauge theories: development and generalities

particular, they returned divergent results for many relevant observables such as
scattering amplitudes. This so called “problem of infinities” was resolved (and just
partially understood) only later, with the development of a perturbative scheme
able to handle the aforementioned divergences [12–15].

The modern, textbook approach is to introduce quantum electrodynamics
(QED) as the quantum field theory described by the Lagrangian [2, 3]

LQED = −1
4F

µνFµν + ψ̄ (iγµ∂µ − γµAµ −m)ψ (1.5)

where ψ is a spinor field representing fermionic matter (electrons), m is the mass of
the electron and γ a set of Dirac matrices. We can recognize in it terms for the free
photons and electrons, i.e. the Maxwell and Dirac Lagrangians. As anticipated,
interactions are described by the coupling of the fermionic current jµ = ψ̄γµψ to
the gauge field Aµ. If we insist on maintaining the gauge invariance of the model,
we must specify how a local gauge transformation acts on the matter fields. It can
be verified that the Lagrangian (1.5) is invariant under

Aµ → Aµ + ∂µf(x), ψ → eif(x)ψ, (1.6)

i.e. a local change in the phase of the matter fields does not affect the physics.
This brings up a different, fascinating way of interpreting gauge transformations.
The original theory describing free fermions8 enjoys a global U(1) symmetry,
corresponding to the conservation of total particle number.9 In QED this global
symmetry is “promoted” to a local one, and this can only be done by coupling it to
new degrees of freedom - the gauge fields.10 This is precisely the guiding principle
that inspired the development of non-Abelian gauge theories. It is however far from
clear why Nature behaves this way. So far, nobody has been able come up with a
good physical reason why the fundamental equations ruling our universe should be
invariant under specific local transformations. Before moving to the next section,
let us make one more observation. A fundamental requirement for a sensible theory
of electrodynamics is that it must predict the masslessness of photons, which is
tested experimentally to great accuracy. A mass term for the photon would take
the form m2

p A
µAµ, and it is not forbidden by general principles11 unless we also

introduce gauge invariance as a requirement.

1.2.3 Non-Abelian gauge theories
Given the spectacular success of QED in describing electromagnetic interactions at
the quantum level, it is no surprise that gauge theories were natural candidates
for capturing the remaining fundamental interactions. While conceptually similar,
gauge theories with non-Abelian gauge groups pose significant mathematical
challenges. Their structure was clarified by Yang and Mills in 1954 [17], who

8We can also include density-density interactions between fermions.
9This is a consequence of Noether’s theorem [16], which we will not review here.

10In section 2.1.1 we will see how this works concretely, by applying these ideas to the simple
case of 1d QED on the lattice.

11These general principles are Lorentz invariance and renormalizability.
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Chapter 1. Introduction

paved the way for the Standard Model as we know it today. The path in this
direction was however far from linear. As a first obstacle, it was long known
that the weak interaction must be mediated by massive particles12, while the
gauge fields of Yang-Mills theories are necessarily massless -for the same reasons
outlined above in the context of QED. The solution to this conundrum came by
adapting the concept of spontaneous symmetry breaking (SSB) to gauge theories.
While models with global continuous symmetries can exhibit proper spontaneous
symmetry breaking, which leads to massless Goldstone bosons in the spectrum
of the theories, this cannot happen in gauge theories. However, if an additional
scalar (Higgs) field is present, SSB in this sector of the model can result in the
absence of Goldstone bosons and in the gauge fields acquiring a mass instead
[18–21]. This phenomenon, known as the Higgs mechanism, finds applications
well outside the realm of high energy physics and it is used -most notably- to
explain superconductivity.13 Yang-Mills theories, on the other hand, provided a
natural solution to the problem of asymptotic freedom of the strong interactions,
i.e. the fact that the strong interaction between quarks actually becomes weak at
large enough energies [22, 23]. After the smoke cleared up, a surprisingly elegant
description emerged. The electromagnetic and weak interactions are combined
into a model with gauge group U(1) × SU(2), the electroweak theory. The strong
interaction is captured by quantum chromodynamics, an SU(3) gauge theory.
These models, together with the Higgs field that gives mass to the W and Z bosons
of the weak interactions, form the Standard Model of particle physics.

1.2.4 Gauge theories on the lattice
This thesis deals for the most part with gauge theories which are defined on a lattice.
While this approach is to some extent natural when dealing with condensed matter
applications where a real lattice exists, the same is not true for the models describing
the fundamental interactions. To the best of our knowledge, the spacetime in which
we live is not discretized and a lattice is only introduced for computational purposes.
In the ’70s the Standard Model was laid out and has not evolved significantly
since then. While the theory gave fantastic agreement with experiments whenever
perturbative results were available, little was known about the strongly coupled
regime where -for instance- quarks are confined into mesons and baryons. In was
in this context that the lattice approach was developed, first as a tool to perform
systematically some analytical calculations and then as a powerful computational
method [24, 25]. Indeed, since in LGT the models are naturally regularized by
discretizing the path integral, they are extremely suitable for numerical simulations.
The ability to run such calculations improved immensely with the development of
quantum Monte Carlo algorithms, that exploit the formal analogy between path
integrals and partition functions to evaluate observables through random sampling.

12Vector bosons, in the gauge theory language.
13The subject of spontaneous symmetry breaking in the context of superconductivity is a

subtle one. The first theories of superconductivity did not emphasize this point of view, and even
now it is often explained in terms of SSB of a global U(1) symmetry leading to a Landau order
parameter.
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The success of these methods is testified for instance by precise computation of
masses of mesons and baryons, but several challenges remain unsolved [26, 27].
In general, discretization of spacetime -which makes the number of degrees of
freedom finite- is a necessary step for most numerical methods, including exact
diagonalization and tensor networks. Lattice gauge theories are a complex subject
that presents many subtleties that are beyond the scopes of this thesis. Among
other things meaningful comparison with high-energy physics experiments requires
taking the continuum limit, which involves a complicated renormalization group
analysis. Besides, the choice of fermionic matter fields brings up the notorious
problem of fermion doubling, that occurs when putting chiral fermions on the
lattice [28, 29]. Workarounds are required if one is interested in recovering the
Dirac equation in the continuum, as it is the case for example in the study of
the lattice Schwinger model. This is usually achieved by the “staggered fermions”
method [24],14, although alternative approaches exists [27]. To our luck, none
of this is necessary from our perspective. The models that we study are mostly
motivated by condensed matter applications where the lattice formulation, and
not its continuum limit, is regarded as fundamental.

1.3 Development of Z2 lattice gauge theories
While lattice gauge theories rose to prominence in the mid-’70s, the model which
is most relevant to our purposes was discovered already in 1971 by Franz Wegner
[30] in a context which had little to do with high-energy physics. In the attempt
of generalizing the self-duality of the classical 2d Ising model to three dimensions,
Wegner realized that the dual model exhibited invariance under a set of local
transformations. While he did not use the term “gauge theory”, what he discovered
is exactly the Z2 model that lays the foundations of this thesis. Although the
Z2 lattice gauge theory was initially deemed too elementary to be of broader
interest, it turned out to be relevant for an unexpected reason. A cornerstone in
the understanding of continuous (i.e. second order) phase transitions is Landau’s
theory [31]. According to this paradigm, such transitions are characterized by the
spontaneous breaking of some symmetry, which leads to the non-zero expectation
value of a local order parameter in the ordered phase [32–34]. Examples of systems
which are accurately described in this way are ferromagnets and superfluids.
Wegner’s Z2 gauge theory, on the other hand, escapes this classification and
exhibits a continuous confinement transition between weakly and strongly coupled
regimes that is not characterized by a local order parameter. While this important
fact went under the radar for quite some time, it is now regarded as a fundamental
example of topological phase transition. Topology-related phenomena are now
ubiquitous in many-body physics, and the term “topological” itself is used at the
present time to refer to a number of distinct concepts. In this specific example, the
deconfined phase of Wegner’s Z2 lattice gauge theory is said to exhibit topological

14This amounts to introducing a mass term with alternating sign, and regarding particles
(antiparticles) as living on even (odd sites) of the chain. The models that we study can be easily
adapted to this approach, but the results and their interpretation may differ substantially.
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order [35]. This feature manifests itself in a degeneracy of the ground state on
manifolds with non-trivial topology (e.g. on a torus) and in the presence of
fractionalized anyonic excitations [33, 36]. In modern times, the list of systems
exhibiting quantum topological order has grown substantially and includes Kitaev’s
toric code [37] and several examples of quantum spin liquids [36, 38].

1.3.1 Z2 lattice gauge theories coupled to matter fields
As just discussed, the pure15 Z2 LGT is relevant on its own. However, as expected,
even richer phenomenology emerges when the model is coupled to matter fields.
Unsurprisingly, the first notable results in this direction came from the high-energy
community. The surge of interest in gauge theories defined on a lattice resulted in
a systematic study of different models. In a seminal paper Fradkin and Shenker
investigated in great generality lattice gauge theories with scalar Higgs matter
[39]. Their results included a variety gauge group and representations of the
matter fields, and covered generic spacetime dimensions, including the Z2 model
in d = 2 which is relevant for us.16 In this case, a Higgs field transforming in
the fundamental representation of the gauge group17 is nothing but a two-state
bosonic field, i.e. an Ising spin. Since the results contained in this paper are of
fundamental importance to the field, we review them in detail in Section 4.2.1 of
this thesis. Despite these early success, extensions including fermionic matter fields
were not pursued for a long period of time. On the one hand, from the numerical
point of view, the presence of fermionic fields was problematic for the quantum
Monte Carlo algorithms which were plagued by the infamous sign problem. On
the other hand, such models did not yet have an application in condensed matter
theory and the interest of high-energy physicists was concentrated elsewhere. This
changed drastically in the ’90s, when the struggle to explain exotic phenomena
such as high-Tc superconductivity [40, 41] paved the way to the exploration of
new theoretical models. In particular, Z2 gauge invariance showed up naturally
in the description of deconfined excitations carrying fractional quantum numbers.
This can be understood in the following way: we can indeed imagine splitting a
fermionic operator f †

s into two separate parts

f †
s = b†

s c
†, (1.7)

where b†
s creates a neutral boson with spin 1/2 while c† creates a spinless fermion

with unit charge.18 This approach explains why gauge theories emerge naturally
in this context. In Eq. 1.7 one can locally change the sign of both b† and c†

simultaneously without affecting the physical f -fermions. In certain contexts the
15We will use the term “pure” to refer to a gauge theory not coupled to matter fields throughout

this thesis.
16Throughout this thesis, we use d to denote the number of spatial dimensions. The spacetime

dimension is D = d+ 1.
17Which for the group Z2 is the only representation.
18This also serves as a possible justification to investigate systems with spinless fermions, which

become the relevant low energy degrees of freedom when the b-particles are gapped out. Note that
the splitting (1.7) is a choice, since the fermionic statistics can be attributed to either particle.
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electrons are believed to fractionalize, in the sense that spin and charge degrees of
freedom behave independently. Since a theory for the charge degrees of freedom
only should inherit the local sign flip invariance from the parent model, it must
take the form of a gauge theory. In 1999, Senthil and Fisher published a paper
showing how one such model captures the transition between an antiferromagnetic
Mott insulator and a conventional d-wave superconductor [42]. It was also shown
that similar models can be used to describe a number of exotic superconducting
and insulating phases.

Not long after, the already exciting classification of unconventional phases of
matter was further enriched by the introduction of new ideas. The exotic phase
diagram of the pure Z2 gauge theory forced a paradigm shift in the community,
and brought concepts such as topological order and anyonic excitations into the
game. The so-called orthogonal fermions, forming a fractionalized non-Fermi
liquid, provided another example of dynamical Z2 gauge fields coupled to fermionic
and Ising matter [43]. Substantial progress in our understanding of the quantum
phase diagram of a Fermi sea of spin 1/2 fermions interacting with dynamical Z2
gauge fields has been achieved by Gazit and collaborators thanks to sign-problem
free determinant quantum Monte Carlo studies [44–46]. Much like Fradkin and
Shenker’s, this work was of great inspiration for the research behind this thesis,
and is therefore reviewed in some detail in Section 4.2.2. In addition, in the
absence of a confining electric term, the interpolation between the gauged and
ungauged versions of this fermionic model has been studied recently in [47].19 The
phase diagram of the Z2 gauge theory interacting with gapless fermions, where
the Gauss law constraint is not imposed but emerges dynamically, was mapped
out in [48]. Other works include the study of exactly solvable deformations of the
two-dimensional Ising gauge theory coupled to fermions [49, 50], spinless fermion
matter interacting with dynamical Z2 gauge fields on a cross-linked Creutz-Ising
ladder [51], and isolated visons in a Fermi sea of Z2-charged anyons [52]. Even
more recent publications include [53] and [54].

The discussion so far has focused on Z2 LGTs in two spatial dimensions. His-
torically, this is not a coincidence. While one-dimensional models with continuous
gauge groups -such as the celebrated Schwinger model (QED2)- were studied by
the high-energy community since the beginning [55–66], Z2 gauge theories were
regarded as too trivial to be of interest, even from a purely theoretical point of
view.20 At the same time the physics of one-dimensional systems, such as the spin
chains which are so popular in the condensed matter community, was generally
well understood in terms of the Luttinger liquid paradigm [34, 67]. For this rea-
son, there was little need to resort to Z2 LGTs to explain phenomena of the real
world. This point of view has changed in the recent years. Somewhat curiously,
while from the high-energy physics perspective 1d LGTs are usually studied as
toy models of confinement, their interest for the condensed matter community is

19This is partially analogous to the investigation that we present in section 2.3.5, where we
interpolate between gauged and ungauged Kitaev chains.

20One of the reasons is that in 1d the Gauss law can be used to eliminate the gauge degrees of
freedom, at the price of introducing non-local interactions between matter fields. An example of
this is given in section 2.2.5.
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Chapter 1. Introduction

mostly related to the deconfined phase [68–71]. On one side, some developments
in the classification of quantum phases of matter brought Z2 gauge theories into
play, showing for instance how they fit into an intricate web of dualities [72, 73]
or emerge at deconfined quantum critical points [74]. Then, Z2 gauged model
turned out to be a fertile playground for some new ideas in quantum dynamics,
such as disorder-free localization [75] and quantum scars [76–83]. Related to this,
quantum integrable models are found to emerge as particular limits of Z2 lattice
gauge theories, creating an unexpected bridge between two apparently distant
communities [70, 84]. Last but not least, the rising interest in low dimensional
models is now motivated by experimental efforts in the field of quantum simulation.
We will have a glimpse at this vast area of research in the following section.

1.4 Quantum simulation of Z2 lattice gauge theories
As we just saw, historically the interest in Z2 lattice gauge theories coupled to
matter fields was mainly motivated by the investigation of fractionalized phases of
matter. In the recent years, however, a new surge of interest came from an entirely
different direction: quantum simulation [85–91]. Indeed, a remarkable effort is
being made to realize simple condensed matter models -including gauge theories-
in a number of different experimental platforms using quantum technologies. An
ultimate goal of such simulations is to realize in a controlled environment the
gauge theories which are most relevant to our understanding of the universe, such
as the Standard Model itself. Considerable technical challenges, however, make
it desirable to start from the simplest scenarios. This is where Z2 lattice gauge
theories in low dimensions come into play. Despite the inevitable simplifications
implied by the use of the simplest discrete gauge group, such models offer valuable
insight into phenomena such as confinement and fractionalization. Quantum
simulation schemes can be divided in two big families: analog and digital. Below,
we give a brief account of both approaches.

1.4.1 Analog quantum simulation
The idea that underlies analog quantum simulation is to map the Hamiltonian of
the physical system that one wants to investigate to a “simulator Hamiltonian”.
The latter describes a real quantum system that is implemented in the lab using
one of many schemes and whose parameters are to some extent controllable. An
analog quantum simulator is a dedicated device, in the sense that it is built with
the idea to simulate a specific quantum system. The most popular platform for
analog quantum simulation are ultracold atoms in optical lattices [92, 93]. Optical
lattices are spatially periodic structures created by the interference of laser beams.
The maxima and minima of the potential can be used to trap neutral atoms
exploiting the Stark effect, while tunneling and interactions between different
sites are achieved in a problem-dependent manner. Recent advances in laser
technology and quantum gas microscopy allowed significant progress in the field,
which resulted for instance in the successful simulation of the Bose-Hubbard [94, 95]
and Hofstadter [96] models. While simulation of gauge theories -as opposed to
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e.g. spin systems- is harder to achieve due to the additional degrees of freedom
and interactions, significant progress has been made [86, 97–99]. For instance,
pioneering experimental work [100] has led to the first simulation of string breaking
in the Schwinger model [55]. Particularly relevant to the subject of this thesis is
the proposal of a Floquet implementation for Z2 lattice gauge theories coupled to
dynamical matter [101–103]. Proof of principle experiments on a two component
mixture of ultracold atoms, simulating two hardcore bosons interacting through a
Z2 gauge field, have been performed [101]. Combining several of these structures
allows to simulate Z2 gauge theories on 1d chains or ladders, although control of
the parameters and the implementation of a plaquette term remains a challenge.
This field of research in in constant evolution, with proposals of new simulation
schemes and models to implement [102, 104, 105], and serves as an additional
motivation to our research.

1.4.2 Digital quantum simulation
Digital quantum simulation [106], on the other hand, consists in the simulation of a
system (for instance of its quantum dynamics) on a potentially universal quantum
computer. The latter is a machine that is capable of applying a certain set of
quantum gates21 to an arbitrary initial quantum state. For concreteness, one can
think of the initial state as a certain quantum state of a spin system22. Then, in a
typical digital quantum simulation, the machine modifies this state by applying a
sequence of local unitary operators. This corresponds usually, but not exclusively,
to a “discrete” time evolution governed by some Hamiltonian.23 While current
experimental efforts are limited by the small number of effective qubits that even
the most advanced quantum computers can sport, improvements are expected in
the near future. Research connected to the Z2 gauge theories which are relevant
for us is presented for example in [107–112].

21I.e. -for our purposes- one or two sites unitary operators.
22This is especially natural, since spins are the simplest example of qubits.
23The Hamiltonian evolution reads |ψ(t)⟩ = eiHt|ψ(0)⟩, and so the time evolution operator is

generally non-local. A procedure known as “Trotterization”, however, approximates it with a
product of local operators.
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Chapter 2

Z2 gauge theories in one spatial
dimension

This chapter is devoted to Z2 lattice gauge theories in 1 + 1 dimensions. Unlike
their two dimensional counterparts, in the absence of coupling to matter fields a
pure Z2 lattice gauge theory on the line can only be trivial, due to the absence
of a local Wilson loop.1 For this reason, we immediately jump to the formulation
of models where the gauge fields mediate interactions between particles, similarly
to the vector bosons of the Standard Model. Since the original results of this
thesis mostly concern theories with spinless fermionic matter, this will be the
natural choice throughout the discussion. While in relativistic quantum field
theories fermions are forced to have half-integer spin as a consequence of the spin-
statistics theorem [2], this is not the case in the non-relativistic framework typical
of condensed matter physics.2 In particular, in one dimension spinless fermions
are a ubiquitous computational tool due to the Jordan-Wigner transformation,
but also arise physically in contexts where the charge and spin degrees of freedom
separate and the latter are gapped out. A recurrent theme of our research work is
the duality between Z2 lattice gauge theories coupled to spinless fermions and spin
1/2 systems. As a matter of fact, this is so ubiquitous that we decided to devote
chapter 5 entirely to an in-depth analysis of the subject. While in the original
papers [70, 113–116], the two formulations are intertwined, in the present chapter
we stick to the gauge-theory perspective exclusively. This serves a dual purpose:
on the one hand it gives the reader a unified picture of our research, while on the
other hand it offers a slightly different take on the subject compared to the papers
to which we refer.

1This is also true for electrodynamics, and it corresponds to the known fact that there is no
magnetic field in one dimension. On the circle, a non-local Wilson loop can be defined, and it
measures the magnetic flux threading it.

2To our purpose, the statistics in encoded in the canonical anticommutation relations while
the (non-relativistic) spin is simply an internal degree of freedom. The two concepts are entirely
independent.
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Structure

This chapter is structured as follows: in section 2.1 we introduce gauge fields in
the familiar context of electrodynamics using the Hamiltonian formalism, and then
we specialize to the Z2 case. We omit general aspects that are already discussed in
the introduction to focus on the details that are more relevant to our scopes. After
introducing some key concepts, we move to a discussion of original research. This
includes in particular the comprehensive study of two specific models. Section 2.2
is dedicated to hopping fermions with a global U(1) symmetry coupled to Z2 gauge
fields, and includes detailed discussions of perturbative results, field theoretical
subtleties and the inclusion of repulsive interactions. In section 2.3, on the other
hand, we study a model that includes a pairing term and can be seen as a Z2
gauged version of the Kitaev chain. In this case, the original results concern the
presence of a topologically non-trivial phase of matter that -similarly to the regular
Kitaev chain- manifests itself in the presence of edge modes.

2.1 Gauge invariance
As argued in the introduction, one way of understanding gauge theories is that
they can be obtained by taking a model which exhibits a global symmetry and
promoting such symmetry to a local one. Here we will see how this works in the
concrete case of 1d electrodynamics on the lattice, and then we will focus on Z2
gauge fields by restricting the U(1) symmetry to its parity subgroup.

2.1.1 U(1) gauge fields on the lattice
We consider spinless fermionic matter, although the principles outlined below are
easily generalized to spinful or bosonic fields. Fermions live on the sites of a chain
and, in the simplest scenario, can hop from one site to the other following a tight
binding model described by the quantum Hamiltonian

HT B = −t
∑

i

(
ĉ†

i ĉi+1 + h.c
)

− µ
∑

i

ĉ†
i ĉi . (2.1)

This model is non-interacting and enjoys a global U(1) symmetry

ĉi → ĉi e
iα (2.2)

which corresponds to particle number3 conservation. Can this symmetry be pro-
moted to a local one, meaning that the transformation (2.2) leaves the Hamiltonian
invariant even if the parameter α is site-dependent? The task turns out to be non-
trivial and requires the introduction of additional degrees of freedom, the so-called
“gauge fields”. These are operators which are defined on the links connecting two
sites, of the form

Ui+ 1
2

= eiAi+1/2 , (2.3)

3Or electric charge.
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2.1. Gauge invariance

where we have introduced the notation i+ 1/2 to denote the link between sites i
and i+ 1. Under the local transformation the gauge fields transform4 as

Ai+ 1
2

→ Ai+ 1
2

+ αi − αi+1, (2.4)

so that the local phase factors from the matter and gauge fields cancel each other
and the interacting Hamiltonian

HU(1) = −t
∑

i

(
ĉ†

i Ui+ 1
2
ĉi+1 + h.c

)
− µ

∑
i

ĉ†
i ĉi . (2.5)

is left invariant. As the notation suggests, the field A corresponds to the electromag-
netic potential, and we have recovered the standard way to couple charged particles
to a static external source, known as the Peierls substitution. In general, however,
the gauge degrees of freedom are fluctuating quantum fields whose dynamics is
determined by appropriate terms in the Hamiltonian.

2.1.2 Gauging fermionic parity
In the following we will be interested in the gauge group Z2. This can be easily
obtained by restricting the phases (2.3) to take the values ±1, i.e. A ∈ {0, π}.
With this in mind, one can identify the U operator with the Pauli matrix σz. In
a similar way, σx can be seen as the equivalent to eiE which corresponds to the
energy of the electric field.5 A Z2 gauge transformation is parametrized by the
sign si = eiαi ∈ {−1, 1} such that

ĉi → si ĉi σz
i+ 1

2
→ si σ

z
i+ 1

2
si+1. (2.6)

Since [
(−1)n̂i , ĉi

]
= −ĉi {σz

i , σ
x
i } = 0, (2.7)

where n̂i = ĉ†
i ĉi , the local gauge transformation can be generated by the Gauss

operator
Gi = σx

i− 1
2

(−1)n̂i σx
i+ 1

2
, (2.8)

in the sense that the conjugation O → G−1 OG flips the sign of ĉ or σz operators
which share a link or site with G, and leaves the others invariant. Since the
action of G always affects an even number of such operators, this guarantees gauge
invariance, i.e. that

[Gi, HG] = 0 ∀ i. (2.9)
4The reader can recognize on the right hand side of Eq. (2.4) the discrete divergence

δα = αi+1 − αi, so that this is the equivalent to the continuum transformation Aµ → Aµ + ∂µα
mentioned in the introduction.

5Note however that due to the finite dimension of the Hilbert space, E and A do not satisfy
the usual commutation relations of QED.
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Chapter 2. Z2 gauge theories in one spatial dimension

Figure 2.1: Pictorial depiction of the local Hilbert space of a Z2 gauge theory with
single-component fermionic matter, in the basis where n̂ and σx are diagonal. On
the right, we show the four physical states that are selected by the Gauss law (2.8).
Z2 charged fermions (black dots) are sources of electric lines.

The Hilbert space

Equation (2.9) shows that a gauge invariant Hamiltonian enjoys an extensive
number of conservation laws, one for each site of the chain. Since G2 = 1, the
Gauss operator has eigenvalues ±1. As a result, the Hilbert space is separated
into an exponentially large number of sectors, each corresponding to a choice
{Gi = ±1}. Once a sector is chosen, a gauge invariant Hamiltonian operates within
that sector, which is consequently referred to as the physical Hilbert space. In the
rest of this thesis the physical Hilbert space is determined by the choice Gi = 1 ∀i,
unless otherwise stated.

As the name suggests, the Gauss law can be interpreted analogously to the one
of electrodynamics. By rewriting the gauge constraint as

σx
i− 1

2
σx

i+ 1
2

= (−1)n̂i , i.e. Ei+ 1
2

− Ei− 1
2

=
π if there is a Z2 charge

0 otherwise
(2.10)

we learn that the Z2 charge corresponding to the fermion parity on a given site6

determines the divergence of the electric field, i.e. the difference in its value
across the two neighboring links. While the local Hilbert space of a link-site-link
subsystem consists of 23 = 8 states, the Gauss law constrains it to the four physical
states shown in Fig. 2.1.2. In the following, we will often operate in a basis where
σx is diagonal. We will generally refer to the state with σx = +1 as the “electric
vacuum”, while links where σx = −1 constitute “electric strings”.7 In this language,
we can say that Z2 charges are sources for electric strings (flux lines). Unless
the electric string extends to infinity, it has to terminate on a second Z2 charge,
forming a flux tube. A basis for the many body Hilbert space, therefore, consists
of states containing a certain number of pairs of fermions sitting at an arbitrary
distance from each other, connected by electric lines. One can also look at this in
a different way: the bare fermionic creation operator ĉ† is not gauge invariant, and
therefore it has no physical meaning. It can be made invariant by the attachment
of a string:

ĉ†
i → f̂ †

i =
∏

j≤i

σz
j− 1

2

 ĉ†
i . (2.11)

6Which for spinless fermions is in one to one correspondence to the electric charge/particle
number: (−1)n̂ = 1 − 2n̂.

7This choice is conventional and corresponds to taking positive values of h. As we discuss at
the beginning of section 2.2, we do not lose generality by doing so.
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When acting on the fermion and electric vacuum, not only does the newly introduced
f̂ †

i create a particle at site i, but it also flips the state of the electric field on each
link to its left, effectively attaching a semi-infinite electric string to it. As a matter
of fact, the replacement (2.11) is another recipe to obtain a gauged model from
an ungauged one.8 This highlights the fact that gauging a model is an invasive
procedure, and deeply non-local in nature.

The fate of fermion parity

We conclude this subsection by addressing some technicalities related to boundary
conditions. From the discussion above it is clear that on a closed chain only an
even number of Z2 charges is allowed, since the electric string originating from
one charge can only terminate on another charge. On a finite open chain, on the
other hand, electric lines can stretch all the way to the edge. In principle one can
consider two different types of boundaries, depending on whether the chain ends
with a link or with a site. We will always consider the first option, since it does
not require a redefinition of the Gauss law (2.8)9. In this setup the total fermion
parity P can be related to the values of σx at the boundary: from multiplying
together all Gauss operators one gets

1 =
∏

i

Gi = σx
1
2

(
L∏

i=0
(−1)ni(σx

i+ 1
2
)2
)
σx

L+ 1
2

= σx
1
2
P σx

L+ 1
2
, (2.12)

from which we learn that
P = σx

1
2
σx

L+ 1
2
. (2.13)

On an infinite chain the total fermionic parity is determined by the value of the Z2
electric field at infinity, and we will normally assume it to be even.

An excursus: quantum link models

In this section, we have introduced the Z2 lattice gauge theory as a “discretization”
of the U(1) gauge group. In a similar fashion we could have restricted the phase
(2.3) to take n values around the circle instead of just two, which leads to a Zn

lattice gauge theory. Since in the limit n → ∞ one expects to recover the physics
of a U(1) gauge theory, Zn models can be seen as one way to approximate QED.
Finding a proper way of truncating the local Hilbert space is indeed a must to
perform numerical calculations on systems with a bosonic local Hilbert space. A
different way to achieve such truncation is given by the so-called quantum link
models [117]. In the U(1) case on which we focus, the idea is to replace the link
variables (2.3) with spin S operators, thus truncating the local Hilbert space to
2S + 1 states. In the limit S → ∞ the Kogut-Susskind formulation [24] of a
Hamiltonian U(1) LGT is recovered. Conventionally, the third component of the
spin Ŝz corresponds to the electric field, whose quanta are created and destroyed

8This is equivalent to the construction adopted for QED in the continuum, where a fermionic
field Ψ(x) is replaced by the non-local object ei

∫ x

−∞
A(x′) dx′

Ψ(x).
9It may require a redefinition of the Hamiltonian at the boundaries.
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Chapter 2. Z2 gauge theories in one spatial dimension

by the raising and lowering operators Ŝ+ and Ŝ−. Quantum link models are an
active area of research in the field of Hamiltonian lattice gauge theory, and several
studies have shown that such models can capture important features of U(1) gauge
theories even for small values of the spin S [118–120].

2.1.3 Gauge invariant Hamiltonians
Having established the form of the physical Hilbert space and of the gauge generators
starting from general principles, it is now time to figure out how a generic Z2
invariant Hamiltonian looks like. The global symmetry that is gauged is nothing
but the fermionic parity P : ĉi → −ĉi. Since this symmetry is automatically
satisfied by any local fermionic Hamiltonian, there are no particular restrictions
on the type of fermion bilinears that we can consider. In particular, we can also
include “anomalous” terms of the form ĉiĉi+1 + h.c., which violate particle number
conservation and would not be allowed in a U(1) theory. Such terms can be made
gauge-invariant through the very same procedure outlined above for the hopping.
Besides, any term that does not change under the gauge transformation (2.8) can
be added to the Hamiltonian without spoiling its gauge invariance. Obvious choices
are Hubbard-like interactions that depend only on the fermion densities n̂i, and
terms that involve any combination of σx.10 Of the latter, the simplest and most
relevant one has the form ∑

i σ
x
i+ 1

2
, which plays the role of Z2 electric field energy.11

More complicated terms can be constructed by taking combinations of fermion
bilinears and σz, but we will not consider them here.

After putting everything together, a general Hamiltonian describing the inter-
action between spinless fermions and Z2 gauge fields reads:

HG = − t
∑

i

(
ĉ†

i σ
z
i+ 1

2
ĉi+1 + h.c

)
− ∆

∑
i

(
ĉ†

i σ
z
i+ 1

2
ĉ†

i+1 + h.c
)

− µ
∑

i

n̂i

−
∑

k

∑
i

Uk n̂in̂i+k −
∑

i

h1 σ
x
i+ 1

2
−
∑

i

h2 σ
x
i− 1

2
σx

i+ 1
2

+ . . .

with the dots indicating that we omitted density-density interactions involving
more that two sites and and more complicated terms involving combinations of σx.

2.1.4 Gauge invariant observables
In a gauge theory, only gauge invariant quantities are considered physical. As a
matter of fact, Elitzur’s theorem [121] ensures that the expectation value of any
non gauge invariant operator - evaluated on a physical (gauge invariant) many-body
state - needs to vanish. This is often stated as the fact that a gauge symmetry
cannot be spontaneously broken,12 although this is a trivial statement if we adopt

10The Gauss operator G is diagonal in the basis where both σx and n̂ are diagonal.
11This can be seen by following up on the analogy with electrodynamics. Since σx ≈ eiE ≈ cosE,

in the continuum generates a term proportional to E2. Similarly, the term σx
i− 1

2
σx

i+ 1
2

corresponds
to (∇E)2.

12In that case, the non-vanishing expectation value would play the role of the condensate.
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the perspective of the introduction, i.e. that gauge symmetry is not an actual
symmetry but a mere redundancy in our description of Nature.13

In the previous subsection, we saw how to construct gauge invariant Hamilto-
nians. The same principles can be applied to the construction of observables. In
particular, all observables involving fermionic operators are made invariant by the
replacement ĉ → f̂ , which amounts to the insertion of a string of σz on the links
between pairs of fermionic operators. A few examples are given below:

• Fermion-fermion correlator (single particle Green’s function):

Gij = f̂ †
i f̂j = ĉ†

i

 ∏
i≤l<j

σz
l+ 1

2

 ĉj. (2.14)

• Dimer creation operator:

b̂†
i+ 1

2
= f̂ †

i f̂
†
i+1 = ĉ†

iσ
z
i+ 1

2
ĉ†

i+1 (2.15)

• Dimer-dimer correlator:

Fij = b̂†
i+ 1

2
b̂

j+ 1
2

= f̂ †
i f̂

†
i+1f̂j f̂j+1 = ĉ†

iσ
z
i+ 1

2
ĉ†

i+1ĉjσ
z
j+ 1

2
ĉj+1 (2.16)

As for the gauge sector, anything that depends on σx only is a gauge invariant
observable. Strings of σz, on the other end, must have Z2 charged endpoints,14 and
so the only possibility that does not involve other operators is the closed Wilson
line

W =
∏

i

σz
i+ 1

2
(2.17)

on a periodic chain.

2.1.5 Confinement
Before turning to the phenomenology of specific models, we focus on a general
feature of one-dimensional Z2 lattice gauge theories, i.e. the confining nature of
the electric field.15 For h > 0 the term −h∑i σ

x
i+ 1

2
introduces an energy cost for

the electric strings which is equal to

∆E = 2hL, (2.18)

where L is the length of the string. Therefore, static probe charges which are
connected by a flux tube need to stay as close as possible in order to minimize their
potential energy. In the presence of dynamics and other types of interactions, there
is an interplay between different effects competing with the confining potential,
which can delocalize the charges. We expect however to observe confinement

13Symmetry breaking can occur in a different guise, the Higgs mechanism. The resulting model
appears to exhibit SSB once a specific gauge is fixed.

14An example of this is the fermion-fermion correlator (2.14).
15This not specific to Z2, the same is true for U(1) electrodynamics.
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Chapter 2. Z2 gauge theories in one spatial dimension

whenever the “field strength” h is significantly larger than all other energy scales
in the game. On a lattice, it is easy to see how the consequences of confinement
depend significantly on the type of matter involved: whenever a site can be occupied
by multiple charges, e.g. in the case of bosons or spinful fermions, the charges
simply sit on top of each other and the electric strings vanish. In the relevant case
of single-species fermions, however, the Pauli exclusion principle forbids double
occupancy on a single site, and therefore two Z2 charges must be at least one
lattice spacing apart. The effect of confinement, in this case, is the formation of
extended dimers consisting of two particles connected by an electric string of unit
length16. Such objects play a central role in the models that we investigate, as
their dynamics determines very nontrivial phenomenology in the large h regime,
where they are the appropriate emergent degrees of freedom.

2.2 Fermionic matter with a global U(1) symmetry
We consider now the simple model described by the Hamiltonian

H = −t
∑

i

(
ĉ†

i σ
z
i+ 1

2
ĉi+1 + h.c

)
− µ

∑
i

ĉ†
i ĉi − h

∑
i

σx
i+ 1

2
, (2.19)

restricted to the physical Hilbert space where Gi = +1, with the Gauss operator
as in Eq. (2.8). The Hamiltonian (2.19) is invariant under a global U(1) transfor-
mation ĉ → ĉ eiα , corresponding to particle number conservation. Therefore we
can either consider sectors with a fixed number of particles or tune the filling “by
hand” through the chemical potential µ.17 The energy spectrum is invariant under
t → −t, since this is equivalent to a global unitary transformation that flips the
sign of σy and σz, leaving σx invariant. With a similar argument, one can show
that the spectrum is also invariant under h → −h, so that we can restrict ourselves
to the cases h, t > 0 without loss of generality.18

2.2.1 Free fermions at h = 0
We consider first the case h = 0, where the gauge fields have no dynamics and
only determine the phase (sign) of the hopping term. On a closed chain, in
the absence of the electric term the Hamiltonian has an additional magnetic
symmetry, corresponding to the gauge-invariant closed Wilson line (2.17). This
will play a central role in section 2.3, where we investigate edge physics and
symmetry protected topological (SPT) phases. Here we just notice that W = +1

16When appropriate, we will refer to these objects as “mesons”. This emphasizes the analogy
with the strong interaction of the Standard Model, that binds quarks into mesons.

17In a certain sense, the inclusion of a chemical potential is redundant since it only shifts the
energy by a constant in each sector with a given number of particles. However, it is needed for
some numerical applications where particle number conservation cannot be enforced directly.

18This corresponds indeed to defining the electric vacuum as σx = +1 on every link, as assumed
earlier.
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2.2. Fermionic matter with a global U(1) symmetry

(a) (b)

Figure 2.2: DMRG results for the system described by the Hamiltonian (2.19) at
filling 1/8, on an open chain of length L = 160. (a) The period of the Friedel
oscillations is doubled for small finite values of h, hinting at a halving of the effective
density of the constituents. (b) Fermion-fermion correlators decay exponentially
for any finite value of h, hinting at the confinement of the f̂ fermions. At h = 0,
they decay as a power law with the characteristic free-fermion exponent.

(−1) corresponds to choosing periodic (antiperiodic) boundary conditions for the
fermions.19

By introducing the gauge-invariant f̂ operators (2.11), one obtains a Hamilto-
nian of free fermions

H = −t
∑

i

(
f̂ †

i f̂i+1 + h.c
)

− µ
∑

i

f̂ †
i f̂i , (2.20)

which is diagonalized by going to momentum space. The system is therefore a
Fermi gas, whose ground state is obtained by filling up the energy bands E(k)
with single particle states up to the Fermi level [122]. On a closed chain, the
spectrum of the Hamiltonian (2.19) differs from the one of free fermions in that
it only includes states with an even number of particles, while both periodic and
antiperiodic boundary conditions are accounted for.20

2.2.2 Confinement at finite h

In the presence of h, the fermions are not free anymore, but they interact through
a confining potential. Following the arguments of subsection 2.1.5, we expect
fermions to combine into dimers. What is interesting is that this confinement
happens as soon as a finite h is introduced, which can be detected in a number

19This can be seen by fixing the gauge. Choosing σz = +1 everywhere corresponds to periodic
boundary conditions, since a particle acquires no phase when hopping all the way around the
chain. If we choose σz = −1 on one single link, on the other hand, the particle acquires a π
phase.

20The latter can be avoided by working in a sector where W is fixed to a specific value ±1.
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Figure 2.3: The central charge of the system is calculated numerically with
iDMRG for different values of the parameters by using the scaling relation between
entanglement entropy S and correlation length ξ, see Appendix A for details. The
result c = 1 is consistent with the fact that the system is a Luttinger liquid,
described by a compact boson CFT.

of ways. First, we look at the behavior of the gauge invariant fermion-fermion
correlators. At h = 0 these decay as a power law, with the exponent given by the
well known result for the fermionic Green’s function in one dimension:

Gfree fermions
ij ≈ 1

|i− j|
. (2.21)

Even for small finite values of h, however, this is modified to an exponential decay
that hints at the confinement of the f̂ -fermions. Results are shown in Fig. 2.2(b).

A second signature of confinement comes from the doubling of the period of the
Friedel oscillations. These modulations of the density, that we observe numerically
and show in Fig. 2.2(a), occur in chains with open boundary conditions and have a
periodicity that is inversely proportional to the density of the constituents itself.21

For finite values of h we observe that the period is doubled, meaning that the
effective density of the system is halved. This is consistent with the fact that we
now have to regard the dimers as fundamental constituents; since one dimer is
composed of two fermions, the dimer density is half of the fermion density.

21Which is proportional to the Fermi momentum kF , but the latter is not a well defined
quantity for the dimers, because they are bosons.
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2.2. Fermionic matter with a global U(1) symmetry

Up to this point, our analysis has led to the conclusion that the gauge invariant
f̂ -fermions are confined. It is however incorrect to assume the presence of a mass
gap. By looking into the pair-pair correlators (2.16) we observe that they decay as
a power-law, indicating the existence of gapless excitations. We have to conclude
that the system remains gapless throughout the whole phase diagram, and can
be classified as a Luttinger liquid [67, 123, 124]. This is a standard theoretical
framework that describes the low energy properties of interacting fermionic systems
in one dimension, where the Fermi liquid paradigm breaks down.22 In this case,
our interpretation is that the “elementary constituents” of the Luttinger liquid
are the deconfined bosonic dimers, as will become clear in the next section. Such
interplay between confinement and Luttinger liquid properties is interesting by
itself, and it hides a number of subtleties that will be the subject of section 2.2.5.
In Fig. 2.3 we show the numerical results for the central charge of the system.
The value c = 1 is consistent with the idea that the system is a Luttinger liquid
described by the compact boson conformal field theory (CFT).

2.2.3 The effective model at large h

The model (2.19) exhibits interesting features in the limit of large Z2 string tension,
i.e. when h ≫ t. Here, the dimers can be thought of as compact objects that
extend over two sites only. In this limit we can consider a reduced gauge invariant
Hilbert space where the dimers are bosons living on the “dual” lattice formed by
the links of the chain. As a consequence of Pauli’s principle for the underlying
fermions, the presence of two dimers on the same link and also on neighboring
links is forbidden. Therefore, we identify the fundamental degrees of freedom of
the problem as hardcore bosons with an extended hardcore constraint.

We develop an effective theory that governs the dynamics of such dimers.
While this can be done formally with a Schrieffer-Wolff transformation [125], it is
instructive to adopt here a more intuitive approach, by considering directly the
processes that contribute to the effective Hamiltonian at second order.23 These are
“virtual” processes that are allowed by the original Hamiltonian (2.19), and occur
in two steps. Starting from a generic state in the reduced Hilbert space, the first
process brings it to a high-energy state that lies out of that space, while the second
one brings it back.24 In this case there are two such processes, both involving the
hopping of the original fermions:

• Dimer hopping: one of the fermions in the dimer hops to a neighboring
(empty) site, extending the electric line that connects it to the other fermion
by one unit. This creates an intermediate virtual state containing a dimer
of length two. Then, the other fermion hops along in the same direction,

22A comprehensive account of Luttinger liquids is beyond the scope of this thesis, and we refer
the reader to the literature [34, 36, 67]. In Appendix B we give an account of the most relevant
results, which also serves the purpose of fixing a convention for the notation.

23A more systematic display of the Schrieffer-Wolff transformation is given in section 3.3.1,
where a complicated effective Hamiltonian is derived.

24As it is the case here, the final state can be either the same state as the initial, or a different
one.
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Chapter 2. Z2 gauge theories in one spatial dimension

Figure 2.4: Schematic depiction of the hardcore constraints of the effective dimer
model (a), of the inhibition of length fluctuations for packed dimers (b) and of the
second order perturbation theory processes described in the main text (c).

and the electric string is shortened back. As a result, the initial dimer has
hopped to the neighboring link.

• Length fluctuation: the first fermion hops by one site as described above,
but successively it hops back and the initial state is restored. Naively, this
contributes only a diagonal term to the effective Hamiltonian. However, this
is not the case since such process is inhibited if a neighboring site is already
occupied. Intuitively, since this process reduces the energy of the system,25

the dimers prefer to stay away from each other to make it possible, which
manifests itself in a repulsive interaction.

The amplitude for these processes can be inferred from the general perturbation
theory expression

Heff, 2
mm′ =

∑
k

⟨m|H|k⟩⟨k|H|m′⟩
Em − Ek

, (2.22)

where the sum is over the intermediate “virtual” states |k⟩. In our case all the
matrix elements in the numerator are simply equal to t and the energy denominator
is 2h, the cost of flipping the Z2 electric field on one link. With all this in mind,
we can write down the expression for the effective Hamiltonian:

Heff =
∑
j∗

P1
[
−tB

(
b†

j∗bj∗+1 + h.c.
)

+ UB n
B
j∗nB

j∗+2

]
P1. (2.23)

Here we have introduced the notation j∗ := j + 1/2 to label the links of the lattice,
the b† are the dimer operators (2.15) and the projector P1 enforces the hardcore
constraints described above. The dimer hopping and repulsion are given by

tB = t2

2h, UB = t2

h
= 2tB, (2.24)

25All second order perturbation theory contributions have negative sign, as one can see from
Eq. (2.22).
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Figure 2.5: Exponent of the power-law decay of the dimer-dimer correlator, cal-
culated using iDMRG. Data at low filling is difficult to obtain due to numerical
instabilities. As h → 0, α → 2 which is the free-fermions result, while for low
fillings and h ̸= 0 we converge to the result α = 1/2 of non-interacting hardcore
bosons. At large h the results match the analytical prediction from the effective
AB model.

with the factor of two in UB coming from the fact that the length fluctuation
happens on both sides of the dimer. The extended hardcore constraints and second
order virtual processes are represented pictorially in Fig. 2.2.3.

Since hardcore bosons can be effectively treated as spins,26 the effective Hamil-
tonian (2.23) is a constrained version of the celebrated XXZ chain. This model was
studied by Alcaraz and Bariev [126], who showed that it is integrable exactly like
its unconstrained version. A detailed discussion of the AB model is presented in
Chapter 3, where we unveil some unexplored features and explore certain aspects
of its dynamics. Here, we limit ourselves to a comparison of the analytical results
in the original paper [126] with our numerical simulations performed on the full
model (2.19) at large h. In this limit, one can compute the exponent for the
power-law decay of the dimer-dimer correlator as a function of the filling, and
compare it with the exact result from integrability.27 As shown in Fig. 2.5, the
numerical result is in excellent agreement with the analytical prediction, confirming
the correctness of our analysis. As explained above, the system is a Luttinger
liquid whose elementary constituents are bosons. The results of this subsection

26One just needs to identify b† with σ+ and n̂ with 1+σz

2 . This is not to be confused with the
Jordan-Wigner duality between the XXZ chain and the 1D spinless Fermi-Hubbard model, which
is non-local.

27This is straightforward, since dimer operators corresponds to primary field of the compact
boson CFT for which the conformal dimensions are known.
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Chapter 2. Z2 gauge theories in one spatial dimension

Figure 2.6: Left: A lattice fully filled with fermions hosts one dimer every two
links. This shows that half-filling is the maximum possible filling for the effective
dimer model. Right: A Mott state with one dimer every three links, corresponding
to a density of fermions ρF = 2/3.

clarify the microscopic properties of the underlying bosonic dimers, beyond the
low energy limit. For this reason we can interpret the dimer-dimer correlators as
single particle Green’s functions, from which the Luttinger parameter K can be
computed from the exponent of the power-law decay as [67]

K = 1
2α. (2.25)

This value completely determines the low energy properties of the system and,
once computed, it allows to make a number of further analytical predictions.

Interestingly, our results from perturbation theory fix the ratio between the
repulsion and the hopping to 2. This is exactly the isotropic (Heisenberg) point
of the XXZ chain, where the Hamiltonian exhibits an enhanced SU(2) symmetry
and at half filling is at the transition between the gapless XY phase and the
Mott insulator. This is still valid for the constrained version of the model, where
ρF = 2/3 plays the role of half-filling, which we will justify in Chapter 3 (See
Eq. (3.4)). This means that for this value of the density any repulsive interaction
between dimers can open up a gap and stabilize a Mott state with one dimer every
three links, as shown in Fig. 2.6. We postpone a more detailed analysis to section
2.2.6.

To conclude, we note the following intriguing fact: while the system is in
general non integrable, both the h = 0 and the h → ∞ limits are indeed integrable
systems which very much differ from each other: free fermions on one side and the
constrained XXZ chain on the other. Some dimer states have been found to be
quantum scars of the system for generic values of h [82]. Interestingly, our analysis
reveals that in the large h limit these states do not fall into an arbitrary region
of the spectrum but rather belong to the effective low-energy Hilbert space. The
subject of scarred states and weak ergodicity breaking is a very active one, and
its connection to lattice gauge theories is emerging as a promising direction of
research [76–81, 83].

2.2.4 Dynamics of holes: fractionalization and deconfinement
Up until now we have studied the system at generic filling, coming to the conclusion
that it is described by a Luttinger liquid with interaction dependent Luttinger
parameter. While the interpretation in terms of elementary dimers is suggestive and
very intuitive at moderate fillings, where they can be seen as separate interacting
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2.2. Fermionic matter with a global U(1) symmetry

entities, it is less enlightening when we are close to full filling. Here, as we will
see, a description in terms of holes seems more appropriate. To this purpose, we
introduce the hole creation and annihilation operators

h†
i = ci

∏
j≥i

σz
j+1/2, hi = c†

i

∏
j≥i

σz
j+1/2, (2.26)

in terms of which the Hamiltonian reads

H = −t
∑

i

(hih
†
i+1 + h.c.) − h

∑
i

(−1)
∑

j>i
1−nh

j . (2.27)

The last term in the Hamiltonian mediates an infinite-range potential between
two holes. The potential has a zig-zag form which alternates between the values -2h
and 0 for the odd and even distances, respectively. As a result, the two holes are
deconfined and free to spread far away from each other in the absence of other holes.
This is in stark contrast to the original fermionic particles which are confined due
to an attractive potential that scales linearly with distance. The deconfinement of
holes is intimately related to the spontaneous breaking of translational symmetry.
Indeed, there are two degenerate hole vacua28 which are distinguished by the
position of the Z2 electric strings. In other words, the gauge sector lies in one
of the two antiferromagnetic ground states in the σx basis. The creation of a
hole through the operator (2.26) flips the electric field on each link to its right,
effectively creating a domain wall between two different vacua. Since these are
degenerate, the hole can move freely with no energy cost.

Hole dynamics

We now turn our attention to the time evolution of a quantum state in which a
single hole is fully localized at site m = 0 at time T = 0. A general single-hole
state may be written as

|Ψ⟩ =
∑
m

ψmh
†
m |0⟩ ≡

∑
m

ψm |m⟩ , (2.28)

where |0⟩ denotes a vacuum of holes, i.e. a state fully filled with fermions. In order
to follow the time evolution of this state, one needs to solve the time-dependent
Schrödinger equation, which for this case reads

i∂Tψm = −t(ψm+1 + ψm−1) + h(1 + (−1)m+1)ψm. (2.29)

At h = 0 the hole is free with the dispersion relation

E(k) = −2t cos k, (2.30)

so that the time-evolved state is simply given by

ψm(T ) =
∫ π

−π
e2itT cos keikmdk/(2π) = Jm

(
T

T0

)
, (2.31)

28I.e. the states fully occupied by fermions.
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Figure 2.7: (a) Dynamics of a hole : The solid lines denote the standard deviation
obtained from the ED while the dotted lines were computed by solving numerically
Eq. (2.29). For h = 0, we obtain an excellent agreement with (2.32). As h is
increased, we observe an oscillatory behavior on top of the overall linear growth.
In the inset, the time period of the oscillations is plotted (blue dots), which decays
as h−1 for large h. (b) The hole entanglement entropy under a bipartition from
TEBD: The solid black line is the analytical result at h = 0. The dotted line
represents S = ln 2. The inset shows that under rescaling time T by t/(2h) the
curves for h ≫ t collapse onto the one for h = 0 as expected from arguments in the
main text. (c) The density-density correlator χh

l of a state with two holes localized
nearby at T = 0.When h ≫ t, the holes prefer to remain odd distance apart. Inset
: χh

ℓ (T ) for fixed ℓ. The likelihood at ℓ = 1 progressively decreases while that of
other odd ℓ’s increase, untill they saturate. ED performed on chain with 19 sites.

where Jm(x) denotes the Bessel function of the first kind and T0 = (2t)−1. One can
quantify the spreading of the hole in time by computing the standard deviation of
the hole from its original site:

σ(T ) =
√

⟨x2⟩ − ⟨x⟩2 = T√
2T0

. (2.32)

We learn that the hole spreads linearly in time with the rate controlled by the
hopping parameter t. The numerical results shown in Fig. 2.7a reveal that the
dynamics slows down as the string tension h is increased. Moreover, on top of
the linear growth we observe damped oscillations whose frequency increases as h
grows.

The salient features can be understood analytically in the limit h ≫ t. First,
the spectrum of the Schrödinger equation (2.29) forms two bands in the halved
Brillouin zone with energies

E±(k) = h±
√

(2t cos k)2 + h2. (2.33)

The wave function at site n can be expressed as

Ψn(T ) =
∫ π/2

−π/2

dk

2π (c−
k ϕ−(k, n)e−iE−T + c+

k ϕ+(k, n)e−iE+T ), (2.34)

where ϕ±(k) are the eigenfunctions and the coefficients c±
k are chosen to ensure

that the hole is localized at n = 0 at T = 0. In the limit of large h, we have

E− ≈ −2T−1
s cos2 k, E+ ≈ 2h+ 2T−1

s cos2 k, (2.35)
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2.2. Fermionic matter with a global U(1) symmetry

where we introduced a slow time scale Ts = h/t2. Thus the wave function becomes

Ψn(T ) = fn(T/Ts) + e2ihTgn(T/Ts). (2.36)

This form makes it manifest that the rapidly-oscillating factor e2ihT is responsible
for the oscillations observed in Fig. 2.7 (a). As a result, in the large-h regime, the
time scale of these oscillations scales as h−1. The inset of Fig. 2.7 (a) confirms
this prediction.

Entanglement spreading

We now study the time evolution of the entanglement entropy (EE) of the single-
hole state investigated above under a bipartition cut at the site, where the hole
is initially localized. At time T = 0 we start from a product state, so that the
EE is vanishing. Since the hole is a single particle excitation, the corresponding
EE is bounded by ln 2 [127]. As shown in Fig. 3 (b), numerical TEBD results
confirm that the hole entanglement growth slows down as h/t increases. Under
rescaling the time T by a factor of t/2h the EE growth at h ≫ t collapses to the
h = 0 curve. This is because the h ≫ t limit is governed by an effective model29

which describes the pure hopping of a single hole with the typical second-order
perturbation theory time scale Ts = h/t2.

Density-density correlators

The time evolution of a pair of holes sheds more light on their deconfined nature.
The density-density correlator

χh
ℓ =

∑
k

⟨nh
kn

h
k+ℓ⟩ (2.37)

measures the likelihood of the separation between the two holes, initially localized at
neighbouring sites at T = 0 (Fig. 2.7c). As expected, holes spread away from each
other and in the large h limit they prefer to be an odd distance apart. In contrast,
the corresponding computations of the fermionic density-density correlator

χf
ℓ =

∑
k

⟨nf
kn

f
k+ℓ⟩ (2.38)

for a pair of fermions reveals that they remain closely confined together.
Above arguments illustrate the deconfined nature of the lattice holes on top of

the quantum vacuum fully filled with fermions. At finite density of holes, however,
at h ̸= 0 one observes that the hole-hole correlation function decays exponentially.
As a result, at any finite hole filling the lattice operator creating a hole does
not coincide with the annihilation operator of the emergent deconfined fermionic
excitation of the Luttinger liquid field theory discussed in [70].

29See section 3.2.1 for more details.
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2.2.5 Field-theoretical perspective: Luttinger Liquid and the
lattice-continuum correspondence

Having established that the system (2.19) is a Luttinger liquid for all values of h,
we can look concretely into the effective low energy continuum model and check
its consistency with our results. In particular, there are a couple of question that
can be raised:

• Luttinger liquids have deconfined fermionic excitations. How is this consistent
with the confinement of lattice fermions?

• How can the confining potential not be an RG-relevant perturbation, that
would gap the whole system?

To answer the first question, we need to understand how the lattice-continuum
correspondence works. At h = 0, i.e. for free fermions, it is well known that there
is a direct matching between lattice fermionic operators and fields of the compact
boson CFT:

f̂ → ei(ϕ+θ). (2.39)
Such correspondence holds, for instance, even after the introduction of quartic
interactions so that their effect is entirely captured by a renormalization of the
Luttinger parameter.30 In the gauged model, however, a novel type of interactions
(i.e. hσx) is allowed and its effects are not known a priori. As a guiding principle,
we can use the symmetries of the two models. At h = 0 the system enjoys a global
magnetic Z2 symmetry generated by ∏σz, which in the continuum corresponds
to θ → −θ. At h ≠ 0, on the other hand, the global Z2 symmetry is explicitly
broken and there is no reason why this identification should still hold. The field
theory operators correspond instead to new, deconfined fermionic excitations whose
expression on the lattice is not known, and only in the limit h → 0 coincide with
the f̂ -fermions.

Let us now try to understand the effect of a small electric perturbation near
the free fermion point. Resolving the Gauss’ law, the h-term can be turned into a
non-local interaction:31

σx
i−1/2 = (−1)

∑
j≥i

nf
j = e

iπ
∑

j≥i
nf

j (2.40)
By taking the continuum limit and using the bosonization recipe ρF (x) → ρ0

F −
∂xϕ(x)/π, we obtain that

−h
∑

i

σx
i ≈ −h

∫
dx e

iπ
∫

x>xi
ρF (x) ≈ −h

∫
dx cos (kFx− ϕ(x)) , (2.41)

where we have defined the Fermi momentum kF = πρ0
F . Since a fermion corre-

sponds to a π-kink in the ϕ field, Eq. (2.41) seems to suggest that isolated fermions
are energetically punished while tightly bound dimers are favored. This naive

30See Appendix B for a brief introduction to Luttinger Liquids and for an explanation fo the
notation that we use.

31This is general to gauge theories in one dimension.
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2.2. Fermionic matter with a global U(1) symmetry

observation, however, has to be complemented with the fact that the perturbation
is not RG-relevant. Near the free fermion point, indeed, the only relevant pertur-
bations are cos(ϕ) and cos(2ϕ) which cannot be generated without breaking the
lattice translation symmetry of the Hamiltonian [128].32 Therefore, despite the
appearance, the effect of the electric term has to be encoded into the marginal
deformation (∂ϕ)2 which renormalizes the Luttinger parameter.

Finally, we consider the large h regime. From the analysis above it is clear that
the system is still described by the compact boson CFT, with a Luttinger parameter
that depends both on h and ρF and can be calculated from Eq. (2.25). We found
that the effective constrained XXZ model that describes this limit lies exactly at
the antiferromagnetic Heisenberg point, and so at the “half filling” ρF = 2/3 we
are at the edge of a Mott lobe. Here the Luttinger parameter (as a function of
ρF ) has a cusp where it hits the value K∗ = 1/9. For such value perturbations of
the form cos(6ϕ) become RG-relevant, inducing a mass term which drives a Mott
transition into a phase of commensurability three.

To summarize, we have shown that the low-energy Luttinger liquid model
describes well our lattice results for all values of h and of ρ. This is consistent with
the fact that a Z2 gauged Dirac fermion is a compact boson, as shown in reference
[73].

2.2.6 Models with repulsive interactions
As explained in section 2.1, all sorts of density-density interactions are gauge invari-
ant and can be included into the model discussed above without any modification.
The possibilities are many and in the following we only consider the simple case
of nearest-neighbor repulsive interactions, which add an interesting twist to the
ground state physics of the one-dimensional Z2 LGT studied above. The modified
Hamiltonian reads

HV = H + V
∑

i

n̂in̂i+1, (2.42)

where H is given by Eq. (2.19).
In the absence of electric coupling, or when t, V ≫ h, the interplay between

hopping and repulsion determines the physics of the system, and the gauge fields do
not play a significant role. In particular, at h = 0 when the system is at half-filling
it enters a conventional Mott phase for large values of V . The quantum critical
point is located at V = 2t, which is the SU(2)-symmetric Heisenberg point of the
dual XXZ chain.33 In the following, we focus on more interesting scenarios where
the interplay between repulsion and confining Z2 gauge fields plays a central role.

32In our notation, one site translations act on the ϕ field as ϕ → ϕ + kF . At half filling
kF = π/2 and the first invariant term is cos(4π) which is not RG relevant at the free fermion
point.

33In [115, 129] hardcore bosons are considered instead of spinless fermions. In this case
the mapping to the XXZ chain is a simple relabeling of the operators. The subtle differences
between the two (in 1d) do not play a role for our purposes, and we treat them as essentially
interchangeable.
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Chapter 2. Z2 gauge theories in one spatial dimension

Mott Insulator

Dimer Luttinger Liquid
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HALF-FILLING PHASE DIAGRAM

Confined Luttinger Liquid

Dimers
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Dimer-Mott Insulator
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Figure 2.8: A sketch of the phase diagram of the Z2 LGT model with the repulsive
interaction (2.42) at half-filling (a) and filling 2/3 (b). At half filling the repulsive
interactions stabilize a Mott state (yellow region) which is destroyed by a sufficiently
large h, that triggers the formation of dimers (green region). On the line 2h = V ,
dimers of different length are degenerate and deconfined on short-to-intermediate
length scales, giving a parton plasma. At filling 2/3, on the contrary, the repulsion
alone cannot stabilize a Mott state. As h is introduced, however, the resulting
dimers experience repulsive interactions of strength V , causing the Mott pattern
shown in the figure (red).

Stabilizing a dimer-Mott state at filling 2/3

As discussed in section 2.2.3, at large h the emergent dimer-dimer repulsive
interactions are on the verge of stabilizing the dimer-Mott state shown in Fig. 2.6
at filling 2/3. Indeed the system lies exactly at the critical point where the gap
vanishes, and any additional small repulsion would trigger the transition. It is easy
to verify that introducing a finite V does the trick, i.e. that the repulsion between
the elementary constituents is converted, in the large h limit, into an additional
repulsion between dimers:

tD = t2

h
→ tD + V, h → ∞, V ≪ h. (2.43)

In [129] it is shown that such transition survives well below the large h limit, i.e.
that a Mott gap opens for small finite values of h when t ≈ V . The complete phase
diagram for the model is shown in Fig. 2.8(b).

Resonating quantum dimers at half-filling

Having established the effects of the repulsive interactions at filling 2/3, we now
focus on half filling. Consider first the case of zero hopping t = 0. Here it is easy to
see that the straight line 2h = V plays a special role: although so far we thought
of dimers of length one as the fundamental constituents in the large h limit, in this
case they are allowed to fluctuate in length and are indeed energetically degenerate
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2.2. Fermionic matter with a global U(1) symmetry
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Figure 2.9: (a) Green’s function in the Mott state (red), around the transition line
at 2h = V = 8t (black), above the transition line 2h = 5t, V = 8t (green) and below
the transition line 2h = 3t, V = 8t in the Mott state (blue). We observe strong
exponential decay when 2h > V and a slower exponential decay when 2h < V .
This is to be contrasted with the case 2h = V where the initial, slow, power-law
decay eventually turns into a uniform exponential decay for longer distance. On
the other hand a steady exponential decay is observed deep in the Mott state when
V = 8t and h = 0. (b) Distance xa where the Green’s function behaviour changes
from algebraic to exponential decay as a function of h, for V = 8t.

with dimers of length two. This is because the cost ∆E = 2h of extending the
dimer is compensated by the fact that for extended dimers there is no V repulsion
between its partons. This is possible for all fillings n ≤ 1/2. For higher fillings
extending a dimer will necessarily bring a parton close to another one, neutralizing
the energy gain. Away from this line, it is clear that the degeneracy is lifted and
one or the other configuration is privileged.

For finite t, there is instead an extended region around the line 2V = h where
the system is characterized by strong fluctuations between tight and extended
dimers. We refer to this part of the phase diagram as a “pre-formed parton plasma”.
Here, although the constituents are confined, they are allowed to fluctuate over
length-scales which are comparable to the interparticle spacing. This means that
they are effectively deconfined over such length scales, as one can detect by looking
for instance into the parton-parton Green’s function. While this normally exhibits
an exponential decay, in this case it follows a power law behavior over short-to-
medium length scales as shown in Fig. 2.9. The system exhibits Luttinger liquid
behavior on the whole critical line, although in this case it is not straightforward
to associate it with a microscopical picture. Following the logic of section 2.2.3,
the Luttinger parameter K can be computed from the pair-pair correlator. One
finds that it reaches very small values, which testify the presence of very strong
repulsive interactions.

Further away from this line, the region 2V > h where length two dimers
are favored transitions into the conventional Mott state that exhibits the same
alternating density pattern shown in Fig. 2.8(a). Here fluctuations are completely
suppressed and a gap opens. In the opposite limit 2V < h we can think again of
tight dimers as the undisturbed fundamental constituents, which form a Luttinger
liquid. In agreement with the results of sections 2.2.3 and 2.2.5, at half filling the
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Chapter 2. Z2 gauge theories in one spatial dimension
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Figure 2.10: Pair-pair correlators at a fixed value of h = 2t (a) and on the 2h = V
line (b), for several values of V . In the first case, the crossover from power-law to
exponential decay indicates that the system becomes a Mott insulator for large
enough V . In the second case, the correlators exhibit a power-law decay on the
whole line, with an exponent that increases monotonically with h as shown in
(c). The same behaviour is also observed if we consider extended dimers of length
two (l = 1). This hints at a gapless Luttinger liquid phase with strong repulsive
interactions.

repulsion is not large enough to stabilize a dimer-Mott state, and it simply lowers
the Luttinger parameter of the system. In Fig 2.10 we show numerical results for
the pair-pair correlators, that fully agree with the analysis presented above.

2.3 Gauged Kitaev chain
The second model that we consider in this chapter is a gauged version of the
celebrated Kitaev’s chain. This is a free fermionic theory which includes a pairing
term that breaks the global U(1) particle number symmetry. It is renowned as a
simple solvable example of model that falls into the SPT paradigm [130–134] and
exhibits edge modes. Compared to the U(1) conserving Hamiltonians discussed in
the previous section, here we focus less on the bulk phenomenology of the model
and more on edge physics. In particular we try to find an answer to the following
questions:

• What is left of the peculiar edge physics of the Kitaev chain after gauging
fermion parity?

• Is there a unified framework, from which both the ungauged and gauged
models can emerge? If so, how are they related?

Through the course of this section, we also introduce the interesting idea that
the Higgs phase of a gauge theory is an SPT. After reminding the reader of some
salient features of the Kitaev chain, we move on to the gauged model and we focus
on its phase diagram, where we put particular emphasis on the subtleties related
to boundary phenomena. Finally, in the attempt to give answer to the second
question formulated above, we introduce the concept of “gentle gauging”. We also
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2.3. Gauged Kitaev chain

want to mention some possible experimental relevance of our work: according to
[135], the gauged Kitaev model (2.54) -without the Gauss constraint (2.8)- can be
realized in a helical quantum wire proximity coupled to a superconductor with
quantum phase slips. That model exhibits an interesting relation between thermal
conductance and confinement.

2.3.1 The Kitaev chain
The Kitaev chain is a tight-binding model of spinless fermions living on the sites of
a lattice with nearest neighbor hopping and pairing,34 described by the quadratic
Hamiltonian [136, 137]

H = −t
∑

j

(
c†

j − cj

) (
c†

j+1 + cj+1

)
− µ

∑
j

(
c†

jcj − 1
2

)
(2.44)

= it
∑

j

γ̃jγj+1 + i µ

2
∑

j

γ̃jγj.

In the second line, we have introduced the convenient Majorana operators

γi = c†
i + ci and γ̃i = i

(
c†

i − ci

)
(2.45)

which satisfy the hermiticity condition γ†
i = γi and the anticommutation relations

{γi, γj} = 2δij, {γ̃i, γ̃j} = 2δij, {γi, γ̃j} = 0 (2.46)

This simple Hamiltonian has been studied extensively, and it is the paradigmatic
example of a system exhibiting two quantum phases which are not distinguishable
by a local order parameter. For

∣∣∣ t
µ

∣∣∣ > 1
2 (weak pairing), the chain is in the

topological phase, characterized by the presence of robust Majorana edge modes
which are protected by the Zf

2 fermionic parity symmetry. These edge modes can
be constructed exactly for a half-infinite chain: if we define

γl :=
∞∑

j=1

(
− µ

2t

)j−1
γj, (2.47)

then it is straightforward to show that [γl, H] = 0. Hence, if |gs⟩ is a ground state,
then so is γl|gs⟩. Since these two states have opposite fermion parity P = (−1)

∑
j

nj ,
they cannot be linearly dependent. The ground state is thus twofold degenerate
with boundaries, whereas it can be shown to be unique in the absence of boundaries.

The edge mode in Eq. (2.47) is only localized for
∣∣∣ t

µ

∣∣∣ > 1
2 . Indeed, for

∣∣∣ t
µ

∣∣∣ < 1
2

(strong pairing), the phase is trivial: it does not exhibit edge modes and has a
unique ground state (independent of boundary conditions). These two phases
cannot be connected whilst preserving an energy gap, which indeed vanishes for∣∣∣ t

µ

∣∣∣ = 1
2 [136]. In the limit µ → 0 the edge mode is identified with the unpaired

Majorana fermion γ1, which does not appear in the Hamiltonian (2.44).
34This latter feature makes it a toy model for p-wave superconductivity in one dimension.
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Chapter 2. Z2 gauge theories in one spatial dimension

String order parameter and topological order

Whilst such topological order cannot be probed by local order parameters, it can
be identified with nonlocal ones. If we define the semi-infinite string operators

Striv
j = (−1)···+nj−2+nj−1 =

∏
k<j

(iγ̃kγk) (2.48)

Stop
j = (−1)···+nj−2+nj−1(c†

j + cj) =
( ∏

k<j

(iγ̃kγk)
)
γj, (2.49)

then it can be shown that the trivial phase has long-range order in

lim
|i−j|→∞

∣∣∣⟨Striv
i Striv

j ⟩
∣∣∣ ̸= 0, (2.50)

whereas the topological phase has long-range order in

lim
|i−j|→∞

∣∣∣⟨Stop
i Stop

j ⟩
∣∣∣ ̸= 0. (2.51)

The discrete invariant distinguishing these two cases is the charge of the string
order parameter under fermion parity: PStrivP = Striv whereas PStopP = −Stop.
Indeed, it can be argued that having long-range order in a string order parameter
that is odd under P is sufficient to deduce the existence of zero-energy Majorana
modes in the presence of boundaries.

It is sometimes said that instead of having strict topological order, the Kitaev
chain is a symmetry-protected topological (SPT) phase, in this case protected by
the fermion parity symmetry P . Indeed, it naturally fits into the general SPT
framework (as is also evidenced by the fact that the bulk order parameter has
a string consisting of the protecting symmetry, which is a common theme for
SPT phases). However, it is important to keep in mind that it is impossible to
break fermion parity symmetry whilst preserving locality; it is thus an automatic
symmetry of any fermionic system.

Jordan-Wigner transformation and the transverse-field Ising model

Long before the topological properties of Hamiltonian (2.44) were fully appreciated
by Kitaev, this model was known as the JW dual of the transverse-field Ising chain
(TFIM) [138], given by the following spin-1/2 Hamiltonian:

HTFIM = −t
∑

i

τx
i τ

x
i+1 + µ

2
∑

i

τ z
i . (2.52)

Here the JW transformation is defined by

τx
j = (−1)

∑
k<j

nkγj and τ z
j = 2nj − 1 = iγ̃jγj, (2.53)

where nj = c†
jcj denotes the number operator, which indeed maps Eq. (2.44) to

Eq. (2.52). Since this transformation is non-local, it can drastically alter the
physics of the system. In this case, we see that it maps the topological phase
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2.3. Gauged Kitaev chain

to a symmetry-breaking phase, with the topological string order parameter Stop

becoming the local Ising order parameter. The JW transformation is a unitary map
for open boundaries, and indeed, for this geometry both the topological Kitaev
chain and the Ising phase have a twofold ground state degeneracy. However, for
periodic boundary conditions, Eq. (2.53) would generate an additional non-local
term, which looks unnatural in the spin chain language. In absence of this unnatural
term, H in Eq. (2.44) and HTFIM are not unitarily equivalent, the former having a
unique ground state (in the topological phase) whereas the latter is still twofold
degenerate due to symmetry-breaking.

2.3.2 The Gauged Kitaev chain
The Hamiltonian for the gauged Kitaev chain is promptly obtained by following
the general principles outlined in section 2.1. It reads

H = −t
∑

j

(
c†

j − cj

)
σz

j+1/2

(
c†

j+1 + cj+1

)
− µ

∑
j

(
c†

jcj − 1
2

)
− h

∑
j

σx
j+1/2 (2.54)

= i t
∑

j

γ̃j σ
z
j+1/2γj+1 + i µ

2
∑

j

γ̃j γj − h
∑

j

σx
j+1/2,

with the Gauss law

Gj = σx
j−1/2 (−1)nj σx

j+1/2 = σx
j−1/2 iγ̃jγj σ

x
j+1/2 = +1. (2.55)

Except for the absence of a global U(1) symmetry, similar considerations to the
ones following Eq. (2.19) apply: unitary transformations can toggle the signs of
either h or t, so that one does not need to consider all cases separately. At h = 0
the model enjoys the global magnetic symmetry W given by Eq. (2.17) which, as
we will see, in this section rises to a more prominent role. Since in the following we
consider chains with boundaries, it is of paramount importance to keep in mind
the considerations of section 2.1.2 concerning the fermionic parity. In the presence
of boundaries, gauging the global P symmetry does not completely trivialize it,
but makes it act on the edges of the system only as shown in Eq. (2.13). It is the
interplay between the W and P symmetries that gives rise to novel and rich edge
physics.

2.3.3 Bulk Phase diagram
We now elucidate the structure of the phase diagram of the gauged Kitaev chain as
a function of the two dimensionless parameters t/µ and h/µ. This can be obtained
numerically by computing the ground state of (2.54) directly, or we can use the
fact that this model is dual to the Ising chain in a transverse and longitudinal field
for which the phase diagram is known.35 The results are shown in Fig. 2.11.

35This local duality is remarkable and is the subject of Chapter 5. In our original paper the two
points of view are intertwined, while here we focus on the fermionic LGT perspective exclusively.
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Figure 2.11: Phase diagram of the gauged Kitaev chain (2.54) for µ > 0 (a)
and µ < 0 (b). In the absence of vortexes (h = 0), the system enjoys magnetic
symmetry, protecting an SPT order in the Higgs phase (highlighted by a dashed
blue line) as explained in section 2.3.4. For h ̸= 0, the Higgs and confined regimes
are adiabatically connected. For µ > 0 the solid black line denotes Ising criticality.
For µ < 0 the degeneracy of the two symmetry broken ground states is immediately
lifted by the longitudinal field, and Z2 charges are confined for any h > 0.

The deconfined phase

The physics of the model is readily understood in the limits µ ± ∞, where all
quantum fluctuations are suppressed and full and zero particle occupancy are forced
respectively. As a consequence of the Gauss law, this imposes antiferromagnetic
and ferromagnetic order on the Z2 gauge fields respectively. This phase of the
model can therefore be labeled as SSB, since it breaks spontaneously the magnetic
symmetry W .36 However, in the gauge theory language, this is better understood
as the deconfined phase. Indeed, there are deconfined gauge invariant fermionic
domain wall excitations

Dj =
( ∏

k<j

σz
k+1/2

)
σx

j−1/2γj (2.56)

which are allowed to spread dynamically without string tension.37 While in the
absence of a Z2 electric field the cases µ > 0 and µ < 0 can mapped into each
other, they are in general not equivalent. At finite h, the antiferromagnetic order is
robust while the ferromagnetic one is immediately destroyed by the perturbation,
which explains why for µ > 0 one observes a finite deconfined region of the phase
diagram characterized by SSB. Another way of understanding why the deconfined
phase at µ > 0 is stable to h ≠ 0 is the realization that the true instanton operator
is (−1)jσx

j+1/2, which would indeed immediately lead to confinement. Since our
Hamiltonian has translation symmetry, this operator cannot be generated. In
other words the presence of additional crystalline symmetries prevents us from the
usual confinement mechanism, which is similar to what was studied by Lai and

36To be precise, in the antiferromagnetic case the translational symmetry of the Hamiltonian
is also spontaneously broken. This is exactly what differentiates the cases µ > 0 and µ < 0.

37As a matter of fact, deconfinement of domain wall excitations is a characteristic of all one
dimensional SSB phases.
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2.3. Gauged Kitaev chain

Motrunich in a spin liquid ladder [69]. More generally, having monopoles which
carry non-trivial charge under crystalline symmetries is also key to many known
instances of deconfined quantum criticality [139].

The Higgs phase

If we only look at the bulk physics, there is just one other phase in the gauge
theory, namely the Higgs phase. While we have learned that for large values of h
the Z2 charged fermionic matter undergoes confinement, in this model this regime
does not form a different phase: the Higgs and confined phases are smoothly
connected.38 Physically, the Higgs phase is signaled by charge condensations in
the ground state. In other words, we require that there is long range order in the
domain wall operators (2.56) defined above, i.e. that

lim
|i−j|→∞

⟨DiDj⟩ ≠ 0. (2.57)

For µ > 0 the two phases are separated by a critical line described by an Ising
CFT, while for µ < 0 there is only an isolated quantum critical point.

2.3.4 Edge physics: the Higgs phase is an SPT
As promised at the beginning of this section, we now consider what happens in
the presence of boundaries.39 In the phase diagram of Fig. 2.11 we claim that at
h = 0 the Higgs phase is an SPT. We now justify this statement.

Construction of the edge modes

The SPT phase is protected by the magnetic symmetry

W =
L∏

i=0
σz

i+1/2 (2.58)

and by the fermionic parity symmetry which, as a consequence of gauging, acts as

P = σx
1/2σ

x
L+1/2 (2.59)

which means that it is localized at the edge. Let us consider the left edge for
concreteness. The particular form of the P symmetry is related to the fact that for
open boundary conditions the Majorana fermion γ1 does not appear in any t-term
of the Hamiltonian (2.54). Indeed, a suitable modification would be the inclusion
of the gauge invariant edge term −tσz

1/2γ1 which is not invariant under P , but this
is fermionic and cannot appear in a local Hamiltonian. The left symmetry operator
σx

1/2 anticommutes with W . The presence of two anticommuting symmetries already
implies a twofold degeneracy of the ground state,40 but this is not necessarily related

38We will see another example of this in section 4.2.1, this time in two dimensions.
39We remind the reader that, as explained in section 2.1, we choose that both the left and the

right boundaries terminate with links.
40In fact, for this fine-tuned Hamiltonian, we see that the degeneracy applies to the whole

spectrum; we say this is a strong edge mode in the sense of Ref. [140].
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to topology or edge physics. As a matter of fact, in the deconfined phase this is
just another manifestation of spontaneous symmetry breaking. In the Higgs phase,
however, we know that the ground state in the bulk is unique and therefore we
expect this degeneracy to manifest itself at the boundaries. In fact, there is a
second commuting edge operator defined by

γl = σy
1/2γ1 − µ

2t σ
z
1/2γ1γ̃1σ

y
3/2γ2 +

(
− µ

2t

)2
σz

1/2γ1γ̃1σ
z
3/2γ2γ̃2σ

y
5/2γ3 + · · · (2.60)

A careful computation shows that

[γl, H] = O

((
− µ

2t

)L
)

(2.61)

i.e., γl is an exponentially-localized fermionic zero-energy mode (with an exponentially-
small finite-size energy splitting) in the Higgs phase (|µ| < 2t). In conclusion, in
the Higgs phase at h = 0, the left edge has two localized edge mode operators that
commute with the Hamiltonian but anticommute with one another, γl and σx

1/2,
giving us a localized twofold ground state degeneracy at the left edge. Fermion
parity P prevents us from adding γl to the Hamiltonian, and magnetic symme-
try W prevents us from adding X1/2; the edge qubit is thus protected! Arguing
similarly at the right edge, we conclude that the open chain has four-fold ground
state degeneracy with an exponentially-small finite-size energy splitting. To be
more precise, the four-dimensional ground state manifold is formed by a pair of
two strictly degenerate eigenstates which are separated by an exponentially-small
energy gap.

The derivation above should also make clear that any finite h destroys the edge
modes. Indeed, for h ̸= 0 the magnetic symmetry is explicitly broken and cannot
protect the SPT phase.

Symmetry fractionalization

We demonstrated the existence and stability of the edge mode constructively.
However, the reader might wonder why they are there in the first place. While
in the above discussion they appeared as if by magic, we can interpret them as
naturally arising from the notion of symmetry fractionalization which explains all
SPT phases (for a review, see e.g. Ref. [141]). More precisely, we can interpret the
two edge mode operators σx

1/2 and γl as encoding the effective symmetry action
of P and W on the boundary, respectively. Since it is already clear how the P
symmetry localizes at the boundaries, we only need to inspect W . For convenience,
let us work in the fixed point limit µ → 0, such that the Majorana edge operator is
just γl = σy

1/2γ1, see Eq. (2.60). In the same limit all the terms in the Hamiltonian
commute, which means that in the ground state

−iγ̃jσ
z
j+1/2γj+1 = 1 0 < j < L. (2.62)

With this in mind we can rewrite W as

W =σz
1/2σ

z
3/2 . . . σ

z
L+1/2 ∝ σz

1/2γ̃1γ2γ̃2γ3 · · · γ̃L−1γL−1γ̃Lσ
z
L+1/2

=σz
1/2γ1 P γLσ

z
L+1/2 =

(
σy

1/2γ1
) (
γLσ

y
L+1/2

)
= γl γr (2.63)
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which shows that at the fixed point this symmetry also fractionalizes. This way, we
have derived our two edge mode operators from symmetry principles. In the latter
derivation (for W ), we made our lives simple by working in the fixed-point limit
of the Higgs phase. However, the idea that one can effectively write W ≈ WlWr

(where Wl and Wr only act near the boundary with an exponentially small tail
into the bulk) is applicable to any gapped phase of matter that does not break the
symmetry. This can either be derived using the matrix product state formalism, or
more physically using the idea that W ≈ 1 for periodic boundary conditions and
the fact that the state has a finite correlation length (for a more detailed discussion,
see Ref. [141]). The fact that PWlP = −Wl means that the magnetic and fermion
parity Z2 symmetries are realized projectively on the edge. This discrete property
of Wl cannot change as long as it is well-defined, i.e., as long as the system remains
gapped and symmetric. This gives us a discrete SPT invariant, putting the system
in the same phase of matter as a stack of two Kitaev chains, protected by the
fermion parity of a single chain. In fact, in section 2.3.5 this relationship will
become very apparent.

The fact that the Higgs phase is a non-trivial SPT phase can also be detected
in the bulk, e.g., by using string order parameters. This perspective shows that it
is in fact inevitable: from concatenating Gauss laws, we see that the ground state
has long-range order in 〈

σx
i−1/2(−1)

∑
i≤k≤j

nkσx
j+1/2

〉
= 1. (2.64)

This can be interpreted as a string order parameter for the fermion parity symmetry,
whose endpoint operator is odd under the magnetic symmetry. Since this is an
automatic consequence of the Gauss law, we see that any magnetic-symmetry-
preserving phase in the gauge theory must be a non-trivial SPT phase! This more
general perspective is worked out in greater detail (e.g., in higher dimensions) in
an upcoming work [142]. Equivalently, we can look at the string order parameter
associated to the magnetic symmetry W . This is in fact given by the domain wall
operator (2.56), and again, we see that its endpoint operator is charged under P ,
signifying a non-trivial topological phase of matter. Given that this is unavoidable
(indeed, we cannot realize the trivial phase in our gauge theory), one might wonder
whether it remains meaningful to think of it as non-trivial. The fact that it
has protected edge modes is the most clear-cut way of seeing that this is indeed
meaningful. In fact, one can think of the ‘vacuum’ on the outside of the system as
being a truly trivial phase, as distinct from the Higgs phase. We will be able to
make this point more explicit using gentle gauging in section 2.3.5.

Before addressing the effects of turning on h ̸= 0, let us note that while the γl

edge mode operator (2.60) delocalizes as we approach the Ising criticality to the
deconfined phase, the other edge mode operator, X1/2, remains. This means that
the critical system with open boundaries exhibits exact twofold degeneracy of the
energy spectrum, whereas this does not occur for periodic boundary conditions. (If
one tunes beyond the critical point, this becomes the twofold symmetry-breaking
degeneracy.) In particular, the critical ground state thus forms a topologically
non-trivial gapless phase in the sense of Refs. [143, 144]—where the Ising criticality
for the Z2 magnetic symmetry W is enriched by the fermionic parity symmetry P .
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Chapter 2. Z2 gauge theories in one spatial dimension

2.3.5 Gentle gauging
What we discussed until now shows that gauging is a drastic operation which
radically changes the physics of the Kitaev chain. Despite this, one could ask
whether the Kitaev model and its gauged counterpart can both emerge from a
unified framework, where one can study the phase transition separating them. In
addition, in section 2.3.4 we saw that the Higgs phase is topologically non-trivial
with respect to the Zf

2 ×Z2 symmetry. This might seem unusual, given that fermion
parity is gauged—the catch of course being that in the presence of a boundary
this global symmetry actually survives gauging. To get a different perspective
on this subtlety, it is valuable to see this SPT phase arise in an emergent gauge
theory, where the Gauss law is not hardwired into the Hilbert space but is merely
energetically implemented such that the fermion parity is truly a symmetry in the
Hilbert space, even in the bulk.41

To this purpose, consider the following Hamiltonian that acts in the uncon-
strained Hilbert space that includes link and site variables

H =
∑

j

(
itγ̃jσ

z
j+1/2γj+1 + i

µ

2 γ̃jγj − hσx
j+1/2 − iKσx

j−1/2γ̃jγjσ
x
j+1/2 − t2

K
σz

i+1/2

)
(2.65)

with a new parameter K ≥ 0. In the limit K → 0, this model essentially reduces
to the Kitaev chain (2.44): although the Hilbert space still contains degrees of
freedom on the links, due to the last term in the Hamiltonian these are frozen to
σz = +1 and thus completely decouple from the fermions. On the other hand,
as K → ∞ the next-to-last term in the Hamiltonian enforces a large energetic
penalty to every state that does not satisfy the Gauss law. Hence in this limit, at
energies much below the energy scale K, we recover the gauged model (2.54). For
intermediate values of K, the Hamiltonian (2.65) interpolates between these two
limiting regimes. We refer to this procedure as a gentle gauging.

Quantum phase diagram and exact dualities in the absence of vortices

At h = 0 the model (2.65) enjoys a global Zf
2 × Z2 symmetry, generated by the

fermionic parity and Wilson loop operators

P =
∏
j

(
iγ̃jγj

)
W =

∏
j

σz
j+1/2 (2.66)

We expect the phases of the gently gauged model to be classified in terms of these
two symmetries.

We investigate the quantum phase diagram as a function of two dimensionless
parameters µ/t and K/t restricted to the quadrant µ, t ≥ 0, since at h = 0 the
other regions are related by a unitary transformation. In addition to the two
limits K = 0 and K = ∞ described above, the behavior of the model can also

41We point out that this is the most realistic perspective if the gauged Kitaev model is
implemented on a quantum simulator, where violations of the Gauss law are expected and -to
some extent- controllable [145–149].
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2.3. Gauged Kitaev chain

be understood exactly in the limit µ → ∞. In this case the fermionic bands are
fully occupied: hopping and particle number fluctuations are therefore impossible,
and the local fermion parity iγ̃iγi = −1 everywhere. In that limit the Hamiltonian
(2.65) at h = 0 reduces to

H =
∑

j

Kσx
j−1/2σ

x
j+1/2 − t2

K
σz

j+1/2 (2.67)

which is the TFIM (with the link variables being the degrees of freedom), exhibiting
a phase transition from a disordered to the SSB phase at K/t = 1. For small K,
this is the same trivial phase as we encountered in the Kitaev chain (2.44), whereas
for large K → ∞, the symmetry-breaking phase becomes the deconfined phase of
the gauge theory discussed in section 2.3.3. Since this critical point corresponds
to an Ising-type transition involving the gauge variables only, we expect it to be
connected by a critical line to the point µ/t = 2, K = ∞ where, as we have seen,
an analogous transition takes place. This singles out a whole region in the top-right
corner of the µ-K plane (see Fig. 2.12) in which the system is in the symmetry
broken phase of the link magnetization Z2 symmetry. On the other hand, we know
that at µ/t = 2, K = 0 another critical point exists, this time corresponding to
the purely fermionic topological phase transition of the ungauged Kitaev chain. It
remains therefore to determine the fate of this transition at a finite coupling K.

As a first step towards fully mapping out the quantum phase diagram of the
gently gauged model, one can apply a non-local transformation to the Hamiltonian
(2.65). We introduce Z2 gauge-invariant Majorana operators on sites

η2i+1 =
∏

k<i

σz
k+1/2

 γi, η̃2i+1 =
∏

k<i

σz
k+1/2

 γ̃i (2.68)

and also a new set of Majorana operators on links through the “hybrid" Jordan-
Wigner transformation

η2i =
∏

k<i

σz
k+1/2e

iπnk+1

σx
i+1/2, η̃2i =

∏
k<i

σz
k+1/2e

iπnk+1

σy
i+1/2. (2.69)

In terms of these, the model (2.65) takes the form

H = i
∑

j

(
t η̃2j−1η2j+1 + µ

2 η̃2j+1η2j+1

)
︸ ︷︷ ︸

H1

−i
∑

j

(
−K η̃2jη2j+2 + t2

K
η̃2jη2j

)
.

︸ ︷︷ ︸
H2

(2.70)

These are just two decoupled Kitaev chains governed by the Hamiltonians H1 and
H2, whose phase diagram depends only on µ/t and K/t, respectively. For any value
of K, the Hamiltonian H1 is critical at |µ/t| = 2. Conversely, the Hamiltonian
H2 is critical at |K/t| = 1 for any value of µ. As a result, the phase diagram in
the positive µ-K quadrant is divided into four rectangular regions by these two
critical lines, as illustrated in Fig 2.12. Besides, as a consequence of the well known
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Chapter 2. Z2 gauge theories in one spatial dimension

Figure 2.12: The phase diagram for the Hamiltonian (2.65) at h = 0. The
transition lines are straight, as a consequence of two exact dualities explained in
the main text. The intersection point (solid) corresponds to a conformal field
theory with central charge c = 1. Ground state degeneracy in open chain geometry
for each phase is also presented. The limit K → 0 corresponds to the ordinary
Kitaev chain (2.44) whereas K → +∞ is the gauged Kitaev chain (2.54) studied
in section 2.3.

dualities of the Kitaev chains, each region can be exactly mapped onto one of the
other three.

While the analysis above allows us to correctly identify the phase boundaries,
we need to refer to the original model (2.65) to understand the nature of the four
discovered phases.42 In phases I and II (K < t) the link spin fields form a trivial
paramagnet, while the fermionic sector is smoothly connected to the pure Kitaev
chain limit (K = 0) which undergoes a topological-to-trivial phase transition as
µ/t is varied. Therefore, we label phase I as “Kitaev" and phase II as “Trivial".
On the other hand, the nature of phase III can be inferred from the limit µ → ∞
governed by the Hamiltonian (2.67). For K > t its ground state forms an Ising
antiferromagnet, and therefore we refer to this phase as “Spontaneously Symmetry
Broken (SSB)". As for phase IV, its SPT nature in the gauge limit K → ∞ was
proved in section 2.3.4. This fermionic SPT belongs to the same class as a stack of
two Kitaev chains, which can be shown as follows.43 Consider the limiting case

42Under a non-local transformations, the physics of a quantum phase is generically modified.
The paradigmatic example is the duality between the Kitaev chain and the TFIM, reviewed in
section 2.3.1

43We emphasize that this is not guaranteed by Eq. (2.70), since the mapping (2.68)-(2.69)
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2.3. Gauged Kitaev chain

µ = 0, K ≫ t, where we have the stabilizer code

H =
∑

j

(
itγ̃jσ

z
j+1/2γj+1 − iKσx

j−1/2γ̃jγjσ
x
j+1/2

)
. (2.71)

Let us define the following Majorana modes, obtained from the original Majorana
and link variables through a local transformation:

ηj,A = γj,

η̃j,A = γ̃jσ
z
j+1/2,

ηj,B = γ̃jσ
x
j+1/2,

η̃j,B = γ̃jσ
y
j+1/2.

(2.72)

Using these new variables, the Hamiltonian (2.71) reads

H =
∑

j

(itη̃j,Aηj+1,A −K(iη̃j,Aηj+1,A)(iη̃j,Bηj+1,B)) . (2.73)

Despite being an interacting Hamiltonian, its ground state is a free-fermion state.
Indeed, using the fact that iη̃j,Aηj+1,A is a local integral of motion, it is easy to
see that for K > 0 the ground state does not change along the following path
parametrized by λ:

H =
∑

j

(itη̃j,Aηj+1,A − (1 − λ)K(iη̃j,Aηj+1,A)(iη̃j,Bηj+1,B) + iλη̃j,Bηj+1,B) . (2.74)

While for λ = 0 this is the same as Eq. (2.73), for λ = 1 the Hamiltonian describes
a stack of two Kitaev chains. Its ground state corresponds to an SPT phase
protected either by complex conjugation, or by the Zf

2 × Zf
2 group of fermionic

parities of each chain.
We have thus completely mapped the quantum phase diagram of the Hamil-

tonian (2.65) at h = 0, and the result is shown in Fig. 2.12. There are four
distinct phases that are classified in terms of the global Zf

2 × Z2 symmetry of the
model. The phases are separated by the two straight transition lines K/t = 1
and µ/t = 2. The boundaries between different phases are critical. While all
(except the multicritical point) are conformal field theories (CFTs) with central
charge c = 1/2, they are all distinct. In particular, two are fermionic and two
are bosonic: the two transitions out of the Kitaev phase are Majorana CFTs
whereas the two transitions out of the Ising phase are Ising CFTs. Moreover, the
two Majorana CFTs are topologically distinct: in the sense of Ref. [144] they are
symmetry-enriched such that the transition between the Kitaev phase and the SPT
phase is itself topologically non-trivial (with protected edge modes). Similarly,
the Ising CFT between the SSB and SPT phases is also topologically non-trivial.
These four critical lines meet at a multicritical point which is a CFT with central

involves a non-local transformation.
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Chapter 2. Z2 gauge theories in one spatial dimension

Figure 2.13: Half-chain entanglement entropy for a system described by the
Hamiltonian (2.65) with h = 1 (left) and h = 2 (right). Results are obtained using
DMRG for a chain of length L = 100. Phases are labeled as in section 2.3.5, except
that the phase IV is not SPT anymore, but becomes trivial here.

charge c = 1. It can be identified44 with the field theory labeled S2 in Fig. 2 of
Ref. [73].45

Quantum phase diagram in the presence of vortices

In the presence of vortices (h > 0) the magnetic symmetry generated by W =∏
i σ

z
i+1/2 is explicitly broken. Since our understanding of the quantum phases of

the gently gauge model at h = 0 in Sec. 2.3.5 relied on such symmetry being
present, we anticipate qualitative differences once a finite h is turned on.

The physics of the Kitaev (I) and trivial (II) phases is essentially unchanged.
This is clear from the fact that in the K → 0 limit the h-term is negligible
compared to the last term of the Hamiltonian (2.65), and moreover the fermion
parity symmetry that characterizes the ordinary Kitaev chain is still present.

The fate of the symmetry broken phase (III) depends on the sign of the chemical
potential. This is clear from our discussion in Sec. 2.3, where we showed that at
K → ∞ the problem is governed by the asymptotic TLFIM Hamiltonian (5.13),
whose Ising coupling is determined by the chemical potential. As explained in
section 2.3.3, the Ising symmetry broken phase survives at finite longitudinal field
only in the antiferromagnetic case. Therefore, we need to discuss the ferromagnetic
(µ < 0) and antiferromagnetic (µ > 0) regimes separately. In the former case, the
phase III becomes a trivial paramagnet with no ground state degeneracy as soon as
a finite h is introduced. In the latter case, SSB phase is still present at h ̸= 0, but
the nature of SSB is modified compared to the h = 0 problem. We note that one

44There are only three points in Fig. 2 of Ref. [73] that can be related to free fermions. One
is the Dirac CFT, but this cannot be perturbed into an Ising CFT; another is the stack of a
Majorana CFT and an Ising CFT, but in the phase diagram in Fig. 2.12 the Majorana CFTs
make a 90◦ turn at the multicritical point, rather than being a straight line. By exclusion, we
are dealing with the third option, the S2 theory.

45Note that the transformation (2.70) maps the c = 1 multicritical point into a standard Dirac
CFT, but this mapping is non-local.
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2.3. Gauged Kitaev chain

can the reach same conclusions about phase III at h ̸= 0 by examining a different
limit of the Hamiltonian (2.65), where µ → ±∞ but the coupling K is finite. Here
we get a different asymptotic TLFIM

Hµ=±∞ =
∑

j

(
±K σx

j−1/2σ
x
j+1/2 − t2

K
σz

j+1/2 − hσx
j+1/2

)
, (2.75)

where the sign of the Ising term is still determined by the sign of the chemical
potential µ.

Finally, we consider phase IV: the absence of the Z2 magnetic symmetry destroys
the SPT order and lifts the ground state degeneracy completely. We are left with
another trivial phase.

The complete quantum phase diagram at h ̸= 0 was mapped out numerically
and is shown in Fig. 2.13. For µ < 0 there are only two regions: the Kitaev
phase (I) is separated from a single trivial phase (IV) by the Majorana critical
line. The case µ > 0 is more interesting, as we still find four distinct quantum
phases. Since phases II and IV are now both trivial, it is natural to ask why they
are not connected. In other words, we want to understand why the special c = 1
critical point that separates them at h = 0 still survives at a finite h. In order to
answer this question, we consider at first the large h limit: h ≫ t, K, t2/K, µ. In
that regime we can replace σx → 1, σz → 0 and the Hamiltonian (2.65) takes the
simple form

Hh=∞ = i
(
µ

2 −K
)∑

j

γ̃jγj =
(
µ

2 −K
)∑

j

(1 − 2nj) , (2.76)

i.e. the fermionic sites are either completely occupied or completely empty depend-
ing on the sign of the prefactor. Remarkably, these are two distinct phases in the
presence of translation symmetry. To see this, one can consider the string order
parameter for fermion parity symmetry. Considering that it is an (unbreakable)
symmetry, there will be long-range order of ⟨OiPi+1 · · ·Pj−2Pj−1Oj⟩ for some ap-
propriate choice of endpoint operator Oj . Moreover, since parity is a Z2 symmetry,
the momentum of this endpoint operator can only46 be 0 or π. We thus have a
discrete invariant. Moreover, the two fixed-point limits discussed above (where
every site is empty or fully-occupied) realize both cases. They must thus be
separated by a quantum critical point. We can think about these states as defining
two distinct symmetry protected trivial (SPt) states [150] protected by the fermion
parity Zf

2 symmetry and translation symmetry.
In the region of parameters specified above, one can use perturbation theory

to find corrections to the simple Hamiltonian (2.76). We have to consider virtual
processes induced by the full Hamiltonian (2.65), that move the states away and
then back into the low-energy h → ∞ Hilbert space, where σx = 1, σz = 0. At
second order, we have one such process where one link is first flipped by the first
term of the Hamiltonian (2.65) and then flipped back by the last term, or vice

46The endpoint operator of the square of the symmetry is the square of the endpoint operator.
Since the endpoint operator of the trivial string has zero momentum, the momentum of the
original endpoint operator has to satisfy 2k ≡ 0 mod 2π.
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Chapter 2. Z2 gauge theories in one spatial dimension

Figure 2.14: Numerical results for the half-chain entanglement entropy at h/t = 5.
The white dotted lines are the analytical results from perturbation theory at large
h, see Eq. (2.78). This approximation is valid for t2/h ≪ K ≪ h and µ ≪ h,
where it reproduces correctly the phase boundaries. However, it cannot be used to
infer that the critical lines converge into a c = 1 multicritical point.

versa. This gives a hopping contribution leading to the following effective fermionic
Hamiltonian

Heff = i
(
µ

2 −K
)∑

j

γ̃jγj − i
t3

Kh

∑
j

γ̃jγj+1. (2.77)

This is a Kitaev chain, which is critical when

µ

2 −K = ± t3

Kh
. (2.78)

For a fixed h, the two positive solutions of this quadratic equation in the coupling
K give critical lines K+(µ, t) and K−(µ, t) which separate the topological Kitaev
phase I from the trivial phases II and IV. As shown in Fig. 2.14, these lines
agree well with our numerical results in the region of parameters described above,
where perturbation theory is applicable. At µ = 0, the transition happens for
K∗ = (t3/h)1/2. The two transition lines converge to each other without touching
for large values of µ. This provides additional evidence that the two trivial phases
are indeed separated. Note however that the critical point with c = 1, where the
topological region ends, lies outside the range h ≫ t, K, t2/K, µ for which Eq.
(2.77) is a valid approximation. Therefore the critical point cannot be located with
this method.
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Chapter 3

Emergent integrability and extended
constraints

One of the recurring themes in our investigation of one dimensional systems is the
appearance of integrable constrained models. From the gauge-theory point of view,
this can be understood from the fact that we consider spinless fermionic matter,
that for large values of the confining potential binds into dimers. Such extended
objects occupy at least two lattice sites and cannot overlap because of the exclusion
principle, de facto enforcing a blockade that is reminiscent -for instance- of the
physics of Rydberg atoms arrays [80, 118]. Surprisingly, similar physics arises in
a particular limit of the Ising model in a tilted field. While in the presence of a
longitudinal field the Ising model does not have a purely fermionic dual,1 it can be
locally mapped to a Z2 lattice gauge theory, i.e. the gauged Kitaev chain studied
in section 2.3. This is part of a beautiful web of dualities, that will be explored in
detail in Ch. 5.

Structure

This chapter is dedicated to a particular class of integrable models with extended
constraint, studied first by Alcaraz and Bariev (AB). Due to its significance for
our research, in section 3.1 we provide an extensive introduction to the AB model,
which includes novel results about its hydrodynamics and thermodynamics. In
section 3.2 we give an account of how this model emerges in the context of Z2
lattice gauge theories for large values of the Z2 electric coupling. This extends the
results obtained in section 2.2.3 to more complicated cases, where constraints with
longer range are generated. In section 3.3 we derive how the AB model describes a
particular integrable sector of the Ising chain in a tilted field, and we apply the
results of section 3.1 to investigate transport under different partitioning protocols.
We also take a small detour from the main subject of this chapter by discussing
the physics of non-integrable sectors of the perturbative effective model.

1The longitudinal field corresponds to a non-local operator under the Jordan-Wigner transfor-
mation.
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Chapter 3. Emergent integrability and extended constraints

3.1 The Alcaraz-Bariev model
In this section we review the physics of the constrained XXZ chain, first investigated
by Alcaraz and Bariev [126]. Similarly to its unconstrained counterpart, the model
is dual to hopping fermions with density-density interactions under a Jordan-
Wigner transformation. Here, however, we will stick to the spin language. Some
details of the Bethe Ansatz solution, which are also relevant to section 3.3, are
discussed in appendix C, while here we focus on presenting the most relevant
definitions and results. The reader can find much needed background information
on Bethe Ansatz and generalized hydrodynamics in the references [151–153].

3.1.1 The model
The Hamiltonian of the Alcaraz-Bariev model reads [126]:

HAB = −1
2
∑

i

Pl

(
σx

i σ
x
i+1 + σy

i σ
y
i+1 + ∆σz

i σ
z
i+l+1 − gσz

i

)
Pl, (3.1)

where Pl is a projector that forbids the presence of two up-spins at a distance
that is smaller or equal to l lattice spacings. Unsurprisingly, for l = 0 we recover
the familiar XXZ chain, so that all the results obtained here can be seen as a
generalization of the former. In our convention the “vacuum” is given by the state
|0⟩ = | ↓↓ . . . ⟩, while a spin up (magnon) can be interpreted as a particle. The
Hamiltonian conserves the “magnon number” charge

n̂mag =
∑

i

1 + σz
i

2 , (3.2)

with the external field g playing the role of a chemical potential. Due to the
constraint, one can only accommodate a magnon every l + 1 sites, so that the
maximum filling that can be achieved is

ρmax = 1
1 + l

. (3.3)

The “half filling”, correspondingly, is defined as

ρhalf = 1
2 + l

, (3.4)

i.e. the filling for which only half of the available sites are occupied. Similarly to the
XXZ chain, the Alcaraz-Bariev model is integrable and can be solved analytically
with the coordinate Bethe ansatz. As detailed in appendix C, the AB model can be
seen as an XXZ chain in a reduced, density dependent volume. Intuitively, we can
imagine that each magnon is in fact a larger object that does not simply occupy a
single site, but rather extends over all the l sites forbidden by the constraint. As
a consequence, the magnon density naturally enters results for critical exponents
and other observables. Remarkably, the Hamiltonian (3.1) at ∆ = 1/2 is known to
be a supersymmetric model [154, 155], which can be realized in a Rydberg-based
quantum simulator [156].
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3.1. The Alcaraz-Bariev model

Conformal dimensions

In conformal field theories, one is interested among other things in calculating the
conformal dimensions δ of primary operators O, i.e. the exponent that governs the
power law decay

⟨Ox1Ox2⟩ ∝ 1
|x1 − x2|2δ

(3.5)

of correlators. We focus here on the field with lowest conformal dimension, which
we denote by O1,0 and corresponds to the lattice operator σ+ 2 This will be the
only relevant operator in our discussion, as it is related to single particle creation.
At ∆ = 0, this has a density dependent conformal dimension

δ1,0 = 1
4(1 − lρ)2 . (3.6)

For ∆ ̸= 0, this is modified through the introduction of the density-dependent
parameter ηρB

:
δ1,0 = 1

(1 − ρB)2 η2
ρB

, (3.7)

where ηρB
can be obtained by solving a system of integral equations derived in

[126, 157]. In particular, when ∆ = − cosh(λ) < −1 the equations to solve are

1 = η(U) + 1
2π

∫ U0

−U0

sinh(2λ)η(U ′)
cosh(2λ) − cos(U − U ′)dU

′, (3.8)

Q(U) = 1
2π

sinh λ
cosh λ− cosU − 1

2π

∫ U0

−U0

sinh(2λ)Q(U ′)
cosh(2λ) − cos(U − U ′)dU

′, (3.9)
∫ U0

−U0
Q(U)dU =

{ ρB

1−ρB
, 0 ≤ ρB ≤ 1

3 ,
1−2ρB

1−ρB
, 1

3 ≤ ρB ≤ 1
2 ,

(3.10)

where U0 in Eq. (3.8) is determined by solving Eqs. (3.9) and (3.10). Finally, the
parameter ηρB

that appears in Eq. (3.7) can now be obtained by evaluating the
function η(U) at U = U0. For −1 < ∆ < 1, instead, one uses the parametrization
∆ = − cos γ and obtains similar equations, with the hyperbolic functions replaced
by their trigonometric counterparts. An application of these results is the exact
curve in Fig. 2.5, which is obtained by solving numerically the equations above for
different values of ρ.

3.1.2 Transport in the Alcaraz-Bariev model
As the Alcaraz-Bariev model is a close relative of the XXZ spin chain, it inherits
most of its integrable structure, further enriched by the constraint. For this
reason, we will often refer to the methods that apply to the unconstrained XXZ
chain. We briefly review these methods in Appendix C, but more comprehensive
accounts can be find in the dedicated literature [151, 153]. While the original

2In the notation of Appendix B this corresponds to the vertex operator enϕ+mθ with n = 1
and m = 0.
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papers [126, 157, 158] addressed the equilibrium thermodynamics, transport and
hydrodynamics of the AB model at arbitrary ∆ are tackled in [159].

Being integrable, the AB model possesses an extensive number of quasi-local
conserved quantities [160], with striking consequences on its non-equilibrium fea-
tures, hindering thermalization [161] and featuring ballistic transport [162]. As
we saw, the AB Hilbert space is formed by multiparticle magnonic asymptotic
states, which correspond to isolated spin-ups in a background of spin-downs. These
can be labeled by the set of rapidities {λj}N

j=1, which generalize the momenta of
non-interacting systems. The fundamental property that makes integrable systems
so special is that multiparticle scattering events can be factorized in two-body
scattering processes, the latter fully described by the scattering phase Θ(λ, λ′).3
The scattering phase of the AB model and of the XXZ spin chain are intimately
connected [126]

Θ(λ, λ′) = l p(λ) − l p(λ′) + ΘXXZ(λ− λ′), (3.11)

with p(λ) the momentum of the magnon.4 On a finite chain, the allowed rapidities
are quantized, similarly to the momenta of non-interacting models. However, the
interactions couple the rapidities through the highly non-linear Bethe equations
[151], which explicitly depend on Θ. Being non-linear, the Bethe equations are
difficult to solve. In the zero density limit, where the size of the system L → ∞
while keeping the particle number N fixed, the solutions of the Bethe equations
form groups of rapidities sharing the same real part, but shifted in the imaginary
direction. These special solutions are called strings and are determined by the
zeroes and poles of the scattering matrix eiΘ(λ,λ′) [151] and are readily interpreted
as bound states of magnons. Since the factor eil(p(λ)−p(λ′)) does not have zeroes
or poles, in the AB scattering matrix these are entirely determined by the XXZ
scattering matrix. Hence the two models share the same pattern of strings.

Strings in unconstrained and constrained XXZ chains

As stated above, strings can be identified as solutions of the Bethe equations in
the zero-density limit. The string hypothesis [151], however, claims the persistence
of strings even in the thermodynamic limit (L → ∞, N/L = n fixed). Within the
Thermodynamic Bethe Ansatz (TBA) approach [151], one opts for a coarse-grained
description of the Bethe equations, defining the so called root densities ρj(λ),
one for each string, where λ parametrizes the (real) center of the string. Then,
Lρj(λ) dλ is interpreted as the number of solutions of the jth string within the
interval [λ, λ + dλ]. The interactions affect the occupancy, hence the need of
introducing the total root density ρt

j(λ) ≥ ρj(λ) representing full occupancy. The
root densities fully determine the equilibrium thermodynamics and homogeneous
non-equilibrium steady states [160, 170, 171].

Since the AB and XXZ models are closely related, it is worth to address properly
the string hypothesis in the latter. The string classification in the XXZ chain [151]

3The scattering matrix is given by S(λ, λ′) = eiΘ(λ,λ′).
4We point out that the relation resembles the celebrated T T̄ deformation, see [163–169] and

references therein.
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3.1. The Alcaraz-Bariev model

is recapped in Appendix C.1. The structure of XXZ strings greatly depends on the
parameter ∆: in particular, for |∆| ≥ 1 the string hypothesis, strictly speaking,
does not cover the entire phase space. The thermodynamics of the strings built
on the all-spin-up reference state covers only states up to half filling 0 < n < 1/2,
with n being the density of flipped spins. In the XXZ model, one circumvents this
limitation by using the reflection symmetry Sz

j → −Sz
j and building the string

hypothesis on the symmetric all-spin-down reference state. The two descriptions
together cover the whole phase space and, in addition to the root densities, one
introduces the magnetization sign f = ±1 to specify the sector. In the case |∆| < 1,
the string hypothesis covers all magnetization sectors and f is not needed.

In the AB model the constraint shifts the half-filling point to the value 1/(2 + l)
and, moreover, it breaks the spin reflection symmetry. In Ref. [126] the Bethe
equations of the AB model in all sectors have been mapped onto the corresponding
equations for the XXZ chain in a reduced magnetization-dependent volume. This
approach is reviewed in Appendix C.2. Building on these ideas, one can determine
the thermodynamics of the AB model at a generic filling, which is described by the
same set of root densities as the XXZ spin chain. For the reasons just explained,
above half filling these cannot be interpreted as strings anymore. However, for the
sake of retaining a standard notation, we will still refer to these root densities as
strings. In addition, for |∆| > 1 one needs an extra bit of information f = ±1 that
distinguishes the regions below and above half filling, respectively.

When addressing thermodynamics and transport, it is crucial to know the
amount of magnetization carried by each string. Within the ordinary string
hypothesis, this is simply the number of magnons belonging to the same bound
state. In the XXZ case, one has

mXXZ
j = f|mXXZ

j |, (3.12)

with |mXXZ
j | a f−independent integer. On the other hand, in the AB model we

find an explicitly f−dependent magnetization

mj = [1 + l(1 − f)/2]−1mXXZ
j . (3.13)

We observe that for f = −1 (needed if |∆| > 1) the string magnetization mj

becomes fractional! This signals the lack of microscopic interpretation of the root
density as a bound state of magnons. The non-trivial f−dependence extends from
the magnetization to thermodynamic observables. To see that we consider the
TBA string scattering phase Θj,j′(λ, λ′) that, whenever the string hypothesis holds,
is obtained from Θ(λ, λ′) summing over the constituents of the string [151]. In all
sectors it can be written as

Θj,j′(λ, λ′) = l pj(λ)mj′ − l mjpj′(λ′) + ΘXXZ
j,j′ (λ− λ′) . (3.14)

The appearance of the magnetization mj makes Θj,j′ explicitly f−dependent. In
addition, f renormalizes the total root density

2πσjρ
t
j = (∂λpj)dr(1 + l(1 − f)/2)−1, (3.15)
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where σj is the string parity and the standard definition of dressing is

(∂λpj)dr = ∂λpj −
∑
j′

∫ dλ
2π∂λΘj,j′(λ, λ′)ϑj′(λ′)σj′(∂λ′pj′)dr, (3.16)

with ϑj = ρj/ρ
t
j being the filling fraction. With these caveats, one can recover

the full equilibrium thermodynamics by standard methods and move on towards
discussing hydrodynamics.

Hydrodynamics of the AB model

Let us imagine that the system, still governed by the homogeneous AB Hamiltonian,
features a long wavelength inhomogeneity in the state. In the limit of weak
inhomogeneities, one can invoke local relaxation to weakly space-time dependent
root densities. This is the idea behind the Generalized Hydrodynamics (GHD)
[172, 173], which in its simplest form describes the convective expansion of particles

∂tρj(λ) + ∂x[veff
j (λ)ρj(λ)] = 0 (3.17)

or, equivalently,
∂tϑj(λ) + veff

j (λ)∂xϑj(λ) = 0 (3.18)

with ϑj = ρj/ρ
t
j being called the filling fraction.5 The effective velocity

veff
j (λ) = (∂λϵj(λ))dr/(2πσjρ

t
j(λ)) , (3.19)

depends on the state due to interactions, making the equation non-linear. Above,
ϵj is the energy carried by the string. It is worth mentioning that, in contrast to
the AB model, in most integrable systems the identity

2πσjρ
t
j = (∂λpj)dr (3.20)

holds, leading to the alternative more intuitive definition

veff
j (λ) = (∂λϵj)dr/(∂λpj)dr (3.21)

that was originally reported in Refs. [172, 173]. However, in a recent rigorous proof
[174–176], Eq. (3.19) naturally emerges from the calculations. To the extent of
our knowledge, this is the only model with this feature. In the case with |∆| > 1,
the continuity equation ∂tn+ ∂xjn = 0, with

n = (1 − f)/(2 + l(1 − f))−1 +
∑

j

∫
dλmjρj(λ) (3.22)

and
jn =

∑
j

∫
dλveff

j (λ)mjρj(λ), (3.23)

closes the hydrodynamic equations giving a further condition on f, similarly to the
XXZ model [177].
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Figure 3.1: Comparison between TEBD numerical simulations of partitioning
protocols in the Alcaraz Bariev and the exact hydrodynamic solution. We initialize
the state in two halves |GS⟨Z⟩⟩ ⊗ | ↓↓↓ . . . ⟩ with |GS⟨Z⟩ the ground state at fixed
magnetization. In practice, |GS⟨Z⟩⟩ can be obtained by applying an external
magnetic field in the z direction (BL in the figure). The same method is used also
to obtain the desired matrix product state state in the microscopic simulations.
Notice the sharp jump for ∆ = 1.5, since states above and below half filling are
connected.

The partitioning protocol

Transport is best studied by defining a partition protocol, that prescribes how the
left and right halves of a chain are initialized. Time evolution of this inhomogeneous
initial state probes important properties of the system, showing for instance that
integrable systems exhibit ballistic transport. The partitioning protocol is best
addressed by means of the hydrodynamic equations in the form (3.18). In this
protocol, the two halves are initialized in two homogeneous states

ϑj(λ)
∣∣∣∣
t=0,x

= θ(x)[ϑj(λ)]R + θ(−x)[ϑj(λ)]L (3.24)

with θ(x) the Heaviside theta function θ(x > 0) = 1 and zero otherwise. The left
and right fillings [ϑj(λ)]L,R are the initial conditions and must be given as an input.
In our case, we probed filling fractions belonging to a class of thermal states. Due
to the appearance of only first derivatives in the hydrodynamic equation, signaling

5The equivalence between (3.17) and (3.18) is non trivial.
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the ballistic transport, the solution of Eq. (3.18) with these initial condition is
scale-invariant. Namely, for t > 0 the filling is not an independent function of time
and space, but a function of their ratio. We define the ray ζ = x/t and Eq. (3.18)
admits the solution [172, 173]

ϑj(λ) = θ(ζ − veff
j (λ))[ϑj(λ)]R + θ(veff

j (λ) − ζ)[ϑj(λ)]L (3.25)

where the ζ−dependence of veff
j (λ) is left implicit. Since veff depends on the

state through the dressing, the above solution is only implicit and cannot be
further analytically simplified. However, very simple recursive numerical schemes
guarantee fast convergence: first, one finds an initial Ansatz for ϑj(λ) ignoring
the dressing in the effective velocities in Eq. (3.25). Then, the filling fraction is
used to recalculate veff and the procedure is iterated until convergence is reached,
which usually happens after only few steps. In the case where the two halves are
initialized in opposite magnetic sectors, one must supplement Eq. (3.25) with the
proper equation for the sign f [177]. Imposing spin conservation ∂tn+ ∂xjn = 0 in
the scaling form, one readily obtains an equation similar to (3.25)

f = θ(ζ − v̄)fR + θ(v̄ − ζ)fL (3.26)

with fR,L set by the initial conditions and

v̄ =
∑

j

∫
dλmjv

eff
j (λ)ρj(λ)

 1
2 + l

−
∑

j

∫
dλmjρj(λ)

−1

. (3.27)

In Fig. 3.1 we provide checks of the hydrodynamic solution against the TEBD
numerical simulation of the Alcaraz-Bariev model, finding excellent agreement as
expected. To this purpose, one adopts a partitioning protocol where the right half
of the chain is initialized to the ferromagnetic state | ↑↑↑ . . . ⟩ while the left half
is in a state where the filling of magnons is either below or above one half. This
is done both for ∆ < 1 and ∆ > 1. In the latter case, when sectors below and
above half filing are connected, the profile at large times exhibits a sharp jump.
This is readily understood: at t = 0, the f(x) profile is a step function and due to
discreteness of f, GHD cannot smoothen its profile, but will only move the position
of the jump.6

Further examples of the validity of the GHD solution are provided in section
3.3, where the Alcaraz-Bariev model emerges as effective theory for an integrable
sector of the Ising model in a weakly tilted field.

3.2 Constrained XXZ chain from Z2 lattice gauge
theories

The aim of this section is to give an account of how the Alcaraz-Bariev model
emerges naturally in the context of Z2 lattice gauge theories. The bulk of the work

6A similar behavior is observed in the magnetization of the XXZ chain [177], but in the AB
model f affects the whole set of TBA equations. As a result, non-analyticity is found also in the
profiles of other conserved charges.
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3.2. Constrained XXZ chain from Z2 lattice gauge theories

was already done in section 2.2.3, where we have shown how the AB model can be
obtained as the large h limit of the Z2 LGT with Hamiltonian

H = −t
∑

i

(
c†

iσ
z
i+ 1

2
ci+1 + h.c.

)
− h

∑
i

σx
i+ 1

2
, (3.28)

in the “even” Gauss’ law sector

σx
i− 1

2
(−1)nσx

i+ 1
2

= 1. (3.29)

The AB model (3.1) appears by applying second order perturbation theory at
large h to the sector of the model that consists of isolated mesons only. Physically,
this effective theory captures the physics of particles (magnons) corresponding
to length-one dimers in the microscopic theory. As a result of Pauli’s principle,
the dimers are hardcore bosons which are also not allowed to occupy neighboring
sites: the effective theory in this regime therefore has a constrained Hilbert space.
Adopting the usual identification of hardcore bosonic particles with magnons7, we
obtain as an effective model the Hamiltonian (3.1) with ∆ = 1, with an overall
prefactor t2/h that sets the energy scale.

3.2.1 AB model from constrained hole dynamics at large h

It is instructive to see how the same result can be obtained from the theory
describing the behavior of holes in the model (3.28). While this does not lead to
new physics8, it gives insight into the correlated hopping of holes. This was first
investigated by Bariev [178], who demonstrated its integrable nature which was
explored further in [179–181]. To this purpose, we first define the dimer creation
and annihilation operators in terms of the hole operators (2.26):

b†
i+1/2 = hihi+1 bi+1/2 = −h†

ih
†
i+1. (3.30)

Dimers do not behave strictly like bosons because of the following commutation
relation on neighboring sites:

[bi−1/2, b
†
i+1/2] = −h†

i−1hi+1, (3.31)

which indicates that the Hilbert space is constrained. Again, the reason is sim-
ply that since the dimers are made of single-component fermions, they cannot
simultaneously occupy neighboring links. In the limit of strong string tension, the
dynamics of holes in this sector is governed by the effective Hamiltonian

Heff = −teff
∑

i

(h†
i−1(1 − nh

i )hi+1 + h.c.) + Ueff
∑

i

nh
i n

h
i+1 (3.32)

with Ueff = t2/h = 2teff. The correlated hopping term describes the fact that a hole
always hops by two sites, which corresponds to the hopping of a dimer. By using

7Here represented by spin-ups in a spin-down background.
8The hole description is complementary to the description in terms of particles.
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the definitions above and the commutation relation (3.31), it is straightforward to
show that the hopping term can be rewritten in terms of dimers as

Hhop = −teff
∑

i

P1(b†
i+1/2bi−1/2 + h.c. )P1, (3.33)

where P1 denotes a projector that inhibits multiple dimer occupation of any link
of the lattice and simultaneous occupation of dimers on neighbouring links.

As for the interaction term, we note that on a closed chain the number of the
nearest-neighbour holes is complementary to the number of the next-to-nearest
dimers. Given that, the nearest neighbour repulsion between the holes can be
rewritten as the next-nearest neighbour repulsion between the dimers and we
obtain once again the effective AB model with l = 1 and ∆ = 1.

3.2.2 Extended constraints from density-density repulsive inter-
actions

The Hamiltonian (3.28) can be extended to include repulsive interactions between
fermions. Starting with the case of nearest-neighbor interactions, we can write

H1 = H0 + V1
∑

i

nf
i n

f
i+1 (3.34)

where V1 is a positive coefficient that, for our purposes, can be assumed to be of
order t. In the large h limit such term gives a first order contribution to the next-
nearest neighbor repulsion between dimers, that results directly from the repulsion
between neighboring fermions belonging to different dimers. Therefore the strength
of the repulsion is modified: UB → UB + V1 ≫ UB, since V1 ≈ t ≫ t2/h. In the
AB language, one obtains a constrained XXZ chain with ∆ ≫ 1. For generic l the
maximum filling consistent with the constraint is ρmax = 1/(l+ 1). If ρ < ρhalf the
strong repulsion ∆ ≫ 1 enforces energetically an extended next-nearest neighbor
constraint, so that effectively one recovers an AB model with l = 2 and a next-to-
next-nearest neighbor asymmetry ∆2 = 0. If ρ > ρhalf , on the other hand, this is
not possible since the extended constraint is not compatible with the number of
particles. An example of this is the upper left corner of the phase diagram in Fig.
2.8(a). There the repulsion is small enough to be in the perturbative regime, but
it can still be tuned to large enough values compared to the emergent energy scale
t2/h. For this reason, the exponent governing the decay of dimer-dimer correlators
is found to converge to the one of a AB model with l = 2 and ∆ = 0 as h/t → ∞.

The argument can be easily extended to longer range repulsive interactions:
the Hamiltonian

Hn = H0 + V1
∑

i

nf
i n

f
i+1 + V2

∑
i

nf
i n

f
i+2 + · · · + Vn

∑
i

nf
i n

f
i+n (3.35)

has as large h limit an AB model with l = n+ 1 and ∆n+1 = 0, provided that the
filling satisfies ρ < 1

n+2 and all the interactions strengths Vm ≈ t.
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Figure 3.2: Magnetization profiles ⟨Sz
j ⟩ in the Ising chain at J = 1 and h⊥ = 0.2

initialized by joining the ferromagnetic and Neel states. (a) For h∥ = −0.7 we
observe ballistic transport with a characteristic lightcone. (b) For h∥ = 0.7 we
find strong suppression of spin transport. TEBD simulations are done for a chain
of length L = 80. The peculiar transport is captured by the emergent integrable
dynamics governed by the Hamiltonian (3.52), see main text for discussion.

3.3 Constrained XXZ chain as a limit of the tilted-
field Ising model

So far we have explored how constrained models can emerge from Z2 lattice gauge
theories in the limit of large electric fields. Here we take a different path and
show how the constrained XXZ chain appears in a different (although somewhat
related) scenario, i.e. as a limit of the familiar Ising model in the presence of a
longitudinal field.9 This is at first sight surprising, since it is well known that
the longitudinal field breaks the integrability of the TFIM, apparently in contrast
with the emergence of an integrable sector described by the Alcaraz-Bariev model.
Evidence for this unexpected behavior comes from a direct numerical inspection of
the model. With the help of Time Evolving Block Decimation (TEBD) [183, 184],
one can investigate transport in the Ising chain in a tilted magnetic field, which is
described by the Hamiltonian

H = −J
∑

i

ZiZi+1 − h∥
∑

i

Zi − h⊥
∑

i

Xi, (3.36)

9This can be related to Z2 LGT in two inequivalent ways. Firstly, as shown in Chapter 5,
a local mapping transforms the gauged Kitaev chain studied in section 2.3 into a TLFI model.
Secondly, the Ising model can be reformulated as a gauge theory by artificially extending its
Hilbert space and imposing a Gauss law [182]. For the sake of simplicity, we will not indulge on
this perspective any further.
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where Xi and Zi denote the Pauli matrices at site i. To study transport, we
adopt a partitioning protocol [185] where one initializes the state in two different
halves |Ψ⟩ = |ΨL⟩ ⊗ |ΨR⟩ and then lets the system evolve with the homogeneous
Hamiltonian. To obtain the results displayed in Fig. 3.2 (a) |ΨL⟩ and |ΨR⟩ are
chosen to be the Neel and ferromagnetic state respectively, and we focus on the
regime where the transverse field is weak. While the Hamiltonian (3.36) is known
to be non-integrable for generic values of the parameters, our analysis unveils
persistent ballistic transport typical of integrable models [172, 173], in contrast
with the naively expected diffusion. With this choice of initial states, it is also
evident how transport strongly depends on the longitudinal field and the Ising
coupling, with a lightcone suppression whenever 0 < h∥/J < 4, as displayed in Fig.
3.2 (b). As we will see in the following, this can be ascribed to the appearance of a
peculiar integrable model.

3.3.1 Effective Hamiltonian from perturbation theory
In order to gain an analytical understanding of the bizarre phenomenology displayed
above, let us consider the Ising chain (3.36) in the regime where the transverse
field h⊥ is much smaller than the two generic (but incommensurate) couplings
J and h∥. To set up a perturbative expansion, the Hamiltonian (3.36) is split
into the classical Z-dependent part H0 (the Ising and longitudinal field terms)
and the transverse field perturbation. Since [H0, Zi] = 0, the Hamiltonian H0
has an extensive number of symmetries and trivially splits in the Z-basis into
2L independent blocks. Notwithstanding, its energy spectrum is organized into
degenerate multiplets characterized only by a pair of emergent U(1) quantum
charges: the magnon number

N =
∑

i

1 − Zi

2 . (3.37)

and the domain wall number

D =
∑

i

1 − ZiZi+1

2 . (3.38)

By construction, N and D are both simultaneously preserved by the effective
perturbative dynamics. The transverse field perturbation changes the number of
magnons and, as we will verify explicitly, can contribute only at even orders of the
degenerate perturbation theory.

Computation of the effective Hamiltonian

Employing the Schrieffer-Wolff transformation [125, 186] we now construct the
second-order effective perturbative Hamiltonian. While H0 trivially preserves
the number of magnons N and the number of domain walls D, the perturbation
V = −h⊥

∑
i Xi changes them. We eliminate transitions that do not conserve

N and D order by order in h⊥ by performing a unitary transformation of the
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Figure 3.3: Virtual second-order processes that give rise to the nearest-neighbor
spin exchange. To ensure domain wall conservation, magnons can hop only if the
surrounding sites are both empty (left) or both occupied (right).

Hamiltonian

Heff = eSHe−S = H + [S,H] + 1
2[S, [S,H]] + . . . , (3.39)

where the anti-Hermitian operator S is organized in the power series S = ∑∞
n=1 S

(n)

in the transverse field coupling h⊥. As a result, the expansion of the effective
Hamiltonian in h⊥ reads

Heff = H0 +
(

[S(1), H0] + V
)

︸ ︷︷ ︸
H

(1)
eff

+
(

[S(2), H0] + [S(1), V ] + 1
2[S(1), [S(1), H0]]

)
︸ ︷︷ ︸

H
(2)
eff

+ . . . .

(3.40)
Now the terms S(n) are chosen such that up to the n-th order in the perturbation
coupling h⊥ the effective Hamiltonian operates exclusively within the degenerate
subspaces of the Hamiltonian H0. Mathematically, one has

[H(n)
eff ,PN,D] = 0, (3.41)

i.e. the nth order contribution to effective Hamiltonian H(n)
eff commutes with every

operator PN,D that projects on the Hilbert subspace with N magnons and D
domain walls. Since V changes the number of magnons, it is purely off-diagonal.
Hence, the linear order Hamiltonian H

(1)
eff vanishes

H
(1)
eff = PN,DV PN,D = 0. (3.42)

To quadratic order, the effective Hamiltonian is

H
(2)
eff = PN,D

([
S(1), V

]
+ 1

2
[
S(1),

[
S(1), H0

]])
PN,D

= PN,DV
1 − PN,D

E
(0)
N,D −H0

V PN,D, (3.43)

where E(0)
N,D is the unperturbed energy of the degenerate manifold with N magnons

and D domain walls. As illustrated in Fig. 3.3, at second order in h⊥, a nearest-
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Figure 3.4: After flipping the middle spin from up to down, a virtual state is
obtained whose energy differs by ∆E from the energy of the original configuration.

neighbor spin-exchange term is generated

H
(2)
eff,se = − h2

⊥J

h∥(h∥ + 2J)
∑

j

P+
j−1,j+2

(
S+

j S
−
j+1 + h.c.

)

− h2
⊥J

h∥(h∥ − 2J)
∑

j

P−
j−1,j+2

(
S+

j S
−
j+1 + h.c.

)
(3.44)

where S±
j = (Xj ± iYj)/2 is the creation/annihilation spin 1/2 operator on the site

j. The operators

P±
i,j = 1 ± (Zi + Zj) + ZiZj

4 (3.45)

are projectors on spin up-up and down-down pair states, respectively. Notably, any
longer-range spin exchange vanishes because all virtual processes exactly cancel
each other in that case. By taking a closer look at Eq. (3.44), one realizes that
domain wall conservation enforces a peculiar form of the nearest-neighbor exchange
term. This involves a projector which ensures that the two outer spins (surrounding
the hopping pair) point in the same direction. Similar type of hopping have been
discussed in [179–181, 187].

Having established the form of the spin exchange, we now turn to the interaction
terms. To this end, we take into account all second-order processes where first a
spin is flipped by the perturbation V = −h⊥

∑
i Xi and next the very same spin is

flipped back again. The energy of the intermediate virtual state depends on the
two surrounding spins, as illustrated in Fig. 3.4. We find that all these processes
generate the following effective Hamiltonian

H
(2)
eff,int = −h2

⊥J
2

h∥α

∑
j

Zj−1ZjZj+1 + h2
⊥J

α

∑
j

ZjZj+1 −
h2

⊥(h2
∥ − 2J2)

2h∥α

∑
j

Zj,

(3.46)

where α = h2
∥ − 4J2. We observe that a three-spin interaction term is generated by

the second-order perturbation theory. Moreover, the Ising and longitudinal terms,
present in the unperturbed Hamiltonian H0, acquire small perturbative shifts.

Putting now the spin-exchange (3.44) and the interaction (3.46) contributions
together, we arrive at the complete second-order Hamiltonian
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3.3. Constrained XXZ chain as a limit of the tilted-field Ising model

H
(2)
eff = −

∑
s=±1

ts
∑

j

Ps
j−1,j+2

(
S+

j S
−
j+1 + h.c.

)
− g

∑
j

Zj−1ZjZj+1 − δJ
∑

j

ZjZj+1 − δh∥
∑

j

Zj,
(3.47)

where we have defined the spin-exchange coupling

ts =
h2

⊥h
−1
∥ J

h∥ + 2sJ , (3.48)

the induced three-spin coupling

g =
h2

⊥h
−1
∥ J2

α
(3.49)

and the shifts of the Ising and longitudinal couplings

δJ = −h2
⊥J

α
δh∥ =

h2
⊥h

−1
∥ (h2

∥ − 2J2)
2α . (3.50)

with α = h2
∥ − 4J2. This effective Hamiltonian agrees with a previous derivation

[188], while related studied are contained in [187, 189].

Corrections beyond second order

Having established a complete effective model at second order in perturbation
theory, it is now natural to wonder what is left behind by not including higher
order corrections. While these additional terms can be explicitly computed by
moving to the next order in the Schrieffer-Wolff transformation, the calculation
is lengthy and beyond the scope of this analysis. Hence, we limit ourselves to
characterize the scaling. As already mentioned the perturbation induced by the
transverse field changes the number of magnons, hence only even orders in the
perturbation theory can contribute. Therefore, the next-to-leading order correction
to the effective Hamiltonian scales as O(h4

⊥). Furthermore, additional contributions
emerge due to the fact that the spin degrees of freedom appearing in Eq.(3.46) are
in the Schriffer-Wolff rotated basis. Rotating back to the original spin degrees of
freedom, the Pauli matrices get ∝ h2

⊥ corrections which ultimately result in further
O(h4

⊥) corrections to Eq. (3.46). Given that, at short times, generic observables
acquire corrections that grow linearly in time O(th4

⊥). However, notice that as
h⊥ is taken smaller, also the overall energy scale of the effective model is reduced
as h2

⊥. Therefore, for practical purposes one wishes to express the corrections in
the limit of small h⊥, while keeping constant the timescale in energy-units of the
effective model

teff = J t ∝ th2
⊥, J =

2h2
⊥h

−1
∥ J

h∥ + 2J . (3.51)

Following this reasoning, corrections beyond the second order approximation are
expected to scale as O(teff h

2
⊥) at small times, as we indeed observe in Fig. 3.5.
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Chapter 3. Emergent integrability and extended constraints

Figure 3.5: We analyze systematically the discrepancy between the Ising model and
the effective Alcaraz-Bariev Hamiltonian derived with second order perturbation
theory. For this purpose, we consider a partitioning protocol on a chain of 80 sites,
where the first half of the chain 1 ≤ i ≤ 40 is initialized in a Neel state, while
the rest 40 < i ≤ 80 is in a fully polarized state. (a) At site i = 36 (i.e. four
sites left of the junction), the discrepancy in ⟨Sz⟩ between the Alcaraz-Bariev and
Ising prediction grows approximately linearly on the Alcaraz-Bariev time scale tAB.
Similar behavior is observed at other sites on the chain. (b) At fixed value of the
AB time tAB = 3, we study the convergence in h⊥ at different points of the chain
in the proximity of the junction. We show that the magnetization ⟨Sz⟩ converges
as a power-law in h⊥ to the value predicted by the effective AB model. A fit of
the deviation is compatible with the expected ∝ h2

⊥ behavior.

3.3.2 Integrable transport of isolated magnons

Up to this point we were able to derive an effective Hamiltonian that governs the
behaviour of the system for small values of the transverse coupling h⊥. This model,
however, is generically non integrable and cannot yet explain the ballistic transport
observed numerically.

Since both D and N are conserved by the perturbative dynamics, however, we
can consider a sector with N isolated magnons in the spin-up background. In this
case D is fixed to 2N and pairs of magnons cannot appear next to each other.
The spin exchange term then acquires the more familiar form Sx

j S
x
j+1 + Sy

j S
y
j+1,

but with the inclusion of a projector P1 that enforces the constraint. As for the
three-spins term in Eq. (3.47), it gives an energy shift to configurations where
magnons are only one site apart form each other and can therefore be written as a
NNN interaction Sz

i−1S
z
i+1.

With this considerations in mind, the second-order Hamiltonian (3.47) in this
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3.3. Constrained XXZ chain as a limit of the tilted-field Ising model

Figure 3.6: (a) The magnetization profile of a chain of length L = 80 evolved
with TEBD from |Neel⟩ ⊗ |ferro⟩ at large time (measured in the AB units [J −1])
tAB = 20 approaches the GHD prediction. For the Ising model we choose parameters
h⊥ = 0.5, h∥ = 6 and J = 1, corresponding to ∆ = 0.5 in the AB model. In the
inset, we show the collapse of the AB simulations on the GHD analytical prediction.
(b) To highlight magnetization jumps in |∆| > 1 (precisely, ∆ = 1.5,J = −1),
we consider the partitioning from |GS⟨Z⟩⟩ ⊗ |ferro⟩ with |GS⟨Z⟩⟩ the ground state
of the AB model in the sector at fixed magnetization ⟨Z⟩ for a chain of length
L = 120. For the left-side magnetization being below (top) and above (bottom)
the half-filling dotted line, the profile exhibits qualitatively different behaviour.

sector reduces to

H
(2)
eff → −J

∑
j

P1
(
Sx

j S
x
j+1 + Sy

j S
y
j+1 + ∆Sz

jS
z
j+2

)
P1, (3.52)

where the projector P1 prohibits two spin-down magnons to occupy neighbouring
sites. As promised at the beginning of this section, Eq. (3.52) is once again the
Alcaraz-Bariev model, this time emerging as an integrable limit of the tilted field
Ising chain. This of course explains the ballistic transport observed in Fig. 3.2.
We note that while in the AB models derived in section 3.2 the anisotropy was
strictly fixed by the parameters of the original models, here it can be tuned by
changing the dimensionless ratio h∥/J

10:

∆ = 2J
h∥ − 2J . (3.53)

The inverse of the coupling J = 2t+, on the other hand, defines the slow time
scale associated with hopping of the isolated magnons.

10Provided that the perturbative regime is not abandoned.
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Figure 3.7: Here we provide further evidence that the Alcaraz-Bariev model gives
an effective description of the Ising model in the limit of weak transverse field. Due
to its integrability, at large times we can compare expectation values of observables
to the ones predicted by the Generalized Hydrodynamics. We consider partitioning
protocols where the left half is initialized in the Neel state, while the right half
is a fully polarized state. We consider two different values of the AB interaction
parameter ∆. In the upper panels, we show that the expectation values ⟨Sz⟩ at a
large time tAB = 30 in the Ising and AB models match with very good agreement
for h⊥ = 0.5, and approach the GHD curve. A deviation from the hydrodynamic
prediction is evident, but this is a finite-time effect. In the lower panels, we zoom
on the region where the mismatch is more evident and show that for large times
the curves slowly converge to the GHD (only the AB prediction is shown).

In section 3.1.2 we reviewed how the problem of transport in the Alcaraz-Bariev
model is solved by means of the generalized hydrodynamics (GHD). After a short
transient the profile of local observables becomes scale-invariant [172, 173], i.e.

⟨O(t, x)⟩ = F [x/t]

and curves at different times collapse when plotted as a function of the ray ζ = x/t.
In general, if one starts from an initial state with only isolated magnons the Ising
chain agrees with the underlying AB description (up to a time scale t ∼ h−4

⊥ ) and
supports ballistic transport. Whenever the initial root density of the two halves is
known, GHD provides an exact solution of the partitioning protocol as explained
in section 3.1.2. Further evidence of the validity of our analysis is presented in
figures 3.6 and 3.7, where the magnetization ⟨Sz⟩ is computed at large times for
different values of the microscopic parameters and compared with the effective
description and with the GHD solution.

For |∆| ≥ 1, i.e. 0 ≤ h∥/J ≤ 4, the magnetization sign f is responsible of sharp
jumps whenever states from the two different magnetization sectors are joined. We
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Figure 3.8: The distribution P (r) of the ratios r of consecutive level spacings of
the second-order effective Hamiltonian (3.47) in the sector with Nm = 5 isolated
magnons on a closed chain of length L = 40 in the momentum sector with
k = 7 × 2π/L. The Ising couplings that fix all parameters of the effective model
are J = 1.17, h∥ = 0.91 and h⊥ = 0.0291.

provided a short explanation of this fact in section 3.1.2. An extreme example of
this is precisely the one presented at the beginning of this section in Fig. 3.2(b): for
|∆| ≥ 1, the Neel state and the ferromagnetic states have the exactly same trivial
root density ρj(λ) = 0, but differ in the sign of f. Hence, any smooth dependence
of the profile is suppressed and only the jump, that is pinned at the origin, remains.
In this case, transport is inhibited.

3.3.3 Beyond isolated magnons

While the focus of this chapter is on emergent integrable models, it is worth to
take a small detour and explore sectors of the Hilbert space other than the one
which contains isolated magnons exclusively. We first want to check that these are
generically not integrable. This can be done explicitly by performing an energy
levels statistics analysis [190, 191].

Level spacing statistics analysis

Let us start by showing how the method works for the integrable sector described
in section 3.3.2. On a closed chain of length L = 40 we compute numerically
the energy spectrum of the sector populated with Nm = 5 isolated magnons with
momentum k = 7 × 2π/L. Instead of looking directly at the energy level spacings,
we follow ideas from [190, 191] and compute the ratios of consecutive level spacings
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Figure 3.9: The distribution P (r) of the ratios r of consecutive level spacings of
the second-order effective Hamiltonian (3.47) in the sector with Nm = 10 magnons
including one (a) dimer, (b) trimer, (c) tetramer and (d) pentamer on a closed
chain of length L = 25 in the momentum sector with k = 7 × 2π/L. The Ising
couplings that fix all parameters of the effective model are J = 1.17, h∥ = 0.91 and
h⊥ = 0.0291.

rn = En+1 − En

En − En−1
. (3.54)

The resulting distribution P (r), plotted in Fig. (3.8), agrees with

P (r) = 1
(1 + r)2 , (3.55)

which one gets if the energy levels are completely random (the Poisson distribution)
[191]. As a result, our numerics is consistent with integrability of the sectors
consisting of isolated magnons exclusively, which was proven in the previous
section.

We turn now to sectors with clusters. In particular, we consider closed chains
of length L = 25 with Nm = 10 magnons, among which there is one cluster of
sizes two, three, four and five, respectively. The resulting distributions of P (r) are
plotted in Fig. 3.9. The fact that they all plummet at low r suggests that the
energy levels repel, implying that these sectors are not integrable. The curves that
we found are indeed compatible with the Gaussian orthogonal ensemble which
characterizes the level statistics of non-integrable models [191].
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Number of independent frozen states

One simple consequence of the peculiar hopping term in (3.47) is that clustered
magnons in an homogeneous background cannot move, because any hopping would
break domain-wall number conservation. Therefore, the perturbative model (3.47)
must support a large number of immobile (frozen) quantum states that contain
clusters of magnons. Let us quantify this statement. The number Fl of independent
frozen states of size l ≫ 1 scales exponentially according to the Fibonacci constraint,
i.e., Fl ∼ φl, where φ is the golden ratio [187]. Here we demonstrate that on a
closed chain of a length L ≫ 1 when expressed in the Z-basis the Hamiltonian
(3.47) splits into a large number of independent blocks which grows exponentially
with the system size. Following ideas from [187], we start from the observation
that each independent sector can be labelled by a reference configuration

frozen state︸ ︷︷ ︸
L−2k

↑↓↑↓ · · · ↑↓︸ ︷︷ ︸
2k

. (3.56)

The frozen state is constructed out of clusters of magnons, but does not contain
isolated magnons. The form of the kinetic term in the effective Hamiltonian (3.47)
ensures that in the absence of isolated magnons these clusters are immobile. The
number of independent frozen states of a length l follows the Fibonacci recurrence
Fl+1 = Fl +Fl−1 and thus for l ≫ 1 the number Fl grows exponentially as φl [187],
where φ = (1 +

√
5)/2 is the golden ratio. To estimate the total number BL of

independent blocks of the Hamiltonian (3.47), we compute the number of frozen
states which can fit into the chain of length L ≫ 1

BL =
L/2∑
k=0

FL−2k ≈
L/2∑
k=0

φL−2k = φL
L/2∑
k=0

φ2k ≈ φL 1
1 − φ−2 = φL+1. (3.57)

Such exponential growth is parametrically larger than the O(L2) scaling expected
purely from the two U(1) emergent symmetries. A similar pattern of fragmentation
of the Hilbert space was discovered in spin models in the strict confinement regime
[187].

Late time dynamics of clusters

As just mentioned, within leading order perturbation theory clusters are frozen
when isolated 11 and do not contribute to transport by themselves, but their
mobility is activated by the scattering with a magnon. If the scattering is reflective,
the cluster stands still, but if transmission occurs the cluster hops by two sites
in the direction opposite to the traveling magnon. Therefore, one can relate the
cluster displacement x with the total magnetization transported through it as
x = 2δSz. Given that, the cluster position reflects the local transport of spin and
its fluctuations. At late times, a cluster of two magnons undergoes a biased random
walk, hopping in the left and right directions with certain rates RL,R which depend
on the interactions with the magnonic gas and being proportional to its density. As

11The hopping of an isolated cluster composed of ℓ magnons scales ∼ h2ℓ
⊥ .
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Figure 3.10: (a) The level statistics analysis shows compatibility with the Gaussian
Orthongonal Ensamble, suggesting that the sector with a two-magnon cluster is
not integrable. (b) A two-magnon cluster, initially at the center of a chain of length
L = 80 bipartitioned into anti-ferromagnetic and ferromagnetic halves, can move
to the left by virtue of the magnon-assisted hopping. We track its position by
measuring the projector on two consecutive flipped spins P↓↓

i,i+1. (c) At large times,
the position ⟨x⟩ and variance ⟨x2⟩ − ⟨x⟩2 of the cluster evolve linearly in time, as
described in the main text. The TEBD simulations for (b) and (c) are done with
the Ising Hamiltonian with parameters corresponding to ∆ = 0.5 and J = −1.

a result at late times the cluster experiences diffusion with a linear growth of the
average position and variance, which we now proceed to demonstrate. Results are
shown in Fig. 3.10(b) and 3.10(c). Since the methods of generalized hydrodynamics
no longer apply, we develop a simple phenomenological description to capture the
late time dynamics of the clusters. For concreteness, let us consider an initial
inhomogeneous state in the form of a partitioning protocol |ΨL⟩ ⊗ |Ψr⟩ and, in
addition, we place a cluster composed of two magnons at the origin. Clusters in
isolation are static in perturbation theory, but the surrounding isolated magnons
can activate their dynamics. A two-magnon cluster undergoes assisted hopping
of two sites at once, mediated by the scattering with an isolated magnon. The
case of a bigger cluster of length Lc > 2 is more complicated, since they can also
decay into smaller clusters at intermediate stages, see Fig. 3.11. For the sake of
simplicity, we focus here on the case Lc = 2 that cannot decay into smaller clusters.

We investigate activation of transport on the timescale where the effective
perturbative Hamiltonian is valid. Far from the cluster, the dynamics is locally
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3.3. Constrained XXZ chain as a limit of the tilted-field Ising model

Figure 3.11: Decay of a three-magnon cluster in two clusters mediated by the
interaction with surrounding isolated magnons.

integrable and can be rightfully assumed to be described by the GHD equation

∂tρj + ∂x(veff
j ρj) = 0. (3.58)

In this perspective, the cluster plays the role of a dynamical impurity for the
integrable excitations and sets the proper boundary conditions in the form of
a generalized scattering matrix. Finding the exact boundary conditions is a
challenging problem, since one needs to solve the non-integrable magnon-cluster
scattering. Nevertheless, after a transient time, the cluster will be surrounded by a
state that reached a local equilibrium, hence the interactions between the cluster
and the surrounding magnons will remain constant in time. Let us consider the
motion of the cluster in a semi-classical approximation, by denoting with Pt(j) the
probability of finding the cluster at a position j. At any time, the cluster can jump
to the left by two sites with rate a RL and to the right with a rate RR. These
rates originate from the interaction with the surrounding isolated magnons: their
computation is a formidable task, but in the present calculation we will treat them
as phenomenological parameters that are constant in time. Given that, one expects
Pt(j) to obey the difference equation

∂tPt(j) = RLPt(j + 2) +RRPt(j − 2) − (RL +RR)Pt(j). (3.59)

This equation can be easily solved by passing to the Fourier space

Pt(j) =
∑
j′
Gj−j′(t)P0(j′) Gj =

∫ dk
2πe

ikj−tRL(1−ei2k)−tRR(1−e−i2k) . (3.60)

At late times when Pt(j) becomes a smooth function of j, we can replace discrete
jumps with spatial derivatives. As a result, a a biased diffusive equation is obtained

∂tPt(x) ≃ 2(RL −RR)∂jPt(j) + 2(RL +RR)∂2
jPt(j) + O(∂3

jP ) . (3.61)
From this equation we find for the average displacement and its variance

⟨x⟩ = 2t(RR −RL) ⟨x2⟩ − ⟨x⟩2 = 4t(RR +RL) (3.62)
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respectively. Remarkably, the expressions for ⟨x⟩ and ⟨(x)2⟩ can be exactly recov-
ered from the solution of Eq. (3.59), hence the linear growth of averaged position
and variance is expected to emerge as soon as Eq. (3.59) is valid.
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Chapter 4

Z2 gauge theories in two spatial
dimensions

In this chapter we abandon the comfort of 1+1 dimensional space-time and ad-
venture into the 2d world. The basic ideas behind Z2 gauge invariance in two
dimensions are easy generalizations of their one-dimensional counterparts, discussed
extensively in section 2.1. For this reason, we jump directly to some physically
relevant models, introducing useful concepts and notation as we encounter them.
Similarly to Chapter 2, our original results concern for the most part systems
where the matter fields are spinless fermions. In two dimensions, however, even the
pure gauge theory without any matter field is non-trivial and exhibits conceptually
relevant features such as topological order and phase transitions that do not involve
a Landau order parameter. Indeed, it is the interplay between the physics of the
pure gauge sector and the matter fields that makes the models presented in this
Chapter so intriguing.

Structure

To give a somewhat comprehensive account, we start in section 4.1 with a discussion
of Franz Wegner’s pure Z2 lattice gauge theory, that allows us to introduce the
concepts of topological order and deconfinement. Before moving on to the original
results, in section 4.2 we review some selected works that explore fundamental
models which are of great relevance to our research. First we focus on the celebrated
work of Fradkin and Shenker [39], which unveiled the phase diagram of lattice
gauge theories in the presence or bosonic matter.1 Then we treat the case of spinful
fermionic matter, which was investigated for example in the works from Gazit et.
al. [44, 45], which connect very naturally to our research. Section 4.3 contains the
main original results of this chapter, which concern the intricate phase diagram of
a model of spinless fermions with U(1) particle number conservation coupled to Z2
gauge fields.

1Their famous paper contains very comprehensive results that go well beyond Z2 LGT, but to
be coherent with our discussion we will focus on the Z2 case with Ising matter (i.e. hardcore
bosons).
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4.1 Pure Z2 lattice gauge theories
The quantum version of a Z2 lattice gauge theory is defined by the Hamiltonian

H = −J
∑
r∗

∏
b∈□r∗

σz
b − h

∑
r,η

σx
r,η. (4.1)

complemented with a Gauss law

Gr =
∏

b∈+r

σx
b = ±1, (4.2)

where we use r = (ix, iy) to label the sites of the lattice, η = x̂, ŷ denotes a unit
lattice displacement and r∗ the dual lattice formed by the centers of the plaquettes.
Since star and plaquette operators are ubiquitous in two dimensional lattice gauge
theories, we introduce here the standard notation

Br∗ =
∏

b∈□r∗
σz

b , Ar =
∏

b∈+r

σx
b . (4.3)

Similar to the Gauss law in one dimension, Eq. (4.2) to be interpreted as a
constraint on the “Z2-divergence” of the electric field. Since in this simplest case
there are no dynamical matter fields that carry Z2 charge, the only sources of
electric lines are the “static charges” associated with the sites where Gr = −1.
Different choices of the Gauss law lead to significantly different versions of the
gauge theory. Below, we explore the most relevant ones.

4.1.1 Wegner’s Z2 LGT and the toric code
This is the quantum version2 of Wegner’s original formulation of a Z2 LGT [30],
and it corresponds to the choice Gr = +1 everywhere. The gauge constraint forces
all the star operators to take the value +1. Since at h = 0 only the plaquette
terms appear in the Hamiltonian, and all of them need to be equal to +1 as well
in order to minimize the energy, this is equivalent to finding the ground state of
the Hamiltonian3

−
∑

r
Ar −

∑
r∗
Br∗ . (4.4)

This is the well known toric code model introduced by Kitaev [37], which is indeed
equivalent to our model at h = 0. The Hamiltonian (4.4) is an example of stabilizer
code, i.e. a model where all the terms commute and can therefore be minimized
independently. The ground state of Hamiltonian (4.4) can be written down exactly
in the electric basis.4 As the two terms in (4.4) commute, the ground state satisfies

Ar|0⟩ = +1 and Br∗|0⟩ = +1, ∀r, r∗. (4.5)
2In the original paper of Franz Wegner the classical 3d version of the Z2 LGT emerges

as the dual of the classical 3d Ising model on the square lattice. Below, we will present the
quantum version of this duality. The 3d classical and 2d quantum models are related by the
classical-quantum correspondence, which we do not review here.

3Since all stars and plaquettes commute, the relative value of the coefficients in front of the
terms is inconsequential.

4I.e. the basis where σx is diagonal.
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mm mm

Figure 4.1: Finite t’Hooft lines, represented by blue wavy lines, create pairs of
magnetic excitations at their ends. The plaquettes in between are unaffected, and
so the energy cost of pairs of m particles is independent of their distance.

Since all the Ar operators need to evaluate to +1, an even number of electric lines
must stick out of each site. On a closed manifold, this implies that each line cannot
end on a site, but has to form a loop instead. The action of Br∗ , on the other hand,
flips the state of the Z2 electric field on all the links around a plaquette, with the
effect of deforming loops without breaking them. In other words, the first term
in Eq. (4.4) tells us that the ground state has to be formed by a superposition of
all possible electric loops.5 The second term, on the other hand, tells us that the
superposition has to be equal weight, so that each term can be turned into another
one by the action of plaquette operators. This limit corresponds to the deconfined
regime of the lattice gauge theory, characterized by a perimeter-law decay of the
Wilson loop operator6

WC =
∏
l∈C
σz

l , (4.6)

where C is a closed contour. The deconfined regime is stable to the introduction of
an h-perturbation, which causes an exponentially decaying attractive interaction
between static charges [36]. This regime of the gauge theory is gapped, since the
excitations are obtained by flipping plaquettes which comes with a finite energy
cost. We refer to such excited states as magnetic or ‘m’ particles. We note the
following important fact: the local gauge-invariant operator σx can only create
pairs of excitations, since it changes the state of σz on a single link which is always
shared by two plaquettes. Similarly any finite string of σx operators, as the one
shown in Fig. 4.1, creates a pair of excitations at a certain distance from each
other, with the same energy cost since even in this case only two plaquettes are
flipped. We learn from this that the m particles are deconfined, in the sense that
they can be brought far apart without increasing the energy of the system. A single
magnetic excitation can only be created by the non local semi-infinite “t’Hooft
line” operator

W̃r∗ =
∏
l∈γ

σx, (4.7)

where γ is an arbitrary semi-infinite line of parallel links, which we will take
conventionally to be straight. An example is shown in Fig. 4.2.

In the large h regime, on the other hand, the ground state is a paramagnet with
σx = +1 everywhere, which is consistent with the gauge constraint. This is the

5Loops are allowed to intersect, as at the intersection of two electric lines σx = −1 on all four
links and the stars are positive.

6See the discussion in section 4.2.1 for details on how to detect confinement in Z2 lattice
gauge theories.
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m . . . . . .. . .

...

...Wy

W̃x

Figure 4.2: Left: the semi-infinite horizontal t’Hooft line W̃r∗ , that creates a single
m particle at its open end. The choice of the line is conventional since it can
be deformed by applying the Gauss law. We always take it to be straight and
going from left to right. Right: the horizontal t’Hooft loop W̃x(blue) and the
vertical Wilson loop Wy (red) on a torus, where the left-right and up-down edges
are identified.

confined phase of the gauge theory, since the interaction potential between static
charges grows linearly with their distance.7 Here Wilson loops follow an area-law
decay. It is easy to see that this phase is also gapped. Indeed, since the ground
state is a paramagnet, the only possibility is to flip a certain number of spins, which
comes with a finite energy cost. This can be done in a gauge invariant way only
by flipping spins around a closed loop. Excitations are therefore “electric loops”
where σx = −1 on each link, and they carry an amount of energy proportional
to their length. The simplest excitation is the loop that encircles an elementary
plaquette, which is created by the operator Br∗ .

Duality with the 2d quantum Ising model

While the analysis above should clarify that the model (4.1) has two distinct
phases, this can be shown in another very instructive way by mapping it to the
two-dimensional quantum Ising model whose solution is known. To this purpose,
we define the following operators on the dual lattice:

µx
r∗ = Br∗ µz

r∗ = W̃r∗. (4.8)

These are the plaquette and t’Hooft lines defined in Eq. (4.3) and (4.7). It is
straightforward to verify that µx and µz, together with µy = i

2 [µx, µz] satisfy the
Pauli algebra and can be regarded as new spin one-half operators. Under this
transformation, the plaquette operator obviously maps to µx. As for the electric
term, if we take the definition of Fig. 4.2 for the t’Hooft line, we see that the
product W̃r∗W̃r∗+x̂ gives precisely σx on the vertical link between r∗ and r∗ + x̂,
since the rest of the semi-infinite string cancels. For the horizontal links, we can
take the product W̃r∗W̃r∗+ŷ. While in this case there is no immediate cancellation,

7This works as in one dimension: Z2 charges must be connected by electric lines, and each
line has a cost proportional to its length.
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we can insert the Gauss law Ar = +1 at all sites between the semi-infinite strings.
All σx operators square to one, except for the leftmost one on the horizontal link
between r∗ and r∗ + ŷ. Putting it all together, we obtain that

H = −h
∑

⟨r∗r∗′ ⟩

µz
r∗µz

r∗′ − J
∑
r∗
µx

r∗ . (4.9)

which is the Hamiltonian for the 2d Ising model. This is the two dimensional version
of the Kramers-Wannier duality: the confined “paramagnetic” phase exhibits
order in the domain wall operators µz, while the deconfined phase corresponds to
alignment of the plaquette operators µx. While in one dimension the Ising model
is self-dual, in two dimensions it maps to a lattice gauge theory! While this reveals
that the model has two phases, the non-local character of the transformation hides
some key features of the model, which we now explore.

Topological order

While the model in Eq. (4.9) exhibits spontaneous symmetry breaking for large
values of h, the order parameter ⟨µz⟩ is non local in the gauge theory language
and cannot be used to classify the phases according to Landau’s paradigm. The
lack of a local order parameter means essentially that in order to characterize the
model we have to resort to global properties. To this purpose, we put the system
on a torus where the following non-local incontractible loops can be defined:

Wx,y =
∏

l∈Cx,y

σz
l W̃x,y =

∏
l∈Γx,y

σx
l (4.10)

where Cx,y and Γx,y are the closed loops around the horizontal and vertical directions
of the torus defined in Fig. 4.2. We refer to W and W̃ as the Wilson (or magnetic)
and t’Hooft (or electric) loops respectively.8 At h = 0, i.e. in the Toric Code limit,
both W and W̃ commute with the Hamiltonian and can be regarded as symmetries.
Moreover, we have that

{Wx, W̃y} = 0 {Wy, W̃x} = 0 (4.11)

since these pairs always share exactly one link, on which {σx
l , σ

z
l } = 0. All the other

combinations commute. The presence of two pairs of anticommuting symmetries
guarantees that the ground state of the system is 4-fold degenerate. In practice,
this means that the construction of the ground state as a sum of electric loops
outlined above is not unique. Indeed, the value on Wx and Wy is not fixed, and
each ground state can be taken to be an eigenstate of the two Wilson loops, and
is classified by the four possible combinations of their eigenvalues. Explicitly we
define the four ground states as

|0⟩ ≡ | + +⟩ |1⟩ ≡ | + −⟩ |2⟩ ≡ | − +⟩ |3⟩ ≡ | − −⟩, (4.12)
8This terminology is quite generic and is used in other contexts to denote space-time loops

as well. In the particular case of Hamiltonian Z2 LGT the more appropriate nomenclature is
Wegner-Wilson/Wegner-t’Hooft, but we avoid this for brevity.
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Chapter 4. Z2 gauge theories in two spatial dimensions

where the signs denote the eigenvalues of Wx and Wy. The t’Hooft loop can then
be used to toggle between them:

W̃x|0⟩ = |1⟩ W̃y|0⟩ = |2⟩ W̃xW̃y|0⟩ = |3⟩. (4.13)

At finite h the Wilson loop is not a symmetry anymore, and so the degeneracy
is lifted. However, since the different states can only be connected by the action
of the non local W̃ operators, the mixing is exponentially small in the size of the
torus: ∆E ∝ hL. This is because a string of σx operators of length L can only
be generated at order L in perturbation theory. The ground state degeneracy on
the torus is therefore robust in the thermodynamic limit, and it persists up until
the critical point where the perturbative expansion ceases to converge. We note
that while the construction above is done for the torus, one is free to consider
topologically non-trivial surfaces of higher genus. In that case there are more
non-contractible loops and the ground state degeneracy is larger. For a surface of
genus g, the number of ground states is given by

NGS = 4g. (4.14)

This particular quantum phase of matter, characterized by ground state degeneracy
on the torus and by the presence of anyonic excitations, is said to exhibit topological
order.

Anyons in the toric code

Anyonic excitations are a peculiarity of two dimensional systems, where particles are
not restricted to be fermionic or bosonic [192–194]. This rich subject goes beyond
the scope of this thesis, and here we merely scratch the surface by identifying the
simple anyons that show up in the toric code.9 The first one is the “magnetic
particle” m that we already encountered, corresponding to a defect Br∗ = −1. The
second one is the “electric particle” e, corresponding to a defect Ar = −1. Both
can only be created in pairs at the end of t’Hooft and Wilson lines respectively.10

It can be verified by performing the braiding operation explicitly that while e
and m are bosons with respect to themselves, they are fermions with respect to
each other [195, 196]. This is not consistent with them being fermions or bosons,
hence the need to extend the concept to anyons. An e and an m particle can be
combined into a third anyon, often denoted by ψ. Since braiding two ψ particles
involves exchanging e and m, the operation gives a minus sign and therefore ψ can
be regarded as a fermion.

Field theoretical perspective

We show here how to develop a field theoretical understanding of the phase
transition that occurs in the even Z2 LGT. This describes the condensation of

9These are an example of abelian anyons, meaning that they gain a phase upon braiding but
they do not “mix” with each other. We will not discuss non-abelian anyons.

10In the Z2 gauge theory, the e particle has to be seen as a static charge corresponding to a
defect in the Gauss law and not as an excitation.
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Figure 4.3: Examples of dimer configurations that form the ground state of the
odd Z2 lattice gauge theory in the h → ∞ limit. Each site hosts a static Z2 charge,
which is connected to another charge by an electric line of unit length.

visons, which marks the topological phase transition. The visons can be seen as
hopping particles, that move from one plaquette to the other under the effect of
the electric term. A single vison costs an amount of energy equal to 2J , while the
h term is responsible for a dispersion. At first order in h, this is given by a simple
cosine band:

ϵv
k = 2J − 2h (cos kx + cos ky) . (4.15)

As h is increased the gap diminishes as expected, but since higher order corrections
kick in it is not possible to find the precise location of the transition point by simply
looking at where the gap closes. By exploiting the duality with the Ising model
described above, it is easy to write down a continuum theory in the vicinity of the
critical point. Indeed, in equation (4.8) we have defined the vison creation operator
to be the Ising spin µz in the dual formulation. Therefore, the transition can be
described by the familiar ϕ4 field theory which is employed for the Ising model.
In this case, the ordered phase corresponds to the confined regime, where visons
condense and the non-local domain wall operators acquire a non-zero expectation
value. The potential takes the form

V (ϕ) = −λ2 ϕ
2 + λ4 ϕ

4 (4.16)

where the “mass” λ2 changes sign at the transition, triggering vison condensation.
The critical theory belongs to the Ising* universality class, which differs from the
usual Ising CFT in that only operators which are even under the Z2 transformation
ϕ → −ϕ are allowed.11

4.1.2 Odd Z2 LGT
The odd Z2 lattice gauge theory corresponds to the choice Gi = −1 everywhere.
In other words, each site hosts a static charge which acts as a source of Z2 electric
lines. In this case, no closed electric loops are possible since an odd number of
lines needs to stick out of each site. Similarly to its even counterpart, this Z2 LGT
can be mapped to an Ising model through (4.8). The different sign of the Gauss
law, however, results in a flipped sign for some of the Ising couplings leading to
the so-called fully-frustrated transverse field Ising model (FFTFIM) [197].

11Indeed, we have identified ϕ with the vison creation operator, but the creation of an odd
number of visons is not allowed in this model.
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In the h = 0 limit the ground state can be constructed in analogy with the toric
code, with the difference that this time we have to consider the superposition of
all possible (intersecting) electric lines that connect all possible pairs of sites. This
still corresponds to the deconfined phase of the gauge theory. Deep in the confined
phase, on the other hand, the physics of the problems becomes significantly more
intricate compared to its even counterpart. In this limit, it is clear that a gauge
invariant state that minimizes the electric term is formed by connecting pairs
of neighboring sites with electric lines of length one. However, this can be done
in a number of ways, leading to a huge ground state degeneracy for J = 0. A
finite J lifts this degeneracy, but which state wins the energetic competition is
a complicated and partially unresolved problem. The results presented in [197]
indicate that the columnar order is privileged.

Field theoretical perspective

We have seen that the large h limit of the odd Z2 lattice gauge theory is far from
trivial. This shows up in the field theory description of the model close to criticality.
As a starting point, we take once more the dispersion relation for the visons. In
this case, a careful analysis shows that the visons effectively hop in a “π-flux”,
resulting in two energy bands with degenerate minima located at k = (0, 0) and
k = (0, π) [198, 199]. When the gap closes, then, the relevant physics is captured
by the two real scalar fields ϕ1 and ϕ2 which represent visons at the minima. A
critical theory can be written down by identifying correctly the symmetries of the
problem, to narrow down the amount of terms that can appear in the Lagrangian.
Under one-site translations and π/2 rotations, which are symmetries of the lattice
problem, the fields transform as follows:

Tx : ϕ1 → ϕ2 ϕ2 → ϕ1

Ty : ϕ1 → ϕ1 ϕ2 → −ϕ2

Rπ/2 : ϕ1 → 1√
2

(ϕ1 + ϕ2) ϕ2 → 1√
2

(ϕ1 − ϕ2) . (4.17)

These operations generate the non-abelian dihedral group D8, which constrains
the form of the critical theory. It is more practical to combine ϕ1 and ϕ2 into a
single complex field

Φ = e−iπ/8 (ϕ1 + iϕ2) , (4.18)
which under the operations (4.17) transforms as

Tx : Φ → eiπ/4Φ∗, Ty : Φ → e−iπ/4Φ∗, Rπ/2 : Φ → Φ∗. (4.19)

A Lagrangian for the complex field Φ that respects the D8 symmetry is

L = |∂µΦ|2 + λ2|Φ|2 + λ4|Φ|4 + λ8
(
Φ8 + Φ∗8

)
. (4.20)

The phase diagram of the model near criticality is governed by the sign of λ2, which
triggers spontaneous symmetry breaking. For λ2 > 0 we are in the deconfined
phase, where the Φ field is gapped. For λ2 < 0 and λ8 = 0 the potential has the
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typical Mexican-hat shape and we are in the symmetry broken phase. A finite λ8
deforms the potential, with the sign determining the position of the minima along
the “edge” of the hat. Different signs of λ8 favour one of the two possible orders
(columnar and plaquette) that compete in the confined phase [198, 199]. As for
the transition point, here the λ8 term is an irrelevant perturbation, and the critical
theory is the XY ∗ Wilson-Fisher CFT, where the star denotes the exclusion of
operators that are odd under the Z2 symmetry.

4.2 Coupling to matter fields: notable examples
In this section, we take a short detour to review some important work that inspired
our research. In doing so, we introduce a number of useful concepts which will
be recurrent in the rest of the chapter. Due to the significant amount of research
that has been carried out on Z2 lattice gauge theories and related models in a
variety of contexts, it is not easy to choose some particular model on which to
focus. We refer to simplicity as a guiding principle, and we single out two theories
which are especially notable for containing a limited amount of ingredients and still
exhibiting the features we are most interested in. First, we consider an example
featuring (hardcore) bosonic matter. This is studied in a famous paper by Fradkin
and Shenker, together with other bosonic models with generic gauge groups and
higher dimensionality. Subsequently, we turn to fermionic matter and give an
account of results from Gazit et al. concerning an interacting theory of spinful
fermions and Z2 gauge fields. Their findings, which are supported by extensive
sign-problem free quantum-Monte Carlo simulations, include exotic phases where
superfluid order coexists with deconfined gauge excitations and a very unusual
critical theory at the quantum critical point.

4.2.1 Ising matter
Frankin and Shenker studied in great generality models where a bosonic Higgs
field couples to gauge theories on a lattice [39]. Here we focus on the simplest case,
where the gauge group is Z2 and the Higgs field takes the form of an Ising spin.
The Hamiltonian that describes Ising matter coupled to Z2 gauge fields is given by

H = − 1
λ

∑
r
τ z

r − J
∑
r∗
Br∗ − λ

∑
r,η

τx
r σ

z
r,ητ

x
r+η − h

∑
r,η

σx
r,η, (4.21)

where the gauge fields are defined on the links as usual, while the matter fields
on the sites consist of an additional set of Pauli matrices {τx, τ y, τ z }. For the
couplings, we stick to the same notation as the previous section for the pure gauge
sector, while in the matter sector we introduce the interaction strength λ. The
coupling of the two matter terms in the Hamiltonian are chosen so that the pure
Z2 LGT is properly recovered. Indeed, as λ → 0, the coupling vanishes while the
“chemical potential” blows up pushing all the matter excitations high up in the
spectrum. This minimal coupling between the matter and gauge fields is chosen so
that the model is invariant under the local transformation generated by

Gr = Arτ
z
r , (4.22)
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Figure 4.4: Quantum phase diagram of the Fradkin-Shenker model given in Eq.
(4.21).

which plays the role of the Gauss law. This modification accounts for the fact
that the matter fields, being Z2 charged, can act as dynamical sources for electric
lines.12 As usual, we define the physical Hilbert space by the condition Gr = +1
everywhere.

Deconfined phase

In the limit where both the Ising coupling λ and the electric field strength h vanish,
we end up in the deconfined phase of the Z2 lattice gauge theory. This can be
verified explicitly by resolving the Gauss law to replace the first term in equation
(4.21) with a star operator. The spectrum of the theory is of course modified by
the presence of matter fields. In particular, there are now bound states. They
consist of open electric strings with Z2 charged endpoints, created by the operator

OE
ri,rf

= τx
ri

 ∏
ri<r<rf

σz
r

 τx
rf
. (4.23)

12Compare with the pure Z2 LGT, where the only sources are “defects” in the Gauss law
Gr = −1.
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e e

e
. . .

Figure 4.5: Left: elementary excitations in the confined phase of the Z2 LGT with
Ising matter Eq. (4.21). Apart from the electric loops, also present in the absence
of matter fields, there are tightly confined bound states of e-particles. Right: A
single e particle always carries around an infinite electric string. In the deconfined
phase, long strings are allowed to proliferate and the particle can move freely.

In the deconfined phase such strings proliferate, in the same fashion as the electric
loops of the pure Z2 model. We can also think to stretch the electric string in
(4.23) all the way to infinity. In this case, a single deconfined “electric” particle is
created.13 At finite λ the deconfined phase is stable, and it still exhibits topological
order despite the fact that now the t’Hooft loop does not commute with the
Hamiltonian. Indeed, the matter fields are massive, with a gap of order λ−1 and
can be integrated our resulting in a renormalization of the gauge coupling [36].
Their only effect on the phase diagram is therefore to shift the location hc of the
QCP corresponding to the confinement transition. When J is finite and h = 0,
the system is forced into the 0-flux phase, and by fixing the gauge we can set
σz = +1 on each link.14 We are left with a transverse field Ising model in the
matter variables, which exhibits an Ising phase transition at a certain critical point
λ = λc. The two single points can be connected, so that a whole deconfined region
of the phase diagram is singled out.

Confined and Higgs phases

When the charge fluctuations are suppressed and the electric term dominates,
on the other hand, we fall into the confined phase. At λ = 0 the matter fields
are infinitely massive, and do not modify the large h regime of the gauge theory
in any way. For small but finite λ bound states of Ising matter appear in the
spectrum. Since long electric strings are energetically penalized, dynamical charges
are confined and this regime is smoothly connected with confined phase of the
pure Z2 LGT. The limit where λ → ∞, finally, corresponds to the Higgs phase of
a gauge theory in the sense that charges are condensed in the ground state. To see
this we note that in this regime each term τxσzτx in the Hamiltonian is pinned to
+1. If we concatenate them by taking products on neighboring links, we obtain
exactly the operator OE in Eq. (4.23). This proves that there is long range order:

lim
|ri−rf |

⟨OE
ri,rf

⟩ ≠ 0. (4.24)

13This corresponds to the e anyon of the toric code, which in the pure Z2 LGT could only
appear as a defect in the Gauss law.

14See section 4.3.2 for a gauge invariant argument.
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Fradkin and Shenker proved that, surprisingly, the Higgs and confined regimes
do not form different phases: these seemingly opposite regimes can be smoothly
connected following a path in parameter space along which the spectrum evolves
analytically. We are left with a phase diagram with only two regions.15

Self-duality of the model

In this particular model, matter and gauge fields can be disentangled by choosing
an appropriate gauge. Everywhere except on the lines λ = 0 and h = 0, we can
impose that τx = +1 when acting on the physical states [36]. Provided that the
Gauss law (4.22) is also enforced, one gets

H = − 1
λ

∑
r
Ar − J

∑
r∗
Br∗ − λ

∑
r,η

σz
r,η − h

∑
r,η

σx
r,η, (4.25)

which describes a toric-code model in two external fields. In particular this reveals
why the Higgs and confined phases are smoothly connected: if λ = ρ cos θ and
h = ρ sin θ, then for ρ → ∞, the ground state is a product state describing a
paramagnet pointing in a coupling-dependent direction:

|ψ⟩ = ⊗l (cos(θ/2) |↑⟩l + sin(θ/2) |↓⟩l) . (4.26)

Eq. (4.25) enjoys a self duality that amounts to exchanging the roles of the star
and plaquette operators and redefining the couplings accordingly. Indeed, the links
of the original lattice (identified by their midpoints) formed by sites are the same
as the links of the dual lattice formed by the plaquettes, but the roles of stars and
plaquettes are exchanged.

Detecting confinement

While we saw that the presence of matter fields does not substantially alter the
physics of the confined phase for small values of λ, it affects the way we can detect
confinement. We mentioned in section 4.1 that the two phases of the pure Z2
gauge theory can be told apart by looking at the behavior of the Wilson loop
operator (4.6): a Wilson loop WΓ defined on a closed contour Γ decays exponentially
following a perimeter law in the deconfined phase, and an area law in the confined
phase. To understand why this does not work anymore in the presence of dynamical
charges, let us sketch first how the area law behavior comes into play. As h → ∞,
we can do perturbation theory in J/h starting from the unperturbed paramagnetic
ground state |0⟩ = | ↑↑↑ . . . ⟩ with σx = 1 everywhere. Let us call

|Γ⟩ = WΓ|0⟩ (4.27)

the state obtained by acting with an arbitrary Wilson loop Γ on the ground state.
It is clear that |Γ⟩, where the state of the electric field is flipped on the L links in

15In general, whether the Higgs and confined phases are connected or not depends on whether
the Higgs field is in the fundamental representation of the gauge group or not. In our case we do
not have a choice, since Z2 has only one representation.
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(b)(a)

Figure 4.6: Definitions of the electric (a) and magnetic (b) Fredenhagen-Marcu
order parameters, as in Eq. (4.28) and (4.29).

Γ, is orthogonal to the unperturbed ground state. To have a non-zero perturbative
contribution to the expectation value we need to find a virtual state that overlaps
with |Γ⟩ by acting on the ground state with the plaquette operator. This is obtained
at order N in perturbation theory, where N is the number of plaquettes encircled
by the Wilson loop. Indeed, the product of all such plaquettes give exactly WΓ.16

This proves that ⟨WΓ⟩ ∝ JN with N growing as the area enclosed by the loop.
In the presence of matter fields, however, there is another perturbative process

in λ/h that contributes to the expectation value and becomes dominant for larger
loops. We have seen above that electric strings with Z2 charged endpoints (see Eq.
(4.23)) can be created by concatenating the τxσzτx terms in the Hamiltonian. If
we multiply them along the closed circuit Γ, even the endpoints cancel and we are
left once more with a Wilson loop WΓ. Therefore the state |Γ⟩ can now be obtained
at order L in perturbation theory, where L is the number of links in Γ. This grows
as the perimeter of the loop. It is clear that for large enough loops N ≫ L, and a
perimeter law decay ⟨WΓ⟩ ∝ λL is expected. In this case, the expectation value of
the Wilson loop does not reliably identify the two phases of the gauge theory.

To our luck, a suitable modification of the Wilson loop exists. This is given
by the Fredenhagen-Marcu operator, which acts as an order parameter for the
confined phase. It is defined by

OF M
e = ⟨W1/2⟩√

⟨W ⟩
(4.28)

where W1/2 denotes an open Wilson line of half the length of the closed loop W
terminating with Z2 charged operators17 to ensure gauge invariance. The subscript
e reminds us that the “electric” string in the numerator measures condensation of
the e-particles - much like the one in Eq. (4.24). A careful calculation shows that
dividing by the square root of the full Wilson loop eliminates the L dependence

16This is the Z2 equivalent of Stokes’ theorem.
17In this case, the endpoint operator is τx.
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form perimeter law in the confined phase, so that here OF M
e → const. In the

deconfined phase on the other hand OF M
e → 0, which makes it a proper non-local

string order parameter. With this perspective in mind, it is natural to define a dual
“magnetic” order parameter in terms of magnetic strings. Contrary to OF M

e , this
new operator detects the transition due to the condensation of magnetic particles
[200]. A proper definition is

OF M
m = ⟨W̃1/2⟩√

⟨W̃ ⟩
, (4.29)

where W̃ and W̃1/2 denote closed and open t’Hooft lines (see Eq. (4.7)) respectively.
Note that compared to the electric parameter, here there is no need for Z2 charged
endpoints, as the open t’Hooft line creates pairs of m particles at its ends by itself.
In the case of the Fradkin-Shenker model the two order parameters can be used
interchangeably, since there is no distinction between Higgs and confined phases. In
practice, the electric one is more suitable to detect the Higgs regime (condensation
of e particles and confinement of visons), while the magnetic one is preferred in
the regime where e particles are confined and visons condense [200].

4.2.2 Spinful fermionic matter
We now turn our attention to models that feature fermionic matter fields. Here
we focus on a system that was investigated by Gazit et al. [44, 45] where spinful
fermions interacts with Z2 gauge fields. From the methodological point of view,
this model is relevant because it allows for sign-problem free Quantum Monte Carlo
(QMC) simulations. Observables can be computed for finite systems of relatively
large size, so that the thermodynamic and zero-temperature limit can be reliably
extracted. Physically, its phase diagram exhibits a number of interesting features
that are a consequence of the the interplay between gauge fields and fermions. In
reviewing these phases, we will have a first glance at how the presence of dynamic
fermionic particles modifies a pure Z2 LGT. As usual, fermions live on the sites of
the lattice, while gauge fields are on the links.18 The model reads

H = Hf +HZ2 , (4.30)

where the fermion Hamiltonian is

Hf = −t
∑
r,η,σ

(
c†

r,σσ
z
r,ηcr+η,σ + h.c.

)
− µ

∑
r,σ

c†
r,σcr,σ (4.31)

with σ = ± labeling up and down spins, and the gauge theory Hamiltonian is the
same as usual, e.g. Eq. (4.1). As in one dimension, fermions are minimally coupled
to Z2 gauge fields through an appropriate version of the Peierls substitution. The
Gauss law for this model is

18For a pictorial representation, the reader can refer to Fig. 4.9, which represents a system
that is identical up to the fact that fermions are spinless.
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Gr = (−1)nr
∏

b∈+r

σx
b , (4.32)

where nr = c†
r,↑cr,↑ + c†

r,↓cr,↓ counts the total number of fermions at site r. The
meaning of this is that in a Z2 gauge theory it is the parity of charge carriers at
each site that determines whether the site is a source of electric lines.19 Importantly
this model enjoys a global U(1) symmetry, corresponding to a conservation of the
total particle number. We can therefore consider sectors with different numbers of
fermions independently. At µ = 0 the Hamiltonian (4.32) exhibits a particle hole
symmetry

cr,σ → (−1)rc†
r,σ (4.33)

where (−1)r = (−1)ix+iy .
This can be combined with the aforementioned U(1) symmetry to obtain and

enhanced SU(2) “pseudospin” symmetry, generated by

P+
r = (−1)rc†

r,↑c
†
r,↓ P−

r = (−1)rcr,↑cr,↓ P z
r = nr↑ + nr↓ − 1

2 .

(4.34)
This rotates superfluid order into charge density wave order. Moreover, particle
hole symmetry acting on one of the spin species only leaves the Hamiltonian
invariant, but changes the sign of the Gauss law. Therefore it realizes an exact
mapping between the odd and even sectors of the Z2 gauge theory. In the following,
we always refer to the even case. We now outline the half-filling phase diagram,
which is depicted in Fig. 4.7.

The deconfined-BCS phase

For J ≫ h, t, all Z2 charges are deconfined. As t → 0, fermions play the role of
static charges for the pure Z2 LGT. As in the Ising theory discussed above, we
expect a small finite hopping not to modify the physics of the gauge sector, but
rather to shift the point of the confinement transition. For small non-zero h the
Z2 electric field mediates weak attractive interactions between charges [36]. This
causes a Cooper instability of the Fermi surface, which leads to a BCS ground state
where the global U(1) symmetry of the model is spontaneously broken. This is
enriched by the presence of deconfined Z2 excitations, and so the phase is labeled
SF* to distinguish it from a conventional superfluid. As a consequence of the
additional SU(2) symmetry at µ = 0, the superfluid order parameter can be rotated
into a charge-density wave (CDW) one, so that this phase can be characterized in
either way.

The confined-BEC phase

As h is increased, the system enters the confined phase. Here pairs of Z2 charges
with opposite spin are bound into on-site bosonic molecules | ↑↓⟩. This guaran-

19This is of course true even in the spinless cases studied e.g. in sections 2.2 and 4.3. In such
models, however, this fact is hidden as there can be at most one fermion per site, and parity is in
one-to-one correspondence with particle number.
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Figure 4.7: Schematic quantum phase diagram of the Hamiltonian (4.35) at half-
filling. The axes t = 0 and h = 0 correspond to the pure Z2 LGT and free fermions
respectively.

tees that there is no source of Z2 electric lines, and all the links can be in the
energetically preferred state σx = +1 while still respecting the Gauss law. Pertur-
bative corrections induce hopping and repulsion between the bosonic molecules.
Intuitively, as h is increased the attraction between particles with opposite spins
changes from strong to weak and the fermionic sector of the model experiences a
typical BCS-BEC crossover. As above, the global U(1) symmetry is spontaneously
broken. Moreover, superfluid order and CDW order are degenerate with each other.

The deconfined-Dirac phase

To conclude, we analyze the regime where the hopping t is dominant. At h = 0 and
in the absence of a strong plaquette term that forces the system into a 0-flux phase,
the preferred configuration of fluxes is determined by the energetics of hopping
fermions. At half filling, this actually favors a π flux, a result known as Lieb’s
theorem.20 The corresponding free-fermions band structure exhibits two Dirac

20This is discussed further in section 4.3.2 for the case of spinless fermions, which is entirely
equivalent in the absence of h. There we also present numerical results for the competition
between J and t on a small cylinder.
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cones. As the density of states is vanishing at half filling (the Fermi surface reduces
to two points), the ground state is stable to the introduction of finite h and there
is no pairing. The entire large-t limit corresponds to a Dirac semi-metal.

Critical lines

Having justified the three regimes of the phase diagram of Fig. 4.7, let us see
how they are connected. Along the line h = 0 there is a single critical point,
corresponding to a transition from large to small Fermi surface which is not related
to translational symmetry breaking. At small finite h, following vertical lines
we encounter two transitions: the different deconfined phases are separated by a
confined region. While this may sound counterintuitive, it is explained by the fact
that increasing t generates a progressively larger negative correction to the plaquette
term, so that effectively the ratio h/J grows leading to a confinement transition. As
the negative effective J becomes dominant we are back into a plaquette dominated
phase, this time the deconfined-Dirac one. For large enough h, only the confinement
transition from the Dirac semi-metal to the BEC phase occurs. This is actually the
most interesting one, as the two apparently independent phenomena of confinement
and SSB of the global U(1) symmetry happen simultaneously. The exotic quantum
criticality associated with this transition was studied further in [45]. There it was
shown that it can be described by an emergent non-abelian SU(2) gauge theory
with a matrix Higgs field. It was also proven that the two transitions can be split
by introducing appropriate repulsive interactions, showing on the other hand that
in this set up the exotic quantum critical point extends to a whole line.

4.3 Z2 lattice gauge theory with spinless fermionic
matter

We now introduce the model to which the rest of this chapter is dedicated, i.e. a
Z2 lattice gauge theory with spinless fermionic matter. The Hamiltonian of the
model is the spinless version of the one reviewed in the previous section, which we
rewrite once more for completeness.

H = Hf +HZ2 , (4.35)

where the fermion Hamiltonian is

Hf = −t
∑
r,η

(
c†

rσ
z
r,ηcr+η + h.c.

)
− µ

∑
r
c†

rcr (4.36)

and the gauge theory Hamiltonian

HZ2 = −J
∑
r∗

∏
b∈□r∗

σz
b − h

∑
r,η

σx
r,η. (4.37)

Compared to the spinful case, the model at hand is deceptively simpler. Indeed, it
enjoys less symmetries and lacks an interplay between spin and charge degrees of
freedom. However the absence of spin, combined with the Gauss law, sets the stage

93



Chapter 4. Z2 gauge theories in two spatial dimensions

for the emergence of a number of interesting and exotic behaviors. Firstly, spinless
fermions are often associated with the possibility of p-wave superconductivity.
Indeed, since the Z2 electric field mediates weak attractive interactions between
fermions at small h, a Cooper instability that leads to triplet pairing is not unlikely.
Secondly, similarly to 1d, the large h limit of a model with single-component
fermions has to be an effective theory of dimers and therefore much richer compared
to the spinful case.

From the technical point of view this model -to the best of our knowledge- cannot
be studied with quantum Monte Carlo techniques. In particular the approach used
in [44, 45] relied on the fact that at µ = 0 the fermionic determinants coming from
the two different spin species combine to give a positive definite weight, which is
obviously not the case here. Still at half-filling, the sign problem is not present
if the Gauss law is not enforced. This possibility is explored in [48], where it is
found that the absolute ground state lies in the “staggered” gauge sector with the
checkerboard Gauss law Gr = (−1)r.

The goal of the rest of this section is to unveil the intricate phase diagram of
the Hamiltonian (4.37). After giving an account of the symmetries of the model
we consider various simple limits, which help understanding what happens at the
boundaries of the phase diagram. We then try to connect these different regions
by exploring more challenging regimes, with a particular focus on large h physics
and half filling. The main results of this section are displayed in Fig. 4.8.

4.3.1 Symmetries of the model
Since we want to analyze this model in great detail, we give here a precise and self-
contained account of all the symmetries.21 Let us start with the gauge “symmetry”.
The Gauss law reflects the fact that fermions are a dynamical source of Z2 electric
lines:

Gr = (−1)nr
∏

b∈+r

σx
b = (−1)nrAr. (4.38)

In the rest of this chapter we will work in the sector where Gr = 1 for all sites,
which corresponds to the gauge theory with no background Z2 charges. In other
words, the Hamiltonian (4.35) must be diagonalized under the local constraint
Gr = 1. We note that the “pure” even and odd Z2 lattice gauge theories are
obtained as limits when the lattice is empty or fully filled, as under these conditions
the matter fields are frozen and the Gauss law reduces to Ar = ±1. We refer the
reader to section 4.1 for an account of these models.

The gauge invariance comes from taking the global fermion parity symmetry

Π =
∏
r

(−1)nr (4.39)

and making it local with the help of new degrees of freedom. As already discussed
in Chapter 2 for the one-dimensional case, this procedure usually trivializes the
global symmetry, it the sense that it restricts it to a single sector. Indeed, when

21This partially overlaps with the discussion of section 4.2, but it does not hurt to have
everything in one place.
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Figure 4.8: Schematic quantum phase diagram at half-filling: At a weak magnetic
coupling there are two phases– the deconfined Dirac semimetal emerging in the
π-flux Z2 gauge field background and the staggered confined Mott insulator. There
is evidence that the two phases are separated by a single quantum critical point.
On the other hand, in the regime J ≫ t we find a deconfined Fermi surface and a
confined clustered phase. Away from the zero-tension regime, the Fermi surface is
expected to have a BCS instability towards a p-wave paired superfluid state.

the model is defined on a closed surface such as a torus, the fermion number must
be necessarily even22, i.e., the physical Hilbert space contains only states with even
fermion parity. On the other hand, in the presence of boundaries the situation is
more subtle and the fate of the global fermion parity Z2 symmetry depends on how
the Gauss law is implemented at the edge. For example, if the lattice terminates
everywhere with links, the global fermion parity survives gauging and acts on the
boundary links [113]. After taking a product of the Gauss law constraints over all
sites, one finds

Π =
∏

b∈edge
σx

b , (4.40)

which is the gauge-invariant t’Hooft loop operator of the Z2 gauge theory traversing
22This follows immediately from taking a product of the generators Gr over all sites of the

lattice.
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t

Figure 4.9: Illustration of the model. Matter degrees of freedom live on the sites
of the lattice, while gauge fields are defined on the links. Fermions (red dots) must
be connected by the electric lines σx = −1 (solid blue lines). In the panel below,
we show the states of the local Hilbert space which satisfy the Gauss law Gi = +1.
Occupied sites are sources to an odd number of Z2 electric lines.

the boundary. In this case both even and odd fermion numbers are allowed in the
physical Hilbert space, but the symmetry operator is localized at the boundary.

Analogously to the spinful case studied in the previous section, this Hamiltonian
is invariant under a global U(1) symmetry that acts only on the fermionic degrees
of freedom as cr → eiαcr. One can thus introduce the associated U(1) chemical
potential µ to tune the fermionic density nr = c†

rcr in the ground state. Equivalently,
one can focus on a sector with a given particle number and restrict the study to
that particular sector. The particle-hole transformation (4.33) is to be restricted
to a single species of fermions. While the hopping term in the Hamiltonian (4.36)
commutes with this transformation, the chemical potential term anti-commutes with
it. One thus might naively conclude that the problem is particle-hole symmetric
at µ = 0. However under this transformation the Gauss law changes sign Gr →
−Gr and the even Z2 gauge theory (Gr = 1) transforms onto the odd gauge
theory(Gr = −1), where a static Z2 charge occupies every lattice site. As a result,
the particle-hole transformation is not a symmetry, but relates the even and odd
Z2 gauge theories at chemical potentials µ and −µ, respectively.

As for the discrete symmetries, the Hamiltonian is invariant under one-site
translations in both directions and under the D4 point group transformations. In
addition, both the Hamiltonian and the Gauss law are invariant under the following
anti-unitary transformation

cr → cr, σx
r,η → σx

r,η, σy
r,η → −σy

r,η, σz
r,η → σz

r,η (4.41)

which realizes time-reversal symmetry in this model. Additionally, the energy
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spectrum is symmetric under t → −t since the two cases are related via the
unitary transformation generated by ∏r,η σ

x
r,η. Similarly, the unitary transformation∏

r,η σ
z
r,η flips the sign of the parameter h. As a result, henceforth we will consider

only the regime t, h ≥ 0.
To conclude, we point out that at h = 0 the model enjoys an additional magnetic

symmetry, much like the pure Z2 lattice gauge theory studied in section 4.1. In
this case the Hamiltonian commutes with gauge-invariant Wilson operators

Wclosed =
∏

b∈loop
σz

b ,

where the product is taken over links forming a closed loop.23 As a result, the
model enjoys an additional global symmetry. Since this symmetry is generated by
operators acting on co-dimension one manifolds, this is usually referred to as a
one-form symmetry. Higher-form symmetries play an increasingly relevant role in
the classification of quantum many-body systems, paving the way for a generalized
Landau paradigm which is valid for all equilibrium phases of matter[201]. An
example is that gauged fermion parity in a system with a symmetric ground state
under the magnetic one-form symmetry implies symmetry-protected topological
(SPT) order [142]. This can be seen as a higher dimensional extension of the
concepts introduced in section 2.3.4. On the other hand, spontaneous symmetry
breaking of the magnetic one-form symmetry leads to topological order [201, 202].

4.3.2 Free fermions in a static Z2 gauge field at h → 0
Let us consider first the limit of vanishing Z2 electric fields, i.e. h = 0. We start
by showing how the Hamiltonian can be expressed in terms of gauge invariant
fermions and Z2 fluxes through a process of string-attachment.

Gauge invariant construction of the free-fermions Hamiltonian.

Consider the non-local operator [49]

fr = cr Σz
r (4.42)

where Σz
r is a semi-infinite string of σz operators that starts at site r, but is otherwise

arbitrary. The operator fr defined above is gauge invariant, i.e. Gr′frG
−1
r′ = fr for

any choice of sites r and r′ and for any choice of the string Σz
r. The fermionic part

of the Hamiltonian can now be rewritten as

Hf = −t
∑
r,η

(
f †

r B̄r,ηfr+η + h.c.
)

− µ
∑

r
f †

rfr, (4.43)

where B̄r,η are Z2 gauge-invariant parameters that can have values ±1[49]. One
possible convention is to choose horizontal strings that extend to the right of the
given fermionic site. In this case one has B̄r,η = 1 on the horizontal links, while

23On an open lattice terminating with links, gauge-invariant Wilson lines ending on the
boundary also commute with the Hamiltonian.

97



Chapter 4. Z2 gauge theories in two spatial dimensions

Figure 4.10: Example of hopping configurations that realize vertical stripes of
π-flux plaquettes. The dashed lines denote links with Bij = −1 and F represents
the average Z2 flux.

on the vertical links it is possible to express B̄r,η in terms of an infinite horizontal
product of magnetic plaquette operators

B̄r,ŷ =
∏
n≥1

Br∗+nx̂.

Importantly, the product of B̄r,η around a plaquette is the same as the the product
of the gauge field σz around the same plaquette:∏

b∈□r∗

B̄b =
∏

b∈□r∗

σz
b .

Thus the gauge theory Hamiltonian (4.37) at h = 0 reduces to

HZ2 = −J
∑
r∗

∏
b∈□r∗

B̄b. (4.44)

We have therefore rewritten our problem in terms of free Z2 gauge-invariant
fermions fr in a background configuration of the fields B̄r,η, which determine a
certain pattern of static Z2 fluxes.24

Flux phases at half filling

The absolute ground state of this model can be found by solving the free fermion
problem in different flux sectors and then choosing the one which minimizes the

24It is worth noting that the attachment of a string Sz
r that defines non-local gauge invariant

fermions fixes the Z2 gauge redundancy. However, the arbitrariness in the form of this string
leads to a new form of redundancy, under which both the fermions fr and the parameters Br,η

transform non-trivially.
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Figure 4.11: Ground state energy (red) and its average flux F as a function of J/t
on a cylinder with Ly = 2. Dashed lines denote energies of configurations with
different Z2 fluxes.

Hamiltonian Hf +HZ2 [47, 49]. The half filling case µ = 0 is particularly interesting:
Lieb’s theorem predicts that at J = 0 a π-flux configuration is energetically
favorable [203]. In this case, the free-fermion band structure exhibits two Dirac
cones at (kx, ky) = (±π/2, π/2)25. Any state with a different flux configuration
has an energy gap that does not vanish even in the thermodynamic limit, and
therefore plaquette excitations always cost a finite amount of energy. In summary,
in this phase, Z2 charged fermions form gapless deconfined Dirac excitations, while
the Z2 gauge fields are in the topologically ordered phase. This is the same phase
of matter as the one depicted in yellow in the diagram of Fig. 4.7 for the spinful
fermions.

On the other hand, for J ≫ t a zero-flux state is preferred, since every flipped
plaquette comes with a large energetic penalty. The transition from a π-flux phase
at small J to a zero-flux phase at large J can happen either sharply or through
a series of intermediate configurations. Since each plaquette operator commutes
with the Hamiltonian in this regime and thus can only take the values ±1, such
intermediate configurations must necessarily break translational invariance. In this
case, the average flux over the extended unit cell takes fractional values (in units
of π), as illustrated in Fig 4.10. As a concrete example, in Fig. 4.11 we provide
numerical results for the transition between the π-flux and zero-flux limits on a
thin cylinder with circumference Ly = 2. In this case, a number of intermediate
flux phases appears as the dimensionless ratio J/t is tuned. Within each flux phase,

25We note that even away from half-filling a π-flux phase can always be obtained by choosing
J to be negative and sufficiently large.
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Ly χ Sf + SZ2 S Rel. Error
2 400 1.03972 1,03972 0.00
4 1000 3.04080 3.03225 ≈ 0.28%
6 2000 5.05664 4.93008 ≈ 2.5%

Table 4.1: Comparison between the entanglement entropy of our model at J = h = 0
at half filling with the predicted result S = Sf + SZ2 . The entropy Sf for hopping
fermions in the π-flux background is computed numerically with iDMRG, with
an error that is negligible compared to the one of S. The gauge contribution
SZ2 = (Ly − 1) log 2.

the ground state energy per unit cell is a linear function of J , and is given by

Egs(J) = EF − J⟨P⟩, (4.45)

where EF is the ground state energy of free fermions in the flux-background F and
⟨P⟩ is the average value of the plaquette operator within the extended unit cell. The
competition between the two terms determines the most favorable configuration of
Z2 fluxes26.

Although for larger cylinders the computation of the ground state becomes
numerically challenging, our analysis suggests that as Ly is increased the inter-
mediate phases occupy a progressively smaller region of parameter space. In the
thermodynamic limit we expect a sharp transition between the π-flux and the
0-flux phase, in agreement with the QMC results of [44], corresponding to the
h = 0 line of Fig. 4.7. The interesting pattern emerging in Fig. 4.11 is therefore a
peculiarity of small cylinders and has to be regarded as an example of quasi-1d
phenomenology. This simple concrete example may be studied in cold atom based
quantum simulators, where the implementation of Z2 lattice gauge theories on
ladders and small cylinders is within reach [102].

Entanglement entropy and topological order

Deep in the deconfined phase of the Z2 gauge theory (toric code limit) the en-
tanglement entropy under a bipartition into two half-infinite cylinders is given by

SZ2 = (Ly − 1) log 2 (4.46)

with the size-independent topological entanglement entropy γ being equal to − log 2
[196]. Moreover, as argued above, at h = 0 and half-filling we expect a π-flux phase
with a pair of deconfined Dirac fermions carrying Z2 charge, as long as J ≪ t
(including the case J ≤ 0). The entanglement entropy of such system is expected
to split

S = Sf + SZ2 , (4.47)
26In principle, this decomposition of the ground state energy Egs allows to solve the problem

analytically. However this involves a cumbersome task of calculating the fermionic band structure
for a potentially infinite number of flux configurations F .
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with Sf being the entanglement entropy of free fermions hopping in the π-flux
background. Numerical results confirm the prediction (4.47). Technically, in the
thermodynamic limit the entropy Sf is unbounded because spinless fermions in
a π-flux background form two Dirac cones that are at neutrality point at half
filling. On the other hand, in a cylinder geometry quantization of momentum in the
y-direction implies the existence of a finite size gap and the resulting entanglement
entropy Sf is therefore finite27. In Table 4.1 we show that the formula (4.47)
works very well for cylinders of size up to Ly = 6. This is a clear signature of a
topologically ordered Dirac semimetal phase around half filling at J ≪ t.

4.3.3 Quantum dimers at h → ∞
If the coupling h is large, the electric strings become energetically expensive and
isolated fermions are immobile [204]. At low energies they must form meson-like
dimer states, where pairs of fermions are connected by a unit-length electric string.
The dimers can be defined on links of the lattice and are created by the gauge-
invariant operators c†

rσ
z
r,ηc

†
r+η. Due to the Pauli exclusion principle, any two links

that share a site cannot simultaneously host dimers. The large h limit can be
systematically constructed by starting from the classical Hamiltonian

H0 = −h
∑
r,η

σx
r,η − µ

∑
r
c†

rcr

= −h
∑
r,η

σx
r,η − µ

2
∑

r

(
1 −

∏
b∈+r

σx
b

)
,

(4.48)

where in the second line the Gauss law (4.38) was used. By tuning the chemical
potential µ ∼ h one can induce a finite density of dimers in the ground state. All
the states with a fixed number of dimers have the same energy, and therefore the
spectrum of H0 is highly degenerate. For a fixed number of fermions the first
excited states contain a single meson of length two. This is separated from the
ground state by the gap 2h. We now treat the remaining terms in the Hamiltonian
as small perturbations and obtain and effective model that governs the dynamics
of length one mesons.

First order perturbation theory: resonating dimers, Hilbert space fragmenta-
tion and clustering

At first order in degenerate perturbation theory, only the plaquette term

HP = −J
∑
r∗

∏
b∈□r∗

σz
b (4.49)

contributes. Whenever an elementary plaquette is fully occupied with fermions this
term induces transitions between two electric string configurations, as illustrated

27To be more precise, for a given Ly, whether a gap is present or not depends on the boundary
conditions chosen for the fermions (periodic or antiperiodic). The latter can be interpreted as a
the presence of a π flux threading the cylinder. As detailed in Appendix D, we observe that one
of the two sectors remains gapless while the other one is gapped. Numerical results show that
the absolute ground state always belongs to the gapped sector.
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Figure 4.12: (a) Electric string transitions induced by the magnetic term on a
plaquette that is fully occupied with fermions. (b) An example of quantum dimer
configuration at partial filling. Highlighted in red are plaquettes fully filled with
fermions, where the purely kinetic Rokhsar-Kivelson Hamiltonian resonates electric
strings. On the other hand, isolated dimers are not affected by the magnetic term.

in Fig. 4.12a. Generically this results in a short-range attractive interaction of
strength J between the dimers which is independent of the sign of J . At full
filling, achieved at µ ≫ h, the problem reduces to the close-packed, purely kinetic
Rokhsar-Kivelson quantum dimer model [205]

Hd = −J
∑(

| ⟩⟨ | + h.c.
)
. (4.50)

The ground state of this Hamiltonian is deeply in the confined regime of the odd
Z2 gauge theory described in section 4.1.2. This shows how the large-µ and large-h
limits of the phase diagram are connected.

At partial filling of fermions, the first-order effective Hamiltonian only resonates
electric strings on islands of plaquettes that are fully occupied by fermions, but
does not act on isolated dimers, see Fig 4.12b. For this reason, configurations
where fermions are grouped in clusters are energetically favored. To study this in
more detail, the perimeter of dimer arrangements in several disconnected sectors
on a 5 × 5 lattice populated with four dimers can be computed numerically. The
perimeter is a conserved quantity that is defined as shown in Fig. 4.14a and 4.14b.
We find that a compact packing is preferred, i.e., the absolute ground state has
the lowest perimeter, see Fig. 4.14 (c).

The full Hilbert space of the quantum dimer (4.50) model splits into many
disconnected sectors. The logarithmic plot in Fig. 4.13 shows the number of
these sectors as a function of dimer number for several different lattice sizes. The
presence of an exponential number of disconnected subsectors originates from the
Z2 gauge invariance of the original lattice gauge theory. Indeed, since we consider
here the case with t = 0, the fermions are completely frozen and thus the problem
reduces to a pure Z2 gauge theory in a background of static gauge charges. By
construction, the resulting Z2 gauge invariant theory has an extensive number
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Figure 4.13: The number of disconnected subsectors of the Hilbert space as a
function of the number of dimers for four different system sizes.

of local conservation laws and thus its Hamiltonian cannot connect subsectors
characterized by different configurations of Z2 background charges. Similar physics
arises in the strict confinement limit of the one-dimensional version of this lattice
gauge theory studied in [187]. The phenomenon discussed here appears to be
qualitatively different to the Hilbert space fragmentation introduced in [206, 207]
in the context of dipole-conserving one-dimensional models. While in our case
local Z2 gauge invariance is responsible for the fracture of the Hilbert space, what
ensures the Hilbert space fragmentation of [206, 207] are non-local statistically
localized integrals of motions that were introduced in [208].

Second order perturbation theory and the dimer-Mott state

The fermion hopping term in the Hamiltonian starts to contribute only at second
order in perturbation theory, where it generates anisotropic short-range dimer
hopping processes and repulsive interactions. An exact expression for the effective
Hamiltonian can be obtained formally by employing the Schrieffer-Wolff trans-
formation. Physically, the origin of these terms can be understood in complete
analogy with their one-dimensional counterpart, where the same perturbation
theory scheme is used. Therefore, we refer the reader to section 2.2.3 for more
details. The hopping term has the following expression:

Hd = −J
∑(

| ⟩⟨ | + h.c.
)

− td
∑(

| ⟩⟨ | + | ⟩⟨ |

−| ⟩⟨ | + | ⟩⟨ | + | ⟩⟨ | − | ⟩⟨ | + h.c.
)
, (4.51)

where td is of order t2/h. The relative signs between the hopping processes stem
from a careful consideration of fermionic statistics. From the equation above,
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(a) (b) (c)

GS

Figure 4.14: Zero fermionic hopping: (a) and (b) The perimeter is defined as the
number of sites surrounding the dimers. The red dashed lines are the boundaries.
Whenever a site lies on more than one boundary we count it again. Thus the
perimeter in (a) is 10, while the perimeter in (b) is 15. (c) Four dimers on a 5 × 5
lattice: The lowest energy of each sector is plotted together with its perimeter. We
observe that the ground state of the Hamiltonian has the smallest perimeter.

we learn that dimers cannot hop in the direction perpendicular to the electric
string and thus exhibit restricted mobility. Contrary to dipoles in some theories of
fractons [209, 210], where restricted mobility follows from symmetries, here it is
imposed energetically.

In addition, second order processes give rise to short-range repulsive interactions
between dimers. The energy scale of this effect is of order t2/h, and so it is generally
overshadowed by the first-order attraction of strength J discussed above. At J = 0
and when the density of dimers is significant, however, the repulsion is important
and needs to be taken into account. In particular, at commensurate fillings it can
potentially stabilize a Mott-insulating state of dimers. At half filling the staggered
Mott pattern shown in Fig. 4.15 is a natural candidate, since this arrangement
minimizes the inter-dimer repulsion. Whether this prediction is correct or not can
be tested by obtaining the ground state wave function on cylinders of circumference
up to Ly = 8 using iDMRG. The results for the fermion density, shown in Fig.
4.15, confirm that the guess is indeed correct up to the largest system size that
we could probe. The Mott gap can be estimated by tuning the chemical potential
away from the value µ = h until the filling deviates from 1/2. By doing this, we
find that the gap decreases as h is increased, and at large h it is proportional to
the emergent energy scale t2/h, as shown in Fig. 4.15c.

Cluster dynamics

Second order perturbation theory can also be used to study how clusters slowly
move by hopping all the dimers that form them, once a finite t is introduced. For
a cluster composed of nd dimers, this process is of the order t2nd , which leads
to an extremely small energy-level splitting. We first study the physics of the
smallest cluster. Specifically, we perform an exact diagonalization calculation
for two dimers on a periodic 8 × 8 lattice. In Fig. 4.16a the degenerate energy
levels of the lowest band have been resolved into momentum eigenstates with
wave numbers k = (2πn/L, 2πm/L), where n,m = 0, . . . , L− 1. The ground state
has zero momentum. Qualitatively, we observe that the band resembles a simple
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(a) (b)

n = 0.108
n = 0.892

(c)

Figure 4.15: (a) Schematic illustration of a staggered dimer Mott state at half
filling. For each dimer, the six sites directly next to it are empty, minimizing the
energy penalty due to the repulsion between different dimers. (b) iDMRG results
for the local fermion density on a cylinder of circumference Ly = 8 at h/t = µ/t = 4
and J = 0. The arrangement of fermions into a staggered pattern of dimers is
clearly visible. (c) Mott gap as a function of h. For large values of h the gap
scales approximately as t2/h, consistent with the second order perturbation theory
emergent energy scale.

cosine band of an elementary particle hopping on a square lattice. Consistent with
expectations from perturbation theory, we find that the bandwidth scales as t2d/J
as td → 0.

Then, in order to explore the hopping of larger clusters, we numerically diago-
nalize a system of three dimers on a periodic 7 × 7 lattice, see Fig.4.16b. Here the
excited levels are measured from the respective ground state at a given value of td,
i.e. the plot shows the energy differences

∆E ≡ Ei(td) − E0(td).

At finite td the ground state is 4-fold degenerate, with momentum wavevectors
k = (0,±6π/7), (±6π/7, 0). Due to the four-fold rotation symmetry of the lattice
some excited states retain their 4-fold or 8-fold degeneracy. The four ground states
together with the lowest 45 excitations make up the first energy band. The same
figure also shows a power-law fit to the lowest and highest excitation of the first
and second band as a function of td/J . The second band has an energy dependence
that scales as (td/J)3. This is consistent with our expectation that the bandwidth
of a cluster composed of nd dimers should scale as ∝ tnd

d in the limit td → 0. In
contrast, the energies in the lowest band scale for td ≪ J as the power-law (td/J)4.

Immobile excitations

Having looked into the physics of extended clusters, let us now calculate the band
structure for a single dimer. Since the dimers live on links, each unit cell of the
square lattice can be occupied by either a horizontal or a vertical dimer, resulting
in two energy bands. We denote the creation operators of the horizontal and
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Figure 4.16: Finite fermionic hopping: (a) Excitation energies of the lowest band
of the Hamiltonian (4.51) with td = 0.05J on an 8 × 8 lattice with the cluster
composed of two dimers, plotted in the first Brillouin zone. The ground state
(center) is a zero momentum eigenstate. (b) Double logarithmic plot of the lowest
two bands of excitation energies of the Hamiltonian (4.51), after subtracting the
ground state energy, on a 7 × 7 lattice for a cluster composed of three dimers.
The excitation energies of the two lowest bands grow as ∝ t4d/J

3 and ∝ t3d/J
2 for

td ≪ J .

vertical states in the unit cell at site r by the operators c†
r and d†

r, respectively.
The dimensionless Hamiltonian takes the form

H/td = −∑
r

[
−d†(r) + d†(r + x̂) + d†(r − ŷ) − d†(r + x̂− ŷ)

]
c(r) + h.c.

−∑
r c

†(r + x̂)c(r) + h.c. −∑
r d

†(r + ŷ)d(r) + h.c. (4.52)

After Fourier transforming and diagonalizing, one obtains the two energy bands.
The lowest band

ϵ
(1)
k = −2td, (4.53)

is flat, implying a macroscopic ground state degeneracy. The second band has
cosine dispersion

ϵ
(2)
k = 2td (1 − cos kx − cos ky) . (4.54)

The flatness of the lower band has striking consequences. To start, it implies
that it is possible to create localized immobile excitations. We can construct such
a frozen excitation explicitly as the following linear combination of the four dimer
states around a single plaquette

F †
r ≡ 1

2
[
d†

r − d†
r+x̂ − c†

r + c†
r+ŷ

]
. (4.55)

The state |ψ(r)⟩ ≡ F †
r |0⟩ created by this operator can be represented visually as

|ψ(r)⟩ = 1
2
[
| ⟩ − | ⟩ − | ⟩ + | ⟩

]
. (4.56)
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Figure 4.17: Correlation length ξ as a function of the electric coupling h, calculated
with iDMRG on a cylinder with circumference Ly = 4 for J = 0. The system is kept
at half filling by setting µ = h. The peak in the correlation length is a signature of
a quantum phase transition between a topologically ordered π-flux Dirac phase
and a translational symmetry-breaking staggered Mott phase of dimers. The inset
shows the magnetic susceptibility χB that exhibits a peak at the transition.

When the Hamiltonian acts on this state, the relative signs of its hopping terms,
which have their origin in fermionic statistics, lead to a cancellation of hopping
processes that would move the dimer away from the plaquette. Thus the dimer
remains localized on this plaquette forever. As a consequence, it is possible to
write down a many-body frozen state by creating well-separated frozen plaquette
excitations. Since these dimers do not spread, they cannot interact and thereby
are exact eigenstates of the Hamiltonian.

4.3.4 Half filling phase diagram and exotic quantum criticality
Given what we have learned so far, we can now combine our knowledge to under-
stand the half-filling phase diagram of Hamiltonian (4.35) at J = 0.

At large h the ground state exhibits a “dimer-Mott” pattern that breaks
translational symmetry spontaneously, as shown in Fig. 4.15. As the dimers are
formed by tightly bound fermionic particles, which are the carriers of Z2 charge,
the gauge sector lies in the confined phase. In the opposite limit h → 0, the
free Dirac fermions coexist with topologically ordered deconfined Z2 gauge fields.
Analogously to the spinful case reviewed in section 4.2.2, at half filling the Fermi
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Chapter 4. Z2 gauge theories in two spatial dimensions

surface reduces to a point and the fermionic density of states vanishes. For this
reason, turning on a weak attraction between particles is not enough to cause a
Cooper instability, and we expect the “deconfined-Dirac” phase to be stable even at
finite h, away from the free fermions point. Since these two limits are so radically
different, it is natural to expect one or more quantum phase transitions as h is
tuned from small to large values.

Numerical evidence for a transition is gathered by performing iDMRG sim-
ulations. On a cylinder of finite Ly both these phases are gapped28, but a gap
closing must occur at the transition point. This can be detected for instance by
looking for peaks in the correlation length ξ, which is shown in Fig. 4.17. Such
results suggest that a single transition occurs. Further analysis of the numerical
data shows that at the transition point both confinement of the gauge fields and
spontaneous breaking of the translational symmetry occur simultaneously. In the
gauge sector, this is signaled by a peak in the Z2 magnetic susceptibility

χB = ∂⟨Pr∗⟩/∂h, (4.57)

where Pr∗ is the plaquette operator (5.42) and the overbar denotes the average
over a unit cell. This peak is shown in the inset of Fig. 4.17. The nature of this
transition is of great interest, as it is not clear a priori and somewhat surprising that
confinement of Z2 charges and SSB happen simultaneously. Such phenomenology
reminds us of the transition between the deconfined-Dirac and confined-BEC
phases studied in [45] and reviewed in section 4.2.2. There, confinement was
also accompanied by the breaking of a global symmetry, U(1) particle number
conservation, leading to a very exotic type of quantum criticality. A more rigorous
study of the transition in our system is deferred to a future work.

28See Appendix D for details about fermions in a π flux on the cylinder.
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Chapter 5

Z2 gauge theories with spinless
fermionic matter as spin 1/2 systems

This chapter is devoted to a special feature of Z2 lattice gauge theories with spinless
fermionic matter, namely the fact that they can be mapped locally to models of
gauge invariant spins - in any dimension. This is remarkable for a number of
reasons:

• The mapping unveils the fact that1 the Hilbert space of the bulk of the system
is essentially bosonic in nature. A basis is formed by spins constructed from
states with two neighboring fermions.

• The spin model is defined directly in a physical, reduced Hilbert space where
the Gauss law is automatically satisfied. The mapping is valid for any choice
of Gi = ±1, with different choices only differing in the signs of some operators.
From the computational point of view, the size of the Hilbert space is reduced,
with significant advantages. As an example, in a 2d LGT on the square
lattice with N sites there are 23N degrees of freedom, as a unit cell is formed
by a site and two links. The dual model consists of link variables only, and
so its Hilbert space has dimension 22N .

• Spin systems are generally regarded as easier to study numerically compared
to fermions, and a wider array of techniques is available. Many numerical
methods (e.g. DMRG and related MPS algorithms) convert fermions to
spins using the Jordan-Wigner transformation, which introduces non-local
couplings. A direct study of the spin system avoids this intermediate step.

• Local mappings present less subtleties, and do not change the characteriza-
tion of the physics of the system as much as non-local ones. For example,
the Kitaev and Ising chains are dual under the non-local Jordan-Wigner
transformation, but the physical description of the corresponding phases
differs substantially.

• In order to find numerically (e.g. with DMRG) the ground state of the
system in the appropriate gauge sector the original Hamiltonian must be

1At least for the even case Gi = +1, on which we focus.
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Chapter 5. Z2 gauge theories with spinless fermionic matter as spin 1/2 systems

minimized while adding a term that energetically penalizes states belonging
to the other sectors. This introduces errors and an additional convergence
parameter. Working with a model which is already in the desired sector,
devoid of any gauge redundancy, avoids this problem entirely.

While in this chapter we emphasize the simplicity and convenience of this specific
mapping for for gauge theories with spinless fermionic matter and Z2 gauge fields,
similar ideas are present in the literature. The construction of [211, 212] is very
general and shows how to trade fermionic matter with hardcore bosons in generic
gauge theories by constructing an appropriate unitary transformation. Related
two-dimensional bosonization mappings were introduced in [52, 213–217]. In the
latter case, one starts with a two-dimensional (ungauged) fermionic problem and
maps it onto a Z2-gauged spin 1/2 model. Here on the other hand, our starting
point is the gauged fermionic theory which maps to an unconstrained spin model.

Structure

This chapter is structured as follows: the two main sections 5.1 and 5.2 are dedicated
to the mapping in one and two dimensions respectively. They develop in the same
way, by first introducing the new gauge invariant variables and then discussing
how relevant observables and Hamiltonians transform under the mapping. Along
the way, we have the opportunity to restate and reinterpret some of the results of
the previous chapters in terms of spin models.

5.1 The mapping in one dimension
The goal of this section is to understand how to map one-dimensional Z2 gauge
models to systems of gauge invariant spins. To this purpose, one first introduces
new gauge-invariant spin 1/2 degrees of freedom and then uses the Gauss law
explicitly to write any operator of the original theory in this new language.

5.1.1 Gauge invariant spins
As a first step, we introduce Majorana variables

γi = c†
i + ci, γ̃i = i(c†

i − ci) (5.1)
or, conversely,

ci = γi + iγ̃i

2 , c†
i = γi − iγ̃i

2 , (5.2)

which satisfy the hermiticity condition γ†
i = γi and the anticommutation relations

{γi, γj} = 2δij, {γ̃i, γ̃j} = 2δij, {γi, γ̃j} = 0. (5.3)

As a reference for the following we also remind that the local fermion parity can
be expressed as

Πi = (−1)nf
i = iγ̃iγi, (5.4)
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5.1. The mapping in one dimension

and for spinless fermions is in one-to-one correspondence with the density, i.e.
Πi = 1 − 2nf

i . We now define the following operators which satisfy the Pauli
algebra, and can therefore be regarded as new spin 1/2 variables:

Xi,i+1 = σx
i+1/2

Yi,i+1 = −iγ̃iσ
y
i+1/2γi+1

Zi,i+1 = −iγ̃iσ
z
i+1/2γi+1.

(5.5)

The properties of the Majorana operators ensure that the new variables in Eq.
(5.5) square to the identity and follow the appropriate (anti)commutation relations.
We see that Eq. (5.5) is a local transformation that defines a new link variable
for each site-link-site triplet. In other words, sites are removed from the physical
space which is halved in size, consisting now of links exclusively. In order for this
to be of any use, of course, we need to be able to express all the observables of
the gauge theory in terms of these new spins, and not just some gauge-invariant
Majorana bilinears. Let’s see how this works.

5.1.2 Mapping of Hamiltonians
We now show how typical Hamiltonians look after the mapping. Since equation
(5.5) is expressed in terms of Majorana operators, we will focus on those and
comment later on what they correspond in terms of c-fermions. The mapping uses
explicitly the Gauss law, and therefore it has a different form in each sector of the
gauge theory. Here we focus on the sector Gi = 1, where

Πi = σx
i−1/2 σ

x
i+1/2 = Xi−1/2 Xi+1/2. (5.6)

The derivations below, in any case, generalize readily to arbitrary sectors by taking
appropriate care of the minus signs that pop up along the way.

Mapping of density-dependent terms

We start with the fermion density nf
i = c†

ici , which is mapped using the Gauss law
only:

nf
i = 1 + Πi

2 = 1 +Xi−1/2 Xi+1/2

2 . (5.7)

This means that any “chemical potential” term maps into an Ising-type interaction.
Moreover, we learn that the particle number now corresponds to the number of
domain walls. In the same fashion, any kind of density-density interaction is
mapped through the Gauss law. For example, a nearest neighbor interaction gives

nf
i n

f
i+1 = 1 +Xi−1/2 Xi+1/2

2
1 +Xi+1/2 Xi+3/2

2 =(
1 +Xi−1/2Xi+1/2 +Xi+1/2Xi+3/2 +Xi−1/2Xi+3/2

)
4

where we have used that on the central link X2 = I to simplify the last term.
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Chapter 5. Z2 gauge theories with spinless fermionic matter as spin 1/2 systems

Mapping of fermion bilinears

The bilinear −iγ̃iσ
z
i+1/2γi+1 maps trivially to Zi+1/2 under (5.5). This is exactly

what appears in the gauged Kitaev chain (2.54), which indeed takes a very simple
form under the mapping. The bilinear −iγiσ

z
i+1/2γ̃i+1, on the other hand, requires

some more work and needs resolving the Gauss law to be mapped: one gets

− iγiσ
z
i+1/2γ̃i+1 = −i γ̃iγ̃i︸︷︷︸

=I

γiσ
z
i+1/2γ̃i+1 γi+1γi+1︸ ︷︷ ︸

=I

=

−iγ̃iσ
z
i+1/2γi+1︸ ︷︷ ︸

=Zi+1/2

ΠiΠi+1 = −Zi+1/2Xi−1/2Xi+1/2 Xi+1/2Xi+3/2 =

−Xi−1/2 Zi+1/2 Xi+3/2

(5.8)

which is the stabilizer of the cluster model, a spin 1/2 chain with Z2 ×Z2 symmetry
[218–220].

Mapping of generic quadratic Hamiltonians

The quadratic part of any generic Hamiltonian where fermions are coupled to Z2
gauge fields reads

HG = − t
∑

i

(
ĉ†

i σ
z
i+ 1

2
ĉi+1 + h.c

)
− ∆

∑
i

(
ĉ†

i σ
z
i+ 1

2
ĉ†

i+1 + h.c
)

=

i(t+ ∆)
∑

i

(
γ̃iσ

z
i+ 1

2
γi+1

)
− i(t− ∆)

∑
i

(
γiσ

z
i+ 1

2
γ̃i+1

) (5.9)

where we have separated the contributions of the two Majorana bilinears to make
quick use of the expressions derived above. This maps to

H = −(t+ ∆)
∑

i

Zi+1/2 − (t− ∆)
∑

i

Xi−1/2Zi+1/2Xi+3/2. (5.10)

Density density interactions can easily be included as explained above (See Eq.
(5.7) and below). Besides, any electric term involving one or more factors of σx

maps trivially, since σx remains unchanged under the transformation (5.5). More
complicated terms that describe e.g. pair-pair interactions can be accounted for as
well, but we will not treat them here.

5.1.3 Notable examples
As notable applications of the mapping (5.5), we consider the two relevant cases
corresponding to the models discussed in Ch. 2.

The U(1) conserving model

For the particle-number conserving model (2.19), we need to set ∆ = 0 in (5.10)
so that the pairing term vanishes. We obtain

H = − t

2
∑

i

Zi+1/2 −Xi−1/2Zi+1/2Xi+3/2 (5.11)
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5.1. The mapping in one dimension

which is the Hamiltonian of the cluster model in an external field. Despite the
slightly unusual appearance, it can be shown that this corresponds indeed to free
fermions with a global U(1) symmetry2, with all the caveats explained in section
2.2.1. The conservation of particle number in the original model corresponds here
to conservation of domain walls, i.e.

[H,Q] = 0, Q =
∑

i

1 −Xi−1/2Xi+1/2

4 . (5.12)

Indeed, it is instructive to notice that the term Zi+1/2(1 −Xi−1/2Xi+3/2) is nothing
but a hopping, since it flips a spin (in the X basis) only if the two neighboring
spins point in opposite directions, i.e. if it belongs to the boundary of a domain
wall. To conclude, we note that the dimers that emerge naturally in the large h
limit studied in section (2.2.3) are simply isolated magnons in the spin language.

Gauged Kitaev chain

As mentioned already at the beginning of section 2.3.3, the Z2 gauged Kitaev chain
maps to the Ising model in a transverse and longitudinal field.3. All we need to do
to obtain this result is to set ∆ = t in Eq. (5.10) and add the “chemical potential”
and electric terms: we obtain

H = µ

2
∑

j

Xj−1/2Xj+1/2 − t
∑

j

Zj+1/2 − h
∑

j

Xj+1/2. (5.13)

This allows us to reinterpret the physical results of section 2.3 from a different
perspective and unveil some intriguing dualities. Let us focus first on the line h = 0,
where non-trivial edge physics appears. Here we have a transverse field Ising model
(TFIM), which makes manifest that the deconfined (large µ) phase is characterized
by spontaneous symmetry breaking. The first subtlety arises in the Higgs phase.
In the large t limit the ground state of (5.13) is a trivial paramagnet, apparently
in contrast with our claim that this regime hosts a non-trivial SPT. The puzzle
is solved if we remember that under the mapping (5.5) Z is a composite object
so that the ground state, expressed in the original variables, carries non-trivial
entanglement.

The reader might be confused by the following fact: while the gauged Kitaev
chain is found to be locally equivalent to the TFIM, this is also the Jordan-Wigner
(JW) dual of the ungauged Kitaev chain. So what is happening? Are the two
models equivalent? The answer is that they are definitely not: indeed, if we
compare the Hamiltonian (5.13) with the JW dual (2.53) found in section 2.3, we
find that the roles of the parameters are swapped! Let us clarify these relationships,
with the help of the diagram in Fig. 5.1. Starting from the Kitaev chain (2.44) we
see that gauging fermion parity symmetry leads to a symmetry-breaking deconfined

2From the “cluster model” perspective, the external field drives the system out of the SPT
phase. At the value corresponding to (5.11), we are exactly at the gapless critical point that it is
known to correspond to free fermions.

3Among other things, this creates interesting connections with the ideas presented in section
3.3
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Figure 5.1: Relations between the gauged and ungauged Kitaev chains and Ising
models for h = 0. The Kitaev chain (left) can be gauged as explained in section
2.3. The resulting Hamiltonian is identified with a TFIM (center) through a
local transformation. Yet a different TFIM (right) can be obtained either as the
Jordan-Wigner dual of the original Kitaev chain, or as the Kramers-Wannier dual
of the aforementioned Ising model (i.e., of the gauged Kitaev chain).

phase, and a symmetry-protected topological Higgs phase. Morever, the latter has
fermionic edge modes and is thus a fermionic SPT phase. This is summarized in
the gray box in Fig. 5.1. Moreover, a local change of variables (5.5) maps the latter
SPT phase to a trivial product state, which is summarized by the second black
arrow in Fig. 5.1. We discussed how this Ising chain has a magnetic Z2 symmetry
for h = 0. In principle, this symmetry could also be gauged. Similar to before,
we find that the trivial phase maps to a symmetry-breaking phase, and the other
phase maps to a (now bosonic) SPT phase, as shown in Fig. 5.1. Again, a local
change of variables can trivialize the latter. In effect, this ends up swapping the
trivial and symmetry-breaking phases of the Ising chain, being equivalent to a
Kramers-Wannier transformation. As summarized in Fig. 5.1, concatenating all
these transformations is effectively equivalent to the Jordan-Wigner transformation
encountered in section 2.3.1. These relationships between gauging and the Jordan-
Wigner and Kramers-Wannier transformations have been pointed out before in the
continuum [221] and on the lattice [72]. However, in these cases, the subtlety of
the local mappings was not addressed and the SPT phases were overlooked.

To conclude, we take a look at how the edge properties of this system translate
to the spin language. Since the mapping is local, we expect the mapped system to
retain all the topological properties of the gauge theory.4 As we choose that the
chain ends with links on both sides, the Gauss law does not require a modification
at the edge but the mapping does. In particular, we cannot define new gauge
invariant Y and Z spin 1/2 operators on the first and last links, and instead we
need

Y1/2 = σy
1/2γ1, Z1/2 = σz

1/2γ1;
YL+1/2 = γ̃Lσ

y
L+1/2, ZL+1/2 = γ̃Lσ

z
L+1/2.

(5.14)

These are fermionic operators, and therefore cannot appear in the Hamiltonian.
This corroborates our intuition that while in the bulk the Hilbert space of a Z2
LGT coupled to spinless fermions is bosonic, at the boundaries it maintains its

4The only caveat being, as explained above, that the Z and Y operators are composite objects
in the original variables.
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fermionic character. Moreover, in the fixed point limit µ → 0 the Majorana edge
operators (2.60) take the simple form

γl = Y1/2 γL+1/2 = YL+1/2 (5.15)

and the W and Π symmetries fractionalize as

W = Y1/2YL+1/2 Π = X1/2XL+1/2. (5.16)

Note that the form of the Π symmetry is consistent with the fact that Z1/2 and
ZL+1/2 are not present in the Hamiltonian.

5.1.4 Constrained Hilbert space and emergent PXP model
We present here an interesting result that was originally derived in the context
of the gauged Kitaev chain (2.54), but is best understood in the spin language.
In order to gain insight on the competition between the confined and deconfined
phases of the gauge theory, let us set t = 0 in Eq. (5.13). We obtain

H = µ

2
∑

j

Xj−1/2Xj+1/2 − h
∑

j

Xj+1/2. (5.17)

This can be seen as a classical model, since it is diagonal in the X basis. It is
useful to rewrite it (up to a global constant) as

H = 2µ
∑

j

Pj−1/2Pj+1/2 +(µ−h)
∑

j

Xj+1/2 with Pj−1/2 := 1 −Xj−1/2

2 . (5.18)

The operator Pj−1/2 is a projector onto a down spin. Hence, if µ = h (such that
the second term disappears), the first term energetically punishes all states where
two neighboring spins point down. These degenerate ground states span a Hilbert
space without a tensor product structure, with a number of states asymptotically
given by ϕN , where ϕ = (1 +

√
5)/2 is the golden ratio5, as made well-known by

recent studies of the Rydberg chain [222–225]. As soon as we perturb µ > h, the
system naturally prefers a maximal number of spins to point down. Given that
we have to satisfy the aforementioned constraint at low energies, the two possible
ground states are the antiferromagnetic states | + − + −⟩ and | − + − +⟩. As
observed for instance in section 2.2.4, the breaking of transitional symmetry is
directly related to deconfinement, in agreement with the phase diagram that we
derived. If instead µ < h, the ground state is given by | + + + +⟩, leading to
confinement.

Starting from the degenerate point (µ = h), it is also interesting to consider
the effect of turning on t ̸= 0. This term brings us out of the low-energy Hilbert
space, but at leading order in t, we have the projected Hamiltonian

Heff = 2µ
∑

j

Pj−1/2Pj+1/2 − t
∑

j

Pj−1/2Zj+1/2Pj+3/2. (5.19)

5This follows from the observation that on a finite chain of length L the number of states in
the Hilbert space of the model is given by the Fibonacci number FL.
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This can be recognized as the celebrated PXP model with its quantum scars
[77, 226]. This is indeed known to have an Ising transition for µ − h ≈ 0.7t
[227, 228], or in other words, h/µ ≈ 1 − 0.7 t/µ, which sets the slope of the solid
black line in Fig. 2.11(a) as it emerges from the vertical axis, agreeing with our
numerical phase diagram.

We note that the effective constrained Hilbert space has a nice interpretation
in terms of the original gauge theory (2.54): at the point µ = h, t = 0, the energy
cost of a pair of neighboring fermions (a dimer) is zero since the cost of flipping
one electric string, as required by gauge-invariance, is exactly compensated by the
gain due to the chemical potential µ. In this language, the constrained Hilbert
space is formed by all possible degenerate configurations of dimers of unit length.
At small t, the physics of these dimers is governed by the PXP model.

5.1.5 Mapping of Ising matter
In this section we show a strictly related mapping for gauged Ising matter and
apply it to the simple example of the gauged Ising chain. We take this occasion to
adventure out of the {Gi = 1} sector, and explore the case where the Gauss law
follows a staggered pattern of different forms.

Gauge invariant spins

The Hilbert space for Z2 gauged Ising matter consists of sites and links, both
hosting spin 1/2 degrees of freedom. We denote the Ising matter fields on the sites
by τ and the link fields by σ. The Gauss law for this system reads

Gi = σx
i−1/2τ

z
i σ

x
i+1/2 = qi (5.20)

where qi = ±1. We introduce6 the gauge invariant spins

Xj+1/2 = σx
j+1/2, Yj+1/2 = τx

j σ
y
j+1/2τ

x
j+1, Zj+1/2 = τx

i σ
z
j+1/2τ

x
j+1 (5.21)

that live on the links.

Examples of the mapping

Let’s see now how typical terms map to these new variables:

• As usual, the “chemical potential” term τ z is taken care of by the Gauss law:

τ z
i = qi σ

x
i−1/2σ

x
i+1/2 = qi Xi−1/2Xi+1/2, (5.22)

i.e. it maps to an Ising coupling whose sign depends on the presence of a
static charge qi on the site between the two links in the original gauge theory.

6Here we abuse the notation that we already employed for the fermionic case. Since the
present subsection is entirely self contained, we think that this will not be confusing.
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5.1. The mapping in one dimension

• The “gauged Ising” term maps directly to a transverse field:

τx
i σ

z
j+1/2τ

x
j+1 = Zj+1/2. (5.23)

This is consistent with what we observed in the previous section when
mapping the Kitaev chain7, i.e. that the mapping remarkably does not
require the explicit use of the Gauss law.

• A term of the form τ y
i σ

z
i+1/2τ

y
+1, encountered for example in the gauged XY

chain, requires some more work:

τ y
i σ

z
j+1/2τ

y
i+1 = τ z

i τ
x
i σ

z
i+1/2τ

x
i+1τ

z
i+1 =

= qi qi+1/2 Xi−1/2Xi+1/2Zi+1/2 Xi+1/2Xi+3/2 =
= qi qi+1/2 Xi−1/2 Zi+1/2 Xi+3/2

(5.24)

which is the cluster term encountered already in the mapping of generic
quadratic fermionic Hamiltonians. The sign of this term depends on the
distribution of static charges. In particular, it is positive if all background
charges are positive or negative, but it turns negative if they are in a staggered
pattern.

Mapping of the gauged Ising model

The Hamiltonian of the gauged Ising model reads:

H = −J
∑

j

τx
j σ

z
j+1/2τ

x
j+1 − f

∑
j

τ z
j − h

∑
j

σx
j+1/2. (5.25)

Following the prescriptions above, this is mapped straightforwardly to the new
gauge-invariant spins. In particular, it is easy to keep track of an arbitrary
distribution of background charges and carry out the mapping in an arbitrary
gauge sector. The new Hamiltonian is

H = −f
∑

j

qjXj−1/2Xj+1/2 − J
∑

j

Zj+1/2 − h
∑

j

Xj+1/2, (5.26)

which describes an Ising model in a tilted field whose coupling are ferromagnetic
or antiferromagnetic on different pairs of sites depending on the gauge sector that
one considers.

Such models can be cast into a more familiar form by applying a global unitary
that transfers the alternating sign to the longitudinal field. Let us concentrate
on the case where the background charges are staggered: qj = (−1)j. Here the
appropriate unitary transformation is

U = ZZIIZZIIZZII . . . , (5.27)

7Which is the Jordan-Wigner dual of the transverse-field Ising model.
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Figure 5.2: A strong longitudinal field that changes sign every two sites aligns
the spins (in the X-basis) as shown by the black arrows. The domain walls (red
dashed lines) corresponds to Z2 charged particles of the gauge theory (red dots).
These are placed every second site, neutralizing the static background charges (−)
so that all electric strings are expelled from the ground state.

that sends Xj → (−1)j(j+1)/2Xj. One gets

H = −f
∑

j

(−1)j(−1)j(j+1)/2(−1)(j+1)(j+2)/2XjXj+1

− J
∑

j

Zj − h
∑

j

(−1)j(j+1)/2Xj

= f
∑

j

XjXj+1 − J
∑

j

Zj − h
∑

j

(−1)j(j+1)/2Xj

which describes an Ising model with longitudinal field that changes sign every two
sites. Physically, this can be understood as follows: in the large h regime, we
want to eliminate the energetically expensive Z2 electric strings from the ground
state. In our case, where the background charge are staggered, this can be done
by placing neutralizing Ising matter τ z = +1 on every second site. But under the
mapping Z2 charges correspond to domain walls: in this regime the longitudinal
field dominates and forces exactly one domain wall every second site, giving the
correct physical picture. This is illustrated in Fig. 5.2.

Edge modes of the gauged Ising chain

To conclude this section, we go back to the uniform Gauss law Gi = +1 and
consider the edge physics of the gauged Ising chain, operating directly in the spin
language. At h = 0, the model exhibits symmetry-protected bosonic edge modes
in the Higgs phase. One can construct these modes in the following way: on
an open chain of length L which starts and ends with links the definition of the
gauge-invariant spins (5.21) cannot be applied to the outer left and right links, but
instead we define

X1/2 = σx
1/2, Y1/2 = σy

1/2τ
x
1 , Z1/2 = σz

1/2τ
x
1 ;

XL+1/2 = σx
L+1/2, YL+1/2 = τx

Lσ
y
L+1/2, ZL+1/2 = τx

Lσ
z
L+1/2.

(5.28)

In contrast to the gauged Kitaev chain, all edge gauge-invariant operators are
bosonic and thus a priori can appear as individual terms in the Hamiltonian of
an open chain. At h = 0, however, the model enjoys the magnetic symmetry
W = ∏

j σ
z
j+1/2 = Q

∏
j Zj+1/2. As a result, all edge terms (5.28) are ruled out
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J/f

h/f

SPT

0.5 1

1

0.5
Higgsdeconfined

(SSB)

or

confined

J/f

h/f

SPTdeconfined

0.5 1

Higgs
(SSB)

or

confined
(a) (b)f < 0 f > 0

Figure 5.3: Phase diagram of the gauged TFIM (5.25) for f < 0 and f > 0,
respectively. In absence of vortices (h = 0), the system enjoys the magnetic
symmetry W = ∏

j σ
z
j+1/2, protecting the SPT order in the Higgs phase (highlighted

by dashed blue line). For h ̸= 0, the Higgs and confined regimes are adiabatically
connected. For f < 0 the solid black line denotes Ising criticality, which is stabilized
due the translation-breaking nature of the antiferromagnetic phase.

by symmetries. In particular, the Ising symmetry prohibits the edge Y and Z
operators to appear in the Hamiltonian, while the magnetic symmetry does not
allow X and Y . As a result, at h = 0 the open chain Hamiltonian is

H = −f
L∑

j=1
Xj−1/2Xj+1/2 − J

L−1∑
j=1

Zj+1/2. (5.29)

We will now identify two edge operators localized near the left boundary that
commute with this Hamiltonian. First, we have Xl = X1/2. In addition, the
operator

Yl = Y1/2 + f

J
Z1/2Y3/2 + f 2

J2Z1/2Z3/2Y5/2 + . . . (5.30)

also commutes with the Hamiltonian (5.29) and is exponentially localized near
the left boundary in the Higgs phase, where |f | < J . The presence of two
anti-commuting localized edge operators Xl and Yl ensures two-fold ground state
degeneracy associated with the left boundary. Since similar arguments apply also to
the right edge, the total degeneracy of the ground state manifold on an open chain
is four-fold with exponentially small corrections in system size L. The existence
and stability of this degeneracy originates from fractionalization of the Ising and
magnetic symmetries. In particular, the two Z2 symmetries anti-commute with
each other at each edge and thus are realized projectively at the boundary.

5.2 The mapping in two dimensions
We now extend the ideas presented in section 5.1 to two dimensions, and show how
models with Z2 gauge fields and spinless fermionic matter can be mapped onto
spin one-half models through a local transformation. The general reasoning behind
the mapping is the same as in one dimension, i.e. one constructs gauge invariant
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spins from Majorana and link operators. We reckon that the deep reason why this
is possible is that the Hilbert space of the model is effectively bosonic, since gauge
invariant states are formed by pairs of fermions connected by electric strings.8 The
generalization is however not straightforward, since tricks are needed in order to
keep track of the fermionic statistics which in 2d has a significantly more relevant
impact.

5.2.1 Gauge invariant spins
As in 1d, we first introduce the Majorana operators

γr = c†
r + cr, γ̃r = i(c†

r − cr). (5.31)

In terms of these variables the Gauss law reads

iγ̃rγr =
∏

b∈+r

σx
b . (5.32)

Out of the original Z2 gauge fields and Majorana variables, it is possible to construct
new gauge-invariant Pauli operators as follows

Xr,η = σx
r,η,

Zr,x̂ = −iγ̃rσ
z
r,x̂γr+x̂σ

x
r+x̂,−ŷ,

Zr,ŷ = −iγ̃rσ
z
r,ŷγr+ŷσ

x
r,x̂.

(5.33)

Note that, compared to the one-dimensional case, the factors σx in the definition
of Zr,η are needed to ensure that the new spin operators not only satisfy the Pauli
algebra on a given link, but also always commute on neighboring links. We also
point out that this choice is not unique: different arrangements of σx are possible,
including non-symmetric ones where two factors of σx appear in the definition
of Zr,x̂, but no σx is needed for Zr,ŷ (or vice-versa). It is worth mentioning that
such kind of mapping is possible in any dimension, generically requiring some
factors of σx in the definition of Zr,η on properly chosen neighboring links. The
only exception is one spatial dimension, where no extra operators σx are needed
[70, 113, 229, 230].

5.2.2 Mapping of Hamiltonians
Let’s now see how different terms of typical Hamiltonians transform under the
mapping (5.33).

Fermion bilinears

We start with Majorana bilinears, which can be used to express hopping and
pairing terms alike. Under (5.33), the horizontal and vertical bilinears where γ̃

8Again, this is true for the relevant case Gi = +1 everywhere.
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Figure 5.4: Illustration of the hopping terms under the mapping (5.33) for horizontal
and vertical links.

appears on the left and lower site respectively can be immediately rewritten as

iγ̃rσ
z
r,x̂γr+x̂ = −Zr,x̂ Xr+x̂,−ŷ,

iγ̃rσ
z
r,ŷγr+ŷ = −Zr,ŷ Xr,x̂.

When the roles of γ̃ and γ are swapped, however, a straightforward mapping is not
possible and one needs to use the Gauss law.9 Since all operators are understood
to act only on states in the physical Hilbert space, the identity can be inserted on
the right of each expression in the form 1 = Gr1 . . . Grk

. This can be done for an
arbitrary choice of sites r1, . . . rk because the Gauss law is enforced on every site
independently. Hence on horizontal links one has

iγrσ
z
r,x̂γ̃r+x̂ = iγrσ

z
r,x̂γ̃r+x̂GrGr+x̂

= iγ̃rσ
z
r,x̂γr+x̂

∏
b∈+r

Xb

∏
b′∈+r+x̂

Xb′

= −Zr,x̂

∏
µ∈{l}

Xr,µ,

where the last product is over a set of five X operators on the links determined
by the displacements {−x̂, 2x̂, ŷ,−ŷ, x̂ + ŷ}. A similar arguments applies to the
vertical links. The result is shown pictorially in Fig. 5.4. With these results in

9This is entirely equivalent to what is done in 1d, but we repeat the argument for completeness.
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mind, the hopping term

−
(
c†

rσ
z
r,ηcr+η + h.c.

)
= 1

2
(
iγ̃rσ

z
r,ηγr+η − iγrσ

z
r,ηγ̃r+η

)
. (5.34)

that appears in Hamiltonian (4.35) can be readily expressed in terms of spins. On
horizontal links one gets

− 1
2

1 −
∏

b∈+r

Xb

∏
b′∈+r+x̂

Xb′


︸ ︷︷ ︸

Pr,x̂

Zr,x̂ Xr+x̂,−ŷ, (5.35)

and analogously for the vertical hopping we find

− 1
2

1 −
∏

b∈+r

Xb

∏
b′∈+r+ŷ

Xb′


︸ ︷︷ ︸

Pr,ŷ

Zr,ŷ Xr,x̂. (5.36)

This compact form has a nice interpretation in terms of the original fermionic
theory: due to the Gauss law the factor Pr,η̂ is a projector that annihilates all
states with equal fermion parity on sites r and r + η̂. This means that the hopping
is only possible if one of the sites hosts a fermion particle and the other one does
not, as it should be to avoid double occupancy or creation of pairs of particles out
of the vacuum. A generic linear combination of the two Majorana bilinears does
not have this property, and would correspond to a U(1) non-conserving fermionic
model with anomalous terms of the form c†

rσ
z
r,ηc

†
r+η + h.c. Physically, in the spin

formulation the operator Z is responsible for the hopping process, as it swaps the
fermion parities on the two neighboring sites. The operators X, on the other hand,
keep track of the fact that the hopping particles are fermions. This can be seen
explicitly by exchanging two identical particles and verifying that in the process
the statistical phase of π is acquired, as we now proceed to explain.

An excursus: Fermionic statistics in the spin language

Having expressed the hopping in terms of spin degrees of freedom only, it is natural
to ask how the statistics of the original constituents is taken into account after the
mapping. In the original formulation of Sec. 4.3, the σz operator in the hopping
term of the Hamiltonian (4.36) assigns a phase of 0 or π to the hopping amplitude of
the fermion, depending on the state of the gauge field on that link. When a fermion
is carried all the way around a closed loop C, it picks up the Aharonov-Bohm phase
given by the operator eiΦ̂ = ∏

C σ
z. This is related by Stokes’ theorem to the total

Z2 magnetic flux piercing the surface enclosed by C.
Here we show how the hopping operators (5.35) and (5.36) encode in the gauge-

invariant spin formulation the fermionic statistics of the Z2 charges. In general,
one expects that after an exchange of two identical Z2-charged fermionic particles
the initial state evolves as

|ψ0⟩ −→ ei(α+Φ̂)|ψ0⟩, (5.37)
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Figure 5.5: Left: The positions of two identical Z2 charges (red blobs) are exchanged
by successively applying the hopping operators (5.35) and (5.36). Right: the
notation adopted in Eq. (5.38).

where α = π is the fermion statistical phase while Φ̂ is the operator that measures
the phase acquired due to the magnetic flux as explained above.

For a generic initial state of two neighboring particles, the braiding process
shown in Fig. 5.5 can be represented as the action of a braiding operator B
constructed by combining the appropriate hoppings (5.35) and (5.36): |ψ0⟩ −→
B |ψ0⟩. Following the notation of Fig. 5.5 for the labeling of the relevant links and
sites, one has

B = Z9X8 Z4X3 Z6X10 Z5X2 Z7X6 Z2X1

= −Z9Z4Z6Z5Z7Z2 X8X3X10X2X6X1

= −P̃r3P̃r2Ar3Ar2 ,

(5.38)

where P̃r denotes a plaquette operator of Z spins (not of σz!) at the top left of site
r, while Ar = ∏

b∈+r Xb is the star operator. To isolate the contribution from the
Z2 flux, we express P̃ in terms of the operators X and σz by inverting Eq. (5.42).
We get

B = −
(∏

C
σz

)
Ar1Ar2Ar3Ar4 = −

∏
C
σz, (5.39)

where in the last step we have used the fact that Ar1 = Ar2 = −1 and Ar3 = Ar4 = 1
for the state |ψ0⟩. This completes the proof: besides the Bohm-Aharonov phase,
an extra minus sign manifests the fermionic nature of the Z2 charges of the original
gauge theory.

Density dependent terms

The inclusion of terms that depend only on combinations of fermion densities on
different sites is straightforward. Indeed, the Gauss law yields immediately

nr = 1 −∏
b∈+r X

2 , (5.40)
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Figure 5.6: Elementary plaquette Pr∗ = ∏
b∈□r∗ σ

z
b under the mapping (5.33). When

two γ (γ̃) appear on the same site, they square to one. On the other hand, when γ
and γ̃ appear, instead, they can be replaced with a star operator as a consequence
of the Gauss law.

and so up to a constant the number operator maps onto a star. Similarly, more
complicated terms amount to taking appropriate product of (5.40). A relevant ex-
ample are nearest-neighbor, next-nearest-neighbor and next-next-nearest-neighbor
interactions.

Plaquette term

To map the plaquette term we need once more to combine the mapping (5.33)
with the Gauss law. Each σz transforms into a combination of Z, X and Majorana
operators. When taking the product of σz operators around an elementary plaquette,
the Majorana operators on two out of the four vertices square to one, while on the
remaining vertices one is left with the product of the Majorana operators γ and
γ̃. Such a product can be replaced with a star operator as a consequence of the
Gauss law (5.32), leading eventually to the six-spins term

Pr∗ =
∏

b∈□r∗
σz

b = −Zr,x̂Zr+x̂,ŷYr,ŷYr+ŷ,x̂Xr+ŷ,−x̂Xr+ŷ,ŷ. (5.41)

The procedure is outlined in Fig. 5.6. We note the following interesting fact: Eq.
(5.41) can also be written as

Pr∗ =
∏

b∈□r∗
Z
∏

b∈+r

X, (5.42)

where here r∗ labels the square of the dual lattice on the bottom-right of the vertex
r. The elementary plaquette operator Pr∗ of the original model (4.35) maps onto
the plaquette-star composite operator in the spin formulation.

Complete mapping of Hamiltonian (4.35)

Combining everything together, the full Hamiltonian (4.35) of the Z2 lattice gauge
theory coupled to spinless fermions maps onto the following local spin one-half
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model

H = − t
∑

r
(Zr,x̂ Xr+x̂,−ŷ Pr,x̂ + Zr,ŷ Xr,x̂ Pr,ŷ)

− µ

2
∑

r

1 −
∏

b∈+r

Xb


− J

∑
r∗

∏
b∈□r∗

Z
∏

b∈+r

X − h
∑
r,η

Xr,η

with the projectors Pr,x̂, Pr,ŷ defined in Eqs. (5.35) and (5.36). The time-reversal
symmetry (4.41) is realized as complex conjugation

Xr,η → Xr,η, Yr,η → −Yr,η, Zr,η → Zr,η. (5.43)

Notice moreover that in the spin formulation the U(1) particle number symmetry
is not onsite.

5.2.3 Mapping of observables
Let’s now take a look at how some important observables transform under the
mapping.

Dimer operators

To express the gauge-invariant dimer operator

b†
r,η = c†

rσr,ηc
†
r+η (5.44)

in terms of spin operators, let us first rewrite it in terms of the Majoranas:

b†
r,η =1

4(γr − iγ̃r)σz
r,η(γr+η − iγ̃r+η)

=−i
4
(
γ̃rσ

z
r,ηγr+η + γrσ

z
r,ηγ̃r+η

)
+ 1

4
(
γrσ

z
r,ηγr+η − γ̃rσ

z
r,ηγ̃r+η

)
.

(5.45)

Using our calculation of the hopping part of the Hamiltonian from Sec. 5.2.2, we
find that the first bracketed summand above is just

η = x̂ : 1
2Zr,x̂ Xr+x̂,−ŷ P̃r,x̂,

η = ŷ : 1
2Zr,ŷ Xr,x̂ P̃r,ŷ,

(5.46)

where we introduced

P̃r,η̂ = 1
2

1 +
∏

b∈+r

Xb

∏
b′∈+r+η

Xb′

 (5.47)
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Figure 5.7: Left panel displays expressions for the Wilson line and endpoint
fermionic operators in terms of gauge invariant spin variables using the mapping
(5.33). From such building blocks one can construct all fermionic two-point func-
tions. As an example, the mapping of the correlator γ̃ σz . . . γ is shown in the right
panel.

which annihilates states with opposite fermion parity on sites r and r + η. The spin
representation of the second bracketed summand in Eq. (5.45) can be computed
by using the Gauss law, we find

1
4
(
γrσ

z
r,x̂γr+x̂ − γ̃rσ

z
r,x̂γ̃r+x̂

)
= i

2Yr,x̂Xr+x̂,x̂Xr+x̂,ŷP̃r,x̂,

1
4
(
γrσ

z
r,ŷγr+ŷ − γ̃rσ

z
r,ŷγ̃r+ŷ

)
= i

2Yr,ŷXr,−x̂Xr,−ŷP̃r,x̂.
(5.48)

Combining everything together we write the dimer creation operators in the spin
language

b†
r,x̂ = 1

2
(
Zr,x̂ Xr+x̂,−ŷ + iYr,x̂Xr+x̂,x̂Xr+x̂,ŷ

)
P̃r,x̂ = Zr,x̂ Xr+x̂,−ŷΠr,x̂,

b†
r,ŷ = 1

2
(
Zr,ŷ Xr,x̂ + iYr,ŷXr,−x̂Xr,−ŷ

)
P̃r,ŷ = Zr,ŷ Xr,x̂Πr,ŷ,

(5.49)

where
Πr,η = 1

4
(
1 +

∏
b∈+r

Xb +
∏

b′∈+r+η

Xb′ +
∏

b∈+r

Xb

∏
b′∈+r+η

Xb′

)
(5.50)

is a projector on simultaneously unoccupied sites r and r + η. The annihilation
operators of dimers can be obtained by hermitian conjugation

br,x̂ = Zr,x̂ Xr+x̂,−ŷΠ̃r,x̂,

br,ŷ = Zr,ŷ Xr,x̂Π̃r,ŷ,
(5.51)

where
Π̃r,η = 1

4
(
1 −

∏
b∈+r

Xb −
∏

b′∈+r+η

Xb′ +
∏

b∈+r

Xb

∏
b′∈+r+η

Xb′

)
(5.52)

is a projector on simultaneously occupied sites r and r + η.

Fermion-fermion correlators

We consider here the gauge-invariant fermion-fermion correlator

⟨f †
rfr′⟩ = ⟨c†

r
∏
b∈l
σz

b cr′⟩ (5.53)
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Figure 5.8: Mapping of the Wilson line with Majorana endpoints (left) and of
the Wilson loop (right). The electric Fredenhagen-Marcu order parameter can be
expressed in terms of the expectation values of these two operators.

For concreteness, we take sites r and r′ which are separated in the x direction,
such that the Wilson line l connecting them is straight and horizontal. Let us see
first how an infinite Wilson line transforms, without worrying about the endpoints.
To use the mapping (5.33), we insert at each site crossed by the Wilson line the
identity operator in the form I = γ2γ̃2. One then gets∏

b∈l
σz

b = . . . γ̃r1 γ̃r1σ
z
r1,x̂γr2︸ ︷︷ ︸

iZr1,x̂Xr2,−ŷ

γr2 γ̃r2︸ ︷︷ ︸
iSr2

γ̃r2 . . . (5.54)

where Sri
is the star operator at site ri. The X operators on horizontal and lower

vertical links square to one, so for the infinite Wilson line the mapping takes the
simple form

σz
r,x̂ −→ Zr,x̂ Xr,ŷ. (5.55)

As for the endpoints, where fermions reside, not all the X operators cancel and
therefore the mapping needs to be complemented with the following rules

γr −→ Xr,−x̂ Xr,−ŷ,

γ̃r −→ Xr,x̂ Xr,ŷ.

From these building blocks one can easily reconstruct all fermionic two-point
functions. An example is given in Fig. 5.7.

Fredenhagen-Marcu order parameters

In chapter 4 we have introduced and motivated the Fredenhagen-Marcu order
parameters which are used to detect a confinement transition in the presence
of matter fields. The “magnetic” parameter OF M

m that detects the condensation
of m-particles (visons) is defined entirely in terms the gauge invariant σx, and
therefore it transforms trivially under the mapping. The “electric” order parameter
OF M

e , on the other hand, requires some work. For the numerator, we choose
for convenience γ and γ̃ as Z2 charged endpoints. Since this is nothing but a
fermion-fermion correlator we adapt the results obtained above, taking extra care
to keep track of what happens at the corner. Similarly, the results for the Wilson
loop are an easy generalization of what we already derived, the only subtleties
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coming from the extra σx operators at the corners. The results for a 3 × 3 loop
are shown in Fig. 5.8.
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Chapter 6

Conclusions and outlook

This thesis aims at giving a comprehensive account of recent results in the field
of Z2 lattice gauge theories. To do this in an effective and pedagogical way, we
introduce the reader to relevant concepts such as gauge invariance, topological
order and deconfinement. In the introduction, we provide context by first discussing
the development of gauge theories throughout the 20th century, and then zooming
in on the condensed matter theory applications which are most connected to our
research work. The original results contained in this thesis can be grouped in the
following way:

• Confinement in 1d Z2 LGT: The results of section 2.2 (See in particular
subsections 2.2.2 and 2.2.4) show that in a simple model of spinless fermions
coupled to Z2 gauge fields the elementary constituents are confined into
mesonic dimers as soon as the Z2 electric field is turned on. Single holes in
a fully filled background are instead deconfined. Among our results, these
are the ones that can find more immediate experimental applications. The
model can be simulated using existing ultracold atoms platforms, and the
predicted doubling in the period of Friedel oscillations is easy to observe in
this setup.

• Edge physics of the gauged Kitaev chain: In section 2.3 we derive a
gauged version of the famous Kitaev chain. While the bulk phase diagram
of the model is readily obtained thanks to a mapping to the TLFI model,
we unveil intriguing aspects concerning the edge physics. We introduce the
idea that the Higgs phase of a gauge theory is, in some appropriate sense,
a symmetry protected topological phase (SPT). A procedure referred to as
“gentle gauging” lets us look at this under a different perspective. Extension
of these concepts to gauge theories in higher dimensions will be treated in an
upcoming work. These ideas are related to a new trend in the classification
of quantum phases of matter where higher-form symmetries play a prominent
role.

• Emergence of constrained integrable models from Z2 LGT: We show
that in the limit of large electric string tension the model studied in section
2.2 becomes integrable and is described by a constrained version of the
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XXZ chain. This model, also known as Alcaraz-Bariev (AB), is reviewed
systematically in section 3.1, which includes novel results which fit into the
theory of generalized hydrodynamics (GHD). In section 3.2 we show different
instances where the AB model emerges from more complicated Z2 lattice
gauge theories.

• Integrable regime of the TLFI model: Since it is well known that the
Ising model can be expressed as a Z2 LGT, it is no surprise that emergent
integrability appears in this context too. In section 3.3 we start directly
from the TLFI model and show that in a certain regime the sector consisting
of isolated magnons is captured by the AB effective Hamiltonian. As a
consequence, the dynamics over long timescales is correctly captured by the
GHD. In section 3.3.3 we extend the discussion to sectors including clusters of
magnons whose effective Hamiltonian -in the same regime- is non-integrable.
We find that such clusters exhibit restricted mobility and peculiar dynamics.

• Quantum phase diagram of a 2d Z2 LGT: After discussing related
models in the literature, in section 4.3 we present a careful study of a two
dimensional theory of spinless fermions coupled to Z2 gauge fields. We obtain
several novel results. A perturbative analysis at generic filling reveals a
phase where the elementary constituents cluster into extended object, which
experience slow dynamics. At half filling we find, in two opposite limits,
a Dirac deconfined phase and a state that exhibits a charge density wave
pattern of dimers. Numerical results hint at a continuous transition between
the two regimes, resulting in a highly unconventional quantum critical point
that will be studied in greater detail in a future work.

• Local mapping between Z2 LGT and spin 1/2 models: Chapter 5 of
this thesis is dedicated entirely to a feature of Z2 LGT with Ising or spinless
fermionic matter that we developed and employed extensively, namely the
mapping between such models and spin 1/2 systems. While the mapping can
be formulated in any dimension, we focus on the one and two dimensional
cases. The mapping makes use of the Gauss law to operate directly in the
physical Hilbert space, thus eliminating the redundant degrees of freedom
of the system. We show how to map relevant Hamiltonian and observables,
and point out some results which are best understood in terms of the spin
models.

We believe that our results push forward the field of discrete lattice gauge theories
in a number of different directions. Besides the concrete achievements listed
above, our research connects to different communities, acting as a bridge between
scientists in the fields of strongly correlated systems, integrability, high-energy
theory and experiments on ultracold atoms in optical lattices. Each of these
areas provides exciting opportunities for future studies. Ground state properties
and dynamics of some deceivingly simple 1d systems can be probed in the most
advanced cold atoms platforms, encouraging a closer synergy between theory
and experiments. Significant advances in the study of two dimensional quantum
system are expected to follow from the development of more and more refined
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tensor network techniques. Algorithms that are specifically tailored for Z2 gauge
theories may provide unprecedented insight into many of the questions that are
still unanswered.
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A Numerical Methods

As expected in any investigation of quantum many body systems, a substantial
amount of our original results relies on numerical methods. These are used both
to confirm the validity of analytical predictions, and to obtain entirely new insight
into systems that cannot be treated otherwise. As the methods that we use are
mostly standard, we refer to the literature for a comprehensive account of tensor
network based methods [183, 231, 232] and exact diagonalization [233]. We outline
here the aspects that are most relevant to our work.

A.1 DMRG

Density matrix renormalization group (DMRG), both in its finite and infinite
forms [183, 234, 235], is the main method employed to achieve the numerical
results presented throughout this thesis. It is used to obtain ground states of
one-dimensional systems in the form of matrix product states (MPS) [236–239]
using an efficient truncation system based on a parameter χ called bond dimension.1
All our simulations are performed with the Python tensor network package TeNPy
[184], which provides state-of-the-art algorithms for ground state search and time
evolution and a convenient way to implement models and observables. On-site
symmetries such as particle number and parity conservation are implemented
efficiently, giving a great computational advantage.

While the algorithm works best for gapped systems, whose entanglement follows
the area law [240], in practice current computational resources are sufficient to
tackle gapless systems to a good accuracy. A significantly harder task is to adapt
the algorithm to two dimensions. While this is in theory easy for finite systems,
that can be mapped to 1d by simply ordering the lattice sites, the procedure
introduces artificial long-range interactions that severely limit the performance
of the algorithm. We usually consider “quasi 1d” systems whose y direction is
periodic, i.e finite or infinite cylinders [241]. The entanglement of such systems
grows exponentially with the size of the circumference, which make reaching the
thermodynamic limit by finite size scaling an often insurmountable obstacle.

1The bond dimension χ is related to the maximum entanglement that can be captured by the
MPS approximation of the quantum state.
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Implementing the Gauss law

In simulating lattice gauge theories in their original formulations (see for example
Hamiltonians 2.19 and 4.35), one faces the hurdle of implementing the gauge
constraint. This is usually done energetically, by adding a large term to the
Hamiltonian that penalizes the states which do not satisfy the Gauss law. While
this works, it introduces a numerical error and one extra convergence parameter.2
Fortunately, the mapping developed in chapter 5 comes to our rescue. Not only
does the transformed Hamiltonian automatically incorporate the Gauss law: the
Hilbert space of the new problem is also significantly smaller!3 Using the dual
spin systems has one drawback: current DMRG implementations do not allow to
conserve multi-site charges such as the number operator 5.40. For models with U(1)
charge conservation, this forces us to choose which feature we want to prioritize.
While in general using the spin system and not conserving particle number is more
efficient, the latter is a better choice when one needs to keep a given filling.4 For
instance, to derive the half-filling phase diagram of section 2.2.6 we preferred to
use charge conservation, as keeping the gapless system at half filling at large h by
tuning the chemical potential turned out to be a very inconvenient task.

Finite vs infinite DMRG

While finite DMRG has been used for almost 30 years and is an extremely well
established method, iDMRG is more recent and requires some care to be applied
correctly. In iDMRG, the thermodynamic limit in the x direction is extracted by
obtaining the ground state MPS over a unit cell that represents the “center” of an
infinite system. Choosing the appropriate unit cell, of length Lx, is of paramount
importance. Small unit cells offer computational advantages, but are only able
to capture states with periodicity up to Lx. It is therefore important to check
the stability of the results for different unit cells to make sure that the ground
state returned by the algorithm is not unphysical. For example, a Mott state
of commensurability three (e.g. with a particle every three sites) can never be
captured by choosing Lx = 2 or Lx = 4. Whenever possible, it is advisable to obtain
preliminary results using the finite algorithm to have an initial understanding of
the results, which can be used to choose the appropriate setup for the infinite
algorithm. In the case of quasi-two dimensional systems, however, iDMRG is
usually the only option available due to its much greater efficiency.

2I.e. at least in principle, one should run the algorithm for different large values of the
energy penalty K, and extrapolate the results to K → ∞. In practice, this is only done when a
particularly large accuracy is required.

3Of course the two things are related, but we want to stress that the mapping solves two
problems at once.

4When U(1) conservation is not implemented, this requires to tune the chemical potential
by trial and error for each choice of the other parameters, which under certain circumstances
becomes a cumbersome task.
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Correlation length

We emphasize here a feature of iDMRG that is used extensively in our research.
The infinite algorithm allows to calculate through the so-called transfer matrix the
correlation length ξ of the system. This corresponds to a length scale associated
with the slowest-decaying correlations. In gapless systems quantum fluctuations
occur over all length scales, and the correlation length is expected to diverge. This
is particularly useful to detect a quantum critical point between gapped phases,
corresponding to second-order phase transitions. Peaks in the correlation length,
which increase as the algorithm is pushed to greater accuracy,5 are a clear signature
of quantum criticality that can be obtained without knowing further details about
the system.6 This is done for example in section 4.3 to detect the quantum critical
point between the deconfined-Dirac and the dimer-Mott states.

Entanglement entropy scaling

In section 2.2 we studied a system that turned out to be gapless throughout the
whole phase diagram.7 For such systems the correlation length ξ is always a
diverging quantity, and so it is not useful by itself. There is however another
observable that is readily available within the MPS framework and divergent for
gapless systems: the entanglement entropy S. The bond dimension regulates the
maximum amount of entanglement that can be captured, while at the same time
serving as an inverse energy cutoff. For this reason when simulations are performed
for increasing χ, both S and ξ are expected to grow monotonically. In one spatial
dimension, if the system is critical it can be described by a 2D CFT with central
charge c. The three quantities are related by the important scaling equation [242]

S = c

6 log ξ + a (A.1)

where a is a non-universal constant. This gives a means to probe the central charge
of the system and thus the nature of the criticality. For instance, for the system in
section 2.2 we found with this method c = 1, in agreement with the hypothesis
that we are dealing with a Luttinger liquid described by the compact boson CFT.
At points corresponding to 1d Ising criticality, on the other hand, one finds the
result c = 1/2 (see for example the phase diagrams in section 2.3.5).

A.2 TEBD
TEBD [183, 184, 243] is another tensor network based method, implemented in
TeNPy, which is used for time-evolution of MPS quantum states.8 We employ it in

5This is done by increasing the bond dimension χ, which determines the entanglement-based
truncation.

6E.g. one does not need to know which degrees of freedom are gapless.
7With the possible exception of a Mott state with infinitesimally small gap at large h and

filling 2/3.
8There is also an imaginary time version which is used to obtain ground states, but it is in

general less efficient than DMRG.
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section 3.3 to study the quantum dynamics of the TLFI and AB models, compare
them and check that over large timescales they collapse onto the GHD solutions.

A.3 Exact Diagonalization
The 2d model of spinless fermions coupled to Z2 gauge fields studied in section
4.3 has three degrees of freedom per unit cell9 in its original formulation, i.e. a
local Hilbert space of size 23 = 8. This means that on a 4 × 4 torus, which we
regard as the minimum size to obtain useful physical insight, there are 48 two-level
degrees of freedom, split between 32 spins (gauge fields) and 16 spinless fermions.
Diagonalization of a Hamiltonian of size 248, even with sparse methods, is well
beyond the most advanced computational capabilities. To our luck, is section 5.2
we have developed a mapping that casts the model to a system of gauge invariant
spins living on the links of the lattice. Exact diagonalization of a system of 32
spins is possible, provided that enough symmetries are present. Since the system
is defined on a torus, we have translational invariance in the x and y directions,
which results in conservation of the quantized momenta kx and ky. Using the ED
Python package QuSpin [244, 245], momentum conservation is readily implemented
using standard techniques. However, it is crucial to exploit the global U(1) particle
number symmetry as well. The latter is not on-site in the spin model, as the number
operator takes the form (5.40), and therefore more tricky to implement. We achieve
this by using the advanced user_basis functionalities of QuSpin. Basis states of
spin 1/2 systems can be put in correspondence with bit strings. In our case, we
just need to choose an ordering for the 32 links, and then basis states are written
in the X-basis (where the number operator is diagonal) with the correspondence
|1⟩ ↔ | ↑⟩ and |0⟩ ↔ | ↓⟩. Then particle number is checked efficiently with bit-wise
operations on the basis states, and the states with the desired filling can be filtered.
This reduced basis, composed by states with a given filling and momenta, is small
enough so that the Hamiltonian is diagonalizable with sparse methods.

B Luttinger liquids
In this Appendix we provide a quick summary of bosonization and Luttinger
liquid theory. This has the main aim of clarifying our notation and justify some
statements made in Chapter 2.

The Luttinger liquid theory states that the low energy physics of (almost) all
one dimensional gapless systems is captured by the scalar field theory of a single
compact boson ϕ. All the details concerning the interactions are absorbed into the
renormalization of a single parameter K, the so called Luttinger parameter. We
follow the notation from Sachdev’s book [34], where the Hamiltonian takes the
form

HLL = 1
2π

∫
dxdτ

[ 1
K

(∇ϕ)2 +K(∇θ)2
]
. (A.2)

9An elementary unit cell is formed, in our convention, by a site and by the two links pointing
to the right and upwards.
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The field ϕ is related to the density by ∇ϕ = πρ(x), while ∇θ is the conjugate
momentum to ϕ. The corresponding Lagrangian is simply

SLL = 1
2πK

∫
dxdτ(∂µθ)(∂µθ). (A.3)

which corresponds to the compact boson CFT, where the Luttinger parameter
K appears as the compactification radius. The free fermion point corresponds to
K = 1, while different values of K signal the presence of interactions. In particular,
K < 1 and K > 1 correspond to repulsive and attractive interactions respectively.
One can imagine starting from a generic value of K, that corresponds to some
microscopic model, and include arbitrary perturbations. Under the RG flow, these
will either renormalize K or generate additional terms that are allowed by the
symmetries of the problem. Since ϕ and θ are compact fields, the allowed terms
must have the form cos(mϕ) and cos(mθ) with m ∈ N. Symmetry under one-site
translations act on ϕ as

ϕ → ϕ+ kF . (A.4)

At half filling, for example, one has kF = π/2 so that cos(4ϕ) is invariant while
cos(2ϕ) is not invariant and forbidden by symmetry. A global U(1) symmetry, on
the other hand, acts as a shift on θ:

θ → θ + α. (A.5)

Therefore if the U(1) symmetry is to be preserved, i.e. in a particle number
conserving model, all terms of the form cos(mθ) are forbidden. Cosine perturbation
can potentially open up a gap in the spectrum if they are RG-relevant. This depends
on the value of K, as the scaling dimensions of cos(mϕ) and cos(mθ) are m2/(4K)
and m2K/4 respectively. In particular, we note that at the free fermion point
K = 1 the typical symmetry allowed mass term cos(4ϕ) is not relevant, while a
gap is opened by the U(1) breaking perturbation sin(2θ). This can be traced back
to the usual pairing term in the microscopic theory.

C Details on integrability results and generalized
hydrodynamics

In this section of the Appendix we provide some details about integrability of
the constrained XXZ chain. Due to the technical character of the subject, the
references given in the main text are essential to a full comprehension of how the
problem is solved. We hope that reviewing the most salient aspects can help the
reader follow the arguments in the main text.

C.1 Summary of XXZ thermodynamics
As stated, the treatment of the constrained XXZ chain (AB model) largely follows
the logic of its unconstrained version. Therefore, we provide here a short summary
of the XXZ thermodynamics on which the solution of the AB model is built.

141



Appendix . Appendix

For a more extended discussion, we refer to Ref. [151]. In particular, we provide
expressions for the string parametrization, whose important role is briefly explained
in section 3.1.2. The sectors with opposite interaction signs are unitary equivalent,
hence as customary we focus on the regime ∆ > 0.

• The case ∆ ≥ 1: The interaction is conveniently parametrized as ∆ = cosh θ,
the string parametrization and scattering phases are

p(λ) = −i log
[

sin(λ− iθ/2)
sin(λ+ iθ/2)

]
, ΘXXZ(λ) = −i log

[
−sin(λ+ iθ)

sin(λ− iθ)

]
.

(A.6)
In this sector, the system has infinitely many strings of species j = {1, 2, ...}
and the rapidities of the constituents of a string with real rapidity λ are
obtained by shifting in the imaginary direction

λa,j = λ+ iθ
(j − 1 − 2a)

2 , a = {0, ..., j − 1}. (A.7)

The scattering phase is given by Eq. (3.14). In particular, one finds

∂λΘXXZ
j,j′ (λ) = (1 − δj,j′)f|j−j′|(λ) + fj+j′(λ) + 2

min(j,j′)−1∑
s=1

f|j−j′|+2s(λ) (A.8)

with
fj(λ) = 1

2π∂λpj(λ) = 1
π

sinh(jθ)
cosh(jθ) − cos(2λ) (A.9)

and ϵj(λ) = J π sinh θfj(λ) and |mXXZ
j | = j. In this sector, the parity of the

string is always positive σj = 1 and the rapidities of the strings live within a
finite domain λ ∈ [−π/2, π/2]. The choice of the magnetization sector f = ±1
only changes the sign of mXXZ

j and nothing else.

• The case 0 < ∆ < 1: With the parametrization ∆ = cos(πγ) one has

p(λ) = −i log
[

sinh(λ+ iπγ/2)
sinh(λ− iπγ/2)

]
, ΘXXZ(λ) = −i log

[
sinh(λ− iπγ/2)
sinh(λ+ iπγ/2)

]
(A.10)

The string content depends on the continued fraction representation of γ

γ = 1
n1 + 1

n2+...

(A.11)

where ni are suitable positive integers and the total number of strings is∑
i ni. The constituents of a string of species j carry rapidities

λa,j = λ+ i
πγ

2 (mj + 1 − 2a) + iπ(1 − vj)/4 , a = {1, ..,mj}, (A.12)

where the real rapidity λ covers the entrire real axis λ ∈ (−∞,∞). The
value of the magnetization mj, the parity σj and the parameter vj depend
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on the continued fraction expansion (A.11). In the simplest case where one
chooses γ = 1/ℓ, one has ℓ strings and

mj = j , σj = 1 , vj = 1 , j < ℓ and mℓ = 1 , σℓ = −1 , vℓ = −1.
(A.13)

For the general case, we refer to Ref. [151]. Finally, the string scattering
data are

∂λΘXXZ
j,j′ (λ) = (1 − δmj ,mj′ )a

vjvj′

|mj−mj′ |(λ) + a
vjvj′
mj+mj′ (λ)+

+ 2
min(mj ,mj′ )−2∑

s=1
a

vjvj′

|mj−mj′ |+2s(λ), (A.14)

where

ay
x(λ) = y

π

sin(πγx)
cos(2λ) − y cos(πγx)

1
2π∂λpj(λ) = avj

mj
(λ) , ϵj(λ) = J π sinh(πγ)avj

mj
(λ). (A.15)

C.2 The AB model as the XXZ chain in reduced volume
As argued, an important part of the treatment of the constrained XXZ chain
consists in recasting the problem to the one of a regular (unconstrained) chain in
reduced volume. This follows intuitively from the general arguments of section 3.1,
but let’s make the statement more precise. Without loss of generality, we assume
N being odd and write the Bethe equations [126] as

eikj(L−T N) = e−ilP
∏
ℓ̸=j

eiΘXXZ(kj ,kℓ) , (A.16)

where we introduced P = ∑
j kj. The above can be interpreted as the Bethe

equations of a XXZ spin chain in a reduced volume L̃ = L− lN and with periodic
boundary conditions twisted by the factor e−ilP . This trick has already been
noticed by Alcaraz and Bariev who used it to construct the coordinate Bethe
Ansatz. We will now use this correspondence to address the thermodynamics and
hydrodynamics of the AB model. In the rapidity parametrization, the density the
local conserved charges Q̂ (except for the magnetization to be discussed later) is

L̃−1⟨Q̂⟩ =
∑

j

∫
dλ qj(λ)ρXXZ

j (λ) (A.17)

with qj(λ) being called the charge eigenvalue. We explicitly rewrite L̃ = L(1 − ln)
with n being the density of flipped spins. Hence, we can write

L−1⟨Q̂⟩ =
∑

j

∫
dλ qj(λ)(1 − ln)ρXXZ

j (λ) =
∑

j

∫
dλ qj(λ)ρj(λ), (A.18)

where we identified the rescaled XXZ root density with the root density of the AB
model ρj(λ) ≡ (1 − ln)ρXXZ

j (λ). In the sectors where the string hypothesis of the
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AB model is valid, this correspondence naturally emerges comparing the AB and
rescaled XXZ thermodynamics. Now, we will assume its validity also beyond this
case.

Let us now consider the magnetization that was ommited above: in the XXZ
model at |∆| ≥ 1 one needs to introduce the magnetization sign [177]

L̃−1⟨Sz
j − 1⟩ = 1 − f

2 +
∑

j

∫
dλf|mXXZ

j |ρXXZ
j (λ). (A.19)

Now, we rewrite L̃−1⟨Sz
j − 1⟩ = L̃−1Ln = n(1 − ln)−1 and solve the above for n

n = (1 − f)
2 + l(1 − f) +

∑
j

∫
dλ 2f

2 + l(1 − f) |mXXZ
j |ρj(λ). (A.20)

This leads to the natural identification mj ≡ (1 + l(1 − f)/2)−1mXXZ
j that we have

already anticipated in the main text. The correspondence is then easily extended
to the whole thermodynamics. In particular, the definition of the total root density

σjρ
t
j(λ) = 2

2 + l(1 − f)
∂λpj(λ)

2π −
∑
j′

∫ dλ
2π∂λΘj,j′(λ, λ′)ρj′(λ) , (A.21)

where Θj,j′ is defined in Eq. (3.14) is consistent with the expected rescaling
ρt

j(λ) ≡ (1 − ln)[ρt
j]XXZ(λ).

C.3 Thermal states in the presence of an external magnetic
field

Finally, let us address the problem of constructing thermodynamics of thermal
states in the presence of a magnetic field e−β(H+B

∑
j

Sz
j ), where β denotes the

inverse temperature. These are the states to which the left and right halves of the
chain are initialized in in section 3.3 to probe transport. By means of standard
TBA techniques, the root densities of thermal states can be found solving the
following integral equation

εj(λ) = β(ϵj(λ) −Bmj) −
∑
j′

∫ dλ′

2π ∂λ′Θj,j′(λ, λ′)σj′ log
(
1 + e−εj′ (λ′)

)
. (A.22)

with ρj(λ) = ρt
j(λ)(1 + eεj(λ))−1 and ϵj(λ) the energy of the string, which is the

same as the XXZ spin chain. These TBA equations are consistent with first solving
TBA equations in the XXZ spin chain in a reduced volume and then taking the
proper rescaling afterwards. Notice that the ferromagnetic spin up state and Neel
state are nothing else than ground states (β → ∞) of the AB Hamiltonian with
B = −∞ and B = +∞ respectively. Therefore, these states can be easily described
with the above equation. The ferromagnetic spin up state is nothing else than the
vacuum hence ρj(λ) = 0 (and f = 1 for |∆| > 1), the description of the Neel state
depends on ∆. Indeed, if |∆| < 1 the associated root density is non-trivial, but
whenever |∆| > 1 one gets again ρj(λ) = 0, but f = −1.
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D. Free fermions on an infinite cylinder in a π flux.

Figure 1: Band structures for the quasi-1d problem of hopping fermions in a π-flux
on an infinite cylinder of circumference Ly. The quasi-1d band structure is obtained
by intersecting the Dirac cones with the quantized momenta ky. As stated in the
main text, if we take antiperiodic boundary conditions for Ly = 0 mod 4 and
periodic boundary conditions for Ly = 2 mod 4, the system is gapped at half
filling. Explicit integration of the energy bands up to the Fermi level shows that
this configuration has the lowest energy.

D Free fermions on an infinite cylinder in a π flux.
We address here some details concerning the ground state of free fermions hopping
in a π flux background on an infinite cylinder. This is relevant since our 2d
iDMRG simulations, whose results are presented in Chapter 4, are performed in
such geometry. As argued in section 4.3.2, at h = 0 the model (4.35) of spinless
fermions coupled to Z2 gauge fields reduces to free fermions. However, there are
some subtleties. The Hilbert space only includes states with even fermionic parity,
but both periodic and antiperiodic boundary conditions are taken into account.
This is similar to what happens in 1d, explained in section 4.3.2: at h = 0 the
Wilson loop around the cylinder is an additional symmetry of the Hamiltonian.
The two symmetry sectors ⟨W ⟩ = ±1 correspond to the two different choices
of boundary conditions, as can be seen by fixing the gauge. Since the gauged
model incorporates both sectors, the unbiased numerical algorithm will find the
ground state corresponding to the choice of boundary conditions with the lowest
energy. We are particularly interested in the π flux case. The band structure of
this problem

E(k) = ±2t
√

cos(kx)2 + cos(ky)2 (A.23)

is known to form a pair of Dirac cones. A finite circumference quantizes the
momentum in the y direction, so that instead of having a full Dirac cone one gets
a quasi-1d band structure, where the different bands are given by the intersection
between the cone and the planes ky = {k̃y}. Here {k̃y} denotes the set of allowed
quantized momenta, which differs depending on the choice of boundary conditions.
The problem of which choice of boundary conditions gives the lowest energy at half-
filling can be solved analytically. For even size of the circumference L, we find the
following interesting results: antiperiodic boundary conditions. win energetically if
L is a multiple of 4 (L = 4, 8, 12 etc...), while periodic boundary conditions win
otherwise (L = 6, 10 etc...). Moreover, the energetically favorable sector always
gives a gapped ground state. This is of great help for our simulations, as MPS
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based methods are efficient only for gapped Hamiltonians.
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