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Abstract—Deep transfer-learning based change detection meth-
ods are dependent on the availability of sensor-specific pre-
trained feature extractors. Such feature extractors are not always
available due to lack of training data, especially for hyperspectral
sensors and other hyperdimensional images. Moreover models
trained on easily available multispectral (RGB/RGB-NIR) images
cannot be reused on such hyperdimensional images due to their
irregular number of bands. While hyperdimensional images
show large number of spectral bands, they generally show
much less spatial complexity, thus reducing the requirement of
large receptive fields of convolution filters. Recent works in the
computer vision have shown that even untrained deep models
can yield remarkable result in some tasks like super-resolution
and surface reconstruction. This motivates us to make a bold
proposition that untrained lightweight deep model, initialized
with some weight initialization strategy, can be used to extract
useful semantic features from bi-temporal hyperdimensional
images. Based on this proposition, we design a novel change
detection framework for hyperdimensional images by extracting
bi-temporal features using an untrained model and further
comparing the extracted features using Deep Change Vector
Analysis to distinguish changed pixels from the unchanged ones.
We further use the deep change hypervectors to cluster the
changed pixels into different semantic groups. We conduct ex-
periments on four change detection datasets: three hyperspectral
datasets and a hyperdimensional Polarimetric Synthetic Aperture
Radar dataset. The results clearly demonstrate that the proposed
method is suitable for change detection in hyperdimensional
remote sensing data. Code is available at https://gitlab.lrz.de/
ai4eo/cd/-/tree/main/hyperdimensionalCD

Index Terms—Change Detection, Deep Learning, Deep Image
Prior, Hyperspectral Images, Hyperdimensional Images.
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I. INTRODUCTION

Recently deep learning has attracted significant attention
in Earth observation [1]. Following this trend, deep learning
based methods have been developed for change detection (CD)
[2], an important topic in Earth observation. Change detection
plays pivotal role in several applications, including disaster
management [3], [4], urban monitoring [5], and precision agri-
culture [6]. While change detection methods can be supervised
[7], [8], [9] or semi-supervised [5], unsupervised methods
are preferred in the literature [10], [2] as collecting labeled
multi-temporal data is significantly challenging. Before the
emergence of deep learning, change vector analysis (CVA)
and its object-based variants [10], [11] were popularly used
for unsupervised CD. Deep CVA (DCVA) and other transfer
learning based methods [2], [12], [3] have embedded the
concept of CVA in a transfer learning framework. While the
transfer learning based methods do not use any training or
fine-tuning of the deep model, they depend on the availability
of pre-trained feature extractor that can be used to capture the
semantics of the input images. In more details, such transfer
learning based methods project the bi-temporal images in deep
featurespace by using a pre-trained deep feature extractor and
subsequently compares the images in the projected domain.
Thus they perform change detection by reusing a deep model
that was previously trained for some unrelated task, e.g., image
classification. Most deep transfer learning based CD methods
are designed for Synthetic Aperture Radar (SAR) amplitude
images and multispectral images with few bands.

Remote sensing deals with a plethora of sensors showing
different spatial, spectral, and temporal characteristics. In
many cases, large number of bands are required to efficiently
represent the information in remote sensing images. The most
well known example for this are hyperspectral images that
sample a broad range of electromagnetic spectrum in hundreds
of spectral bands [13], [14], [15], [16], [17]. Some CD ap-
plications require rich spectral information and hyperspectral
images can be very useful for such cases, e.g., monitoring of
mining activity [18]. Inspite of this, less attention has been
paid to develop deep transfer learning based CD methods for
hyperspectral images [19], [20]. This can be attributed to the
lack of labeled hyperspectral data that impedes availability of
any pre-trained network. In more details, a transfer learning
based hyperspectral CD method can be developed only if a
pre-trained model is available for the same data, which is often
unavailable for hyperspectral images. Remarkably, due to the
lack of training data, some of the supervised hyperspectral
image classification models are trained and tested on pixels

https://gitlab.lrz.de/ai4eo/cd/-/tree/main/hyperdimensionalCD
https://gitlab.lrz.de/ai4eo/cd/-/tree/main/hyperdimensionalCD
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from the same image [21]. Even if sufficient training data is
collected for a particular hyperspectral sensor and geography,
this model will not be straightforward applicable for another
hyperspectral sensor. Currently there are a large number of
hyperspectral sensors with differences in spectral coverage and
number of bands. E.g., DLR Earth sensing imaging spectrom-
eter (DESIS) have 180 bands while precursore iperspettrale
della missione applicativa (PRISMA) have 237 bands [13].
Please see Table I for comparison of number of bands of
different spaceborn hyperspectral sensors. Due to such differ-
ences, a model trained for one hyperspectral sensor cannot
be used for transfer-learning based CD on another hyper-
spectral sensor. Additionally, unmanned-aerial-vehicle (UAV)-
based hyperspectral imaging has become increasingly popular
in various applications, such as agricultural monitoring [13].
Such UAV-based hyperspectral sensors may exhibit spectral
coverage entirely different from the satellite-based ones.

In addition to hyperspectral data, another example of hyper-
dimensional data in remote sensing is polarimetric synthetic
aperture radar (PolSAR) image. Compared with the single-
polarimetric SAR data, PolSAR images contain more po-
larimetric information about the targets and are useful to
discriminate double-bounce scatterers (such as buildings) from
volume scatterers (such as forest) and surfaces using target
decomposition methods [22]. Thus PolSAR data is beneficial
for applications such as land classification and building ex-
traction [23]. In practical PolSAR applications, usually the
decomposed results [23], [24], [25] instead of the raw PolSAR
data are used for further analysis, which constitutes a hyper-
dimensional (tens to over one hundred channels) data cuboid.

Models trained for multispectral (RGB/RGB-NIR) or SAR
amplitude images cannot be effectively reused for feature
extraction of hyperdimensional images due to their irregular
number of bands. To transfer RGB-trained models on hyperdi-
mensional images, we require to choose only three bands from
hyperdimensional images, thus losing a significant amount of
information. Another possible solution is to somehow modify
the first layer of the pre-trained model.

Ulyanov et. al. [26] showed that the structure of a network
is often sufficient to capture important low-level features from
the images without any training. This is highly relevant for
hyperdimensional images since it is challenging to transfer a
model trained on RGB images to hyperdimensional images,
however it is trivial to just initialize a model to ingest as
many number of image channels as desired. This strategy is
certainly not as good as learning complex spatial features with
abundant labeled images, however good enough for change
detection in hyperdimensional images. Arguably, the spatial
complexity of hyperdimensional images is not high in most
cases, as can be seen in Table I. This is also evident from
the fact that some works in the hyperspectral image classifi-
cation just use 1D convolution [27]. While spatial complexity
still has an important role to play for hyperspectral multi-
temporal analysis, we argue that this is not as critical as
in high-resolution multispectral images. This brings forth the
possibility whether complexity in low-spatial and high-spectral
resolution multitemporal hyperdimensional images can be cap-
tured by an untrained deep model, merely initialized with a

TABLE I
NUMBER OF BANDS AND GROUND SAMPLING DISTANCE (GSD) FOR SOME

SPACEBORN HYPERSPECTRAL SENSORS [13]

Sensor Bands GSD (m)
DESIS 180 30

EnMAP 228 30

PRISMA 237 30

HISUI 185 30

HySIS 256 30

Shalom 241 10

CCRSS 328 30

deep model initialization strategy [28] [29]. The likelihood
of such possibility is supported by the fact that untrained
models have recently shown remarkable performance in some
computer vision tasks where the spatial complexity is much
more critical than the hyperspectral images, e.g., deep image
prior [26].

We propose an unsupervised CD method for hyperdimen-
sional images using an untrained deep model as deep feature
extractor. The proposed method does not need any prior
knowledge about the input or the arrangement of the spectral
bands. In addition to distinguishing the changed pixels from
the unchanged ones (binary CD), we also extend the method
for multiple CD. The key contributions of this paper are as
follows:

1) The paper shows that even an untrained model, merely
initialized with a weight initialization technique [28],
can be used to capture the spatio-temporal semantics,
especially for hyperdimensional data where pretrained
models are generally not available. Based on this, the
paper proposes a change detection method which can
effectively segregate changed pixels from the unchanged
ones in the hyperdimensional images.

2) The paper further extends the method for multiple/multi-
class CD using deep change vector obtained using un-
trained model to cluster the changed pixels into different
groups.

3) The paper experimentally validates the proposed ap-
proach on three bi-temporal hyperspectral scenes, as
well on a bi-temporal hyperdimensional PolSAR data,
showing the versatility of the approach.

We organize the paper as follows. Some relevant works are
discussed in Section II. Section III discusses the proposed
method. Section IV presents the datasets and results related
to hyperspectral images. Results related to PolSAR data are
presented in Section V. Finally we conclude this paper in
Section VI.

II. RELATED WORK

Following the relevance to our work, we briefly discuss in
this section about: i) unsupervised CD, ii) hyperdimensional
CD methods, and iii) deep image prior.

A. Unsupervised CD
Unsupervised CD methods are generally based on the

concept of pixewise difference operation, i.e., change vector
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analysis (CVA) [30] or clustering [31]. With the emergence of
high-resolution imaging, object-based variants of CVA, e.g.,
Parcel Change Vector Analysis (PCVA) [11], incorporated the
notion of spatial context in CVA. Morphological filters have
also been employed to capture the object information [32].
Deep learning based unsupervised CD methods, e.g., DCVA
[2] are based on transfer learning. DCVA incorporates CVA
with pre-trained deep network based feature extraction based
on the assumption that a pre-trained model is available for
the target geography and sensor. In addition to optical images,
transfer learning based frameworks have also shown success
in SAR amplitude image analysis [3].

B. CD in hyperdimensional images

Very few deep learning based CD methods have been
proposed for hyperdimensional (hyperspectral or other hyper-
dimensional) images [33], [34], [35]. In [33], authors identified
high dimension and limited datasets as unique challenges for
hyperspectral CD. Towards alleviating these challenges, they
devised a pre-classification based end-to-end CD framework.
Another supervised framework recurrent three-dimensional
(3D) fully convolutional network (Re3FCN) was introduced
by Song et. al. [35]. Re3FCN merges a 3D fully convolutional
network (FCN) and a convolutional long short-term memory
(ConvLSTM). Chen and Zhou [36] proposed a supervised
CD method consisting of three steps: reduction of spec-
tral dimension, joint affinity tensor construction, and binary
(changed or unchanged) classification by CNN. While these
works successfully introduce deep learning to the hyperspec-
tral change detection, they do not present any unique solution
towards circumventing the limited availability of datasets in
hyperspectral multitemporal analysis. Their works use pixels
from same image for training and evaluation. Using such large
supervised networks when training and test pixels belong to
same scene may lead to overoptimistic accuracy assessment, as
shown by Molinier and Kilpi [37]. Thus it is crucial to design
unsupervised/transfer-learning-based approaches, like the ones
proposed for multispectral and SAR images [2] [3]. In addition
to hyperspectral images, hyperdimensional CD has also been
studied in the context of PolSAR images [24]. To the best
of our knowledge, all deep learning based hyperdimensional
CD methods are proposed in context of binary CD, without
delving into multiple/multi-class CD.

C. Deep image prior

Deep models are generally trained on large labeled datasets.
This makes us to believe that the excellent performance of
CNNs are due to their capability to learn realistic features
or data priors from the data. However, several recent works
have shown that this explanation is not entirely correct. In one
of such first works, [38] showed that an image classification
network can overfit on the training images even when the
labels are randomized. This provides us hints that the success
of the deep network is possibly not always due to large amount
of labeled data, rather sometimes due to the structure of the
network. Further delving into this topic, Ulyanov et. al. [26]
investigated this phenomenon in context of image generation.

They showed that a large amount of the image statistics are
captured by the structure of generator CNNs itself. Instead
of choosing the usual paradigm of training CNNs on large
dataset, they fitted CNNs on single image for image restoration
problems. The network weights were randomly initialized.
Their simple setup could provide remarkable result for var-
ious image restoration problems, e.g., denoising and super-
resolution. This phenomenon is remarkable as it demonstrates
the power of untrained network. Following this work, several
other works have followed similar approach demonstrating
success of untrained network for different computer vision
problems, including surface reconstruction [39] and photo
manipulation [40]. Another similar line of research is random
projection network [41] that is proposed in the context of high-
dimensional data which implies a network architecture with
an input layer that has a huge number of weights, making
training infeasible. Random projection network [41] tackles
this challenge by prepending the network with an input layer
whose weights are initialized with a random projection matrix.

III. PROPOSED METHOD

Let us assume that we have a pair of coregistered hyper-
dimensional images X1 and X2 having B0 bands, where B0

is much larger than usual number of bands in a multispectral
image. No training label or suitable pre-trained network is
available to us. Our goal is two fold:

1) Binary CD: Distinguish the changed pixels (Ωc) from
the unchanged ones (ωnc).

2) Multiple CD: Further cluster the changed pixels into a
group of semantically meaningful groups.

To accomplish the above-mentioned goals, we initialize a
deep model with number of input channels and kernels in
intermediate layers modulated according to the dimension
of the X1 and X2. This deep model, while untrained, is
initialized with an appropriate weight initialization technique
[28]. Following this, we use this network to extract a set of
features from the bi-temporal images. Pixelwise difference is
obtained as deep change vector that is thresholded to identify
the changed pixels. Once changed pixels are segregated, they
are further clustered based on the deep change vectors for
multiple change detection. The proposed hyperdimensional
CD framework is called Untrained Hyperdimensional Multiple
DCVA (UHM-DCVA) and is shown in Figure 1.

A. Feature extraction

Deep models trained for multi-spectral images can ingest
input images of few channels/bands, in order of three to
ten [42], [43]. In contrast, hyperdimensional remote sensing
images have B0 channels that is generally larger than 200.
Thus deep models trained on multi-spectral images are not
suitable to ingest hyperdimensional X1 and X2. To overcome
this challenge, we use an untrained model for deep feature
extraction from X1 and X2. The model, being untrained, can
be initialized with capacity to ingest any number of input
channels and subsequently projected to any number of kernels
in the successive layers.
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Conforming to the dimension of X1 and X2, we design first
convolution layer such that it ingests the hyperdimensional
image of B0 channels and projects it to β0B0 kernels where
β0 > 1. We use 3 × 3 filters, i.e., weight of first layer is
3× 3× B0 × β0B0. In our experiments, we set β0 = 4. The
following convolution layer ingests input of dimension β0B0

and projects it to β1β0B0 dimension. For simplicity, we have
set β1 = 1. In this way, more layers can be added to the
network. Increasing number of layers capture larger spatial
receptive field. Considering the coarse spatial resolution of
the most hyperdimensional images, we postulate that network
need not be as deeper as it is common in multi-spectral image
analysis (further validated in Section IV). Rectified Linear
Unit (ReLU) function is used between successive convolution
layers. Pooling operation and fully connected layers are not
used. Hence the spatial size of the input is preserved through
successive layers. Key structure of the network is shown in
Table II and Figure 2.

Though untrained, the weights are initialized with He ini-
tialization method [28]. Their weight initialization strategy
allows the initialized elements to be mutually independent
and share the same distribution. Though weight initialization
was initially proposed in context of obtaining efficient starting
point for better training, we use it to obtain a superior feature
extractor that can be subsequently used as deep feature extrac-
tor in proposed change detection framework. Note that weight
initialization does not involve any training. Once initialized,
the deep model is used to extract a set of features from both
X1 and X2 separately, as detailed in Section III-B.

B. Binary CD

All bands of X1 and X2 are normalized to have values
between 0 and 1. Untrained model is separately applied on
X1 and X2 to extract a set of deep features for each pixel
in the scene [2]. Using same model on both images ensure
that two very similar inputs (pixels) are mapped to similar
representation in the feature space while dissimilar pixels
are mapped to dissimilar feature representation, since they
are processed through same set of functions. Furthermore,
a variance-based feature selection strategy is applied as in
[2]. Deep features are extracted from the last layer of the
network to form pixel wise deep change hypervector (G) [2]
that are obtained as the deep-feature-differences of X1 and
X2. Components of G (gd (d = 1, ..., D)) tend to zero for
unchanged pixels (ωnc) while they tend to larger (positive or
negative) value for the changed pixels (Ωc). To segregate Ωc

from ωnc, we compute deep magnitude ρ for each pixel as the
Euclidean norm of G:

ρ =

√√√√ D∑
d=1

(gd)
2 (1)

ρ maps the D−dimensional G into a 1−dimensional index,
while preserving the main properties of the changes. Un-
changed pixels tend to generate smaller ρ in comparison to
the changed pixels. This is used to segregate Ωc and ωnc

by using a thresholding τ . While any suitable thresholding
[44] method can be used, we use Otsu’s thresholding [45] to

compute τ . Any pixel having ρ > τ is assigned to Ωc and to
ωnc otherwise.

C. Multiple CD
Changed pixels (Ωc) are further analyzed in unsupervised

way based on G to segregate different kinds of change without
any a priori knowledge about the different kinds of change
[2]. However, we assume an apriori knowledge about number
of kinds of change (K). G is a high dimensional vector and
clustering is challenging in such high-dimensional space [46].
To overcome this, we first binarize/discretize the components
of G [2], [47]. Components of G are likely to be either positive
or negative, and different kinds of change are likely to show
different patterns on the gd (d = 1, ..., D), components of G.
Binarization simplifies the information in G, while preserving
information descriptive of clusters. G is binarized to Gbin with
components greater than 0 set to 1 and components smaller
than 0 set to 0. Gbin is also D−dimensional like G.

Assuming number of changed pixels (pixels in Ωc) as Nc,
we have Nc binary vectors of D−dimension each. Conversely,
representing each feature as a vector, we have D vectors of
Nc−dimension each. We expect pixels belonging to same kind
of change to exhibit similar binary signature, while pixels
belonging to different kinds of change to exhibit dissimilar
binary signature. Furthermore, many features exhibit similar
binary signature and thus redundant for discriminating dif-
ferent types of change. Out of D features, the feature which
shows most similarity to other D−1 features can be defined as
the most informative feature. Towards this, R(i, j) measures
the correlation distance [48] between two Nc−dimensional
features i and j, scaled in range 0-1 [2], where 1 represents
the farthest features. Rd (d (d = 1, ..., D)) measures the
informativeness of an individual feature:

Rd = −
D∑

j=1

R(d, j) (2)

In the above equation, while the term within summation
computes distance of a feature from other features, coupled
with the negation, Rd measures how similar is the feature d
to the other D − 1 features. The most informative feature d∗

is selected by choosing the feature that maximizes Rd:

d∗ = arg max
d

Rd (3)

Chosen d∗ can be used to group pixels in Ωc into two classes.
Next most informative feature can be selected by following
the above-mentioned process, but first discarding the most
informative feature d∗ and features made redundant by it. This
hierarchical process allows us to select a set of informative
features that are further used to cluster Ωc into desired number
of classes ωc1, ωc2, ..., ωcK .

IV. VALIDATION ON HYPERSPECTRAL DATA

A. Datasets
We validate the proposed method on three publicly available

bi-temporal hyperspectral scenes [49], [50] 1:

1https://citius.usc.es/investigacion/datasets/hyperspectral-change-detection-
dataset
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TABLE II
KEY STRUCTURE OF 5-LAYER UNTRAINED FEATURE EXTRACTOR NETWORK ASSUMING NUMBER OF CHANNELS IN INPUT IMAGE IS 224. ALL

CONVOLUTION LAYERS ARE FOLLOWED BY RELU ACTIVATION.

Layer number Layer type Input Kernel Output Kernel Kernel size
1 convolutional 224 896 (3,3)
2 convolutional 896 896 (3,3)
3 convolutional 896 896 (3,3)
4 convolutional 896 896 (3,3)
5 convolutional 896 896 (3,3)

Hyperdimensional
image at t1 (X1)

Hyperdimensional
image at t2 (X2)

Pre-processing Pre-processing

Deep feature extraction
with untrained model

Deep feature extraction
with untrained model

Deep feature comparison & analysis

Binary CD

Hierarchical clustering

CD Map

G

ωnc,Ωc

Ω = {ωnc, ωc1, ..., ωcK}

Fig. 1. Proposed Untrained Hyperdimensional Multiple Deep CVA (UHM-
DCVA) technique.

Hyperdimensional input: B0 channels

Conv1, output features: β0B0

Conv2, output features: β0B0

Conv3, output features: β0B0

Conv4, output features: β0B0

Conv5, output features: β0B0

Features

Fig. 2. The simplified network architecture considering 5 layers.

1) The Santa Barbara bi-temporal scene is acquired on
2013 (Figure 3(a)) and 2014 (Figure 3(b)) with the
AVIRIS sensor (224 spectral bands) over the Santa
Barbara region in California, United States. The spatial
dimension of the images are 984 × 740 pixels. Refer-
ence information is known for only 132552 pixels, out
of which 80418 pixels are unchanged and 52134 pixels
are changed (Figure 3(c)).

2) The Bay Area bi-temporal scene is acquired on 2013
(Figure 5(a)) and 2015 (Figure 5(b)) with the AVIRIS
sensor (224 spectral bands) over the area surrounding the
city of Patterson (California). The spatial dimension of
the images are 500 × 500 pixels. Reference information
is known for only 60610 pixels, out of which 29393
pixels are unchanged and 31217 pixels are changed
(Figure 5(c)).

3) The Hermiston scene (Figures 6(a) and 6(b)) is acquired
on the years 2004 and 2007 with the Hyperion sensor
(242 spectral bands) over the Hermiston City area in
Oregon, United States. Bands B001-B007, B058-B076,
and B225-242 are not calibrated, hence we exclude
them from our processing. The spatial dimension of the
images are 390 × 200 pixels. 68014 pixels are labeled as
unchanged. Remaining pixels are changed (Figure 6(c)).
The changed pixels are further grouped into 5 change
types: type 1 (5558 pixels), type 2 (1331 pixels), type
3 (79 pixels), type 4 (1557 pixels), and type 5 (1461
pixels), shown in Figure 7(a).

Please note that:
1) For Santa Barbara and Bay Area scene, reference infor-

mation is not known for a fraction of pixels. However,
these datasets are not prepared by us and are publicly
available datasets used in previous research works [49],
[50]. Hence, we follow the reference maps available with
those datasets.

2) We evaluate binary CD method on all three scenes, how-
ever multiple/multi-class CD method on only Hermiston
scene, as multiple change reference map is available for
only this scene.

B. Compared methods

We compared the proposed method to following unsuper-
vised methods:

• Change vector analysis (CVA) using the hyperdimen-
sional pixel values. The comparison to CVA is crucial
to understand whether the proposed method provides any
additional benefit over mere pixel difference.
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• Parcel change vector analysis (PCVA) [11] that captures
the spatial information as superpixel. This comparison
helps to understand whether spatio-temporal context in
hyperdimensional images can be simply captured by a
superpixel-based analysis.

• Spectral Angle Mapper Z-score Image Differencing
(SAMZID) [19] that is designed specifically for hyper-
spectral CD based on spectral angle mapper and image
difference. The method, as proposed in [19] originally
consists of an unsupervised predictor phase and a super-
vised learning phase. We exclude the supervised phase
and apply thresholding [45] on the change map obtained
after unsupervised predictor phase. As proposed in [19],
two variants are compared: SAMZIDSin and SAMZIDTan.

• Autoencoding of bi-temporal Hyperspectral Images for
Change Vector Analysis (AICA) [34] - a deep learn-
ing based unsupervised change detection method pro-
posed for hyperspectral images that combines CVA with
autoencoder-based training.

• Deep change vector analysis (DCVA) [2] with feature
extractor pretrained on largescale computer vision dataset
using VGG16/VGG19 architecture [42]. This comparison
is important to understand whether a simple transfer
learning approach can be used instead of the proposed
method. Pre-trained VGG architecture can ingest only
three channels. So we just select three optimum (RGB)
channels from the hyperspectral image to feed to the
network. We use three different configurations: by using
1st convolutional layer of VGG16 (DCVA3Channels-1),
2nd convolutional layer of VGG16 (DCVA3Channels-2),
and 5th convolutional layer of VGG16 (DCVA3Channels-
3).

• DCVA as above, however in this case we modulate the
first layer of the network by replicating the weights
as number of channels of hyperspectral images. In this
way we can feed the unmodified entire hyperspectral
images to the network. We use two different config-
urations: by using 1st convolutional layer of VGG16
(DCVAAllChannels-1) and 2nd convolutional layer of
VGG16 (DCVAAllChannels-2).

• A variant of the proposed method using dilated convo-
lutional layers (dilation set as 3) to understand whether
the proposed method can benefit from the larger receptive
field.

• A 1D variant of the proposed method using 1×1 kernels
instead of 3×3 kernels. This helps us to understand
whether both the spatial context/spectral information con-
tributed to the change detection result.
The first two compared methods are from classical CD
literature. The third and fourth methods are from hyper-
spectral CD literature that specifically exploit properties
unique to hyperspectral images. The following two meth-
ods are based on deep transfer learning. The proposed
method is unsupervised, does not require any training
or even any pre-trained network, thus not compared
to any supervised [36] or pre-classification [33] based
hyperspectral CD method. The last two methods are
variant of the proposed method and are shown on the

Santa Barbara scene.

C. Settings and other details

The results are reported as average of 5 runs. Comparison
is performed in terms of sensitivity (accuracy in percentage
computed over reference changed pixels), specificity (accuracy
in percentage computed over reference unchanged pixels), and
overall accuracy. In more details, given true positive (TP), true
negative (TN), false positive (FP) and false negative (FN),
sensitivity is TP/(TP+FN), specificity is TN/(TN+FP), and
accuracy is given by (TP+TN)/(TP+TN+FP+FN), all scaled
by 100. For multiple CD, kappa score is provided.

We perform a number of additional experiments on the
Santa Barbara scene:

1) For the proposed method, we use a 5-layer network,
however we provide a comparison of performance as
number of layers is changed.

2) For the proposed method we generally use He weight
initialization method [28], however its performance with
respect to another weight initialization method [29] is
discussed.

3) For the proposed method we use Otsu’s threshold de-
termination method [45], however its performance with
few other thresholding method is shown.

4) We show variation of result as β0 is varied.

D. Binary CD results

1) Santa Barbara: We first analyze the impact of increasing
number of layers for the proposed method (Table III). We
observe that both sensitivity and specificity gradually increase
up to 4 layers. Sensitivity increases while specificity slightly
decreases when 5 layers are used. No performance gain is
observed, rather decreases for 6 layers. While adding more
convolution layers improve the spatial receptive field of the
filters and increase the complexity of the filters, considering
the coarse resolution of the hyperspectral images this behavior
saturates soon. Henceforth, we use 5 layers for all experiments
related to the proposed method.

CVA obtains a sensitivity of 76.92 and specificity of 96.69
(Figure 3(d)). Remarkably, PCVA performs worser than CVA,
showing that spectral and temporal complexity of hyperspec-
tral bi-temporal images cannot be captured by mere super-
pixel based representation. Being designed for hyperspectral
CD, SAMZIDSin, SAMZIDTan, and AICA outperform CVA
and PCVA. DCVAAllChannels-1 and DCVAAllChannels-2
are outperformed by the DCVA3Channels-1 (Figure 3(e))
and DCVA3Channels-2. This clearly shows that structure of
the network is important. VGGNet architecture, originally
proposed for 3-channel input, can work satisfactorily while
ingesting only 3 out of 224 spectral bands of AVIRIS sensor.
However, attempting to forcefully feed the network with all
bands result in decrease in performance.

The proposed method (Figure 3(f) and Table IV) clearly
outperforms all the compared methods (including its dilated
and 1D variant), obtaining a sensitivity 87.98, specificity of
98.57, and accuracy of 94.40. This shows the superiority of
the proposed method to ingest input bi-temporal images of
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arbitrary dimension, which cannot be achieved with transfer
learning settings (DCVAAllChannels or DCVA3Channels).
Proposed model can capture the change information, which is
evident from visualization of two randomly selected features
(in deep-difference domain) in Figure 4. Remarkably, the
proposed method’s 1D variant that only captures spectral
context outperforms the dilated convolution based variant. This
indicates that the spectral information plays more important
role on change detection than the spatial context information
for the considered hyperspectal data. This also partly explains
why the proposed unsupervised method outperforms transfer
learning from models trained on computer vision data.

The performance of the proposed method may vary if
another weight initialization strategy is used instead of He
initialization method [28]. E.g., if Xavier weight initialization
[29] is used, the proposed method obtains a sensitivity of
80.12% and specificity of 94.27%, which is still superior to
most compared methods in Table IV.

For thresholding the Otsu’s method [45] is used, as it is
popular in the unsupervised CD methods [51], [2]. However
any other suitable method [52], [53], [54], [55] can be used
with similar result as shown in Table V for ISODATA method
[52], [53] and Li’s method [54].

In Section III-A, we chose β0 as 4. In Table VI, we show
variation of result with different values of β0 that supports the
choice of above-mentioned value.

2) Bay Area: The Bay Area scene shows complex urban
area along with vegetation patches. As in Santa Barbara,
PCVA, DCVAAllChannels-1, and DCVAAllChannels-2 do not
obtain satisfactory result. CVA (Figure 5(d)), SAMZIDSin,
SAMZIDTan, AICA, DCVA3Channels-1 (Figure 5(e)) and
DCVA3Channels-2 obtain superior result in comparison to
them. The proposed method outperforms all of them, in terms
of sensitivity, specificity, and accuracy (Figure 5(f)). Detailed
quantitative results are shown in Table VII.

3) Hermiston: The spatial complexity of Hermiston is
lesser compared to the other two scenes. The changes form
simple geometric pattern in this scene. Results obtained for
this scene is similar to the other two scenes. Quantitative
results are shown in Table VIII. The proposed method (Figure
6(f)) either outperforms or obtains comparable specificity in
comparison to other methods. The proposed method outper-
forms CVA (Figure 6(d)), PCVA, SAMZIDSin, SAMZIDTan,
AICA, DCVAAllChannels-1, and DCVAAllChannels-2 also
in terms of sensitivity. However, DCVA3Channels-1 and
DCVA3Channels-2 obtain superior sensitivity than the pro-
posed method. This relative success of transfer learning based
setup on this dataset can be attributed to the less spatial
complexity of the scene.

E. Multiple CD results

Multiple CD reference map is only available for Her-
miston scene. The reference map is shown in Figure 7(a).
Result obtained by the proposed method, using deep features
extracted using untrained model, is shown in Figure 7(c).
It is evident that the proposed method is able to detect
the important semantic changes. There is certainly overlap

TABLE III
PERFORMANCE VARIATION OF THE PROPOSED METHOD ON THE SANTA

BARBARA SCENE AS NUMBER OF LAYERS ARE VARIED. ALL RESULTS ARE
REPORTED AS AVERAGE OF 5 RUNS.

Method Sensitivity Specificity Accuracy
Proposed (2 layers) 83.86 98.71 92.87

Proposed (3 layers) 83.90 98.96 93.04

Proposed (4 layers) 85.86 98.97 93.81

Proposed (5 layers) 87.98 98.57 94.40

Proposed (6 layers) 84.74 98.48 93.07

TABLE IV
CD RESULTS FOR THE SANTA BARBARA SCENE. PROPOSED METHOD’S

RESULT IS REPORTED AS AVERAGE OF 5 RUNS.

Method Sensitivity Specificity Accuracy
CVA 76.92 96.69 88.91

PCVA 58.18 84.74 74.29

SAMZIDSin 80.67 97.01 90.58

SAMZIDTan 79.64 98.43 91.04

AICA 87.25 94.52 91.66

DCVA3Channels-1 78.01 93.60 87.47

DCVA3Channels-2 66.70 86.90 78.96

DCVA3Channels-3 46.93 74.33 63.56

DCVAAllChannels-1 51.24 85.88 72.26

DCVAAllChannels-2 47.56 80.74 67.69

Dilated 77.42 95.95 88.66

1D Conv 80.01 98.93 91.49

Proposed (5 layers) 87.98 98.57 94.40±0.6

between the classes shown in blue and red. However, it is
clear from Figures 6(a) and 6(b), that the blue and red classes
represent similar semantic notion, making it difficult for the
unsupervised multiple CD method to differentiate them.

To understand whether the proposed multiple/multi-class
CD scheme benefits from using the untrained model as feature
extractor, we compare it to result obtained by using original
hyperspectral data (Figure 7(b)). Proposed method is visually
superior than this baseline. Proposed method obtains a kappa
of 0.80, in comparison to 0.72, obtained using the original
hyperspectral data.

V. RESULTS ON DECOMPOSED POLSAR DATA

The decomposed POLSAR bi-temporal data is a pair of 138
band real-valued data acquired using UAVSAR over an urban
area in San Francisco city on September 2009, and May 2015,
first presented in work by Najafi et. al. [24]. We use the same
set of methods as for hyperspectral CD for comparison except
those specifically designed for hyperspectral images (SAMZID
and AICA) and DCVA3Channels-1/2 as there are no available
R, G, B bands in this case. Figure 8(a) shows the reference CD
map. Proposed method obtains satisfactory result (Figure 8(c)),
visually significantly better than CVA (Figure 8(b)). Proposed
method quantitatively outperforms all compared methods, as
tabulated in Table IX.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Santa Barbara scene, False color composition (R: band 50, G: band 20, B: band 10) images: (a) pre-change and (b) post-change, (c) reference image
(white - unchanged, black - changed, gray - unknown), and CD maps: (d) CVA, (e) DCVA3Channels-1, (f) Proposed
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(a) (b)

Fig. 4. Visualization of two randomly selected features, as generated by the proposed model, on the Santa Barbara scene. It is evident that the features capture
the change information.

TABLE V
VARIATION OF THE RESULT FOR SANTA BARBARA SCENE AS THRESHOLD

DETERMINATION SCHEME IS VARIED

Thresholding Sensitivity Specificity Accuracy
Otsu 87.98 98.57 94.40

ISODATA 88.22 98.50 94.46
Li 95.71 93.23 94.20

TABLE VI
VARIATION OF THE RESULT FOR SANTA BARBARA SCENE AS β0 IS VARIED

β0 Sensitivity Specificity Accuracy
2 87.48 97.60 93.62
4 87.98 98.57 94.40
8 85.53 98.41 93.34

VI. CONCLUSION

In this work, we presented an unsupervised change detection
method for hyperdimensional images. Labeled training data is
scarce for hyperdimensional images and models trained on
multispectral sensors cannot be directly applied on them, due
to mismatch of dimension. The proposed method overcomes
this problem by simply using an untrained model for feature
extraction from bi-temporal hyperdimensional images. As the
feature extractor model is untrained, it can be initialized with
as many number of input channels as desired with appropriate
weight initialization technique. Moreover, the number of filters
in the subsequent layers can also be chosen in a flexible
manner, as there is no training involved. Extensive experiments
on four hyperdimensional datasets show the superiority of the
proposed approach. The proposed approach is also capable
of clustering the changed pixels into semantically meaningful
groups, as shown for Hermiston dataset. While the idea seems
bold and new in context of remote sensing, similar idea has
been verified before in the computer vision and machine learn-
ing literature, e.g., deep image prior. The proposed approach
benefits from the fact that hyperdimensional images generally

TABLE VII
CD RESULTS FOR THE BAY AREA SCENE. PROPOSED METHOD’S RESULT

IS REPORTED AS AVERAGE OF 5 RUNS.

Method Sensitivity Specificity Accuracy
CVA 74.44 97.54 85.64

PCVA 48.19 79.46 63.36

SAMZIDSin 79.42 89.18 84.15

SAMZIDTan 70.83 97.91 83.96

AICA 69.18 97.26 82.80

DCVA3Channels-1 78.27 92.47 85.16

DCVA3Channels-2 72.31 91.52 81.63

DCVA3Channels-3 48.78 58.87 53.67

DCVAAllChannels-1 40.88 64.41 52.29

DCVAAllChannels-2 47.66 78.10 62.42

Proposed (5 layers) 78.51 97.86 87.89±1

TABLE VIII
CD RESULTS FOR THE HERMISTON SCENE. PROPOSED METHOD’S RESULT

IS REPORTED AS AVERAGE OF 5 RUNS.

Method Sensitivity Specificity Accuracy
CVA 92.22 97.45 96.78

PCVA 60.14 94.19 89.83

SAMZIDSin 83.83 82.96 83.07

SAMZIDTan 81.08 83.96 83.59

AICA 64.80 99.01 94.63

DCVA3Channels-1 99.40 96.57 96.93

DCVA3Channels-2 99.44 94.58 95.20

DCVA3Channels-3 42.72 78.88 74.25

DCVAAllChannels-1 61.25 76.78 74.79

DCVAAllChannels-2 62.91 87.95 84.75

Proposed (5 layers) 95.97 98.29 97.99±0.0
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Bay Area scene: (a) pre-change and (b) post-change, (c) reference image (white - unchanged, black - changed, gray - unknown), and CD maps: (d)
CVA, (e) DCVA3Channels-1, (f) Proposed
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Hermiston scene, False color composition (R: band 52, G: band 31, B: band 22) images: (a) pre-change and (b) post-change, Reference images: (c)
binary (white - unchanged, black - changed, gray - unknown), Binary CD maps: (d) CVA, (e) DCVA3Channels-1, (f) Proposed.

(a) (b) (c)

Fig. 7. Multiple CD for Hermiston scene: (a) Reference image, CD maps: (b) Using original hyperspectral pixel values and (c) Proposed.
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(a) (b) (c)

Fig. 8. Decomposed POLSAR dataset (details in [24]). CD maps: (a) reference, (b) CVA, (c) Proposed.

TABLE IX
CD RESULTS FOR SAN FRANCISCO POLSAR SCENE. PROPOSED

METHOD’S RESULT IS REPORTED AS AVERAGE OF 5 RUNS.

Method Sensitivity Specificity Accuracy
CVA 89.78 89.35 89.39

PCVA 45.78 87.18 83.62

DCVAAllChannels-1 67.06 77.39 76.50

DCVAAllChannels-2 46.74 83.06 79.94

Proposed (5 layers) 94.51 89.63 90.05±0.9

exhibit less spatial complexity due to the cost of generating
higher resolution in both spectral and spatial domain. Thus
the applicability of the method to very high spatial resolution
hyperdimensional sensors may not be straightforward and will
be investigated in future work. Our future work will also
investigate untrained models in the context of the hyperspectral
image classification. As a final note, the proposed approach
should not be seen as a competitor to the supervised methods,
rather as a complementary to them.

REFERENCES

[1] X. X. Zhu, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, and
F. Fraundorfer, “Deep learning in remote sensing: A comprehensive
review and list of resources,” IEEE Geoscience and Remote Sensing
Magazine, vol. 5, no. 4, pp. 8–36, 2017.

[2] S. Saha, F. Bovolo, and L. Bruzzone, “Unsupervised deep change
vector analysis for multiple-change detection in vhr images,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 57, no. 6, pp.
3677–3693, 2019.

[3] S. Saha, F. Bovolo, and L. Bruzzone, “Building change detection in vhr
sar images via unsupervised deep transcoding,” IEEE Transactions on
Geoscience and Remote Sensing, 2020.

[4] L. Bergamasco, S. Saha, F. Bovolo, and L. Bruzzone, “Unsupervised
change-detection based on convolutional-autoencoder feature extrac-
tion,” in Image and Signal Processing for Remote Sensing XXV, vol.
11155. International Society for Optics and Photonics, 2019, p.
1115510.

[5] S. Saha, L. Mou, X. X. Zhu, F. Bovolo, and L. Bruzzone, “Semisu-
pervised change detection using graph convolutional network,” IEEE
Geoscience and Remote Sensing Letters, 2020.

[6] S. Saha, Y. T. Solano-Correa, F. Bovolo, and L. Bruzzone, “Unsuper-
vised deep transfer learning-based change detection for hr multispectral
images,” IEEE Geoscience and Remote Sensing Letters, 2020.

[7] Z. Zhang, G. Vosselman, M. Gerke, D. Tuia, and M. Y. Yang, “Change
detection between multimodal remote sensing data using siamese cnn,”
arXiv preprint arXiv:1807.09562, 2018.

[8] H. Chen, C. Wu, B. Du, L. Zhang, and L. Wang, “Change detection
in multisource vhr images via deep siamese convolutional multiple-
layers recurrent neural network,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 58, no. 4, pp. 2848–2864, 2019.

[9] F. Rahman, B. Vasu, J. Van Cor, J. Kerekes, and A. Savakis, “Siamese
network with multi-level features for patch-based change detection in
satellite imagery,” in 2018 IEEE Global Conference on Signal and
Information Processing (GlobalSIP). IEEE, 2018, pp. 958–962.

[10] L. Bruzzone and D. F. Prieto, “Automatic analysis of the difference
image for unsupervised change detection,” IEEE Transactions on Geo-
science and Remote sensing, vol. 38, no. 3, pp. 1171–1182, 2000.

[11] F. Bovolo, “A multilevel parcel-based approach to change detection in
very high resolution multitemporal images,” IEEE GRSL, vol. 6, no. 1,
pp. 33–37, 2009.

[12] A. Pomente, M. Picchiani, and F. Del Frate, “Sentinel-2 change detection
based on deep features,” in IGARSS 2018-2018 IEEE International
Geoscience and Remote Sensing Symposium. IEEE, 2018, pp. 6859–
6862.

[13] P. Ghamisi, N. Yokoya, J. Li, W. Liao, S. Liu, J. Plaza, B. Rasti, and
A. Plaza, “Advances in hyperspectral image and signal processing: A
comprehensive overview of the state of the art,” IEEE Geoscience and
Remote Sensing Magazine, vol. 5, no. 4, pp. 37–78, 2017.

[14] Z. Huang, L. Fang, and S. Li, “Subpixel-pixel-superpixel guided fusion
for hyperspectral anomaly detection,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 58, no. 9, pp. 5998–6007, 2020.

[15] L. Fang, W. Zhao, N. He, and J. Zhu, “Multiscale cnns ensemble based
self-learning for hyperspectral image classification,” IEEE Geoscience
and Remote Sensing Letters, vol. 17, no. 9, pp. 1593–1597, 2020.

[16] S. Liu, Q. Du, X. Tong, A. Samat, H. Pan, and X. Ma, “Band selection-
based dimensionality reduction for change detection in multi-temporal
hyperspectral images,” Remote Sensing, vol. 9, no. 10, p. 1008, 2017.

[17] S. Mohla, S. Pande, B. Banerjee, and S. Chaudhuri, “Fusatnet: Dual at-
tention based spectrospatial multimodal fusion network for hyperspectral
and lidar classification,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2020, pp. 92–93.

[18] C. Ehrler, C. Fischer, and M. Bachmann, “Hyperspectral remote sensing
applications in mining impact analysis.” 2011.

[19] S. T. Seydi and M. Hasanlou, “A new land-cover match-based change
detection for hyperspectral imagery,” European Journal of Remote
Sensing, vol. 50, no. 1, pp. 517–533, 2017.

[20] X. Tong, H. Pan, S. Liu, B. Li, X. Luo, H. Xie, and X. Xu, “A novel
approach for hyperspectral change detection based on uncertain area
analysis and improved transfer learning,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp.
2056–2069, 2020.

[21] L. Mou, P. Ghamisi, and X. X. Zhu, “Deep recurrent neural networks for
hyperspectral image classification,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 55, no. 7, pp. 3639–3655, 2017.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3121556, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 2021 13

[22] S. R. Cloude and E. Pottier, “A review of target decomposition theorems
in radar polarimetry,” IEEE transactions on geoscience and remote
sensing, vol. 34, no. 2, pp. 498–518, 1996.

[23] Q. Song, F. Xu, and Y.-Q. Jin, “Radar image colorization: Converting
single-polarization to fully polarimetric using deep neural networks,”
IEEE Access, vol. 6, pp. 1647–1661, 2017.

[24] A. Najafi, M. Hasanlou, and V. Akbari, “Land cover changes detection in
polarimetric sar data using algebra, similarity and distance based meth-
ods.” International Archives of the Photogrammetry, Remote Sensing &
Spatial Information Sciences, vol. 42, 2017.

[25] H. Bi, J. Sun, and Z. Xu, “Unsupervised polsar image classification
using discriminative clustering,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 55, no. 6, pp. 3531–3544, 2017.

[26] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 9446–9454.

[27] N. Audebert, B. Le Saux, and S. Lefèvre, “Deep learning for classifi-
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