
TUM School of Computation, Information and Technology
Technische Universität München

Function Delivery Network: Bringing Serverless
Computing to Edge-Cloud Continuum

Anshul Jindal

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Michael G. Bader

Prüfer*innen der Dissertation:

1. Prof. Dr. Hans Michael Gerndt
2. Prof. Dr. Rajkumar Buyya
3. Prof. Thomas Fahringer, Ph.D.

Die Dissertation wurde am 04.10.2022 bei der Technischen Universität München eingereicht
und durch die TUM School of Computation, Information and Technology am 20.06.2023
angenommen.

Zusammenfassung

Mit dem Aufkommen des Edge Computing werden die Berechnungen auf Edge-Geräte verlagert. Die
endgültige Architektur ist eine hybride Umgebung, die Edge-Geräte mit der Cloud verbindet und das Edge-
Cloud-Kontinuum bildet. Viele Anwendungen werden über das Kontinuum verteilt, um die Heterogenität
zu nutzen. Die Programmierung und Bereitstellung dieser Anwendungen über das Kontinuum hinweg ist
jedoch aufgrund der unterschiedlichen Rechen- und Datenanforderungen eine Herausforderung. Server-
less Computing, ein Cloud-Computing-Modell, das Entscheidungen über die Infrastrukturverwaltung ab-
strahiert, scheint eine ideale Lösung für diese schwierigen Aufgaben zu sein. Function-as-a-Service (FaaS),
eine wichtige Voraussetzung für Serverless Computing, ermöglicht die Zerlegung einer Anwendung in ein-
fache, eigenständige Funktionen, die auf einer Serverless Compute Plattform (z. B. AWS Lambda) ausge-
führt werden. Die Serverless Compute Platform ist für die Bereitstellung von Ressourcen für die Funktionen
verantwortlich. Eine Serverless Compute Platform unterstützt jedoch keine nahtlose Funktionsbereitstellung
über das gesamte Edge-Cloud-Kontinuum hinweg. Sie ist auf eine einzige Cloud beschränkt und unter-
stützt derzeit nur homogene Rechenknoten. Außerdem gibt es keine Möglichkeit, private Cluster neben
öffentlichen Cloud-Clustern in eine Serverless Compute Platform einzubinden. Darüber hinaus gibt es
zahlreiche serverlose Plattformen, die jeweils über einen eigenen Virtualisierungs- und Überwachungsstack
verfügen.
Diese Dissertation adressiert die oben genannten Herausforderungen durch die Entwicklung einer Erweite-
-rung des FaaS-Konzepts als Programmierschnittstelle für Serverless Computing über das Edge-Cloud-
Kontinuum, Multi-Cloud und Hybrid-Cloud. Diese Erweiterung ist ein Netzwerk verteilter heterogener
Serverless Compute Cluster, genannt Function Delivery Network (FDN). FDN integriert nahtlos die Edge-
und Cloud-Cluster und ermöglicht es dem Benutzer, die Funktionen im Kontinuum einzusetzen und aufzu-
rufen. Wir demonstrieren die Effektivität von FDN anhand von sechs Clustern, die auf vier Plattfor-
men basieren: 1) OpenWhisk, 2) OpenFaaS, 3) AWS Lambda und 4) Google Cloud Functions (GCF),
verteilt über das Edge, in der Cloud und on-premise. Um das Problem der Integration und Verwaltung von
verteilten Clustern in FDN zu lösen, nutzen wir Virtual Kubelet, eine Open-Source-Kubernetes-Kubelet-
Implementierung. FDN erstellt virtuelle Knoten, die die Cluster repräsentieren, und verwendet die Kuber-
-netes-Knotenverwaltungsfunktionen, um sie zu verwalten. Für die Überwachung von Clustern, die auf
heterogenen Plattformen basieren, haben wir außerdem den FDN-Monitor entwickelt. Er wird als Sidecar
mit jedem virtuellen Knoten in FDN eingesetzt, um die Metrikdaten aus dem entsprechenden Cluster zu
ziehen und sie in eine einheitliche Metrik umzuwandeln.
Um das Verhalten von FaaS-Funktionen im FDN zu charakterisieren, erstellen wir zwei Modelle: 1) Das
Functions Performance Model, das verschiedene statistische Ansätze verwendet, und 2) das Functions In-
teraction Model, das neuronale Temporal Point Processes (TPPs) verwendet. Unsere Bewertung des Func-
tions Performance Model zeigt relativ genaue Vorhersagen, mit einer Genauigkeit von mehr als 75% für
AWS Lambda und GCF. Bei der Vorhersage des Funktionstyps in einer serverlosen Anwendung erreichte
das Functions Interaction Model eine Genauigkeit von über 94%, und bei der Vorhersage der Funktion-
saufrufzeit liegt der mittlere absolute Fehler unter 22ms.

iii

Bei der Serverless Compute Platform haben die Endnutzer keine Kontrolle darüber, wo eine Funktion ausge-
führt wird. Darüber hinaus sind für die Planung von Funktionsaufrufen über das Kontinuum hinweg Infor-
mationen über die Reaktionszeiten der Funktionsaufrufe sowie die Berechnungs- und Datenanforderungen
erforderlich. Um dieses Problem zu lösen, haben wir Courier entwickelt. Courier liefert die Funktion-
saufrufe an eine geeignete Teilmenge von Clustern im Kontinuum auf der Grundlage von Funktions- und
Datenkenntnissen. Die Aufrufe werden mit Hilfe der beiden entwickelten Lastausgleichsalgorithmen auf die
ausgewählte Untergruppe von Clustern verteilt: Latency-Aware und Service Level Objective (SLO)-Aware.
Unsere Evaluierungsergebnisse zu verschiedenen Funktionsbenchmarks und einer serverlosen Anwendung
zeigten, dass der SLO-Aware-Algorithmus am besten abschnitt und die P90-Antwortzeit der Funktion bei
Verwendung dieses Algorithmus die definierte SLO einhielt.

Um das Problem zu lösen, die optimalen Speicherkonfigurationen für FaaS-Funktionen innerhalb einer
serverlosen Anwendung zu finden, die die Kosten minimieren und das SLO erfüllen, haben wir eine ex-
terne Komponente für FDN namens SLAM: SLO-Aware Memory Optimization entwickelt. Wir demon-
strieren SLAM auf AWS Lambda, und die Ergebnisse zeigen, dass die vorgeschlagenen Speicherkonfigu-
rationen garantieren, dass mehr als 95% der Anforderungen innerhalb der definierten SLOs abgeschlossen
werden. Darüber hinaus haben wir zwei Algorithmen zur Erkennung von Anomalien entwickelt, um die
Zuverlässigkeit der Cluster im FDN zu gewährleisten: 1) Online-Erkennung von Speicher-lecks mithilfe
von Precog und 2) Erkennung von anomalen virtuellen Maschinenmonitoren mithilfe von IAD: Indirect
Anomaly Detection. Die Leistungsbewertung zeigte, dass Precog einen F1-Score von 0.85 mit weniger als
einer halben Sekunde Vorhersagezeit auf den realen Workloads erreichen kann. Die Leistungsbewertung
des IAD-Algorithmus auf vier Datensätzen zeigt, dass er eine durchschnittliche Genauigkeit von 83,7%
erreichen kann.

iv

Abstract

With the emergence of edge computing, computation is being pushed towards edge devices. The final
architecture is a hybrid environment, connecting edge devices to the cloud and forming the edge-cloud
continuum. Many applications are distributed over the continuum to leverage heterogeneity. However, pro-
gramming and deploying these applications across the continuum is challenging due to the varying compute
and data requirements. Serverless computing, a cloud computing model that abstracts infrastructure man-
agement decisions, appears to be an ideal solution for solving these challenging tasks. Function-as-a-Service
(FaaS), a key enabler of serverless computing, allows an application to be decomposed into simple, stan-
dalone functions executed on a serverless compute platform (e.g., AWS Lambda). The serverless compute
platform is responsible for deploying and facilitating resources to the functions. However, serverless com-
pute platforms do not support seamless function deployments across the edge-cloud continuum. They are
confined to a single cloud and currently only support homogeneous compute nodes. Furthermore, there is
no provision to incorporate private clusters alongside public cloud clusters in serverless compute platforms.
Moreover, numerous serverless platforms exist, each with a distinct virtualization and monitoring stack.

This dissertation addresses the above challenges by developing an extension to the concept of FaaS as a
programming interface for serverless computing across the edge-cloud continuum, multi-cloud and hybrid-
cloud. This extension is a network of distributed, heterogeneous serverless compute clusters called Function
Delivery Network (FDN). FDN seamlessly integrates the edge and cloud clusters and allows the user to de-
ploy and invoke the functions in the continuum. We demonstrate the effectiveness of FDN using six clusters
based on four platforms: 1) OpenWhisk, 2) OpenFaaS, 3) AWS Lambda, and 4) Google Cloud Functions
(GCF), distributed across the edge, in the cloud, and on-premise. To address the problem of integrating
and managing distributed clusters in FDN, we leverage Virtual Kubelet, an open-source Kubernetes kubelet
implementation. FDN creates virtual nodes representing the clusters and uses Kubernetes node management
capabilities to manage them. Furthermore, for monitoring clusters based on heterogeneous platforms, we
created FDN-Monitor. It is deployed as a sidecar with every virtual node in FDN to pull the metrics data
from the corresponding cluster and converts them to a unified metric.

To characterize the behavior of FaaS functions in FDN, we create two models: 1) Functions Performance
Model using various statistical approaches and 2) Functions Interaction Model using neural Temporal Point
Processes (TPPs). Our evaluation of the Functions Performance Model shows relatively accurate predic-
tions, with an accuracy greater than 75% for AWS Lambda and GCF. For function type prediction in a
serverless application, the Functions Interaction Model achieved an accuracy of over 94%, and for function
invocation time prediction, the mean absolute error is below 22ms.

Serverless compute platforms do not allow end-users control over where a function is executed. Further-
more, scheduling function invocations across the continuum require information on the function’s invoca-
tions response times and computation and data requirements. To tackle this problem, we developed Courier.
Courier delivers the function invocations to a suitable subset of clusters in the continuum based on function
awareness and data awareness. The invocations are load balanced across the selected subset of clusters using

v

the two developed load balancing algorithms: Latency-Aware, and Service Level Objective (SLO)-Aware.
Our evaluation results on different function benchmarks and a serverless application showed that the SLO-
Aware algorithm performed the best, and the function’s P90 response time when using it, adhered to the
defined SLO.

To address the problem of finding the optimal memory configurations for FaaS functions within a serverless
application that minimizes cost and meets SLO, we developed an external component to FDN called SLAM:
SLO-Aware Memory Optimization. We demonstrate SLAM on AWS Lambda, and the results show that the
suggested memory configurations guarantee that more than 95% of requests are completed within the de-
fined SLOs. Furthermore, to provide reliability across the clusters within FDN, we developed two anomaly
detection algorithms: 1) Online memory leak detection using Precog, and 2) Anomalous Virtual Machine
Monitors detection using IAD: Indirect Anomaly Detection. The performance evaluation showed that the
Precog can achieve a F1-Score of 0.85 with less than half a second prediction time on the real workloads.
The performance evaluation of the IAD algorithm on four datasets shows that it can achieve an average
accuracy score of 83.7%.

vi

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my supervisor, Prof. Michael Gerndt. It
all started with him providing me with an opportunity to do a student job during my master’s studies, and
then offering me to pursue the Ph.D. degree. I would like to thank him for all his invaluable advice, support,
and help during my Ph.D. study and work at the university. Next, I would like to thank Prof. Shajulin
Benedict for connecting me with Prof. Gerndt and for all our collaborations. I would also like to thank
Vladimir, with whom my research journey started from guided research to many collaborations. Thank you
for offering me continuous advice and encouragement throughout those collaborations. I would also like to
thank Mohak for our long discussions in the office, for reviewing my papers, and for our past collaborations.

Additionally, I would like to extend my sincere thanks to Prof. Jorge Cardoso, my Ph.D. mentor, for sup-
porting and encouraging me during the internship at Huawei and in our past collaborations from software
campus. I would also like to thank other colleagues at Huawei for the collaborations, discussions, and
support, especially Apoorv, Vittorio, Paul, and Ilya.

I would like to thank my colleagues, former and current, at the Technical University of Munich, CAPS chair,
for the discussions and support in the past four years, especially Prof. Schulz, Amir, Jophin, Andreas, Fariz,
Roman, Dai Yang, Lisa, Bengisu, Dai Liu, Isaías, Eishi, Jianfeng, and Paolo. My special thanks to Jürgen
for providing all the hardware equipments.

Throughout my stay at TUM, I was lucky to work with bright students. Thank you, Marko, Lennart,
Thomas, Muthuraman, Chen, Lucas, Julian, Stephan, Gor, Gurudeep, Raj, Tetiana, Riccardo, Markus, Ast-
ghik, Christopher, Joshua, Max, Hady, and Michael Lohr.

Getting through my dissertation required more than academic support, and this journey would have been
impossible without the support of my friends. I want to thank Nishant, Aneesha, Siddharth, Abhishek, and
Vatsala. A special thanks to Merve for supporting me and helping me review this dissertation.

I am also thankful to the German Federal Ministry of Education and Research (BMBF) for selecting me
and funding my Software Campus project (BEHAVE). Additionally, I would like to thank Google Cloud for
providing Google Cloud Platform research credits, which helped a lot during my research.

Last, but most importantly, none of this could have happened without my family and parents. I would like
to thank my parents for their unconditional support.

vii

Contents

Zusammenfassung iii

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Motivation . 2
1.2 Dissertation Contributions . 4
1.3 Organization of the Dissertation . 6

2 Background 8
2.1 Virtualization: a Cloud-Enabling Technology . 8

2.1.1 Hardware-level virtualization . 8
2.1.1.1 CPU Virtualization . 9
2.1.1.2 Memory Virtualization . 9
2.1.1.3 I/O Virtualization . 10

2.1.2 OS-level virtualization . 10
2.2 Edge-to-Cloud Continuum . 11

2.2.1 Cloud Computing . 12
2.2.1.1 Cloud Deployment Models . 13
2.2.1.2 Cloud Service Models . 13

2.2.2 Edge Computing . 14
2.3 Serverless Computing . 15

2.3.1 FaaS Function Invocation Procedure . 16
2.3.1.1 Cold-start Problem . 17

2.3.2 Serverless Compute Platforms . 18
2.3.2.1 OpenWhisk . 18
2.3.2.2 OpenFaaS . 19
2.3.2.3 Google Cloud Functions (GCFs) . 19
2.3.2.4 AWS Lambda . 20

2.4 Cloud Application’s Architectures . 20
2.4.1 Monolithic Application Architecture . 20
2.4.2 Microservices Application Architecture . 21
2.4.3 FaaS-based Application Architecture . 22

3 Related Work 23
3.1 Microservices vs Serverless Applications . 23
3.2 Heterogeneity in the FaaS Workloads . 24

ix

Contents

3.3 Heterogeneity among the Serverless Compute Platforms 25
3.4 Serverless Computing across the Edge-Cloud Continuum 26
3.5 Serverless Computing across Multi-Cloud . 27

3.5.1 Solutions Connecting Multiple Cloud Platforms . 27
3.5.2 Solutions Connecting Multiple Serverless Compute Platforms 27

3.6 Data-Aware Scheduling in Serverless Computing . 28
3.7 Memory Optimization of Serverless Applications . 29

4 FDN: Function Delivery Network 30
4.1 FDN Design Overview . 30

4.1.1 Requirements . 31
4.1.1.1 Functional Requirements . 31
4.1.1.2 Non-Functional Requirements . 32

4.1.2 Design Methodology . 32
4.1.3 FDN High-level Architecture . 34

4.2 FDN Components . 35
4.2.1 FDN’s Serverless Compute Clusters . 35

4.2.1.1 Cluster Types . 36
4.2.1.2 Clusters Creation Automation . 37

4.2.2 FDN-Monitor . 38
4.2.3 FDN Inventory Database . 41
4.2.4 Clusters Management . 43
4.2.5 Data Orchestrator . 44
4.2.6 Functions Management . 46
4.2.7 Behave . 47
4.2.8 Courier Control Plane and Load Balancer . 48
4.2.9 FDN-UI . 49

4.3 Summary . 49

5 Behave: Behavioral Modeling of FaaS Functions in FDN 50
5.1 Functions Performance Model . 50

5.1.1 Function Capacity (FC) . 50
5.1.2 FnCapacitor . 51
5.1.3 Experimental Configuration . 53

5.1.3.1 Monitoring Metrics . 54
5.1.4 Experimental Results . 54

5.1.4.1 Memory Effect on Function Execution Duration 54
5.1.4.2 Memory Effect on Function’s Concurrent Instances 55
5.1.4.3 Effect of Function Concurrency on the FC 56
5.1.4.4 Function Capacity Estimation . 56

5.2 Functions Interaction Model . 58
5.2.1 Temporal Point Processes (TPPs) . 58

5.2.1.1 Neural Temporal Point Processes Models 61
5.2.2 TppFaaS - Developed System . 63

5.2.2.1 Sampler . 64
5.2.2.2 TPP Models . 66

5.2.3 Evaluation Settings . 67
5.2.3.1 Benchmark Applications . 67

x

Contents

5.2.3.2 Infrastructure Settings . 68
5.2.3.3 Dataset Generation . 68
5.2.3.4 Training Details and Model Parameters 68
5.2.3.5 Performance Quality Measures . 69

5.2.4 Results . 70
5.2.4.1 Predictions on Datasets without Cold Starts 70
5.2.4.2 Prediction on Datasets with Cold Starts 73

5.3 Summary . 75

6 Courier: Users’s Functions Invocations Delivering and Load Balancing in FDN 76
6.1 Introduction . 76
6.2 Courier Load Balancer . 78

6.2.1 Courier Load Balancer Configuration . 79
6.3 Courier Control Plane . 81

6.3.1 Function Delivery Policies . 81
6.3.1.1 Function-Aware Delivery Policy . 81
6.3.1.2 Data-Aware Delivery Policy . 82

6.3.2 Load Balancing Algorithms . 83
6.3.2.1 Latency-Aware Load Balancing Algorithm 84
6.3.2.2 SLO-Aware Load Balancing Algorithm 85

6.3.3 Load Balancer Configurator . 85
6.4 Summary . 86

7 SLAM: SLO-Aware Memory Optimization of Serverless Applications in FDN 87
7.1 Introduction . 87
7.2 SLAM Tool . 89

7.2.1 Load Generator . 90
7.2.2 Application Call Graph Builder . 90
7.2.3 Functions Performance Modeler . 91
7.2.4 Application Execution Time Estimator . 91
7.2.5 Config Finder . 92

7.2.5.1 Optimization Objectives . 92
7.2.5.2 Optimal Memory Configuration Finding Algorithm 93

7.3 SLAM Evaluation . 95
7.3.1 Evaluation Settings . 95

7.3.1.1 Test Applications . 95
7.3.1.2 Evaluation Questions . 95

7.3.2 Results . 96
7.3.2.1 Q1. SLAM Estimation Time Accuracy 96
7.3.2.2 Q2. SLAM Configuration Finding Accuracy 98
7.3.2.3 Q3. SLAM Configuration Finding Efficiency and Scalability 100

7.4 Summary . 101

8 Anomaly Detection in the FDN 102
8.1 Online Memory Leak Detection . 102

8.1.1 Methodology for Memory Leak Detection . 103
8.1.1.1 Problem Statement . 103
8.1.1.2 Illustrative Example . 104

xi

Contents

8.1.2 Memory Leak Detection Algorithm: Precog . 104
8.1.3 Precog Evaluation . 106

8.1.3.1 Q1. Memory Leak Detection Accuracy 106
8.1.3.2 Q2. Scalability . 107
8.1.3.3 Q3. Parameter Sensitivity . 108

8.2 Anomalous VMMs Detection . 109
8.2.1 Problem Definition . 109

8.2.1.1 Illustrative Example . 110
8.2.2 Indirect Anomaly Detection (IAD) Algorithm . 111

8.2.2.1 IAD Algorithm . 111
8.2.2.2 Test Module . 112

8.2.3 Experimental Settings . 113
8.2.3.1 Datasets . 113
8.2.3.2 Evaluated Algorithms . 114
8.2.3.3 Other Settings . 115

8.2.4 Results . 115
8.2.4.1 Q1. Indirect Anomaly Detection Accuracy 115
8.2.4.2 Q2. Anomalous VMMs Finding Efficiency and Scalability 116

8.3 Summary . 117

9 Function Delivery Network Evaluation Settings 118
9.1 Benchmarks . 118

9.1.1 FaaS Functions . 119
9.1.1.1 Web-based FaaS Functions . 119
9.1.1.2 CPU-Intensive FaaS Functions . 119
9.1.1.3 Memory-Intensive and Disk I/O-Intensive FaaS Functions 119
9.1.1.4 Network I/O-Intensive FaaS Functions 120
9.1.1.5 ML-based FaaS Functions . 120

9.1.2 Serverless Application . 121
9.2 Heterogeneous Target Serverless Compute Clusters . 122

9.2.1 Edge-Clusters . 122
9.2.2 Cloud-Clusters . 123

9.2.2.1 Private-Cloud-Clusters . 123
9.2.2.2 Public-Cloud-Clusters . 124

9.3 Evaluation Infrastructure . 125
9.3.1 FDN Deployment Settings . 125
9.3.2 FDN Test Framework . 126

9.3.2.1 Configuration File . 127
9.3.2.2 FDN Test Client . 127
9.3.2.3 FDN Load Generator . 127

9.4 Performance Quality Metrics . 129
9.4.1 User-Centric Metrics . 130
9.4.2 Platform-Centric Metrics . 130

9.5 Summary . 131

10 Function Delivery Network Evaluation Results 132
10.1 FaaS Functions Performance and Resources Usage . 132

10.1.1 Web-based Function . 133

xii

Contents

10.1.1.1 nodeinfo . 133
10.1.2 CPU-Intensive Functions . 135

10.1.2.1 primes . 135
10.1.2.2 linpack . 136
10.1.2.3 sentiment-analysis . 138

10.1.3 Memory- and Disk-Intensive Functions . 140
10.1.3.1 dd . 140
10.1.3.2 gzip-compression . 141

10.1.4 Network-Intensive Function . 143
10.1.4.1 json-loads . 143

10.1.5 ML-Based Functions . 144
10.1.5.1 lr-prediction . 144
10.1.5.2 image-processing . 146

10.2 FaaS Functions Performance and Resources Usage Summary 147
10.3 FDN’s Performance Overhead . 150
10.4 FDN’s Function Delivery Policies Correctness . 151
10.5 FDN’s Bucket Replication Performance . 154
10.6 FDN’s Load Balancing Algorithms Performance . 155

10.6.1 Individual FaaS Function (nodeinfo) . 156
10.6.1.1 Performance on Low Workload (Trace R2) 156
10.6.1.2 Performance on High Workload (Trace R1) 160

10.6.2 Individual FaaS Function (gzip-compression) . 162
10.6.2.1 Performance on Low Workload (Trace R2) 162
10.6.2.2 Performance on High Workload (Trace R1) 166

10.6.3 Individual FaaS Function (lr-prediction) . 168
10.6.3.1 Performance on Low Workload (Trace R2) 168
10.6.3.2 Performance on High Workload (Trace R1) 170

10.6.4 Serverless Application (faas-composer) . 171
10.6.4.1 Performance on Low Workload (lowered-down version of Trace R1) . . . 172

10.7 FDN’s Load Balancing Performance Summary . 178
10.7.1 Algorithms Performance . 179
10.7.2 Clusters Performance . 181

10.8 Summary . 181

11 Conclusion and Future Outlook 183
11.1 Conclusion . 183
11.2 Future Outlook . 185

11.2.1 Extension of Virtual Kubelet . 185
11.2.2 Energy Efficiency and Power-aware Scheduling on Edge Clusters 186
11.2.3 Improvement of the Function Delivering Decision-making Policies 186
11.2.4 Improvement of the Load-Balancing Algorithms 186
11.2.5 Shim for Function Code for all the Serverless Compute Platforms 187
11.2.6 Creating Serverless Storage Backends for the FDN 187
11.2.7 Distributed Anomaly Detection in the FDN . 187

Appendices 188

Appendix A Function Delivery Network Configurations 189

xiii

Contents

A.1 FDN Design Configurations Templates . 189
A.1.1 FDN-Provider Deployment Template . 189
A.1.2 FDN-Provider Function Deployment Template . 191

A.2 FDN-Components . 193
A.2.1 FDN-Monitor Grafana Dashboards . 193
A.2.2 FDN-UI . 194

A.3 FDN Test Framework . 194

Appendix B Source Code Availability 196

Appendix C List of Authored and Co-authored Publications 197
C.1 Publications Associated with the Dissertation . 197

C.1.1 Journal Articles . 197
C.1.2 Conference Articles . 197
C.1.3 Workshop Articles . 198
C.1.4 Poster . 198

C.2 Other Publications . 198
C.2.1 Journal Articles . 198
C.2.2 Conference Articles . 199
C.2.3 Workshop Articles . 199

Index 200

List of Figures 203

List of Tables 208

List of Algorithms 210

List of Listings 211

Acronyms 212

Bibliography 215

Webliography 228

xiv

1
Introduction

“The only way to do great work is to love what
you do."

— Steve Jobs

With the emergence of cloud computing, the data is transferred to the cloud data centers through the network
for computation and storage [62, 203]. However, with more and more Internet of Things (IoT) devices gen-
erating data, edge computing emerged, where computation is being pushed towards edge devices [61]. On
the one hand, the data is processed close to its source, decreasing the latency [91]. On the other hand, edge
devices are usually limited in resources, limiting their compute power compared to the cloud resources. The
final architecture is a hybrid environment, connecting edge devices to the cloud and forming an edge-cloud
continuum [48]. Many of today’s applications are spread over the edge-cloud continuum [246]. (1) Web ap-
plications, for instance, combine mobile devices, edge computers for content delivery, and servers to enable
interaction and collaboration. (2) IoT applications use microcontrollers, mini-computers, edge computers,
and servers for delivering sensor measurements and controlling devices in the physical world. (3) Large-
scale experiments gather big data sets that need to be preprocessed and aggregated, forwarded to analytics
functions, fed into compute-intensive simulations, and visualized for the scientists. These applications are
highly dynamic with respect to their structure and workload [246]. Programming and deploying these ap-
plications is a highly challenging task. This is due to the heterogeneity of the underlying hardware, varying
compute, and data access requirements across time and application components, as well as the dynamic
structure of the applications due to agile programming techniques combined with continuous delivery.

Serverless computing is a cloud computing model that abstracts server management and infrastructure de-
cisions away from the users [304]. Significant progress has been made in the context of cloud computing
based on the idea of serverless computing since its launch in November 2014 [39]. In this model, the alloca-
tion of resources is managed by the cloud service provider rather than by the team of application developers
and deployment managers, i.e., DevOps, thereby increasing their productivity. Function-as-a-Service (FaaS)
is a key enabler of serverless computing [304]. In FaaS, a serverless application is decomposed into sim-
ple, standalone functions that are uploaded to a serverless compute platform for execution. These functions
are stateless, i.e., the state is not kept across function invocations. Functions can be invoked by a user’s

1

1. Introduction

HTTP request or by another type of event created within the serverless compute platform. The serverless
compute platform is responsible for providing resources for function invocations and performs automatic
scaling. This is done by creating an execution environment that provides a secure and isolated runtime for
the function. Currently, a significant number of open source and commercial serverless compute platform
are available [204]. AWS Lambda [260], Azure Functions [194] and Google Cloud Functions [116] are few
examples of commercial serverless compute platform, and OpenWhisk [225] and OpenFaaS [217] are two
examples of open-source serverless compute platform. OpenWhisk is also the platform that leverages IBM’s
FaaS offering IBM Cloud Functions [134]. The amount of resources for an execution environment is typi-
cally decided based on the maximum amount of memory and execution time (timeout) statically specified by
the user on function creation [127]. The amount of memory configured is important, since some commercial
serverless compute platform providers increase the amount of compute available to the function when more
memory is assigned [156, 71]. If a function invocation violates these constraints, the serverless compute
platform immediately terminates the invocation [321, 97, 253]. Therefore, a function invocation might get
prematurely terminated if it requires high computing power and is executed in an execution environment
with low compute capabilities. Additionally, in the last couple of years, there has been a shift observed
in the cloud native applications’ architecture from independently deployable microservices towards server-
less architecture, which is more decentralized and distributed [162]. From an economic point of view, this
deployment model can reduce the cost of operation due to fine-grained on-demand automatic scaling. Ad-
ditionally, the lack of server management can decrease the time-to-market for an application [249]. The
serverless computing paradigm can be used for building a myriad of applications such as web applications,
IoT, BigData workloads, Chatbots and Amazon Alexa, as well as IT Automation [109, 72].

1.1 Motivation

Serverless computing seems to be the perfect solution for solving the problems faced by the users for de-
ploying the applications across the edge-cloud continuum. However, despite having many advantages, usage
of serverless computing across the edge-cloud continuum suffers from the following pain points:

Public cloud serverless compute platforms are limited to homogenous nodes: All the public cloud
provider’s serverless compute platforms are limited to clusters of homogeneous nodes, i.e., the underneath
node’s CPU architectures such as x86_64/amd64 and arm64v8 remain fixed [71, 263]. Furthermore, the
nodes that are part of the cluster do not support the CPU acceleration devices such as Graphics Processing
Units (GPUs) and Tensor Processing Units (TPUs). As a result, functions that are heavily based on video
processing can not perform efficiently. Also, there is no provision in serverless compute platforms to deploy
and scale the same function instance with heterogeneous memory configurations; the allocated memory
configuration remains constant across scaled instances.

No support for seamless deployment of the FaaS functions across the edge-cloud continuum: Current
serverless compute platforms do not support seamless function deployments across the edge-cloud contin-
uum. In fact, there are hardly any serverless solutions focussing on the edge-cloud continuum. The first
documented efforts to bring serverless capabilities to the edge came from the industry with the introduction
of AWS Lambda@Edge [297], allowing to deploy lambda functions to edge locations explicitly. This is
then used within the IoT Greengrass system of Amazon [36]. It allows integrating edge devices with cloud
resources in an IoT platform, and the application Lambda functions running on it are deployed to the edge
computers. KubeEdge [314] is an open-source system extending native containerized application orchestra-
tion and device management to hosts at the edge. It only focuses on extending Kubernetes to edge devices
for running containerized applications. There is no solution that allows the users to seamlessly deploy the
FaaS functions across the edge-cloud continuum.

2

1.1. Motivation

Absence of serverless computing over multi-cloud and hybrid-cloud: Serverless platforms do not allow
the users to deploy or invoke the FaaS functions across multi-cloud or hybrid-cloud. In general, a serverless
application consists of multiple heterogeneous functions and the resource (storage, memory, compute, and
network) requirements for these functions are very dynamic and can differ vastly [185]. Serverless offerings
from public cloud service providers have limitations. Such as in the AWS Lambda platform, a maximum of
1000 concurrent instances across all functions is allowed [186], while in Google Cloud Function (GCF) it is
3000 per-function [82]. Thus, a single cloud cannot meet the dynamically changing resource requirements
of the functions. Thus, serverless computing over multi-cloud is necessary to overcome the limitations of
a provider. Serverless computing over a hybrid-cloud can help with data protection and privacy laws and
mitigate the effects of vendor lock-in [211]. Additionally, when compute demand exceeds the capacity of a
private platform, cloud bursting to public platforms gives an organization additional flexibility to deal with
peaks in IT demand.

Myriad of serverless compute platforms and their monitoring platforms: There exists a myriad of
serverless compute platforms [260, 194, 116, 225, 217]. Each serverless compute platform is implemented
differently and has a different virtualization stack. As a result, they perform differently [172]. Wang et
al. [302] performed an in-depth study of resource management and performance isolation with three popular
serverless computing providers: AWS Lambda, Azure Functions, and GCFs. Their analysis demonstrates
a reasonable difference in performance between the platforms. Each platform has its monitoring solution;
thus, different metrics and names, posing a challenge for monitoring across the edge-cloud continuum.
One has to consider various monitoring data such as metrics data (related to the platform, application,
and function level metrics) and traces of events based on OpenTracing standard. Some deployments are
on-premise or at the edge; therefore, the infrastructure-based metrics must also be considered. Another
challenge is bringing different metrics names into one standard form to compare with each other easily and
to make the decision-making simplified. For collecting various metrics from the open-source platforms, one
has to interface and extend the existing Kubernetes-based monitoring solution, such as Prometheus [295].
Furthermore, not all the serverless compute platforms can run on edge devices [233]. Therefore, one cannot
run a homogeneous serverless compute platform over the continuum.

Serverless compute platforms do not account for the data access behavior of functions: Serverless com-
pute platforms do not allow end-users much control over where a function is executed [273]. This becomes a
problem when a function requires data not proximal to its execution location. It will cause data transfers and
a significant idle period while the function waits for the data transfer to finish. Disregarding data locality
when scheduling functions thus causes increased response times and inefficient network traffic, incurring
more costs and potentially crippling Service-Level Objectives (SLOs). Moreover, with the growing market
and popularity of the Internet-of-Things (IoT), many large applications are run on the edge-cloud continuum.
The continuum combines computing resources in different locations and with varying constraints, making
the control over function placement, and for that matter also data placement, a very desirable feature.

Absence of user-workload requests orchestration across multiple serverless compute platforms: There
is no mechanism for orchestrating function invocations across multiple serverless compute platforms. Al-
though, one can create a load balancer manually and use it to orchestrate the invocations across the platforms.
However, not each serverless platform has the function endpoint in the same format. Furthermore, schedul-
ing function invocations across the edge-cloud continuum require information on the function’s invocations
response times, and computation and data requirements. Developing a load balancing algorithm is another
challenging task, since overall decision-making should not add extra overhead to the response time. Google
Cloud Platform (GCP) has introduced load balancing of user requests to a serverless Network Endpoint
Group (NEG) that consists of a Cloud Run, App Engine, or Cloud Functions service [236]. The load bal-
ancer serves as the frontend and proxies traffic to the specified serverless endpoint in this service. However,

3

1. Introduction

serverless NEGs can point only to Cloud Functions residing in the same region where the NEG is created
and is only restricted to their infrastructure.

No provision to optimally configure the memory of the FaaS functions within the application: When
deploying a FaaS function on a serverless compute platform, users need to define memory configuration
for their FaaS functions: a low-level information that directly influences the performance and cost of the
serverless application [37, 276, 302]. Thus, the user has to make a trade-off analysis to define the suitable
configuration for their required Service-Level Objectives (SLOs) [103]. Furthermore, there has been no
provision to automatically configure the optimal memory of the FaaS functions within an application to
adhere to certain SLOs [47, 98].

1.2 Dissertation Contributions
The aspects mentioned in §1.1 highlight some factors that make it difficult for users to adopt serverless
computing for the edge-cloud continuum. To this end, we propose [149] and develop an extension to the
concept of Function-as-a-Service (FaaS) as a programming interface for serverless computing across the
edge-cloud continuum. This extension is a network of distributed heterogeneous serverless compute clusters
spread across the edge-cloud continuum called Function Delivery Network (FDN) analogous to Content
Delivery Networks [111]. A serverless compute cluster consists of a serverless compute platform on top
of compute nodes deployed in a specific region, either at the edge, in the Cloud, or on-premise. FDN pro-
vides seamless integration across the edge-cloud continuum by allowing the user to deploy and invoke the
functions across heterogeneous serverless compute clusters in the continuum. FDN also distributes the data
required by the functions across the edge-cloud continuum by allowing the users to organize their data ob-
jects into storage buckets. Based on these, FDN provides Function-Delivery-as-a-Service (FDaaS), which
can deliver user workload functions invocations to a subset of serverless compute clusters spread across the
continuum based on : 1) function-awareness, and 2) data-awareness. The invocations are then load balanced
across the selected subset of clusters based on the set load balancing algorithm. The automatic manage-
ment of resources in the proposed serverless-based FDN facilitates application development by shifting the
burden to the cloud platform.

The main contribution of this work is the Function Delivery Network (FDN) presented in Chapter 4. Fur-
thermore, we provide directions, tools, techniques, and practical experiences for FDN to function rightly.
Figure 1.1 shows the schematic overview of the key contributions made in this dissertation with respect to
the challenges listed in §1.1 and are briefly explained as follows:

1. FDN supports serverless compute clusters creation and management over multi-cloud, hybrid-
cloud and edge-cloud continuum: We use Terraform [132] and Ansible [2] to automate the cluster’s
creation over multi-cloud, hybrid-cloud and edge-cloud continuum. Clusters created on public-cloud
are based on Amazon Web Services (AWS) Lambda, and Google Cloud Function, while on private-
cloud are based on OpenWhisk and OpenFaaS with OpenStack as the cloud infrastructure tool, and
edge clusters are based on the OpenFaaS platform. For integrating and managing these clusters, we
created a FDN provider in the virtual-kubelet [144], an open-source Kubernetes kubelet implemen-
tation that masquerades as a kubelet to create virtual Kubernetes worker nodes. These virtual worker
nodes represent the serverless compute clusters in FDN, and the FDN provider then maps the pods
created on virtual worker nodes to functions on underneath serverless compute clusters. By doing
so, we leverage the Kubernetes capabilities to add, remove and manage multiple clusters within FDN.
Furthermore, FDN provider contains the Application Programming Interfaces (APIs) for deleting and
creating the functions on different serverless compute platforms. This allows to use a unified kubectl-
based interface for seamless deployment of the FaaS functions across the continuum. (Chapter 4)

4

1.2. Dissertation Contributions

Multiple serverless compute clusters creation and management

(Chapter 4)

Function Delivery Network: Bringing Serverless
Computing to Edge-Cloud Continuum

FDNMonitor: Serverless compute

clusters monitoring (Chapter 4)

Behave: Behavioral modeling of

functions

(Chapter 5)

Courier: User’s workload requests

scheduling and load balancing

(Chapter 6)

Online memory leak

detection

(Chapter 8)

Serverless application

function's memory

optimization

Anomalous VMMs

detection

(Chapter 8)

FDN Main
Components

FDN External
Components

Anomaly
Detection in FDN

Edge Clusters

Serverless Platform Serverless Platform

Multi-Cloud/Hybrid-Cloud Clusters

(Chapter 7)

FDN-UI: A User Interface for managing FDN

(Chapter 4)

Data Orchestrator

(Chapter 4)

Figure 1.1.: A schematic overview of the contributions made in this dissertation.

2. Multiple serverless compute clusters monitoring: We create FDN-Monitor, a client-based python
tool for monitoring various serverless compute clusters within FDN. It acts as a sidecar for every vir-
tual Kubernetes worker node representing the serverless compute clusters in FDN. It collects various
metrics classified into three categories: (i) User-Centric metrics, (ii) FaaS-Platform-Centric metrics,
and (iii) Infrastructure-Centric metrics from the clusters. Furthermore, FDN-Monitor currently sup-
ports four serverless compute platforms: AWS Lambda, Google Cloud Function, OpenWhisk, and
OpenFaaS. FDN-Monitor is designed modularly, and new serverless compute platforms can easily be
integrated into it. (Chapter 4)

3. Data Orchestration across the edge-cloud continuum: We create the Data Orchestrator within
FDN, which is responsible for managing the data across the storage backends in clusters within FDN.
MinIO is selected as the object storage backend for each cluster in this work. MinIO is an AWS
S3-compatible object storage technology that offers flexible bucket replication features [195, 196].
Data Orchestrator leverages MinIO’s mc command line tool [200] and its JavaScript and Go language
SDKs [199, 198] to integrate into FDN. It allows FDN distributing the data required by the func-
tions across the continuum by allowing the users to organize their data objects into storage buckets.
(Chapter 4)

4. Behave: Behavioral Modeling of FaaS Functions in FDN: We create two behavioral models based
on the monitoring data collected by FDN-Monitor for characterization of the FaaS functions:

• Functions Performance Model: For automatic end-to-end automatic performance modeling of
functions, we develop a python-based tool called FnCapacitor. This tool automatically esti-
mates the capacities of FaaS functions within a serverless application under the given SLOs and
the memory configuration of the function instance. Furthermore, as part of FnCapacitor, we
present a novel method which can be used to sandbox individual functions from the serverless
application. Currently it supports Google Cloud Function (GCF), and AWS Lambda. (Chap-
ter 5)

• Functions Interaction Model: We model the serverless applications in the form of function com-
positions using neural Temporal Point Processes (TPPs). This is developed as part of a tool

5

1. Introduction

called TppFaaS on top of OpenWhisk. TppFaaS uses two neural Temporal Point Processes
(TPPs): 1) LogNormMix for providing the probability distribution of functions within the com-
position for the following function invocation, and 2) TruncNorm for predicting a function’s
invocation time. Such modeling and prediction can avoid cold starts by scaling functions in
advance and reducing network load by optimizing the function-server assignment. (Chapter 5)

5. Courier: Users’s workload requests delivering and load balancing in FDN: In order to distribute
the incoming function invocations across the serverless compute clusters spread across the edge-cloud
continuum, we create a system called Courier. Courier delivers the function invocations to the suit-
able subset of clusters in the continuum based on the function-awareness and data-awareness. Data-
aware delivery takes the bucket name required by the function as the HTTP header parameter. Courier
uses its value to select the appropriate subset of serverless compute clusters. The invocations are then
load balanced across the selected subset of clusters based on the set load balancing algorithm. We
have developed Latency-Aware, Service-Level Objective (SLO)-Aware algorithms and used it along
with the default Round-Robin (RR) and Least Connections algorithms for load balancing. (Chapter 6)

6. Serverless application function’s memory optimization: We build a tool called SLAM that au-
tomatically determines the optimal memory configurations for the FaaS functions within the given
serverless application based on the specified SLO requirements. SLAM uses an optimization algo-
rithm called SLAM-SLO along with its variants for various optimization objectives (minimum cost
and minimum overall time) in addition to the SLO requirements in finding the optimal memory con-
figuration for the given serverless application. SLAM currently supports AWS Lambda. (Chapter 7)

7. Anomaly Detection in FDN: Serverless compute clusters within FDN are created using Virtual Ma-
chines (VMs) hosted on the bare-metal server using a hypervisor. An anomaly in the application’s
functions deployed on those VMs can affect the availability and reliability of the application. Fur-
thermore, a fault or an anomaly in the hypervisor hosting the VMs can propagate to the VMs hosted
on it and ultimately affect the availability and reliability of the applications running on those VMs.
Therefore, quickly identifying and eventually resolving it is crucial to save downtime. In order to do
anomaly detection within FDN, we developed following two algorithms:

• Online memory leak detection: We create an online machine learning-based algorithm called
Precog to detect memory leaks on VMs. This algorithm only uses the VM’s memory utilization
as the primary metric. Our proposed algorithm achieves an accuracy score of 85% on the evalu-
ated dataset provided by Huawei Munich Research Center and an accuracy score of above 90%
on the synthetic data generated by us. (Chapter 8)

• Anomalous Virtual Machine Monitors (VMMs) detection: In order to efficiently detect anoma-
lous VMMs, we develop a machine learning-based algorithm called IAD: Indirect Anomaly De-
tection. It solely uses the resource utilization data of the VMs hosted on a VMM as the primary
metric for the detection. We compare it against five other popular algorithms, which can also be
applied to the described problem. It was found that the proposed IAD algorithm has an average
F1 score of 83.7% averaged across four datasets and also outperforms other algorithms by an
average F1 score of 11%. (Chapter 8)

1.3 Organization of the Dissertation
The rest of the dissertation is structured as follows.

Chapter 2 presents the background knowledge required for this dissertation. We start with the concept
of virtualization, especially hardware-level virtualization (§2.1.1) and OS-level virtualization (§2.1.2). We

6

1.3. Organization of the Dissertation

introduce the edge-to-cloud continuum (§2.2), discussing the edge and cloud deployment models. Since
this dissertation is heavily centered around serverless computing, we also briefly overview the serverless
computing model (§2.3) and the different serverless computing platforms (§2.3.2) used in this work. Lastly,
we discuss the different cloud application architectures (§2.4).

Chapter 3 discusses the related work to this domain in seven folds. First, on the performance evaluation of
microservices against the serverless applications. Second, the use of serverless computing for heterogeneous
workloads in §3.2. Third, the performance variations among the serverless compute platforms in §3.3.
Fourth, the use of serverless computing for the edge-cloud continuum in §3.4. In §3.5, we discuss the
general cloud-based solutions for multi-cloud and hybrid-cloud along with specific works which exist in
using serverless computing for multi-cloud and hybrid-cloud. In §3.6, we present the related work done in
the field of data-aware scheduling in serverless computing. Lastly, in §3.7, we discuss the various solutions
for optimizing the memory of serverless applications.

Chapter 4 introduces the Function Delivery Network (FDN) and its components. We start with FDN design
overview, explaining the functional and non-functional requirements which FDN seeks to fulfil in §4.1.1,
then the design methodology based on which we developed FDN in §4.1.2, and in §4.1.3, we present the
final high-level overview of the FDN architecture. In §4.2, we explain each component of FDN in detail.
Chapter 5 introduces two behavioral models based on the monitoring data collected by FDN-Monitor for
characterization of the FaaS functions: 1) Functions Performance Model (§5.1), and 2) Function Interaction
Model (§5.2).

Chapter 6 presets Courier system, where we first explain the design of the Courier Load Balancer in §6.2.
We present the Courier Control Plane in §6.3 along with the function delivery policies (in §6.3.1). In §6.3.2,
we describe the latency-aware load balancing algorithm that balances the users’ invocations across the subset
of clusters selected based on the function delivery policy.

Chapter 7 presents the SLAM tool, used for finding the optimal memory configuration for a serverless
application, consisting of several FaaS functions based on the specified SLOs. In §7.2, we describe it in
details along with its components. We present the performance evaluation settings in §7.3.1 and evaluation
results in §7.3.

Chapter 8 describes two anomaly detection algorithms: 1) Online memory leak detection using Precog in
§8.1, and 2) Anomalous VMMs detection using IAD: Indirect Anomaly Detection in §8.2.

Chapter 9 explains the methodology used to carry out the performance evaluation. We first introduce the
different benchmarks, i.e., FaaS functions, along with the developed application we use to evaluate in §9.1.
Following this, we describe the different heterogeneous clusters used in this work to form the edge-cloud
continuum within Function Delivery Network (FDN) in §9.2. Lastly, in §9.3, we describe the complete
evaluation infrastructure and the different performance quality metrics used for the evaluation.

Chapter 10 presents the performance evaluation results of FDN. We first analyze the performance and re-
sources usage variation of the FaaS functions on various clusters in §10.1. We summarize those results in
§10.2 After this, we present the overhead introduced by the Courier in §10.3, FDN’s function delivery poli-
cies correctness in §10.4, FDN’s bucket replication performance in §10.5, and lastly FDN’s load balancing
performance in §10.6.

In Chapter 11, we finally conclude the dissertation and present an outlook on the future work.

7

2
Background

“The earlier you start working on something,
the earlier you will see results"

— Anonymous Author

In this chapter, we present the background knowledge required for this dissertation. We start with the concept
of virtualization, especially hardware-level virtualization (§2.1.1) and OS-level virtualization (§2.1.2). We
introduce the edge-to-cloud continuum (§2.2), discussing the edge and cloud deployment models. Since
this dissertation is heavily centered around serverless computing, we also briefly overview the serverless
computing model (§2.3) and the different serverless computing platforms (§2.3.2) used in this work. Lastly,
we discuss the different cloud application architectures (§2.4).

2.1 Virtualization: a Cloud-Enabling Technology

Virtualization refers to the process of isolating a resource of a computer system and creating multiple “virtual
versions” of the same [254]. Virtualization can be applied at various system levels: hardware-level, OS-
level, and application-level [254]. Virtualization drives cloud computing economics [142] and since cloud
computing is mainly based on the first two types of virtualization, we focus on hardware-level virtualization
(§2.1.1) and OS-level virtualization (§2.1.2).

2.1.1 Hardware-level virtualization

In general, there are two types of hypervisors: 1) Type I hypervisors, and 2) Type II hypervisors [250].
Type I hypervisors run directly on the hardware to control and manage guest Operating Systems (OSs).
It is also called a bare metal hypervisor, which runs natively on the hardware. A few examples of Type
I hypervisors are Citrix/Xen Server [78], VMware ESXi [300], and Microsoft Hyper-V [137]. On the
other hand, Type II hypervisors are usually installed on an existing OS. They rely on the host machine’s

8

2.1. Virtualization: a Cloud-Enabling Technology

OS to manage system calls and network, memory and storage resources. These are also named hosted
hypervisors. Examples of Type II hypervisors include Microsoft Virtual PC [89], Oracle Virtual Box [4],
VMware Workstation [301], and Oracle Virtual Machine (VM) Server [227]. Due to the host machine’s OS
presence in Type II hypervisors, a certain amount of latency is introduced compared to Type I hypervisors.

Cloud services providers mostly use Type I hypervisors on their physical servers to offer virtual resources
over the Internet. For instance, Google Compute Engine (GCE) relies on Kernel-Based Virtual Machine
(KVM) for virtualization [130], Microsoft customized Hyper-V called Azure hypervisor is used in their
Azure cloud [133], and AWS uses their own hypervisor called AWS Nitro [43]. To understand how hyper-
visor partition and share the CPU, memory, and I/O devices to guest OSs, we discuss CPU virtualization
(§2.1.1.1), memory virtualization (§2.1.1.2), and I/O virtualization (§2.1.1.3) in the following subsections.

2.1.1.1 CPU Virtualization

In the case of CPU virtualization, the idea is to virtualize the CPU resource of a computer system [180].
The sole purpose behind creating such a mechanism is to employ multiple smaller servers on a single large
server. It helps to reduce the cost of hosting and, at the same time, enhances the utilization of the server.
There are three different methods for implementing CPU virtualization:

Full Virtualization: The guest OSs are entirely abstracted from the underlying hardware by the hypervisor
in full virtualization [180, 192]. Therefore, each VM and its guest OS operate as independent computers
and require no modification. The hypervisor manages this by doing the binary translation of all the OS
instructions at the runtime and caches the results for future use [75]. In contrast, user-level instructions run
unmodified at native speed. Full virtualization offers the best isolation and security for virtual machines;
however, the continuous translations between the physical and virtual resources, such as memory and pro-
cessor, can impact the performance [274]. Microsoft Virtual Server is an example of it.

Paravirtualization: The guest OS kernel is modified to replace non-virtualizable instructions with hyper-
calls that communicate directly with the hypervisor in paravirtualization [180, 192]. In this scenario, the
guest OS knows the virtual machine environment. It has a lower virtualization overhead and results in higher
performance and efficiency than full virtualization. The open-source Xen project is an example of it [78].

Hardware Assisted Virtualization: It is an approach that enables efficient full virtualization using the
help of hardware capabilities, primarily from the host processors. Intel Virtualization Technology (VT-
x) [206] and AMD’s AMD-V extensions [278] to the x86 architecture automatically trap the sensitive calls
to the hypervisor, removing the need for either binary translation or paravirtualization. XenCenter [312],
Linux KVM [158], and Microsoft Hyper-V [137] are some examples of hardware-assisted x86 virtualization.
Linux KVM, an open-source Linux-based hypervisor, has a unique model. It is mainly classified as a Type
I hypervisor. At the same time, the overall system is categorized as a Type II hypervisor due to a fully
functional operating system. Thus, having the advantages of both Type I and Type II hypervisors.

2.1.1.2 Memory Virtualization

It is the process of sharing the physical host memory and dynamically allocating it to the VMs running the
guest OS on it [180, 192]. It is done by virtualizing the Memory Management Unit (MMU), to decouple the
physical host’s memory into a pool of virtualized memory available to the VMs. The virtualized memory
allocated to the VMs becomes their physical memory. The guest OS continues to control the mapping of
virtual addresses in the guest OS to the guest memory’s physical addresses. However, the guest OS does not
directly access the actual host’s physical memory. The Virtual Machine Monitor (VMM) is responsible for

9

2. Background

mapping the guest’s physical memory to the actual host’s physical memory, and it uses shadow page tables
to accelerate the mappings. VMM uses Translation Lookaside Buffer (TLB) hardware to map the virtual
memory directly to the host memory to avoid the two levels of translation on every access.

2.1.1.3 I/O Virtualization

I/O virtualization allows a physical adapter such as a Network Interface Cards (NICs) or Host Bus Adapters
(HBAs) to appear as multiple virtual Network Interface Cards (vNICs) and virtual Host Bus Adapters (vH-
BAs), respectively [73]. The ability to multiplex virtual I/O devices onto physical ones drives I/O devices to
achieve better hardware usage. In general, there are three different ways to achieve I/O virtualization:

Emulation: Here, all the functions of a physical device, such as device identification, and Direct Memory
Access (DMA), are emulated in software [73]. Emulation software is located within the VMM and appears
as a virtual device in the guest OS. The I/O requests from the guest OSs are trapped in the VMM. VMM
executes the I/O requests on behalf of the guest VM to the physical device and returns control to the VM.
The computational overhead in emulating and trapping requests results in the host’s moderate performance
and high CPU utilization. Thus, emulation is mainly employed for simple peripherals, e.g., system timers.

Para-I/O Virtualization: The Xen hypervisor has popularized this approach. It is based on the cooperation
between the guest OSs and the host. The guest loads a so-called frontend driver that communicates with a
backend driver that the host operates. The process is also called a split-driver model. Payload data between
the frontend and backend driver is transported via shared memory, and notifications about new data are
exchanged via the VMM. Although para-I/O-virtualization achieves better device performance than device
emulation, it has a higher CPU overhead. Additionally, para-I/O-virtualization can only be used if a frontend
driver is available for the guest OS compatible with the host’s backend driver.

Hardware-based I/O Virtualization: Hardware-based I/O virtualization can be achieved in multiple ways [101,
248]. Passthrough I/O, in contrast to emulation and paravirtualization, directly exposes physical I/O devices
to VMs. It is done by mapping the memory regions of physical I/O devices to VMs. Enabling passthrough
for untrusted VMs requires particular hardware extensions to retain spatial isolation requirements of vir-
tualized systems. Therefore, modern x86 CPUs and chipsets come equipped with virtualization-enabled
MMUs and Input–Output Memory Management Units (IOMMUs) (Intel VT-d, AMD). While passthrough
I/O offers near-native performance, it has limitations in terms of scalability. Self-virtualizing I/O devices are
an alternative to them [248]. The idea here is to offload penalties of software-based I/O virtualization and
sharing routines into the I/O device hardware. This way, self-virtualizing devices can offer multiple virtual
interfaces per physical device function, which are enabled by hardware-accelerated I/O virtualization. In
line with these ideas, the Single Root I/O Virtualization and Sharing Specification (SR-IOV) was released
by the Peripheral Component Interconnect (PCI) Special Interest Group (PCI-SIG) [92]. It is specified for
Peripheral Component Interconnect Express (PCIe) topologies that utilize a single root complex. There is
also Multiple Root I/O Virtualization and Sharing Specification (MR-IOV), a specification for topologies
with multiple root complexes [283]. SR-IOV allows a PCIe device to appear as multiple separate physical
PCIe devices. SR-IOV is based on the idea of Physical Functions (PFs) and Virtual Functions (VFs). PFs
are full-featured PCIe functions; VFs are “lightweight” functions that lack configuration resources. VFs are
attached to the guest VMs for carrying I/O requests, and they provide near native speed.

2.1.2 OS-level virtualization

It partitions the OS to create multiple isolated user-space instances [318]. A user-space instance is a virtual
execution environment that can be forked instantly from the base operating environment. Such instances are

10

2.2. Edge-to-Cloud Continuum

called containers. Programs running inside a container can only see the container’s contents and devices
assigned to the container. It is implemented using the standard Linux namespaces feature. In addition to
isolation, the kernel often provides resource-management attributes to limit the impact of one container on
other containers. The Linux cgroups provide resource management mechanisms.

Docker is an open-source container technology invented and developed by Docker Inc; that automates the
deployment of applications inside containers [12]. Docker uses images as a base for containers; these images
are similar to the VM images – they also contain software & OS that is already installed, configured, and
tested [56]. Containers are instantiated from such images to run the software, e.g., a front-end server or a
database. Docker containers can run on any host with a compatible OS as long as there is Docker installed
and there are enough resources (CPU, memory). Docker containers became the de facto industry standard
for containerized applications [56].

One needs a container runtime to run a container. A container runtime is a software that runs the containers
and manages the container images on a deployment node. containerd is the default runtime used by the
Docker engine [85]. It is often referred to as an industry standard because of its wide adoption. Under-
neath, this runtime uses runc, the reference implementation of the Open Containers Initiative (OCI) runtime
specification. The OCI defines two standards – the image-spec for OCI images and the runtime-spec for
system runtimes [102]. The typical job sequence of running a container would be that a container runtime
(e.g., containerd) downloads an OCI image, unpacks it, and prepares a OCI bundle (a container specification
including the root filesystem) on the local disk. After that, a system runtime like runC creates a running in-
stance from this container specification. OCI images can be created using several tools, for example, docker
build command. After the successful build, these images are usually pushed and published to a public or
private container registry. containerd, runC [252], rkt [307], and lxc [308] are some examples of container
runtimes.

Containers appeal to cloud users because of their lower booting time, portability, and direct resource man-
agement capabilities [205, 174]. However, they are often criticized for not providing strong isolation among
containers on the same host. As a result, a new level of containers called VM-like containers is developed to
hold the promise of strong isolation and minimal virtualization overhead [65]. They provide isolation capa-
bilities similar to VMs; therefore, these are called VM-like containers. AWS Firecracker [5] and Google’s
gVisor [317] are some examples of it. The main difference between the two projects lies in the virtualization
technology that forms the isolation layer [65]. Firecracker is a dedicated VMM implemented using Linux
KVM. It emulates a minimal device to achieve low latencies when starting the VM and a low memory
footprint on the host system. The VMs instantiated from it are often called MicroVMs. Firecracker does
not start any containers in the MicroVMs; applications are directly run within them. Google’s gVisor, runs
containers using a new Linux Kernel, written in Go and running in the user space. This kernel intercepts the
applications’ system calls, thus providing additional protection from host kernel vulnerabilities. Figure 2.1
shows the overview of different isolation methods (VMs, Linux Containers, gVisor-based, and Firecracker-
based) used to deploy the cloud applications. Firecracker and gVisor runtimes are used in the FaaS offering
of AWS Lambda and GCF, respectively.

2.2 Edge-to-Cloud Continuum

With the emergence of cloud computing, the data is transferred to the cloud data centers through the net-
work for computation and storage [62, 203]. However, with more and more IoT devices generating data,
computation is being pushed towards edge devices forming edge computing [61]. On the one hand, the data
is processed close to its source, decreasing the latency [91]. On the other hand, edge devices are usually

11

2. Background

Host Kernel

VMM

Guest
Kernel

Application

Guest
Kernel

Application

VM1 VM2

(a) VMs

Host Kernel

Container Engine

Application Application

Container1 Container2

(b) Linux Containers

Container1 Container2

Host Kernel

Container Engine

Application Application

Userspace Kernel (gVisor)

(c) gVisor-based

MicroVM1 MicroVM2

Host Kernel

Application Application

Firecracker-based light
VMM

Guest
Kernel

Guest
Kernel

(d) Firecracker-based

Figure 2.1.: Overview of four isolation methods (VMs, Linux Containers, gVisor-based, and Firecracker-
based) for deploying the applications. VMs use a dedicated VMM such as Xen to provide
isolation between them. Linux containers use the host kernel’s namespace feature to provide
isolation between the containers. gVisor-based containers are isolated using the userspace ker-
nel. Firecracker-based MicroVMs use lightweight VMM based on KVM for the isolation.

limited in resources, limiting their compute power compared to the Cloud resources. The final architecture
is a hybrid environment, connecting edge devices to the cloud and forming an edge-cloud continuum [48].
Computation offloading forMachine Learning (ML) applications, such as facial recognition algorithms, to
the edge has shown considerable improvements in response times using the technology of split computing
and early exits. Further research showed that using resource-rich machines called cloudlets near mobile
users, which offer services typically found in the cloud, improves execution time [298, 255]. On the other
hand, offloading every task may result in a slowdown due to transfer times between device and cloud so
that an optimal configuration can be defined depending on the workload. Another use of the edge-to-cloud
continuum is cloud gaming, where some aspects of a game run in the cloud while some are on mobile
phones. Also, another potential use case is encrypting privacy-sensitive data at the edge before sending it to
the cloud.

In this section, we introduce cloud (in §2.2.1) and edge computing (in §2.2.2) concepts in detail.

2.2.1 Cloud Computing

Cloud computing provides the on-demand delivery of IT resources such as compute, database, storage,
network, etc., through the internet with pay-as-you-go pricing model [242]. These resources operate on
servers located in large data centers worldwide. Cloud service providers like AWS, Azure, and Google Cloud
Platform (GCP) are responsible for managing these servers. Traditionally, the IT team has to manage servers,
apply patches to the operating system, develop and install the software, and ensure security. However, with
the advent of cloud computing, cloud service providers offer numerous ways of using their IT resources,
grouped into service models and cloud deployment models [114]. Each service model and deployment
model provides different levels of abstraction, flexibility, and automation for varied tasks, thus providing
more agility to the users. In the following subsections, we briefly describe various cloud deployment models
(§2.2.1.1) and service models (§2.2.1.2) in cloud computing.

12

2.2. Edge-to-Cloud Continuum

2.2.1.1 Cloud Deployment Models

There are four cloud deployment models, which represent the cloud environments :

Public Cloud: It is available to the public, and server infrastructure belongs to cloud service providers and
is managed by them. Cloud service providers maintain and buy the hardware for the users. The IT resources
are available as services, free of charge or on a pay-as-you-go pricing model via the Internet. Cloud users can
scale-up or scale-down the resources on-demand. Public clouds include Amazon Elastic Compute Cloud,
Microsoft Azure, Google App Engine, and IBM Cloud [171].

Private Cloud: In the Private Cloud, services are not available to the public but are intended for use solely
by the owner company [242]. Resources are deployed on-premises using virtualization and resource man-
agement tools such as OpenStack. OpenStack is an open-source project that provides Infrastructure-as-a-
Service (IaaS) capabilities for building a private cloud [258]. Several companies are building IaaS solutions
on top of OpenStack [154]. This model, therefore, is sometimes called on-premises deployment. The in-
frastructure is maintained on a designated private network. This deployment model can provide dedicated
resources and let users know where their data is kept and who has access to it. The major disadvantage of
this model is the cost of purchasing and maintaining the hardware. Multiple public cloud service providers
such as Amazon, IBM, Cisco, Dell, and Red Hat also provide private cloud solutions.

Hybrid: As the name suggests, it is a public and private cloud hybrid [309]. This model enables an or-
ganization to expand its infrastructure into the cloud while connecting to internal systems. For example,
mission-critical workloads can run on a secure private cloud while less sensitive ones are deployed to a pub-
lic cloud. This model encompasses the advantages of both public and private clouds. However, this model
beneficial only if a company can split data into mission-critical and non-sensitive.

Multi-Cloud: It is similar to the hybrid cloud; however, multi-cloud uses multiple public clouds instead
of merging private and public clouds [129]. In this model, users usually mix and match the best features
of each cloud provider’s services to suit their application and business demands. One of the disadvantages
of this model is that the developers need to know the services of multiple cloud service providers, and the
deployment strategy can get very complex.

2.2.1.2 Cloud Service Models

Each cloud service model provides a different level of control, flexibility, and management. Thus, choosing
a suitable service model is an essential success factor for delivering cloud-based solutions. The following
subsections focus on some widely adopted cloud service models [155].

Infrastructure-as-a-Service (IaaS): IaaS provides an abstraction over the tasks related to managing and
maintaining a physical data center and infrastructure (servers, disk storage, and networking) [155]. It offers
the services that represent the basic building blocks for cloud IT, such as networking, compute (virtual or on
dedicated hardware), and storage as a collection of services that can be accessed and automated from code or
web-based management consoles. IaaS comes with the highest flexibility and management control over IT
resources. The user does not manage or control the underlying infrastructure, but has control over operating
systems, storage, networking, and deployed applications. There are several IaaS vendors in the market, but
the most widely used IaaS cloud service provider is AWS. An example of the IaaS compute service offered
by the AWS is Elastic Compute Cloud (EC2), where a user can choose an instance type from various types
that differ from each other by the amount of offered virtualized resources. For example, t2.micro EC2
instance type offers 1 vCPUs and 1 GB of memory in comparison to t2.medium instance type that comes
with 2 vCPUs and 4 GB of memory.

13

2. Background

Platform-as-a-Service (PaaS): Platform-as-a-Service (PaaS) provides the application platform consisting
of infrastructure - servers, storage, and networking - and middleware, development tools, database manage-
ment systems, and more [155]. PaaS avoids the cost and complexity of managing the underlying infrastruc-
ture and middleware. Users focus on the deployment and management of their applications. Despite having
the advantages of PaaS, there are still some disadvantages. The users are provided with complete control of
the platform; as a result, they still need to manage the scalability of their applications. Users have to give
up a degree of flexibility because they are constrained by the tools and the software stacks that the providers
offer. The users also have little-to-no control over lower-level software controls like memory allocation and
stack configurations. Some examples of PaaS are: Google App Engine, container orchestration tools such
as Kubernetes offered as Amazon Elastic Kubernetes Service (EKS) by AWS, Azure Kubernetes Service
(AKS) by Microsoft Azure and Amazon Redshift data storage service by AWS. A new cloud deployment
model called Serverless computing is also considered under PaaS. This dissertation uses it to a great length;
therefore, it is described separately in §2.3.

Software-as-a-Service (SaaS): In this model, cloud service providers host end-user applications and make
them available to the clients over the Internet [155, 86]. Cloud service providers are responsible for man-
aging everything from the hardware to the software application. Cloud users are only responsible for using
and bringing the data to the applications. Cloud service providers also ensure the application and data’s
availability and security. The users usually access these applications via a web browser. Two common ex-
amples of SaaS offers are web-based email and Customer Relationship Management (CRM) systems [86].
Some of the drawbacks of this model are data security and speed of delivery. Since data is stored on external
servers, companies must ensure that it is safe and cannot be accessed by unauthorized parties. Slow internet
connections can reduce performance, mainly if the cloud servers are accessed from far-off distances.

2.2.2 Edge Computing

To improve the response time and save network bandwidth, there is a tendency to push some of the com-
putation and data storage closer to the data sources, along with the computation in the cloud [61]. This
distributed computing paradigm at the network’s edge is called edge computing [60, 256]. When looking at
the edge computing landscape, there are myriad ways in which it can be used. However, these offerings can
be boiled down to three distinct models described in the following subsections.

Managed by public cloud service providers: Cloud service providers such as AWS, Microsoft Azure,
and Google provide regional extensions of their cloud platform to bring computational power closer to end-
users. Existing customers hosting apps and data in one of these clouds can easily use those extensions.
One such example of these offerings is AWS Local Zones [42], where local zones are available to users for
application deployment. AWS Local Zones allow using selected AWS services, like compute and storage
services, closer to end-users, providing low latency access to the applications.

Managed by LTE/5G telecommunications carriers: Telecommunications carriers are building out small-
footprint data centers that can be leased to customers for edge computing purposes [55]. Additionally,
telecommunications carriers believe that much edge computing will occur on Long- Term Evolution (LTE)
or 5G mobile networks. Thus, the edge services deployed directly within the LTE/5G carrier’s network
provide the lowest-latency path. This is known as Multi-Access Edge Computing (MEC) and is offered by
major telecommunications carriers like AT&T, T-Mobile, and Verizon [286]. Carriers are also partnering
with Cloud Service Providers (CSPs) to combine the cloud provider’s infrastructure architecture with the
carrier’s wider reach into the most popular metropolitan locations. For example, AT&T partnered with
Google Cloud [19] and Microsoft Azure [20], while Vodafone and Verizon partnered with AWS to provide
the service in their AWS wavelength offering [244].

14

2.3. Serverless Computing

Traditional IT
Unit of scale: Physical Servers
• Deploy in hours/days
• Live for years

IaaS
Unit of scale: VMs
• Deploy in minutes
• Live for week

PaaS
Unit of scale: Containers
• Deploy in seconds
• Live for minutes/hours

FaaS
Unit of scale: Functions
• Deploy in milliseconds/seconds
• Live for seconds

Focus on application/business logic

Vi
rt

ua
liz

at
io

n
st

ac
k

ab
st

ra
ct

io
n

Server-based Serverless

Figure 2.2.: Typical cloud service models comparison from the aspect of virtualization stack abstraction (y-
axis) and focus on business logic (x-axis). Server-based here means that the user or application
developer has to configure/manage certain infrastructure parameters. In contrast, the cloud
service providers manage infrastructure entirely in serverless computing.

Hosted on-premises: Edge computing hosted on-premises comes under this category [159]. Cloud providers
can also extend their public cloud within customers’ private data centers. This is ideal for high bandwidth
and low latency applications within the customer’s private network. For Instance, AWS Outposts allows cus-
tomers to deploy AWS-specific hardware into their private data center [106], while Google’s Anthos [106,
15] allows customers to leverage their existing data center hardware and software. Microsoft offers both
options with Azure private multi-access edge compute (previously private edge zones) [305] and Arc [303].

2.3 Serverless Computing

Serverless computing is a cloud computing model that abstracts server management and infrastructure deci-
sions away from the users [304]. Significant progress has been made in different domains [72, 66, 265, 153,
109] based on the idea of serverless computing since its launch by Amazon as AWS Lambda in Novem-
ber 2014 [39]. In this model, the allocation of resources is managed by the CSPs rather than by DevOps,
thereby benefiting them from various aspects such as no infrastructure management, automatic scalability,
and faster deployments [80, 249]. Figure 2.2 shows the comparison of serverless computing model with
different cloud service models from the aspect of virtualization stack abstraction (y-axis) and focus on busi-
ness logic (x-axis). One of the biggest differences between other forms of cloud models and the serverless
computing model is scalability [141]. In serverless computing, the application automatically scales up or
down based on the resource usage (with scaling down to zero number of instances as well), and DevOps do
not have to specify any scaling parameters. Furthermore, with serverless computing, the user does not have
control of the platform, as is the case with other service models.

The Cloud Native Computing Foundation (CNCF) divides serverless into Function-as-a-Service (FaaS) and
Backend-as-a-Service (BaaS) [304]. FaaS is a key enabler of serverless computing [304]. FaaS provides an

15

2. Background

Figure 2.3.: Typical FaaS function invocation procedure. The first time the function is invoked, the server-
less compute platform creates an instance of the function and runs its handler method in it to
process the event. When the handler exits or returns a response, it stays active and becomes
available to handle other events.

attractive cloud model since it facilitates application development in which the user does not have to worry
about the infrastructure management but only about the code being deployed. The pricing is charged based
on the number of requests to the functions and the duration, the time it takes for the function code to exe-
cute [41]. The latter varies according to the number of resources, such as memory and CPU cores allocated
to the function, and are automatically adapted to deliver the best performance. Instead of developing applica-
tion logic in the form of services and managing the required resources, the application developer implements
fine-grained functions connected in an event-driven application and deploys them into the serverless com-
pute platform such as AWS Lambda [37], GCF [79], and Azure Functions [11] for execution [304]. These
functions are stateless, i.e., the state is not kept across function invocations. Functions can be invoked by
a user’s HTTP request or by another type of event created within the serverless compute platform. The
platform is responsible for providing resources for function invocations and performs automatic scaling de-
pending on the workload. The functions can be closely integrated with other services, e.g., cloud databases,
authentication and authorization services, and messaging services. These services are called Backend-as-a-
Service (BaaS) [304]. BaaS are the third-party services that replace a subset of functionality in a function
and allow the users to only focus on the application logic [166]. In FaaS, function invocations are handled
using containers or MicroVMs. Since functions are stateless, the application’s state is stored in databases.
The cloud service provider’s infrastructure starts up on-demand ephemeral instances of each function. BaaS
services are not set up to scale in this way unless the BaaS provider offers serverless computing, and the
developers build this into their applications.

2.3.1 FaaS Function Invocation Procedure

FaaS-based function is a piece of code containing a handler method responsible for processing the events
that are passed to the function when invoked, and these are executed within a serverless compute platform.
FaaS-based functions can be invoked by a user’s HTTP request or another type of event created within
the serverless compute platform or the cloud infrastructure. These include changes to data in a database,
files added to a storage system, or a new VM instance being created. The serverless compute platform is

16

2.3. Serverless Computing

responsible for providing resources for function invocations and performing automatic scaling. This is done
by creating an execution environment which provides a secure and isolated runtime environment for the
function. The functions can be written using various languages, and a language-specific environment called
runtime is created in the execution environment. The runtime relays invocation events, context information,
and responses between the serverless compute platform and the function.

The first time the function is invoked, the serverless compute platform creates a Function Instance of the
function (execution environment) and runs its handler method in it to process the event. A Function Instance
is an execution environment containing all the libraries and modules required for the handler method to
execute. It is either based on the containers or MicroVMs. When the handler exits or returns a response,
it stays active and becomes available to handle other events. If the function is invoked again while the
first event is being processed, the serverless compute platform creates another Function Instance, and the
two events are processed concurrently. As more events come in, the serverless compute platform routes
them to available instances and creates new instances as needed. When the number of requests decreases,
the serverless compute platform stops unused instances to have free scaling capacity for other functions.
Serverless compute platforms usually have an upper limit on how many maximum concurrent instances
called Function Concurrency can be created, such as 1000 for AWS Lambda (see §2.3.2.4) and 3000 for
GCF (see §2.3.2.3). Figure 2.3 summarizes the overview of the typical FaaS function request procedure.

2.3.1.1 Cold-start Problem

FaaS-based functions suffer from the cold-start problem. It is mainly connected with loading the FaaS
function into the executing server’s main memory and preparing the target code’s execution environment.
The starting up of the VM/container and loading of libraries and function code constitute the cold-start la-
tency [202, 63]. Several factors increase the cold-start latency of a function [188, 175]. One of these factors
is the choice of the programming language. While languages such as JavaScript use an interpreter, Java re-
quires a more complex JVM to be set up in the container, leading to higher latency. Another factor that has a
decisive influence on the cold-start latency is the size of the function image. Suo et al. [281] propose HotC,
a FaaS runtime management based on lightweight runtime containers. It leverages container runtime history
and combines exponential smoothing and the Markov chain model to improve predictive accuracy. They
maintain a live pool of already running containers for immediate reuse, since many functions would reuse
the same base container image. These containers are cleaned up after the execution. Google Cloud Platform
(GCP) provides a way to dynamically stream container images over the network [296, 1]. This allows the
startup process of containers to begin before the entire image has been loaded. Furthermore, mature open
source serverless compute platforms like OpenWhisk (see §2.3.2.1) use optimized caching and distinguish
between cold, prewarm, and warm containers to address the cold-start problem [202]. Prewarm containers
already have the runtime environment for the function. For example, when OpenWhisk’s algorithm antic-
ipates Node.js-based functions, it will start preparing generic Node.js containers, which reduces most of
the cold-start time. When a function is executed very frequently, OpenWhisk will detect that and keep its
containers warm. Warm containers are the containers where the function is already initialized and ready to
be run at any time. Another approach for reducing cold starts is using dependency mining to precalculate
the time when a function will be used in the future. This can be done by analyzing dependencies between
different functions and/or by looking at historical invocations [279, 271]. AWS Lambda provides a way for
pre-provisioning resources to the lambda function in order to save cold start time [187].

17

2. Background

2.3.2 Serverless Compute Platforms

FaaS-based functions can be invoked by a user’s HTTP request or by another type of event created within
the serverless compute platform. The serverless compute platform is responsible for providing resources
for function invocations and performing automatic scaling. Currently, many open source and commercial
serverless compute platforms are available [204]. Serverless compute platform implementations are based
on starting containers or MicroVMs for function invocations on top of a container orchestration platform
such as Kubernetes. Applications are defined via a deployment specification that describes the functions,
APIs, permissions, configurations, and events that make up a serverless application. The specification can
be given via a command-line or web interface, or by using frameworks like Serverless [259] and Archi-
tect [16]. Updating of deployment is also done through this deployment specification. All the updates in the
specification are instantly propagated, after which the containers are restarted, or only some configuration
files are updated.

2.3.2.1 OpenWhisk

Apache OpenWhisk is a serverless open source cloud platform originally developed by a research group at
IBM in 2015 and released in December 2016. It was later donated to the Apache Software Foundation [234].
It powers IBM’s serverless offering, IBM Cloud Functions, and implements FaaS on top of Kubernetes as
the container orchestration platform. Functions in OpenWhisk are called actions, and the execution of an
action is called an invocation. Actions and rules can be created through the command-line interface (CLI)
(wsk [14]), user interface (UI), or SDK. The actions can then be invoked either manually through the same
methods or by event triggers. Events can originate from multiple sources, including timers, databases,
message queues, or websites like Slack or GitHub.

OpenWhisk consists of multiple components under the hood, and all the components are packaged inside
the docker containers when OpenWhisk is deployed [13]. Each function invocation is translated into an
HTTP request to the Nginx server [208]. The Nginx server is a single point of entry, and its primary purpose
is to implement the support for the HTTPS secure web protocol. On receiving a request, the Nginx server
forwards it to the controller. The controller is responsible for authenticating and authorizing the requests in
coordination with CouchDB, where all the user’s data and privilege levels are stored. The controller also
has a load balancer that keeps track of the availability of the invokers, i.e., the workers that run the code,
and chooses one of them for the invocation. Controller and invokers communicate through Kafka [112],
a publish-subscribe messaging system. The controller publishes the messages to Kafka addressed to a
chosen invoker. Once the invoker confirms the message delivery, an HTTP request is sent back to the user
with an ActivationId, which can be used for retrieving the results of this function call. This processing is
asynchronous, and however synchronous processing is also available. It functions similarly to asynchronous
processing, except in this case, the client will block until the action is completed and will retrieve the results
immediately. Invokers set up a new docker container for each action, inject the code into them, execute the
code, obtain the results, and then destroy it. These containers are run inside Kubernetes pods. There can be
an invoker per Kubernetes worker node, or an invoker can be responsible for managing multiple Kubernetes
worker nodes. Functions can also be chained into sequences, where chained functions use the output of the
preceding function as input. OpenWhisk supports running functions in languages: Python, Node.js, Scala,
Java, Go, Ruby, Swift, PHP, Ballerina, .NET, and Rust [226]. Functions not using these languages can be
created by providing a custom-built docker runtime.

18

2.3. Serverless Computing

2.3.2.2 OpenFaaS

OpenFaaS is another widely popular open source serverless compute platform developed by OpenFaaS
Ltd [217]. Until March 2019, it was developed by a team of full-time developers from VMWare [100]. It also
implements FaaS on top of Kubernetes as the container orchestration platform. Functions in OpenFaaS can
be written in any language, and unlike OpenWhisk, one does not have to create custom runtimes to make it
work. A pre-built docker image of the function can be supplied to it. Similar to OpenWhisk, functions can be
deployed manually or by setting up triggers through any interface to the OpenFaaS Gateway (CLI/UI/REST).
OpenFaaS Gateway is the single point of entry for all the requests. From the gateway, CRUD (create, read,
update, delete) operations and invocations are forwarded to the faas-provider, i.e., the controller, which
translates OpenFaaS functionality to a certain provider. faas-netes [215] is an example of a faas-provider
in OpenFaaS which enables Kubernetes for it. Because of this transparency to Kubernetes, one can interact
with OpenFaaS resources directly through kubectl, the command line interface for Kubernetes. When a
function is created, its code is pulled from the docker registry and executed inside a container. It utilizes
Prometheus and its AlertManager to continuously expose metrics. The AlertManager uses these metrics to
determine auto-scaling decisions and inform them to the OpenFaaS gateway, which then scales the function
replicas up or down. The minimum (initial) and maximum replica count can be set by adding a label to the
function at the time of deployment. When using Kubernetes, the built-in Horizontal Pod Autoscaler (HPA)
can also be used instead of AlertManager [216]. Scaling down to zero replicas to recover idle resources is
available in the OpenFaaS Pro version. This process is also called "idling" in OpenFaaS. The faas-idler, an
external component, is responsible for making the scaling down to zero decision [214]. It monitors the built-
in Prometheus metrics regularly along with the inactivity_duration variable to determine if a function
should be scaled down to zero or not. Only functions with a label of com.openfaas.scale.zero=true are
scaled to zero, all others are ignored. When using faas-netes as the provider, faas-idler is automatically
deployed.

OpenFaaS’s watchdog is responsible for starting and monitoring functions in OpenFaaS [218]. It provides
a generic interface between the outside environment and the function. The watchdog is a tiny Golang
web server that every function uses as their docker ENTRYPOINT. It acts as the initialization process for
the function container. Once the function is invoked, the watchdog passes in the HTTP request via stdin
and reads a HTTP response via stdout and sends it back to the user. OpenFaaS enables long-running
tasks or function invocations to run in the background using Neural Autonomic Transport System (NATS)
streaming [284]. This decouples the HTTP transaction between the caller and the function. The HTTP
request is serialized to NATS streaming through the gateway as a "producer". The queue-worker acts as a
subscriber and deserializes the HTTP request and uses it to invoke the function directly. To fetch the results
from an asynchronous call, the user can specify a callback Uniform Resource Locator (URL).

2.3.2.3 Google Cloud Functions (GCFs)

Google Cloud Functions (GCFs) (know called Cloud Functions) is a serverless execution environment for
building and connecting services in a cloud-based application offered by GCP [79]. With GCFs, devel-
opers do not need to provision any infrastructure or manage servers. The whole environment, including
infrastructure, operating systems, and runtime environments, is managed by GCP. Currently, GCFs support
JavaScript, Python 3, Go, and Java runtimes. GCFs are simple, single-purpose functions attached to events
emitted from the cloud infrastructure and services. The function is triggered when an event being watched is
executed. These events can be changes in a database, files added to a storage system, or the creation of a new
VM instance. A response to an event is created using a trigger, which can then be attached to a function to
capture and act on events. GCFs can be deployed using the web interface or the gcloud [113] command line

19

2. Background

tool. Each GCF runs in its own isolated secure execution context, scales automatically, and has a lifecycle
independent of other functions [119]. New incoming requests are assigned to function instances. Depending
on the volume of requests and the number of existing function instances, a request may be assigned to an
existing or a new instance. Each instance of a function handles only one concurrent request at a time. Thus,
the original request can use the full amount of resources (CPU and memory) that is requested. In cases
where inbound request volume exceeds the number of existing instances, multiple new instances are started
to handle requests. This automatic scaling behavior allow GCFs handling many requests in parallel, each
using a different function instance.

2.3.2.4 AWS Lambda

AWS Lambda is a high-scale serverless compute platform by AWS [37]. AWS Lambda functions can be
triggered by various events on AWS like API Gateway. API Gateway can invoke a AWS Lambda function
when it receives a HTTP(S) request. Another example of invoking an AWS Lambda function is when
a new message is posted to a Simple Notification Service (SNS) topic. AWS Lambda also provides a
dedicated HTTP(S) endpoint for the function called function URL, that can be used to directly invoke the
function [165]. As events occur, the function code package is downloaded from the S3 bucket, installed in
the runtime environment, and invoked. The runtime environment is based on an Amazon Linux Amazon
Machine Image (AMI) [30]. The function code package contains at least the function code that will be
executed when the function is invoked. However, it may also contain other assets that the code will reference
upon execution, for example, additional files, classes, binaries, and libraries. When a Lambda function
is invoked, code execution begins at the handler. The handler is a specific code method (Java, C#) or
function (Node.js, Python) [28]. The handler can call other methods and functions within the files and
classes uploaded as part of the package. It can also interact with other AWS services or make API requests to
web services. There are two models for invoking a Lambda function: 1) Push Model - the function is invoked
every time a particular event occurs within another AWS service, and 2) Pull Model – AWS Lambda polls a
data source and invokes the function [30]. Also, an AWS Lambda function can be executed synchronously
or asynchronously. AWS Lambda function also scales according to usage, but can be configured to throttle
or increase concurrency if needed.

2.4 Cloud Application’s Architectures
Traditionally, an enterprise application was designed in an n-tier architecture where the application is di-
vided into "n" layers that perform logical functions, such as presentation, business logic, and data access.
These layers are combined to form the monolithic application architecture. However, with the increasing
demand for scalability and elasticity, an application is either decomposed into smaller services forming mi-
croservices application architecture or granular functions to form the FaaS-based application architecture.
Since microservices and FaaS-based application architecture allow a design methodology that utilizes cloud
services to build and run scalable applications in the cloud, these together form the cloud-native applica-
tion architecture. In this section, we give a brief overview of each application architecture, starting with
monolithic application architecture in §2.4.1, microservices application architecture in §2.4.2, and lastly,
FaaS-based application architecture in §2.4.3.

2.4.1 Monolithic Application Architecture

Monolithic application architecture was one of the most widely used design patterns for enterprise applica-
tions [162]. Monolith means composed all in one piece. The application’s components are packaged into a

20

2.4. Cloud Application’s Architectures

(a) Monolithic

Catalog
μService

Payment
μService

Order
μService

API
gateway

User

User-Interface

Load
Balancer

Catalog
DB

Payment
DB

Order
DB

(b) Microservices

API
gateway

User

User-Interface

Load
Balancer

Catalog
DB

Payment
DB

Order
DB

(c) FaaS-based

Figure 2.4.: Overview of three different application architectures.

single monolith (a massive structure) type architecture and deployed on the cloud in the monolithic applica-
tion architecture. It is called multi-tier architecture because the applications are divided into three or more
layers/tiers. For instance, Figure 2.4a shows an eCommerce application that authorizes a customer, takes
an order, checks product inventory, authorizes payment, and ships ordered products. It consists of multiple
modules like the front-end user interface and back-end modules like authorization, placing orders, inventory
checking, and payment. All the modules are packaged as one application and deployed on the cloud. The
whole monolith application can be scaled on-demand horizontally. The benefits of the monolithic archi-
tecture are: 1) easy deployment because the packaged application can be copied easily to multiple servers,
2) developers can efficiently conduct end-to-end testing on this type of architecture with automation tools,
and 3) simple to scale horizontally by running multiple copies of the complete application behind a load
balancer [162]. On the other hand, maintenance, reliability, technology refactoring, and scaling specific
resources are some of the significant drawbacks of this architecture.

2.4.2 Microservices Application Architecture

In contrast to monolithic architecture, microservices architecture design is a more loosely-coupled style [54,
50]. The idea is to split the application into smaller, interconnected microservices. Each microservice is
dedicated to a specific business goal and communicates with others through language and platform-agnostic
APIs. These APIs are typically exposed as Representational State Transfer (REST) endpoints. Each mi-
croservice behaves as an independent, autonomous process without the dependency on other microservices.
Each microservice may have its database or storage system, or they can share a common database or storage
system. Microservices applications have the advantage that instead of launching multiple instances of the
whole application, it is possible to scale-in or scale-out a specific microservice on demand. This allows

21

2. Background

for providing a cost-efficient solution. Figure 2.4b shows the same eCommerce application discussed in
§2.4.1 in microservices architecture design pattern. It shows that all the functionalities are isolated and de-
coupled into purpose-specific microservices with their databases. The front-end is separated from the core
logic and can be scaled independently. Also, the back-end components are separated into different microser-
vices with individual databases. Having individual databases for each microservices allows for modifying
database schemas without impacting any other component in the infrastructure. Each microservice shown
in Figure 2.4b can be placed behind its load balancers to achieve more throughput and availability of that
microservice. The other benefits of a microservices architecture include improved fault tolerance and higher
maintainability [212]. Although microservice architecture comes with many benefits, it also has some draw-
backs. For instance, developers need to deal with the additional complexity of creating a distributed system
by implementing an inter-process communication mechanism based on messaging or Remote Procedure
Calls (RPCs). Also, deploying a microservices-based application is more complex since each microservice
will have multiple instances, and each instance needs to be configured, deployed, scaled, and monitored. In
addition, one needs to implement a service discovery mechanism as well [54, 50].

2.4.3 FaaS-based Application Architecture

Compared to the monolithic and microservices architecture, in FaaS-based application architecture, an ap-
plication is decomposed into simple, standalone functions and uploaded to a serverless compute platform
for execution. These functions are stateless, i.e., the state is not kept across function invocations. The func-
tion must contain a handler function, which may receive a payload upon which it can operate. Functions
can be invoked by a user’s HTTP request or by another type of event created within the serverless compute
platform, such as triggers fired upon arbitrary changes in other cloud infrastructure components. Devel-
opers benefit from various aspects of this application architecture since it uses the serverless computing
cloud model, which allows the benefits of no infrastructure management, automatic scalability, and faster
deployments [105] as most of the infrastructure-based decisions are handled by cloud service providers. Fig-
ure 2.4c shows the same eCommerce application discussed above in FaaS-based architecture design pattern.
The back-end microservices in the §2.4.2 are further decomposed into simple, standalone functions. Since
there are no reserved instances in the serverless computing cloud model, the cost in this model is charged
based on the number of requests received to the functions and the time it takes for the code to execute [38].
Thus providing the advantage of a lower total cost of ownership. In comparison to microservice applica-
tions, FaaS-based architecture has three advantages (1) no continuously running services are required, (2)
functions are only charged when they are executed, and (3) the function abstraction increases the developer’s
productivity. On the other hand, some disadvantages of this application architecture pattern are cold-start
problem [190], end-to-end testing, and vendor lock-in.

Generally, any application could be designed in monolithic, microservices, or FaaS-based architecture. Al-
though all of them could deliver the application’s functionality, scalability, security, interoperability, relia-
bility, and maintainability of the application architecture are the significant differences among them. As a
result, numerous aspects, such as the characteristics of the application, team size, and company culture, play
essential roles when deciding on the application architecture [50].

22

3
Related Work

“Opportunities don’t happen, you create
them."

— Chris Grosser

This chapter discusses the related work to this domain in seven folds. First, on the performance evaluation
of microservices against the serverless applications and discussing the architectural decisions on selecting
microservices or serverless-based application architecture in §3.1. Second, since FDN targets heteroge-
neous workloads to be run on the clusters with heterogeneous serverless compute platforms, we present
the prior work showcasing the use of serverless computing for heterogeneous workloads in §3.2. Then
we present the prior work discussing the performance variations among the serverless compute platforms
in §3.3. Fourth, FDN is designed as a serverless platform to work across the edge-cloud continuum; we
present the prior work of using serverless computing for the edge-cloud continuum in §3.4. Fifth, FDN
works across multi-cloud and hybrid-cloud; in §3.5 we discuss the general cloud-based solutions for multi-
cloud and hybrid-cloud along with specific works which exist in using serverless computing for multi-cloud
and hybrid-cloud. Sixth, in §3.6, we present the related work done in the field of data-aware scheduling
in serverless computing. Lastly, in §3.7, we discuss the various solutions for optimizing the memory of
serverless applications.

3.1 Microservices vs Serverless Applications
With the wide adoption of cloud computing, enterprises have migrated or refactored their existing monolithic-
based applications into the microservices architecture [90]. This migration has affected the application’s
architecture and the team’s structure within an organization [189]. Besides many advantages, microservices
architecture also has some disadvantages in software development. For instance, each service communicates
through the network via REST API endpoints, which can pose data security concerns during communica-
tion. On the other hand, serverless computing has gained higher popularity and more adoption in different
fields [179, 98, 47, 153]. Compared to the monolithic or the microservices architecture, a serverless archi-
tecture releases the effort of server management from the application developers [70]. There are debates

23

3. Related Work

about architecting decisions when choosing serverless or microservices application architecture [96, 285].
Jambunathan et al. [139] elaborated from the service deployment’s perspective. They mentioned that the
serverless-based deployment has infrastructure restrictions that need native cloud service support and must
be hosted by cloud service providers. In contrast, a microservices-based deployment could be deployed on
either the private data center or the public cloud. However, the benefits of auto-scaling without considering
complex server configuration is a deployment advantage on serverless than microservices.
We conducted a thorough performance comparison of a cloud-native web application when deployed as
microservices and FaaS-based functions from the aspects of scalability, reliability, cost, and latency [105,
146]. FaaS-based application in this work was deployed on AWS Lambda, GCF and OpenWhisk, while the
microservices application is deployed on the Google Kubernetes Engine and AWS Fargate. We draw the
following conclusions:

1. Serverless strategy suffers from the cold-start problem: When a function is triggered or invoked
by a user request, the function is deployed in a newly-initiated instance. There is always a certain
small period that a request must wait until the container is ready to serve. The instance usually takes
this wait to initialize the environment and pull the function source code, called the cold-start problem.
There already have been many kinds of research to decrease the cold start time like using pre-warmed
containers [291], periodic warming consisting of submitting dummy requests periodically to induce
a cloud service provider to keep containers warm [322] and pause containers [202]. DevOps need to
consider this when deploying an application and decide whether this deployment strategy is beneficial
or not based on the use case.

2. Microservices deployment strategy suffers from the load balancing and traffic re-distribution
problem: Despite the cold start problem in the serverless deployment, it performed stably after the
initial period. In contrast, microservices deployment had a high peak of duration scattered randomly
during each test. One potential explanation is that these peaks coincide with scaling out or scaling in
time of the autoscaling, which increases the response time. If one needs a stable latency over time,
one could choose deployment using serverless computing.

3. Microservices deployment strategy outperforms when fetching small size and repetitive re-
quests: For the API calls where the requests are with the simple payload and invoked repetitively
having the static or small size response, they should leverage a microservices deployment. Server-
less deployment has some minimum overhead due to the virtualization stack or the different involved
components, which is more than what these cases need. As a result, for such cases, microservices
deployment should be preferred.

4. Serverless deployment is more agile in terms of scalability: As we compare the scalability and
agility of both deployments, serverless is better than microservices. Since the microservices deploy-
ment starts to auto-scale only after the system has reached the defined criteria for at least one minute,
there is always a delay in responsiveness to re-balance the current workload. As a result, there is an
increase in response time with the increasing workload, which drops after the new containers have
been launched. In the end, the granularity of monitoring set at the minute-level limits the agility of
the microservices scalability, which is not the case with serverless deployment. However, this disad-
vantage can be resolved by configuring a proper caching mechanism to store repetitive content, but
the user must deal with more than required.

3.2 Heterogeneity in the FaaS Workloads
Serverless computing can be used for building a myriad of applications such as web applications, IoT,
BigData workloads, chatbots, and Amazon Alexa, as well as IT automation [109, 72]. These serverless

24

3.3. Heterogeneity among the Serverless Compute Platforms

applications generally consist of multiple heterogeneous functions [185]. Orchestration tools such as AWS
Step Functions [261], Azure Durable Functions [193], or OpenWhisk’s Composer [223] facilitate building
such applications consisting of multiple functions. These functions can be arranged sequentially, in parallel,
or in loops and integrate branching and conditional logic. Lynn et al. [183] studied seven different public
serverless compute platforms including, AWS Lambda, GCF, and Microsoft Azure Functions, to showcase
that serverless computing can be applied to a wide range of use cases. Splillner et al. [277] demonstrated
that FaaS model could be used for different batch workloads, like, calculating the value of p , image face
detection, password cracking, and weather forecasting. Serverless computing is highly relevant for scientific
applications [153, 110]. Malla et al. [184] compared GCF with GCE in terms of cost and performance for
a High-Performance Computing (HPC) workload. They found that FaaS can be 14% to 40% less expensive
than IaaS for the same level of performance. However, the performance of FaaS exhibits higher variation due
to on-demand CPUs allocation by the cloud service providers. There are some works using FaaS for data-
intensive applications [311, 84]. Orfin et al. applied FaaS to latency-critical and user-facing applications
and claimed to scale to millions of requests [228]. In our previous work, we also successfully used FaaS
for achieving federated learning by using heterogeneous serverless compute platforms [72]. Based on these
observations, we can say that FaaS workloads are heterogeneous, and the resource requirements for these
functions are very dynamic and can differ vastly. Additionally, the resource requirements for the functions
vary with changes in user input.

3.3 Heterogeneity among the Serverless Compute Platforms
FaaSProfiler [263] is the first to take a bottom-up approach in analyzing the architectural implication to un-
wrap the server-level overheads in serverless computing. They analyzed the difference between native and
in-FaaS function execution and calculated the additional server-level overheads like computational over-
heads, memory consumption, bandwidth usage, and management overheads like orchestration, queuing,
scheduling, and power consumed. Lee et al. [169] compared the performance of serverless compute plat-
forms offered by public cloud providers by showcasing the results of throughput, network bandwidth, file
I/O, and compute performance for the concurrent function invocations. L.Wang et al. [302] performed an
in-depth study of resource management and performance isolation with three popular serverless compute
platforms: AWS Lambda, Azure Functions, and GCF. Their analysis demonstrates a reasonable difference
in performance between the platforms. They state that on Azure, 55% of the time, a function instance runs
on a VM with debased performance. They also state that on Azure, the functions host VMs can have 1, 2, or
4 vCPUs. K. Figiela et al. [107] developed a FaaS function benchmarking framework where CPU-intensive
functions were deployed on various serverless compute platforms. The authors observed fluctuations in re-
sponse time for the identical deployments. Pawlik et al. [231] state that to assess the feasibility of running an
application on the serverless compute platform, we have to determine the SLO of the application. It can be
achieved by constructing a reliable performance model capable of analyzing a function performance, which
requires knowledge about the performance of the infrastructure. Cloud service providers abstract details
such as the number of cores, memory available, and network I/O capacity in the underlying hardware, usu-
ally limiting the available information to function time limit and maximum memory. The allocated memory
also affects the provisioned CPU quota [179]. In our previous work [147], we developed a tool for estimating
the maximum number of requests a microservice can handle when it is sandboxed. This capacity estimation
of microservices enables us to ensure the flexibility of the capacity planning for a microservices application.
These observations encouraged us to proceed with our work on estimating the capacities of functions when
deployed with different deployment configurations (memory and maximum function instances) (§5.1). To
our knowledge, none of the prior works take function_concurrency and sandboxing of FaaS functions into
account when conducting research in the area of FaaS.

25

3. Related Work

Furthermore, researchers have already identified the limitations of current serverless compute platforms,
such as no control over specifying additional hardware resources like the required number of CPUs, GPUs,
or other types of accelerators for the functions, and inefficient communication patterns between functions
because of the data access latency [128, 47, 127]. Jonas et al. [152] suggest some improvements and
workarounds which can be adopted to overcome these limitations. Since the FDN targets heterogeneous
clusters, it can overcome these limitations by taking into account the cluster’s heterogeneous resources
(CPUs, and GPUs) and scheduling the function’s invocations automatically to the right target cluster. In this
process, one can also use FDN to replicate the data in the cluster where the function is scheduled. Shahrad
et al. [263] studied the architectural implications of serverless computing and pointed out that the short
function runtimes hamper exploitation of system architectural features like temporal locality and reuse in
FaaS. We also examine the underlying processor architectures for GCF and determine the optimization of
FaaS functions using Numba can improve performance by 18.2x (geometric mean) and save costs by 76.8%
on average for the six functions [71]. PyWren [153] utilized an external ad-hoc orchestrator to share state and
synchronize parallel execution of functions in simple map-reduce applications. There has also been some
work to enhance the function startup latencies, such as SAND [7] in which the authors utilized application-
level sandboxing and a hierarchical message bus for achieving shorter startup delays and efficient resource
usage. McGrath et al. in [190] proposed a queuing scheme with workers, in which function containers that
can be reused are put into warm queues, and workers where new containers need to be created are put into
cold queues.

Pfandzelter et al. [233] highlight the problem of running cloud-based serverless compute platforms on edge
and introduce a new platform called tinyFaaS for edge environments. In order to show the effectiveness
of this new platform, they compared it to Lean OpenWhisk and Kubeless by deploying them on a Rasp-
berry Pi. The main results show that the response latency and scalability are much worse in both cases than
in tinyFaaS. Increasing the incoming load of requests on both platforms increments the error rate, while
tinyFaaS could still satisfy all the requests. Another interesting serverless compute platform is BlastFunc-
tion, an Field-Programmable Gate Array (FPGA) sharing system designed for improving the performance
of microservices and serverless application [87]. The main reason behind this project is to extend serverless
computing to FPGAs to provide more hardware choices to the users. The performance of specific cloud
applications may significantly increase with the utilization of FPGAs, since it would accelerate compute-
intensive workloads.

These observations showcase the heterogeneity in the performance and resource availabilities of the various
serverless compute platforms. Additionally, using the same platform for all types of clusters is not efficient,
but it is better to develop specific platforms according to the needs. Thus, FDN across these heterogeneous
serverless compute platforms can provide a way for enabling the scheduling of the functions on them by
delivering the function invocations to the right platform based on its requirements.

3.4 Serverless Computing across the Edge-Cloud Continuum

In fog and edge [272, 229] computing, a considerable amount of research work has also been done to de-
velop resource provisioning and management methods. Also, there have been studies on integrating edge
and cloud computing for allowing the deployment of services on the resource-constrained edge devices
and offloading compute-intensive parts to the cloud [299, 292, 124, 76]. Although the different proposed
approaches for resource provisioning show promising results in traditional computing environments, they
have not been evaluated and extended to be used with serverless computing. The first documented ef-
forts to bring serverless capabilities to the edge came from the industry with the introduction of AWS
Lambda@Edge [297], allowing one to explicitly deploy lambda functions to edge locations. This is then

26

3.5. Serverless Computing across Multi-Cloud

used within the IoT Greengrass system of Amazon [36]. It allows integrating edge devices with cloud re-
sources in a serverless compute platform, and the Lambda functions running on it are deployed to the edge
computers. Satyanarayanan et al. [257] propose an edge computing approach to offload computation from
mobile devices to the network edge using VMs based cloudlets. Bermbach et al. [53] have a very particular
auction-based approach in which application developers bid on resource fog nodes to make a local decision
about which functions to offload while maximizing revenue. It requires no centralized coordination and
focuses on maximizing the earnings for the infrastructure provider. On the other hand, there is no guarantee
for the user that its function will be executed. Baresi et al. [49] propose a serverless model for Multi-Access
Edge Computing (MEC). They provide a broader range of application scenarios and optimizations, compos-
ing a serverless edge platform. KubeEdge [314] is an open-source system extending native containerized
application orchestration and device management to hosts at the edge. These frameworks focus on execut-
ing the applications only on edge by extending cloud-based serverless compute platforms on edge. FDN
includes edge-clusters, allowing the user invocations to be delivered to the functions deployed closer to the
users, providing better performance. Furthermore, FDN allows multiple instances of the same function to
coexist across multiple heterogeneous clusters, thus providing a way for handling function invocations from
various opportunistic requirements.

3.5 Serverless Computing across Multi-Cloud

Although serverless computing is a new topic, it has been an active research topic [47, 127, 99, 123, 282,
53, 8]. However, not many have explored the direction of serverless computing across multi-cloud. In
this section, we first present the general solutions connecting multiple cloud platforms in §3.5.1 and then
solutions connecting multiple serverless compute platforms in §3.5.2.

3.5.1 Solutions Connecting Multiple Cloud Platforms

Brogi et al. present a software system called SeaClouds - Seamless adaptive multi-cloud management of
service-based applications that tries to simplify the distribution, monitoring, and migration of PaaS software
across multiple heterogeneous platforms [58]. The SeaClouds system deploys the different modules to
the optimal platform, i.e., the platform that fulfills the requirements of the specific module. Additionally,
it monitors the platform to ensure that it meets the requirements in the future. FDN consists of similar
components, like SeaClouds. However, due to the nature of FaaS, we developed additional components
like a load balancer. Apache Brooklyn is software to control applications’ deployment, monitoring, and
management in cloud environments [59]. It works by connecting different APIs and SDKs to provide a
single software interface. It can conduct complex actions such as deploying a new web server instance and
configuring the load balancer afterward. The developer can specify such actions via pre-defined policies
and rules described in so-called blueprints in YAML syntax. Unfortunately, Apache Brooklyn lacks direct
support for FaaS.

3.5.2 Solutions Connecting Multiple Serverless Compute Platforms

Aske et al. present a software system that helps developers define custom scheduling strategies [17]. To
their service, they connected two public serverless compute platforms (AWS Lambda and IBM Bluemix)
and one local OpenWhisk cluster. They implemented a low-latency scheduling algorithm that forwards
requests to the cluster with the lowest Round Trip Time (RTT). Based on that algorithm, they can reduce

27

3. Related Work

the overall computation time drastically. We use a similar approach in FDN to leverage the benefits of
heterogeneous clusters by developing a latency-aware scheduling algorithm for orchestrating the invocations
of the functions across the clusters. They do lack the support of seamless function deployment across the
edge-cloud continuum, which FDN supports. Baarzi et al. introduce the concept of a virtual serverless
provider (VSP) to allow customers to deploy serverless applications to different cloud providers through a
consistent interface, hiding the differences from the users and helping them escape provider lock-in [46].
They also mention the issue of data locality and the importance of placing functions as close as possible to
the data since this data can be costly to move or even illegal due to regulatory restrictions. Their primary
focus is only on the function deployment, whereas FDN provides much more.

Furthermore, GCP has introduced load balancing of user requests to a serverless Network Endpoint Group
(NEG) that consists of a Cloud Run, App Engine, or GCF service [236]. The load balancer serves as the
front-end and proxies traffic to the specified serverless endpoint in this service. If the backend service
contains multiple serverless NEGs, the load balancer balances traffic between these NEGs, thus minimizing
request latency. However, serverless NEGs can point only to GCF residing in the same region where the
NEG is created, and it is only restricted to their infrastructure. This is not the case with our implementation;
FDN can work with heterogeneous clusters spread across multi-cloud and hybrid-cloud. Additionally, the
load balancer to serverless NEG cannot detect if the underlying serverless resource (such as an App Engine,
GCF, or Cloud Run (fully managed) service) is working as expected. This means that if a function deployed
on GCF in one region is returning errors, but the overall infrastructure is operating normally, then the load
balancer will not automatically direct traffic away to other regions. This is mitigated in our implementation
by redirecting the traffic to other clusters in different regions, depending on their response times.

We first introduced the concept of FDN in 2020, consisting of a network of multiple heterogeneous target
clusters orchestrated by a control plane capable of placing functions into several FaaS platforms [149, 150].
The FDN allows combining serverless compute platforms with different software and hardware character-
istics. Doing so reduces overall energy consumption and provides better response times. To the best of
our knowledge, there has been no implementation of FDN in literature, though it is urgent and a practical
problem.

3.6 Data-Aware Scheduling in Serverless Computing

Serverless compute platforms do not afford end-users much control over where a function is executed. It
becomes a problem when a function requires data not proximal to its execution location. It will cause data
transfers and a significant idle period while the function waits for the data transfer to finish. Disregarding
data locality when scheduling functions thus causes increased response times and inefficient network traffic,
incurring more costs and potentially crippling SLOs. Latency-sensitive tasks, such as media streaming or
complex distributed machine learning calculations, are thus not well suited to the current FaaS model [280].
A vision of functions as processes and the data center as a giant computer is presented by Al-Ali et al. [8] in
a new abstraction called ServerlessOS. It aims to support not only event-driven computing but more general
applications as well. Data management could be beneficial in this case, but the Edge nodes are not men-
tioned. Suresh et al. [282] present a function-level scheduler designed to minimize provider resource costs
while meeting customer performance requirements. They do so by profiling the application and estimating
the CPU shares. It is intended to be an option for existing baselines. They use a cloud-only solution, thus,
not considering Edge nodes and data movement. Hellerstein et al. [127] describe FaaS as a data-shipping
architecture because it still ships data to code rather than shipping code to data, and sees it as perhaps the
biggest shortcoming of serverless compute platforms. The approach of fluid code and data placement, de-
scribed as stepping forward to the future, is the suggested solution to the problem previously mentioned by

28

3.7. Memory Optimization of Serverless Applications

which the platform would physically colocate particular code and data. We designed the data replication in
FDN based on this approach.

3.7 Memory Optimization of Serverless Applications

Many research works are aimed at optimizing the memory and cost for the FaaS functions. COSE [6] frame-
work finds the optimal configurations for a FaaS function using the Bayesian Optimization algorithm while
minimizing the total execution cost. It models not only the behavior of a function but also the environment
(cloud, edge) in which those functions are deployed. However, they consider FaaS functions separately and
optimize them based on cost. Bayesian Optimization was also used in CherryPick [9] tool for creating per-
formance models for different cloud applications. The system provides 45-90% accuracy in finding optimal
configurations and decreases costs up to 25%. However, they focused on traditional cloud applications.
Another framework, Astra [143], is designed to optimize FaaS function configurations for specifically map-
reduce usecase. Google and Amazon have also developed similar optimization tools. Google has developed
a recommendation system to help the users choose the optimal VM type [118]. It currently does not support
GCF. AWS Compute Optimizer [34] recommends optimal AWS resources for applications to reduce costs
and improve performance by using machine learning to analyze historical utilization metrics. It can also
be used to find optimal memory configurations for the lambda-based function. However, it can only be
executed for the functions whose allocated memory level is less or equal to 1792MB and invoked at least 50
times in the last two weeks. AWS Lambda Power Tuning [69] tool uses an exhaustive search to identify the
optimal memory level for a cost, or execution time. This algorithm will default need to perform at least 225
requests to the function to identify the optimal memory point. We also have developed a framework called
MAFF [321], that uses numerous algorithms for various optimization objectives for automatically finding
the optimal memory configurations of the FaaS functions.

None of the aforementioned research efforts address the issue of automatically configuring optimal memory
of FaaS functions within a serverless application based on the user-defined SLOs. Most of the research
addresses a single FaaS function or an application consisting of step functions that do not have complex call
graph workflows. The proposed tool SLAM described in Chapter 7 fills that gap by creating a recommenda-
tion tool that in a short time can find optimal memory configurations of FaaS functions within a serverless
application given the SLOs.

29

4
FDN: Function Delivery Network

“If you can’t yet do great things, do small
things in a great way."

— Napoleon Hill

We develop an extension to the concept of FaaS as a programming interface for serverless computing across
the edge-cloud continuum. This extension is a network of distributed heterogeneous serverless compute
clusters spread across the edge-cloud continuum called Function Delivery Network (FDN). FDN provides
seamless integration across the edge-cloud continuum by allowing the user to deploy and invoke the func-
tions across heterogeneous serverless compute clusters in the continuum. FDN provides Function-Delivery-
as-a-Service (FDaaS), which can deliver user workload functions invocations to a subset of serverless com-
pute clusters spread across the continuum based on : 1) function-awareness, and 2) data-awareness. The
invocations are then load balanced across the selected subset of clusters based on the set load balancing
algorithm.

In this chapter, we introduce the Function Delivery Network (FDN) and its components. We start with FDN
design overview, explaining the functional and non-functional requirements which FDN seeks to fulfil in
§4.1.1, then the design methodology based on which we developed FDN in §4.1.2, and in §4.1.3, we present
the final high-level overview of the FDN architecture. In §4.2, we explain each component of FDN in detail.

4.1 FDN Design Overview

Before jumping into the implementation process and architecture of FDN, it was essential to carefully spec-
ify the core requirements to address the motivation goals (listed in §1.1) and which FDN needs to fulfill
(§4.1.1). These requirements then led to an initial design proposal [149], which we improved over time
following a design methodology described in §4.1.2. We present the final architecture of FDN in §4.1.3.

30

4.1. FDN Design Overview

4.1.1 Requirements

In this section, we present the functional (§4.1.1.1) and non-functional (§4.1.1.2) requirements that FDN
seeks to fulfill.

4.1.1.1 Functional Requirements

FDN seeks to fulfill the following functional requirements:

Multiple serverless compute platforms support: FDN should be able to support multiple serverless com-
pute platforms from different public cloud providers and open-source ones: AWS lambda, GCF, Open-
Whisk, and OpenFaaS. It is challenging since some platforms are based on Kubernetes, while some are
leveraged directly from the public cloud providers. Each serverless compute platform has their own APIs
and SDKs. Furthermore, due to resource constraints on edge devices, not all serverless compute platforms
can run on them.

Management of clusters spread across the edge-cloud continuum: FDN should have the functionality
to automatically manage the serverless compute clusters based on different serverless compute platforms
spread across the edge-cloud continuum. Managing involves the addition, deletion, and update of the clus-
ters. It should be designed in a scalable way so that the performance of FDN is not hampered, and new
clusters could be added easily. Information related to the clusters that are part of FDN should be persisted
over time. Additionally, FDN should be able to detect if clusters are available or not, including overloaded
as well as offline clusters.

Seamless functions management across the clusters in the FDN: Each serverless compute platform has
its own set of tools and APIs to perform function management operations. This makes it difficult for the
users to create, delete, update and invoke functions on all the clusters based on the different platforms.
Therefore, the FDN should provide the user with a standard interface for deploying, deleting, updating, and
invoking the functions on all the clusters spread across the edge-cloud continuum. Furthermore, the user
should be able to upload the code to the FDN, and the FDN should have the functionality to store it.

Data management across the clusters in the FDN: Data placement across the clusters must be considered
to reflect the function’s data affinity. Therefore, FDN should maintain information about the storage end-
points (currently, we only consider object storage, MinIO [201]) from all the clusters. FDN should be able to
discover storage buckets across clusters and dynamically automate the replication of partial data sets across
clusters according to user-specified configurations and changes in the data. This is specifically necessary
for data-aware function delivery. FDN should provide a high-level endpoint to manage storage buckets and
enforce user-defined constraints on data placement.

Clusters and functions monitoring: FDN should be able to gather performance metrics data on function
invocations from all the clusters. It is especially relevant for the function delivery and load balancing across
the subset of clusters described in Chapter 6. Furthermore, FDN should be able to monitor the platform, i.e.,
the serverless compute platform. For the clusters deployed either on-premise or at the edge, FDN should
be able to monitor the infrastructure, i.e., collect infrastructure-based metrics. All the platforms have their
naming conventions for each metric; therefore, FDN should be able to map the different metrics’ names
from each platform to one standard naming convention. It will simplify comparison and decision-making
across clusters within FDN.

Function invocations delivery and load-balancing across the clusters in the FDN: The FDN should be
able to receive function invocation requests and deliver them to a subset of serverless compute clusters spread

31

4. FDN: Function Delivery Network

Kubernetes API

node

kubelet

node

kubelet

node

kubelet

node

kubelet
virtual
kubelet

virtual kubelet registers itself as a node and allow developers
to deploy pods and containers with their own APIs

virtual
kubeletCreatePod

UpdatePod GetPod

GetPods

GetPodStatus

NodeConditionsCapacity

Figure 4.1.: A high-level design of Virtual Kubelet. Virtual Kubelet is an open-source Kubernetes kubelet
implementation that masquerades as a kubelet to connect Kubernetes to other platforms [164].

across the continuum based on: 1) function-awareness and 2) data-awareness delivery policies (§6.3.1).
Then it should be able to load balance the invocations across the selected subset of clusters based on the set
load balancing algorithm (§6.3.2).

Behavioral modeling of functions in the FDN: The FDN should be able to support two behavioral models
(described in Chapter 5) of functions: 1) performance model and 2) interaction model, deployed across the
clusters using the monitoring data to enable autonomous orchestration decisions.

4.1.1.2 Non-Functional Requirements

Alongside the functional requirements defined above, FDN also looks to fulfill the following set of non-
functional requirements:

1. Scalability: To handle more requests, FDN as a framework should be able to run across multiple
nodes in a cluster without any modifications to the software.

2. Extensibility: The FDN should be easily extendable. It includes supporting new serverless compute
platforms, adding new clusters, and implementing new function delivery and load balancing strategies.

3. Performance: FDN should perform efficiently, adding as little overhead as possible to function de-
livery and load balancing tasks.

4. Minimize vendor lock-in: FDN should provide an abstraction layer to vendor-specific APIs.

4.1.2 Design Methodology

One of the design decisions we had to make when implementing FDN was how we could manage the mul-
tiple clusters spread across the edge-cloud continuum? We initially developed a tool [145] using serverless
framework [259] for managing serverless compute clusters with different platforms. A user could also use

32

4.1. FDN Design Overview

Serverless Compute
Cluster - 'n'

AWS
Lambda

Serverless Compute
Cluster - 'n-1'

Cloud
Functions

Serverless Compute
Cluster - 2

Open-
Whisk

Serverless Compute
Cluster - 1

Open-
FaaS

...

...

Kubernetes Master

FDN Management
Cluster

Lower Clusters

FDN-provider
virtual kubelet

virtual-node

FDN-provider
virtual kubelet

virtual-node

FDN-provider
virtual kubelet

virtual-node

FDN-provider
virtual kubelet

virtual-node

 kubelet

node

kubelet

node

Figure 4.2.: A high-level design of FDN-provider in Virtual Kubelet. Every Virtual Kubelet node created
using FDN-provider acts as a proxy for mapping to actual underneath serverless compute clus-
ters. Pods created/deleted on virtual worker nodes are automatically mapped to functions in the
underneath serverless compute clusters.

it for deploying functions to those platforms. However, it was not scalable, and the user had to specify many
parameters. Then we thought that since Kubernetes is designed for managing containers and nodes across a
highly distributed environment, why not leverage it to manage multiple serverless compute clusters? How-
ever, Kubernetes, by default, does not have the provision for managing clusters. Nevertheless, if we could
replace a node within Kubernetes with a cluster and all the pods created on that node map as functions in
the cluster, we would be able to manage the clusters. This design methodology leads our search to Virtual
Kubelet [164].

Virtual Kubelet is an open-source Kubernetes kubelet implementation that masquerades as a kubelet to con-
nect Kubernetes to other platforms [164]. It enables Virtual Kubelet to act as a proxy for Kubernetes to
other platforms. Figure 4.1 shows the high level design of Virtual Kubelet. Virtual Kubelet registers itself
as a virtual-node in Kubernetes and passes the API calls meant for those virtual-nodes to the corresponding
platform. For Virtual Kubelet to function, one needs to write the translation of APIs such as pod manage-
ment, pod status, and node status meant for virtual-nodes to the actual platform’s APIs. These translations
of APIs go in a pluggable provider interface within Virtual Kubelet that one needs to implement for defin-
ing the custom actions. The provider provides the back-end plumbing necessary to support the lifecycle
management of pods, containers, and resources in Kubernetes [164]. There already exists several providers
such as AWS Fargate Provider [23] for integrating with AWS Fargate service, Azure Container Instances
Provider [45], and OpenStack Zun [219].

In order to integrate several serverless compute platforms, we created our custom provider called FDN-
provider [144] for Virtual Kubelet. FDN-provider acts as federation for multiple serverless compute clusters.
Every Virtual Kubelet node created using FDN-provider acts as a proxy to a serverless compute cluster. The
serverless compute cluster could be based on any serverless platform like OpenWhisk, OpenFaaS, GCF, and

33

4. FDN: Function Delivery Network

AWS Lambda. FDN-provider contains the APIs for managing the functions in different serverless compute
platforms. It enables mapping the pods create or delete requests on virtual worker nodes to the functions
create or delete requests on underneath serverless compute clusters. FDN-provider currently supports four
serverless compute platforms: AWS Lambda, GCF, OpenWhisk, and OpenFaaS. Figure 4.2 shows the high
level design of FDN-provider when deployed on a Kubernetes cluster. FDN Management Cluster represents
the cluster where all components of FDN are running, and the lower clusters are the serverless compute
clusters deployed with different platforms spread across the edge-cloud continuum. Such a design allows
FDN to scale easily using Kubernetes features and incorporate new serverless clusters. For integrating a
new cluster, one has to start a virtual-node customized for that cluster using a Kubernetes-based deployment
configuration file with some command line parameters. The template of the deployment configuration
file along with the command line parameters are shown in Listing A.1 in Appendix A. This template is
automatically generated and applied when a new cluster is added and registered in FDN respectively. This
design methodology enables using kubectl-based create and delete commands for creating and deleting
functions on the respective serverless compute cluster. It is done by creating a Kubernetes deployment
file for the function and applying it in the cluster. The Kubernetes deployment file template for creating a
function is shown in Listing A.2 in Appendix A.

4.1.3 FDN High-level Architecture

In order to address the requirements described in §4.1.1, FDN has been designed following a highly modular
and distributed architecture. It consists of several components and is divided into multiple layers. Figure 4.3
shows the overall architecture of FDN, with rows corresponding to different layers within FDN. FDN archi-
tecture is divided into six layers, described below (from bottom to top):

• Infrastructure Clusters: This layer corresponds to the serverless compute clusters part of FDN.
These can either be created by FDN or created externally and then registered with FDN. The clusters
are based on serverless platforms and are spread across the edge-cloud continuum. Each cluster is
attached with a MinIO instance, where the data required by the functions are stored as objects in
buckets.

• Monitoring: It is responsible for collecting monitoring data from the serverless compute clusters
part of FDN and storing them into the database following a standard naming convention. It gathers
function performance metrics, serverless compute platform metrics and infrastructure metrics.

• Management: This layer manages the functions, clusters, and data within FDN. The information
related to clusters that are part of FDN, what functions are running on which clusters within FDN, and
which storage buckets are located on which clusters are stored inside the FDN inventory database in
this layer. The function’s source code is stored inside the MinIO instance present in this layer.

• Modeling and Scheduling: Different behavioral models (Chapter 5) of functions deployed in FDN
are build in this layer. Additionally, this layer is also responsible for delivering function invocation
requests to the target clusters according to the specified function delivery policy (§6.3.1) and load
balancing across the selected subset of clusters. Data corresponding to models and load balancer are
saved in different databases within this layer.

• Client: This layer offers three perspectives to distinguish three different types of clients: user applica-
tions that invoke the FaaS function via user APIs, developers, and administrators/operators. The user
client applications send function invocation requests to the load balancer, which handles requests’
delivery and load balancing. Developers use the developer API to deploy, update or delete a function
in the FDN. Administrators via the admin API manage the FDN administrative decisions.

34

4.2. FDN Components

Serverless Compute
Cluster - 'n'

AWS
Lambda

Serverless Compute
Cluster - 'n-1'

Cloud
Functions

Serverless Compute
Cluster - 2

Open-
Whisk

Serverless Compute
Cluster - 1

Open-
FaaS

...

virtual-node virtual-node virtual-node virtual-node
FDN

Monitor

FDN
Monitoring

Data

...
FDN

Monitor
FDN

Monitor
FDN

Monitor

BEHAVE:
Behavioral
Modeling

Clusters
Management

Courier Load
Balancer

Courier Control
Plane

Functions
Management FDN Inventory

Admin APIsDeveloper APIsUser APIs

FDN-UI

Functions
Code

LB Databse

Data
Orchestrator

In
fra

st
ru

ct
ur

e
C

lu
st

er
s

 M
on

ito
rin

g
M

od
el

in
g

an
d

 S
ch

ed
ul

in
g

M
an

ag
em

en
t

Models

FDN DataplaneAP
Is

U
I

Figure 4.3.: A high-level architecture design of the Function Delivery Network (FDN). FDN architecture
is divided into six layers, with each row in the figure corresponding to a different layer. FDN
exposes three different types of APIs to distinguish three different types of clients: user appli-
cations that invoke the FaaS function via user APIs, developers, and administrators/operators.
All the data within FDN corresponds within the FDN dataplane.

• UI: This layer corresponds to a frontend client to allow end-users to visually and intuitively interact
with the FDN and affect changes through the FDN’s APIs.

4.2 FDN Components

In this section, we describe each component of FDN in detail.

4.2.1 FDN’s Serverless Compute Clusters

The serverless compute clusters are the operative component of the FDN and contain the deployed func-
tions. A serverless compute cluster consists of a serverless compute platform (like AWS Lambda, GCF,
OpenWhisk, and OpenFaaS) deployed on homogeneous compute nodes with specific hardware configura-
tions either at the edge or in the cloud or on-premise [149]. The serverless compute platform is responsible
for providing resources for function invocations and performing automatic scaling. Since FDN is designed
to span across the edge-cloud continuum, the clusters within FDN are heterogeneous. For example, a cluster
consisting of VMs in the cloud and another consisting of resource-constrained edge devices. Integrating

35

4. FDN: Function Delivery Network

clusters with different computing power levels can potentially improve overall application performance.
Different types of hardware may reduce the overall energy consumption by integrating IoT and other low-
power target clusters [51]. In the same way, high-performance computing target clusters might add large
amounts of computing power. Other domains where heterogeneous clusters can be relevant are edge and
fog computing. Both domains include several types of hardware nodes, sometimes with a considerable
difference in computing power (e.g., a smartphone and an AWS EC2 instance).

In order for a cluster to be incorporated within FDN, it must have the following:

• A cluster consisting of a serverless compute platform is deployed in the public cloud, on-premise, or
at the edge. Four serverless platforms can be integrated into FDN: AWS Lambda, GCF, OpenWhisk,
and OpenFaaS. These clusters should have an endpoint like a reverse proxy endpoint or a load balancer
endpoint to which FDN can access. FDN currently does not influence the function execution within a
cluster.

• Second, each cluster should have a monitoring solution deployed in them. We consider Prometheus [239]
for on-premise and edge clusters, while AWS CloudWatch [81] for AWS Lambda and stackdriver
monitoring [117] in GCF. This monitoring solution should expose an endpoint from which FDN can
gather monitoring data periodically related to the cluster and platform.

• Third, each cluster is attached with a MinIO [201] instance, referred to as the storage endpoint. These
storage instances store the data the functions require as objects in buckets. The storage access cre-
dentials are provided to FDN when the cluster is registered so that FDN can orchestrate the data.
Currently, only MinIO based storage option is supported in FDN.

4.2.1.1 Cluster Types

We consider three types of serverless compute clusters based on the location they are deployed: at the edge
or on-premise, or in the cloud. The following subsections describe each of them in more detail.

Edge Cluster: The edge-cluster consists of embedded devices with limited resources, such as Nvidia Jetson
Nano [288]. Due to the limited resources available on these boards, it is not possible to run heavy server-
less compute platforms like OpenWhisk. Therefore, for edge-clusters, we target OpenFaaS as it supports
low-end devices and provides binaries for ARM processors. For running OpenFaaS, we need to run the Ku-
bernetes cluster on the edge devices; therefore, we utilized k3s [243], a lightweight version of Kubernetes,
to host a Kubernetes cluster on edge devices. k3s reduces the footprint and bootstrap-process of Kubernetes
and combines all the low-level components required for running a Kubernetes cluster such as containerd,
runc, and kubectl into a single binary.

On-Premise/Private Cluster: This cluster type is hosted on the VMs created on-premise using virtualiza-
tion and resource management tools such as OpenStack. We first deploy a fully-fledged Kubernetes cluster
on the VMs using kubeadm for this cluster type. Then we deploy an open-source serverless compute plat-
form such as OpenWhisk or OpenFaaS in that cluster. This cluster type is essential for running functions
that work on private data residing on-premise. Similarly, like edge-clusters, one needs to provision a master
and multiple worker nodes here.

Public-cloud Cluster: We use a public serverless platform such as GCF or AWS Lambda for creating
a public-cloud-cluster. These platforms do not provide internal configuration details of the VMs or the
containers in which the functions are deployed. GCF, by default, provide an HTTP/HTTPs endpoint to
the function. In AWS Lambda, previously, one needed to attach an API gateway to the function to get an
HTTP/HTTPs endpoint. However, now by default, the AWS Lambda function gets an endpoint URL [68].

36

4.2. FDN Components

Roles

(Infrastructure-as-
a-Code)

Terraform

Master

Workers

Cloud
Provider

Create Nodes

Create
Inventory

Inventory files

Management
Node

SSH

SSH

Playbooks 1. Install Packages
2. Install Kubernetes
3. Deploy Serverless platform

1

3

2

4

5

6

6

Serverless
Platform

Figure 4.4.: Automation workflow for creating a serverless compute cluster hosted in a private cloud using
Terraform and Ansible.

Furthermore, each of these platforms has a limit on the maximum number of function instances which can
be created, 1000 for AWS lambda per account and 3000 for GCF per function. Thus, our clusters created on
these platforms have these as upper limits.

4.2.1.2 Clusters Creation Automation

All the provisioning, deployment, and configuration of several clusters can be quite tedious and error-prone
if performed by hand repeatedly. We, therefore, have developed automation to handle these tasks. These
tasks differ for self-hosted clusters and public cloud clusters. All the edge and on-premise clusters require
the deployment of Kubernetes and the serverless compute platform. Furthermore, for a private cloud-based
cluster, one needs to provision and configure VMs as well. Therefore, we created the automation based
on the popular tools Terraform [132] and Ansible [2]. Terraform enables infrastructure to be expressed
as code in a simple, human-readable language called HashiCorp Configuration Language (HCL) [132].
As a result, the code can be versioned in a Version Control System (VCS) and track any changes made.
Terraform is used for provisioning of VMs in the private-cloud cluster. Our private-cloud cluster resources
are provided by Leibniz-Rechenzentrum (LRZ) [170] and it is based on OpenStack [258]. Therefore, we
have used OpenStack modules within Terraform automation. Ansible, on the other hand, is an IT automation
tool. It can configure systems, deploy software, and orchestrate more advanced IT tasks such as continuous
deployments or zero downtime rolling updates [2]. In this automation, Ansible is mainly used to create and
configure a Kubernetes cluster and deploy a serverless platform in the cluster.

Figure 4.4 shows the workflow of the automation pipeline. It starts with Terraform provisioning the VMs
on the cloud provider, grouped into master and worker nodes (step 1). Based on these groups, terraform
creates inventory files containing the VM’s host information and SSH credentials (step 2). Based on the
group in these inventory files (step 3), Ansible picks the playbooks (step 4). Playbooks are the basis for
a simple configuration management and multi-machine deployment system. They can also orchestrate steps
of any manually ordered process and launch tasks synchronously or asynchronously [3]. Each playbook
contains certain roles (step 5). Roles are ways of automatically installing certain modules and running
some tasks [251]. Ansible SSH into the VMs and runs the roles specific to the group the VM belongs to

37

4. FDN: Function Delivery Network

(step 6). In clusters where the servers or VMs are already provisioned, we start from step 3 . The link to
the automation pipeline is specified in Appendix B in Table B.1.

We do not provision any VMs or install modules for serverless clusters based on the public cloud. They
are managed entirely by cloud service providers. We only need the API access credentials for managing the
functions; therefore, we have not created the automation for them.

4.2.2 FDN-Monitor

In order to collect monitoring data from various serverless compute clusters within FDN, the first challenge
is to find what metrics to collect. Serverless compute clusters within FDN uses different serverless compute
platforms, and each platform has its monitoring solution, thus diverse metrics. In the following paragraphs,
we describe the monitoring stack used within each cluster based on different platforms.

AWS Lambda based Cluster: Functions deployed in this cluster are automatically monitored and collected
by AWS CloudWatch [81]. Amazon CloudWatch is a monitoring service for resources, and the applications
run on AWS. Therefore, we do not have to deploy any monitoring solution for it. We extract various metrics
from it via REST API calls.

GCF based Cluster: Here also, the functions are automatically monitored by the cloud monitoring solution
of Google Cloud called Google Cloud’s operations suite (formerly Stackdriver [117]). Therefore, we do not
have to deploy any monitoring solution for it as well. We again extract various metrics from it via REST
API calls.

OpenFaaS and OpenWhisk based Cluster: Here the platform is deployed on top of Kubernetes; therefore,
we have used a monitoring stack with Prometheus [239] for them. We have deployed two Prometheus
instances in each cluster with various exporters. One Prometheus instance for the Kubernetes cluster, with
cAdvisor [64] and node-exporter [240] as exporters, to collect metrics from the containers and nodes within
the cluster, respectively. While the second Prometheus instance is deployed for collecting various metrics
from the platform itself. Both the Prometheus instances can be merged, but they are kept separated in our
deployment.

For collecting a wide variety of metrics from serverless clusters using different serverless platforms, we
have built a client-based tool called FDN-Monitor. FDN-Monitor is responsible for gathering monitoring
data metrics under the following three categories:

• User-Centric metrics: This category corresponds to metrics that a user of FDN can observe. The
90-percentile (P90) response time of requests, and the number of successful and failed invocations
served per unit time, are calculated as part of this class of metrics.

• Platform-Centric metrics: Here the metrics corresponding to the serverless compute platform are
collected. These are the number of function invocations resulting from the received requests, number
of function instances, maximum number of concurrent instances allowed for processing events, num-
ber of cold starts, the execution time of the function (excluding the startup latency), and the memory
allocated to each function instance. These metrics differ from platform to platform in name and also
in number. For platforms hosted on Kubernetes, we can collect the function’s resource consumption
metrics such as CPU, memory, Disk I/O, and network usage.

• Infrastructure-Centric metrics: Here, the metrics from the host machines in the cluster are col-
lected. Therefore, this category only exists for clusters hosted on edge or on-premise. The amount
and usage over time of static resources, such as the number of cores, memory usage, Disk I/O, and
network usage of individual nodes within a cluster, are collected under this category.

38

4.2. FDN Components

Table 4.1.: The summary of the monitoring metrics from Platform-Centric and Infrastructure-Centric cat-
egories for all the four serverless platforms considered in this work, along with the name used
by the FDN-Monitor. For all these metrics, the data is collected per unit of time. For platforms
hosted on Kubernetes, the functions run as pods; therefore, we can also collect the resources’
consumption metrics of pods.

Metric Category FDN-Monitor Name AWS Lambda GCF OpenFaaS OpenWhisk

Platform-Centric

success_invocations invocations invocations invocations activations
replicas concurrentExecutions active_instances replicas replicas
concurrency concurrency max_instances max_pods max_pods
cold_starts - - - cold_starts
init_time - - - action_initTime
wait_time - - - action_waitTime
average_execution_time duration execution_times functions_seconds action_duration
pod-mem-limits memory memory memory action_memory

Platform-Centric

pods-mem-sum-bytes maxMemoryUsed user_memory pods-mem pods-mem
pods-cpu-sum - - pods-cpu pods-cpu
pods-file-descp-sum - - pods-file-descp pods-file-descp

(Functions Resources pods-network-transmit-bytes† - - pods-nw-transmit pods-nw-transmit
Usage) pods-network-receive-bytes† - - pods-nw-receive pods-nw-receive

pods-fs-read-bytes† - - pods-fs-read pods-fs-read
pods-fs-write-bytes† - - pods-fs-write pods-fs-write

Infrastructure-Centric

avg_cpu_system - - avg_cpu_system avg_cpu_system
avg_cpu_user - - avg_cpu_user avg_cpu_user
avg_cpu_iowait - - avg_cpu_iowait avg_cpu_iowait
avg_cpu_idle - - avg_cpu_idle avg_cpu_idle
avg_memory_usage - - avg_memory_usage avg_memory_usage
network_bytes_transmitted† - - network_transmitted network_transmitted
network_bytes_received† - - network_received network_received
disk_writes_bytes† - - disk_writes disk_writes
disk_read_bytes† - - disk_read disk_read
disk_read_iops - - disk_read_iops disk_read_iops
disk_write_iops - - disk_write_iops disk_write_iops

† In Bytes

Table 4.1 shows the summary of the monitoring metrics from Platform-Centric and Infrastructure-Centric
categories from all the four serverless platforms considered in this work, along with the name used by the
FDN-Monitor. For all these metrics, the data is collected per unit of time. For platforms, which are hosted
on Kubernetes, the functions run as pods; therefore, we can also collect the resources’ consumption metrics
of pods and are referred to as Platform-Centric (Functions Resources Usage) in Table 4.1.

FDN-Monitor is developed in python and takes advantage of different python libraries and SDKs, such as
boto3 [24] for AWS Lambda, and monitoring_v3 [29] for GCF. These libraries and SDKs take advantage
of the APIs provided by different serverless compute platforms and cloud providers to collect different types
of metrics. It supports the following four serverless compute platforms: AWS Lambda, GCF, OpenFaaS,
and OpenWhisk. FDN-Monitor is designed modularly so that each platform has the same interface for the
collection. Figure 4.5 shows the UML diagram describing the structure of FDN-Monitor for various plat-
forms. FDN-Monitor is connected with InfluxDB [135] for storing all the collected data, since InfluxDB
is highly efficient for storing timeseries data and Grafana [121] for visualization of that data. The gen-
eral flow of the data collection within FDN-Monitor starts with the user defining the environment variables
and configurations. These variables and configurations include all information required by the modules,
such as the credentials required to connect to InfluxDB, the credentials required to connect to the server-
less compute platform, and the platform type upon which the cluster is based (e.g., AWS Lambda). Upon

39

4. FDN: Function Delivery Network

Figure 4.5.: A simplified UML diagram of FDN-Monitor showcasing the interfaces for data collection for
the different platforms.

Serverless Compute
Cluster - 2

Serverless Compute
Cluster - 'n'

AWS
Lambda

Serverless Compute
Cluster - 'n-1'

Cloud
Functions

Open-
Whisk

Serverless Compute
Cluster - 1

Open-
FaaS

...

virtual-node virtual-node virtual-node virtual-node

FDN Monitor

...
FDN Monitor FDN Monitor FDN Monitor

FDN
Monitoring

Data

Pull
platform
metricsPull infra-

metrics

Pull
platform
metrics

Pull
platform
metrics

Pull
platform
metricsPull infra-

metrics

2

1

1

1

1 1 1

2
2 2

3

Figure 4.6.: Deployment of FDN-Monitor as a sidecar with every virtual-node in FDN. Each FDN-Monitor
instance pulls the metrics from the underneath cluster and aggregate them into InfluxDB.
Grafana queries the data from InfluxDB and showcase them in various dashboards.

reading the environment variables, the main function instantiates the correct type of data collector. For ex-
ample, if the platform type is set to AWS Lambda, an instance of AWSDataCollector is instantiated with
the correct AWS account credentials. In the case of AWS, the different collect_<metric_name>(...) (see
Figure 4.5) functions are then called asynchronously. Similar interfaces exist for other platforms. Once
the metrics are collected, they are combined into one pandas dataframe [241]. The collected metrics are
filtered during the combination process to remove any empty results. For AWS Lambda based clusters,
we have an additional function collect_data_from_logs(), which is responsible for collecting additional
metrics provided by AWS logs insights - A feature for parsing logs provided by AWS. This allows for
further platform-centric metric extraction, such as billed duration and maximum memory used. Responses
from log insight queries are then processed and combined once again with the dataframe from the pre-
vious steps, based on the timestamp. For open-source based platforms, we have additional functions for
collecting Kubernetes based metrics (e.g., collect_pods_cpu_sum()) and Infrastructure metrics (e.g., col-
lect_nodes_avg_cpu_usage_system()). These functions are also called asynchronously, and results are
combined with the dataframe from the previous step. Further, post-processing takes place, such as con-
verting time columns to seconds, calculating mean values, and renaming columns to standardize the metric
names. The dataframe is then stored in the InfluxDB and visualized using Grafana dashboards. We have
created by default three Grafana dashboards, shown in Figure A.1 in Appendix A.

Figure 4.6 shows the deployment of FDN-Monitor in FDN.FDN-Monitor is deployed as a sidecar with every
virtual-node (mapping to an actual serverless cluster) in FDN to collect the metrics from the clusters. After

40

4.2. FDN Components

storage_deployments
PK storage_id SERIAL

FK cluster_id int NOT NULL

minio_deployment_id text

alias text

endpoint text

access_key text

secret_key text

use_ssl boolean

sqs_arn text

management_url text

users
PK user_id SERIAL

name varchar

gender varchar

age int
user_rights
enum('admin',
'maintainer', 'client')

clusters
PK cluster_id SERIAL

platform serverless_platform

host text

auth text

port text

name text

functions
PK function_id SERIAL

FK user_id int NOT NULL

FK cluster_id int NOT NULL

FK model_id int NOT NULL

name text

memory int

timeout int

concurrency int

kind text

image text

code_location textmodels

PK model_id SERIAL

name text

model_type model_type

model_location text

buckets
PK bucket_id SERIAL

FK storage_id int NOT NULL

name text

buckets_policies
FK policy_id int NOT NUL

FK bucket_id int NOT NULL

value jsonb

replica_bucket_locations
FK storage_id int NOT NULL

FK bucket_id int NOT NULL

objects
PK object_id SERIAL

FK bucket_id int NOT NULL

name text

Has primary
copy at

Has
secondary
copy at

policies
PK policy_id SERIAL

name text

value jsonb

global_policies
PK policy_id SERIAL

value jsonb

clusters_policies
FK policy_id int NOT NULL

FK cluster_id int NOT NULL

value jsonb

function_policies
FK policy_id int NOT NULL

FK function_id int NOT NULL

value jsonb

Figure 4.7.: FDN Inventory data model schema showing different entities as tables and relationships be-
tween them.

the deployment, each FDN-Monitor instance gets initialized by receiving the platform type and its creden-
tials from the virtual-node. Based on the platform type, FDN-Monitor connects to the monitoring solution
and initializes the data collection APIs. It then creates asynchronous tasks for pulling all the metrics from the
underneath cluster’s monitoring solution and waits until all the tasks are completed. The metrics are aggre-
gated into a dataframe and stored in FDN Monitoring Database. FDN Monitoring Database is an InfluxDB
database. The metrics collection procedure is periodically repeated every 30 seconds. During configuration,
the collection period can be changed by specifying a different value for DEFAULT_LOGGING_PERIOD variable.
Grafana queries the data from InfluxDB and showcases them in various dashboards.

4.2.3 FDN Inventory Database

The FDN Inventory database stores details concerning the different resources in the FDN: users, serverless
compute clusters, MinIO storage deployments, the different storage buckets, and their contained data ob-
jects. It also stores information on the different bucket replication sets, detailing where the master buckets
and replicas are located. Furthermore, the database contains information about different function models,
function delivery policies, function load balancing algorithms, and user-defined bucket policies. Since FDN
mostly contends with relational data, we selected PostgreSQL [289], a highly performant Database Manage-
ment System (DBMS), as our database. Figure 4.7 shows the data model used by FDN. While some entities
are easily recognizable as natural resources, such as a serverless compute cluster, others are more abstract,
like a policy. The database schema uses tables and relationships to give concrete definitions to these entities
and allows FDN to handle and manipulate them.

Policies: Policies are used in the data model to define specific settings. These can be global settings or
specific to a cluster or a bucket. The schema defines the policies table, which lists the system’s existing

41

4. FDN: Function Delivery Network

settings, giving them a name and a default value, and the global_policies, clusters_policies, func-
tion_policies, and buckets_policies tables, which allow users to define policy values that should be
applied globally, or to a given cluster, or function or bucket. This value overrides the default value set on
the policies table. The value columns are all defined to contain a JSON object. It allows the application
to define values flexibly, as the column can store different data types, such as a string, a number, or a more
complex object.

Users: They are the actual users of the FDN and can be classified into different categories based on the
APIs they use to interact with the FDN. users table stores the information about them and is also used for
authentication and authorization when accessing FDN. Users are limited to a subset of the clusters defined
by the admin user.

Clusters: Clusters are the records representing serverless compute clusters formed using a serverless com-
pute platform, monitoring solution, and storage deployment. Cluster information such as type of the server-
less compute platform, platform’s URLs, etc. are stored in clusters table. Each cluster can be attached
to many MinIO instances, and therefore we have a one-to-many relationship between the clusters and
storage_deployments tables. Furthermore, the clusters_policies join table links clusters and policies
together and forms a many-to-many relationship where a cluster can have many associated policies and
vice-versa. It allows the definition of zones, which are conceptual delimitations defining the location of a
cluster (edge, on-premise, or public cloud) useful for determining the clusters within a zone.

Storage Deployments: The storage_deployments table tracks all MinIO deployments across different
serverless clusters within FDN. The table indicates the deployment’s serverless cluster and the user-provided
authentication data that FDN needs to communicate with the services and other relevant metadata it gathers.
This additional metadata includes values like the minio_deployment_id, a unique ID that MinIO services
generate for themselves and help FDN to determine the storage deployment.

Buckets: The buckets table lists all the storage buckets FDN is aware of amongst the different storage
deployments across the clusters. These buckets are the containers for data objects and the grouping method
used to organize data replication and scheduling. The buckets_policies table allows the definition of
bucket-specific settings. For example, this is used to define a bucket’s allowed zones, determining the zones
to which a bucket can be replicated. Buckets only directly refer to the one storage deployment that keeps
their master copy. However, the replica_bucket_locations table links the tables together to relate bucket
replica locations. The schema allows FDN to determine a bucket’s associated clusters through these means.
As function invocations specify a storage bucket, FDN can choose where to forward the requests by listing
the different clusters associated with the bucket.

Objects: The objects table lists the data objects present on the different storage deployments. Every object
belongs to a singular bucket; their locations can be inferred by their bucket’s master and replica locations.

Functions: The functions table stores all the information of the functions deployed in FDN across the
clusters. This information includes name, memory required by the function, timeout, maximum function
instances, function image path, and the MinIO object path storing the function code. Each function belongs
to a user and can be deployed across multiple clusters in FDN. Furthermore, the function_policies join
table links functions and function delivery policies together and forms a many-to-many relationship, where
a function can have many associated policies and vice-versa. These policies dictate the clusters to which a
function can be deployed, and invocations for it are delivered. Furthermore, multiple behavioral models are
created for a function to model its different features.

Models: The models table tracks the different behavioral models created for a function and the locations of
the models where they are stored.

42

4.2. FDN Components

4.2.4 Clusters Management

FDN’s Clusters Management component written in Node.js is responsible for managing the clusters spread
across the continuum within FDN. This management includes following methods:

Creation and update of clusters: Clusters Management allows the administrators using the FDN-UI or
APIs to automatically create or update serverless compute clusters. This automation is based on the Ter-
raform and Ansible explained in §4.2.1.2. Firstly, the administrator provides the required parameters as a
YAML Ain’t Markup Language (YAML) file or JavaScript Object Notation (JSON) data through FDN-UI,
after which the input is validated. Then within the Clusters Management component, a container is initial-
ized, having all the required dependencies for Terraform and Ansible. This container is responsible for cre-
ating or updating the cluster. Once the cluster is created or updated, it must be registered or re-registered as
part of FDN. For that, Clusters Management requests internally a POST API endpoint /api/clusters/reg-
ister with a JSON document shown in Listing 4.1. Clusters Management then saves this information in the
FDN Inventory Database. Additionally, a Virtual Kubelet node is created or updated using FDN-provider
customized for the cluster based on the template described in Listing A.1 in Appendix A. FDN-Monitor is
also attached to it as sidecar (see Figure 4.6). Lastly, it notifies the Courier Control Plane to update the load
balancer configuration. Figure 4.8 shows the workflow process of the cluster’s creation.

Deletion of clusters: It is very similar to cluster create and update workflow. The administrator issues
the request for a cluster delete through the FDN-UI. After which, the request is validated for having the
required authorization. Then within the Clusters Management component, a container is initialized, having
all the required dependencies for Terraform and Ansible. This container is then responsible for deleting the
cluster. Once the cluster is deleted, it must be deregistered from the FDN. For that, Clusters Management
requests internally a POST API endpoint /api/clusters/delete with the cluster name as body. Clusters
Management then removes its information from the FDN Inventory Database, and it uses kubectl delete
command to remove the Virtual Kubelet node. Lastly, it notifies the Courier Control Plane to update the
load balancer configuration. Figure 4.8 shows the workflow process of the cluster’s deletion.

Registration of clusters: This method is responsible for registering the clusters and saving their information
in the FDN Inventory database. A POST API endpoint /api/clusters/register within Clusters Manage-
ment is created for this purpose. It accepts the input as a JSON document shown in Listing 4.1. It then
saves this information in the database and notifies the Courier Control Plane to update the load balancer
configuration. During the registration, a Virtual Kubelet node is created using FDN-provider customized
for the cluster based on the template described in Listing A.1 in Appendix A. This Virtual Kubelet node is a
proxy for mapping to actual serverless compute clusters (see Figure 4.2). FDN-Monitor is also attached to
it as sidecar (see Figure 4.6).

Listing 4.1: An example of JSON input recevied by the cluster register API endpoint for registering the
cluster within FDN

1 {
2 "name": "name of cluster",
3 "platform": "serverless platformn name",
4 "host": "host endpoint",
5 "auth": "authentication",
6 "port": "port number"
7 }

Health Monitoring of clusters: Each Virtual Kubelet node representing the serverless compute cluster is
attached with a health monitoring container. This container periodically requests an API endpoint in the

43

4. FDN: Function Delivery Network

Figure 4.8.: FDN’s Cluster Management workflow showing cluster create/update and delete.

cluster to check the health status. This API endpoint varies with the serverless compute platform. For
serverless clusters based on AWS Lambda and GCF, we send the request to the function to get the status of
the cluster. It may result in a cold start if the function instance is not warm. Based on the responses, the
health status of the clusters is updated in the FDN Monitoring Database.

4.2.5 Data Orchestrator

Data Orchestrator within FDN is responsible for managing the data across the storage services in clus-
ters within FDN. MinIO is selected as the object storage service for each cluster in this work. MinIO is
an S3-compatible object storage technology that offers flexible bucket replication features [195, 196]. Its
compatibility with Amazon’s widely popular S3 storage solution makes it representative of current cloud
storage technologies. Its bucket replication features provide building blocks to implement FDN’s granular

44

4.2. FDN Components

Figure 4.9.: Sequence of events to track a new MinIO deployment.

bucket replication mechanisms. Data Orchestrator leverages MinIO’s mc command line tool [200] and its
JavaScript and Go language SDKs [199, 198] to integrate together the different MinIO instances within
FDN. With these tools and methods in place, the Data Orchestrator accomplishes four different operations:

Tracking a new storage deployment: To track a new MinIO service in FDN, the Data Orchestrator goes
through several steps shown in Figure 4.9. It first receives necessary connection information (name, end-
point, access key, and secret key) to connect to it. Once the connection information is given, the Data
Orchestrator verifies its apparent validity. Once done, the Data Orchestrator configures the mc, a command-
line client with the new connection, and sets up an alias according to the provided name. It then uses the
tool to configure the MinIO deployment with a new notification webhook that points back to the Data Or-
chestrator. This allows setting notification configurations on storage buckets and facilitates MinIO to send
notifications back to the Data Orchestrator when changes occur. After this, the MinIO instance is restarted
for the changes to effect fully. Data Orchestrator triggers this and waits for it to return to fetch the MinIO
instance’s updated metadata. The Data Orchestrator extracts an internally generated deployment ID from
this metadata and the MinIO instance’s Simple Queue Service (SQS) Amazon Resource Name (ARN), an
identifier required for bucket notification configurations.

Manipulating buckets and objects: One of the goals of FDN is to provide a layer of abstraction on top

45

4. FDN: Function Delivery Network

of the storage deployments and allow users to interact with them in a unified fashion. For this purpose,
FDN allows for the creation and deletion of storage buckets and the addition, downloading, and deletion of
storage objects. All these operations are possible using MinIO Go SDK, using the package’s AddBucket,
RemoveBucket, PutObject, Getobject, DeleteObject functions. The Data Orchestrator needs to monitor
all storage buckets across various clusters. It adds itself as a notification target for each newly created
bucket to receive bucket notifications from MinIO whenever a bucket is changed. The Data Orchestrator’s
API further allows clients to manipulate data objects directly by acting as a go-between and using the MinIO
SDK, essentially proxying objects between the client and the MinIO services.
Handling notifications: Data Orchestrator has a dedicated API endpoint at the path /api/notify that is
designed to handle MinIO notifications. The storage deployment that generates the notification sends a
JSON object in the request body. This JSON object is parsed to extract the affected object’s key and the
storage deployment’s deployment_id. The key is the object’s path, including the bucket in which it is placed.
Therefore, it is simple for the program to get both the storage bucket and object names. The deployment_id,
which matches the database’s minio_deployment_id column, is used to identify which MinIO deployment
sent the event. Data Orchestrator then recognizes which object, in which bucket, and on which storage
deployment has been affected. Suppose the bucket that originated the event is a master copy. In that case,
Data Orchestrator mirrors the new contents to all the replica buckets and updates the information in the
FDN Inventory Database. It also sends a notification to Courier Control Plane for reconfiguring the load
balancer with the new routes.
Mirroring buckets: Data Orchestrator relies on the mc mirror command, a feature of the mc command-line
tool that allows bucket mirroring and read replication between buckets on MinIO storage deployments.

4.2.6 Functions Management

This component is responsible for managing the functions within FDN. The management of functions in-
clude creating, deleting and updating of functions. Functions Management performs several steps for man-
aging functions and are shown in Figure 4.10. The workflow in Figure 4.10 is divided into two parts:
Function Create/Update: Developers submit their function’s code using the FDN-UI along with specifying
some additional configuration parameters, for example, the memory requirement of the function and the
runtime of the function. The input is validated against any wrong specification and once it is validated,
the Functions Management save the function code within a bucket in the MinIO instance, i.e. Function
Code in Figure 4.3 and metadata of function in FDN Inventory database. Further, Functions Management
creates a deployment template deployment YAML file for the function and saves it also in Function Code
MinIO instance. The configuration parameters for the function are passed as environment variables in
the template file. The detailed description of the generated template file used for creating a function is
shown in Listing A.2 in Appendix A. Based on this deployment template, Functions Management uses
kubectl-based create / update command for creating or updating the deployments on the respective
Virtual Kubelet node representing the actual serverless computer cluster. Virtual Kubelet maps create or
update commands to the function commands for the respective serverless compute platforms. Lastly, it
notifies the Courier Control Plane for the function create / update, to update the load balancer configuration.
Function Delete: In this case, developers submit the function delete request from the FDN-UI, where
the request is validated for right authorization. Once it is validated, Functions Management removes the
function code from the bucket in Function Code, and it’s metadata from FDN Inventory database. After
which, Functions Management uses kubectl-based delete command for deleting the pod on the respective
Virtual Kubelet node, which further initiates the function delete command for the respective serverless
compute platform. Lastly, it notifies the Courier Control Plane for the function delete, to update the load
balancer configuration.

46

4.2. FDN Components

Figure 4.10.: FDN’s Function Management workflow showing function create/update and delete.

4.2.7 Behave

Behave represents the behavioral modeling of FaaS functions within FDN based on the monitoring data
collected by FDN-Monitor for characterization of the FaaS functions. In this regard, we have build two
models:

• Functions Performance Model : For automatic end-to-end automatic performance modeling of func-
tions, we develop a python-based tool called FnCapacitor. This tool automatically estimates the
capacities of FaaS functions within a serverless application under the given SLOs and the memory
configuration of the function instance. Furthermore, as part of FnCapacitor, we present a novel
method which can be used to sandbox individual functions from the serverless application. Currently
it supports GCF, and AWS Lambda.

• Functions Interaction Model: We model the serverless applications in the form of function compo-
sitions using neural Temporal Point Processes (TPPs). This is developed as part of a tool called

47

4. FDN: Function Delivery Network

Figure 4.11.: FDN’s Function invocation workflow. The user requests are received at the Courier Load Bal-
ancer which selects a subset of clusters based on the set delivering policy, function name and
X-FDN-Bucket header. The Courier Load Balancer then load balances the invocations across
the selected subset of serverless compute clusters based on the set load balancing algorithm.

TppFaaS on top of OpenWhisk. TppFaaS uses two neural TPPs: 1) LogNormMix for providing
the probability distribution of functions within the composition for the following function invoca-
tion, and 2) TruncNorm for predicting a function’s invocation time. Such modeling and prediction
can avoid cold starts by scaling functions in advance and reducing network load by optimizing the
function-server assignment.

This component is described in detail in Chapter 5.

4.2.8 Courier Control Plane and Load Balancer

In order to distribute the load of the incoming invocations among the target serverless compute clusters
spread across the edge-cloud continuum, we created Courier. Courier is responsible for delivering the
invocations of the function to the suitable set of clusters. Courier mainly consists of two components: 1)
Load Balancer and 2) Control Plane. Load Balancer, as the name suggests, is the main entry point for the
users and is responsible for load balancing users’ functions invocations across multiple serverless compute
clusters spread across the edge-cloud continuum based on the set configuration. The Load Balancer itself
consists of two layers. The first one is the access point from the outside to the FDN, offering an HTTP
endpoint. Successively, the requests are dispatched to the second layer using the set function delivery
policies (function-awareness and data-awareness). Depending on the policy, a subset of clusters is selected,
and a different load balancer is employed. Data-aware delivery takes the bucket name required by the
function as the HTTP header parameter. In the second layer of the Load Balancer, invocations are load
balanced across the selected subset of serverless compute clusters based on a load-balancing algorithm. The
Control Plane is the brain of the Courier. It is responsible for configuring the Load Balancer based on
various function delivery policies and load balancing algorithms. Figure 4.11 shows the schematic diagram
of the steps performed when a function invocation request is received by FDN. This component is described
in detail in Chapter 6.

48

4.3. Summary

4.2.9 FDN-UI

Though users can interface with FDN through the backend server’s API, a user interface developed in Reac-
tJS that allows users to interface with the system easily is also developed. This frontend client is a JavaScript
single-page application. It is a static website served by the FDN server next to the backend API, and users
can access it through a browser. Upon initial page load, the frontend application sends an HTTP GET re-
quest to the FDN’s various components’ to retrieve the current status of FDN and settings stored in the
database. Once the data is retrieved and parsed, the application allows users to interact with up-to-date data.
The application is split into different pages dedicated to the different entities in the FDN. Users can access
each page by clicking on links displayed throughout the client application or navigating to their URL in the
browser. The JavaScript application parses the URL and uses it to determine the appropriate view to display.
The screenshots of the UI are presented in Figure A.2 in Appendix A.

4.3 Summary

In this chapter, we described an extension to the concept of FaaS as a programming interface for server-
less computing across the edge-cloud continuum called Function Delivery Network (FDN). FDN provides
seamless integration across the edge-cloud continuum by allowing the user to deploy and invoke the func-
tions across heterogeneous serverless compute clusters in the continuum. FDN provides Function-Delivery-
as-a-Service (FDaaS), which can deliver user workload functions invocations to a subset of serverless com-
pute clusters spread across the continuum based on : 1) function-awareness, and 2) data-awareness. The
invocations are load balanced across the selected subset of clusters based on the set load balancing algo-
rithm. In order to integrate several serverless compute clusters, we presented our custom Virtual Kubelet
provider called FDN-provider. FDN-provider acts as federation for multiple serverless compute clusters.
Every Virtual Kubelet node created using FDN-provider acts as a proxy to a serverless compute cluster.

We introduced various components of FDN, starting with the serverless compute clusters that are part of
FDN (§4.2.1). We presented three clusters: edge clusters, private cloud clusters, and public cloud clusters.
We further described the automation used in this work for creating those clusters using Ansible and Ter-
raform (§4.4). For collecting various metrics from serverless clusters using different serverless platforms,
we presented a tool called FDN-Monitor (§4.2.2). It is deployed as a sidecar to the virtual nodes represent-
ing the serverless compute clusters. We then described about the database model used in the FDN (§4.2.3).
Clusters Management component within FDN is responsible for managing the clusters spread across the
continuum (§4.2.4). We explained about the Data Orchestrator within FDN, responsible for managing the
data across the MinIO on various clusters (§4.2.5). For managing the functions across the continuum in
FDN, we created a component called Functions Management (§4.2.6). We gave a high-level overview of
the Behave and Courier components within FDN, but they are presented in detail under separate chapters.
Lastly, we presented FDN-UI, through which users can interface with FDN.

49

5
Behave: Behavioral Modeling of FaaS Func-
tions in FDN

“The secret of getting ahead is getting
started."

— Mark Twain

This chapter presents two behavioral models based on the monitoring data collected by FDN-Monitor for
characterization of the FaaS functions: 1) Functions Performance Model (§5.1), and 2) Function Interaction
Model (§5.2).

5.1 Functions Performance Model
The Function Performance Model captures the performance with respect to time for certain combinations
of resources, such as the number of cores, the network bandwidth, the memory size, and the I/O bandwidth.
Since serverless computing environments abstract the underlying system infrastructure configurations away
from the users, most public cloud providers in their serverless compute platforms allow users to configure
only a small set of configuration parameters. These parameters include memory allocation and the maximum
number of function instances, called concurrency [10, 79, 44]. Moreover, cloud providers speedup function
execution when a higher memory is configured [179]. Furthermore, the heterogeneity in the underlying
nodes can lead to variations in the execution time of the FaaS functions [302]. Therefore, defining and
building a Functions Performance Model is challenging. Towards this, we first introduce the concept of
Function Capacity (FC) (§5.1.1) used for defining the Functions Performance Model, and then the tool
FnCapacitor (§5.1.2) for building it.

5.1.1 Function Capacity (FC)

We define the Function Capacity (FC) as the maximal number of concurrent invocations that a FaaS func-
tion, when deployed on a serverless compute platform with a certain memory configuration and fixed max-

50

5.1. Functions Performance Model

(a) Effect of memory on the FC with
fixed function concurrency of 100.

(b) Effect of memory on the FC with
fixed function concurrency of 100.

(c) Function concurrency effect on the
FC with fixed memory.

Figure 5.1.: Function Capacitys (FCs) (maximum requests per second) variation with different memory
configurations, and function concurrency for AWS Lambda and GCF.

imum function instances, can serve within a time interval without violating the SLOs. In this work, we
consider the 95th percentile execution time of a FaaS function as the SLO. Ideally, if an instance i serves nt

i
number of invocations within a time interval t and C is the function concurrency for the serverless compute
platform, then the FC(f), where f is any function, can be calculated by the equation (5.1).

FC(f) = nt
i ⇥C (5.1)

However, in practice, many other factors affect the performance and Function Capacitys (FCs) of FaaS
functions [302]. To highlight the effects of various parameters on the performance and the FCs of FaaS
functions, we deployed a compute-intensive (calculates prime numbers till 10000000) serverless function
written in Python on AWS Lambda and GCF [79]. We fixed the function’s 95th percentile execution time to
20s. Figure 5.1a shows that the FC first increases with varying memory sizes upto a certain point (2048MB),
and after that, it becomes constant when the function concurrency is fixed to 100 for both the platforms. The
same Figure 5.1a also shows the variation in FC with the platforms. The variation in the system resources
causes differences in performance between the same function deployments for the same serverless compute
platform. Figure 5.1b shows the execution time of corresponding runs, and one can see that it decreases
with the increase in memory, and after a point (2048MB), it also becomes constant. Lastly, Figure 5.1c shows
the linear increase in FC with the increase in function concurrency, keeping the allocated memory fixed.

5.1.2 FnCapacitor

The examples described in §5.1.1 highlights some factors that can affect the performance and the FCs.
However, many other factors such as cold starts, I/O and network conditions, type of container runtimes,
and co-location with other functions affect the performance and FCs which the users are not aware of [302].
Additionally, the dependencies between the functions within a serverless application can affect the FCs. To
this end, we develop FnCapacitor, a tool that can estimate the FCs of the functions adhering to the given
SLOs, the specified memory configurations and function concurrency [148]. In this section, we briefly
overview its working and introduce its two important components.

FnCapacitor is developed in python. Given the SLO requirements, it is responsible for estimating the FCs
of FaaS functions at different deployment configurations (memory allocation and function concurrency) by

51

5. Behave: Behavioral Modeling of FaaS Functions in FDN

Execution
Logs, Metrics

Application developer input configuration file

Object
Storage

Capacity Estimation

Functions
Performance

Modeler

Functions Sandboxing

Functions
Deployer

Functions
Updater

FaaS Platform

Config File

Functions deployment3

8

4

1

Update config
and invoke

FnCapacitor

FaaS Functions

…

Functions
Destroyer

K6 Load Generator

Sandboxed Functions2

Functions invocations6

Functions config update5

7
Get logs {execution
time, memory, active
instances, invocations}

7 Get
data

Estimate capacities

Figure 5.2.: High-level architecture of the FnCapacitor and the interaction between its components in a
general use case [148]. FnCapacitor takes a YAML file as input, and the individual functions
from the given application are segregated. These sandboxed functions are then deployed on a
serverless compute platform. After the deployment, FnCapacitor generates a user workload
and repeatedly changes the functions configurations to collect data. The collected metrics data
is used for creating the function performance models and are then used for estimating the FCs
for different deployment configurations.

conducting a limited set of load tests followed by building machine learning models on the acquired perfor-
mance data. Figure 5.2 provides an overview of the high-level architecture of FnCapacitor. It takes a YAML
file as input that specifies the initial serverless compute platform configuration parameters (minimum mem-
ory allocation and functions timeout), serverless application to be deployed, and configuration parameters
for the load generator and the modeling (step 1). Since a serverless application consists of multiple func-
tions, in the next step, the individual functions from the given application are segregated (step 2). These
sandboxed functions are then deployed on the serverless compute platform with initial configurations (step
3). After the deployment, FnCapacitor repeatedly change the functions configurations (steps 4 - 5) and

generates a user workload to the function’s API endpoint (step 6) for collecting various monitoring metrics
data (§5.1.3.1). The collected metrics data is used for creating the function performance models (step 7).
The created function models are then used for estimating the FCs for different deployment configurations
(step 8).

Functions Sandboxing: A serverless application consists of multiple functions, and the performance of one
function could affect the others depending on it. Therefore to measure the pure performance of the func-
tions, i.e., where their performance is not affected by others, we sandbox the individual functions through
a mockup of their neighbors. It isolates each function and substitutes its direct neighbors with dummy
functions accepting the requests and sending the responses in the same format, but without any additional
processing, allowing us to measure the pure performance of only that function and build models using
this data. Firstly, each function calls to other functions are replaced with calls to a proxy-function. This

52

5.1. Functions Performance Model

proxy-function serves as an intermediator between the sandboxed function and other functions and takes the
originally called function names from the sandboxed function and the payload as the input. Thus, every
invocation to other functions goes through this proxy-function, and this dummy proxy-function will invoke
the following functions based on the input received. At the same time, copies of the requests and responses
are stored in the FnCapacitor’s MongoDB database for creating function mockups. It is to be noted that
BaaS services such as database, storage, and queues, are out of the scope of this work for sandboxing as it
is assumed that these BaaS services provide high scalability and serve the user requests within the defined
SLOs. Each function receives its own sandboxed deployment, where mockup functions replace the direct
neighbors. These mockup functions will respond with the response stored in MongoDB. As a result, the
time the dependent functions take to respond becomes negligible, allowing the building of a relatively pure
performance model of the functions within a serverless application.

Performance Model Builder and Capacity Estimation: It is responsible for analyzing the correlation
between the different monitoring metrics data and the deployment configurations. It uses the collected
data to create models of the functions and estimate their FCs. Modeling approaches used in this work are
categorized under two categories:

• Statistical Approaches: We use linear, polynomial, ridge, and random forest regression to model the
relationship.

• Deep Neural Networks (DNNs): DNN model generator consists of a Normaliser and a DNN. The
Normaliser normalizes the numeric columns in the dataset using l2-normalization to use a standard
scale without distorting differences in the ranges of values or losing information. The DNN is built
with a sequential model consisting of an input layer, two hidden layers, and an output layer. Both
the hidden layers are dense with 64 units and a Rectified Linear Unit (ReLU) activation function.
The model generator compiles the DNN model with ’mean_absolute_error’ as the loss function and
’Adam’ as the optimizer.

The collected data is pre-processed by removing outliers and dividing the data into training and test set.
Following this, different models, i.e., statistical and DNNs, are trained on the partitioned training data set.
Due to the sparse training data, k-fold cross-validation (in our case, k=6) is used for training [316].

5.1.3 Experimental Configuration

In this work, we have fixed the total duration of a test to 30 minutes for the deployed serverless applica-
tion. A test consists of the memory allocation configurations: <256MiB, 512MiB, 1GiB, 2GiB and 4GiB>
and function concurrency: <10, 20, 30, 40 and 50>. AWS Lambda functions are deployed in europe-
central1 region and GCF functions are deployed in eu-west3 region, and the number of Virtual Users
(VUs) during the load generation from k6 [306] are varied from 5 to 500 depending on the amount of
requests the functions can serve. As a result, for each function, 5 (total memory configurations) ⇥ 5
(function concurrency configurations) = 25 tests were conducted. To evaluate our approach, we partition
the collected data into training and test set (33% of the total data). We used part of the training data set as
a validation set (§5.1.2) for selecting the hyperparameters of the different models. We select the hyperpa-
rameters through an exhaustive grid search. For the DNN model, we use a 12-layer fully connected neural
network architecture, with each layer having 64 units. We use the ReLU as the activation function, as usage
of ReLU has been proven to lead to faster convergence [163]. We also implemented early stopping with
patience five to ensure no over-fitting on the training data [67].

To investigate the performance of each deployment configuration, we used the benchmarks described in
§9.1.1 and the application described in §9.1.2 and shown in Figure 9.1.

53

5. Behave: Behavioral Modeling of FaaS Functions in FDN

Figure 5.3.: execution_durations of the sandboxed functions when executed with a load of 50 Requests
per Second (RPS) and no limit on the function_concurrency.

5.1.3.1 Monitoring Metrics

We extracted the following monitoring metrics from the GCF and AWS Lambda with sampling rate of 60s:

• concurrent_instances: The number of active concurrent function instances.

• invocations: The number of times the function code is executed.

• execution_duration: The amount of time a function code spends in processing an event.

• memory_usage: Function’s maximum memory usage during execution.

• allocated_memory: The amount of memory allocated to the function.

• function_concurrency: The maximum number of concurrent instances allowed for processing events.

5.1.4 Experimental Results

In this section, we first describe the impact of heterogeneity in the memory allocations on function’s execu-
tion_duration and concurrent_instances, and then the effect of function_concurrency on the FCs for
both the serverless compute platforms and on different functions. Following this, we present the results of
FCs estimation using the different modeling approaches.

5.1.4.1 Memory Effect on Function Execution Duration

Figure 5.3 shows the execution_durations of the load testing of 50 invocations per second on the applica-
tion when the functions are sandboxed and deployed with five different memory configurations on GCF and
AWS Lambda platforms. We observe the following:

Decrease in execution_duration with the increase in memory and becoming constant: From Figure 5.3,
we can see that for most of the functions and across two serverless compute platforms, there is a general
trend of decrease in execution_duration with the increase in memory, and after a certain point (2048MB
memory configuration), either it becomes constant (for all functions running on AWS, and lr-regression,

54

5.1. Functions Performance Model

Figure 5.4.: concurrent_instances of the sandboxed functions for handling the load of 50 RPS with five
different memory configurations and no limit on the function_concurrency.

sentiment-analysis, and linpack on GCF) or increases (for all other functions on GCF). This behavior
can be attributed to an increase of 2x in the number of allocated clock cycles for a memory configuration of
4096MB compared to 2048MB [120].

In general, AWS Lambda has a lower execution duration for most of the functions at all memory
configurations as compared to GCF: We can observe from the Figure 5.3 that, in most of the functions
except the three compute-intensive functions at lower memory configurations (256MB and 512MB), AWS
Lambda process function events faster than the GCF. For example, for dd microbenchmark at 256MB con-
figuration, AWS Lambda takes 5.2x less time than the GCF at the same memory allocation. nodeinfo,
sentiment-analysis, linpack, and nodejs-endpoint took almost the same time across different memory
configurations and serverless compute platforms.

5.1.4.2 Memory Effect on Function’s Concurrent Instances

Figure 5.4 shows the concurrent_instances per function in the serverless application when it is load tested
with a load of 50 invocations per second on GCF and AWS Lambda platform for five different memory
configurations. We observe the following:

AWS Lambda creates more concurrent_instances as compared to GCF: From Figure 5.4, we can see
that, for most of the functions and across different memory configurations, AWS creates a higher number of
concurrent_instances as compared to GCF for handling the same amount of load.

Decrease in number of concurrent_instances with the increase in memory configuration: As the mem-
ory is increased for each function, the number of concurrent_instances for both the serverless compute
platforms either remains constant or decreases. This trend can be attributed to the fact that a higher resource
instance can serve the requests faster and hence can process more requests per unit time. Therefore, fewer
instances are required to handle the same load when allocated with lower memory configurations.

Slow-processing functions are scaled to higher number of concurrent_instances to match up with the
fast-processing functions : From Figure 5.3, we can observe that, lr-regression and gzip-compression
have the highest execution_time as compared to the other functions. When observing the number of con-
current_instances for those two functions in Figure 5.4, we can see that they are also the highest. It con-
cludes that the compute-intensive (slow-processing) functions require higher scaling to match up with the

55

5. Behave: Behavioral Modeling of FaaS Functions in FDN

Figure 5.5.: FC of the functions when deployed on the two serverless compute platforms for different func-
tion_concurrency with memory configuration fixed to 256MB.

other fast-processing functions for handling the same workload. Such visualization can also be used to un-
derstand the bottleneck function in the serverless application; for example, in our case, it is lr-regression.

5.1.4.3 Effect of Function Concurrency on the FC

Figure 5.5 shows the actual capacity measurements for the two serverless compute platforms for different
function_concurrency configurations, with memory configuration fixed to 256MB for all the functions.
The capacities are the average of the five runs for both serverless compute platforms. In general, it can
be inferred that for most of the functions, FCs vary linearly with the function_concurrency for both the
serverless compute platforms. Also, a single instance of AWS Lambda can process a higher number of
requests than the single instance of GCF. However, for the two compute-intensive functions namely: gzip-
compression, and ml-lr-prediction we see a similar FCs for both the platforms. In case of GCF, for
simple web-based functions : sentiment-analysis, nodeinfo, and nodejs-endpoint the linear increasing
slope is not constant. From Figure 5.5, one can see that, for the three FaaS functions, the linear slope
changed after function_concurrency of 6. This means that, after the function_concurrency of 6, each
instance can process more requests. Generally, the trend is linear for all other functions, and serverless
compute platforms. However, they are not exactly following the ideal lines. Therefore, one needs modeling
approaches for the estimation of FCs for both the serverless compute platforms.

5.1.4.4 Function Capacity Estimation

On analyzing the impact of varying memory configurations on the performance of the different FaaS func-
tions, we use the metrics <concurrent_instances, execution_duration, allocated_memory, memory_usage,
function_concurrency> obtained from the collected load test data as input parameters for the different mod-
els (§5.1.2). For a given set of input parameters, all models predict <function invocations> which is
equivalent to the FC. The collected data is split between training and test set, with 33% of the data being
used as the test set and the rest for training.

56

5.1. Functions Performance Model

Table 5.1.: Comparison of accuracy results (R2 score) for estimated FCs for the different approaches.
Function LR PLR RR RFR DNN

GCF AWS GCF AWS GCF AWS GCF AWS GCF AWS
dd 81.9 98.1 88.27 97.7 82.2 98.0 88.5 98.1 91.1 98.2

gzip 83.5 91.4 89.8 94.8 83.6 91.4 93.0 94.6 93.6 94.9
primes 75.8 95.4 78.6 95.1 76.4 95.6 83.1 96.7 85.0 96.5
linpack 86.3 58.7 87.7 75.9 86.4 76.3 88.5 87.2 88.8 92.4

sentiment 65.6 33.6 72.9 92.9 52.2 24.9 76.0 97.4 74.4 96.2
lr-pred. 90.9 99.4 93.0 99.5 90.7 99.4 95.4 98.7 94.7 99.5
nodeinfo 80.6 87.5 88.4 87.6 79.6 87.9 89.6 88.2 90.2 87.6
endpoint 77.2 36.5 80.8 67.9 76.3 35.7 82.8 81.0 77.8 80.2

Figure 5.6.: Box plot showing the prediction accuracy on the test data across k-folds using DNN model for
both serverless compute platforms.

Table 5.1 shows the comparison of the accuracy results for estimated FCs for the different modeling ap-
proaches (§5.1.2) with the best ones underlined for both the serverless compute platforms. To determine the
formulated models’ accuracy, we use the R2 score [290].

In general, it was found that the accuracy measurements for FC estimation for AWS Lambda are higher than
the GCF for most of the FaaS functions, since AWS Lambda exhibits more linear behavior as compared to
GCF (Figure 5.5). Linear Regression (LR) leads to best results when the parameters are linearly correlated
to the FC. For most FaaS functions, the parameters are linearly correlated to FC, leading to an accuracy value
greater than 80%. For both the serverless compute platforms, the accuracy for the nodejs-endpoint, and
sentiment-analysis FaaS functions is comparatively less compared to other FaaS functions since most
parameters in them are non-linearly correlated with FC. Polynomial Linear Regression (PLR) leads to
highly accurate results for most of the function types due to its ability to model non-linear relations among
the parameters. Ridge Regression (RR) produced approximately the same results as linear regression and
worked well for certain function types. On the other hand, Random Forest Regression (RFR) can provide
the best results among the statistical approaches.

The DNN method outperformed all the statistical approaches for most of the FaaS functions, since it is
capable of modeling the linear and non-linear correlation between the parameters. For most function types,
the FC estimation accuracy is approximately above 75%. In Figure 5.6, we show the prediction accuracy
percentage for k-folds using the box plot for both serverless compute platforms and all the FaaS functions.

57

5. Behave: Behavioral Modeling of FaaS Functions in FDN

Frontend

Recommen-
dation Checkout Ads

Product
Catalog Shipping

Payment Cart

E-Mail

Figure 5.7.: A webshop implemented as a composition of FaaS functions [122].

5.2 Functions Interaction Model

A serverless application is often constructed as a composition of multiple functions that abstract some busi-
ness process [52]. Therefore Functions Interaction Model characterizes the producer-consumer interactions
of functions within a serverless application. The interaction might, for example, suggest packaging func-
tions together to reduce communication costs. An example of such a composition can be seen in Figure 5.7,
in which multiple FaaS functions implement a webshop [122]. Each function fulfills a simple modular logic,
with the interaction between functions enabling a complex program. Orchestration tools such as AWS Step
Functions [261], Azure Durable Functions [193], or OpenWhisk’s Composer [223] facilitate building such
compositions. These provide constructs to compose the functions into a control flow known from any im-
perative programming language. A developer can arrange the functions sequentially, in parallel, or in loops
and integrate branching and conditional logic. In addition, the function orchestrator performs other impor-
tant tasks such as state management, i.e., storing the data communicated between functions, error handling,
real-time monitoring, logging, and much more [262].

Since FaaS follows an event-based execution model, we can model the events triggering the functions us-
ing Temporal Point Processes (TPPs). A Temporal Point Process (TPP) is a probability distribution over
sequences of instantaneous points in time, denoted as events, of variable length in an interval [0,T] [270].
Therefore, TPPs are perfect for modeling interactions of functions within a serverless application by repre-
senting an executed function composition by a sequence of events. Such modeling of FaaS function com-
positions and then a prediction can avoid cold starts by scaling functions in advance and reducing network
load by optimizing the function-server assignment. Furthermore, it can also help in optimizing the data-
function placement. In this regard, we developed a python-based tool called TppFaaS on top of OpenWhisk
for modeling serverless functions invocations via TPPs [279].

In this section, we first give a brief overview of TPPs and introduce the neural TPPs used in this work in
§5.2.1, and then presents a high-level overview of the developed tool TppFaaS in §5.2.2.

5.2.1 Temporal Point Processes (TPPs)

A TPP is a probability distribution over sequences of instantaneous points in time, denoted as events, of
variable length in an interval [0,T] [270]. These events are discrete in continuous time. Discrete means

58

5.2. Functions Interaction Model

Table 5.2.: Symbols and their definitions used in the context of building Functions Interaction Model
Symbol Interpretation
x sequence of events
N number of events in the given event sequence x
t1, . . . , tN event’s occurrence times
m1, . . . ,mN event types (or marks as referred in the literature) at different times
ti inter event time (ti � ti�1)
H (t) the history of past events for a given event sequence x

f ⇤
i (ti)

conditional probability density function for modeling the event times of
a Temporal Point Process (TPP) model

F⇤
i (ti)

cumulative distribution function for modeling the event times of a TPP
model

S⇤
i (ti)

complementary cumulative distribution function also known as survival
function for modeling the event times of a TPP model

l ⇤(t) conditional intensity function for modeling the event times of a TPP
model

f ⇤
i (t) hazard function for characterizing a TPP model

µ constant event rate in homogenous Poisson process

k(t) kernel function in the Hawkes process for modeling the dependence on
previous events

that events can be categorized into classes, often referred to as event type or mark in the literature [269].
A realization of a marked TPP model can be represented as an event sequence x = {(t1,m1), . . . ,(tN ,mN)},
where 0 < t1 < · · · < tN < T represents event’s time (see Table 5.2) with N being the number of events
and is itself a random variable, and mi represents an event type or a mark. In most applications, the marks
(m1, . . . ,mN) are categorical, such that mi = {1, . . . ,K}, although other representations are possible for this.
Furthermore, a TPP can also be represented by a list of strictly positive inter-event times ti = ti � ti�1 2 R+,
where t0 = 0 and tN+1 = T . Both notations are equivalent and can be replaced with each other as desired.
Finally, H (t) = {(t j,m j)|t j < t} defines the history of past events for a given event sequence x.

Each event time ti is a random variable, which is modeled in an autoregressive fashion by the TPP model,
i.e., conditioned on past events defined by the history H (ti) = {t1, . . . , ti�1}. Modeling ti is equivalent
to modeling the inter-event time ti for a given H (ti) = H (ti�1 + ti). For the sake of simplicity, in the
following subsections we consider an unmarked TPP such that x = {t1, . . . , tN}. The modeled distribution of
ti and ti, respectively, can be characterized for a given H (ti) by one of the following three functions, also
illustrated in Figure 5.8:

• The conditional probability density function f ⇤
i (ti) = fi(ti|H (ti)) determines the probability that the

next event for a given history H (ti) occurs in the interval [ti, ti +dt). Similarly, the conditional density
function f ⇤

i (ti) = fi(ti|H (ti)) defines the probability, that the time until the next event for a given
history H (ti) is within the interval [ti,ti +dt).

• The cumulative distribution function F⇤
i (ti) = Fi(ti|H (ti)) =

R ti
ti�1

f ⇤
i (u)du determines the probability

that the next event for a given history H (ti) occurs before ti. Similarly, the cumulative distribution
function F⇤

i (ti) = Fi(ti|H (ti)) =
R ti

0 f ⇤
i (ti�1 + u)du is the probability that the time to the next event

for a given history H (ti) is less than ti.

• The complementary cumulative distribution function S⇤
i (ti) = Si(ti|H (ti)) = 1�F⇤

i (ti) =
R •

ti f ⇤
i (u)du,

also called survival function, defines the probability that the next event for a given history H (ti)

59

5. Behave: Behavioral Modeling of FaaS Functions in FDN

Figure 5.8.: The conditional probability density function f ⇤
i (ti), the cumulative distribution function F⇤

i (ti),
and the survival function S⇤

i (ti) model the time of the next event ti for a given event history
H (ti) for a TPP model [88].

occurs after ti. Similarly, the complementary cumulative distribution function S⇤
i (ti) = Si(ti|H (ti)) =

1 � F⇤
i (ti) =

R •
ti

f ⇤
i (ti�1 + u)du is the probability that the time to the next event for a given history

H (ti) is greater than ti [88] [270].

Any of the functions f ⇤
i , F⇤

i , and S⇤
i can be used to model the distribution of ti or ti. If one of the functions

is known, the other two can be derived from it [268]. Many other functions can be used to model the
distribution of ti or ti, but a prominent one from the literature is the conditional intensity function l ⇤(t),
which is often used in the literature to describe TPP models.

For interpretation of the conditional intensity function, we consider a representation of the TPP model
in which it is defined as a counting process N(t), counting the number of events up to time t. For an
infinitesimally time interval dt, it holds that dN(t) = N(t + dt)� N(t) 2 {0,1}, meaning that at most one
event can occur in [t, t +dt) [88]. From these follows:

E[dN(t)|H (t)] = 1⇤P(next event in [t, t +dt)|H (t))
+0⇤P(no event in [t, t +dt)|H (t))
= l ⇤(t)dt.

(5.2)

If the equation (5.2) is rearranged, the result is equation (5.3).

l ⇤(t) = lim
dt!0

E[dN(t)|H (t)]
dt

, (5.3)

From equation (5.3), we derive that the conditional intensity function specifies the expected number of
events per unit time [268], that is, the frequency rate per unit time, i.e., l ⇤(t) = events/second. The intu-
itive interpretation facilitates the construction of TPP models with desired characteristics by specifying the
functional form of l ⇤(t). When choosing the functional form of l ⇤(t), the only constraint is that for any t
and H (t), the two terms l ⇤(t) � 0 and

R •
t l ⇤(u)du = • must be satisfied. In contrast, the conditional prob-

ability density function f ⇤
i (t) must be specified as a valid probability distribution, such that

R •
ti�1

f ⇤
i (u)du = 1

is satisfied [88, 268].

60

5.2. Functions Interaction Model

If the conditional intensity function l ⇤(t) is given, the conditional probability density function f ⇤
i (t) can be

derived from it. From the definition of the survival function S⇤
i (t) we know that S⇤

i (t) = 1�F⇤
i (t), thus

dS⇤
i (t)
dt

=
d
dt

(1�F⇤
i (t))

() �dS⇤
i (t)
dt

= f ⇤
i (t).

(5.4)

Plugging equation (5.4) into (8.1) then yields

l ⇤(t) =
f ⇤
i (t)

S⇤
i (t)

= � 1
S⇤

i (t)
dS⇤

i (t)
dt

= �d logS⇤
i (t)

dt
. (5.5)

The integration of both sides of equation (5.5) leads to

logS⇤
i (t) = �

Z t

ti�1

l ⇤(u)du

() S⇤
i (t) = exp(�

Z t

ti�1

l ⇤(u)du).
(5.6)

The derived equation for the survival function from (5.6) is plugged into (8.1), leading eventually to the
formula for the conditional probability density function [88]:

f ⇤
i (t) = l ⇤(t)exp(�

Z t

ti�1

l ⇤(u)du). (5.7)

Furthermore, we introduce the hazard function f ⇤
i (t) = fi(t|H (t)), another function to characterize a TPP

and which is related to the conditional intensity function l ⇤(t) [270, 268]. While l ⇤(t) describes the global
intensity in the time interval [0,T], the hazard function f ⇤

i (t) is limited to the time interval between two
events (ti�1, ti], which is why the index i is required. That is, for a sequence of N events, we obtain the
global intensity l ⇤(t) by concatenating the hazard functions f ⇤

1 ,f ⇤
2 , . . . ,f ⇤

N+1, i.e.,

l ⇤(t) =

8
>>>><

>>>>:

f ⇤
1 (t) if 0 t t1

f ⇤
2 (t � t1) if t1 < t t2

. . .

f ⇤
N+1(t � tN) if tN < t T

. (5.8)

5.2.1.1 Neural Temporal Point Processes Models

Neural TPP models autoregressively predict the time ti and mark mi of the next event by conditioning the
prediction on the history of past events H (ti). In [270], the authors partition the prediction process of neural
TPP models (shown in Figure 5.9) into the following three steps:

1. Each event (ti,mi) is mapped to a feature vector yyyi.

2. The history H (ti) is encoded by the history embedding vector hhhi, which is computed by sequentially
feeding yyy1, . . . ,yyyi�1 into an RNN.

3. The conditional distribution over the next event Pi(ti,mi|H (ti)) = P⇤
i (ti,mi) is parameterized by hhhi,

so Pi(ti,mi|H (ti)) = Pi(ti,mi|hhhi). P⇤
i can be defined by f ⇤

i , F⇤
i , S⇤

i or f ⇤
i (see Table 5.2) [270].

61

5. Behave: Behavioral Modeling of FaaS Functions in FDN

RNN RNN RNN...

...

...

Figure 5.9.: In a neural TPP, the distribution over the next event Pi(ti,mi|H (ti)) is parameterized with the
Recurrent Neural Network (RNN)’s hidden state vector hhhi, which encodes the event history
H (ti) [270].

While the first and second steps are similar for prominent neural TPP implementations such as Recurrent
Marked Temporal Point Processes (RMTPPs) [93], FullyNN [213], and LogNormMix [269], they differ
significantly in the third step. Therefore, in the following subsections, we present the neural TPP models
RMTPPs [93] and LogNormMix [269] in more detail.

Recurrent Marked Temporal Point Processes (RMTPPs): The RMTPPs model was the first TPP to
encode event history by the hidden state hhhi of an RNN, thereby parameterizing the distribution over the
next event P⇤

i (ti,mi), i.e., Pi(ti,mi|hhhi). The model assumes conditional independence between the mark and
inter-event time, such that Pi(ti,mi|hhhi) = Pi(ti|hhhi)Pi(mi|hhhi). The mark distribution P⇤

i (mi) is a categorical
distribution. The time distribution P⇤

i (ti) is characterized by the hazard function fi(ti|hhhi) = exp(wti +vvvT hhhi +
b), where the vector vvv and the scalars b and w are learnable parameters and the exp transformation guarantees
the positivity constraint of the hazard function [93]. By applying equation (5.7), we can express f ⇤

i (ti)
as a conditional probability density function f ⇤

i (ti), which in this case is a Gompertz distribution [269].
Because of the simplicity of the hazard function, the integral

R ti
0 f ⇤

i (u)du of the likelihood can be computed
analytically. Unfortunately, no closed-form formula exists for computing the mean of the distribution, i.e.,
E
⇥

f ⇤
i (ti)

⇤
. Instead, an integral must be solved numerically for its computation. However, the model allows

for drawing samples analytically from the distribution [93].

LogNormMix: As with RMTPPs, the TPP LogNormMix [269] assumes conditional independence be-
tween the mark and time, such that Pi(ti,mi|hhhi) = Pi(ti|hhhi)Pi(mi|hhhi). Similarly, the mark distribution P⇤

i (mi)
is defined as a categorical distribution. The unique feature of LogNormMix is that it characterizes the dis-
tribution over ti with the conditional probability density function f ⇤

i (ti), whereas most other TPP models
use the intensity for this purpose. This offers the advantage that we can specify f ⇤

i with any positive proba-
bility density function, thereby automatically satisfying the condition of a valid distribution. LogNormMix
uses a mixture model to specify f ⇤

i , as they are well suited for low-dimensional density estimations [191]
and therefore in particular for modeling the one-dimensional inter-event time ti. As a mixture distribution
defined in (0,•), LogNormMix uses a mixture of K log-normal distributions defined by

fi(ti|wwwi,µµµ i,sssi) =
K

Â
k=1

wik

tisik
p

2p
exp

�(logti � µik)2

2s2
ik

!
(5.9)

62

5.2. Functions Interaction Model

Kubernetes

invocation meta-data

OpenWisk

FaaS Application

invocation spansOpenTelemetry post-processed spans
Trace Collector

trace data

requests

training data test data

Sampler

Training TPP Model Predictions

1

2

3

4

5

6 7

Zipkin

8

Figure 5.10.: TppFaaS is a system for modeling serverless applications using TPPs. For this purpose, trace
data is collected from synthetic serverless applications that the user can easily create via con-
figuration. The trace data is then used to train a TPP, which models the interactions between
the functions in the application.

The parameters of the mixture distribution are computed using the hidden state hhhi of the RNN, i.e.

wwwi = Softmax(VVV whhhi +bbbw)

sssi = exp(VVV shhhi +bbbs)

µµµ i = VVV µhhhi +bbbµ

(5.10)

where VVV w, bbbw, VVV s, bbbs, VVV µ , and bbbµ are learnable parameters and the softmax and exp transformations enforce
the parameter constraints of the distribution. The model allows the computation of the survival function
S⇤

i (T) of the likelihood with a closed-form formula. The mean of the distribution, i.e., E
⇥

f ⇤
i (ti)

⇤
, can also

be computed analytically by taking the weighted mean of the component means. In addition, we can also
analytically draw samples from the distribution [269].

We can efficiently train both models due to their likelihood in closed-form. However, the multimodal log-
normal mixture distribution of LogNormMix provides much higher flexibility in modeling f ⇤

i (ti) than the
unimodal Gompertz distribution of RMTPPs. Using a log-normal mixture distribution allows us the approx-
imation of any distribution [269].

5.2.2 TppFaaS - Developed System

In this section, we give a brief overview of our developed system called TppFaaS, for building Functions
Interaction Model using TPPs [279]. It currently supports OpenWhisk serverless compute platform. The
process starts by deploying a serverless application on the OpenWhisk platform. The application’s functions

63

5. Behave: Behavioral Modeling of FaaS Functions in FDN

owspanprocessor modified span
activationId, waitTime, initTime

spanStart = start - waitTime spanEnd = end

original span
activationId

Figure 5.11.: The owspanprocessor adapts start and endpoint of the original span and adds further attributes.

are instrumented with OpenTelemetry library [222]. For generating the traces, user requests are sent to the
deployed application (Step 1 in Figure 5.10). The OpenWhisk executes the application. We created a
custom Trace Collector that post-processes the spans produced by the instrumented application (Step 2).
The collector consists of one receiver, three processors, and one exporter. The spans produced by the in-
strumented application are received over HTTP by the pre-implemented OLTP Receiver [221] component
of the Trace Collector and forwards to the first processor in the pipeline, the batch processor. The Batch
Processor [220] aggregates the data to minimize later outgoing connections from the exporter. The next
processor in the pipeline, the owspanprocessor, receives the aggregated spans. The processor extracts the
span’s activationId attribute to retrieve meta-information about the span’s associated function invocation
from the OpenWhisk API (Step 3). The attributes extracted by the owspanprocessor measured in millisec-
onds are: start, end, waitTime, and initTime.

• The start attribute is a Unix timestamp and is computed by start := executionStart � initTime, where
executionStart specifies the start time of the function code execution. That is, start already specifies
the start of function initialization for a cold function invocation.

• The end attribute specifies the end of function execution.

• The initTime attribute specifies the duration of function initialization which applies only to cold func-
tion invocations, making the attribute optional.

• The waitTime attribute specifies the OpenWhisk caused delay occurring before the function initializa-
tion/execution [224].

The processor uses the extracted attributes to adjust the start and end time of the span as follows and is
shown in Figure 5.11.

spanStart := start �waitTime
spanEnd := end

(5.11)

Additionally, the waitTime and initTime are added to the modified span as attributes. The owspanattacher
processor creates a child span for each of the waitTime, initTime, and executionTime that represents the
function code execution as shown in Figure 5.12. The start time of the child span executionTime is computed
with executionStart = start + initTime. The spans are then exported to Zipkin [320] (Step 4). We use
Cassandra as a backend database for Zipkin.

5.2.2.1 Sampler

The Sampler is an automated end-to-end pipeline containing all the necessary steps for trace datasets gen-
eration used to train and evaluate TPP models, such as deploying the application, sending requests, and

64

5.2. Functions Interaction Model

owspanattachermodified span
activationId, waitTime, initTime

modified span with attachments
activationId, waitTime, initTime

waitTime

initTime

executionTime

Figure 5.12.: The owspanattacher adds child spans for waitTime, initTime, and executionTime.

collecting data. The Sampler creates the datasets by sending n requests to the serverless application’s main
function at irregular time intervals. The main function represents the application’s entry point. The time
intervals between requests are drawn from a continuous uniform distribution with an interval specified by
the user, who thus determines the load on OpenWhisk and, indirectly, the number of cold starts. Another
feature of the Sampler is performing requests in batches, pausing requesting after each batch for a user-
specified duration. The result is a dataset consisting of n traces whose format is compatible with training a
TPP model.

The first step of the pipeline validates the user-input arguments, such as that the interval of the uniform
distribution is in the positive range. Next, it verifies that Node.js and the Serverless framework [259] are
available. Using Node.js, the pipeline installs the application’s dependencies, such as the OpenTelemetry
library. In the next step, the application is deployed using the Serverless framework, where the OpenWhisk
credentials are read from a configuration file and provided to the framework as environment variables. After
deploying the application, the Sampler sends n requests to the application’s main function at irregular time
intervals, whose durations are drawn from a uniform distribution each time. For each request, OpenWhisk
returns the unique activationId of the main function invocation, which is collected in the unfetched_ids
array. Once the Sampler has sent all n requests, it may take some time to execute all function invocations,
depending on OpenWhisk’s load. With the activationIds returned by OpenWhisk, we can reference any
span associated with a main function invocation of the generated n traces. The Zipkin API provides the abil-
ity to filter traces by a single span attribute. Thus, iterating over the activationIds of the unfetched_ids
array and setting the ID as a filter criterion, we fetch each trace of the n requests from the Zipkin API. For
each fetched trace that is complete, the respective activationId is removed from the unfetched_ids array.
If the trace is incomplete, we keep the ID in the array so that the trace can be retrieved again in the next loop.
The iteration stops if either the array unfetched_ids is empty or the number of IDs in the array stagnates
after several iterations. The latter happens upon runtime errors of OpenWhisk, so some traces are never
completed. Zipkin returns the traces as JSON, from which the Sampler extracts the necessary information
and converts it to a format compatible with the TPP model (Step 5).

In order to convert the extracted spans into the TPP model format compatible, we first decompose the span
of a function invocation into the three-time ranges: waitTime, initTime (for a cold start), and executionTime.
We map the span to an instantaneous point in time, denoted as an event in the context of TPPs. For the next
invocation, we want to predict when its request will arrive at the serverless compute platform. The platform
could use the predicted time to upscale the function upfront, allowing it to begin its execution without delay.
In reality, however, a cold start or platform-specific issues, such as the creation of a docker container, might
delay the function execution, which OpenWhisk captures through the waitTime and initTime. So, to predict
the time when the request for the next function invocation arrives at the platform, we need to subtract these

65

5. Behave: Behavioral Modeling of FaaS Functions in FDN

main

waitTime

f1

waitTime

f2

initTime
executionTime

executionTime

Figure 5.13.: The spans of the invoked functions f1 and f2 are mapped to the 3-tuple events e1 and e2, which
carry the inter-event time ti, the function class mi, and the cold start feature ci. Given the cold
invocation of f1, we have c1 = 1.

delays from the actual start of the function. Let wi be the waitTime, ii be the initTime, and xi be the start
time of the function execution of the ith invocation, then we define ti = xi � wi � ii as the mapping of the
span to an instantaneous point in time. The mapping is visualized in the example in Figure 5.13, where
the functions main, f1, and f2 are invoked sequentially, with a cold start occurring on f1. We represent the
event of the ith invocation, which we denote by ei, as either the 2-tuple (ti,mi) or 3-tuple (ti,mi,ci). The
attribute ti = ti � ti�1 2R+ describes the inter-event time. We use mi 2N0, denoted as a mark, to specify the
class of the invoked function. The binary attribute ci 2 {0,1} is an optional feature intended to enhance the
predictive ability of the TPP model, indicating whether the ith function invocation was a cold start or not.
We compute the feature with ci = wi > 0.

In the final steps of the pipeline, the Sampler saves the formatted trace dataset as a pickle. Once a trace
dataset is generated, we split it into a training and test dataset. We use the training data to optimize the
parameters of the TPP model (Steps 6 - 7), which we then evaluate using the test data (Step 8).

5.2.2.2 TPP Models

In this section, we briefly describe the TPP models and their purposes within TppFaaS.

LogNormMix: ti as a Log-Normal mixture distribution: We use the TPP model LogNormMix (§5.2.1.1)
to model the duration until the next function invocation with the conditional probability distribution f ⇤

i (ti),
where f ⇤

i is defined as a log-normal mixture distribution. For this, we compute the duration until the next
function invocation, i.e., the inter-event time ti, from the time points of the function invocations ti. Since
the inter-event times may take high values, we use their log values. The inter-event time is combined with
the function class attribute mi and the optional cold start feature ci to yield the 3-tuple event ei = (ti,mi,ci),
which represents the function invocation and is input to the RNN. We represent each function class by a
trainable 32-dimensional embedding vector. The vectors are concatenated into an embedding matrix indexed
by mi. We represent the two values of the cold start feature, ci each, by a trainable 32-dimensional embedding
vector. The RNN ingests the event ei and produces a hidden state vector hi 2 R64 that encodes the history
of past invocations. An affine transformation and subsequent softmax operation map the vector hi to the
parameters of the log-normal mixture distribution. The softmax operation forces the component weights of
the mixture distribution to sum to 1.

66

5.2. Functions Interaction Model

TruncNorm: ti as a single value: Instead of an entire probability distribution f ⇤
i (ti), a single value for

the inter-event time ti is sufficient for some applications. For example, if the serverless compute platform
must initialize the function in advance to avoid a cold start, only the single value ti is required. Thus, we
need a point estimate of f ⇤

i (ti) that maps the distribution to a single value. There are two methods to obtain
this point estimate. First, we can model f ⇤

i (ti) with LogNormMix, which provides us with a log-normal
mixture distribution for it. The expected value of this mixture distribution, i.e. E

⇥
f ⇤
i (ti)

⇤
, can be computed

analytically and quickly, representing the desired point estimate of f ⇤
i (ti). In the second method, we map

the hidden state vector hi of the RNN to a positive real number representing the inter-event time ti using an
affine transformation and subsequent softplus operation. Instead of softplus, we can use any other operation
that enforces ti > 0, such as the logarithm. We may also interpret this method as a TPP that models the
conditional probability distribution f ⇤

i (ti) with a truncated normal distribution with constant variance [267].
The normal distribution is "truncated" as it is not defined in R as usual, but only in R+. The single value
for ti, obtained by the affine transformation of hi and the softplus operation, is the expected value of this
distribution. In this work, we selected the second method (which we refer TruncNorm), since, for a simple
point estimate, the high flexibility of the log-normal mixture distribution is unnecessary for modeling f ⇤

i .
Moreover, we experienced more stable training with TruncNorm and a faster decrease of the loss function,
i.e., the mean absolute error.
Mark Modeled with a categorical distribution: We assume that the mark or function type mi and the
inter-event time ti of the ith function invocation are independent. We define the distribution over mi as the
categorical distribution f ⇤

i (mi) = fi(mi|H (ti)) parameterized by the vector ppp i. The value pi,c describes the
probability that mi is of class c. We obtain f ⇤

i (mi) by an affine transformation of the hidden state vector hi
produced by the RNN and a subsequent softmax operation.

5.2.3 Evaluation Settings

This section describes the various evaluation settings used to build the Functions Interaction Model. First,
we describe the benchmark applications used in §5.2.3.1. Then we present the infrastructure settings on
which the evaluation is conducted in §5.2.3.2. Furthermore, we explain the various datasets generated for
evaluation in §5.2.3.3, and training models hyperparameters in §5.2.3.4. Lastly, in §5.2.3.5, we define the
performance quality evaluation metrics used for evaluation of the results.

5.2.3.1 Benchmark Applications

To generate trace datasets, we construct several instrumented serverless applications. The applications are
a composition of several artificial functions whose execution time is simulated by a sleep command. We
configure the application in the YAML file of the Serverless framework. With it, we specify the call graph,
i.e., the structure of the composition that dictates in which order the functions invoke each other. In addition,
we use the configuration to specify the duration of the sleep commands of the individual functions. By
adjusting these two hyperparameters, the structure of the composition, and the distribution of the function
duration, we build applications with unique characteristics that complicate the modeling of the function
invocations for the TPP model. In particular, 1) the constructed applications exhibit different structural
characteristics (sequence, parallel, tree, and fanout), 2) each of the applications are scaled in two variants:
small variant and large variant, and 3) for each variant of the application, we implement a randomized and a
non-randomized variant. In the non-randomized variant, the duration of the sleep command for all functions
is fixed with either 300ms, 400ms or 500ms. The duration is drawn from a gamma distribution for each
function invocation in the randomized variant. During configuration, we, therefore, assign each function
one of three gamma distributions with expected values of either 300ms, 400ms or 500ms.

67

5. Behave: Behavioral Modeling of FaaS Functions in FDN

5.2.3.2 Infrastructure Settings

Generating trace data with cold starts imposes high demands on the infrastructure. To meet these, we host
the performance-critical components of the system architecture, i.e., OpenWhisk, the Trace Collector, and
Zipkin, on Google Kubernetes Engine. Our Kubernetes cluster consists of nine nodes, each with 32 GiB of
memory and a CPU (Intel Skylake architecture) with eight virtual cores. So, in total, we have 72 CPU virtual
cores and 288GiB of memory at our disposal. The Sampler service requires only a few resources and runs
on a separate VM with two virtual cores and 4 GiB of memory. We train our TPP models on a single-node
cluster with 754 GiB of memory and two Intel Cascade Lake processors (Intel(R) Xeon(R) Gold 6238 CPU
@ 2.10GHz) with 22 cores each.

5.2.3.3 Dataset Generation

We generate datasets with 1000 traces each for all variants of the four applications sequence, parallel, tree,
and fanout described in §5.2.3.1 [279]. The parallel, tree, and fanout applications each exist in a small
and large variant, identified by the substring small and large, respectively, in the application name. In
addition, each small and large variant and sequence exist in a randomized and non-randomized variant. We
generate a dataset with and without cold starts for each of these variants. In the former, the cold invocations
account for exactly 30% of the total invocations. To generate such a dataset, we create 400 traces with
almost exclusively cold invocations and 1000 traces with almost exclusively warm invocations. We then
incrementally substitute the warm traces with cold traces until the 30% of cold invocations is reached. We
generate the datasets using the Sampler, which sends requests to a given application. The duration between
requests is drawn each time from a continuous uniform distribution whose interval bounds are specified
by the parameters l (lower bound) and u (upper bound). Thus, the interval specification influences the
request rate and, thus, the load on OpenWhisk. A higher request rate increases the load on OpenWhisk,
which responds by scaling up the functions, causing cold starts. These interval limits are accordingly set to
generate datasets with or without cold starts.

5.2.3.4 Training Details and Model Parameters

We partition the 1000 traces of each dataset into 600 for training and 200 each for validating and testing the
TPP model. The training set is used to optimize the model parameters, the validation set is used for evalu-
ation during training, and the test set is used for the final evaluation. We train and evaluate each dataset to
obtain averaged results using ten different splits. For each split, we train two TPP models, LogNormMix and
TruncNorm. We optimize the former with the loss function LNLL and the latter with LMAE. Both loss func-
tions evaluate the prediction of the next function class mi with the Negative Log-Likelihood (NLL), but differ
in the evaluation of the predicted ti. LogNormMix predicts ti with the conditional probability distribution
f ⇤
i (ti), whereas TruncNorm provides a concrete value for ti, which we denote with tpred

i . The loss function
LNLL evaluates the distribution f ⇤

i (ti) using the NLL, whereas the loss function LMAE computes the Mean
Absolute Error (MAE) for tpred

i . To derive LNLL, we denote by x = {e1 = (t1,m1), . . . ,eN = (tN ,mN)} an
event sequence representing a trace of invocations. The likelihood of the trace is defined by

p(x|q) =
N

’
i=1

⇥
f ⇤
i (ti,mi)

⇤
S⇤

N+1 (5.12)

68

5.2. Functions Interaction Model

Assuming that the inter-event time ti and mark mi are independent, we obtain our loss function:

p(x|q) =
N

’
i=1

⇥
f ⇤
i (ti,mi)

⇤
S⇤

N+1

=
N

’
i=1

⇥
f ⇤
i (ti) f ⇤

i (mi)
⇤

S⇤
N+1

LNLL(q) = � log p(x|q)

= �
N

Â
i=1

⇥
log f ⇤

i (ti)+ log f ⇤
i (mi)

⇤
� logS⇤

N+1

(5.13)

The model parameters are optimized by minimizing the loss function. For this, we use the optimization
algorithm Adam [157] with a learning rate of 10�3 and minibatch size of 64. We train LogNormMix and
TruncNorm up to 2000 and 4000 epochs, respectively, where an epoch describes the iteration over the entire
training data. If the loss does not decrease after 100 and 200 epochs, respectively, for the validation set,
we abort the training and pick the model with the lowest loss for the validation set. To reduce the effect of
overfitting, we apply L2 regularization with 10�5 on the model parameters. To model f ⇤

i (ti), LogNormMix
uses a log-normal mixture distribution with K = 64 components. According to [269], the parameter K does
not impact the model’s performance, which is why we do not test any other values. As RNN architecture,
we use a Gated Recurrent Unit (GRU) [77] with a hidden state vector in R64.

5.2.3.5 Performance Quality Measures

The TPP LogNormMix predicts the conditional probability distribution f ⇤
i (ti) over the inter-event time

ti and the conditional categorical distribution f ⇤
i (mi) over the marks mi. We use the NLL to evaluate the

predicted distributions with respect to the test dataset x = {(t1,m1), . . . ,(tN ,mN)}. Using NLLtime, NLLmark,
and NLLtotal, we evaluate the distribution over ti, mi, and both variables, respectively. The NLL quality
measures are defined as follows:

NLLtime = � 1
N

N

Â
i=1

log f ⇤
i (ti)� logS⇤

N+1

NLLmark = � 1
N

N

Â
i=1

log f ⇤
i (mi)

NLLtotal = NLLtime +NLLmark

(5.14)

It is worth noting here that a single NLL value has little explanatory power. That is, we cannot evaluate
whether a value is "good" without referring to other values. For this reason, the relative differences between
the NLL values for different datasets is analyzed [269].

The accuracy is another quality measure that evaluates LogNormMix’s predictive capability of the mark mi.
It describes the fraction of correctly predicted marks, such that 1.0 is the optimal and 0.0 is the worst value
for this metric. We obtain the predicted class cpred of the mark mi with

cpred = argmax
c

pi,c, (5.15)

where pi,c describes the probability that the ith function invocation is of class c. We expect a correlation
between the measure NLLmark and the accuracy. The accuracy measure evaluates the TPP according to its

69

5. Behave: Behavioral Modeling of FaaS Functions in FDN

capability to predict a single class for the next function invocation. The serverless compute platform can use
the prediction to scale the corresponding class in advance.

The TPP TruncNorm predicts a single value for the inter-event time ti and also, like LogNormMix, a
conditional categorical distribution over mi. We evaluate the predicted value for the inter-event time, denoted
as tpred

i , by computing the MAE for the test dataset. Besides the mean value of the absolute errors, the
distribution of the errors is interesting. This gives us information if the time predicted for the invocation
was too early or too late. Like LogNormMix, TruncNorm also predicts a distribution over the mark mi.
However, in contrast to LogNormMix, we do not evaluate this distribution because the results of the two
TPPs would be similar. This is because both predict their mark distribution conditionally independent of the
time. Therefore, the distribution is only conditioned on the history embedding hi produced by an RNN in
both TPPs.

5.2.4 Results

We evaluate our TPP models LogNormMix and TruncNorm with respect to various applications (§5.2.3.1),
which differ in structure, number of functions, and randomization of the function’s sleep command. In
this subsection, we present the results of both datasets (with and without cold starts). We evaluate the
predicted distributions with the NLL and predicted single values with the MAE. For both quality measures,
lower values are better, and zero is optimal. A single NLL value has little explanatory power. Instead,
the differences between values for different applications are of interest. In contrast, a single MAE value is
meaningful and valuable even without comparison to other values.

5.2.4.1 Predictions on Datasets without Cold Starts

In this section, we present the results of prediction on dataset without cold starts.

LogNormMix via NLLtotal: LogNormMix predicts a distribution for the inter-event time ti and for the mark
mi, i.e., for the function class. Using NLLtotal from equation (5.14), we evaluate both distributions combined
and present the results in Figure 5.14a. Looking at the NLL measures: NLLtotal, NLLtime, and NLLmark
in Figure 5.14a, Figure 5.14b and Figure 5.14c, we notice that NLLtime has a much higher proportion in
NLLtotal than NLLmark. For example, the application tree_large_rand has a value of about 3.8 for NLLtotal.
In this value, about 3.25 accounts for NLLtime and about 0.55 for NLLmark. Thus, we can infer that it
is much more challenging for LogNormMix to predict the time than the functional class. Future research
should therefore prioritize improving the prediction of the inter-event time ti.

LogNormMix via NLLtime: We evaluated the inter-event time with NLLtime from equation (5.14) and show
the results in Figure 5.14b. We draw the following conclusions:

• Differences between Randomized and Non-Randomized Applications: A look at the metric NLLtime
in Figure 5.14b shows that LogNormMix performs better for non-randomized applications than for
randomized ones. This is expected since, for random, the function duration is drawn from a gamma
distribution instead of being constant. Distributions of the inter-event time ti for randomized appli-
cations have a higher variance than for non-randomized ones. This higher variance makes prediction
more challenging for the TPPs. The fact that the function duration is drawn independently of the
gamma distribution also impairs the prediction. Some dependency between function execution times
can be assumed in a real-world application. For example, suppose the execution time of a function is
longer than usual due to a high load on the serverless compute platform. In that case, the following

70

5.2. Functions Interaction Model

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
negative log-likelihood

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

LogNormMix via NLLtotal

(a) Mark (function class) and inter-event time prediction
(NLLtotal) with respect to the test dataset

2 3 4 5
negative log-likelihood

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

LogNormMix via NLLtime

(b) Inter-event time prediction (NLLtime) with respect to
the test dataset.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
negative log-likelihood

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

LogNormMix via NLLmark

(c) Mark (function class) prediction (NLLmark) with re-
spect to the test dataset

0.80 0.85 0.90 0.95 1.00
accuracy

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

LogNormMix via accuracy

(d) The accuracy of the mark (function class) prediction
with respect to the test dataset.

Figure 5.14.: LogNormMix evaluated via the NLL, with the datasets having no cold starts. A lower value
is better, and zero is optimal, except for accuracy, where a higher value is better, and 1.0 is
optimal.

functions will likely execute longer than usual. The information about the overload will be encoded
in the higher inter-event times, thus improving the prediction time of the TPP. Furthermore, we see
in Figure 5.14b that the results for applications with a small proportion of parallel functions suffer
particularly from randomization. For example, this is evident for the applications sequence_small,
which has no parallel functions, and fanout_large, which has a high proportion of parallel functions.
While the TPP performs marginally worse in the non-randomized case for sequence_small than for
fanout_large (difference of approximately 0.25), this difference is much more significant in the ran-
domized case (difference of approximately 3). This is because each function has a successor invoked
after a sleep command completes in sequence. This means that there is a randomized sleep command
between every two invocations, making predictions more difficult. In contrast, the parallel functions
in fanout are invoked as a sequence without any intermediate randomized sleep commands, so the
results in fanout are less affected by the randomization.

• Differences between Small and Large Applications: We observe from Figure 5.14b that the result
for the applications parallel_small and parallel_large are equal in the non-randomized case, but the
result for parallel_large is slightly better in the randomized case. It contradicts our assumption that a
higher number of parallel function branches will affect the prediction performance for the inter-event
time. Moreover, in Figure 5.14b LogNormMix performs better for tree_large than for tree_small in
the non-randomized case, and the results of both applications are equal in the randomized case. It
indicates that a higher tree depth does not negatively influence prediction performance. In addition,
we see in Figure 5.14b that the prediction performance for fanout_large is better for fanout_small,
which is due to the higher proportion of parallel functions. It also shows that scaling the number of
parallel functions in the application structure does not harm the prediction time of the TPP.

71

5. Behave: Behavioral Modeling of FaaS Functions in FDN

0 10 20 30 40 50 60
milliseconds

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

TruncNorm via MAE

(a) Via the Mean Absolute Error (MAE) of the inter-
event time prediction.

�150 �100 �50 0 50 100 150
milliseconds

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

TruncNorm via Ei

(b) Via the distribution of the errors between the pre-
dicted and true inter-event time (Ei = tpred

i � ti).

Figure 5.15.: TruncNorm evaluation on dataset with no cold starts. The lower value is better, and zero is
optimal. A negative value indicates that the predicted time for the invocation was too early.

LogNormMix via NLLmark: In addition, we evaluate the function class distributions separately with
NLLmark from equation (5.14) and show the results in Figure 5.14c. The NLLmark measure in Figure 5.14c
shows that LogNormMix performs well for the majority of the applications, i.e., the values are close to zero.
However, exceptions are the results for tree_large and the randomized versions of parallel and tree. A drop
in performance between the small and the large versions can be observed for the two latter applications,
parallel and tree. The characteristic of these applications’ structure is a high number of parallel function
branches. It indicates that the function class prediction is challenging for applications with this structure.
Since the function class order is the same for all traces, LogNormMix performs best for the application
sequence with a near-zero NLL value.

LogNormMix via Accuracy: Another measure that evaluates the performance of the function class pre-
diction is accuracy. The measure is defined in the range [0.0,1.0], where 1.0 is the best (all classes were
predicted correctly), and 0.0 is the worst. We show the results of LogNormMix for this measure in Fig-
ure 5.14d. The results of the accuracy in Figure 5.14d reflect the results of the NLLmark measure, though
the values are more interpretable. We see that LogNormMix achieves accuracy close to 1.0 for most appli-
cations, meaning that almost all invocations are classified correctly. Analogous to NLLmark, LogNormMix
achieves worse results for the randomized versions of parallel and tree. However, an accuracy of above 0.93
is still achieved for tree_large, parallel_small_rand, and tree_small_rand, which is acceptable. On the other
hand, an accuracy of about 0.8 for parallel_large_rand and tree_large_rand could further be improved by
collecting more data.

TruncNorm via MAE: TruncNorm predicts a single value for the inter-event time ti. We evaluate this
prediction using the MAE and show the results in Figure 5.15a. Figure 5.15a shows the results of Trunc-
Norm’s inter-event time predictions in terms of the MAE. The results are similar to those for the NLLtime
measure, i.e., they exhibit the same patterns: better results for non-randomized applications than for ran-
domized ones, smaller drop in performance due to randomization for applications with a higher proportion
of parallel functions (e.g., tree and fanout), and no negative impact on the results when scaling the applica-
tion structure from small to large. For the non-randomized applications, all MAE values are below 20ms,
which is reasonable given the duration of the sleep command from 300ms to 500ms. It also applies to the
randomized applications, excluding the applications parallel and sequence. For these two applications, the
values of about 40ms and 60ms can be improved by providing more features for the TPP in future work.

TruncNorm via Ei: In addition, we calculate the errors Ei for the entire test dataset and visualize their
distribution in Figure 5.15b. Here, lower absolute values are better, and zero is optimal. The error distri-
butions of the inter-event time predictions in Figure 5.15b show that TruncNorm performs well for most
applications. However, analogous to the results for the MAE, the performance for the randomized versions

72

5.2. Functions Interaction Model

2 3 4 5 6 7
negative log-likelihood

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

LogNormMix via NLLtotal

cold start feature
False
True

(a) Mark (function class) and inter-event time prediction
(NLLtotal) with respect to the test dataset

2 3 4 5 6 7
negative log-likelihood

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

LogNormMix via NLLtime

cold start feature
False
True

(b) Inter-event time prediction (NLLtime) with respect to
the test dataset.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
negative log-likelihood

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

LogNormMix via NLLmark

cold start feature
False
True

(c) Mark (function class) prediction (NLLmark) with re-
spect to the test dataset

0.75 0.80 0.85 0.90 0.95 1.00
accuracy

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

LogNormMix via accuracy

cold start feature
False
True

(d) The accuracy of the mark (function class) prediction
with respect to the test dataset.

Figure 5.16.: LogNormMix evaluated via the NLL, with the datasets having 30% of the invocations as cold
starts. For each application, the TPP is trained and evaluated once with the cold start feature
ci enabled and once with it disabled. A lower value is better, and zero is optimal, except for
accuracy, where a higher value is better, and 1.0 is optimal.

of sequence and parallel was relatively poor. Here, the error distributions have higher variances than for the
other applications. Notably, all distributions are symmetric and centered to zero.

5.2.4.2 Prediction on Datasets with Cold Starts

This section repeats the evaluation from §5.2.4.1 but with the difference that 30% of the function invocations
are cold starts. Another difference is that we train and evaluate the models twice for each application. Once
the cold start feature ci 2 {0,1} is included in the event representation, i.e. (ti,mi,ci), and once it is not, i.e.
(ti,mi). The feature indicates whether the ith invocation is a cold-start.

LogNormMix via NLLtime: We evaluate the inter-event time with NLLtime from equation (5.14) and present
the results in Figure 5.16b. The results regarding NLLtime in Figure 5.16b are similar to the results for this
measure without cold starts in Figure 5.14b, yet with slightly poorer performance. However, one difference
is that LogNormMix also performed relatively poorly for the non-randomized versions of the sequence and
parallel applications. At the same time, this is not the case for the datasets without cold starts. The inter-
event time distributions in the cold start datasets have a high variance for the sequence, parallel_small, and
parallel_large applications. It affects the prediction performance. The inter-event time distributions in the
datasets without cold starts have almost no variance. The high variance of the inter-event time distributions
is caused by the high variance of the waitTime distributions. The high waitTime values, up to 10 seconds,
are caused by the high load imposed on OpenWhisk to enforce cold starts. Furthermore, it can be seen in
Figure 5.16b that the enabled cold start feature slightly improved the prediction results. However, the im-
provement is marginal as the significant uncertainty in inter-event time prediction comes from the waitTime

73

5. Behave: Behavioral Modeling of FaaS Functions in FDN

200 400 600 800 1000 1200 1400 1600
milliseconds

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

TruncNorm via MAE

cold start feature
False
True

(a) Via the Mean Absolute Error (MAE) of the inter-
event time prediction.

�6000 �4000 �2000 0 2000
milliseconds

Non-rand small sequence
Non-rand small parallel
Non-rand small tree
Non-rand small fanout
Non-rand large parallel
Non-rand large tree
Non-rand large fanout
Rand small sequence
Rand small parallel
Rand small tree
Rand small fanout
Rand large parallel
Rand large tree
Rand large fanout

A
pp

lic
at

io
n

TruncNorm via Ei

cold start feature
False
True

(b) Via the distribution of the errors between the pre-
dicted and true inter-event time (Ei = tpred

i � ti).

Figure 5.17.: TruncNorm evaluation for the dataset having 30% of the invocations as cold starts. For each
application, the TPP is trained and evaluated once with the cold start feature ci enabled and
once with it disabled. The lower value is better, and zero is optimal. A negative value indicates
that the predicted time for the invocation was too early.

values with high variance. The feature provides the information that a cold start occurred and that a higher
inter-event time can be expected. However, the prediction is still challenging due to the high variance of the
waitTime.

LogNormMix via NLLmark: Looking at the results of the NLLmark measure in Figure 5.16c, it is noticeable
that they are slightly worse than the results for the datasets without cold starts in Figure 5.14c. It implies
that the function class prediction was also affected by the higher variance of the inter-event time caused by
the higher variance of the waitTime. Similar to the results without cold starts, LogNormMix performs worse
for parallel and tree applications due to their structure with parallel function branches. Enabling the cold
start features led to improvements, but as with the results for the NLLtime measure, these are marginal.

LogNormMix via Accuracy: Similar to the drop in performance for NLLmark due to cold starts, the results
with the accuracy measure in Figure 5.16d are also dropped. Especially, the results for the non-randomized
versions of parallel and tree are affected by the high variance of waitTime. For example, the results for par-
allel_small and tree_small decrease by approximately 0.06 and 0.08, respectively, compared to the results
for the datasets without cold starts in Figure 5.14d. The highest decrease in accuracy of approximately 0.11
is experienced for the parallel_large application. Even though the performance is generally decreased due to
the cold starts, the results are still good. The accuracy for parallel_large_rand and tree_large_rand decrease
only by approximately 0.03 and 0.05, respectively. Similarly, for parallel_small_rand and tree_small_rand
decrease roughly by 0.03 and 0.06, respectively. The accuracy for all versions of fanout decrease at most
by 0.03.

TruncNorm via MAE: Similar to the decrease in performance with respect to NLLtime due to the cold starts,
a decrease in performance with respect to the MAE in Figure 5.15a is also observed. The high variance
of the waitTime in the cold start datasets significantly affects the prediction performance of TruncNorm,
resulting in MAEs of more than 400ms. Compared to the results for the datasets without cold starts in
Figure 5.15a, where the MAE is below 20ms for most applications, this is a significant increase. The MAE
is especially high for the sequence and the small versions of parallel applications, with values between 1s
and 1.5s. It could be related to the fact that the structures of these applications have a low proportion of
parallel functions. In contrast, the performance of TruncNorm is relatively good for the large versions of the
parallel application. It is surprising since LogNormMix struggled to predict the time for these applications,
as seen in Figure 5.16b. We can also observe that the cold start feature improves the prediction performance,
especially for the small versions of sequence and parallel applications.

74

5.3. Summary

TruncNorm via Ei: The error distributions of the inter-event time predictions in Figure 5.17b show that
TruncNorm achieves good results for most applications, i.e., absolute values close to zero. Analogous to
the results with MAE in Figure 5.17a, the performance for the small versions of parallel and especially
sequence applications is relatively poor as the error distributions have high variance. Furthermore, the error
distributions show that most of the errors were negative. By the definition Ei = tpred

i � ti, a negative error
signifies that the predicted time for the invocation was too early. This is because the high waitTime delayed
the invocation.

5.3 Summary

In this chapter, we presented two behavioral models based on the monitoring data collected by FDN-Monitor
for characterization of the FaaS functions: 1) Functions Performance Model (§5.1), and 2) Function Inter-
action Model (§5.2).

In §5.1, we demonstrated the impact of various configuration parameters on the Function Capacity (FC)
for the two serverless compute platforms (AWS Lambda and GCF). The introduced methodology and the
tool FnCapacitor aim to solve the problem of estimating the FC at a certain deployment configuration.
FnCapacitor can be used by application developers in an offline manner for estimating the FCs of FaaS
functions within their application for different deployment configurations. The developer can deploy the
functions with the right configurations based on the estimated FCs and the requirements. FnCapacitor can
also be used by application developers in an online manner, where the tool collects the monitoring data of the
already existing FaaS functions and builds the models automatically in the background without additional
load testing. The built models can then be used to update the deployment configurations of the functions
depending on the required SLOs. Creating a function scheduling based on the estimated FCs is a prospective
future direction.

In §5.2 we have shown that neural TPPs effectively model the time and class of function invocations in a
serverless application. For this purpose, we introduced TppFaaS, a system for creating synthetic serverless
applications and using their collected data to train and test neural TPPs. In this data, function invocations are
represented by the timing of their function trigger events. In addition, the data contains meta-information,
such as the function class and the cold start initialization time. With these datasets, we trained and tested
the two TPPs: LogNormMix and TruncNorm. It was shown that both models managed to capture the latent
temporal dynamics of the different applications. We observed that the performance of the time prediction
was not affected by scaling the application structure. Moreover, the function class prediction proved more
challenging for applications involving parallel executed function branches. The TPPs performed well for all
measures for datasets without cold starts. Here, LogNormMix achieved an accuracy of over 0.94 for most
applications. Also, the MAE of TruncNorm’s time prediction was below 22ms for most applications. How-
ever, the predictions for the datasets with cold starts were more challenging. Here, TruncNorm achieved a
MAE between 200ms and 750ms for most applications. The high errors resulted from the high variance of the
waitTime, which measures the time an invocation request waits for execution in the internal OpenWhisk sys-
tem. In addition, LogNormMix’s function class prediction performance declined for the cold start datasets.
Nevertheless, an accuracy above 0.85 was achieved for most applications, which is still satisfactory. The
cold start feature, which indicates whether a cold start occurred, improved the results only marginally. Since
the most uncertainty in the prediction is caused by the high variance of the waitTime and not by the vari-
ance of the cold start initialization time. Future work may provide additional features such as the number
of invoker resources or the number of invocation requests waiting in the OpenWhisk system to the TPP to
assist in estimating the estimation of the waitTime. In general, predicting the time is more complicated than
predicting the functional class for datasets with and without cold starts.

75

6
Courier: Users’s Functions Invocations Deliv-
ering and Load Balancing in FDN

“I have not failed. I’ve just found 10,000 ways
that won’t work."

— Thomas A. Edison

This chapter presents the Courier component of the FDN, responsible for delivering and load balancing
user’s functions invocations across the edge-cloud continuum in FDN. We start with the introduction to the
Courier component in §6.1, explaining the challenges it needs to tackle and its two components: Courier
Load Balancer and Courier Control Plane. We describe the design of the Courier Load Balancer in §6.2.
We then present the Courier Control Plane in §6.3 along with the function delivery policies in §6.3.1 to
select a subset of clusters. Lastly, in §6.3.2, we describe two load balancing algorithms that balance the
users’ invocations across the selected subset of clusters based on the function delivery policy.

6.1 Introduction
In order to deliver the incoming invocations across the target serverless compute clusters spread across the
continuum, we need to create a load balancer. The load balancer receives the user’s invocations and decides
on a subset of serverless compute clusters to handle the invocations based on function-awareness and data-
awareness. The invocations are load balanced across the selected subset of clusters based on the set load
balancing algorithm. However, to do so, we need to tackle the following challenges:

• Clusters awareness: The load balancer must know which clusters are part of the FDN and their
deployment location (at the edge, in the cloud, or on-premise) to route the requests to the appropriate
clusters. Also, the load balancer needs to periodically perform health checks of the clusters to route
the requests only to the healthy clusters and update the delivery policies accordingly.

• Functions awareness: Each function may not be deployed on all the clusters. Therefore, the load
balancer must know which functions are deployed on which clusters. It will enable the load balancer
to direct user requests for the functions to those clusters.

76

6.1. Introduction

Serverless Compute
Cluster - 1 DB

Serverless Compute
Cluster - 2 DB

Serverless Compute
Cluster - 3 DB

Serverless Compute
Cluster - 4 DB

Clients

pol
icy1/function1

/function2 policy2

/functio
n3 policy'n'

...

...

Load Balancing
Algorithms

FDN
Discovery.
Inventory

Load Balancer
Configurator

Function Delivering
Policies

Update
Weights

FDN
Monitoring

Data

Create
Policies4

5

7

8

Courier Load
Balancer

3

1
Courier

Control Plane

DB

2

6

Figure 6.1.: A high-level overview design of the Courier component of the FDN, responsible for deliver-
ing and load balancing user’s functions invocations across the edge-cloud continuum in FDN.
Courier mainly consists of two components: Courier Load Balancer and Courier Control
Plane. The Courier Load Balancer itself consists of two layers. The Courier Control Plane is
responsible for configuring the Courier Load Balancer.

• Data awareness: Each function within an application has different data requirements, and all the
data may not be available on all clusters due to privacy and resource constraints. Therefore, the load
balancer must track the data distributed across the clusters and the functions’ data requirements.

To this end, we create a tool called Courier within FDN responsible for delivering the invocations of the
function to the suitable set of clusters based on function-awareness and data-awareness. The invocations
are then load balanced across the selected subset of clusters based on the set load balancing algorithm. A
high-level design of the Courier is shown in Figure 6.1. Courier mainly consists of two components:
Courier Load Balancer and Courier Control Plane. Courier Load Balancer, as the name suggests, is the
main entry point for the users and is responsible for load balancing users’ functions invocations across
multiple serverless compute clusters spread across the edge-cloud continuum based on the set configuration.
The Courier Load Balancer itself consists of two layers. The first is the access point from the outside
to the FDN, offering an HTTP/HTTPS endpoint. Successively, the requests are dispatched to the second
layer using set function delivery policies (function-awareness and data-awareness), where a different load
balancer is employed depending on the policy. The second layer of the Courier Load Balancer balances
the users’ invocations across the selected subset of clusters based on a set load balancing algorithm. On the
other hand, the Courier Control Plane is responsible for configuring the Courier Load Balancer based on
various function delivery policies and load balancing algorithms.

77

6. Courier: Users’s Functions Invocations Delivering and Load Balancing in FDN

6.2 Courier Load Balancer

A central software system that can orchestrate users’ functions invocations across multiple serverless com-
pute clusters spread across the edge-cloud continuum is called load balancer. Load balancing happens most
commonly during name resolution (via DNS) or the HTTP request [181, 209]. HTTP is the most commonly
used protocol in today’s internet landscape. It allows end-users to access websites via their browsers and
builds the foundation for the REST paradigm - one of the most used paradigms to create APIs for web
services. Therefore, Courier Load Balancer currently only considers function invocations made through
HTTP endpoint triggers that specify the functions to be executed and possible parameters. These requests
are simple GET or POST requests to the endpoint of the load balancer. The URL called is of the form:

http://{ADDRESS}:{PORT}/function/{FUNCTION_NAME}

The address and the port depend on the network instance of the load balancer, while the function name refers
to one of the deployed functions. When Courier Load Balancer receives the invocation, it looks for the X-
FDN-Bucket header. It uses its value and the set function delivery policy (§6.3.1) to select the appropriate
subset of target serverless compute clusters and load balances among them based on the set load balancing
algorithm. Load balancing in HTTP can generally be done in two different ways:

• via a Reverse Proxy: A user sends a request to an HTTP server, decides which server should handle it,
and forwards it to this server. After the computation, the server returns the result to the reverse proxy,
which returns the result to the user. In this method, every request passes through the reverse proxy.
NGINX [208] and HAProxy [125] are some of the most known representatives of a reverse proxy.

• via HTTP Redirects: A user sends a request to an HTTP server, which decides which server should
handle the request and redirects the user via a status code 3XX to this server. The user will then connect
directly to the server, which handles future requests.

Both methods offer advantages and disadvantages. The Reverse Proxy method offers the benefit of trans-
parent load balancing to the user. Therefore, the user does not need to create another request (which is
necessary with the redirect method). Another benefit of Reverse Proxy is that it can terminate the Secure
Sockets Layer (SSL) session. Terminating SSL sessions simplify certificate management and leave encryp-
tion and decryption of computations to the Reverse Proxy. We, therefore, decided on load balancing via
Reverse Proxy method.

Courier Load Balancer is based on HAProxy (High Availability Proxy), an open-source load balancer that
offers a very reliable solution for TCP and HTTP-based applications [125]. HAProxy was initially released
in 2001 and has become the de-facto standard open-source source load balancer used by many essential web
enterprises such as Airbnb and GitHub [126]. Once the HAProxy has been deployed, it is only required to
modify the configuration file that defines how the load balancer will work to control its behavior. We chose
HAProxy due to its simplicity and the fact that it offers an interface for updating its parameters dynamically.
HAProxy offers a runtime API [94] that allows modifying some settings during the program’s execution
without being forced to stop the whole system and, therefore, no downtime.

FDN consists of heterogeneous clusters spread across the edge-cloud continuum, and heterogeneous func-
tions run within FDN have different data and compute requirements. For instance, functions heavily based
on video processing can operate more efficiently if we co-locate executing functions and data physically.
This is often best achieved by shipping code to data (in our case, executing the function on the clusters that
have the data required by the function) rather than the approach of pulling data to code [127]. Therefore,
the Courier Load Balancer is composed of two layers. The first is the access point from the outside to the

78

6.2. Courier Load Balancer

architecture, offering an HTTP endpoint. Successively, the function requests are delivered to the second
layer using various function delivery policies (§6.3.1). Each function delivery policy selects a subset of
the available clusters and employs a load balancer for load balancing the incoming requests to the selected
backend clusters. We mainly employ the Weighted Round-Robin (WRR) policy in the second layer of the
load balancer for load balancing the incoming requests. The weights are updated automatically based on
different load balancing algorithms (§6.3.2 by the Courier Control Plane.

6.2.1 Courier Load Balancer Configuration

HAProxy allows building multiple load balancers using a single instance of it by its backend feature [125].
This way, we can run the entire framework on the same machine without adding extra network overhead due
to the presence of two different layers. An example configuration file used to configure Courier Load Bal-
ancer is shown in Listing 6.1 based on the HAProxy configuration file [287]. The frontend section (line 1 in
Listing 6.1) corresponds to the first layer. It defines how the user can connect to the load balancer, specifying
the address and port on which it is listening. It is possible to create more interfaces by declaring different
frontend sections, each of which must be connected to a different endpoint. The http_front_courier is
simply the name we have given to it. bind (line 2 in listing 6.1) specifies the network interface on which
the load balancer is listening. We use port 80 so that all the functions can be invoked using a normal HTTP
connection. stats (line 3 in listing 6.1) specifies the URL used for accessing the metrics of the load bal-
ancer and is useful for analyzing and monitoring the behavior of the load balancer. It is possible to specify
forwarding rules that are called Access Control Lists (ACLs) [136] (referred to as acl in lines 5-6, 8-9 in
listing 6.1). They allow setting custom rules to block malicious requests, redirecting, or specify the target
backend based on some policies. For example, an ACL can read the URL of an incoming request, analyze
it, and forward it to the exact server according to its format. We use parameter path_beg, that compares
the function path in the incoming request URL to the specified function path. If it matches, for example
to /function/function_1, then the value of the acl variable url_function_1 is true, and otherwise false
(line 5 in listing 6.1). Similarly, to check the storage bucket required by the function, we compare the X-
FDN-Bucket header value against the bucket name. For example, if X-FDN-Bucket header value matches to
bucket_1, then the value of the acl variable bucket_1 is true, and otherwise false (line 8 in listing 6.1).

In order to forward the requests to a specific backend, it is necessary to specify the use_backend (lines 15-19
in listing 6.1), which takes as an argument the label of the desired backend. Given the name of the acl, it will
forward the request to the corresponding backend server. The backend defines the group of clusters toward
which the requests will be forwarded. These backends are created automatically by the Courier Control
Plane based on the FDN Inventory Database (consisting of clusters, functions, and data information). It
uses the data mixed with various function delivery policies to construct policies tailored for each function.
default_backend is the backend to which the requests will be forwarded if no rule is satisfied.

There are as many backend sections (lines 20, 26, 29, 34, 37, and 40 in listing 6.1) as the number of policies.
Each corresponds to one of the load balancers of the second layer load balancing to the subsets of clusters
that can execute the associated function. balance specifies the load balancing algorithm that will be used.
We employ WRR, and for that, we have to specify here roundrobin and include weights in the next lines.
The weights are updated automatically based on different algorithms mentioned in §6.3.2. For each server
in the backend it is necessary to specify its address, port and other secondary parameters such as the weight
in case the policy used is WRR. For example, f unction_1 is deployed in clusters 1, 3 and 4, and bucket_1
is present in clusters 1 and 4. So, backend function_1_bucket_1_policy contains clusters 1 and 4 i.e.
intersection of both lists (lines 22-25 in listing 6.1).

79

6. Courier: Users’s Functions Invocations Delivering and Load Balancing in FDN

Listing 6.1: An example configuration of Couier Load Balancer based on HAProxy. The frontend specifies
the address on which the server is listening and a set of rules for requests forwarding. The acl
tag defines a path-based routing policy for sorting the incoming requests to the corresponding
backend. Each backend specifies the load balancing algorithm used and the set of the clusters
that will receive the requests.

1 frontend http_front_courier
2 bind *:80
3 stats uri /haproxy?stats
4 # functions tracking based rules
5 acl url_function_1 path_beg /function/function_1
6 acl url_function_2 path_beg /function/function_2
7 # buckets mapping
8 acl bucket_1 hdr(X-FDN-BUCKET) -i bucket_1
9 acl bucket_2 hdr(X-FDN-BUCKET) -i bucket_2

10 # based on FDN discovery inventory, courier knows (An example)
11 # 1. which functions are deployed in which clusters (functions awareness)
12 # (function1: cluster1, cluster3 cluster4, function2: cluster1))
13 # 2. which buckets are present on which clusters (data awareness)
14 # (bucket1: cluster1 and cluster4, bucket2: cluster2, cluster4))
15 use_backend function_1_bucket_1_policy if url_function_1 AND bucket_1
16 use_backend function_1_bucket_2_policy if url_function_1 AND bucket_2
17 use_backend function_1_policy if url_function_1
18 use_backend function_2_bucket_1_policy if url_function_2 AND bucket_1
19 use_backend function_2_policy if url_function_2
20 default_backend default
21

22 backend function_1_bucket_1_policy # function1 backends
23 balance roundrobin
24 server cluster1 ADDRESS:PORT weight 1
25 server cluster4 ADDRESS:PORT weight 1
26 backend function_1_bucket_2_policy
27 balance roundrobin
28 server cluster4 ADDRESS:PORT weight 1
29 backend function_1_policy
30 balance roundrobin
31 server cluster1 ADDRESS:PORT weight 1
32 server cluster3 ADDRESS:PORT weight 1
33 server cluster4 ADDRESS:PORT weight 1
34 backend function_2_bucket_1_policy # function2 backends
35 balance roundrobin
36 server cluster1 ADDRESS:PORT weight 1
37 backend function_2_policy
38 balance roundrobin
39 server cluster1 ADDRESS:PORT weight 1
40 backend default # default backend
41 balance roundrobin
42 server cluster1 ADDRESS:PORT weight 1

80

6.3. Courier Control Plane

Courier Load Balancer

Load Balancing
Algorithms

FDN
Discovery.
Inventory

Load Balancer
Configurator

Function Delivering
Policies

Update
Weights

FDN
Monitoring

Data

Create
Policies4

5

7

8

3

1
Courier

Control Plane

DB

2

6

Figure 6.2.: A high-level workflow of the Courier Control Plane, responsible for configuring the Courier
Load Balancer based on various function delivery policies and load balancing algorithms.

6.3 Courier Control Plane
The Courier Control Plane is the brain of the Courier and is responsible for configuring the Courier Load
Balancer. A high-level workflow of the Courier Control Plane is shown in Figure 6.2. It is developed
in Node.js programming language and stores information related to the control plane in the MongoDB
database. It takes FDN Inventory Database (consisting of clusters, functions, and data information) (step
1), and FDN Monitoring Data (consisting of monitoring metrics data from the clusters) (step 5) as the

input. It combines discovery data with various function delivery policies to construct policies tailored for
each function. These policies are saved into the database of the control plane (step 2). Simultaneously,
these are passed to the Load balancer Configurator (§6.3.3) subcomponent (step 3) of the control plane
to create or update the configuration file of the first layer of the Courier Load Balancer (step 4). FDN
Monitoring Data (step 5) along with the function delivery policies (step 6) are used with various load
balancing algorithms to decide the weights of each cluster within each policy. These weights are passed to
the Load balancer Configurator subcomponent (step 7) of the control plane to update the second layer,
i.e., backend cluster’s weights in the configuration file of the Courier Load Balancer (step 8).
In the following subsections, we describe each subcomponent of Courier Control Plane in more detail.

6.3.1 Function Delivery Policies

Function Delivery Policies are used to select a subset of clusters from the available clusters in FDN . These
subsets of clusters are decided based on different policies and are tailored for each function. Since the
function invocations are delivered to these subsets of clusters based on the different policies, we call the
policies as Function Delivery Policies. Policies are stored as JSON objects in the MongoDB database of the
Courier Control Plane.

6.3.1.1 Function-Aware Delivery Policy

This policy considers the clusters on which a function is deployed and selects those clusters to construct
policies. The FDN Discovery Inventory provides the function to clusters mapping. Any change in the

81

6. Courier: Users’s Functions Invocations Delivering and Load Balancing in FDN

function’s deployment, i.e., create or delete, results in a policy change. An example of a policy created
for function_1 which is deployed on cluster_1, cluster_2 and cluster_4 is shown in listing 6.2. The
object specifies the name of the function, i.e., function_name (line 4), which is used to create the matching
criteria, and policies (lines 6-20) under the matching criteria are applicable if the matching criteria are
satisfied. We can have multiple policies for the same function, but we only have one in this example. The
policy contains the name (line 7), load balancing algorithm (line 8), and a set of upstreams (lines 10-20)
containing the backend cluster’s names, URLs, and weights. The round_robin algorithm is used as a load
balancing algorithm. It will cause the second layer load balancer to cycle through each upstream URLs one
after another with specified weights.

Listing 6.2: An example of a Function-Aware Delivery Policy created for function_1 which is deployed
on cluster_1, cluster_2 and cluster_4.

1 {
2 "function_aware_policies":[
3 {
4 "function_name":"function_1",
5 "policies":[
6 {
7 "name":"function_1_function_aware_policy_1",
8 "load_balancing_algorithm":"round_robin",
9 "currently_used": "true",

10 "upstreams":[{
11 "name":"cluster_1",
12 "address":"serverless.cluster_1.fdn:31112",
13 "weight":1
14 },
15 ...
16 {
17 "name":"cluster_4",
18 "address":"serverless.cluster_4.fdn:31112",
19 "weight":1
20 }
21 ...

6.3.1.2 Data-Aware Delivery Policy

FDN tracks all the data objects in MinIO storage buckets across the clusters. These buckets are the contain-
ers for data objects and support replication. The buckets’ details are stored in the FDN Discovery Inven-
tory. Data-Aware Delivery Policy uses the storage bucket required by the function, specified as the HTTP
header X-FDN-Bucket parameter in the invocation request. It utilizes its value and gets the correct subset
of target serverless compute clusters with both the bucket and the function. It uses those subsets of clus-
ters to construct data-aware delivery policies. This policy implicitly takes function-awareness into account
when selecting the subset of the clusters. FDN continuously tracks data storage buckets. Any changes
(creation, deletion, and replication of bucket) are automatically taken into account by the Courier Control
Plane, resulting in a change of the created policies. Data-Aware Delivery Policy has higher precedence over
Function-Aware Delivery Policy. For instance, if function_1 is deployed on cluster_1, and cluster_2
and storage bucket bucket_1 exists on cluster_1 and storage bucket bucket_2 exists on cluster_1, and

82

6.3. Courier Control Plane

cluster_2, the generated data-aware policies are shown in listing 6.3. The only difference in this generated
policy as against the Function-Aware Delivery Policy is that we use both the function_name (line 4) and
bucket_name (line 5) to create the matching criteria and attach policies to it. One can see that the number
of policies generated could get very large if we have a high number of functions and buckets. Furthermore,
finding the right policy based on the matching criteria could get slower. One way to avoid this is to scale
the number of load balancer instances, each load balancer mapping to a function. However, this scalability
is beyond the scope of this dissertation.

Listing 6.3: An example of a Data-Aware Delivery Policy created for function_1 which is deployed on
cluster_1, cluster_2. Storage bucket bucket_1 exists on cluster_1 and storage bucket
bucket_2 exists on cluster_1, and cluster_2

1 {
2 "data_aware_policies":[
3 {
4 "function_name":"function_1",
5 "bucket_name": "bucket_1",
6 "policies":[
7 { "name": "function_1_bucket_1_data_aware_policy_1",
8 "load_balancing_algorithm":"round_robin",
9 "currently_used": "true",

10 "upstreams":[{
11 "name":"cluster_1",
12 "address":"serverless.cluster_1.fdn:31112",
13 "weight":1
14 ...
15 {
16 "function_name":"function_1",
17 "bucket_name": "bucket_2",
18 "policies":[{ "name": "function_1_bucket_2_data_aware_policy_1",
19 "load_balancing_algorithm":"round_robin",
20 "currently_used": "true",
21 "upstreams":[{
22 "name":"cluster_1",
23 "address":"serverless.cluster_1.fdn:31112",
24 "weight":1
25 },{
26 "name":"cluster_2",
27 "address":"serverless.cluster_2.fdn:31112",
28 "weight":1
29 }]
30 ...

6.3.2 Load Balancing Algorithms

Load balancing algorithms are used for load balancing across the clusters within each policy in the second
layer of the Courier Load Balancer. Generally, load balancing algorithms can be categorized into two

83

6. Courier: Users’s Functions Invocations Delivering and Load Balancing in FDN

categories: 1) Static load balancing and 2) Dynamic algorithms. Static load balancing algorithms derive
their decisions based on pre-defined parameters, which do not get updated. Static algorithms offer low
computational overhead with decent results [266]. However, most static algorithms do not include overload
protection [104]. Popular load balancers such as the AWS Elastic Load Balancer [35] and the NGINX
load balancer rely on static algorithms [22, 207]. The most prominent static algorithms are the RR and
WRR algorithm. RR distributes the requests equally to all available targets, whereas WRR assigns requests
to targets in a rotating manner by respecting pre-defined weights for each target. In general, static load
balancing algorithms have the disadvantage that they do not directly react to changes in the runtime behavior
of functions or the load on the target [104].

Dynamic algorithms take the state of the target systems into account when scheduling [104]. By respecting
the system state, the algorithms try to prevent the overloading of the target systems. This comes at the
cost of increased overhead and network communication [293]. Least-connection-based algorithms count
the number of open connections to a target. They then try to keep these in balance (e.g., according to
a pre-defined weight in the Weighted Least Connection algorithm [293]). Another dynamic approach is
the prediction of the future workload, as shown by Lavanya et al. [167]. This prediction can also help to
improve the overall energy efficiency, as unused machines could be turned off. Ren et al. use a prediction-
based approach to improve the performance of the Weighted Least Connection algorithm [247]. Tong et
al. present an algorithm that calculates the residual load rate of each server [293]. This rate indicates the
remaining capacity of that specific target. The algorithm groups targets with similar residual load rates and
distributes the requests in a WRR fashion between them.

We do support by default RR and Least-connection algorithm, but we also created a few more to reflect
the changes in the runtime behavior of functions and the load on the clusters. We base the design of our
algorithms on the WRR algorithm, as it offers better performance than Min-Min-based algorithms while
having a very low overhead [266]. The weights within each policy are independently updated based on the
designed algorithms. The following subsections provide more details on the two designed algorithms.

6.3.2.1 Latency-Aware Load Balancing Algorithm

The first approach we consider is a simple greedy approach, where we adapt the weights according to
the functions’ execution time in the target clusters. This is done to reflect the latency for each function
invocation within the clusters and automatically take into account the computational capability of the cluster
and available free resources. It initially assigns equal weights to all the target clusters and periodically
updates them to reflect changes in the target clusters. The average execution time (measured in milliseconds)
of the functions within a cluster is used as the main metric for weight estimation. We use this metric to
prevent overloading of the target clusters, similar to the Least Connection-based algorithms. The pseudocode
for the algorithm is shown in Algorithm 1. The algorithm represents a dynamic version of a WRR algorithm
as it adapts its weights according to the functions’ execution time in the target cluster. The algorithm takes
the average execution times of the function across a specific time delta d for each cluster as the input. It then
determines the maximum execution time from the input average execution times (Line 3). Based on this,
it calculates the weight of each cluster by dividing the maximum execution time by the function’s average
execution time on that particular cluster (Line 5-7). Then, the weights of each cluster are normalized by
using a maximum weight provided by the user (Line 9-11). We can also replace the average execution times
of the function metric with some other, like percentile 90 or maximum execution times of the function.

It is to be noted that we have specified the minimum weight of a cluster to be one (Line 1). Since we are
building a distributed multiple clusters system, we do not want to exclude a cluster by specifying its weight

84

6.3. Courier Control Plane

Algorithm 1. Latency-Aware Load Balancing Algorithm
Input: avg_exec_times = [], max_sum_weights, D // D is number of clusters
Output: W = [] // weights for each cluster

1 min_weight = 1, weights_sum = 0
2 W = [1,1, ..1] // equal weights for each cluster
3 max_exec_time = Max(avg_exec_times)
4 for i 2 D do
5 ti = avg_exec_timesi // function’s average execution time on ith cluster
6 wi = max_exec_time

ti // Calculate weight for ith cluster
7 weights_sum = weights_sum+wi

8 end
// Normalise weight for each cluster

9 for i 2 D do
10 wi = max(floor((wi

weights_sum)⇥max_sum_weights),min_weight)
11 end
12 return W

to zero. The weakest cluster in FDN can have the lowest weight as one, and it will always receive a small
part of the load.

Another critical analysis point is the time delta d , for which the average of the metrics is computed. Since
the time resolution for collecting a metric in the FDN is one second, we decided to assign it one second.

6.3.2.2 SLO-Aware Load Balancing Algorithm

In this algorithm, we consider the SLO defined by the user for each function, along with the execution time.
If the execution time on a cluster goes beyond the defined SLO, then the weight of the cluster will be defined
as zero. Otherwise, it is calculated in the same fashion as in the Latency-Aware Load Balancing Algorithm.

The pseudocode for the algorithm is shown in Algorithm 2. The algorithm again represents a dynamic
version of a WRR algorithm, as it adapts its weights according to the functions’ execution time in the
target cluster. The algorithm takes the average execution times of the function across a specific time delta
d for each cluster as the input. It then determines the maximum execution time from the input average
execution times (Line 3). If the function’s average execution time on a cluster is less than the defined SLO
(slo_exec_time), then the algorithm calculates the weight of the cluster by dividing the maximum execution
time by the function’s average execution time on that particular cluster (Line 5-9). Otherwise, the cluster is
assigned the weight of zero. Then, the weights of each cluster are normalized by using a maximum weight
provided by the user (Line 11-13).

6.3.3 Load Balancer Configurator

This component is the connector between Courier Load Balancer and Courier Control Plane. It has two
responsibilities. First, it takes the developed JSON policies (§6.3.1) and convert them into the configuration
file required by the Courier Load Balancer (see listing 6.1). Second, it gets the weights from the load
balancing algorithms for each cluster within each policy and updates them. It is developed in Node.js, with
API endpoints for other components to call whenever an update in the configuration file is required.

85

6. Courier: Users’s Functions Invocations Delivering and Load Balancing in FDN

Algorithm 2. SLO-Aware Load Balancing Algorithm
Input: avg_exec_times = [], slo_exec_time, max_sum_weights, D // D is number of clusters
Output: W = [] // weights for each cluster

1 min_weight = 0, weights_sum = 0
2 W = [0,0, ..0] // zero weights for each cluster
3 max_exec_time = Max(avg_exec_times)
4 for i 2 D do
5 ti = avg_exec_timesi // function’s average execution time on ith cluster
6 if ti slo_exec_time then

// if execution time is less than the defined SLO
7 wi = max_exec_time

ti // Calculate weight for ith cluster
8 weights_sum = weights_sum+wi

9 end
10 end

// Normalise weight for each cluster
11 for i 2 D do
12 wi = max(floor((wi

weights_sum)⇥max_sum_weights),min_weight)
13 end
14 return W

6.4 Summary

In summary, the Courier component of the FDN is responsible for delivering and load balancing user’s
functions invocations across the edge-cloud continuum in FDN. It consists of two components: Courier
Load Balancer (§6.2) and Courier Control Plane (§6.3). Courier Load Balancer is based on HAProxy and
is composed of two layers. The first is the access point from the outside to the architecture, offering an
HTTP endpoint. Successively, the function requests are delivered to the second layer using two function
delivery policies: 1) Function-Aware, and 2) Data-Aware (§6.3.1). Each function delivery policy selects
a subset of the available clusters and employs a load balancer for load balancing the incoming requests
to the selected backend clusters. The load balancer can use either of the two described load balancing
algorithms: 1) Latency-Aware and 2) SLO-Aware (§6.3.2). The Courier Control Plane is the brain of the
Courier and is responsible for configuring the Courier Load Balancer. It takes FDN Inventory Database,
and FDN Monitoring Data as the input. It combines discovery data with two function delivery policies
to construct policies tailored for each function. FDN Monitoring Data along with the function delivery
policies are used with the two load balancing algorithms (Latency-Aware and SLO-Aware) to decide the
weights of each cluster within each policy. These decided weights are used to update the cluster’s weights
in the configuration file of the Courier Load Balancer.

86

7
SLAM: SLO-Aware Memory Optimization of
Serverless Applications in FDN

“If you work on something a little bit every
day, you end up with something that is
massive."

— Kenneth Goldsmith

In this chapter, we present SLAM (§7.2) tool, used for finding the optimal memory configuration for a
serverless application when deployed on a serverless compute cluster in FDN, consisting of several FaaS
functions based on the specified SLOs. Currently SLAM only works on the clusters based on AWS Lambda
as the serverless compute platform. However, SLAM can be easily extended to support other commercial
and open-source serverless compute platforms. We start with the motivation behind developing the SLAM
tool in §7.1. In §7.2, we introduce SLAM along with its components in detail. In §7.3, we present the
SLAM evaluation on 3 different aspects: 1) Estimation time accuracy (§7.3.2.1), 2) Configuration finding
accuracy (§7.3.2.2), and 3) Configuration finding efficiency and scalability of SLAM (§7.3.2.3). From the
experimental evaluation, the suggested memory configurations guarantee that more than 95% of requests
are completed within the defined SLOs.

7.1 Introduction

Despite having many advantages, serverless computing suffers from some pain points that obstruct its wide
adoption [47, 149, 98]. The most commonly known is optimally configuring the memory of the FaaS
functions within the application based on the required the SLO. While most infrastructure management is
abstracted away from the user, major commercial FaaS providers still require users to manually configure
the amount of memory allocated to the FaaS functions [276]. For most developers, this is often done using
their experience and knowledge, leading to suboptimal function performance and higher execution costs.
The difficulties in allocating the right memory lie in the following aspects:

87

7. SLAM: SLO-Aware Memory Optimization of Serverless Applications in FDN

(a) Execution time variance due to
cold start problem.

(b) Execution time variance due to
BaaS service (DynamoDB).

(c) Performance vs cost trade for find-
ing the optimal configuration.

Figure 7.1.: Various factors making it difficult to optimally configure the memory of the FaaS functions.

• Cold start: It is mainly connected with loading the FaaS function into the main memory of the execut-
ing server and preparing the execution environment for the target code (starting up the VM/container,
loading libraries, loading function code, etc.) [202, 63]. The cold start phenomenon combined with
the heterogeneity of the cloud environment makes the function execution time quite unpredictable.
Figure 7.1a shows an execution time distribution for a sample compute-intensive function having a
high variance when deployed with 128MB memory configuration on AWS Lambda.

• FaaS functions integration with BaaS services: The FaaS functions are usually closely integrated
with other services, e.g., cloud databases, authentication and authorization services, and messaging
services. These services are called Backend-as-a-Service (BaaS) [166]. These services also influence
the execution time of the FaaS functions, thus adding the variance in the time. Figure 7.1b shows an
execution time distribution for a sample function querying DynamoDB having a high variance when
deployed with 128MB memory configuration on AWS Lambda.

• Trade-off analysis between performance and cost: Users need to define memory configuration for
their FaaS functions: a low-level information that directly influences the performance and cost of the
serverless application [37, 276, 302]. Thus, the user has to do a trade-off analysis between them to
define the right configuration for their required SLOs [103]. Figure 7.1c shows an execution time
vs the cost graph for a sample compute-intensive function when deployed with different memory
configurations on AWS Lambda. It is not trivial to find the optimal configuration where the overall
cost and execution time are both optimal.

• Complex application workflows: Usually, the serverless applications comprise dozens if not hun-
dreds of small FaaS functions, which connect to form complex event-driven workflows. Furthermore,
the SLOs are usually defined at the application level instead of the function level. Thus, based on the
required application SLOs, configuring the memory of the FaaS functions within the application even
becomes more challenging since a change in one can influence the others.

The aspects above highlight some factors that make it difficult for the users to optimally configure memory
for serverless applications based on the required SLOs. However, there are many other factors, such as I/O
and network bandwidth, and co-location with other functions affecting the performance and cost, which the
users are not aware of [302]. Many researchers have addressed the issue of optimizing the memory and
cost for meeting SLO requirements for a single cloud function [6, 99, 97, 321]. However, there has been
a gap in solving the same problem for a serverless application consisting of many FaaS functions, which
create a complicated workflow of function calls. To this end, we develop SLAM: SLO-Aware Memory
Optimization, a python-based tool that can automatically find the optimal memory configurations for the
FaaS functions within the given serverless application based on the specified SLO [253].

88

7.2. SLAM Tool

Execution
Logs, Metrics

Functions memory
update

Application developer input applications SLOs + Objectives (if any)

9

Application
Traces

Object
Storage

Application Execution Time Estimator

Functions
Performance

Modeler

Application Call
Graph Builder

Config Finder

Load
Generator

Config
Updater

Cloud Providers

Serverless Apps

Application invocations2

3 Get trace logs

4 Get logs {cost,
execution time,
memory}

55

6 7

8

Application
Deployment

Ap
pl

ic
at

io
n

In
vo

ca
tio

ns

R
es

ul
ts

<events>

1

Find config until
objective is satisfied

Pr
ov

id
e

op
tim

al
 m

em
or

y
co

nf
ig

ur
at

io
ns

Estimate app
execution time

SLAM

FaaS Functions

…

Figure 7.2.: High-level architecture of the SLAM and the interaction between its components.

7.2 SLAM Tool

In this section, we present SLAM, a python-based tool for automatically configuring the FaaS functions
within a serverless application with optimal memory such that the overall execution time of invocations to
the application conform to the defined SLO requirements. In this work, we consider the 95th percentile
execution time of an application invocation as the SLO. SLAM also supports additional user-specified objec-
tives on top of the SLO requirements: 1) Minimum Overall Cost (MOC), and 2) Minimum Overall Execution
Time (MOET), by which the SLAM suggested configuration for the serverless application not only conforms
to the defined SLO requirements, but also meets user-specified objectives. SLAM can dynamically adapt to
changes in the given serverless application and automatically adjust memory configurations of functions.
SLAM can be incorporated into a serverless compute platform and then leveraged by application developers
for optimizing the memory configuration of their serverless applications.

Figure 7.2 provides an overview of our developed SLAM tool and the interaction between its components in a
typical usecase. SLAM assumes that the serverless application which is to be configured is already deployed
by the application developer on a serverless compute platform (AWS Lambda [37] in our case). Additionally,
it is instrumented with a middleware tracing library (such as AWS X-Ray [33]) to trace incoming and
outgoing requests to other functions or cloud components/services.

SLAM takes the SLOs requirement for the application as the input along with other user-specified objectives
(if any) (step 1). Then the Load Generator component of it generates a minimal amount of user workload
(K = 50 application invocations, see Table 7.1) to the application’s public endpoint (step 2) and collects
application trace logs (step 3) and various monitoring metrics data (step 4). The collected logs are used
by the Application Call Graph Builder component to construct the application call graph (step 3). This call
graph and the monitoring metrics data are further used by the Functions Performance Modeler component
for building the application’s functions performance models. Application Execution Time Estimator compo-
nent uses models along with the application call graph for estimating the overall application response time
on the different memory configurations provided by Config Finder component. Config Finder component

89

7. SLAM: SLO-Aware Memory Optimization of Serverless Applications in FDN

Table 7.1.: Symbols and definitions used in the context of SLAM tool.
Symbol Interpretation
N total number of functions in an application
M total number of memory configurations
S total number of sequence groups formed from application call graph
Ui total number of sub-sequence groups within some group i
K total number of user-requests for load generation

X possible number of memory configurations adhering to the defined
SLOs.

m j
i memory allocated to ith function in the jth configuration set

mem_con f ig_list a list of memory values [128, 256, 512, 1024, 2048, 4096, 8192,
10240]

F = { f1, . . . , fN} functions within an application
G = {g1, . . . ,gS} sequence groups from application’s call graph
Ḡ = {ḡi

1, . . . , ḡ
i
U} sub-sequence groups within some group i

C = {C1, . . . ,CX} memory configs adhering to the defined SLOs.

a
nth percentile (called choice percentile) of the distribution as a repre-
sentative for the execution time for the given function at a particular
memory configuration.

generates the configuration based on the developed algorithms (§7.2.5.2) and examine the estimated time,
memory configurations, and cost for the SLOs requirements and user-specified objective (if any) satisfaction
(step 6). If the SLOs requirements and user-specified objective are not satisfied, Config Finder tries dif-
ferent memory configurations (step 7) and continues the process until it is satisfied (steps 6 - 7). Once
a configuration is found, the functions’ memory configurations are updated by Config Updater component
(steps 8 - 9).

Next, in more detail, we describe the six major components of SLAM tool.

7.2.1 Load Generator

This component is responsible for generating user workload for the deployed application. It takes a total
number of requests to the application as input and, based on it, generates the given amount of user workload
requests synchronously to the deployed application. This user workload generation allows the creation of
application traces and collection of various metrics data used by the other components of the SLAM.

7.2.2 Application Call Graph Builder

This component is responsible for building the application call graph involving the application functions
and BaaS services such as database, storage, and queues. SLAM relies on external middleware tracing
libraries (such as AWS X-Ray) instrumented by the application developer, allowing to trace the incoming
and outgoing requests to other functions or BaaS services. The tracing library creates a "segment" for each
request to the components (other functions, or BaaS services) and completes the segment as soon as the
request is over. This segment describes a node in the call graph consisting of a host, request, response,
start/end time, sub-segments, and errors during the process. The combination of these segments is called a

90

7.2. SLAM Tool

trace for a request. This component, with the help of Load Generator component, generates a small amount
of user workload requests to the deployed application. The application traces are then parsed to generate
the application call graph involving all the functions and BaaS services within the application. Afterward,
the component filters out BaaS services, as it is out of the scope of this work to tune them. Moreover, it
is assumed that these BaaS services provide high scalability and serve the user requests within the defined
SLOs. As a result, after this step, we get the simplified call graph for the deployed serverless application
and the composing functions. If the user already has the application call graph and wants to skip this step,
SLAM allows the user to input the application’s call graph manually. This also increases the testability of
the SLAM for further development.

7.2.3 Functions Performance Modeler

After building the call graph of the application and knowing its composing functions, the next step is to
estimate the execution time of each function within the serverless application at different memory configu-
rations. This is done in two steps, explained next.

First, this component, with the help of the Load Generator component, generates a small amount of user
workload requests (K = 50 application invocations, see Table 7.1) to the deployed application when all of its
composing functions are deployed with a default same memory configuration (128MB). Based on the compos-
ing functions found by the Application Call Graph Builder component, it then requests the Config Updater
component for updating the memory configurations of those functions (mem_con f ig_list in Table 7.1). It
uses the Load Generator to generate the same amount of user workload requests to the updated application
again. The process is repeated for all the memory configurations (mem_con f ig_list in Table 7.1). In the
end, application traces and various metrics data are created to estimate the execution time for each function
within the application.

Second, traces are parsed, and metrics are analyzed to create a distribution of execution time for each func-
tion and each memory configuration. An example of such a distribution for a test function, when deployed
with 128MB memory configuration on AWS Lambda, is shown in Figure 7.1a. One can observe a high vari-
ance in the execution time of the function running under the same configuration due to the uncertainties
from the underneath virtualized cloud infrastructure, such as co-location of functions, cold-start, hardware
failures, and resource overuse. Therefore, to overcome this inherent variance, we choose a hyperparameter
called choice percentile (a in Table 7.1) representing the nth percentile of the distribution as a represen-
tative of the execution time for the given function at a particular memory configuration. a is configured
automatically by SLAM. Calculating prediction accuracy of execution time at multiple values of a (default
test values: 50, 75, 90, 99), SLAM selects the one which results in a minimum mean squared error. Thus,
in the end, a list of representative values for execution time for each function and memory combination is
created.

7.2.4 Application Execution Time Estimator

Given the execution time of each FaaS function comprising the serverless application estimated by the Func-
tions Performance Modeler at certain memory configurations, it is the responsibility of this component to
combine them to estimate the overall application execution time. Function invocations in the application can
either be in parallel, a sequence, or a combination of both. Therefore, from the application call graph, it first
determines which functions are executed in parallel to others by using the functions’ start and end times-
tamps available from the traces. The tool then divides all functions into sequence groups (S in Table 7.1),

91

7. SLAM: SLO-Aware Memory Optimization of Serverless Applications in FDN

where all the functions in each group are executed in parallel to other functions in the same group, and each
group is executed in sequence with other groups. Since all the functions in a group are invoked in parallel,
therefore to estimate the execution time of a group, we take the maximum of the execution times of all func-
tions in the group. In the end, we sum the execution times of each group to get an estimate of the overall
application execution time. Mathematically, if we have an application consisting of N functions configured
with certain memory configurations and defined as F = { f1, f2, f3, ..., fN}, with them being divided into S
sequence groups defined as G = {g1,g2,g3, ...,gS}, then the execution time of the whole application is given
by:

T (G) =
N

Â
x=1

F(gx) (7.1)

where for some group i:

F(gi) =

(
max(T (ḡi

1), . . . ,T (ḡi
U)), if gi 6= function.

function execution time, if gi = function.
(7.2)

where ḡi
j (1 i S and 1 j U) being the sub-sequence group within gi and U is the total number of

sub-sequence groups within gi.

7.2.5 Config Finder

It is the responsibility of this component of SLAM tool, Config Finder, to find the right memory configura-
tions for all functions such that the overall application execution time adheres to the defined SLOs and the
specified optimization objectives (if any). We first present the two optimization objectives (§7.2.5.1) that
can be used as part of SLAM tool in addition to the SLO requirements, and then we introduce the algorithm
for finding the optimal memory configurations (§7.2.5.2).

7.2.5.1 Optimization Objectives

Suppose there are a total of X possible memory configurations set for the serverless application defined
as C = {C1,C2, ...,CX} such that Cj = {m j

1,m
j
2, ...,m

j
N} (1 j K) is a memory configuration set for F

adhering to the defined SLOs and m j
i 2 M (1 i N) is the memory allocated to ith function in the jth

configuration set. Following are the two optimization objectives that can be used as part of SLAM tool along
with the defined SLOs:

Minimum Overall Cost (MOC): Here, the idea is to find a configuration with minimum cost for each
application invocation under the given SLO requirements. This is given by:

min
j2C

Cost(j) (7.3)

where Cost(j) (j 2 C) is the overall application estimated cost when the application is configured with Cj
configuration. Our calculation only counts for the costs associated with the function execution. It does
not consider the data transfer, storage, and other costs associated with the invocation of functions. To
calculate the aforementioned execution cost, we used the data provided by AWS [38]. Though they provide
pricing only for a limited number of memory configurations, we interpolated the cost as there was a linear
relationship between allocated memory and cost.

92

7.2. SLAM Tool

Minimum Overall Execution Time (MOET): The objective is to find a configuration that would result in
a minimum overall execution time of the application under the given SLO requirements. This is then given
by:

min
j2C

ExecTime(j) (7.4)

where ExecTime(j) (j 2 C) is the overall application estimated time by Application Execution Time Esti-
mator when the application is configured with Cj configuration.

7.2.5.2 Optimal Memory Configuration Finding Algorithm

Now we describe the algorithm (called SLAM-SLO) for finding the optimal memory configuration for server-
less applications such that the overall application execution time adheres to the defined SLOs. The modified
version of the algorithm for optimizing on various objectives along with the SLOs is called SLAM-SLO-
Min-Cost for MOC and SLAM-SLO-Min-Time for MOET. We compared our developed algorithm with the
brute force (referred to as Brute-Force) approach, where all possible combinations of configurations for the
functions within the application are generated to find the configuration that conforms to defined SLOs and
the given objective. The overall complexity of this brute force approach is O(MN).

SLAM-SLO: In this approach, we leverage the max-heap data structure to find the optimal configuration
which satisfies the SLO requirements. The pseudocode for the algorithm is shown in Algorithm 3. Each
function’s execution time at the minimum memory configuration, i.e., 128MB, is calculated and used to
construct the max-heap. We store the function’s execution time at a particular configuration as the node
value, and the function name and its memory configuration are further saved as the node’s metadata (Line 5-
8). The function with the highest execution time in a particular memory configuration will be automatically
stored at the head of the max-heap tree (Line 9). We first check if this base configuration satisfies the SLO
requirements. If it does, we stop the iteration and return the configuration (Line 11-13). Otherwise, in the
next step, we pop the head from the max-heap (Line 14), increase its memory to decrease its execution time
(Line 16) and then push the function again back to the heap with the updated memory and execution time
(Line 17-20). After this update, we check if the configuration satisfies the SLO requirements. If it does, we
stop the iteration and return the configuration (Line 11-13). Otherwise, we continue the process by popping
the function at the head until a configuration is found. If no configuration is found, an empty dictionary is
returned. The overall complexity of this approach is given by:

O(NMlogN) (7.5)

This method is highly scalable and does locally optimal steps to lower the execution time of function calls.

SLAM-SLO-Min-Cost: We further modified the SLAM-SLO algorithm to take cost into account for finding
the optimal configuration with the MOC as the objective along with the SLO requirements. Here, the
algorithm uses the SLAM-SLO found optimal configuration as the default configuration and tries to optimize
on top of it to find minimum cost configuration. In this, every time we pop the function from the head of
max-heap, we check for the following inequality at the new updated memory for that function:

����
new_cost�old_cost

old_cost

����
����
old_exec_t�new_exec_t

old_exec_t

���� (7.6)

where new_cost and new_exec_t are the cost and execution time of an application invocation after updating
the function’s memory, and old_cost and old_exec_t correspond to the cost and execution time before the

93

7. SLAM: SLO-Aware Memory Optimization of Serverless Applications in FDN

Algorithm 3. SLAM-SLO Algorithm
Input: func_list, mem_config_list: List[], SLO)
Output: result_config = Dict[str, int]
// get minimum memory

1 min_mem_config = min(mem_config_list)
2 for func_name in func_list do

// init minimum memory assignment for all functions
3 res_config[func_name] = min_mem_config;
4 end
// prepare heap with function’s exec time at min memory

5 for fname in func_list do
// get exec time at min memory config for each function

6 func_exec_time = exec_time(fname, min_mem_config);
7 func_heap.append(func_exec_time, fname);
8 end
9 heapify_max(func_heap); // reorder heap

10 do
// check for objective(s) satisfaction.

11 if estimate_exec_time(res_config) SLO then
// other objectives can be added here.

12 return res_config;
13 end

// get function with highest exec time.
14 top_func = heappop_max(func_heap);
15 if not all_memory_config_evaluated(top_func) then

// update memory and time, then append to heap
16 func_new_mem = update_memory(top_func);
17 func_new_exec_time = get_exec_time(top_func, func_new_mem);
18 func_heap.append(func_new_exec_time, top_func);
19 res_config[top_func] = func_new_mem; // update
20 heapify_max(func_heap); // reorder heap
21 end
22 while func_heap is not empty;
23 return ; // return the empty config

update. If the inequality holds, we put the function back into the max-heap with the updated execution time.
If it does not, we fix the memory for that function in the final configuration. This also allows us to reduce
the search space for finding the configuration satisfying the minimum cost objective.

SLAM-SLO-Min-Time: This modified version of the SLAM-SLO algorithm also uses the SLAM-SLO found
optimal configuration as the default configuration and tries to optimize on top of it to find minimum execu-
tion time configuration. It then leverages the binary search algorithm to find the configuration with minimum
time. It uses the SLAM-SLO found optimal configuration execution time (b in seconds) as the maximum
time and 0s as the minimum time. It then updates the SLO requirement to the middle of maximum and min-
imum time and calls the SLAM-SLO algorithm to find an optimal configuration. If a configuration is found,
then the maximum is set to the execution time for that configuration. Otherwise, the minimum is updated to
the previously found middle. This way, it continues until a configuration is found with minimum application
execution time. To avoid running the binary search indefinitely, we use a hyperparameter called precision
(g). When the lower and upper execution time bounds get closer than the precision hyperparameter, we stop
the search and return the attained configuration. As a default value of the parameter, we chose g = 0.01s,
which can be easily changed.

94

7.3. SLAM Evaluation

7.3 SLAM Evaluation
We test the SLAM tool for serverless applications deployed on a cluster within FDN based on AWS Lambda.

7.3.1 Evaluation Settings

SLAM tool itself was run within FDN on a machine with 8 physical cores (Intel(R) Core(TM) i7-8550U
CPU @ 1.80GHz CPU) with hyperthreading enabled and 16 GB of RAM. As all the functions within
our test applications use only one thread, we limit the maximum memory configuration to 2GB. Since at
that point, AWS stops increasing the portion of the allocated vCPU and increases the number of available
vCPU [302], which the application will not use. For our experiments, the total number of requests for load
generation is set to 50. To test the SLAM tool, we have developed an interface that can automatically create
synthetic applications having a different number of functions [253]. The input to the interface defines the
application call tree containing functions that are either invoked in parallel or sequence. This way, we can
generate complex applications with as many functions. Each function within the application is a compute-
intensive function. It calculates the remainder for all numbers between 2 and N, where N is the parameter
fixed for the function. The algorithm’s simplicity allows us to simulate test applications with heterogeneous
functions requiring different compute/memory resources by scaling N. Each function within the application
has a different value for N and is assigned randomly.

7.3.1.1 Test Applications

An example application callgraph with three functions where one function (func-1) is invoking the other
two (func-2, func-3) in parallel is shown in Figure 7.3a. To better interpret the callgraphs, we decorated
them with boxes that grouped several functions. Functions in the same box are called in parallel to each
other, while the ones on the same level are called in sequence. The directed edges show the function that
generates the invocation for the other functions on the lower level. The callgraph does not fully represent
each function’s computation, which is separate from other function calls. Those calculations are always
done serially to the calls of its children’s functions. We additionally created two more synthetic complex
applications containing 6 and 10 functions incorporating sequence and parallel invocations to test the SLAM
tool. Their call graphs are shown in Figure 7.3b and Figure 7.3c respectively.

Since the synthetic application workloads do not fully represent the real-world use cases for serverless
applications, we created a pet store application based on an open-source spring-based application consisting
of five FaaS functions and two NoSQL databases [253]. Its call graph is shown in Figure 7.3d. We used
DynamoDB for the two NoSQL databases. This application is special since the functions querying databases
will not influence execution time with the increase in memory. The application is a skeletal representation
of what a real one would look like; it does not ship anything.

7.3.1.2 Evaluation Questions

We design our experiments to answer the questions:

• Q1. SLAM estimation time accuracy: how accurate is SLAM in estimating the execution time of an
application for the given or found configuration at different SLOs?

• Q2. SLAM configuration finding accuracy: how accurate is SLAM in finding the configuration
satisfying the given SLOs and objectives for an application?

95

7. SLAM: SLO-Aware Memory Optimization of Serverless Applications in FDN

func-1

func-2 func-3

(a) 3-functions test app

func-1

func-6 func-2func-3

func-4 func-5

(b) 6-functions test app

func-1

func-2func-3 func-6

func-9func-10func-4 func-5 func-7 func-8

(c) 10-functions test app

pet-checkout

pet-email pet-payment pet-shipping pet-currency

DB pet-store-payment DB pet-store-shipping

(d) Real-world based app

Figure 7.3.: Call graphs for the applications used for evaluating SLAM.

• Q3. SLAM configuration finding efficiency and scalability: how efficient is SLAM in finding the
configuration satisfying the given SLOs and objectives for an application? Additionally, how does the
SLAM tool scale with the increase in the number of functions of the application?

7.3.2 Results

7.3.2.1 Q1. SLAM Estimation Time Accuracy

To demonstrate the effectiveness of the SLAM tool in estimating the application’s execution time, we test it
on three synthetic and one real-world-based application. For this test, SLAM tool’s SLAM-SLO algorithm
is used to find the memory configurations for the given different SLOs without any additional objectives.
Based on the found configuration, we configured all the functions with the memory values suggested by
SLAM-SLO and invoked the serverless application 100 times to get the actual application’s execution time
distribution. Figure 7.4 shows the actual experiment execution time box plot overlaid with the estimated
execution time by SLAM-SLO algorithm for all four test applications at different SLOs when configured
with the found memory configurations. Additionally, we measured the execution time estimation accuracy
percentage for the four test applications at different SLOs and is shown in Figure 7.5. For computing the
accuracy at different SLOs, we calculate the mean squared percentage error between the estimated and actual
execution time for the found configuration and then subtract it from 100.

Next, we discuss the results of the two classes of the test applications in more detail.

Synthetic Applications: From Figure 7.4, one can observe that in the three synthetic applications, the
estimated execution time is either lower or equal to that of the specified SLOs. Additionally, from the
overlaid graph of estimated execution time in Figure 7.4, we can observe that the estimated execution time

96

7.3. SLAM Evaluation

(a) 3-functions test application (b) 6-functions test application

(c) 10-functions test application (d) Real-world based application

Figure 7.4.: Actual execution time box plot overlaid with the estimated execution time by SLAM run with
different SLOs.

to a great extent, is closer to the actual execution time at different SLOs. To verify it further, in Figure 7.5,
the measured execution time estimation accuracy percentage for the three test applications at different SLOs
is above 90%.

Real-world based Application: From the overlaid graph of estimated execution time in Figure 7.4d, one can
observe that the estimated execution time is higher than the actual execution time at different SLOs. It is also
evident from Figure 7.5d, where the measured execution time estimation accuracy percentage at different
SLOs is lower compared to synthetic applications (ranging between 70% and 85%). However, similar to
the three synthetic applications, the estimated execution time is either lower or equal to that of the specified
SLOs. Thus, the configuration selected by the SLAM tool is good enough to fulfill the desired SLOs.
One reason for the higher estimated execution time at different SLOs could be due to the involvement of
components such as DynamoDB, which can lead to the variable execution time of the application. Moreover,
this application’s overall execution time is smaller compared to synthetic applications. Thus even the tiny
inherent variance within the application can cause high relative error rates and hence the drop in the accuracy
estimation. Nonetheless, as mentioned earlier, the configuration selected by the SLAM tool is good enough to
fulfill the desired SLOs. Furthermore, from Figure 7.4d, we can observe that after a particular SLO (0.72s),
the estimation and actual overall execution time for the applications almost become constant. This is because
all the functions are assigned the minimum memory configuration. Therefore the overall execution time of
the application is highest at that configuration and cannot go beyond it.

97

7. SLAM: SLO-Aware Memory Optimization of Serverless Applications in FDN

(a) 3-functions test application (b) 6-functions test application

(c) 10-functions test application (d) Real-world based application

Figure 7.5.: Execution time estimation accuracy percentage for the four test applications at different SLOs.

7.3.2.2 Q2. SLAM Configuration Finding Accuracy

In this experiment, we have considered two aspects presented next for determining the accuracy of SLAM in
finding the configuration at the given SLOs.

Precision of requests conforming SLO requirements: Here, we calculate the percentage of requests con-
forming to the defined SLOs when the functions are configured with the memory configurations suggested
by SLAM-SLO algorithm. Experiment results on the four test applications are shown in Figure 7.6 for differ-
ent SLOs when a total number of 100 requests were issued to the application at each SLO. We can observe
that for all the synthetic applications, the percentage of requests conforming to the given SLOs is either
equal to or above 95%, which means that out of issued 100 requests, at least 95 requests were served within
the specified SLO execution time. Additionally, for the Real-world based application as well, despite hav-
ing lower estimation time accuracy as compared to synthetic applications, SLAM is still able to generate
configurations that result in above 95% precision of requests conforming to the given SLOs.

Various objectives’ configuration finding effectiveness: In this aspect, we determine the effectiveness of
SLAM tool when requested to optimize for various optimization objectives (§7.2.5.1) in addition to the SLOs.
In this regard, we calculated the overall execution time and the cost needed by one application invocation
when configured with memory configurations selected by SLAM for those optimization objectives. We com-
pared them against static minimum-memory=128MB (min-mem) and maximum-memory=2GB (max-mem)
configurations to get the worst and best execution times for the applications, and also the corresponding

98

7.3. SLAM Evaluation

(a) 3-functions test application (b) 6-functions test application

(c) 10-functions test application (d) Real-world based application

Figure 7.6.: Percentage of the requests conforming to the given SLOs based on the configurations suggested
by SLAM.

costs. It is to be noted that we do not need to get the worst/best execution times at the extreme end of exe-
cution time [69]. Therefore we compare them with the global minimum cost (BF-min-cost) and execution
time (BF-min-time) for each application obtained by checking every configuration and function combina-
tions using Brute force. Experiment results on the four test applications are shown in Figure 7.7, and the
results are averaged over 100 application invocations.

From Figure 7.7, we can see that for all the applications, SLAM optimization objective algorithms find the
optimal/near-optimal cost and time configurations such that they are very close to the global minimum cost
(BF-min-cost) and time (BF-min-time). Since the behavior of the SLAM on different applications is very
similar, we only explain the results for the 3-functions application on two objectives:

• Minimum Overall Cost (MOC): For the 3-functions application, SLAM-SLO-Min-Cost ($0.99 ⇥
10�5 as seen in Figure 7.7a) is only $0.01 ⇥ 10�5 higher than BF-min-cost ($0.98 ⇥ 10�5). When
comparing SLAM-SLO-Min-Cost with the min-mem and max-mem configuration, SLAM-SLO-Min-
Cost takes on average 1.6x less cost than min-mem and 1.9x less cost than max-mem. Additionally,
SLAM-SLO-Min-Cost configuration (1.3s) is able to process application requests faster than the min-
mem (4.5s) and BF-min-cost configurations (1.4s) but takes longer time than the max-mem configura-
tion (0.3s).

• Minimum Overall Execution Time (MOET): For the 3-functions application, the execution time
for SLAM-SLO-Min-Time configuration (1.07s as seen in Figure 7.7a) is equivalent to that of BF-min-

99

7. SLAM: SLO-Aware Memory Optimization of Serverless Applications in FDN

(a) 3-functions test application (b) 6-functions test application

(c) 10-functions test application (d) Real-world based application

Figure 7.7.: Execution time and the cost when configured with configurations selected by SLAM for various
objectives.

time configuration and the overall cost for SLAM-SLO-Min-Time ($0.82 ⇥ 10�5) is only a bit higher
than the BF-min-time configuration ($0.80⇥10�5). This shows that SLAM can find the optimal/near-
optimal execution time configuration such that it is very close to the global minimum execution time
configuration (i.e., BF-min-time, which requires a long time for determination). From Figure 7.7a
again we can see that the execution time taken by max-mem configuration (3.3s) is higher than that
of BF-min-time configuration (1.07s), therefore it may not always be true that the largest memory re-
sults in minimum overall execution time [69]. When comparing SLAM-SLO-Min-Time configuration
(1.07s) with the min-mem (14.15s) and max-mem (3.3s) configurations, SLAM-SLO-Min-Time config-
uration takes on average 13.5x less execution time than min-mem configuration and 3x less execution
time than max-mem configuration. Additionally, SLAM-SLO-Min-Cost configuration (1.3s) is able to
process application request faster than the min-mem (4.5s) and BF-min-cost (1.4s) configurations but
takes longer time than the max-mem (0.3s) configuration.

7.3.2.3 Q3. SLAM Configuration Finding Efficiency and Scalability

In Figure 7.8, we show how efficient and scalable SLAM is in finding the optimal configurations at various
objectives. Figure 7.8a shows the time required for different optimization algorithms to find the optimal con-
figuration when run on 6-functions application. The Brute-force algorithm performed worst compared to the
developed optimization algorithms (almost took 871x time more than the developed algorithm). Although
it is possible to parallelize the Brute-force search, but it is beyond the scope of this work. When comparing
SLAM-SLO (0.0182s) with SLAM-SLO-Min-Cost (0.0289s) and SLAM-SLO-Min-Time (0.0237s), SLAM-
SLO-Min-Cost requires the most amount of time for the application with 6 functions. This can also be
validated from the Figure 7.8b where the scalability of the three algorithms is tested on applications con-
taining a larger number of functions (from 1 to 100), and SLAM-SLO-Min-Cost requires the most amount of

100

7.4. Summary

(a) Configuration finding time for different algorithms (b) Performance of SLAM with large number of functions

Figure 7.8.: SLAM efficiency and scalability performance

time. All algorithms scale linearly with the number of functions in the application but with different slopes,
and SLAM-SLO has the least slope.

SLAM-SLO-Min-Cost, which has to estimate the cost at every step of the search, has to go through a higher
number of configurations as compared to SLAM-SLO and SLAM-SLO-Min-Time. Nevertheless, an applica-
tion containing 100 functions SLAM-SLO-Min-Cost took 5.5s, which is not a lot, considering the benefits of
the algorithm in terms of cost-saving.

7.4 Summary

Serverless computing has abstracted most cloud server management and infrastructure scaling decisions
away from the users, but configuring the memory of FaaS functions is still left up to the users. To solve
this problem, in this chapter, we introduced SLAM to find optimal memory configurations for a serverless
application when deployed on a serverless compute cluster based on AWS Lambda in FDN, given prede-
fined SLO requirements. SLAM uses a max-heap-based optimization algorithm along with its variants for
various optimization objectives (minimum cost and minimum overall time) in finding the optimal memory
configuration for the given serverless application based on the specified SLO. It supports complex serverless
application call-graph workflows and can adapt to changes in a serverless application. In this chapter, we
demonstrate the functionality of SLAM with AWS Lambda (§7.3) on four serverless applications consisting
of a various number of functions and found that the suggested memory configurations guarantee that more
than 95% of requests are completed within the defined SLOs.

101

8
Anomaly Detection in the FDN

“Life is like riding a bicycle. To keep your
balance, you must keep moving."

— Albert Einstein

Serverless compute clusters within FDN are created using VMs hosted on the bare-metal server using a
hypervisor. An anomaly in the application’s functions deployed in those VMs can affect the availability and
reliability of the application. Furthermore, a fault or an anomaly in the hypervisor hosting the VMs can
propagate to the VMs hosted on it and ultimately affect the availability and reliability of the applications
running on those VMs. Therefore, identifying and eventually resolving it quickly is highly important.

Therefore, in this chapter we describe two anomaly detection algorithms for FDN: 1) Online memory leak
detection in VMs using Precog in §8.1, and 2) Anomalous VMMs detection using IAD: Indirect Anomaly
Detection in §8.2.

8.1 Online Memory Leak Detection

Cloud computing is widely used in industries to provide affordable and on-demand access to computing
and storage resources. Physical server resources located at different data centers are split among the vVMs
hosted on it and distributed to the users [138]. Users can deploy their applications on these VMs with only
the required resources. This allows for the efficient usage of the physical hardware and reduces the overall
cost. However, with all the advantages of cloud computing, there is a drawback of efficiently detecting a
fault or an error in an application or in a VM due to the layered virtualization stack [18, 115]. A minor fault
in the system can impact the application’s performance.

When deployed on a VM, an application usually requires different system resources, such as memory, CPU,
and network, to complete a task. If an application mainly uses the memory for processing the tasks, then
this application is called a memory-intensive application [237]. The application’s responsibility is to release
the system resources when they are no longer needed. When such an application fails to release the memory

102

8.1. Online Memory Leak Detection

Table 8.1.: Symbols and their definitions used in the context of memory leak detection.
Symbol Interpretation
t a timestamp
xt the percentage utilization of a resource (for example memory

or disk usage) of a virtual machine at time t
N Number of data points
x = {x1,x2, ...,xN} a VM’s memory utilization observations from the Cloud
T time series window length
xt�T :t a sequence of observations {xt�T ,xt�T+1, ...,xt} from

time t �T to t
U percentage memory utilization threshold equal to 100.
C critical time

resources, a memory leak occurs in the application [313]. Memory leak issues in the application can cause
continuous blocking of the VM’s resources, resulting in slower response times or application failure. In
the software industry, memory leaks are treated with utmost seriousness and priority, as the impact of a
memory leak could be catastrophic to the whole system. In the development environment, these issues
are relatively easily detectable with the help of static source code analysis tools or by analyzing the heap
dumps. However, memory leak detection is a challenge in the production environment running on the
cloud. It only gets detected when there is an abnormality in the run time, abnormal usage of the system
resources, a crash of the application, or a restart of the VM. Then the resolution of such an issue is made
at the cost of compromising the availability of the application. Therefore it is necessary to monitor every
application for memory leak and have an automatic detection mechanism before it occurs. However, it is a
challenge to detect memory leak of an application running on a VM in the cloud without the knowledge of
the programming language of the application, the knowledge of source code nor the low-level details such
as allocation times of objects, object staleness, or the object references [275]. Therefore, this challenge is
addressed in this work by solely using the VM’s memory utilization as the primary metric and devising a
novel algorithm called Precog to detect memory leak.

8.1.1 Methodology for Memory Leak Detection

This section presents the problem statement of memory leak detection and describes our proposed algo-
rithm’s workflow for solving it.

8.1.1.1 Problem Statement

Table 8.1 shows the symbols used in the context of memory leak detection.

We are given x = {x1,x2, ...,xN}, a N ⇥ 1 dataset representing the memory utilization observations of the
VM and an observation xt 2 R is the percentage memory utilization of a virtual machine at time t. This work
aims to determine whether there is a memory leak on a VM such that an observation xt at time t reaches the
threshold U memory utilization following a trend in the defined critical time C. Formally:

• Given: a univariate dataset of N time ticks, x = {x1,x2, ...,xN}, representing the memory utilization
observations of the VM.

103

8. Anomaly Detection in the FDN

Figure 8.1.: Example memory utilization of a memory leaking VM with the marked anomalous window.

• Output: an anomalous window for a VM consisting of a sequence of observations xt�T :t , such that
these observations after following a certain trend will reach the threshold U memory utilization, at
time t +M, where M C.

Definition 1

(Critical Time) It is the maximum time considered relevant for reporting a memory leak in which, if
the trend line of memory utilization of VM is projected, it will reach the threshold U .

8.1.1.2 Illustrative Example

Fig. 8.1 shows the example memory utilization of a memory leaking VM with the marked anomalous win-
dow between tk and tn. It shows that the memory utilization of the VM will reach the defined threshold
(U = 100%) within the defined critical time C by following a linearly increasing trend (shown by the trend
line). Therefore, this VM is regarded as a memory-leaking VM.

Our developed approach can be applied to multiple VMs as well. We also experimented to understand the
memory usage patterns of memory leak applications. We found that if an application has a memory leak, the
memory usage of the VM on which it is running increases steadily. It continues to do so until all the system’s
available memory is exhausted. This usually causes the application attempting to allocate the memory to
terminate itself. Thus, memory leak behavior usually exhibits a linearly increasing or "sawtooth" memory
utilization pattern.

8.1.2 Memory Leak Detection Algorithm: Precog

The Precog algorithm consists of two phases: offline training and online detection. Fig. 8.2 shows the
overall workflow of the Precog algorithm.

Offline training: The procedure starts by collecting the memory utilization data of a VM and passing it
to Data Pre-processing module. Data Pre-processing module first transforms the dataset by resampling
the number of observations to one for the defined resampling time resolution. Then the time series data
is median smoothed over the specified smoothing window. In Trend Lines Fitting module, firstly, on the

104

8.1. Online Memory Leak Detection

Figure 8.2.: Overall workflow of the Precog algorithm.

whole dataset, the change points P = {P1,P2, ...,Pk}, where k n�1, are detected. By default, two change
points, one at the beginning and the other at the end of time series data, are added. If the change points
are not computed, the algorithm will have to go through each data point, which will be compute-intensive.
Therefore these points allow the algorithm to directly jump from one change point to another and select all
the points between the two change points. Trend Lines Fitting module selects a sequence of observations
xt�L:t between the two change points: one fixed P1 and other variable Pr where r k and a line is fitted on
them using the linear regression. The R-squared score, size of the window called as duration, time to reach
threshold called exit time, and slope of the line are calculated. This procedure is repeated by keeping the
fixed change point the same and varying the other for all other change points. Out of all the fitted lines, the
best-fitted line based on the largest duration and highest slope is selected for the fixed change point. If this
best-fitted line’s time to reach the threshold falls below the critical time, its slope and duration are saved as
historical trends.

This above procedure is again repeated by changing the fixed change point to all the other change points. At
the end of this whole procedure, we get a best-fitted trend for each change point, if it exists. Amongst the
captured trends, the maximum duration and the maximum slope of the trends are also calculated and saved.
This training procedure can be conducted routinely, e.g., daily or weekly.

Definition 2

(Change Points) A set of time ticks that deviate highly from the normal pattern of the data. This is
calculated by first taking the first-order difference of the input timeseries. Then, take their absolute
values and calculate their Z-scores. The indexes of observations whose Z-scores are greater than the
defined threshold (3 times the standard deviation) represent the change points.

Online detection: In the Online Detection phase, for a new set of observations {xk,xk + 1,xk + 2, ...,xk +
t � 1xk + t} from time k to t where t � k � Pmin belonging to a VM after pre-processing is fed into the
Trend Lines Fitting module. In Trend Lines Fitting module, the change points are detected. A sequence of
observations xt�L:t between the last two change points starting from the end of the time series is selected, and
a line is fitted on them using linear regression. The R-squared score, slope, duration, and exit time to reach
the threshold of the fitted line are calculated. If its slope and duration are greater than the saved maximum

105

8. Anomaly Detection in the FDN

Table 8.2.: Synthetically generated timeseries for each memory leak pattern and their F1-Scores.
Memory Leak Pattern +ve cases -ve cases F1-Score Recall Precision
Linearly Increasing 30 30 0.933 0.933 0.933
Linearly Increasing(with Noise) 30 30 0.895 1.0 0.810
Sawtooth 30 30 0.830 0.73 0.956
Overall 90 90 0.9 0.9 0.91

counterparts, then that window is marked anomalous. Otherwise, the values are compared against all the
found training trends, and if the slope and duration of the fitted line are greater than any saved trends, then
the window will be marked as anomalous. This procedure is further repeated by analyzing the observations
between the last change point Pk and the next change point until all the change points are used. This is done
for the cases where the new data has a trend similar to the historical data but now has a higher slope and
longer duration.

8.1.3 Precog Evaluation

We have used F1-Score (denoted as F1) to evaluate the performance of the algorithms. Evaluation tests have
been executed on a machine with four physical cores (3.6 GHz Intel Core i7-4790 CPU) with hyperthreading
enabled and 16GB of RAM. These conditions are similar to a typical cloud VM. It is to be noted that the
algorithm detects the cases where there is an ongoing memory leak and assumes that previously there was
no memory leak. For our experiments, hyper-parameters are set as follows. The maximum threshold U is
set to 100, and the defined critical time C is set to 7 days. The smoothing window size is 1 hour, and the
re-sampling time resolution is set to 5 minutes. Lastly, the minimum R-squared score (R2min) for a line to
be recognized as a good fit is set to 0.75. 65% of data is used for training and the rest for testing. We design
experiments to answer the following questions:

• Q1. Memory Leak Detection Accuracy: How accurate is Precog in the detection of memory leaks?

• Q2. Scalability: How does the algorithm scale with the increase in the data points?

• Q3. Parameter Sensitivity: How sensitive is the algorithm when the parameters values are changed?

8.1.3.1 Q1. Memory Leak Detection Accuracy

To demonstrate the effectiveness of the developed algorithm, we initially synthetically generated the time-
series. Table 8.2 shows the F1-score corresponding to each memory leak pattern and the overall F1-score.

In addition, to demonstrate the effectiveness of the developed algorithm on the real cloud workloads, we
evaluated Precog on the real cloud dataset provided by Huawei Munich. It consists of manually labeled
memory leak data from 60 VMs spanned over five days, and each time series consists of an observation
every minute. Of these 60 VMs, 20 VMs had a memory leak. Many VMs have memory leaks because
applications with memory leaks were deliberately run on the infrastructure. The algorithm achieved the F1-
Score of 0.857, recall equals to 0.75 and precision as 1.0. Average prediction time per test data containing
approximately 500 points is 0.32 seconds. Furthermore, we present the detailed results of the algorithm
on the selected four cases shown in Figure 8.3: simple linearly increasing memory utilization, sawtooth
linearly increasing pattern, linearly increasing pattern with no trends detected in training data, and linearly
increasing with the similar trend as training data. The figure also shows the change points, training trends,
and the detected anomalous memory leak window for each case.

106

8.1. Online Memory Leak Detection

(a) Linearly increasing (b) Sawtooth linearly increasing pattern

(c) Linearly increasing without trends in training data. (d) Linearly increasing with same trend as training data.

Figure 8.3.: Algorithm result on three difficult cases having memory leak (a-c) and one not (d).

For the first case shown in Fig. 8.3a, memory utilization is being used normally until it suddenly increases
linearly. The algorithm detected one training trend and reported the complete test set as anomalous. The
test set has a similar slope as the training trend but with a longer duration and higher memory usage; hence
it is reported as anomalous. In the second case (Fig. 8.3b), the trend represents a common memory leak
sawtooth pattern, where the memory utilization increases up to a certain point. It then decreases (but not
wholly zero), and then again, it starts to increase similarly. The algorithm detected three training trends and
reported anomalous most of the test set. The test set follows a similar trend as captured during the training
but with higher memory utilization; hence it is reported. In the third case (Fig. 8.3c), no appropriate training
trend was detected in the complete training data. However, the algorithm detected an increasing memory
utilization trend in the test dataset. In Fig. 8.3d, the VM does not have a memory leak. However, memory
utilization is steadily increasing, which seems to be a memory leak pattern if observed without historical
data. However, the same trend is already observed in the historical data and therefore is a normal memory
utilization pattern. Precog using the historical data for detecting the training trends and then comparing them
with the test data correctly reports that trend as normal and hence does not flag the window as anomalous.
It is also to be noted that if the new data’s maximum goes beyond the maximum in the training data with a
similar trend, it will be regarded as a memory leak.

8.1.3.2 Q2. Scalability

Next, we verify that our prediction method scale linearly. We repeatedly duplicate our dataset in time ticks
and add Gaussian noise. Figure 8.4b shows that Precog’s predict method scale linearly in time ticks. Precog

107

8. Anomaly Detection in the FDN

(a) Training Time (b) Prediction Time

Figure 8.4.: Precog’s prediction method scale linearly.

Figure 8.5.: Insensitive to parameters: Precog performs consistently across parameter values.

does provide the prediction results in under one second for the data with 100,000 time ticks. However, the
training method shown in Figure 8.4a is quadratic, but training needs to be conducted once a week or a
month and can be done offline as well.

8.1.3.3 Q3. Parameter Sensitivity

Precog requires tuning certain hyper-parameters like R2 score and critical time, which are currently set
manually based on the expert’s knowledge. Figure 8.5 compares performance for different parameter val-
ues, on synthetically generated dataset. Our algorithm performs consistently well across values. Setting a
minimum R2 score above 0.8 corresponds to the line’s stricter fitting, which is why the accuracy drops.
On the other hand, our data mostly contains trend lines that would reach the threshold within three to four
days. Therefore, setting the minimum critical time to less (less than three days) would mean the trend line
never reaches the threshold within the time frame, decreasing the accuracy. These experiments show that
these parameters play a role in the overall accuracy of the algorithm, but at most of the values, the algorithm
is insensitive to them. Furthermore, determining these automatically based on historical data is out of the
scope of this work.

108

8.2. Anomalous VMMs Detection

Hardware

Hypervisor

VM

APP
OS

VM

APP
OS

VM

APP
OS…

Anomaly

Anomalies propagation

Figure 8.6.: An example showcasing the propagation of anomalies in a Type-1 hypervisor or VMM to the
VMs hosted on it. These anomalies may lead to VMs failures.

8.2 Anomalous VMMs Detection
Cloud computing enables industries to develop and deploy highly available and scalable applications to
provide affordable and on-demand access to compute and storage resources. Server virtualization in the
form of VMs is an essential part of cloud computing technology to provide IaaS with the use of a hypervisor
or VMM [230]. Users can deploy their applications on these VMs with only the required resources. This
allows the efficient usage of the physical hardware and reduces the overall cost. The virtualization layer,
especially the hypervisors, is prone to temporary hardware errors caused by manufacturing defects, a sudden
increase in CPU utilization caused by some task, disconnection of externally mounted storage devices, etc.
The VMs running on these VMMs are susceptible to errors from the underneath stack. As a result, it can
impact the performance of the applications running on these VMs [168, 173]. Figure 8.6 shows an example
propagation of anomalies in a virtualization stack using a type-1 hypervisor to the VM hosted on it. These
anomalies may lead to the failure of all VMs and, ultimately, the applications hosted on them.

In the development environment, these anomalous VMMs are relatively easily detectable by analyzing the
logs from the hypervisor dumps. However, in the production environment running on the cloud, anomalous
VMMs detection is a challenge since a cloud user does not have access to the VMMs logs. Additionally,
many anomalous VMM detection techniques have been proposed [315, 245, 210]. However, these either
require the monitoring data of the hypervisor or injecting custom probes into the hypervisor. Therefore, the
usage of such solutions becomes infeasible. Furthermore, due to the low downtime requirements for the
applications running on the cloud, detecting such anomalous VMMs and their resolutions is to be done as
quickly as possible.

Therefore, this challenge is addressed in this work for detecting anomalous VMMs by solely using the
VM’s resources utilization data hosted on those VMMs. We create a novel algorithm called IAD: Indirect
Anomalous VMMs Detection. We call the algorithm indirect since the detection is done without any internal
knowledge or data from the VMM; it is solely based on the VMs data hosted on it.

8.2.1 Problem Definition

This section presents the overall problem definition of indirectly detecting anomalous VMMs in a cloud-
based environment. Table 8.3 shows the symbols used in the context of indirectly detecting anomalous

109

8. Anomaly Detection in the FDN

Table 8.3.: Symbols and their definitions used in the context of indirectly detecting anomalous VMMs in a
cloud-based environment.

Symbol Interpretation
n Number of time ticks in data
d Number of VMs hosted on a VMM
Xt The percentage utilization of a resource (for example, CPU

or disk usage) by a VM at a time t
X j

t The percentage utilization of a resource at a time t for jth VM
{c1

t ,c2
t , ...,cm

t } a set of m d VMs with change point at time tick t
w Window size
minPercentVMsFault Minimum % of total number of VMs on a VMM which must

have a change point for classifying the VMM anomalous.

VMMs.

We are given X = n ⇥ d dataset, with n representing the number of time ticks and d the number of VMs
hosted on a VMM. X j

t denotes the percentage utilization of a resource (for example, CPU or disk usage) at
a time t for jth VM. Our goal is to detect whether the VMM on which the d VMs are hosted is anomalous
or not. Formally:

• Given a multivariate dataset of n time ticks, with d VMs (X j
t for j = {1, · · · ,d} and t = {1, · · · ,n})

representing the CPU utilization observations of VMs hosted on a VMM.

• Output a subset of time ticks or a time tick where the behavior of the VMM is anomalous.

One of the significant challenges in this problem is the online detection, in which we receive the data
incrementally, one time tick for each VM at a time, i.e., X j

1 ,X j
2 , · · · , for the jth VM. As we receive the

data, the algorithm should output the time ticks where the behavior of the VMM is observed as anomalous.
However, without looking at the future few time ticks after time t, it would be impractical to determine
whether at time point t, the VMM is anomalous or not. Since the time ticks t +1, t +2, · · · are essential
in deciding whether an apparent detection at time t was an actual or simply noise. Hence, we introduce a
window parameter w; upon receiving a time tick t + w, the algorithm outputs whether at time t the VMM
showcased anomalous behavior or not. Additionally, the change points for VMs hosted on VMM could be
spread over a specific duration due to the effect of the actual fault being propagating to the VMs and the
granularity of the collected monitoring data. Therefore, an appropriate window size can provide a way to
get those change points.

8.2.1.1 Illustrative Example

Here we illustrate the problem with two examples in Fig. 8.7 showcasing the CPU utilization of two VMs
hosted on a VMM. In the left sub-figure, an application runs only on VM 2, while in the right, an application
runs on both VMs. During the application run time, an anomaly, i.e., high CPU load, was generated on the
hypervisor for some time (shown by dotted red lines). During this time, we can observe a significant drop
in the CPU utilization of the application (affecting the application’s performance) of the two VMs. The
load on a VMM effects all or most of the VMs hosted on it. It can significantly affect the performance of
the applications running on the two VMs; therefore, we call such a VMM anomalous when the load was
generated on it.

110

8.2. Anomalous VMMs Detection

Figure 8.7.: Examples showing CPU utilization of two VMs hosted on a VMM. The left sub-figure shows
an application running only on VM 2, while the right sub-figure shows the application running
on both VMs. We can see a significant decrement in the CPU utilization of the two VMs when
an anomaly (high-CPU load) is generated on the VMM (shown by dotted red lines).

8.2.2 Indirect Anomaly Detection (IAD) Algorithm

This section presents our proposed Indirect Anomaly Detection (IAD) algorithm and the system for evalu-
ating it. The overall system workflow diagram is shown in Figure 8.9 and mainly consists of two parts: the
main IAD algorithm and the Test Module for evaluating the algorithm.

8.2.2.1 IAD Algorithm

Our principal intuition behind the algorithm is that if a time tick t represents a change point for some resource
utilization (such as CPU utilization) in most VMs hosted on a VMM; then the VMM is also anomalous at
that time tick. This is based on the fact that a fault in VMM will affect most of the VMs hosted on it,
and therefore those VMs would observe a change point at a similar point in time (in the chosen window w
(Table 8.3)) in their resource’s utilization. IAD algorithm consists of two main parts, described below:

Change Points Detector: We first explain how the change point, i.e., time tick where the time series changes
significantly, is calculated. Recall from §8.2.1 that, we have introduced a window parameter w, upon receiv-
ing the time tick t +w, the Change Points Detector outputs whether the time tick t is a change point or not.
Given a dataset X j of size w for jth VM, this component is responsible for finding the change points in that
VM. This can be calculated in two ways: Mean-based detector and Z-score-based detector.

• Mean-based Detector: In this detector, a windowed_mean, i.e., the mean of all the values in the
window, and the global_mean, i.e., the mean of all the values until the current time tick is calcu-
lated. Since the IAD algorithm is designed for running it online, not all the values can be stored.
Thus global_mean is calculated using Knuth’s algorithm [160, 176]. We then calculate the absolute
percentage difference between the two means: windowed_mean and global_mean. If the percentage
difference is more significant than the specified threshold (by default is 5%), then the time tick t for
jth VM is regarded as the change point.

• Z-score-based Detector: This detector is based on the calculation of the Z-scores [161, 151]. Sim-
ilar to the Mean-based detector, here also a windowed_mean, i.e., the mean of all the values in the

111

8. Anomaly Detection in the FDN

Figure 8.8.: High-level system workflow of the implemented system for evaluating IAD algorithm and the
interaction between its components in a general use case.

window, and the global_mean, i.e., the mean of all the values until the current time tick is calcu-
lated. We additionally calculate the global_stand_deviation, i.e., the standard deviation of all the
values until the current time tick. Since the IAD algorithm is designed for running it in an online way,
global_stand_deviation is calculated using Welford’s method [176]. These statistics are then used to
calculate the z-scores for all the data points in the window using Equation 8.1.

z_scores =
(windowed_mean�global_mean)

global_stand_deviationp
w

(8.1)

If the Z-scores are greater than the defined threshold (3 ⇥ global_stand_deviation), then the time tick
t for jth VM is regarded as the change point.

In the main algorithm, only Z-Ssore-based Detector is used as it provides higher accuracy and has fewer
false positives.
Anomaly Detector: This component receives the input resource utilization data X of size n⇥d where d is
the number VMs hosted on a VMM along with the minPercentVMsFault (Table 8.3)) as the input parameter.
We first check the input timeseries of w length for 1) zero-length timeseries and 2) if the input timeseries
of all VMs are of the same length or not. If any of the two initial checks are true, we quit and do not
proceed. We assume that all the VM’s resource utilization data is of the same length only. After doing the
initial checks, each of the VM’s windowed timeseries belonging to the VMM is sent to the Change Points
Detector for the detection of whether the time tick t is a change point or not. If the percentage number of
VMs ({c1

t ,c2
t , ...,cm

t } out of d) having the change point at time tick t is greater than the minPercentVMsFault
input parameter, then the VMM is reported as anomalous at time tick t. The above procedure is repeated
for all time ticks. Figure 8.9 shows the workflow sequence diagram of the IAD algorithm. Furthermore, the
developed approach can also be applied for multiple VMMs.

8.2.2.2 Test Module

This component is responsible for generating the synthetic data and evaluating the algorithm performance by
calculating the F1-score on the results from the algorithm. It consists of multiple sub-component described

112

8.2. Anomalous VMMs Detection

Figure 8.9.: IAD algorithm workflow sequence diagram.

below:

• Synthetic Data Generator: It takes the number of VMMs, number of VMs per VMM, percentage of
the VMs with a fault; as the input for generating synthetic timeseries data. This synthetic data follows
a Gaussian distribution based on the input parameters. This component also automatically divides the
generated data into true positive and true negative labels based on the percentage of the VMs with a
fault parameter.

• Algorithm Tester: It is responsible for invoking the algorithm with various parameters on the syn-
thetic data and tune the algorithm’s hyperparameters.

• Evaluation: The results from the algorithm are passed as the input to this sub-component, where the
results are compared with the actual labels, and the overall algorithm score in terms of F1-score is
reported.

8.2.3 Experimental Settings

We design our experiments to answer the following questions:

Q1. IAD Accuracy: How accurate is IAD in the detection of anomalous VMM when compared to other
popular algorithms?

Q2. Anomalous VMMs finding efficiency and scalability: How does the algorithm scale with the increase
in the data points and number of VMs?

8.2.3.1 Datasets

For evaluating the IAD algorithm, we considered four types of datasets listed in Table 8.4, and they are
described below:

Synthetic: This is the artificially generated dataset using the Test Module component described in §8.2.2.

Experimental-Synthetic Merged: This is a dataset with a combination of experimental data and synthetic
data. To collect the experimental dataset, we created two nested VMs on a VM in the Google Cloud Platform.

113

8. Anomaly Detection in the FDN

Table 8.4.: Datasets used in this work for evaluating the algorithms.
Dataset Anomalous Non-Anomalous VMs TimeTicks
Name VMMs VMMs Per VMM per VM

Synthetic 5 5 10 1000
Exp-Synthetic Merged 42 17 2 (experimental) 5400

8 (synthetic)
Azure† [83] 16 10 10 5400

Alibaba† [264] 10 10 10 5400
†These are modified for our usecase.

(a) Synthetic (b) Exp-Synthetic (c) Azure (d) Alibaba

Figure 8.10.: An example profile of an anomalous VMM having 10 VMs in all the datasets used in this
work for evaluation.

The underneath VM instance type is n1-standard-4 with four vCPUs and 15GB of memory, and Ubuntu
18.04 OS was installed on it. This VM instance acts as a host for the above VMs. libvirt toolkit is used to
manage and create nested virtualization on top of the host machine. Kernel-Based Virtual Machine (KVM)
is used as a VMM. The configuration of the two nested VMs are i) 2vCPU and 2GB memory, ii) 1vCPU and 1GB
memory. Cloud-native web applications were run on these two VMs. Monitoring data from the two VMs
and the underneath host is exported using the Prometheus agent deployed on each of them to an external
VM. stress-ng is used for generating the load on the VMM. Based on this infrastructure, we collected a
dataset for various scenarios and combined it with synthetic data.

Azure Dataset: This dataset is based on the publicly available cloud traces data from Azure [83]. We
used the VMs data from it and created random groups of VMs, with each group representing the VMs
hosted on a VMM. Afterward, we feed these timeseries groups in our synthetic data generator for randomly
increasing or decreasing the CPU utilization of the VMs within a VMM based on the input parameters to
create anomalous and non-anomalous VMMs.

Alibaba Dataset: This dataset is based on the publicly available cloud traces and metrics data from Alibaba
cloud [264]. A similar method as the Azure Dataset was also applied to form this dataset.

Figure 8.10 shows an example profile of an anomalous VMM for all the datasets.

8.2.3.2 Evaluated Algorithms

We compare IAD to the five other algorithms listed in Table 8.5 along with their input dimension and param-
eters. ECP is a non-parametric-based change detection algorithm that uses the E-statistic, a non-parametric
goodness-of-fit statistic, with hierarchical division and dynamic programming for finding them [140]. Branch
and Border (BnB) and its online version Branch and Border Online (BnBO) are also non-parametric change
detection methods that can detect multiple changes in multivariate data by separating points before and after
the change using an ensemble of random partitions [131]. Lastly, we use the popular anomaly detection

114

8.2. Anomalous VMMs Detection

Table 8.5.: The details of the algorithms used in this work for evaluation, along with their input dimension
and parameters.
Algorithm Input Dimension Parameters
IAD n ⇥ d w, minPercentVMsFault
ECP [140] n ⇥ d change points, Min. points b/w change points
BnB [131] n ⇥ d w, number of trees, threshold for change points
BnBO [131] n ⇥ d w, number of trees, threshold for change points
IF [178] n ⇥ d contamination factor (requires training)
IFF [178] n ⇥ features contamination factor (requires training)

Table 8.6.: F1-score corresponding to each algorithm evaluated in this work (§8.2.3.2) and on all the datasets
(§8.2.3.1).
Algorithm Synthetic Exp-Synthetic Azure Alibaba Average F1-score
IAD 0.96 0.86 0.96 0.57 0.837
ECP 0.67 - 0.76 0.51 0.64
BnB 0.62 0.90 0.8 0.33 0.662
BnBO 0.87 0.81 0.86 0.4 0.735
IF 0.76 0.83 0.76 0.2 0.637
IFF 0.76 0.83 0.76 0.66 0.75

algorithm: isolation forest for detecting anomalous VMM [178]. The primary Isolation Forest (IF) works
on the input data directly, while we also created a modified version of it called the Isolation Forest Features
(IFF), which first calculates several features such as mean and standard deviation for all the values within
a window on the input dataset and then apply isolation forest on it. The downside of the IF and IFF is that
they require training.

8.2.3.3 Other Settings

We have used F1-Score (denoted as F1) to evaluate the algorithm’s performance. Evaluation tests have
been executed on 2.6 GHz 6-Core Intel Core i7 MacBook Pro, 32GB RAM running macOS BigSur version
11. We implement our method in Python. For our experiments, hyper-parameters are set as follows. The
window size w is set as one minute (60 samples, with sampling done per second), threshold k as 5%, and
percentVMsFault f as 90%.

8.2.4 Results

Our initial experiments showed that 1) CPU metric is the most affected and visualized parameters in the
VMs when some load is generated on the VMM; 2) All or most VMs are affected when a load is introduced
on the VMM.

8.2.4.1 Q1. Indirect Anomaly Detection Accuracy

Table 8.6 shows the best F1-score corresponding to each algorithm evaluated in this work (§8.2.3.2) and on
all the datasets (§8.2.3.1). We can observe that IAD algorithm outperforms the others on two datasets, except

115

8. Anomaly Detection in the FDN

(a) Synthetic (b) Exp-Synthetic

(c) Azure (d) Alibaba

Figure 8.11.: F1-score variation with the number of VMs corresponding to each algorithm evaluated in this
work (§8.2.3.2) and on all the datasets (§8.2.3.1).

for the Experiment-Synthetic dataset (BnB performed best with F1-Score of 0.90) and Alibaba dataset (IFF
performed best with F1-Score of 0.66. However, if one wants to find an algorithm that is performing well
on all the datasets (average F1-score column in Table 8.6), in that case, IAD algorithm outperforms all the
others with an average F1-score of 0.837 across all datasets.

Furthermore, we present the detailed results of the algorithms on all four datasets varying with the number
of VMs and are shown in Figure 8.11. One can observe that IAD performs best across all the datasets, and
its accuracy increases with the increase in the number of VMs. Additionally, after a certain number of VMs,
the F1-score of IAD becomes stable. This shows that if, for example, we have the synthetic dataset, then
the best performance is possible with VMs � 9. Similarly, in the case of the Azure dataset, while for the
Exp-Synthetic dataset, one needs at least five VMs, and for the Alibaba dataset, seven VMs for the algorithm
to perform well.

8.2.4.2 Q2. Anomalous VMMs Finding Efficiency and Scalability

Next, we verify that our algorithm’s detection method scale linearly and compare it against other algorithms.
This experiment is performed with the synthetic dataset, since we can increase the number of VMs per VMM
in it. We linearly increased the number of VMs from one to 100 and repeatedly duplicated our dataset in
time ticks by adding Gaussian noise. Figure 8.12 shows various algorithm’s detection method scalability

116

8.3. Summary

(a) With number of VMs (b) With number of time ticks

Figure 8.12.: Algorithm’s detection method scalability with respect to different parameters.

for different parameters. One can observe that IAD’s detection method scale linearly in terms of both the
parameters. However, when the number of VMs are scaled to 100, IAD takes a longer time as compared to
others, but it provides results under 2.5s which if we see is not that much considering the accuracy we get
with that algorithm. However, on the time ticks parameter, BnB, BnBO and IAD performed similar to each
other, while IF and IFF provides results under 1 second, but its accuracy is worse as compared to the others
on all the datasets, and it has the extra overhead of training. ECP algorithm’s results are not shown, since it
requires more than an hour for performing the detection with 100 VMs and 100,000 time ticks.

8.3 Summary

In this chapter, we described two anomaly detection algorithms for FDN: 1) Online memory leak detection
in VMs using Precog in §8.1, and 2) Anomalous VMMs detection using IAD: Indirect Anomaly Detection
in §8.2.

Memory leak detection has been a research topic for more than a decade. Many approaches have been pro-
posed to detect memory leaks, most of them looking at the application’s internals or the object’s allocation
and deallocation. The Precog algorithm is most relevant for the serverless compute clusters, where the cloud
administrator does not have access to the source code or know about the internals of the deployed applica-
tions. The performance evaluation showed that the Precog could achieve a F1-Score of 0.85 with less than
half a second prediction time on the real workloads.

The proposed IAD algorithm is useful for detecting anomalous VMMs in serverless compute clusters. We
compared it against the popular change detection algorithms, which could also be applied to the problem.
IAD algorithm outperforms all the others on an average across four datasets by 11% with an average accuracy
score of 83.7%. IAD algorithm scales linearly with the number of VMs hosted on a VMM and the number
of time ticks. It takes less than 2.5 seconds for IAD algorithm to analyze 100 VMs hosted on a VMM for
detecting if that VMM is anomalous or not. This allows it to be easily usable in the cloud environment where
the fault-detection time requirement is low and can quickly help DevOps to know whether the problem is of
the hypervisor or not.

117

9
Function Delivery Network Evaluation Settings

“What you get by achieving your goals is not
as important as what you become by achieving
your goals."

— Zig Ziglar

After describing the broad FDN framework, we, in this chapter, explain the methodology used to carry out
its performance evaluation. The performance evaluation aims to understand the general performance of FDN
in diverse scenarios. To investigate the performance, we first introduce the different benchmarks, i.e., FaaS
functions, along with the developed application we use to evaluate in §9.1. Following this, we describe the
different heterogeneous clusters used in this work to form the edge-cloud continuum within FDN in §9.2.
Lastly, in §9.3, we describe the complete evaluation infrastructure and the different performance quality
metrics used for the evaluation.

9.1 Benchmarks

When a function microbenchmark is executed on any computing system within a cluster in FDN, it will
require a set of resources to operate correctly. If not enough resources are provided, its execution may
slow down. Moreover, if a system is overloaded with processes that devour its resources, any running
program will be affected, and the overall performance will fall. This situation will likely happen on the
edge clusters when too many functions are executed simultaneously. Thus to understand the behavior of
FDN under different situations, we have identified a subset of the microbenchmarks provided with the
FaaSProfiler [263]. We have put them under different categories based on their use cases and the system
resource they need the most (§9.1.1). In order to evaluate FDN in a real-world scenario, we created an
application with these microbenchmarks described in §9.1.2.

118

9.1. Benchmarks

9.1.1 FaaS Functions

We have identified five main categories under which we have placed the functions to be evaluated. While the
implementation logic of the used functions is not relevant, the goal is to simulate the workload that would
occur in a real scenario, even though the deployed functions may not be used in reality. The functions are
also summarized in Table 9.1 along with their category, description, and language runtimes.

9.1.1.1 Web-based FaaS Functions

This category simulates a typical web-based workload that does not require heavy computation. We have
considered the following function in this category for the evaluation:

nodeinfo: This function returns the basic characteristics of the node on which it is running, like CPU count,
architecture, and uptime. It is used to test the environment under soft load since it does not require any
heavy computation or resources, and therefore, it should take the same execution time as any setting.

9.1.1.2 CPU-Intensive FaaS Functions

CPU-intensive functions are one of the most popular types of programs nowadays. Such functions require
mainly CPU power and a small amount of memory and network resources [232]. We have considered the
following three functions under this category:

primes: It takes as input an integer n and computes the number of primes lower than n. Its goal is to force a
high load on the CPU. The algorithm used in this function is a standard one that we have modified with the
possibility of specifying the threshold. In this way, we could tune the function’s performance to the clusters’
characteristics. In the experiments, we have set n = 1000.

linpack: It solves a dense linear system of equations in double precision and returns the results in GFlops.
Problem size (number of equations) is fixed to 100.

sentiment-analysis: It analyzes the sentiment of a provided string using the Python TextBlob library.

9.1.1.3 Memory-Intensive and Disk I/O-Intensive FaaS Functions

The storage disk and the memory are the target resources in this category. These resources will be responsi-
ble for influencing the execution times of the function. We have considered the following two functions:

gzip-compression: This function takes as input an integer file_size, writes file_size GB on a file on the disk
and then read the same amount in the memory. The returned value is the time taken to perform the two
operations.

dd: This function utilizes the Unix command-line utility dd - that stands for "Data Definition" [177]. Its
main usage is copying files from different locations, with the advantage that it is more efficient than other
commands when dealing with large documents such as device files. For our purposes, we copy /dev/zero -
which produces a continuous stream of zero value bytes - into a temporary directory /tmp/out, so that we
do not mess up the cluster’s disk. Consequently, this function significantly stresses the disk usage like the
gzip-compression function.

119

9. Function Delivery Network Evaluation Settings

Table 9.1.: Summary of the FaaS functions microbenchmarks used as part of this work for evaluating FDN.
Category Num Microbenchmark Description Runtime

Web
Fn1 nodeinfo

Gives basic characteristics of node like
CPU count, architecture, uptime Node.js 14

CPU

Fn2 primes-python Calculates prime numbers till 1000. Python 3.7

Fn3 linpack

It solves a dense linear system of equations
in double precision and returns the results
in GFlops. Problem size (number of equa-
tions) is fixed to 100.

Python 3.7

Fn4 sentiment analysis
Analyzes the sentiment of a provided
string using the Python TextBlob library Python 3.7

Mem & Disk

Fn5 dd

It is based on Unix dd command-line
utility for converting and copying files.
128bytes as block size and five times con-
version is used as parameters.

Python 3.7

Fn6 gzip-compression
Creates a file with random numbers of size
1MB and compresses it using gzip compres-
sion.

Python 3.7

Network Fn7 json-loads
It fetches a big JSON file from the internet,
loads it in memory, and converts it into a
string.

Python 3.7

ML-based

Fn8 ml-lr-prediction

It first downloads a linear regression
model trained on user reviews data from
the storage bucket along with the test data
and performs prediction on it.

Python 3.7

Fn9 image-processing

It reads an image from object storage
(here MinIO) and performs basic opera-
tions (flip, rotate, filter, grayscale and re-
size) on the image.

Python 3.7

9.1.1.4 Network I/O-Intensive FaaS Functions

json-loads: As the name suggests, this function sends a request to a remote URL containing a JSON file
and waits for the response. Then, it loads the file, converts it into a string, and returns the time needed to
perform all the operations. The resource that this function utilizes is the network I/O.

9.1.1.5 ML-based FaaS Functions

lr-prediction: This function first downloads a linear regression model trained on user reviews data and the
test data from the storage buckets located on the GCP. It then performs prediction using the downloaded
model on the test data. The returned value is the time taken to perform the prediction.

image-processing: It takes the image name and the object storage (here MinIO) credentials as input. Based
on it, it downloads the image from the object storage and performs basic image operations flip, rotate, filter,
grayscale, and resize on the image. The returned value is the time taken to perform the operations.

120

9.1. Benchmarks

Figure 9.1.: High level workflow of the application used in this work for evaluation.

9.1.2 Serverless Application

We created an application called faas-composer, with the microbenchmarks described in §9.1.1. The overall
workflow of the application is shown in Figure 9.1. The functions in the gray boxes are executed in paral-
lel, while these are executed in sequence. The application flow starts with the node info function, which
exposes an HTTP endpoint and provides the user with basic information about the system, such as host-
name, underlying architecture, and number of CPUs. After it returns the response, faas-composer invokes
all the compute-intensive functions: primes-python, unpack and sentiment-analysis asynchronously.
The faas-composer waits for their responses to come back. Once the responses are received, then the
dd and gzip-compression functions are executed asynchronously. The faas-composer waits for their re-
sponses, and then it invokes json-loads. After receiving the response from it, faas-composer invokes ml-
lr-prediction and image-processing functions asynchronously. ml-lr-prediction queries the model
and data from the Google cloud storage (created in GCP in the Europe-west3 region) and then performs
prediction. Once the responses are available from both invocations, faas-composer sends back the overall
execution time it took to invoke all the functions back to the user.

121

9. Function Delivery Network Evaluation Settings

(a) Edge-Jetson-Nano Cluster (b) Edge-Multi-Boards Cluster

Figure 9.2.: Schematic high-level diagrams of the two edge clusters based on the embedded devices with
limited resources used in this work for FDN’s evaluation.

9.2 Heterogeneous Target Serverless Compute Clusters
The clusters are the operative component of the FDN and contain the deployed functions. A single cluster
is a group of servers on top of which a serverless compute platform is deployed, responsible for managing
and executing the functions. We targeted multiple heterogeneous serverless clusters to demonstrate the
functionality of the FDN. From the point of view of the FDN’s courier control plane, the clusters are blocks,
that it can attach to and that can be removed or replaced at any time as long as any action is notified to the
control plane. The employed clusters spread across the edge-cloud continuum are described in the following
subsections. These clusters are created based on the automation approach mentioned in §4.2.1.2. Also, the
configuration of each target cluster, the serverless compute platform used, and the number of nodes present
in that target cluster are summarized in Table 9.2.

9.2.1 Edge-Clusters

The edge-clusters are based on embedded devices with limited resources. In order to not overload the
edge devices, we created the Kubernetes control-plane on a VM, and edge devices join as worker nodes
to it. The monitoring solution and Kubernetes control-plane components are only scheduled to run on the
VM. It allows keeping the edge devices free for functions and harnesses their whole compute power. It is
to be noted that the VM is based on the AMD64 architecture while the edge devices are based on ARM
CPU architecture; therefore, we have to build Kubernetes and the monitoring solution container images for
multi-architecture. Furthermore, the deployment of the functions only on edge devices was controlled by
making sure the OpenFaaS-Fn namespace (in which OpenFaaS schedule all the functions) works only on
edge devices. We have created two edge clusters for the evaluation of FDN described as follows:
Edge-Jetson-Nano: This edge cluster consists of three embedded Nvidia Jetson Nano devices [288]. Open-
FaaS support low-end devices and provides binaries for ARM processors; therefore, we utilized OpenFaaS
on top of k3s [243], a lightweight version of Kubernetes, to host a Kubernetes cluster. Additionally, a moni-
toring solution based on Prometheus is deployed within this cluster for FDN-Monitor (§4.2.2) to gather var-
ious metrics. Figure 9.2a shows the high-level diagram of this cluster. The functions created with OpenFaaS

122

9.2. Heterogeneous Target Serverless Compute Clusters

(a) PVT-CLD-LRZ-OW Cluster (b) PVT-CLD-LRZ-OF Cluster

Figure 9.3.: Schematic high-level diagrams of the two private cloud clusters based on two serverless com-
pute platforms used in this work for the FDN’s evaluation.

has by default the invocation URL pattern as <server-ip>/function/<function-name> pattern, which is
the same required by the FDN’s Courier Load Balancer (§6.2) for invocation. Therefore, we do not have to
deploy reverse proxy in the clusters based on OpenFaaS.

Edge-Multi-Boards: This second edge cluster consists of five heterogeneous embedded devices: Google
Coral Dev board, Nvidia Jetson Nano, Raspberry PI4, and two Odroid XU4 devices. We again utilized
OpenFaaS on top of k3s [243] to host a Kubernetes cluster on this cluster. A monitoring solution based on
Prometheus is also deployed within this cluster for FDN-Monitor (§4.2.2) to gather various metrics. We
also added another VM in this cluster as a worker node to share the control-plane workloads. Figure 9.2b
shows the high-level diagram of this cluster.

9.2.2 Cloud-Clusters

Cloud clusters represent the clusters in the cloud. These clusters could be hosted on a private or public
cloud. We have employed both types of clusters, presented in the following subsections.

9.2.2.1 Private-Cloud-Clusters

This cluster type is hosted on the VMs created on-premises private cloud. This cluster type is essential for
running functions that work on private data residing on-premise. We created two of these clusters:

PVT-CLD-LRZ-OF: This private cloud-cluster is composed of five VMs hosted on a private cloud at the
LRZ [182]. LRZ cloud is based on OpenStack. Each VM has four vCPU cores and 16GiB of memory.
We first deploy a fully-fledged Kubernetes cluster on the VMs using kubeadm. Then we deploy Open-
FaaS serverless compute platform on it. This cluster is also deployed with a Prometheus-based monitoring
solution. A high-level cluster architecture diagram is shown in Figure 9.3b.

PVT-CLD-LRZ-OW: This private cloud-cluster is also composed of five VMs on a private cloud at the
LRZ. Each VM has four vCPU cores and 16GiB of memory. We first deploy a fully-fledged Kubernetes

123

9. Function Delivery Network Evaluation Settings

(a) PUB-CLD-AWS Cluster in us-east-1 region. (b) PUB-CLD-GCF Cluster in europe-west-3 region.

Figure 9.4.: Schematic high-level diagrams of the two public cloud clusters used in this work for FDN’s
evaluation.

cluster on the VMs using kubeadm. Then we deploy OpenWhisk as a serverless compute platform on
it. The functions deployed on the OpenWhisk cluster require authentication [226]. Therefore, we have
also deployed a reverse proxy based on NGINX [208] in the cluster, containing proper authorization. The
reverse proxy attaches the authorization to each incoming function’s request, making it easier to invoke from
FDN. Additionally, for keeping the function invocation URL in <server-ip>/function/<function-name>
pattern, we created a URL rule within the reverse proxy to map the invocation URLs (.../function/*) with
the OpenWhisk function URLs. This cluster is also deployed with a Prometheus-based monitoring solution.
A high-level cluster architecture diagram is shown in Figure 9.3a.

9.2.2.2 Public-Cloud-Clusters

These clusters are created using the public cloud serverless compute platforms. We have considered the
following clusters for this type:

PUB-CLD-AWS: This public cloud-cluster is created using the AWS Lambda serverless compute platform.
A high-level cluster architecture diagram is shown in Figure 9.4a. This cluster is created in the us-east-1
region. The Lambda functions created on AWS can be assigned with the Function URL service from AWS,
but each function’s URL prefixes are assigned randomly [68]. To keep the prefix for each function URL
constant, we created an AWS Application Load Balancer [32] and used it as the trigger entry point for each
function. Furthermore, since FDN’s Courier Load Balancer (§6.2) requires the function invocation URL
to be in <server-ip>/function/<function-name> pattern, we created rules within the AWS Application
Load Balancer to map the invocation URLs (.../function/<function-name>) with the desired Lambda
functions [27]. FDN’s Courier Load Balancer (§6.2) requires the cluster to have a static IP address for load
balancing across multiple clusters. It cannot use the domain name for load balancing. Thus, we created
an Elastic IP address in AWS. However, one cannot assign the Elastic IP address to an AWS Application
Load Balancer [26]. Consequently, we created an AWS Network Load Balancer [31] on top of the AWS
Application Load Balancer [21] and assigned the Elastic IP address to it [25]. We could also use the AWS
Network Load Balancer as a trigger for the Lambda functions, but we cannot create the URL mapping
required by the FDN within it. Therefore, we have to keep the AWS Application Load Balancer. The final

124

9.3. Evaluation Infrastructure

Table 9.2.: Different target heterogeneous clusters spread across edge-cloud continuum used for evaluating
the FDN.

Category Cluster Name Device/VM Platform Region Nodes

Edge

Edge-Jetson-Nano Nvidia Jetson Nano OpenFaaS europe-west-3 3

Edge-Multi-Boards
Coral Dev board,

OpenFaaS europe-west-3 4Jetson Nano, RPI4,
two Odroid XU4

Private Cloud PVT-CLD-LRZ-OF VM, 4 vCPU 16GiB OpenFaaS europe-west-3 5
PVT-CLD-LRZ-OW VM, 4 vCPU 16GiB OpenWhisk europe-west-3 5

Public Cloud† PUB-CLD-GCF† N/A† GCF europe-west-3 N/A†

PUB-CLD-AWS† N/A† AWS Lambda us-east-1 N/A†

† Host VMs or containers configuration information in which functions are deployed is not available.

cluster architecture diagram is shown in Figure 9.4a. We use the AWS Cloud Watch [81] to extract the
function’s performance metrics.

PUB-CLD-GCF: This public cloud-cluster is created using GCF in the europe-west-3 region. The func-
tions created in GCF are by default assigned a URL based on the project-id in which those are created.
These URL prefixes are unique since all the functions are created within the same project. However, as
FDN’s Courier Load Balancer (§6.2) requires the cluster to have a static IP address for load balancing,
we created a Google Cloud Load balancer [235], which, by default, has a public IP address. Furthermore,
for keeping the function invocation URL in <server-ip>/function/<function-name> pattern, we created
URL rules within the Google Cloud Load balancer to map the invocation URLs (.../function/*) with
the functions having the names as the last part of the URLs. We use the Google Cloud Monitoring [117]
solution to extract the function’s performance metrics. A high-level architecture diagram for this cluster is
shown in Figure 9.4b.

9.3 Evaluation Infrastructure

This section presents the evaluation infrastructure used in this work for assessing FDN. We start with the
FDN deployment settings in §9.3.1. In §9.3.2, we present an evaluation framework, which is a framework
around the FDN architecture. Its purpose is to test the FDN under different scenarios by replicating user
workload patterns, collecting various metrics data, and plotting the graphs.

9.3.1 FDN Deployment Settings

We deployed each component of FDN (§4.2) in a Kubernetes cluster consisting of three VMs. Each VM
has Ubuntu 18.04, 2.4 GHz xeon skylake processor, 4vCPU cores, and 8GB memory. Additionally, we
mount a common Network File System (NFS) storage point on each VM to keep the data consistent across
VMs and allow easier scalability. Each component of FDN is deployed as a replica-set workload within
the Kubernetes cluster. Each replica-set has one replica and is attached with a Persistent Volume Claim
(PVC) for storing all the data related to the component. A PVC is a request for storage by a user for the

125

9. Function Delivery Network Evaluation Settings

pod, and PVCs consume Persistent Volume (PV) resources. A PV is a storage piece in the cluster that an
administrator has provisioned.

The weights of the clusters within Courier Load Balancer can only be dynamically updated by updating
them inside a Linux socket file (/var/run/hapee-lb.sock). Courier Control Plane needs to access it for
dynamically updating the weights with no downtime. Therefore, we deployed the Courier Load Balancer
and the Courier Control Plane components in different containers but within the same pod with the shared
namespace. Sharing the namespace allows the Courier Control Plane to access the Linux socket file and
dynamically update the weights. Each behavioral modeling mode and Courier Control Plane’s load bal-
ancing algorithms are deployed on demand as a pod within the cluster based on the requirement and the
set load balancing algorithm. These deployed components are specific for each function and scale up or
down with the increase or decrease in the number of functions. Each Virtual Kubelet component is also
created as the replica-set within the same cluster. All the FDN related components are deployed in the
fdn-related-stuff namespace within the Kubernetes cluster. Figure 9.5 shows the high-level overview of
the various FDN components deployed in the Kubernetes cluster.

When we deploy a function on a serverless compute cluster, a corresponding pod is created within the FDN
cluster. The pod is assigned to the Virtual Kubelet node representing the cluster, using the node selector
parameter. We need to create pods with the same name in the FDN cluster assigned to their corresponding
Virtual Kubelet nodes for deploying the same function on the other clusters. However, Kubernetes does not
allow running the pod with the same name in the same namespace. One alternative could be to change the
function name and append the cluster name to it. However, we wanted to keep the function name consistent
across clusters. Therefore, we created namespaces for each Virtual Kubelet node. The pod created for the
corresponding function for a particular cluster goes to the namespace belonging to that cluster. It allows us
to keep all the pods related to a cluster within a namespace, and we can now create multiple pods with the
same name representing the function deployed in different clusters.

9.3.2 FDN Test Framework

In order to test FDN under the different scenarios, we created an extra framework around it. It replicates the
user workload patterns, collects various metrics data, and plots the graphs. A high level workflow diagram of
the FDN Test Framework is shown in Figure 9.6. A configuration file containing all the necessary parameters
is passed as input to the framework (step 1). This file defines all the scenarios that the framework will
execute. For each scenario listed in the configuration file, the client configures the FDN, such as deploying
the function to the cluster(s) and configuring the load balancing strategy (step 2 - 3). Once the FDN is
configured, a load generator instance is initialized (step 3). We use k6 as the load generation tool [306].
This load generation instance replicates the past user requests pattern (step 5) and sends them to either the
FDN’s Courier Load Balancer endpoint or the deployed function’s endpoint on a particular cluster based
on the evaluation scenario (step 6). These requests patterns are the daily accesses to some Wikipedia
pages, representing the times a webpage is accessed in a day over the years. The dataset is accessed from
Kaggle [310]. Once the test is over, the framework collects all the metrics data stored in the FDN Monitoring
database and saves them as local CSV files for graph plotting (step 7 - 8). The user can check the FDN’s
Grafana to see the graphs of different metrics in real time during load generation. Once a scenario is
finished, the client sleeps for five minutes. This waiting time is needed to reset the clusters so that a new
scenario is not influenced by the last one.

The FDN Test Framework runs on a different Kubernetes cluster than the one where the FDN is located. It
is necessary to avoid any interference and resource blockages by load generation on the FDN components.
We deployed it on a Kubernetes cluster consisting of two VMs. Each VM has Ubuntu 18.04, 2.4 GHz xeon

126

9.3. Evaluation Infrastructure

Figure 9.5.: A high-level overview of the various FDN components when deployed on the Kubernetes clus-
ter within the fdn-related-stuff namespace.

skylake processor, 4vCPU cores, and 4GB Memory. In the following subsections, we briefly explain three
components of the FDN Test Framework.

9.3.2.1 Configuration File

The configuration file is a YAML file supplied as input to the framework. Here all the scenarios on which
FDN needs to be tested are present. It also contains the configuration parameters pertaining to the FDN. Its
content can be seen in Listing A.3 in Appendix A.

9.3.2.2 FDN Test Client

The role of the client is simply parsing the input YAML configuration file and acting accordingly. Based
on the parsed file, it is responsible for running the scenarios. It first configures the FDN for each scenario
with tasks such as deploying or undeploying the function and setting the load balancing algorithm. Once the
FDN is configured, it instructs FDN Load Generator to run the load generation on the configured endpoint
for the desired time and invocation trace pattern. After the load generation is complete, it collects all metrics
data from the FDN Monitoring database, save it as local CSV files, and plot graphs from them.

9.3.2.3 FDN Load Generator

As we already have explained in the flow description of FDN Test Framework, a k6 instance is used to
simulate the requests flow. k6 is an open-source load testing tool providing the best developer experience

127

9. Function Delivery Network Evaluation Settings

Figure 9.6.: Workflow of the FDN Test Framework. Its purpose is to test FDN under different scenarios.
The configuration file is the input to the framework, containing all the scenarios to execute. The
performance metrics data for the scenarios and graphs are the general output of the framework.
The client within the framework starts the execution of the load generation by simulating the
user workload patterns using the k6 tool.

for API performance testing [306]. k6 offers the possibility to create multiple Virtual Users (VUs) that
simulate the requests of real users. In order to start a k6 instance, it is necessary to define an execution script
that specifies the general settings used and the job each VU must perform. This job is simply the request (or
multiple requests) that the VU is meant to execute, and once it is accomplished, the VU terminates. In our
case, the routine is the invocation of one of the functions deployed directly on the target cluster or through
the Courier Load Balancer endpoint. One of the advantages of k6 is that we can decide the rate used by
VUs to generate requests. It is necessary to replicate a real access pattern, since having a single user would
not create meaningful results. For this reason, we define a sequence of stages where the number of VUs
ramp up and down to reach the desired number. For each stage, the number of VUs are decided based on
the past user workload traces described below.

Invocations Traces: The way the requests arrive at the Courier Control Plane within FDN is also an im-
portant aspect that must be considered. Even though the user client is not an entity controlled by us, and
we do not know how it will behave, we need to replicate a real-world scenario and provide a proper flow as
similar as possible to an actual requests sequence. In order to do so, we replicate past user request patterns
called Invocations Traces in this work. These Invocations Traces are the daily accesses to some Wikipedia
pages, representing the times a webpage is accessed in a day over the years. The dataset is accessed from
Kaggle [310]. An extract of this dataset can be seen in Table 9.3. Each line represents a Wikipedia page,
while the columns correspond to the date of the period from 2015 to 2019. Therefore, each cell contains
the number of visitors for the given page on the given date. In order to use this data, it was necessary to
perform two adjustments. First, each day corresponds to a period of 10 seconds in our tests. In this time
frame, our load generation instance would ramp up or down the number of VUs to reach the desired number.
The second adjustment involves the actual number of VUs. In a real scenario, the number of visitors to a
Wikipedia page may grow to thousands. We cannot satisfy so many requests; therefore, we scaled down the

128

9.4. Performance Quality Metrics

Page 2015-07-01 2015-07-02 2015-07-03 2015-07-04 ...
The_Avengers_(2012_film)_en 3698 3470 3519 4057 ...
Avengers:_Infinity_War_en 54 59 40 46 ...
Bayern_Munich_fr.wikipedia 338 280 261 300 ...
Interstellar_de 6 5 2 8 ...

Table 9.3.: An extract of the dataset containing the number of visits to four Wikipedia pages on different
dates. Each row represents a Wikipedia page, while the columns correspond to the date of the
period from 2015 to 2019. Each cell contains the number of visitors for the given page on the
date. In our tests, each day corresponds to a period of 10 seconds. The number of visitors is used
as the number of function invocations. However, we scaled down the number of invocations so
that the maximum number of VUs is less than 200.

Figure 9.7.: Visualization of the function invocation traces in terms of VUs (y-axis) used in this work for
FDN evaluation. The x-axis represents the unit time, where one unit time represents 10 seconds.

numbers so that the maximum number of VUs is 200. For our evaluation, we have selected two Invocations
Traces, and their visualization can be seen in Figure 9.7:

1. R1 High-workload: The first function Invocations Trace presents a pattern with a continuous high
load, with the number of VUs that varies between 30 and 70. Nonetheless, the VUs are not constant
but sharply increase and decrease, forming a sequence of copious spikes.

2. R2 Low-workload: The second function Invocations Trace represents a low load, with all the VUs
below 25 for the entire pattern length. The only exception is a high spike that reaches the value of
almost 200 towards the end of the experiment.

9.4 Performance Quality Metrics
In our evaluations, the total test duration for each scenario is fixed to 20 minutes using the two Invocations
Traces (R1 and R2, §9.3.2.3). The total duration for which the metrics data is collected is set to 30 minutes
and the sampling rate is set to 60 seconds, i.e, metrics values are aggregated for 60 seconds.
For analyzing the results, we have mainly used the following metrics, classified into two categories:

129

9. Function Delivery Network Evaluation Settings

9.4.1 User-Centric Metrics

We use the following user-centric metrics to compare the performance of functions and load balancing
algorithms:

1. Response time: It represents the execution duration of a request sent by the user. We use its two
aggregations: average and 90th percentile (P90). The response time for an HTTP request below which
90% of the response time values lie is called the 90th percentile (P90) response time, which means
90% of the requests are processed in P90 response time or less. This metric is vital from the SLO
point of view, where one wants to have most of the requests (90% in this case) completed before a
specific time. This metric is seen by the client, helping to overall judge the performance.

2. Mean Execution Time (MET): The time a function code spends processing an event is called exe-
cution time. This metric represents the mean of execution times for all the successful invocations that
happened within the evaluation period. The mathematical form is given by Equation 9.1. This helps
to rank the cluster based on their performance (the lower the number, the better the cluster).

MET (f) =
Ân

i=1 execution_timei

n
(9.1)

where n is the total number of successful invocations.

3. Mean Successful Invocations per minute (MSI/min): If the function code is successfully executed
on a serverless compute platform, it is called a successful invocation. This metric represents the mean
of all the successful invocations per minute from the total invocations during the evaluation. The
mathematical form is given by Equation 9.2. It helps us to know the capabilities of the clusters.

MSI/min(f) =
Âm

i=1 successful_invocationsi

m
(9.2)

where i represents the minute i and m is the total number of minutes the evaluation is conducted
invocations.

9.4.2 Platform-Centric Metrics

We use the following metrics to compare the resource usage of functions on various clusters. We use two
aggregations for these metrics: 1) average aggregation per minute and 2) average aggregation during the
entire duration of the test.

1. Instances: It represents the number of active concurrent Function Instance (container or MicroVMs)
for serving the user invocations on a serverless compute platform (§2.3.1). Platforms increase or
decrease the number of Instances, depending on the workload.

2. Memory usage: Function uses a certain amount of memory for handling the invocation and com-
pleting the execution. The maximum amount of memory used during the execution, represents this
metric.

3. Network transmission: It represents the amount of outgoing network traffic (in bytes) from the
platform during the execution of a function.

4. CPU Usage: It is the average amount of CPU usage by a function instance when it is executed. It is
represented in millicores, where 1000 millicores is equivalent to one vCPU.

130

9.5. Summary

9.5 Summary

In this chapter, we explained the methodology used to perform the performance evaluation of the FDN.
We introduced nine microbenchmarks, i.e., FaaS functions, and put them under different categories based
on their use cases and the system resource they need the most (§9.1.1). We further presented a serverless
application with these microbenchmarks (§9.1.2) to test and evaluate the FDN in a real-world scenario. We
have employed six heterogeneous clusters in FDN based on different serverless compute platforms spread
across the edge-cloud continuum (Table 9.2). We explained about the deployment of the FDN within a
Kubernetes cluster (§9.3.1) and created a framework around it for easy evaluation (§9.3.2). The framework
replicates the user workload patterns, collects various metrics data, and plots the graphs. In our evaluations,
the total test duration for each scenario is fixed to 20 minutes using the two Invocations Traces (R1 and
R2, §9.3.2.3). For analyzing the results, we have used different metrics classified into user-centric and
platform-centric metrics (§9.4).

131

10
Function Delivery Network Evaluation Results

“It’s fine to celebrate success but it is more
important to heed the lessons of failure."

— Bill Gates

In this chapter, we first present the performance of the individual function microbenchmarks on different
clusters in §10.1 and summarize those results in §10.2. After this, we analyze the performance overhead
introduced by the FDN’s Courier Load Balancer when sending the invocations to the clusters compared to
the direct invocation in §10.3. In §10.4, a scenario was devised to confirm the correctness of the set FDN’s
function delivery policies, wherein gradual changes are made using FDN-UI, and the results of the Courier
Load Balancer configuration are recorded. In §10.5, we assess the FDN’s bucket replication performance.
Following this, we present the performance results of the load balancing algorithms in §10.6. Lastly, in
§10.7, we discuss the performance results of the load balancing algorithms.

10.1 FaaS Functions Performance and Resources Usage

In this section, we focus our evaluation on the following three aspects:

• Functions performance: FaaS functions, when deployed on heterogeneous clusters spread across the
edge-cloud continuum, can behave differently, resulting in performance differences. This difference
in behavior can either be due to the different amount of resources available on the clusters or a cluster
being optimized/not optimized for certain kind (by kind, we mean CPU-, Memory-, Disk I/O- and
Network-intensive function)) of functions. Therefore, we try to answer: How does the performance
of heterogeneous FaaS functions vary when deployed on heterogeneous serverless compute clusters
in the continuum?

• Resources usage by FaaS functions: Each FaaS function uses a different amount of resources (CPU,
Memory, Disk, and Network Usage) to execute the task. This resource usage can vary with different
serverless compute platforms based on their internal implementations and the location of the clus-
ter. Furthermore, each serverless compute platform has different algorithms for scaling the number

132

10.1. FaaS Functions Performance and Resources Usage

of function instances and executing concurrent invocations. This may lead to a varied number of
function instances on each cluster, resulting in a higher or lower amount of resource usage. Thus,
the question arise, How does the resource (CPU, Memory, Number of Instances, Disk, and Network
Usage) consumption by the functions vary with the change in the clusters and with different serverless
compute platforms?

• Performance on high user workload: Certain clusters, such as edge clusters, may have limited re-
sources and, therefore, might not be able to scale well with the increase in user invocations. Further-
more, each serverless compute platform has different algorithms for scaling the number of function
instances to handle many concurrent invocations. Therefore, here we try to find the answers to the
question: How does the performance and resources usage vary with the increase in the user workload
invocations?

To this end, we deployed all the function microbenchmarks (§9.1.1) on all the clusters (§9.2). All the
FaaS function microbenchmarks except nodeinfo and primes are allocated with 1024MB of memory and
function concurrency of 50 (the maximum number of concurrent instances allowed for processing events).
nodeinfo and primes functions are allocated with 512MB of memory and function concurrency of 50. For
each function, the execution duration timeout is set to 50s. We evaluated the functions on the two Invocations
Traces (Trace R1 and Trace R2, §9.3.2.3) through the FDN Test Framework (§9.3.2) for 20 minutes.

We now present the performance and resource usage results of each function microbenchmarks on different
clusters on two Invocations Traces (R1 and R2). For showcasing the performance variation, we analyze
User-Centric metrics and for resources usage, we analyze Platform-Centric metrics (§9.4).

10.1.1 Web-based Function

This category simulates a typical web-based workload that does not require heavy computation. We present
here the results of nodeinfo function. This function returns the basic characteristics of the node on which it
is running, like CPU count, architecture, and uptime.

10.1.1.1 nodeinfo

Figure 10.1 shows the evaluation results of nodeinfo function when load tested with two Invocations Traces
(R1 and R2). Figure 10.1a presents the two box plots, showing the distribution of the successful number of
invocations handled per minute by each cluster. The figure also shows the corresponding response times’
empirical Cumulative Distribution Function (eCDF) plots, showing the distribution of response times of
those invocations on the logarithmic scale. eCDF is an estimator of the Cumulative Distribution Function
and allows visualizing the distribution of a variable. Figure 10.1b shows the corresponding plots for the
average number of successful invocations handled per minute during the entire evaluation period, along
with the execution time of an invocation averaged per minute. We observe the following:

Performance on low and high-workload: For Trace R2 (low-workload), The PUB-CLD-GCF cluster
handled the highest number of successful invocations with 590.76 MSI/min with P90 response time of
0.018s. It is followed by the PVT-CLD-LRZ-OW cluster, which handled 552.3 MSI/min at P90 response
time of 0.03s. PUB-CLD-AWS cluster is not far behind, it handled 529.8 MSI/min with P90 response time
of 0.104s. Among cloud clusters, PVT-CLD-LRZ-OF cluster handled the lowest amount of invocations,
which handled 500.28 MSI/min at P90 response time of 0.26s. Two edge clusters handled approximately
the same. The Edge-Jetson-Nano cluster handled 280.7 MSI/min at P90 response time of 1.08s, while the
Edge-Multi-Boards cluster was able to handle 276.3 MSI/min at P90 response time of 1.28s.

133

10. Function Delivery Network Evaluation Results

(a) The summarized distribution of successful number of
invocations handled per minute and their response
times.

(b) The average number of successful invocations handled
per minute and the execution time of an invocation av-
eraged per minute for the entire evaluation period.

Figure 10.1.: Plots showing the evaluation results of nodeinfo when two Invocations Traces (R1 and R2)
are used for different clusters.

Table 10.1.: Three Platform-Centric metrics showing the mean usage of the resources by nodeinfo function
on different clusters when handling the two Invocations Traces.

Cluster Memory Usage (in MB) Instances CPU Usage (millicores)

R1 R2 R1 R2 R1 R2

Edge-Jetson-Nano 32.18 41.4 44.4 11.11 513.3 1271.3
Edge-Multi-Boards 65.24 27.1 42.3 7.56 3939.9 1693.9
PVT-CLD-LRZ-OF 16.19 45.1 46.52 15.09 168.3 476.8
PVT-CLD-LRZ-OW 21.6 22.8 1.45 1.0 71.2 26.1
PUB-CLD-GCF 55.3 52.8 9.6 2.6 - -
PUB-CLD-AWS 37.9 37.9 38.9 32.6 - -

For Trace R1 (high-workload), like for Trace R2, the PUB-CLD-GCF cluster handled the highest number
of successful invocations with 2253.42 MSI/min with P90 response time of 0.019s. It is closely followed
by the two private cloud clusters, the PVT-CLD-LRZ-OW cluster handled 2195.53 MSI/min at P90 response
time of 0.046s, while the PVT-CLD-LRZ-OF cluster handled 1958.3 MSI/min at P90 response time of
0.195s. The PUB-CLD-AWS cluster handled 1844.28 MSI/min with P90 response time of 0.10s. The
PUB-CLD-AWS cluster is deployed in us-east-1 region while all other clusters are in the Europe region
along with the load generation client. Thus, it could be the reason for its higher response time as compared
to other cloud clusters. Two edge clusters with low compute resources could not compete well with cloud
clusters, but served a higher number of invocations. The Edge-Jetson-Nano cluster handled 1012.8 MSI/min
with P90 response time of 2.13s, while the Edge-Multi-Boards cluster only handled 550.7 MSI/min with
P90 response time of 3.8s. One can observe that for edge clusters, the P90 response time has risen sharply
with the increase in user invocations, while for the other clusters, it has remained approximately the same.

Resources usage: Table 10.1 shows the mean resources’ usage (Platform-Centric metrics, see §9.4) by
nodeinfo function on different clusters when handling the two Invocations Traces (R1 and R2). From
Table 10.1, we can observe that the mean memory usage is almost constant across the two Invocations

134

10.1. FaaS Functions Performance and Resources Usage

(a) The summarized distribution of successful number of
invocations handled per minute and their response
times.

(b) The average number of successful invocations handled
per minute and the execution time of an invocation av-
eraged per minute for the entire evaluation period.

Figure 10.2.: Plots showing the evaluation results of primes when two Invocations Traces (R1 and R2) are
used for different clusters.

Traces for all the clusters except the clusters based on OpenFaaS (Edge-Jetson-Nano, Edge-Multi-Boards,
and PVT-CLD-LRZ-OF) where it increased for the Edge-Multi-Boards cluster and others it decreased with
increase in user invocations. Furthermore, the mean number of function instances created to handle the user
invocations increased with Trace R1 for all clusters. As the concurrency setting is enabled on the PVT-
CLD-LRZ-OW cluster, which allows for one function instance to serve many invocations. We can see that
it handled the highest number of invocations with just one function instance. CPU usage also followed a
similar trend as that of memory usage. The PVT-CLD-LRZ-OW cluster, based on the OpenWhisk platform,
has the lowest mean memory and CPU usage among all clusters.

10.1.2 CPU-Intensive Functions

This category focuses on CPU-intensive functions, such functions require mainly CPU power and a small
amount of memory and network resources [232]. We have considered all three functions under this category:

10.1.2.1 primes

It takes as input an integer n and computes the number of primes lower than n. Figure 10.2 shows the eval-
uation results of primes function when load tested with two Invocations Traces (R1 and R2). Figure 10.2a
presents the two box plots, showing the distribution of the successful number of invocations handled per
minute by each cluster. The figure also shows the corresponding response times’ eCDF plots, showing
the distribution of response times of those invocations on the logarithmic scale. Figure 10.2b shows the
corresponding plots for the average number of successful invocations handled per minute during the entire
evaluation period, along with the execution time of an invocation averaged per minute. From Figure 10.2.
We observe the following:

Performance on low and high-workload: For Trace R2 (low-workload), the PVT-CLD-LRZ-OF cluster
handled the highest number of successful invocations with 635.3 MSI/min at P90 response time of 0.28s.
It is followed by the PUB-CLD-GCF cluster, which handled 590.52 MSI/min with P90 response time of

135

10. Function Delivery Network Evaluation Results

Table 10.2.: Three Platform-Centric metrics showing the mean usage of the resources by primes-python
function on different clusters when handling the two Invocations Traces.

Cluster Memory Usage (in MB) Instances CPU Usage (millicores)

R1 R2 R1 R2 R1 R2

Edge-Jetson-Nano 33.3 32.7 45.6 11.73 492.7 973.4
Edge-Multi-Boards 52.6 25.2 47.0 8.8 3798.2 1733.5
PVT-CLD-LRZ-OF 18.86 27.06 46.3 5.93 197.7 452.18
PVT-CLD-LRZ-OW 22.5 21.8 1.1 1.0 102.6 28.1
PUB-CLD-GCF 55.5 55.4 9.1 2.7 - -
PUB-CLD-AWS 36.23 36.2 38.3 33.3 - -

0.024s. The PVT-CLD-LRZ-OW cluster handled 580.9 MSI/min with P90 response time of 0.036s. Then
comes the PUB-CLD-AWS cluster, which handled 508.5 MSI/min with P90 response time of 0.1062s.
Among the edge clusters, the Edge-Jetson-Nano cluster handled 385.2 MSI/min with P90 response time of
0.58s and the Edge-Multi-Boards cluster handled 354.2 MSI/min with P90 response time of 0.66s.

For Trace R1 (high-workload), the PUB-CLD-GCF cluster scaled better and handled the highest number
of invocations with 2252.76 MSI/min and P90 response time of 0.019s. It is closely followed by the two
private cloud clusters, the PVT-CLD-LRZ-OW cluster handled 2197.6 MSI/min with P90 response time
of 0.04s, while the PVT-CLD-LRZ-OF cluster handled 2029.8 MSI/min with P90 response time of 0.38s.
Then comes the PUB-CLD-AWS cluster, which handled 1868.0 MSI/min with P90 response time of 0.107s.
Among edge clusters, the edge cluster Edge-Jetson-Nano handled 1393.2 MSI/min with P90 response time
of 1.19s, while Edge-Multi-Boards cluster handled 840.5 MSI/min with P90 response time of 2.41s. One
can again observe that for edge clusters, the P90 response time has risen with the increase in user invocations,
while for the other clusters, it has remained approximately the same.

Resources usage: Table 10.2 shows the mean resources’ usage by primes function on different clusters
when handling the two Invocations Traces (R1 and R2). From Table 10.2, we can observe that the mean
memory usage is almost constant across the two Invocations Traces for all the clusters except the Edge-
Multi-Boards cluster, where it almost got doubled. Furthermore, the mean number of function instances
created to handle the user invocations increased with Trace R1. It almost reached the maximum defined
value (50) for the Edge-Jetson-Nano, Edge-Multi-Boards and PVT-CLD-LRZ-OF clusters. All three clusters
are based on OpenFaaS. On the other hand, between the two public cloud clusters, the number of function
instances remains almost the same for two traces for the PUB-CLD-AWS cluster, while the PUB-CLD-GCF
cluster in general created a lower number of function instances and was still the best among all clusters. For
the PVT-CLD-LRZ-OW cluster, the mean memory and CPU usage are the lowest among all clusters. Mean
CPU usage for the Edge-Jetson-Nano and PVT-CLD-LRZ-OF clusters decreased when using the Trace R1,
since both clusters have a higher number of instances to serve the invocations, resulting in a decrease in
mean CPU usage per function instance. While for the Edge-Multi-Boards cluster, it increased, even though
it has a higher number of function instances. This could be due to the lack of resources available in the
cluster, resulting in higher mean CPU usage per instance.

10.1.2.2 linpack

It solves a dense linear system of equations in double precision and returns the results in GFlops. Fig-
ure 10.3 shows the results of linpack function when load tested with two Invocations Traces (R1 and R2).

136

10.1. FaaS Functions Performance and Resources Usage

(a) The summarized distribution of successful number of
invocations handled per minute and their response
times.

(b) The average number of successful invocations handled
per minute and the execution time of an invocation av-
eraged per minute for the entire evaluation period.

Figure 10.3.: Plots showing the evaluation results of linpack when two Invocations Traces (R1 and R2) are
used for different clusters.

Figure 10.3a presents the two box plots, showing the distribution of the successful number of invocations
handled per minute by each cluster. The figure also shows the corresponding response times’ eCDF plots,
showing the distribution of response times of those invocations on the logarithmic scale. Figure 10.3b
shows the corresponding plots for the average number of successful invocations handled per minute during
the entire evaluation period, along with the execution time of an invocation averaged per minute. From
Figure 10.3. We observe the following:

Performance on low and high-workload: For Trace R2 (low-workload), the PVT-CLD-LRZ-OW cluster
handled the highest number of successful invocations with 574.07 MSI/min at P90 response time of 0.075s.
It is followed by the PUB-CLD-GCF cluster, which handled 587.1 MSI/min with P90 response time of
0.025s. Then comes the PUB-CLD-AWS cluster, which handled 522.90 MSI/min) at a P90 response time
of 0.10s. Private cloud cluster PVT-CLD-LRZ-OF handled 327.8 MSI/min with a P90 response time of
0.70s. Among the edge clusters, the Edge-Jetson-Nano cluster handled 70.4 MSI/min with P90 response
time of 5.5s and the Edge-Multi-Boards cluster handled 167.6 MSI/min with P90 response time of 2.09s.

For Trace R1, the PUB-CLD-GCF cluster handled the highest number of invocations with 2381.3 MSI/min
and P90 response time of 0.026s. It is closely followed by the PVT-CLD-LRZ-OW cluster, which handled
2337.5 MSI/min at P90 response time of 0.100s. Then comes the PUB-CLD-AWS cluster, which handled
1776.5 MSI/min at P90 response time of 0.109s. Out of all the cloud clusters, the PVT-CLD-LRZ-OF
cluster performed the worst, which handled 788.2 MSI/min at P90 response time of 3.6s. Even though the
PVT-CLD-LRZ-OF cluster has the same amount of resources as the PVT-CLD-LRZ-OW cluster, it could not
perform comparably to it. This can be attributed to the different serverless compute platforms used in these
clusters. Additionally, the function image differs for two clusters, which could also be the reason for the
slow performance of the PVT-CLD-LRZ-OF cluster. Two edge clusters with low compute resources could
not compete well with cloud clusters and perform poorly compared to them. The Edge-Multi-Boards cluster
handled 69.5 MSI/min at P90 response time of 11.6s, while the Edge-Jetson-Nano cluster handled 4.45
MSI/min at P90 response time of 27.9s.

Resources usage: Table 10.3 shows the mean resources’ usage by linpack function on different clusters
when handling the two Invocations Traces (R1 and R2). From Table 10.3, we can observe that the mean
memory usage is almost constant across the two traces for all the clusters except the clusters based on

137

10. Function Delivery Network Evaluation Results

Table 10.3.: Platform-Centric metrics showing the mean usage of the resources by linpack function on
different clusters when handling the two Invocations Traces.

Cluster Memory Usage (in MB) Instances CPU Usage (millicores)

R1 R2 R1 R2 R1 R2

Edge-Jetson-Nano 549.3 149.2 1.0 1.0 3676.4 3485.1
Edge-Multi-Boards 266.0 56.17 1.0 1.0 8413.1 4300.1
PVT-CLD-LRZ-OF 291.7 55.7 19.6 9.2 2241.9 2153.8
PVT-CLD-LRZ-OW 29.8 29.19 1 1 133.42 30.9
PUB-CLD-GCF 76.0 78.40 6.9 2.5 - -
PUB-CLD-AWS 70.5 70.5 39.1 33.02 - -

(a) The summarized distribution of successful number of
invocations handled per minute and their response
times.

(b) The average number of successful invocations handled
per minute and the execution time of an invocation av-
eraged per minute for the entire evaluation period.

Figure 10.4.: Plots showing the evaluation results of sentiment-analysis when two Invocations Traces
(R1 and R2) are used for different clusters.

OpenFaaS, where it increased substantially with an increase in user invocations. Furthermore, the mean
number of function instances created to handle the user invocations increased with Trace R1 for the PUB-
CLD-AWS, PUB-CLD-GCF, and PVT-CLD-LRZ-OF clusters, while for others it remains at 1 only. The
PVT-CLD-LRZ-OW cluster can serve the highest number of invocations with just one function instance. For
the PVT-CLD-LRZ-OW cluster, the mean memory and CPU usage are the lowest among all clusters. Mean
CPU usage for all clusters increased with an increase in user invocations.

10.1.2.3 sentiment-analysis

It analyzes the sentiment of a provided string using the Python TextBlob library. Figure 10.4 shows the
results of sentiment-analysis function when load tested with two Invocations Traces (R1 and R2). Fig-
ure 10.4a presents the two box plots, showing the distribution of the successful number of invocations
handled per minute by each cluster. The figure also shows the corresponding response times’ eCDF plots,
showing the distribution of response times of those invocations on the logarithmic scale. Figure 10.4b shows

138

10.1. FaaS Functions Performance and Resources Usage

Table 10.4.: Platform-Centric metrics showing the mean usage of the resources by sentiment-analysis
function on different clusters when handling the two Invocations Traces.

Cluster Memory Usage (in MB) Instances CPU Usage (millicores)

R1 R2 R1 R2 R1 R2

Edge-Multi-Boards 201.48 136.9 1.0 1.0 3751.24 4760.75
PVT-CLD-LRZ-OF 685.18 234.9 1.0 1.0 3668.6 2384.6
PVT-CLD-LRZ-OW 41.98 41.94 1.0 1.0 347.4 107.5
PUB-CLD-GCF 140.8 139.9 9 2.6 - -
PUB-CLD-AWS 117.3 117.2 41.8 41.9 - -

the corresponding plots for the average number of successful invocations handled per minute during the en-
tire evaluation period, along with the execution time of an invocation averaged per minute. This function was
not deployed on the Edge-Jetson-Nano cluster. Since this function requires downloading Natural Language
Toolkit (NLTK) data from the internet, that cluster does not have access to the internet. From Figure 10.4.
We observe the following:

Performance on low and high-workload: For Trace R2 (low-workload), the PUB-CLD-GCF cluster han-
dled the highest number of successful invocations, which handled 589.0 MSI/min, closely followed by the
PVT-CLD-LRZ-OW cluster with 567.53 MSI/min and the PUB-CLD-AWS cluster with 523.6 MSI/min. This
trend continues in their P90 response time, the PUB-CLD-GCF cluster (0.021s) has the lowest P90 response
time, then comes the PVT-CLD-LRZ-OW cluster with P90 response time of 0.049s and then the PUB-CLD-
AWS cluster (0.109s). The PVT-CLD-LRZ-OF cluster handled 178.4 MSI/min with P90 response time of
2.30s. The edge cluster Edge-Multi-Boards handled 49.9 MSI/min with P90 response time of 9.3s.

For Trace R1 (high-workload), the PUB-CLD-GCF cluster handled the highest number of invocation, which
handled 2245.8 MSI/min with the lowest P90 response time of 0.021s. It is again closely followed by the
PVT-CLD-LRZ-OW cluster, which handled 2160.4 MSI/min with P90 response time of 0.055s. The PUB-
CLD-AWS cluster comes next with P90 response time of 0.107s and handled 1875.0 MSI/min. Private cloud
cluster PVT-CLD-LRZ-OF could only handle 56.4 MSI/min with P90 response time of 9.5s. It clearly
shows the overhead introduced by the OpenFaaS platform compared to the OpenWhisk serverless compute
platform, since both clusters have the same amount of resources. The edge cluster Edge-Multi-Boards with
low compute resources could not perform well for this function (4.3 MSI/min with P90 response time
34.5s).

Resources usage: Table 10.4 shows the mean resources’ usage by sentiment-analysis function on dif-
ferent clusters when handling the two Invocations Traces. From Table 10.4, we can observe that the mean
memory usage is almost constant across the two traces for all the clusters except the clusters based on Open-
FaaS (Edge-Multi-Boards, and PVT-CLD-LRZ-OF) where it increased substantially with an increase in user
invocations. Furthermore, the mean number of function instances created to handle the user invocations
increased with Trace R1 for the PUB-CLD-AWS and PUB-CLD-GCF clusters, while for others, it remains
at 1 only. The PVT-CLD-LRZ-OW cluster can serve a high number of invocations with just one function
instance. The mean CPU usage per function instance for clusters increased with Trace R1 except for the
Edge-Multi-Boards cluster, where it decreased as most of the invocations failed.

139

10. Function Delivery Network Evaluation Results

(a) The summarized distribution of successful number of
invocations handled per minute and their response
times.

(b) The average number of successful invocations handled
per minute and the execution time of an invocation av-
eraged per minute for the entire evaluation period.

Figure 10.5.: Plots showing the evaluation results of dd when two Invocations Traces (R1 and R2) are used
for different clusters.

10.1.3 Memory- and Disk-Intensive Functions

10.1.3.1 dd

This function utilizes the Unix command-line utility dd - that stands for "Data Definition" [177]. Its main
usage is copying files from different locations, with the advantage that it is more efficient than other com-
mands when dealing with large documents such as device files. Figure 10.5 shows the results of dd function
when load tested with two Invocations Traces (R1 and R2). Figure 10.5a presents the two box plots, showing
the distribution of the successful number of invocations handled per minute by each cluster. The figure also
shows the corresponding response times’ eCDF plots, showing the distribution of response times of those
invocations on the logarithmic scale. Figure 10.5b shows the corresponding plots for the average number
of successful invocations handled per minute during the entire evaluation period, along with the execution
time of an invocation averaged per minute. From Figure 10.5. We observe the following:

Performance on low and high-workload: For Trace R2, the PVT-CLD-LRZ-OW cluster handled the high-
est number of successful invocations with 622.5 MSI/min at P90 response time of 0.073s. It is followed by
the PUB-CLD-AWS cluster, which handled 574.8 MSI/min at P90 response time of 0.11s. Then comes the
PUB-CLD-GCF cluster, which handled 455.14 MSI/min at P90 response time of 0.22s. PVT-CLD-LRZ-OF
cluster handled 397.4 MSI/min at P90 response time of 0.68s. Among the edge clusters, the Edge-Multi-
Boards cluster handled 126.36 MSI/min at P90 response time of 2.5s, while the Edge-Jetson-Nano cluster
handled 89.76 MSI/min at P90 response time of 3.9s.

For Trace R1 (high-workload), the PVT-CLD-LRZ-OW cluster handled the highest number of invocations,
which handled 2300.8 MSI/min at P90 response time of 0.21s. It is closely followed by the PUB-CLD-GCF
cluster, which handled 2099.6 MSI/min with the P90 response time of 0.16s. The PUB-CLD-AWS cluster
has the lowest P90 response time of 0.11s (which can also been seen in Figure 10.5a) and handled 1833.6
MSI/min. Private cloud cluster PVT-CLD-LRZ-OF could handle 1580.0 MSI/min at P90 response time of
0.6s. It clearly shows the overhead introduced by the OpenFaaS platform compared to the OpenWhisk
serverless compute platform. Two edge clusters with low compute resources could not perform well for this

140

10.1. FaaS Functions Performance and Resources Usage

Table 10.5.: Platform-Centric metrics showing the mean usage of the resources by dd function on different
clusters when handling the two Invocations Traces.

Cluster Memory Usage (in MB) Instances Write IOPS

R1 R2 R1 R2 R1 R2

Edge-Jetson-Nano 401.5 139.7 1.0 1.0 2.39 3.17
Edge-Multi-Boards 250.9 73.46 1.0 1.0 9.46 8.0
PVT-CLD-LRZ-OF 26.1 215.9 46.5 8.9 1.4 5.96
PVT-CLD-LRZ-OW 31.0 29.1 1.14 1.21 66.8 12.15
PUB-CLD-GCF 83.0 82.92 11.5 6.24 - -
PUB-CLD-AWS 48.5 47.9 8.5 17.7 - -

function. The Edge-Multi-Boards cluster handled 17.14 MSI/min at P90 response time of 14.5s, while the
Edge-Jetson-Nano cluster handled 6.8 MSI/min at P90 response time of 21.2s.

Resources usage: Table 10.5 shows the mean resources’ usage by dd function on different clusters when
handling the two Invocations Traces (R1 and R2). From Table 10.5, we can observe that the mean memory
usage is almost constant across the two traces for all the clusters, except for the clusters based on OpenFaaS.
For edge clusters, it increased substantially, while for the PVT-CLD-LRZ-OF cluster, the mean memory
usage decreased with an increase in user invocations. This can be attributed to the high number of function
instances created in PVT-CLD-LRZ-OF cluster; as a result, the mean memory usage per function instance is
lower. The PVT-CLD-LRZ-OW cluster has the least memory consumption among all clusters. Furthermore,
the mean number of function instances created to handle the user invocations increased with Trace R1 for
the PVT-CLD-LRZ-OF and PUB-CLD-GCF clusters. For both edge clusters, the mean number of function
instances remained at one, which could be attributed to fewer resources and hence the inability to scale.
Additionally, the number of I/O operations performed by the PVT-CLD-LRZ-OW cluster is much higher
than the other clusters, as it has served a higher number of invocations than the other clusters.

10.1.3.2 gzip-compression

This function takes as input an integer file_size, writes file_size GB on a file on the disk and then read the
same amount in the memory. Figure 10.6 shows the results of gzip-compression function when load tested
with two Invocations Traces (R1 and R2). Figure 10.6a presents the two box plots, showing the distribution
of the successful number of invocations handled per minute by each cluster. The figure also shows the
corresponding response times’ eCDF plots, showing the distribution of response times of those invocations
on the logarithmic scale. Figure 10.6b shows the corresponding plots for the average number of successful
invocations handled per minute during the entire evaluation period, along with the execution time of an
invocation averaged per minute. This function was not deployed on the Edge-Multi-Boards cluster because
this function requires a high amount of resources and would overload the cluster. From Figure 10.6. We
observe the following:

Performance on low and high-workload: For Trace R2, PVT-CLD-LRZ-OF cluster handled the highest
number of successful invocations, which handled 386.9 MSI/min at P90 response time of 0.78s. It is
closely followed by the PUB-CLD-AWS cluster, which handled 363.5 MSI/min at P90 response time of
0.52s. Then comes the PUB-CLD-GCF cluster, which handled 328.5 MSI/min at P90 response time of
0.63s. The PVT-CLD-LRZ-OW cluster handle 203.61 MSI/min at P90 response time of 2.5s. The edge

141

10. Function Delivery Network Evaluation Results

(a) The summarized distribution of successful number of
invocations handled per minute and their response
times.

(b) The average number of successful invocations handled
per minute and the execution time of an invocation av-
eraged per minute for the entire evaluation period.

Figure 10.6.: Plots showing the evaluation results of gzip-compression when two Invocations Traces (R1
and R2) are used for different clusters.

Table 10.6.: Platform-Centric Metrics showing the mean usage of the resources by gzip-compression func-
tion on different clusters when handling the two Invocations Traces.

Cluster Memory Usage (in MB) Instances Write IOPS

R1 R2 R1 R2 R1 R2

Edge-Jetson-Nano 307.47 69.5 4.11 1.0 21.4 22.0
PVT-CLD-LRZ-OF 31.7 47.6 46.52 8.9 11.5 33.1
PVT-CLD-LRZ-OW 34.37 34.6 1.83 1.35 52.6 80.5
PUB-CLD-GCF 116.0 115.2 28.0 8.3 - -
PUB-CLD-AWS 51.4 51.3 54.67 83.12 - -

cluster Edge-Jetson-Nano handled more number of invocations than that of the PVT-CLD-LRZ-OW cluster,
i.e., 211.71 MSI/min at a lower P90 response time of 2.04s.

For Trace R1 (high-workload), the PUB-CLD-GCF cluster handled the highest number of invocation, which
handled 1502.1 MSI/min at P90 response time of 0.474s. It is followed by the PUB-CLD-AWS cluster,
which handled 1361.9 MSI/min at P90 response time of 0.525s. Private cloud cluster PVT-CLD-LRZ-OF
could handle 1350.8 MSI/min at P90 response time of 0.99s. However, the PVT-CLD-LRZ-OW cluster
could not perform well for this function and hence handled only 233.60 MSI/min with P90 response time
of 10.94s. The edge cluster Edge-Jetson-Nano has again a lower P90 response time of 7.36s than that of
the PVT-CLD-LRZ-OW cluster, and it handled 186.2 MSI/min.

Resources usage: Table 10.6 shows the mean resources’ usage by gzip-compression function on different
clusters when handling the two Invocations Traces. From Table 10.6, we can observe that the mean memory
usage is almost constant across the two traces for all the clusters except the clusters based on OpenFaaS.
For the Edge-Jetson-Nano cluster, it increased substantially with an increase in user invocations, while for
the PVT-CLD-LRZ-OF cluster, it decreased since more function instances are created. As a result, the load
on a function instance is less, resulting in decreased memory usage. Furthermore, the mean number of
function instances created to handle the user invocations increased with Trace R1 for all the clusters. The

142

10.1. FaaS Functions Performance and Resources Usage

(a) The summarized distribution of successful number of
invocations handled per minute and their response
times.

(b) The average number of successful invocations handled
per minute and the execution time of an invocation av-
eraged per minute for the entire evaluation period.

Figure 10.7.: Plots showing the evaluation results of json-loads when two Invocations Traces (R1 and R2)
are used for different clusters.

limit for maximum function instances was set to 50 and still, the PUB-CLD-AWS cluster scaled beyond it.
Additionally, the number of write IOPS done by each function instance for each cluster is decreased with
the increase in user invocations. This could be attributed to the fact that, with more instances, each instance
will handle fewer invocations, resulting in a lower number of write IOPS by each function instance.

10.1.4 Network-Intensive Function

10.1.4.1 json-loads

As the name suggests, this function sends a request to a remote URL containing a JSON file and waits for
the response. Then, it loads the file, converts it into a string, and returns the time needed to perform all the
operations. Figure 10.7 shows the results of json-loads function when load tested with two Invocations
Traces. Figure 10.6a presents the two box plots, showing the distribution of the successful number of invo-
cations handled per minute by each cluster. The figure also shows the corresponding response times’ eCDF
plots, showing the distribution of response times of those invocations on the logarithmic scale. Figure 10.7b
shows the corresponding plots for the average number of successful invocations handled per minute during
the entire evaluation period, along with the execution time of an invocation averaged per minute. Since this
function requires accessing a JSON file from the internet and the Edge-Jetson-Nano cluster does not have
internet access; therefore it was not deployed on it. From Figure 10.7. We observe the following:

Performance on low and high-workload: For Trace R2, the PUB-CLD-GCF cluster handled the highest
number of successful invocations, with 272.1 MSI/min at P90 response time of 0.97s. It is followed by the
PVT-CLD-LRZ-OF cluster, which handled 215.48 MSI/min at P90 response time of 1.61s. Then comes the
PUB-CLD-AWS cluster, which handled 209.0 MSI/min at P90 response time of 1.07s. They were followed
by the PVT-CLD-LRZ-OW cluster, which handled 190.3 MSI/min at P90 response time of 2.48s. The edge
cluster Edge-Multi-Boards could handle 129.0 MSI/min at P90 response time of 2.27s.

For Trace R1 (high-workload), interestingly the slowest cluster in Trace 2, i.e, the PVT-CLD-LRZ-OW
cluster handled the highest number of invocations with 586.5 MSI/min at P90 response time of 4.13s.

143

10. Function Delivery Network Evaluation Results

Table 10.7.: Platform-Centric metrics showing the mean usage of the resources by json-loads function on
different clusters serving the two Invocations Traces.

Cluster Memory Usage (in MB) Instances NW Transmit Rate (KB/s)

R1 R2 R1 R2 R1 R2

Edge-Multi-Boards 167.9 77.7 1.0 1.0 50.91 43.1
PVT-CLD-LRZ-OF 160.0 88.11 24.5 3.09 56.4 43.4
PVT-CLD-LRZ-OW 10.6 6.97 1.0 1.0 49.16 41.3
PUB-CLD-GCF 56.7 57.4 43.9 9.714 348.7 205.8
PUB-CLD-AWS 40.4 40.14 40.88 30.18 - -

It is followed by two public cloud clusters, the PUB-CLD-GCF cluster handled 460.6 MSI/min at P90
response time of 3.89s, while the PUB-CLD-AWS cluster handled 458.3 MSI/min at P90 response time of
3.56s. Both the public cloud clusters have a lower P90 response time than the PVT-CLD-LRZ-OW cluster.
Private cloud cluster PVT-CLD-LRZ-OF could handle 397.50 MSI/min with P90 response time of 4.29s.
The OpenWhisk-based cluster performed better here than the OpenFaaS-based clusters. The edge cluster
Edge-Multi-Boards, could only handle 27.9 MSI/min with P90 response time of 12.5s.

Resources usage: Table 10.7 shows the mean resources’ usage by json-loads function on different clusters
when handling the two Invocations Traces. From Table 10.7, we can observe that the mean memory usage
is almost constant across the two traces for the two public cloud clusters, while for others, it increased
with an increase in user workload. It almost got doubled for the clusters based on OpenFaaS. Furthermore,
the mean number of function instances created to handle the user invocations increased with Trace R1 for
all clusters except the PVT-CLD-LRZ-OW and Edge-Multi-Boards. PVT-CLD-LRZ-OW is enabled with a
function instance to handle concurrent invocations. Thus, this function does not require scaling. While the
Edge-Multi-Boards cluster has low computing resources, it did not scale. Additionally, since this function
involves downloading the file from the internet, we can see network transmission rise when load tested with
Trace R1 for all clusters.

10.1.5 ML-Based Functions

10.1.5.1 lr-prediction

This function first downloads a linear regression model trained on user reviews data and the test data from the
storage buckets located on the GCP. It then performs prediction using the downloaded model on the test data.
Figure 10.8 shows the results of lr-prediction function when load tested with two Invocations Traces.
Figure 10.8a presents the two box plots, showing the distribution of the successful number of invocations
handled per minute by each cluster. The figure also shows the corresponding response times’ eCDF plots,
showing the distribution of response times of those invocations on the logarithmic scale. Figure 10.8b shows
the corresponding plots for the average number of successful invocations handled per minute during the
entire evaluation period, along with the execution time of an invocation averaged per minute. This function
was only deployed on cloud clusters due to its high resource requirements. From Figure 10.8. We observe
the following:

Performance on low and high-workload: For Trace R2, the PUB-CLD-GCF cluster handled the highest
number of successful invocations with 490.4 MSI/min at P90 response time of 0.18s. It is followed by the

144

10.1. FaaS Functions Performance and Resources Usage

(a) The summarized distribution of successful number of
invocations handled per minute and their response
times.

(b) The average number of successful invocations handled
per minute and the execution time of an invocation av-
eraged per minute for the entire evaluation period.

Figure 10.8.: Plots showing the evaluation results of lr-prediction when two Invocations Traces (R1 and
R2) are used for different clusters.

Table 10.8.: Platform-Centric metrics showing the mean usage of the resources by lr-Prediction function
on different clusters serving the two Invocations Traces.

Cluster Memory Usage (in MB) Instances NW Transmit Rate (KB/s)

R1 R2 R1 R2 R1 R2

PVT-CLD-LRZ-OF 683.6 301.5 1.0 1.0 4.5 13.9
PVT-CLD-LRZ-OW 42.8 65.6 5.78 6.72 2.45 1.29
PUB-CLD-GCF 201.8 213.8 8.9 6.8 0.009 0.009
PUB-CLD-AWS 160.9 130.9 5.33 2.73 - -

PUB-CLD-AWS cluster with 466.09 MSI/min at P90 response time of 0.31s. Both private cloud clusters
could not handle the workload for this function. The PVT-CLD-LRZ-OF cluster handled only handle 84.3
MSI/min at P90 response time of 3.79s, while the PVT-CLD-LRZ-OW cluster handled only 61.8 MSI/min
at P90 response time of 17.2s.

For Trace R1 (high-workload), the PUB-CLD-GCF cluster handled the highest number of invocations with
2099.0 MSI/min at P90 response time of 0.13s. It is closely followed by the PUB-CLD-AWS cluster, which
handled 1620.5 MSI/min at P90 response time of 0.23s. The PUB-CLD-GCF cluster has the lowest P90
response time. Since this function requires downloading the model from the storage bucket along with the
data, and that process takes more than the set time limit for most invocations. As a result, both private
cloud clusters could not handle the high workload for this function and hence were only able to serve a low
number of successful invocations. Furthermore, this is not observed in the public cloud platforms, as they do
model and data caching and hence could serve the invocations easily. The PVT-CLD-LRZ-OF cluster could
handle 3.2 MSI/min at P90 response time of 44.0s, while the PVT-CLD-LRZ-OW cluster could handle
144.8 MSI/min at P90 response time of 10.6s.

Resources usage: Table 10.8 shows the mean resources’ usage by lr-prediction function on different
clusters when handling the two Invocations Traces (R1 and R2). From Table 10.8, we can observe that
the mean memory usage varies across the clusters, with the PVT-CLD-LRZ-OW cluster’s function instances

145

10. Function Delivery Network Evaluation Results

(a) The summarized distribution of successful number of
invocations handled per minute and their response
times.

(b) The average number of successful invocations handled
per minute and the execution time of an invocation av-
eraged per minute for the entire evaluation period.

Figure 10.9.: Plots showing the evaluation results of image-processing when two Invocations Traces (R1
and R2) are used for different clusters.

using the least memory. Furthermore, the mean number of function instances created to handle the user
invocations increased with Trace R1 for all public cloud clusters. For the PVT-CLD-LRZ-OF cluster, the
mean number of function instances remained at one only, while for the PVT-CLD-LRZ-OW cluster, the mean
number of function instances remains almost the same across two traces. Network usage by the PUB-CLD-
GCF cluster is the lowest compared to other clusters, since the buckets to fetch the data and model reside
within the Google cloud.

10.1.5.2 image-processing

It inputs the image name and object storage (here MinIO) credentials. Based on it, it downloads the image
from the object storage and performs basic image operations flip, rotate, filter, grayscale, and resize the
image. Figure 10.9 shows the results of image-processing function when load tested with two Invocations
Traces. Figure 10.9a presents the two box plots, showing the distribution of the successful number of invo-
cations handled per minute by each cluster. The figure also shows the corresponding response times’ eCDF
plots, showing the distribution of response times of those invocations on the logarithmic scale. Figure 10.9b
shows the corresponding plots for the average number of successful invocations handled per minute during
the entire evaluation period, along with the execution time of an invocation averaged per minute. This func-
tion was also only deployed on cloud clusters due to its high resource requirements. From Figure 10.9. We
observe the following:

Performance on low and high-workload: For Trace R2, the PUB-CLD-GCF cluster handled the highest
number of successful invocations with 554.9 MSI/min at P90 response time of 0.07s. It is followed by the
PUB-CLD-AWS cluster with 346.19 MSI/min at P90 response time of 0.07s. Among private cloud clusters,
the PVT-CLD-LRZ-OF cluster handled 268.7 MSI/min at P90 response time of 0.88s, while the PVT-CLD-
LRZ-OW cluster could not perform well on this function and handled only 65.2 MSI/min at P90 response
time of 32.59s.

For Trace R1 (high-workload), the PUB-CLD-GCF cluster handled the highest number of invocations with
2148.2) MSI/min at P90 response time of 0.06s. It is closely followed by the PUB-CLD-AWS cluster with

146

10.2. FaaS Functions Performance and Resources Usage Summary

Table 10.9.: Platform-Centric Metrics showing the mean usage of the resources by image-processing func-
tion on different clusters serving the two Invocations Traces.

Cluster Memory Usage (in MB) Instances NW Transmit Rate (KB/s)

R1 R2 R1 R2 R1 R2

PVT-CLD-LRZ-OF 56.6 79.1 34.23 13.30 6.4 11.65
PVT-CLD-LRZ-OW 14.03 17.7 5.50 6.2 0.99 0.48
PUB-CLD-GCF 65.5 70.41 8.9 5.20 1528.9 596.2
PUB-CLD-AWS 49.5 49.4 7.14 7.17 - -

1321.00 MSI/min at P90 response time of 0.53s. Since this function requires downloading the image from
the MinIO bucket, which is deployed on an instance on Google Cloud, hence the PUB-CLD-GCF cluster has
the lowest P90 response time. Among the private cloud clusters, the PVT-CLD-LRZ-OW cluster could not
handle high workload for this function and hence was able to only handle 231.5 MSI/min with substantial
high P90 response time of 46.3s. However, the PVT-CLD-LRZ-OF cluster was able to handle 1265.20
MSI/min with P90 response time of 1.10s). It again shows that, OpenWhisk-based platform is not well
suited for this type of functions.

Resources usage: Table 10.9 shows the mean resources’ usage by image-processing function on different
clusters when handling the two Invocations Traces. From Table 10.8, we can observe that the mean memory
usage remains almost the same across two traces for all the clusters. The PVT-CLD-LRZ-OW cluster’s
function instances use the least memory, since most of the invocations resulted in an error. Furthermore, the
mean number of function instances created to handle the user invocations from Trace R1 either increased
or remained the same as with Trace R2 for all clusters. Network usage by the PUB-CLD-GCF cluster is
highest compared to other clusters since the image needs to be fetched for every invocation. Additionally, it
served the most invocations with a low number of instances. Hence per instance, network usage is high.

10.2 FaaS Functions Performance and Resources Usage Sum-
mary

Serverless compute clusters part of FDN can be made up of different serverless compute platforms and
deployed at different locations. Most open-source platforms are based on Kubernetes, where they start a
function in a container, while the public cloud provider’s platform starts a function in a MicroVM. Thus
the performances of the functions within the clusters based on these platforms will vary. Furthermore, each
cluster may not have the same resources as others. For example, edge clusters may have limited resources
compared to cloud clusters. In Table 10.10, we present the summarized results of the average number of
invocations made per minute by each cluster for each FaaS function when load tested with two Invocation
Traces. We also highlight the cluster for each function and invocation traces, which has made the highest
number of successful invocations. One can observe that across all the functions, PUB-CLD-GCF handled
the most number of invocations. However for some functions, the other clusters performed the best. In this
section, we summarize the performance and resource usage of the FaaS functions on various clusters.

nodeinfo: For this function, we can say that all clusters scaled better with the increase in user invocations.
Among cloud clusters, the PUB-CLD-GCF, PUB-CLD-AWS, and PVT-CLD-LRZ-OW clusters were able to
handle the user invocations with the consistent P90 response times. The PUB-CLD-GCF cluster handled the

147

10. Function Delivery Network Evaluation Results

Table 10.10.: Summary of the average number of invocations made per minute by each cluster for each
FaaS function when load tested with two Invocation Traces.

Function - PUB-
CLD-
GCF

PUB-
CLD-
AWS

PVT-
CLD-
LRZ-
OW

PVT-
CLD-

LRZ-OF

Edge-
Jetson-
Nano

Edge-
Multi-
Boards

nodeinfo
R2 2253.42 1844.28 2195.53 1958.3 1012.8 550.7
R1 590.76 529.8 552.3 500.28 280.7 276.3

primes
R1 2252.76 1868.0 2197.6 2029.8 1393.2 840.5
R2 590.52 508.5 580.9 635.3 385.2 354.2

linpack
R1 2381.3 1776.5 2337.5 788.2 4.45 69.5
R2 587.1 522.90 574.07 327.8 70.4 167.6

sentiment
R1 2245.8 1875.0 2160.4 56.4 - 4.3
R2 589.0 523.6 567.53 178.4 - 49.9

dd
R1 2099.6 1833.6 2300.8 1580.0 6.8 17.14
R2 455.14 574.8 622.5 397.4 89.76 126.36

gzip
R1 1502.1 1361.9 233.60 1350.8 186.2 -
R2 328.5 363.5 203.61 386.9 211.71 -

json-loads
R1 460.6 458.3 586.5 397.50 - 27.9
R2 272.1 209.0 190.3 215.48 - 129.0

lr-prediction
R1 2099.0 1620.5 144.8 3.2 - -
R2 490.4 466.09 61.8 84.3 - -

image-process
R1 2148.2 1321.00 231.5 1265.20 - -
R2 554.9 346.19 65.2 268.7 - -

most number of invocations. Edge clusters also handled the invocations well for this function, but they are
better suited if the number of invocations is low. Furthermore, the mean memory usage is almost constant
across the two Invocations Traces for all the clusters except the clusters based on OpenFaaS. The mean
number of function instances created to handle the user invocations increased with Trace R1 for all clusters
except for the PVT-CLD-LRZ-OW cluster, where it stayed as one. As the concurrency setting is enabled
on the PVT-CLD-LRZ-OW cluster, which allows for one function instance to serve many invocations. We
can see that it handled the highest number of invocations with just one function instance. CPU usage also
followed a similar trend as that of memory usage.

primes: For this function, we can say that the PUB-CLD-GCF cluster performed better with the increase in
user invocations as compared to other clusters. Edge clusters performed well with the increase in number
of invocations, but they are better suited if the number of invocations are low. Both public cloud clusters,
and the PVT-CLD-LRZ-OW cluster, were able to serve the user invocations with the consistent P90 response
times. Among private cloud clusters, PVT-CLD-LRZ-OW performed better than the PVT-CLD-LRZ-OF.
Memory usage is almost constant even with the increase in user invocations for all the clusters except Edge-
Multi-Boards, where it almost got doubled. The mean number of function instances created to handle the
user invocations increased with Trace R1. It almost reached the maximum defined value (50) for all the
clusters based on OpenFaaS.

linpack: For this function, PVT-CLD-LRZ-OW and PUB-CLD-GCF performed better compared to other
clusters. The three cloud clusters: PUB-CLD-GCF, PUB-CLD-AWS and PVT-CLD-LRZ-OW were able to
serve the invocations with consistent P90 response times. Edge clusters are better suited if the number of
invocations is low; they could not scale well for this function when the number of invocations is increased.

148

10.2. FaaS Functions Performance and Resources Usage Summary

OpenFaaS clusters performed the worst compared to other serverless compute platforms due to their inability
to scale well with the user invocations. Furthermore, the mean memory usage is almost constant across the
two traces for all the clusters except the clusters based on OpenFaaS. The mean number of function instances
created to handle the invocations increased with Trace R1 for most of the clusters, except the edge clusters
and PVT-CLD-LRZ-OW. For the PVT-CLD-LRZ-OW cluster, the mean memory and CPU usage are the
lowest among all clusters.

sentiment-analysis: This function was not deployed on the Edge-Jetson-Nano cluster. Since this function
requires downloading NLTK data from the internet, that cluster does not have access to the internet. For this
function, PVT-CLD-LRZ-OW and PUB-CLD-GCF performed better compared to other clusters. The Edge-
Multi-Boards cluster and PVT-CLD-LRZ-OF are not suited for this function. These clusters are based on the
OpenFaaS; therefore, it could be due to the serverless compute platform that they could not perform well.
The three cloud clusters: PUB-CLD-GCF, PUB-CLD-AWS and PVT-CLD-LRZ-OW were able to serve the
invocations with consistent P90 response times. Furthermore, the mean memory usage is almost constant
across the two traces for all the clusters except the clusters based on OpenFaaS. The mean number of
function instances created to handle the invocations increased with Trace R1 for both public cloud clusters,
while it remained at one for others. The mean CPU usage per function instance for clusters increased with
Trace R1 except for the Edge-Multi-Boards cluster, where it decreased as most of the invocations failed.

dd: Similar to the linpack function, in this function also, the PVT-CLD-LRZ-OW cluster, PUB-CLD-GCF
and PUB-CLD-AWS scaled better with the increase in user invocations as compared to other clusters. All
these clusters could serve the user invocations with consistent P90 response times. Additionally, PVT-CLD-
LRZ-OF is not far behind these clusters, while edge clusters are better suited if the number of invocations
is low. The mean memory usage is almost constant across the two traces for all the clusters, except those
based on OpenFaaS. For edge clusters, it increased substantially, while for the PVT-CLD-LRZ-OF cluster,
the mean memory usage decreased with an increase in user invocations. This can be attributed to the high
number of function instances created in PVT-CLD-LRZ-OF cluster; as a result, the mean memory usage per
function instance is lower. The PVT-CLD-LRZ-OW cluster has the least memory consumption among all
clusters. Additionally, the number of I/O operations performed by the PVT-CLD-LRZ-OW cluster is much
higher than the other clusters, as it has served a higher number of invocations than the other clusters.

gzip-compression: This function was not deployed on the Edge-Multi-Boards cluster because this function
requires a high amount of resources and would overload the cluster. For this function, the PVT-CLD-LRZ-OF
cluster, PUB-CLD-GCF and PUB-CLD-AWS scaled better with the increase in user invocations as compared
to other clusters. All these clusters were able to serve the user invocations with the consistent P90 response
times. PUB-CLD-AWS cluster has the lowest P90 response times. Since both the cluster PVT-CLD-LRZ-OW
and PVT-CLD-LRZ-OF have same resources, PVT-CLD-LRZ-OW could not perform well for this function.
This shows the inability of OpenWhisk platform to work well as against the OpenFaaS platform for such
functions. The edge cluster Edge-Jetson-Nano performed better than the PVT-CLD-LRZ-OW. The mean
memory usage is almost constant across the two traces for all the clusters except the clusters based on
OpenFaaS. For the Edge-Jetson-Nano cluster, it increased substantially with an increase in user invocations,
while for the PVT-CLD-LRZ-OF cluster, it decreased since more function instances are created. The mean
number of function instances created to handle the user invocations increased with Trace R1 for all the
clusters.

json-loads: Here, the PUB-CLD-GCF handled the highest number of invocation for Trace 2, but for Trace
2, the slowest cluster in Trace 2, i.e, the PVT-CLD-LRZ-OW cluster handled the highest number of invoca-
tions. The two public cloud clusters were able to serve the user invocations with the consistent P90 response
times. Edge cluster is suited only for this function if the number of invocations are low. The mean memory
usage is almost constant across the two traces for the two public cloud clusters, while for others, it increased

149

10. Function Delivery Network Evaluation Results

with an increase in user workload. It almost got doubled for the clusters based on OpenFaaS. Additionally,
since this function involves downloading the file from the internet, we can see network transmission rise
when load tested with Trace R1 for all clusters.

lr-prediction: This function was only deployed on cloud clusters. For this function, the two public cloud
clusters are a leap ahead of the private cloud clusters. Among the public cloud clusters, PUB-CLD-GCF
always handled the highest number of invocations at a lower P90 response time than PUB-CLD-AWS. This
function requires downloading the model from the storage bucket along with the data, and that process takes
more than the set time limit for most invocations. As a result, both private cloud clusters could not handle the
high workload for this function and hence were only able to serve a low number of successful invocations.
Furthermore, this is not observed in the public cloud platforms, as they do model and data caching and could
serve the invocations efficiently. The two public cloud clusters were able to serve the user invocations with
consistent P90 response times. The mean number of function instances created to handle the user invocations
increased with Trace R1 for all public cloud clusters. For the PVT-CLD-LRZ-OF cluster, the mean number
of function instances remained at one only, while for the PVT-CLD-LRZ-OW cluster, the mean number of
function instances remains almost the same across two traces. This can be the result of them rejecting most
of the invocations. Network usage by the PUB-CLD-GCF cluster is the lowest compared to other clusters,
since the buckets to fetch the data and model reside within the Google cloud.

image-processing: For this function, the two public cloud clusters are again a leap ahead of the private
cloud clusters. Among the public cloud clusters, PUB-CLD-GCF always handled the highest number of
invocations at a lower P90 response time than PUB-CLD-AWS. This function requires downloading the
image from the MinIO bucket, which is deployed on an instance of Google Cloud. Hence the PUB-CLD-
GCF cluster has the lowest P90 response time. The mean memory usage remains almost the same across
two traces for all the clusters. In this function, the OpenFaaS-based cluster performed much better than
the OpenWhisk-based cluster, even though both have the same resources. This shows that the OpenWhisk-
based platform is unsuitable for this type of function. The mean number of function instances created to
handle the user invocations from Trace R1 either increased or remained the same as with Trace R2 for all
the clusters.

10.3 FDN’s Performance Overhead

FDN uses Courier Load Balancer (§6.2) based on HAProxy between the client and the clusters for load
balancing. The clusters across which the invocations need to be delivered are automatically decided based
on function delivery policies (§6.3.1). Also, the weights of clusters are decided based on different load-
balancing algorithms (§6.3.2). Hence, a performance overhead can be induced by FDN compared to a direct
function invocation. Therefore, we want to understand, How much is the performance overhead introduced
by the FDN’s Courier Load Balancer when sending the invocations to the cluster compared to the direct
invocation?

For this evaluation, we selected nodeinfo (§9.1.1.1) function since it is a basic function without any overhead
of its own and can run on all the clusters. The function is deployed on all clusters with 512MB memory, and
we send requests using the request traces (§9.3.2.3) to the function in two different scenarios:

• Direct connection (we perform the requests directly to the cluster endpoint). This scenario corre-
sponds to the baseline.

• Courier Load Balancer (we perform the requests to the Courier endpoint)

150

10.4. FDN’s Function Delivery Policies Correctness

Figure 10.10.: Percentage overhead introduced in terms of P90 response time by FDN when compared
against the direct approach for nodeinfo function across all the clusters and at two user
workload invocations (R1 and R2). One can see that across all the clusters, the overhead is
below 5%.

The evaluation is conducted for 20 minutes, and we compute the P90 response time of the requests in both
scenarios. We calculate the percentage overhead introduced by the Courier Load Balancer. Figure 10.10
shows the percentage overhead introduced in P90 response time by FDN’s Courier Load Balancer when
compared against the direct approach for all the clusters and at two user workload invocations (R1 and R2).
Overall, the overhead introduced by FDN can be attributed to the calculation needed by HAProxy to select
a backend based on the function name. Across all the functions and two workloads, the overhead is below
5%. Therefore we conclude that the system overhead is negligible for the Courier Load Balancer.

10.4 FDN’s Function Delivery Policies Correctness

FDN’s Courier Control Plane creates various backends based on the function and data awareness. The
policies based on these as described in §6.3.1 are called Function-Aware Delivery Policy (§6.3.1.1) and
Data-aware Delivery Policy (§6.3.1.2) respectively. Courier Control Plane uses the function and data-
awareness information to create various rules in the Courier Load Balancer. These rules then select a
backend consisting of a subset of the available clusters and employ a load balancer for load balancing the
incoming requests to the selected clusters. FDN also lets users override storage configurations and manually
define where a master bucket should be replicated and which serverless compute clusters a bucket’s load
balancing route should contain. FDN allows users to control bucket replication. These policies include
buckets’ allowed clusters and their target replica counts. If a set of clusters has been defined, FDN will
ensure that the bucket is only replicated to those clusters. Additionally, if a bucket’s target replica count is
altered, FDN will ensure that replica buckets are created and deleted where needed.

A scenario was devised to confirm the correctness of the set FDN’s function delivery policies, wherein grad-
ual changes are made using FDN-UI (§4.2.9), and the results of the Courier Load Balancer configuration
are recorded. The steps followed are as follows:

151

10. Function Delivery Network Evaluation Results

1. We have used five clusters: PUB-CLD-GCF, PUB-CLD-AWS, Edge-Jetson-Nano, PVT-CLD-LRZ-OW and
PVT-CLD-LRZ-OF. Four out of these clusters: PUB-CLD-GCF, Edge-Jetson-Nano, PVT-CLD-LRZ-OW and
PVT-CLD-LRZ-OF belong to the zone Germany, while cluster PUB-CLD-AWS belongs to the zone US.
Additionally, all cloud clusters belong to the zone cloud, while edge clusters belong to the zone edge.
Since there are no buckets and functions deployed in the beginning, therefore there are no backends
in the configuration file of Courier Load Balancer apart from the default backend:

Listing 10.1: Configuration file of Courier Load Balancer showing no backends apart from the default
backend.

1 frontend http_front_courier
2 bind *:80
3 stats enable
4 stats uri /haproxy?stats
5 stats refresh 10s
6

7 backend default
8 balance roundrobin
9 server PVT-CLD-LRZ-OF 138.246.236.155:31112 weight 1

2. A bucket named rep-policy-demo is created, and an object named image.png is added to it. The bucket
is set with the allowed zone Germany and the target replica count 0. It selects one of the cluster in the
specified zone where the master bucket will reside. Courier Load Balancer configuration shows the
bucket is only created on the PVT-CLD-LRZ-OW and therefore will direct function invocations requiring
the bucket solely to the PVT-CLD-LRZ-OW:

Listing 10.2: Configuration file of Courier Load Balancer showing function invocations requiring the
bucket rep-policy-demo solely go to the PVT-CLD-LRZ-OW.

1 frontend http_front_courier
2 bind *:80
3 stats enable
4 stats uri /haproxy?stats
5 stats refresh 10s
6 acl bucket_1 hdr(X-FDN-BUCKET) -i rep-policy-demo
7 use_backend bucket_1_policy if bucket_1
8

9 backend bucket_1_policy
10 balance roundrobin
11 server PVT-CLD-LRZ-OW 138.246.237.11:31003 weight 1
12

13 backend default
14 balance roundrobin
15 server PVT-CLD-LRZ-OF 138.246.236.155:31112 weight 1

3. The rep-policy-demo bucket’s target replica count is changed from 0 to 2. Courier Load Balancer
configuration shows the bucket has been replicated to the other two clusters (PUB-CLD-GCF, PVT-CLD-
LRZ-OF), and the scheduling route now contains the three clusters:

152

10.4. FDN’s Function Delivery Policies Correctness

Listing 10.3: Configuration file of Courier Load Balancer showing three clusters to which function invo-
cations requiring the bucket rep-policy-demo solely go to, after increase in number of replica
count of the bucket.

1 ...
2 acl bucket_demo hdr(X-FDN-BUCKET) -i demo
3 use_backend bucket_demo_policy if bucket_demo
4

5 backend bucket_demo_policy
6 balance roundrobin
7 server PVT-CLD-LRZ-OW 138.246.237.11:31003 weight 1
8 server PVT-CLD-LRZ-OF 138.246.236.155:31112 weight 1
9 server PUB-CLD-GCF 34.160.179.129:80 weight 1

10 backend default
11 balance roundrobin
12 server PVT-CLD-LRZ-OF 138.246.236.155:31112 weight 1

4. Now a test function nodeinfo is deployed on PUB-CLD-AWS and PVT-CLD-LRZ-OF. Courier Load Bal-
ancer configuration shows two more backends are created, one for the function only and one matching
both function and bucket:

Listing 10.4: Configuration file of Courier Load Balancer showing two additional backends after a test
function nodeinfo is deployed; one for the function and one matching both function and bucket

1 ...
2 acl bucket_demo hdr(X-FDN-BUCKET) -i demo
3 use_backend bucket_demo_policy if bucket_demo
4

5 acl url_func_nodeinfo path_beg /function/nodeinfo
6 use_backend function_nodeinfo_policy if url_func_nodeinfo
7

8 use_backend nodeinfo_bucket_demo_policy if url_func_nodeinfo AND bucket_demo
9

10 backend nodeinfo_bucket_demo_policy
11 balance roundrobin
12 server PVT-CLD-LRZ-OF 138.246.236.155:31112 weight 1
13

14 backend function_nodeinfo_policy
15 balance roundrobin
16 server PUB-CLD-AWS 44.209.191.63:80 weight 1
17 server PVT-CLD-LRZ-OF 138.246.236.155:31112 weight 1
18

19 backend bucket_demo_policy
20 balance roundrobin
21 server PVT-CLD-LRZ-OW 138.246.237.11:31003 weight 1
22 server PVT-CLD-LRZ-OF 138.246.236.155:31112 weight 1
23 server PUB-CLD-GCF 34.160.179.129:80 weight 1
24 backend default
25 balance roundrobin
26 server PVT-CLD-LRZ-OF 138.246.236.155:31112 weight 1

153

10. Function Delivery Network Evaluation Results

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

2

4

6

8

Data Replicated (MB)

C
om

pl
et

io
n

Ti
m

e
(s

)

Without mc With mc

Figure 10.11.: Mirroring different data amounts from the PVT-CLD-LRZ-OF to PVT-CLD-LRZ-OW using mc and
without it.

These observations confirm the correctness of FDN’s function delivery policies. The FDN ensures that
buckets are only replicated to allowed locations, reacting to changes to keep the replicated data up-to-date
and the replica buckets consistent with user set policies.

10.5 FDN’s Bucket Replication Performance

FDN’s bucket replication performance depends entirely on MinIO’s mc command-line tool and its mc mirror
directive. It is used for replicating the MinIO buckets across clusters based on the target replica counts
specified by the user. Therefore, to assess FDN’s bucket replication performance, it was useful to isolate
the command-line tool and measure its performance directly. To accomplish this, a bucket was created on
the PVT-CLD-LRZ-OF with its replica in PVT-CLD-LRZ-OW and the performance of replication of different data
amounts ranging from 10MB to 150MB is analyzed under the following two scenarios:

1. Use mc mirror for copying the primary bucket data to the mirrored bucket every time a change is
made (With mc in Figure 10.11)

2. Manually full copying the primary bucket data to the mirrored bucket every time a change is made
(Without mc in Figure 10.11).

It is to be noted that the new data is cumulatively added to the existing data. Performance variation for
the two scenarios can be seen in Figure 10.11. In the first scenario, the secondary bucket contains some of
the primary’s content and only receives the new data at each step. This is because MinIO’s mirroring tool
works similarly to Andrew Tridgell and Paul Mackerras’ rsync utility [197, 294], where the tool calculates
the difference between the two buckets and only transfers the data necessary to make their content match.
While in the second scenario, the whole bucket data was copied and took much longer. It is a significant
advantage to FDN, as it dramatically reduces the amount of data FDN must transfer for replication tasks,
which is helpful in case the master bucket resides on an edge cluster and the secondary bucket in the cloud.
It also protects FDN from many large replication jobs that mutex lock the mc tool for long periods.

154

10.6. FDN’s Load Balancing Algorithms Performance

10.6 FDN’s Load Balancing Algorithms Performance

In order to distribute the load of the incoming invocations among the target serverless compute clusters
spread across the edge-cloud continuum, FDN uses Courier Load Balancer (§6) that sits between them and
the user. The Courier Load Balancer receives the user’s requests, and the requests are dispatched to the
second layer using set function delivery policies (§6.3.1) where, depending on the policy, a load balancer is
employed. Using the second layer load balancer, invocations are load balanced across the subset of serverless
compute clusters based on different load balancing algorithms (§6.3.2). We analyze the performance of the
following load balancing algorithms within FDN:

1. FDN Round-Robin Algorithm (FDN-RR): This algorithm simply distributes the user invocations
equally to all available target clusters. It may have the disadvantage that it does not directly react to
changes in the runtime behavior of functions or the load on the target cluster [104].

2. FDN Latency-Aware Algorithm (FDN-Latency-Aware): This approach adapts the weights of clus-
ters according to the functions’ execution time in the target clusters (§6.3.2.1). This is done to reflect
the latency for each function invocation within the clusters and automatically take into account the
computational capability of the cluster and available free resources.

3. FDN SLO-Aware Algorithm (FDN-SLO-Aware): This approach adapts the weights of clusters ac-
cording to the functions’ execution time in the target clusters (§6.3.2.2) and defined SLOs. If the
execution time on a cluster goes beyond the defined SLO, then the weight of the cluster will be de-
fined as zero. Otherwise, it is calculated in the same fashion as in the FDN-Latency-Aware Load
Balancing Algorithm.

4. FDN Least Connections Algorithm (FDN-LeastCon): It keeps track of the number of open connec-
tions to a target cluster from the Courier Load Balancer. It distributes invocations to the cluster with
the fewest open connections.

5. FDN Round-Robin Algorithm Cloud Only (FDN-RR-Cld): This approach is the same as Round-
Robin Algorithm; however, it only distributes invocations across cloud clusters.

6. FDN Latency-Aware Algorithm Cloud Only (FDN-Latency-Aware-Cld): This approach is the
same as FDN-Latency-Aware Algorithm; however, as the name suggests, it only distributes invocations
across cloud clusters.

7. FDN SLO-Aware Algorithm Cloud Only (FDN-SLO-Aware-Cld): This approach is the same as
SLO-Aware Algorithm; however, as the name suggests, it only distributes invocations across cloud
clusters.

8. FDN Least Connections Algorithm Cloud Only (FDN-LeastCon-Cld): This algorithm is the same
as FDN-LeastCon Algorithm, but it only distributes invocations across cloud clusters.

To confirm FDN’s load balancing performance, measuring and recording function execution times under
various scenarios is necessary. These measurements will provide insight into FDN’s overall performance and
the impact of different load-balancing algorithms. This section presents the result of FDN’s load balancing
across multiple clusters spread across the edge-cloud continuum. We focus on the following aspects:

• Performance on Individual FaaS functions: Here, we focus the performance of the load balancing
algorithms on individual FaaS functions and try to answer the question: How does the different FDN’s
load balancing perform against each other, and which algorithm are better suited for which functions?

155

10. Function Delivery Network Evaluation Results

Figure 10.12.: The average and 90th percentile response times of the invocations load balanced using eight
different algorithms to the nodeinfo function. The results are shown for both Invocation
Traces.

• Performance on Serverless application: Here the focus is on the performance of the serverless
application. The individual functions in the application are load balanced with different algorithms.
The combined effect of the load balancing of individual functions will be seen in the application’s
performance.

• Performance on high user workload invocations: Here, we measure the load balancing performance
of FaaS Functions and the serverless application on high user workload invocations.

Each evaluation was conducted for 20 minutes using the two Invocation Traces (R1 and R2, §9.3.2.3). Since
most of the results related to load balancing are similar, therefore, we focus our results and analysis of the
algorithms in the next subsections on three benchmark functions from different categories.

10.6.1 Individual FaaS Function (nodeinfo)

Here, we evaluate the load balancing performance of FDN on nodeinfo function.

10.6.1.1 Performance on Low Workload (Trace R2)

The nodeinfo function was deployed on all the clusters (§9.2). FDN-RR, FDN-Latency-Aware, FDN-
SLO-Aware and FDN-LeastCon algorithms load balance the user invocation request to all the clusters,
while FDN-Latency-Aware-Cld, FDN-SLO-Aware-Cld and FDN-LeastCon-Cld load balance only across
the cloud clusters. Figure 10.12 shows the summarized results of the evaluation, where we show the average
and 90th percentile response times of the invocations to the nodeinfo function load balanced using eight
different algorithms.

From Figure 10.12 for Trace R2, we observe that FDN-RR has the highest P90 response time of 0.50s.
It is followed by FDN-Latency-Aware and FDN-LeastCon with P90 response times of 0.48s. FDN-SLO-
Aware has the lowest P90 response time of 0.14s. Among the cloud-only algorithms, we observe that again
FDN-RR-Cld has the highest P90 response time of 0.16s. It is followed by FDN-Latency-Aware-Cld and
FDN-LeastCon-Cld with P90 response time of 0.15s. Again, FDN-SLO-Aware-Cld has the lowest P90
response time of 0.14s. Across all the algorithms, FDN-SLO-Aware and its cloud version performed the

156

10.6. FDN’s Load Balancing Algorithms Performance

(a) Invocations Trace R2

(b) Execution Times Trace R2

Figure 10.13.: Details on how the successful invocations made using Trace R2 to nodeinfo function are
distributed across each cluster along with their execution times using different load balancing
algorithms.

best for Trace R2. Figure 10.13 shows details on how the successful invocations made using Trace R2 to
nodeinfo function are distributed across each cluster, along with their execution times using different load
balancing algorithms.

It is to be noted that, in the case of measuring the performance of load balancing algorithms, we use MET.
In contrast, for measuring the performance of the individual functions in §9.1.1 we used P90 response time.
Since our designed algorithms and load balancer are on the server side, and they use the monitoring data
collected from the clusters (execution duration of the functions) to make the decisions, we show performance
in terms of MET. Thus, this performance metric only considers the current execution time on the cluster and
does not consider the cluster’s location and the latency impact it might have on the client side. However, this
shortcoming of the current load balancing algorithms can be improved in the future by taking into account
the latency between the cluster location and the client. The performance of the load balancing algorithms is
presented below:

FDN-RR: Each cluster has almost successfully handled the same number of invocations, approximately 65

157

10. Function Delivery Network Evaluation Results

(a) FDN-Latency-Aware (b) FDN-Latency-Aware-Cld

(c) FDN-SLO-Aware (d) FDN-SLO-Aware-Cld

Figure 10.14.: Weights distribution among different clusters during evaluation test for nodeinfo function
when load balanced using different algorithms for two Invocation Traces.

MSI/min to 75 MSI/min. The execution time of invocations on each cluster varies. The PUB-CLD-AWS
cluster has the lowest MET of 0.0014s, followed by the PUB-CLD-GCF cluster with MET of 0.0035s,
then comes the two private cloud clusters. The MET of invocations on the PVT-CLD-LRZ-OW cluster is
0.004s, while on the PVT-CLD-LRZ-OF cluster is 0.142s. The two edge clusters have the highest MET.
The MET of invocations on the Edge-Multi-Boards cluster is 0.50s, while on the Edge-Jetson-Nano cluster
is 0.73s. The slowest cluster Edge-Jetson-Nano impacted the performance of collaborative execution among
the clusters, and that’s why the P90 response time for Trace R2 for FDN-RR is 0.50s (see Figure 10.12).

FDN-Latency-Aware : When using this algorithm, most of the invocations are handled by the PUB-CLD-
AWS cluster, which handled 257.47 MSI/min, since it has the lowest MET of 0.001s. It is followed by
the PUB-CLD-GCF cluster, which handled 78.42 MSI/min with MET of 0.0032s. Other clusters handled
around 35 MSI/min, as their execution times are higher than the two public cloud clusters. The weight
assignment across clusters during the evaluation can be observed in Figure 10.14a. We can observe that the
highest weights throughout the evaluation are assigned to the PUB-CLD-AWS cluster. The clusters PVT-
CLD-LRZ-OF, PVT-CLD-LRZ-OW and Edge-Multi-Boards clusters are assigned the weight of three for the
entire evaluation, while the cluster Edge-Jetson-Nano is assigned a weight of one. The PUB-CLD-GCF
cluster weight varied from one to four, but was kept at two for most of the evaluation period. Overall P90
response time using this algorithm is 0.48s. This algorithm gave the advantage that the two edge clusters
can also contribute in handling the invocations alongside the cloud clusters.

FDN-SLO-Aware: In this algorithm, we have set the SLO as 1s. Most of the invocations are handled by the
PUB-CLD-AWS cluster, which handled 314.66 MSI/min with MET of 0.0013s. It is followed by the PUB-
CLD-GCF cluster, which handled 122.45 MSI/min with MET of 0.003s. The PVT-CLD-LRZ-OW cluster

158

10.6. FDN’s Load Balancing Algorithms Performance

handled 55.46 MSI/min with MET of 0.0048s. The Edge-Jetson-Nano and PVT-CLD-LRZ-OF clusters
handled only around 7 MSI/min with MET of 0.089s on PVT-CLD-LRZ-OF and 0.32s on Edge-Jetson-
Nano. The Edge-Multi-Boards cluster handled 15.67 MSI/min, with MET of 0.410s. It can also be evident
from Figure 10.14c, where we show the weights’ distribution among different clusters (in stacked format).
For Trace R2, we can observe that initially, the highest weights are assigned to the PVT-CLD-LRZ-OW
cluster. Before this timestamp, we can observe that all the clusters are assigned almost equal weights. This
is due to the algorithm not having any execution time of the function on each cluster; therefore, it distributes
the maximum sum weight (here 10) across each cluster. Afterward, based on the execution time results,
the highest weights are assigned to the PVT-CLD-LRZ-OW cluster, followed by PUB-CLD-AWS and PUB-
CLD-GCF clusters. All the other clusters are assigned a zero weight since their initial cold-start execution
time was greater than one second. Afterward, due to high execution time, the algorithm also set a weight of
zero for the PVT-CLD-LRZ-OW cluster. Over the evaluation time, we can observe that the PUB-CLD-AWS
cluster is assigned with the highest weights, followed by the PUB-CLD-GCF cluster. Overall P90 response
time with this algorithm is 0.14s.

FDN-LeastCon: Most of the invocations are handled by the PUB-CLD-GCF cluster, which handled 144.14
MSI/min with MET of 0.0031s. It is closely followed by the PVT-CLD-LRZ-OW cluster, which handled
126.6 MSI/min with MET of 0.004s. Then comes the PUB-CLD-AWS cluster, which handled 81.23
MSI/min with MET of 0.0013s. The PVT-CLD-LRZ-OF cluster handled 74.33 MSI/min with MET of
0.13s. Both edge clusters handled around 50 MSI/min. FDN-LeastCon algorithm following this distribu-
tion resulted in an overall P90 response time of 0.48s.

FDN-RR-Cld: Here each cloud cluster has almost successfully handled the same number of invocations,
approximately 133.1 MSI/min except the PUB-CLD-GCF cluster, which handled 196.4 MSI/min. We do
not have concrete reasoning for this behavior, but we assume that the other clusters returned errors for the
rest of the invocations. The PUB-CLD-AWS cluster has the lowest MET of 0.0015s. The PUB-CLD-GCF
cluster has MET of 0.0031s, the PVT-CLD-LRZ-OW cluster has MET of 0.005s and PVT-CLD-LRZ-OF
cluster has MET of 0.175s. The slowest cluster, i.e., PVT-CLD-LRZ-OF, impacted the performance of
collaborative execution among the clusters. The P90 response time for Trace R2 for FDN-RR-Cld is 0.16s
(see Figure 10.12).

FDN-Latency-Aware-Cld: In this algorithm, we can again observe that most of the invocations are handled
by the PUB-CLD-AWS cluster, which handled 311.2 MSI/min with MET of 0.0014s. It is followed by
the PUB-CLD-GCF cluster, which handled 128.28 MSI/min with MET of 0.0034s. Both private cloud
clusters handled approximately 55 MSI/min since their execution time is high. The PVT-CLD-LRZ-OW
cluster has MET of 0.0059s, while PVT-CLD-LRZ-OF cluster has MET of 0.143s. This can also be evident
from Figure 10.14b, where we see the weights’ distribution among different clusters for Trace R2. we
observe that, initially, higher weights were assigned to the PVT-CLD-LRZ-OW and PUB-CLD-AWS clusters.
However, in the next minute, the weight for the PVT-CLD-LRZ-OW cluster is set to one. The highest weights
throughout the evaluation period are assigned to the PUB-CLD-AWS cluster, followed by the PUB-CLD-
GCF cluster. We can observe a lower overall P90 response time of 0.15s (see Figure 10.12).

FDN-SLO-Aware-Cld: Most of the invocations are handled by the PUB-CLD-AWS cluster, which handled
435.47 MSI/min with MET of 0.0015s. It is followed by the PUB-CLD-GCF cluster, which handled 82.76
MSI/min with MET of 0.0043s. Among private cloud clusters, the PVT-CLD-LRZ-OF cluster handled
approximately 5 MSI/min with MET of 0.13s, while the PVT-CLD-LRZ-OW cluster did not handle any
invocation. It can be attributed to the initial high cold start time in OpenWhisk. As a result, this algorithm
sets its weight to zero at the beginning of the evaluation. This can also be evident from Figure 10.14d, where
we see the weights’ distribution among different clusters for Trace R2. The highest weights throughout the
evaluation period are assigned to the PUB-CLD-AWS cluster, followed by the PUB-CLD-GCF cluster. The

159

10. Function Delivery Network Evaluation Results

other clusters are assigned zero weight. We can observe the overall P90 response time of 0.14s same as that
of FDN-SLO-Aware.

FDN-LeastCon-Cld: In this algorithm, most of the invocations are handled by the PUB-CLD-GCF cluster,
which handled 186.90 MSI/min with MET of 0.0036s. It is closely followed by the PVT-CLD-LRZ-OW
cluster, which handled 165.76 MSI/min with MET of 0.0094s. Then comes the PUB-CLD-AWS cluster,
which handled 107.76 MSI/min with lowest MET of 0.0014s. Lastly, the PVT-CLD-LRZ-OF cluster han-
dled 98.7 MSI/min with MET of 0.138s. The overall P90 response time using this algorithm is 0.15s (see
Figure 10.12).

10.6.1.2 Performance on High Workload (Trace R1)

From Figure 10.12 for Trace R1, we observe that FDN-RR has the highest P90 response time of 0.51s.
It is followed by FDN-Latency-Aware with P90 response time of 0.45s, then FDN-LeastCon with P90
response time of 0.44s. FDN-SLO-Aware has the lowest P90 response time of 0.14s. Among the cloud-
only algorithms, we observe that again FDN-RR-Cld has the highest P90 response time of 0.15s. It is
followed by FDN-Latency-Aware-Cld and FDN-LeastCon-Cld with P90 response time of 0.14s. Again,
FDN-SLO-Aware-Cld has the lowest P90 response time of 0.13s. Across all the algorithms, again, FDN-
SLO-Aware and its cloud version performed the best for Trace R1.

Figure 10.15 shows details on how the successful invocations made using Trace R1 to nodeinfo function are
distributed across each cluster, along with their execution times using different load balancing algorithms.
The performance of the load balancing algorithms is presented below:

FDN-RR: Each cluster has successfully handled the same number of invocations, approximately 307 MSI/min.
However, the response time on each cluster differs to a great extent. MET on the Edge-Jetson-Nano cluster
is 0.63s, 0.456s for the Edge-Multi-Boards, 0.004s for the PVT-CLD-LRZ-OW, 0.141s for the PVT-CLD-
LRZ-OF, 0.0012s for the PUB-CLD-AWS, and 0.003s for the PUB-CLD-GCF. The lowest execution time
is on the PUB-CLD-AWS cluster. The slowest cluster, i.e., Edge-Jetson-Nano has impacted the performance
of collaborative execution among the clusters and that’s why in Figure 10.12, we saw the P90 response time
for Trace R1 for FDN-RR as 0.51s.

FDN-Latency-Aware: Most of the invocations are handled by the PUB-CLD-AWS cluster, which handled
960.33 MSI/min, since it has the lowest MET of 0.0013s) as compared to the other clusters. It is followed by
the PUB-CLD-GCF cluster, which handled 282.2 MSI/min with MET of 0.0031s. Other clusters handled
lower number of invocations. Among edge clusters, Edge-Jetson-Nano handled 163.7 MSI/min with MET
of 0.47s, while the Edge-Multi-Boards cluster handled 166.23 MSI/min with MET of 0.420s. Among
private clusters, the PVT-CLD-LRZ-OW cluster handled 189.10 with MET of 0.0039s, while PVT-CLD-
LRZ-OF cluster handled 165.48 with MET of 0.14s. These invocations across clusters are decided upon
the weights assigned to the clusters. In Figure 10.14a, we show the weights’ distribution among different
clusters (in stacked format). For Trace R1, we can observe that the highest weights during the evaluation
phase of the test are assigned to the PUB-CLD-AWS cluster, followed by the PUB-CLD-GCF cluster. The
clusters PVT-CLD-LRZ-OF, PVT-CLD-LRZ-OW and Edge-Multi-Boards clusters are assigned the weight
of three for the entire evaluation, while the cluster Edge-Jetson-Nano is assigned a weight of one. The
PUB-CLD-GCF cluster weight varied from one to four, but was at two for most of the evaluation period.

FDN-SLO-Aware: In this algorithm, we have set the SLO as 1s. Most of the invocations are handled by
the PUB-CLD-AWS cluster, which handled 1360.20 MSI/min, since it has the lowest MET of 0.0014s) as
compared to the other clusters. It is followed by the PUB-CLD-GCF cluster, which handled 512.13 MSI/min
with MET of 0.003s. This algorithm follows a similar trend as FDN-Latency-Aware since the execution

160

10.6. FDN’s Load Balancing Algorithms Performance

(a) Invocations Trace R1

(b) Execution Time Trace R1

Figure 10.15.: Details on how the successful invocations made using Trace R1 to nodeinfo function are
distributed across each cluster, along with their execution times using different load balanc-
ing algorithms.

time does not go beyond the defined SLO. The PVT-CLD-LRZ-OW cluster handled 121.745 MSI/min with
MET of 0.004s. This algorithm did not send many requests to the slow clusters. As a result, all the private
cloud clusters and the edge clusters, handled 59 MSI/min. It can also be evident from Figure 10.14c, where
we show the weights’ distribution among different clusters (in stacked format). For Trace R1, we can
observe that the weights are distributed only across the PUB-CLD-AWS, PUB-CLD-GCF and PVT-CLD-
LRZ-OW clusters. Overall P90 response time with this algorithm is 0.14s (see Figure 10.12).

FDN-LeastCon: Most of the invocations are handled by the PUB-CLD-GCF cluster, which handled 675.33
MSI/min with MET of 0.003s. It is closely followed by the PVT-CLD-LRZ-OW cluster, which handled
584.88 MSI/min with MET of 0.0056s. Then comes the PUB-CLD-AWS cluster, which handled 87.04
MSI/min with MET of 0.0013s and the PVT-CLD-LRZ-OF cluster, which handled 231.8 MSI/min with
MET of 0.14s. Both edge clusters handled the lowest number of invocations. The Edge-Jetson-Nano
cluster handled 119.4 MSI/min with MET of 0.478s, while the Edge-Multi-Boards cluster handled 125.4
MSI/min with MET of 0.430s. FDN-LeastCon algorithm following this distribution resulted in an overall

161

10. Function Delivery Network Evaluation Results

P90 response time of 0.44s.

FDN-RR-Cld: Each cluster here has almost successfully handled the same number of invocations, approx-
imately, 525.0 MSI/min. However, the response time on each cluster differs to a great extent. MET on
the PVT-CLD-LRZ-OW cluster is 0.0040s, 0.139s for the PVT-CLD-LRZ-OF, 0.0014s for the PUB-CLD-
AWS, and 0.003s for the PUB-CLD-GCF. The lowest execution time is on thePUB-CLD-AWS cluster. From
Figure 10.12, we observe that the P90 response time for Trace R1 for FDN-RR-Cld is 0.15s.

FDN-Latency-Aware-Cld: We can observe that most of the invocations are handled by the PUB-CLD-
AWS cluster, which handled 1196.57 MSI/min, since it has the lowest MET of 0.0013s as compared to the
other clusters. It is followed by the PUB-CLD-GCF cluster, which handled 508.87 MSI/min with MET of
0.0031s. Private cloud clusters handled lower number of invocations, 218.23 MSI/min by the PVT-CLD-
LRZ-OW cluster with MET of 0.0058s, while 171.66 MSI/min by the PVT-CLD-LRZ-OF cluster with MET
of 0.14s. The number of invocations by a cluster is decided based on the execution time of the function on
that cluster, which can also be evident from Figure 10.14b, where we show the weights’ distribution among
different clusters. We can observe for Trace R1, the highest weights during the evaluation phase assigned to
the PUB-CLD-AWS cluster, followed by the PUB-CLD-GCF cluster, since they have the lowest MET. The
weights on other clusters remained zero for the entire evaluation. Since this algorithm does not distribute
invocations to edge clusters, We can observe a lower overall P90 response time of 0.14s (see Figure 10.12).

FDN-SLO-Aware-Cld: Most of the invocations are handled by the PUB-CLD-AWS cluster, which handled
1471.5 MSI/min with MET of 0.0014s. It is followed by the PUB-CLD-GCF cluster, which handled 517.88
MSI/min with MET of 0.0037s. Among private cloud clusters, the PVT-CLD-LRZ-OF cluster handled
46.15 MSI/min with MET of 0.0798s, while the PVT-CLD-LRZ-OW cluster did not handle any invocation.
It can be attributed again to the high cold start time in OpenWhisk. As a result, the weight of this cluster
is set to zero. This can also be evident from Figure 10.14d, where we see the weights’ distribution among
different clusters for Trace R1. The highest weights throughout the evaluation period are assigned to the
PUB-CLD-AWS cluster, followed by the PUB-CLD-GCF cluster. We can observe the overall P90 response
time of 0.14s same as that of FDN-SLO-Aware.

FDN-LeastCon-Cld: Most of the invocations are handled by the PUB-CLD-GCF cluster, which handled
788.09 MSI/min with MET of 0.0034s. It is closely followed by the PVT-CLD-LRZ-OW cluster, which
handled 691.27 MSI/min with MET of 0.004s. Then comes the PUB-CLD-AWS cluster, which handled
343.19 MSI/min with MET of 0.0014s and lastly the PVT-CLD-LRZ-OF cluster, which handled 295.89
MSI/min with MET of 0.142s. FDN-LeastCon-Cld algorithm following this distribution resulted in an
overall P90 response time of 0.14s.

10.6.2 Individual FaaS Function (gzip-compression)

The gzip-compressionfunction was deployed on all the clusters (§9.2) except Edge-Multi-Boards because
of it’s low compute capabilities. Figure 10.16 shows the summarized results of the evaluation, where we
show the average and 90th percentile of the response times of the invocation requests, load balanced using
eight different algorithms.

10.6.2.1 Performance on Low Workload (Trace R2)

From Figure 10.16 for Trace R2, we observe that across the two metrics, FDN-RR has the highest P90
response time of 1.66s. It is followed by FDN-Latency-Aware with P90 response time of 1.55s, then
FDN-LeastCon with P90 response time of1.42s. FDN-SLO-Aware has the lowest P90 response time of

162

10.6. FDN’s Load Balancing Algorithms Performance

Figure 10.16.: The average and 90th percentile of the response times of the invocation requests, load bal-
anced using eight different algorithms to the gzip-compression function. The results are
shown for two Invocation Traces.

1.02s. Among the cloud-only algorithms, we observe that across the two metrics, FDN-RR-Cld has the
P90 response time of 0.75s, FDN-Latency-Aware-Cld has P90 response time of 0.76s, FDN-LeastCon-
Cld has P90 response time of 0.78s, and FDN-SLO-Aware-Cld has P90 response time of 0.72s. Again,
FDN-SLO-Aware-Cld has the lowest P90 response time across all the algorithms for Trace R2.

Figure 10.17b shows details on how the successful invocations made using Trace R2 are distributed across
each cluster, along with their execution times using different load balancing algorithms.

Performance of the load balancing algorithms is presented below:

FDN-RR: Each cluster has almost handled 60 MSI/min. The PUB-CLD-GCF cluster has the lowest exe-
cution time with MET of 0.491s. It is followed by the PUB-CLD-AWS cluster with MET of 0.513s. Both
private clusters have MET of 0.63s. The slowest cluster, in this case is Edge-Jetson-Nano with MET of
1.59s has impacted the performance of collaborative execution among the clusters, and that’s why the P90
response time for Trace R2 is 1.66s (see Figure 10.16).

FDN-Latency-Aware: Most of the invocations are handled by the PUB-CLD-AWS cluster, which handled
105.5 MSI/min with MET of 0.521s. It is followed by the PUB-CLD-GCF cluster, which handled 76.85
MSI/min with MET of 0.48s. Among private cloud clusters, the PVT-CLD-LRZ-OW cluster handled 67.50
MSI/min with MET of 0.73s, while the PVT-CLD-LRZ-OF cluster handled 35.16 MSI/min with MET of
0.64s. Edge cluster Edge-Jetson-Nano handled 35.0 MSI/min with MET of 1.50s. The weight assignment
across clusters during the evaluation can be observed in Figure 10.18a. We can observe, for Trace R2, that
the highest weights throughout the evaluation are assigned to the PUB-CLD-AWS cluster, followed by the
PUB-CLD-GCF and PVT-CLD-LRZ-OW clusters. Overall P90 response time by using this algorithm is
1.55s (see Figure 10.16).

FDN-SLO-Aware: The SLO was set as 1s. Most of the invocations are handled by the PUB-CLD-GCF
cluster, which handled 187.2 MSI/min at MET of 0.48s. It is followed by the PUB-CLD-AWS cluster,
which handled 148.8 MSI/min at MET of 0.51s. Among private cloud clusters, the PVT-CLD-LRZ-OF
cluster handled 37.28 MSI/min at MET of 0.67s, while no invocation was sent to the PVT-CLD-LRZ-OW
cluster due to its high initial cold-start time. Edge cluster Edge-Jetson-Nano only handled 16.9 MSI/min
with MET of 1.5s. From Figure 10.18c, we can observe the weights’ distribution among different clusters

163

10. Function Delivery Network Evaluation Results

(a) Invocations Trace R2

(b) Execution Times Trace R2

Figure 10.17.: Details on how the successful invocations made using Trace R2 to gzip-compression func-
tion are distributed across each cluster, along with their execution times using different load
balancing algorithms.

(in stacked format). For Trace R2, the highest weights are assigned to the PUB-CLD-AWS and PUB-CLD-
GCF cluster. Overall P90 response time with this algorithm is 1.03s, which is around the set SLO of one
second.

FDN-LeastCon: Most of the invocations are handled by the PUB-CLD-GCF cluster, which handled 79.80
MSI/min with MET of 0.46s. It is closely followed by the PVT-CLD-LRZ-OW cluster, which handled
78.0 MSI/min with MET of 0.38s, and also the PUB-CLD-AWS cluster, which handled 77.76 MSI/min
with MET of 0.52s. Private cloud cluster PVT-CLD-LRZ-OF handled 75.22 MSI/min with MET of 0.66s.
Lastly, edge cluster Edge-Jetson-Nano handled 43.2 MSI/min with MET of 1.50s. FDN-LeastCon algo-
rithm resulted in an overall P90 response time of 1.42s (see Figure 10.16).

FDN-RR-Cld: Again, each cloud cluster has almost successfully handled the same number of invocations,
approximately 85 MSI/min. The PUB-CLD-GCF cluster has the lowest MET of 0.48s. The slowest cluster,
in this case, is the PVT-CLD-LRZ-OW cluster with MET of 0.77s. It has impacted the performance of
collaborative execution among the clusters. The P90 response time for Trace R2 for FDN-RR-Cld is 0.75s

164

10.6. FDN’s Load Balancing Algorithms Performance

(a) FDN-Latency-Aware (b) FDN-Latency-Aware-Cld

(c) FDN-SLO-Aware (d) FDN-SLO-Aware-Cld

Figure 10.18.: Weights distribution among different clusters during evaluation test for gzip-compression
function when load balanced using different algorithms for two Invocation Traces.

(see Figure 10.16).

FDN-Latency-Aware-Cld: We can observe that most of the invocations are handled by the PUB-CLD-
AWS cluster, which handled 113.0 MSI/min. It is closely followed by the PUB-CLD-GCF cluster, which
handled 112.90 MSI/min. The PVT-CLD-LRZ-OW cluster handled 74.23 MSI/min, while PVT-CLD-LRZ-
OF handled 44.10 MSI/min. Furthermore, Figure 10.18b shows the weights’ distribution among different
clusters for Trace R2. The weights throughout the evaluation period are equally assigned to the PUB-CLD-
AWS and PUB-CLD-GCF clusters, followed by the PVT-CLD-LRZ-OW cluster. We can observe a lower
overall P90 response time of 0.76s (see Figure 10.16).

FDN-SLO-Aware-Cld: Most of the invocations are handled by the PUB-CLD-AWS cluster, which handled
163.04 MSI/min. It is followed by PUB-CLD-GCF cluster, which handled 114.38 MSI/min. Among
private cloud clusters, PVT-CLD-LRZ-OF handled approximately 52.75 MSI/min, while PVT-CLD-LRZ-
OW did not handle any invocation. It can again be attributed to the high cold start time in OpenWhisk. This
can also be evident from Figure 10.18d, where we see the weights’ distribution among different clusters for
Trace R2. The highest weights throughout the evaluation period are assigned to the PUB-CLD-AWS and
PUB-CLD-GCF clusters. For this algorithm, we can observe the overall P90 response time of 0.72.

FDN-LeastCon-Cld: All clusters handled approximately 95 MSI/min. The overall P90 response time using
this algorithm is 0.78s (see Figure 10.16)

165

10. Function Delivery Network Evaluation Results

(a) Invocations Trace R1

(b) Execution Time Trace R1

Figure 10.19.: Details on how the successful invocations made using Trace R1 to gzip-compression func-
tion are distributed across each cluster, along with their execution times using different load
balancing algorithms.

10.6.2.2 Performance on High Workload (Trace R1)

From Figure 10.16 for Trace R1, we observe that across the two metrics, FDN-RR has the highest P90
response time of 3.01s. It is followed by FDN-Latency-Aware with P90 response time of 0.79s, then
FDN-LeastCon with P90 response time of0.91s. FDN-SLO-Aware has the lowest P90 response time of
0.72s. Among the cloud-only algorithms, we observe that across the two metrics, again FDN-RR-Cld has
the highest P90 response time of 5.51s. It is followed by FDN-LeastCon-Cld with P90 response time of
1.04s, and then FDN-Latency-Aware-Cld with P90 response time of 0.68s. Again, FDN-SLO-Aware-Cld
has the lowest P90 response time of 0.67s. Across all the algorithms, again, FDN-SLO-Aware and its cloud
version performed the best for Trace R1.

Figure 10.19a shows details on how the successful invocations made using Trace R1 to gzip-compression
function are distributed across each cluster, along with their execution times using different load balancing
algorithms. The performance of the load balancing algorithms is presented below:

166

10.6. FDN’s Load Balancing Algorithms Performance

FDN-RR: Each cluster has almost handled 220 MSI/min. However, the response time on each cluster
differs to a great extent. MET of invocations for the Edge-Jetson-Nano cluster is 0.74s, 3.16s for the
PVT-CLD-LRZ-OW, 0.42s for the PVT-CLD-LRZ-OF, 0.51s for the PUB-CLD-AWS, and 0.47s for the
PUB-CLD-GCF). The slowest cluster, in this case, is the PVT-CLD-LRZ-OW cluster, and it has impacted
the performance of collaborative execution among the clusters, and that is why in Figure 10.16, we see the
P90 response time for Trace R1 as 3.01s.

FDN-Latency-Aware: We can observe that most of the invocations are handled by the PUB-CLD-AWS
cluster, which handled 487.09 MSI/min with MET of 0.51s. It is followed by the PUB-CLD-GCF cluster,
which handled 375.57 MSI/min with MET of 0.491s. Among private cloud clusters, PVT-CLD-LRZ-OF
handled 192.98 MSI/min with MET of 0.505s, while PVT-CLD-LRZ-OW handled 162.15 MSI/min with
MET of 0.73s. Edge cluster Edge-Jetson-Nano was also not far behind, it handled 159.97 MSI/min with
MET of 0.85s. Furthermore, Figure 10.18a shows the weights’ distribution among different clusters (in
stacked format) during the evaluation test. For Trace R1, we can observe that the highest weights during the
evaluation phase are assigned to the PUB-CLD-AWS cluster, followed by the PUB-CLD-GCF cluster. The
weights of the clusters varied over the evaluation phase, depending upon the execution time of invocations
on the clusters. The overall P90 response time resulted by using this algorithm is 0.79s for Trace R1 (see
Figure 10.16).

FDN-SLO-Aware: In this algorithm, we have set the SLO as 1s. Most of the invocations are handled by
the PUB-CLD-AWS cluster, which handled 503.4 MSI/min with MET of 0.51s. It is followed by the PUB-
CLD-GCF cluster, which handled 423.66 MSI/min with MET of 0.47s. The PVT-CLD-LRZ-OF cluster
handled 192.72 MSI/min with MET of 0.45s. Edge cluster Edge-Jetson-Nano also handled around 190.7
MSI/min with MET of 0.73s. From figure 10.18c, we can observe the weights’ distribution among different
clusters (in stacked format). The highest weights are assigned to the PUB-CLD-AWS and PUB-CLD-GCF
clusters over the entire test duration. Overall P90 response time with this algorithm is 0.72s.

FDN-LeastCon: Most of the invocations are handled by the PUB-CLD-GCF cluster, which handled 345.42
MSI/min with MET of 0.48s. It is closely followed by the PVT-CLD-LRZ-OF cluster which handled 331.32
MSI/min with MET of 0.454s. Then comes the PUB-CLD-AWS cluster which handled 278.19 MSI/min
with MET of 0.51s and the PVT-CLD-LRZ-OW cluster handled 216.62 MSI/min with MET of 0.79s.
Edge cluster Edge-Jetson-Nano handled more than the PVT-CLD-LRZ-OW cluster, around 227.14 MSI/min
with MET of 0.807s. FDN-LeastCon algorithm resulted in an overall P90 response time of 0.91s (see
Figure 10.16).

FDN-RR-Cld: Each cloud cluster has successfully handled the same number of invocations, approximately
217 MSI/min. The PVT-CLD-LRZ-OF cluster has the lowest MET of 0.42s. The slowest cluster, in this
case, is the PVT-CLD-LRZ-OW (MET of 5.16s), which impacted the performance of collaborative execution
among the clusters. The P90 response time for Trace R2 for FDN-RR-Cld is 5.51s (see Figure 10.16).

FDN-Latency-Aware-Cld: We can observe that most of the invocations are handled by the PUB-CLD-AWS
cluster, which handled 602.8 MSI/min with MET of 0.51s. It is followed by the PUB-CLD-GCF cluster,
which handled 387.3 MSI/min with MET of 0.511s). The private cloud cluster PVT-CLD-LRZ-OF handled
around 239.71, with the MET of 0.47s, and the PVT-CLD-LRZ-OW cluster handled around 173.27, with
the MET of 0.86s. Furthermore, Figure 10.18b shows the weights’ distribution among different clusters (in
stacked format) during evaluation test. We can observe for Trace R1, the highest weights throughout the
evaluation phase are assigned to the PUB-CLD-AWS cluster followed by the PUB-CLD-GCF cluster. For
this algorithm, we can observe a lower overall P90 response time of 0.68s (see Figure 10.16).

FDN-SLO-Aware-Cld: Most of the invocations are handled by the PUB-CLD-AWS cluster, which handled
548.33 MSI/min. It is followed by the PUB-CLD-GCF cluster, which handled 381.90 MSI/min. Among

167

10. Function Delivery Network Evaluation Results

Figure 10.20.: The average and 90th percentile response times of the invocations load balanced using eight
different algorithms to the lr-prediction function. The results are shown for both Invoca-
tion Traces.

private cloud clusters, the PVT-CLD-LRZ-OF cluster handled approximately 306.28 MSI/min, while the
PVT-CLD-LRZ-OW cluster did not handle any invocation. It can be attributed again to the high cold start
time in OpenWhisk. This can also be evident from Figure 10.18d, where we see the weights’ distribution
among different clusters for Trace R1. The highest weights throughout the evaluation period are assigned
to the PUB-CLD-AWS cluster, followed by the PUB-CLD-GCF cluster. We can observe the overall P90
response time of 0.67s.

FDN-LeastCon-Cld: Most of the invocations are handled by the PUB-CLD-GCF cluster, which handled
427.52 MSI/min with MET of 0.50s. It is closely followed by the PVT-CLD-LRZ-OF cluster, which han-
dled 377.14 MSI/min with MET of 0.53s). Then comes the PUB-CLD-AWS cluster, which handled 356.71
MSI/min with MET of 0.51s and lastly the PVT-CLD-LRZ-OW cluster, which handled 212.36 MSI/min
with MET of 1.1s. FDN-LeastCon-Cld algorithm resulted in an overall P90 response time of 1.04s (see
Figure 10.16)

10.6.3 Individual FaaS Function (lr-prediction)

This function is deployed only on the cloud clusters (§9.2) because of its high resource requirements. There-
fore, we here only show the results of four algorithms (FDN-RR, FDN-Latency-Aware, FDN-SLO-Aware
and FDN-LeastCon). Figure 10.20 shows the summarized results of the evaluation, where we show the av-
erage and 90th percentile of the response times of the invocation requests, load balanced using four different
algorithms.

10.6.3.1 Performance on Low Workload (Trace R2)

From Figure 10.20 for Trace R2, we observe that FDN-RR has the highest P90 response time of 4.11s. It is
followed by FDN-Latency-Aware with P90 response time of 1.92s, then FDN-LeastCon with P90 response
time of 1.88s. FDN-SLO-Aware has the lowest P90 response time of 0.39s, adhering to the defined SLO
of one second.

168

10.6. FDN’s Load Balancing Algorithms Performance

Figure 10.21.: Details on how the successful invocations made using Trace R2 to lr-prediction function
are distributed across each cluster, along with their execution times using different load bal-
ancing algorithms.

(a) FDN-Latency-Aware algorithm. (b) FDN-SLO-Aware

Figure 10.22.: Weights distribution among different clusters during evaluation test for lr-prediction func-
tion when load balanced using different algorithms for two Invocation Traces.

Figure 10.21 shows details on how the successful invocations made using Trace R2 to lr-prediction
function are distributed across each cluster, along with their execution times using different load balancing
algorithms.

Performance of the load balancing algorithms is presented below:

FDN-RR: Each cluster has successfully handled almost 50 MSI/min, however with different execution
times. The overall P90 response time for Trace R2 for FDN-RR is 1.92s (see Figure 10.20). The PUB-
CLD-GCF cluster has the lowest MET of 0.12s, followed by the PUB-CLD-AWS cluster with MET of
0.15s, then comes the two private cloud clusters. The MET of invocations on the PVT-CLD-LRZ-OW cluster
is 12.22s, while on the PVT-CLD-LRZ-OF cluster is 2.46s. The overall P90 response time following this
algorithm is 4.11s.

FDN-Latency-Aware: In case of FDN-Latency-Aware algorithm, we can observe that most of the invoca-
tions are handled by the PUB-CLD-AWS cluster, which handled 157.14 MSI/min with MET of 0.15s. It is
closely followed by the PUB-CLD-GCF cluster, which handled 141.7 MSI/min with MET of 0.12s. Both
private cloud clusters, handled approximately 35 MSI/min. The PVT-CLD-LRZ-OF cluster handled with

169

10. Function Delivery Network Evaluation Results

MET of 2.3s, while the PVT-CLD-LRZ-OW cluster handled with MET of 1.35s. The weight assignment
across clusters during the evaluation can be observed in Figure 10.22a. We can observe for Trace R2 that
the highest weights throughout the evaluation are assigned to the PUB-CLD-AWS cluster followed by the
PUB-CLD-GCF cluster, which also verifies with the number of invocations handled by each cluster. The
other two cloud clusters are assigned one weight throughout the evaluation period. Overall P90 response
time by using this algorithm is 1.92s (see Figure 10.20).

FDN-SLO-Aware: Here, most of the invocations are handled by the PUB-CLD-GCF cluster, which han-
dled 304.3 MSI/min with MET of 0.13s. It is followed by the PUB-CLD-AWS cluster, which handled
261.0 MSI/min with MET of 0.23s. Among private cloud clusters, the PVT-CLD-LRZ-OF cluster handled
approximately 21.55 MSI/min with MET of 1.56s, while the PVT-CLD-LRZ-OW cluster did not handle
any invocation. It can be attributed to the high cold start time in OpenWhisk. The invocations distributions
are based on the weights assigned to the cluster, and Figure 10.22b shows the weights’ distribution among
different clusters (in stacked format). We can observe that for Trace R2, the highest weights throughout
the evaluation are assigned to the PUB-CLD-GCF and PUB-CLD-AWS clusters. During the initial period,
we observe that the PVT-CLD-LRZ-OW cluster is assigned one weight. The invocations resulting from that
assigned weight resulted in errors. FDN-SLO-Aware algorithm for Trace R2 resulted in an overall P90
response time of 0.39s (see Figure 10.20), adhering to the defined SLO of one second.

FDN-LeastCon: Most of the invocations are handled by the PUB-CLD-GCF cluster, which handled 144.761
MSI/min with MET of 0.123s. It is closely followed by the PUB-CLD-AWS cluster, which handled 102.28
MSI/min with MET of 0.151s. Both private cloud clusters, handled approximately 35 MSI/min. The PVT-
CLD-LRZ-OF cluster handled with MET of 2.2s, while the PVT-CLD-LRZ-OW cluster handled with MET
of 8.78s. FDN-LeastCon algorithm for Trace R2 resulted in an overall P90 response time of 1.88s (see
Figure 10.20).

10.6.3.2 Performance on High Workload (Trace R1)

From Figure 10.20 for Trace R1, we observe that the FDN-RR has the highest P90 response time of 50.0s,
reaching the maximum set value. It is followed by FDN-LeastCon with P90 response time of 4.52s, then
comes the FDN-Latency-Aware with P90 response time of 2.09s. FDN-SLO-Aware has the lowest P90
response time of 0.28s, adhering to the defined SLO of one second.

Figure 10.23 shows details on how the successful invocations made using Trace R1 to the lr-prediction
function are distributed across each cluster, along with their execution times using different load balancing
algorithms.

FDN-RR: Each cluster has almost successfully handled the same number of invocations, except PVT-CLD-
LRZ-OW. The PVT-CLD-LRZ-OW cluster handled 119.66 MSI/min with MET of 20.9s. It handled doubled
the amount of invocations as compared to other clusters. We do not have concrete reasoning for this behavior,
but we assume that the other clusters returned errors for the rest of the invocations. The PVT-CLD-LRZ-OF
cluster handled 55.5 MSI/min with MET of 2.59s, the PUB-CLD-AWS cluster handled 60.52 MSI/min
with MET of 0.306s, and the PUB-CLD-GCF cluster handled 60.09 MSI/min with MET of 0.128s. The
slowest cluster in this case is the PVT-CLD-LRZ-OW and that’s why in Figure 10.20, we see a high P90
response time for Trace R1 for FDN-RR as 50s.

FDN-Latency-Aware: We can observe that most of the invocations are handled by the PUB-CLD-AWS
cluster, which handled 234.6 MSI/min with MET of 0.163s. It is followed by the PUB-CLD-GCF cluster,
which handled 195.9 MSI/min with MET of 0.12s. Then comes the two private clusters, the PVT-CLD-
LRZ-OW cluster handled 83.16 MSI/min with MET of 20.38, while the PVT-CLD-LRZ-OF cluster handled

170

10.6. FDN’s Load Balancing Algorithms Performance

Figure 10.23.: Details on how the successful invocations made using Trace R1 to lr-prediction function
are distributed across each cluster, along with their execution times using different load bal-
ancing algorithms.

48.75 MSI/min with MET of 2.19s. The invocations distributions are based on the execution duration of the
function, and it can further be evident from Figure 10.22a, where we show the weights’ distribution among
different clusters (in stacked format). We can observe that for Trace R1, the highest weights throughout the
evaluation are assigned to the PUB-CLD-AWS and PUB-CLD-GCF clusters. The other two cloud clusters
are assigned a weight of one throughout the evaluation period. FDN-Latency-Aware algorithm resulted in
an overall P90 response time of 2.09s (see Figure 10.20).

FDN-SLO-Aware: Most of the invocations are handled by the PUB-CLD-AWS cluster, which handled
916.90 MSI/min with MET of 0.14s. It is closely followed by the PUB-CLD-GCF cluster, which handled
885.76 MSI/min with MET of 0.12s. Among private cloud clusters, the PVT-CLD-LRZ-OF cluster handled
approximately 3 MSI/min, while PVT-CLD-LRZ-OW did not handle any invocation. It can be attributed
again to the high cold start time in OpenWhisk. The invocations distributions are based on the weights as-
signed to the cluster, and Figure 10.22b shows the weights’ distribution among different clusters (in stacked
format). We can observe that for Trace R1, the highest weights throughout the evaluation are assigned to
the PUB-CLD-AWS and PUB-CLD-GCF clusters. FDN-SLO-Aware algorithm for Trace R1 resulted in an
overall P90 response time of 0.28s (see Figure 10.20), adhering to the defined SLO of one second.

FDN-LeastCon: In this algorithm, most of the invocations are handled by the PUB-CLD-GCF cluster,
which handled 459.0 MSI/min with MET of 0.12s. It is followed by the PUB-CLD-AWS cluster, which
handled 299.14 MSI/min with MET of 0.14s. Then comes the PVT-CLD-LRZ-OF cluster which handled
only 54.17 MSI/min with MET of 5.41, followed by the PVT-CLD-LRZ-OW cluster which handled 43.5
MSI/min with MET of 20.46. FDN-LeastCon algorithm resulted in an overall P90 response time of 4.52s
(see Figure 10.20).

10.6.4 Serverless Application (faas-composer)

All the eight functions within the serverless application (faas-composer) are deployed solely on the cloud
clusters (§9.2). Therefore, we show the results of four algorithms (FDN-RR, FDN-Latency-Aware, FDN-
SLO-Aware and FDN-LeastCon). When evaluating an algorithm for faas-composer, all the functions it
invokes are load balanced using the same algorithm. Since faas-composer needs to send requests to FDN

171

10. Function Delivery Network Evaluation Results

Figure 10.24.: The average and 90th percentile of the response times of the invocation requests, load bal-
anced using four different algorithms to the faas-composer function. The request traces are
lowered-down versions of the original ones, with the maximum number of requests per sec-
ond as 10.

endpoint for the functions invocations and PVT-CLD-LRZ-OW cluster is in the same network as the FDN,
therefore, it was deployed only in the PVT-CLD-LRZ-OW cluster. In our evaluation of faas-composer, we
initially used both original Invocation Traces, but many invocations timed out. We suspect that each private
cloud cluster is limited in the number of resources, and when all the functions scale, they contend with
each other for resources. As a result, the execution time increases, and invocations time out. It could also be
possible that the faas-composer is unsuitable for the OpenWhisk platform. We did not investigate it further,
since the PVT-CLD-LRZ-OW cluster was the only cluster that could send invocations to the FDN endpoint.
Furthermore, a function requiring high compute power could become the bottleneck in the faas-composer
and influence the time-outs. Nevertheless, for evaluating faas-composer, we lowered-down the maximum
number of invocations per second to 10 in both R1 and R2 traces.

Figure 10.24 shows the average and 90th percentile response times of the invocations, load balanced using
four different algorithms. For R1, we observe that FDN-RR and FDN-LeastCon has the highest P90 response
time of 50.0s, reaching the maximum set value. It is followed by FDN-Latency-Aware with P90 response
time of 46.51s. FDN-SLO-Aware has the lowest P90 response time of 38.42s. All the algorithms have
a high P90 response time. For the Trace R2, we observe that FDN-Latency-Aware has the highest P90
response time of 4.85s. It is followed by FDN-LeastCon with P90 response time of 4.72s, then comes the
FDN-RR with P90 response time of 4.68s. FDN-SLO-Aware again, has the lowest P90 response time of
4s.

10.6.4.1 Performance on Low Workload (lowered-down version of Trace R1)

Figure 10.25 shows details on how the successful invocations made using the lowered-down version of Trace
R1 to the faas-composer are distributed across each function (eight columns showing eight functions) and
clusters using different load balancing algorithms (rows showing different algorithms, from top to bottom:
FDN-RR, FDN-Latency-Aware, FDN-SLO-Aware and FDN-LeastCon). Furthermore, Figure 10.26 shows
the corresponding execution times. We now analyze the performance of each algorithm:

FDN-RR: In Figure 10.25, from the first row we observe that, for each function, each cluster has almost
successfully handled 6 MSI/min. The performance of the clusters for each function is described below:

172

10.6. FDN’s Load Balancing Algorithms Performance

Figure 10.25.: Details on how the successful invocations load tested using lowered-down version of Trace
R1 to faas-composer following different algorithms are distributed across the functions and
clusters. The rows show the different algorithms (From top to bottom: FDN-RR, FDN-
Latency-Aware, FDN-SLO-Aware and FDN-LeastCon) and columns show different func-
tions.

• dd: Each cluster has handled 6 MSI/min. The PUB-CLD-AWS cluster handled with the best MET of
0.01s, followed by PVT-CLD-LRZ-OW cluster, which handled with the MET of 0.024s, then comes
the PUB-CLD-GCF cluster, which handled with the MET of 0.11s,and lastly PVT-CLD-LRZ-OF
cluster handled with the worst MET of 0.42s.

• gzip-compression: Again, each cluster has handled 6 MSI/min. The PVT-CLD-LRZ-OW cluster
handled with the best MET of 0.28s, followed by PUB-CLD-GCF cluster, which handled with the
MET of 0.49s, then comes the PUB-CLD-AWS cluster, which handled with the MET of 0.51s,and
lastly PVT-CLD-LRZ-OF cluster handled with the worst MET of 0.66s.

• json-loads: Each cluster has handled 6 MSI/min. The PUB-CLD-GCF cluster handled with the best
MET of 0.18s, followed by PVT-CLD-LRZ-OW cluster, which handled with the MET of 0.26s, then
comes the PVT-CLD-LRZ-OF cluster, which handled with the MET of 0.60s,and lastly PUB-CLD-
AWS cluster handled with the worst MET of 1.0s.

• linpack: The PUB-CLD-AWS cluster handled with the best MET of 0.003s, followed by PUB-CLD-
GCF cluster, which handled with the MET of 0.0049s, then comes the PVT-CLD-LRZ-OW cluster,
which handled with the MET of 0.0078s,and lastly PVT-CLD-LRZ-OF cluster handled with the worst
MET of 0.32s.

• lr-prediction: The PUB-CLD-GCF cluster handled with the best MET of 0.12s, followed by PUB-
CLD-AWS cluster, which handled with the MET of 0.16s, then comes the PVT-CLD-LRZ-OW cluster,
which handled with the MET of 0.24s,and lastly PVT-CLD-LRZ-OF cluster handled with the worst
MET of 1.75s.

• nodeinfo: The PUB-CLD-AWS cluster handled with the best MET of 0.0015s, followed by PUB-
CLD-GCF cluster, which handled with the MET of 0.0034s, then comes the PVT-CLD-LRZ-OW
cluster, which handled with the MET of 0.005s,and lastly PVT-CLD-LRZ-OF cluster handled with
the MET of 0.15s.

173

10. Function Delivery Network Evaluation Results

Figure 10.26.: Details on how the successful invocations’ execution time load tested using lowered-down
version of Trace R1 to faas-composer application following different algorithms are dis-
tributed across the functions and clusters. The rows show the different algorithms (From
top to bottom: FDN-RR, FDN-Latency-Aware, FDN-SLO-Aware and FDN-LeastCon) and
columns show different functions.

• primes: The PUB-CLD-AWS cluster handled with the best MET of 0.001s, followed by PUB-CLD-
GCF cluster, which handled with the MET of 0.0015s, then comes the PVT-CLD-LRZ-OW cluster,
which handled with the MET of 0.0061s,and lastly PVT-CLD-LRZ-OF cluster handled with the MET
of 0.107s.

• sentiment-analysis: The PUB-CLD-AWS cluster handled with the best MET of 0.0048s, followed
by PUB-CLD-GCF cluster, which handled with the MET of 0.0065s, then comes the PVT-CLD-LRZ-
OW cluster, which handled with the MET of 0.0177s,and lastly PVT-CLD-LRZ-OF cluster handled
with the MET of 0.776s.

In summary, for FDN-RR, we observe that for each function, each cluster has successfully handled 6
MSI/min. Among all the clusters, the PUB-CLD-AWS cluster has performed the best for most of the func-
tions. The PVT-CLD-LRZ-OF cluster has the worst performance among all the clusters. Even though for
each function the MET was below one second, from Figure 10.24, we see a high overall P90 response
time for Trace R1 as 50s. When combining all the functions’ responses, it could also be possible that the
faas-composer takes a longer time. It is also possible that faas-composer is unsuitable for the OpenWhisk
platform. Additionally, we measure the performance of each function in terms of MET; it could be possible
that the response time to faas-composer has a higher latency. To investigate this, we need to add profiling
in faas-composer, which is out of the scope of current work.
FDN-Latency-Aware: In Figure 10.25, the second row represents the invocations handled by each cluster
for every function when load balanced using this algorithm. We observe that, across all the functions,
the PUB-CLD-AWS cluster handled most of the invocations. The invocations distributions are based on the
weights assigned to the cluster. The first row in Figure 10.27 shows the weights’ distribution among different
clusters (in stacked format) for all the functions. Next, we present a detailed analysis of the performance of
each function.

• dd: The PUB-CLD-AWS cluster handled the most number of invocations (18 MSI/min) with MET of
0.014s. It is followed by the PVT-CLD-LRZ-OW cluster, which handled 3.71 MSI/min with MET

174

10.6. FDN’s Load Balancing Algorithms Performance

of 0.028s. Then comes the PVT-CLD-LRZ-OF and PUB-CLD-GCF clusters, both handled approx-
imately 2.8 MSI/min with MET of 0.428s and 0.096s respectively. These invocations distributions
can also be evident from the first row in Figure 10.27, where the highest weights throughout the
evaluation are assigned to the PUB-CLD-AWS cluster, while all the other clusters have a weight of
one.

• gzip-compression: For this function, again the PUB-CLD-AWS cluster handled the most number of
invocations, which handled 12.3 MSI/min with MET of 0.51s. It is followed by the PVT-CLD-LRZ-
OW cluster, which handled 8.44 MSI/min with MET of 0.284s. Then comes the PVT-CLD-LRZ-
OF and PUB-CLD-GCF clusters, both handled approximately 3.5 MSI/min with MET of 0.68s and
0.45s respectively. From the first row in Figure 10.27, we observe that the highest weights throughout
the evaluation are assigned to the PUB-CLD-AWS cluster. It is followed by the PVT-CLD-LRZ-OW
cluster, while the other two clusters have a weight of one throughout the evaluation.

• json-loads: The PUB-CLD-GCF cluster handled the most number of invocations, which handled
14.04 MSI/min with MET of 0.20s. It is followed by the PVT-CLD-LRZ-OW cluster, which handled
6.57 MSI/min with MET of 0.28s. Then comes the PVT-CLD-LRZ-OF and PUB-CLD-AWS clusters,
both handled approximately 3.2 MSI/min with MET of 0.62s and 1.03s respectively. From the first
row in Figure 10.27, we can observe that the highest weights throughout the evaluation are assigned
to the PUB-CLD-GCF cluster. It is followed by the PVT-CLD-LRZ-OW cluster, while the other two
clusters have a weight of one throughout the evaluation.

• linpack: For this function, again the PUB-CLD-AWS cluster handled the most number of invocations,
which handled 19.2 MSI/min with MET of 0.002s. It is followed by the PVT-CLD-LRZ-OW cluster,
which handled 3.142 MSI/min with MET of 0.009s. Then comes the PVT-CLD-LRZ-OF and PUB-
CLD-GCF clusters, both handled approximately 2.6 MSI/min with MET of 0.310s and 0.0064s
respectively. These invocations distributions can also be evident from the first row in Figure 10.27,
where the highest weights throughout the evaluation are assigned to the PUB-CLD-AWS cluster, while
all the other clusters have a weight of one.

• lr-prediction: The PUB-CLD-AWS cluster handled the most number of invocations, which handled
15.5 MSI/min with MET of 0.2s. It is followed by the PVT-CLD-LRZ-OW cluster, which handled
6.46 MSI/min with MET of 0.26s. Then comes the PVT-CLD-LRZ-OF and PUB-CLD-GCF clusters,
both handled approximately 2.8 MSI/min with MET of 1.802s and 0.14s respectively. Even though
the MET on the PUB-CLD-GCF cluster is lowest, it still did not handle the highest number of invoca-
tions. These invocations distributions can also be evident from the first row in Figure 10.27, where the
highest weights throughout the evaluation are assigned to the PUB-CLD-AWS cluster. It is followed
by the PVT-CLD-LRZ-OW cluster, while the other two clusters have a weight of one throughout the
evaluation.

• nodeinfo: The PUB-CLD-AWS cluster handled the most number of invocations, which handled 15.8
MSI/min with MET of 0.001s. It is followed by the PVT-CLD-LRZ-OW and PUB-CLD-GCF clusters,
both handled approximately 4.5 MSI/min with MET of 0.0062s and 0.0036s respectively. Then
comes the PVT-CLD-LRZ-OF cluster, which handled 2.64 MSI/min with MET of 0.140s. From
the first row in Figure 10.27, we can observe that the highest weights throughout the evaluation are
assigned to the PUB-CLD-AWS cluster. It is followed by the PVT-CLD-LRZ-OW and PUB-CLD-
GCF clusters, while the PVT-CLD-LRZ-OF clusters have a weight of one throughout the evaluation
throughout the evaluation.

• primes: The PUB-CLD-AWS cluster handled the most number of invocations, which handled 18.9
MSI/min with MET of 0.001s. It is followed by the PVT-CLD-LRZ-OW cluster, which handled 3.5

175

10. Function Delivery Network Evaluation Results

Figure 10.27.: Weights distribution among different clusters during evaluation test for faas-composer func-
tion when load balanced using different algorithms for two Invocation Traces.

MSI/min with MET of 0.0058s. Then comes the PVT-CLD-LRZ-OF and PUB-CLD-GCF clusters,
both handled approximately 2.5 MSI/min with MET of 0.108s and 0.0033s respectively. From the
first row in Figure 10.27, we observe that the highest weights throughout the evaluation are assigned
to the PUB-CLD-AWS cluster, and is followed by all the other clusters having a weight of one through-
out the evaluation. Even though the PUB-CLD-GCF has a lower MET than the PVT-CLD-LRZ-OF
cluster, but it still handled lower number of invocations. This is due to faas-composer being running
on the same cluster as PVT-CLD-LRZ-OF, as a result it has a lower latency and is able to process more
requests.

• sentiment-analysis: The PUB-CLD-GCF cluster handled the most number of invocations, which
handled 10.47 MSI/min with MET of 0.0068s. It is followed by the PUB-CLD-AWS cluster, which
handled 9.52 MSI/min with MET of 0.0295s. Then comes the PVT-CLD-LRZ-OW cluster, which
handled 4.51 MSI/min with MET of 0.022s. Lastly, the PVT-CLD-LRZ-OF cluster handled 2.658
MSI/min with MET of 0.77s. These invocations distributions can also be evident from the first row in
Figure 10.27, where the highest weights throughout the evaluation are assigned to the PUB-CLD-GCF
and PUB-CLD-AWS clusters. It is followed by the PVT-CLD-LRZ-OW cluster, while the PVT-CLD-
LRZ-OF cluster has a weight of one throughout the evaluation.

In summary, for FDN-Latency-Aware, we observe that across all functions, the PUB-CLD-AWS cluster
has handled the most number of invocations except for sentiment-analysis and json-loads functions,
where the PUB-CLD-GCF cluster handled the most number of invocations. This can also be easily seen by
looking at the first row in Figure 10.27, where we show the weights assigned to the cluster, and the PUB-
CLD-AWS cluster dominates across most of the functions. The PVT-CLD-LRZ-OF cluster has the worst
performance among all the clusters. Again, even though for each function the MET was below one second,
from Figure 10.24, we see a high overall P90 response time for Trace R1 as 46.51s. We suspect that here
measure the performance of each function in terms of MET, while in Figure 10.24, we look at the P90
response time of the faas-composer function. It could be possible that the response times from individual
functions to faas-composer have higher latencies. Nevertheless, this investigation is out of the scope of
current work.

FDN-SLO-Aware: Figure 10.25, the third row represents the invocations handled by each cluster for every
function when load balanced using this algorithm. We observe that, across all the functions, the PUB-
CLD-AWS cluster handled most of the invocations. The invocations distributions are based on the weights
assigned to the cluster. The second row in Figure 10.27 shows the weights’ distribution among different
clusters (in stacked format) for all the functions. Next, we present a detailed analysis of the performance of
each function.

• dd: The PUB-CLD-AWS cluster handled the most number of invocations, which handled 23.28
MSI/min with MET of 0.013s. It is followed by the PUB-CLD-GCF cluster, which handled 4.6

176

10.6. FDN’s Load Balancing Algorithms Performance

MSI/min with MET of 0.13s. Then comes the PVT-CLD-LRZ-OW cluster, which handled 3.52
MSI/min with MET of 0.028s. Lastly, the PVT-CLD-LRZ-OF cluster handled 1.636 MSI/min with
MET of 0.40s. From the second row in Figure 10.27, we can observe that the highest weights through-
out the evaluation are assigned to the PUB-CLD-AWS cluster. In the initial period of evaluation, high
weights were assigned to PUB-CLD-GCF as well, but over the course, it got reduced to zero with
occasional spikes. PVT-CLD-LRZ-OW cluster has one weight for the most period of evaluation.

• gzip-compression: For this function, the PUB-CLD-AWS cluster handled the most number of in-
vocations, which handled 10.14 MSI/min with MET of 0.52s. It is closely followed by the PUB-
CLD-GCF cluster, which handled 9.08 MSI/min with MET of 0.47s. Then comes the PVT-CLD-
LRZ-OW cluster, which handled 8.28 MSI/min with MET of 0.27s. Lastly, the PVT-CLD-LRZ-OF
cluster handled 3.75 MSI/min with MET of 0.67s. From the second row in Figure 10.27, we observe
that throughout the evaluation, the weights are equally shared among three clusters (PUB-CLD-AWS,
PUB-CLD-GCF and PVT-CLD-LRZ-OW), while one weight is assigned to the PUB-CLD-AWS cluster
for the entire evaluation.

• json-loads: The PUB-CLD-GCF cluster handled the most number of invocations, which handled
15.6 MSI/min with MET of 0.20s. It is followed by the PVT-CLD-LRZ-OW cluster, which handled
7.14 MSI/min with MET of 0.26s. Then comes the PVT-CLD-LRZ-OF and PUB-CLD-AWS clus-
ters, both handled 4 MSI/min with MET of 0.60s and 1.03s respectively. From the second row in
Figure 10.27, we can observe that the highest weights throughout the evaluation are assigned to the
PUB-CLD-GCF cluster. It is followed by the PVT-CLD-LRZ-OW cluster, while the other two clusters
have a weight of one throughout the evaluation.

• linpack: For this function, the PUB-CLD-AWS cluster handled the most number of invocations,
which handled 18.0 MSI/min with MET of 0.0025s. It is followed by the PUB-CLD-GCF cluster,
which handled 10.05 MSI/min with MET of 0.004s. Then comes the PVT-CLD-LRZ-OW cluster,
which handled 4.25 MSI/min with MET of 0.011s. Lastly, the PVT-CLD-LRZ-OF cluster handled
only 1 MSI/min with MET of 0.17s. These invocations distributions can also be evident from the
second row in Figure 10.27, where most of the weights are shared between PUB-CLD-AWS and
PUB-CLD-GCF clusters, with PUB-CLD-AWS having the highest weights. The weights for the PVT-
CLD-LRZ-OW cluster are increased around the 18-minute mark in the figure.

• lr-prediction: The PUB-CLD-GCF cluster handled the most number of invocations, which handled
15.9 MSI/min with MET of 0.12s. It is closely followed by the PUB-CLD-AWS cluster, which
handled 11.00 MSI/min with MET of 0.21s. Then comes the PVT-CLD-LRZ-OW cluster, which
handled 3.86 MSI/min with MET of 0.27s. These invocations distributions can also be evident from
the second row in Figure 10.27, where the highest weights throughout the evaluation are assigned to
the PUB-CLD-GCF cluster. It is followed by the PUB-CLD-AWS and PVT-CLD-LRZ-OW clusters.

• nodeinfo: The PUB-CLD-AWS cluster handled the most number of invocations, which handled 17.7
MSI/min with MET of 0.001s. It is followed by the PUB-CLD-GCF cluster, which handled 15.61
MSI/min with MET of 0.003s. Then comes the PVT-CLD-LRZ-OW cluster, which handled 2.40
MSI/min with MET of 0.0052s. Lastly, the PVT-CLD-LRZ-OF cluster handled only 1 MSI/min
with MET of 0.0855s. From the second row in Figure 10.27, we can observe that the highest weights
throughout the evaluation are assigned to the PUB-CLD-AWS cluster. It is followed by the PUB-CLD-
GCF cluster and PVT-CLD-LRZ-OW cluster, while the PVT-CLD-LRZ-OF clusters has a weight of
one occasionally during the evaluation.

• primes: The PUB-CLD-AWS cluster handled the most number of invocations, which handled 25.04
MSI/min with MET of 0.001s. It is followed by the PUB-CLD-GCF cluster, which handled 4.3

177

10. Function Delivery Network Evaluation Results

MSI/min with MET of 0.0043s. Then comes the PVT-CLD-LRZ-OW and PVT-CLD-LRZ-OF clus-
ters, both handled approximately 2 MSI/min with MET of 0.006s and 0.079s respectively. From
the second row in Figure 10.27, we observe that the highest weights throughout the evaluation are
assigned to the PUB-CLD-AWS cluster, and is followed by PUB-CLD-GCF cluster, while the other
clusters were assigned a weight of one occasionally during the evaluation.

• sentiment-analysis: The PUB-CLD-GCF cluster handled the most number of invocations, which
handled 15.10 MSI/min with MET of 0.008s. It is followed by the PUB-CLD-AWS cluster, which
handled 11.95 MSI/min with MET of 0.025s. Then comes the PVT-CLD-LRZ-OW cluster, which
handled 5.84 MSI/min with MET of 0.020s. Lastly, the PVT-CLD-LRZ-OF cluster handled 1.6
MSI/min with MET of 0.42s. These invocations distributions can also be evident from the second
row in Figure 10.27, where the highest weights throughout the evaluation are assigned to the PUB-
CLD-GCF and PUB-CLD-AWS clusters. It is followed by the PVT-CLD-LRZ-OW cluster, while the
PVT-CLD-LRZ-OF cluster has almost negligible weight assignment throughout the evaluation.

The invocations distributions are based on the weights assigned to the cluster. The second row in Fig-
ure 10.27 shows the weights’ distribution among different clusters (in stacked format) for different functions.
From Figure 10.24, we see an overall P90 response time for Trace R1 for FDN-SLO-Aware as 38.42s.

In summary, for FDN-SLO-Aware, we observe that across all functions, the PUB-CLD-AWS and PUB-
CLD-GCF clusters handled the most number of invocations. This can also be seen in the second row
of Figure 10.27, where we show the weights assigned to the cluster, and the PUB-CLD-AWS and PUB-
CLD-GCF clusters dominate across most of the functions. The PVT-CLD-LRZ-OF cluster has the worst
performance among all the clusters. Again, even though for each function the MET was below one second,
from Figure 10.24, we see a high overall P90 response time for Trace R1 as 38.42s. We suspect that
the response times from individual functions to faas-composer have higher latencies. Additionally, even
though the SLO was assigned one second, this algorithm could not provide the response time adhering to the
requirements. However, the function execution time was much higher than one second, a readjustment to the
desired SLO is required, and this investigation is out of the scope of current work. When comparing FDN-
SLO-Aware with FDN-Latency-Aware, we can see from Figure 10.24, that FDN-SLO-Aware performed
better but overall P90 response time is still very high.

FDN-LeastCon: Figure 10.25, the fourth row represents the invocations handled by each cluster for every
function when load balanced using this algorithm. We observe that this algorithm behaves similarly to the
FDN-RR algorithm. For each function, each cluster has almost successfully handled 6.1 MSI/min. Since
there were not many invocations, we suspect that the open connections are the same among all clusters,
which is why this algorithm performs similarly to the FDN-RR algorithm. Thus, from Figure 10.24, we see
an overall P90 response time for Trace R1 for FDN-LeastCon is also 50s, as FDN-RR.

10.7 FDN’s Load Balancing Performance Summary

FDN’s Courier component already provides benefits for the cluster administrators for collaboration between
multiple heterogeneous target clusters. It helps to overcome the shortcomings of individual target clusters,
such as edge clusters, by shifting the invocations to the cloud clusters (as seen for nodeinfo function in
§10.6.1). This collaboration mechanism can also be used to reduce the cold-start problem. It can be done
by keeping a low resource cluster always warm, directing initial function invocations to it, and later using
weighted collaboration between other target clusters. Moreover, it is also possible to create a dynamic rule
inside the load balancer that checks for the warm target platform and directs the initial function invocations
to it, leading to better performance. In our evaluation (§10.6), we used multiple load balancing algorithms

178

10.7. FDN’s Load Balancing Performance Summary

Table 10.11.: Summary of the load balancing algorithms results on the FaaS functions.
Function - FDN-

RR
FDN-

Latency-
Aware

FDN-
SLO-
Aware

FDN-
Least-
Con

FDN-
RR-
Cld

FDN-
Latency-
Aware-

Cld

FDN-
SLO-

Aware-
Cld

FDN-
Least-
Con-
Cld

nodeinfo
R1 0.51 0.45 0.14 0.44 0.15 0.14 0.13 0.14
R2 0.50 0.48 0.14 0.48 0.16 0.15 0.14 0.15

primes
R1 0.36 0.34 0.14 0.33 0.13 0.13 0.13 0.13
R2 0.38 0.35 0.14 0.36 0.14 0.14 0.14 0.13

linpack
R1 10.06 1.09 0.14 0.33 0.39 0.31 0.13 0.15
R2 1.5 1.06 0.15 1.04 0.35 0.25 0.14 0.32

sentiment
R1 15.98 0.84 0.14 0.14 4.31 0.24 0.14 4.48
R2 2.95 0.85 0.14 0.81 0.84 0.26 0.14 0.87

dd
R1 7.02 1.65 0.15 0.44 0.45 0.41 0.16 0.40
R2 1.63 1.46 0.18 1.41 0.44 0.38 0.25 0.47

gzip
R1 3.01 0.79 0.72 0.91 5.51 0.68 0.67 1.04
R2 1.66 1.55 1.03 1.42 0.75 0.76 0.72 0.78

json-loads
R1 16.95 6.32 1.55 5.75 5.81 6.8 1.12 17.2
R2 1.92 1.93 1.65 1.88 2.27 2.12 0.91 1.89

lr-prediction
R1 50 2.09 0.28 4.52 - - - -
R2 4.11 1.92 0.39 1.88 - - - -

image-process
R1 50 0.53 0.65 0.65 - - - -
R2 0.69 0.65 0.55 0.66 - - - -

for collaboration between multiple heterogeneous target clusters. In the following subsections, we discuss
the performance of the load balancing algorithms in §10.7.1 and clusters performance in §10.7.2.

10.7.1 Algorithms Performance

In Table 10.11, we present the summarized results of each algorithm, showcasing the P90 response time
for each function for both request traces. One can observe that the dynamic algorithms (FDN-LeastCon,
FDN-SLO-Aware FDN-Latency-Aware, and their cloud-centric versions) made better load-balancing deci-
sions than the traditional load-balancing FDN-RR algorithm. It means that using the dynamic algorithms,
administrators of FDN can easily add new clusters, and the Courier’s load-balancing algorithms would
automatically adapt. In traditional systems that use FDN-RR algorithms, changing requirements might re-
quire a manual re-evaluation of the weights. However, in our case, Courier adapts the weights for clusters
according to their performance. If the functions and requirements for developers change, the system auto-
matically adapts to them. In general, from Table 10.11, we can infer that, FDN-SLO-Aware and its cloud
variant performed the best among all the algorithms and for all functions. Furthermore, since cloud-centric
algorithms have the advantage of load balancing across high compute capable cloud clusters, we see they
have the lowest P90 response time as their normal counterparts. We now present a detailed analysis of each
algorithm.

FDN-RR: In this case, the function invocations are distributed across all target clusters in a round-robin
manner. One can observe from Table 10.11 that, in all cases, it has performed the worst due to its inability

179

10. Function Delivery Network Evaluation Results

to adapt to the runtime situation. Furthermore, with the increase in user workload invocations, its perfor-
mance got worse, and the P90 response time has increased (except for primes-python function). The biggest
drawback of using the round-robin approach is that it assumes target platforms are similar enough to handle
equivalent loads. However, because of heterogeneous target platforms in the FDN, the algorithm has no way
to distribute more or fewer requests to these target platforms based on their resources. As a result, target
platforms with less capacity may overload and fail more quickly, while capacity on other platforms remains
idle. Therefore, in this case, we require weighted collaboration, where function invocations are distributed
across the target cluster based on the weights assigned to each target cluster.

FDN-Latency-Aware: In all the evaluation scenarios, we observed that the weight generation based on the
average execution times of the function running in a cluster could provide good insight into the computa-
tional capabilities of the cluster. Furthermore, the automatic dynamic changes in weights for each cluster
(For example, in Figure 10.18b for gzip-comporession function) during the testing scenarios show the al-
gorithm’s adaptability if a cluster is overloaded. From Table 10.11, we can see that the P90 response time
for this algorithm is much lower than that of FDN-RR. Furthermore, with the increase in user requests (R1
request trace), this algorithm can adapt and deliver approximately the same response time as that with fewer
user requests (R2 request trace). However, the frequent collection of metrics from each cluster can induce
an additional overhead on the cluster, which can be avoided by setting the optimal weight update d time.
Additionally, if the differences in runtime are not big, all the clusters will be assigned with the same weights.
Currently, the algorithm always assigns at least weight 1 to a cluster. This is done to allow the requests to
reach all clusters and collaborate. However, if a cluster is overloaded or not working, the requests would still
go to it. For example, in Figure 10.19a for gzip-compression function, where some requests were still going
to the Edge-Jetson-Nano cluster, and it could not serve them. To avoid this, we need to add a component
called circuit breaker [108] as part of the Courier. Once the system detects that a cluster is unavailable or
fails in executing a request, the circuit breaker gets notified. The algorithm tries to find another suitable
cluster instead. After a certain amount of time, the circuit breaker checks if the cluster becomes available
again. In that case, the cluster can be used again for function delivery. This algorithm can be easily extended
to work on other metrics or a combination of metrics as well.

FDN-SLO-Aware: This algorithm adapts the weights of clusters according to the functions’ execution time
in the target clusters and the defined SLOs. In our evaluation results, we observed that the P90 response
time for all the functions when load balanced with this algorithm adhered to the defined SLO of one second.
This algorithm performed the best among all the algorithms, providing the lowest response times. When
designing this algorithm, we enabled the zero weight policy for the clusters. It means if the execution time
on a cluster goes beyond the defined SLO, then the weight of that cluster will be set to zero. We can observe
this in the weights graphs of the functions, that certain clusters’ weights have been zero. Furthermore, we
also observed that the weight assigned to PVT-CLD-LRZ-OW cluster for all the functions is zero. It can
be attributed to the high cold-start time of a function in the OpenWhisk serverless compute platform. As a
result, this algorithm would assign zero weight to it. Requests would only come back to this cluster if no
cluster can fulfill the requests under the defined SLOs. Therefore, its weight remains zero for the evaluation
time.

FDN-LeastCon: In all the evaluation scenarios, we observed that this algorithm followed a different ap-
proach than the FDN-Latency-Aware by sending more invocations to different clusters. For example, in
the case of FDN-Latency-Aware algorithm for nodeinfo (see Figure 10.15a), we observe that most of the
invocations are sent to the PUB-CLD-AWS cluster which handled 257.47 MSI/min, while FDN-LeastCon
algorithm sent most of the invocations to PUB-CLD-GCF cluster, which handled 144.14 MSI/min with
MET of 0.003s. However, in the end, both algorithms still resulted in almost similar P90 response time
(Table 10.11). This shows that maintaining the open connections count for each cluster and distributing
invocations based on it can also result in a good performance. Additionally, in most cases, when using this

180

10.8. Summary

algorithm, most of the invocations go to the PUB-CLD-GCF cluster. We suspect, it’s due to fewer number
of open connections when using GCF serverless compute platform.

Cloud-Centric Algorithms: All the cloud-centric load balancing algorithms (FDN-RR-Cld, FDN-Latency-
Aware-Cld, FDN-SLO-Aware-Cld and FDN-LeastCon-Cld) have the lowest response times among all algo-
rithms since they have the advantage of load balancing across high compute capable cloud clusters only. In
most cases, FDN-SLO-Aware-Cld has the lowest P90 response times compared to other algorithms. Fur-
thermore, with the increase in user requests (R1 request trace), these algorithms can also adapt and deliver
approximately the same response times as those with lower user requests (R2 request trace).

10.7.2 Clusters Performance

We have used six clusters based on four different FaaS platforms (OpenWhisk, OpenFaaS and GCFs, and
AWS Lambda). These six clusters were distributed across the edge-cloud continuum, with two public cloud
clusters, two private cloud clusters, and two edge clusters. One can easily integrate more clusters within
FDN, designed to scale easily with clusters. Edge clusters having low compute resources could not compete
with the cloud clusters. However, in some cases like for gzip-compression function in Figure 10.19a for
FDN-LeastCon algorithm, we can observe that the edge cluster Edge-Jetson-Nano (around 227.14 MSI/min)
handled more invocations than PVT-CLD-LRZ-OW (216.62 MSI/min). Collaboration between edge and
cloud clusters provides a perfect combination to offload the invocations from edge clusters to the cloud
clusters. Among cloud clusters, public cloud clusters have the advantage of theoretically unlimited resources
as compared to private cloud clusters. In most cases, public cloud clusters have the lowest execution time
compared to private cloud clusters. Between the two public serverless compute platforms, in some cases
AWS lambda has the lowest execution time (for function dd, linpack, nodeinfo, primes) and in some cases
Google Cloud Function (for functions lr-prediction, image-processing). For functions, sentiment-
analysis, json-loads, and gzip-compression OpenWhisk based cluster has the lowest time.

In most cases, among the two private cloud clusters, PVT-CLD-LRZ-OW performed better than the PVT-
CLD-LRZ-OF cluster. It shows that the OpenWhisk platform can scale much better than the OpenFaaS
platform, since both clusters have the same resources. Furthermore, OpenWhisk use optimized caching and
distinguishes between cold, prewarm, and warm containers to address the cold-start problem [202]. Prewarm
containers are containers that already have the runtime environment for an action setup. For example, when
OpenWhisk’s algorithm anticipates Node.js-based actions, it will start preparing generic Node.js containers,
which reduces most of the cold-start time. When an action is executed frequently, OpenWhisk will detect
that and keep its containers warm. Warm containers are containers where the action is already initialized and
ready to be run at any time. On the other hand, OpenFaaS does not have the concept of warm and pre-warm
containers; as a result, this can affect the performance of the target cluster when using it. OpenFaaS, like
OpenWhisk, supports the option to scale to zero and save money on idle resources. OpenFaaS, on the other
hand, provides support for low-end edge devices with ARM processors and therefore is a clear candidate for
usage on edge clusters.

10.8 Summary

In this chapter, we presented the evaluation results of five fronts of FDN. First, we discussed the baseline
performance of each microbenchmark on different clusters (§9.1.1. We showcased that the performance of
the functions when deployed on heterogeneous clusters spread across the edge-cloud continuum can vary
drastically, resulting in performance differences. We also presented that FaaS functions use a different

181

10. Function Delivery Network Evaluation Results

amount of resources (CPU, Memory, Disk, and Network Usage) to execute the task. Depending on internal
implementations, this resource usage can vary with different serverless compute platforms. Second, we
showed that across all the functions and two workloads, the overhead of FDN is below 5% (§10.10). We
also evaluated the correctness of function delivery policies generation based. Results indicate that the FDN
ensures that buckets are only replicated to allowed locations and quickly react to changes to keep the FDN’s
function delivery policies up-to-date. Fourth, we discussed FDN’s bucket replication performance where
we showed that FDN’s bucket replication performance depends entirely on MinIO’s mc command-line tool
and its mc mirror directive and the advantage it presents to FDN when doing replications across clusters.
Fifth, load balancing results indicate that FDN-SLO-Aware and its cloud variant performed the best among
all the algorithms and for all functions (§10.6). Its result always adhered to the defined SLO. Cloud-centric
algorithms have the advantage of load balancing across high compute capable cloud clusters. We observed
that they have the lowest P90 response time against their normal counterparts. FDN-Latency-Aware and
FDN-LeastCon performed similarly and better than the FDN-RR algorithm. We also presented the results
of load balancing on the serverless application (faas-composer) consisting of multiple functions (§10.6.4).

Edge clusters usually have low compute resources and, therefore, could not compete with the cloud clusters.
However, in some cases like for gzip-compression function in Figure 10.19a for FDN-LeastCon algorithm,
we can observe that the edge cluster Edge-Jetson-Nano (around 227.14 MSI/min) handled more invocations
than PVT-CLD-LRZ-OW (216.62 MSI/min). Collaboration between edge and cloud clusters provides a per-
fect combination to offload the invocations from edge clusters to the cloud clusters. Among cloud clusters,
public cloud clusters have the lowest execution time compared to private cloud clusters.

182

11
Conclusion and Future Outlook

“Set your goals high, and don’t stop till you
get there."

— Bo Jackson

In this chapter, we draw the conclusions from our work in §11.1 and present a future outlook in §11.2.

11.1 Conclusion

Due to the current limitations of serverless computing towards the support of seamless function deployments
across the edge-cloud continuum, we introduced an extension to the concept of FaaS as a programming in-
terface for serverless computing across the edge-cloud continuum. This extension is a network of distributed
heterogeneous serverless compute clusters spread across the edge-cloud continuum called Function Deliv-
ery Network (FDN) (Chapter 4). FDN provides seamless integration across the edge-cloud continuum by
allowing the user to deploy and invoke the functions across heterogeneous serverless compute clusters in
the continuum. In order to integrate several serverless compute clusters, we presented our custom Virtual
Kubelet provider called FDN-provider (§4.1.2). FDN-provider acts as federation for multiple serverless
compute clusters. Every Virtual Kubelet node created using FDN-provider acts as a proxy to a server-
less compute cluster. FDN-provider contains the APIs for managing the functions in different serverless
compute platforms. It enables mapping the pod’s create or delete requests on virtual worker nodes to the
function’s create or delete requests on underneath serverless compute clusters. This allows to use a uni-
fied kubectl-based interface for seamless deployment of the FaaS functions across the continuum. FDN
currently supports four serverless compute platforms: AWS Lambda, GCF, OpenWhisk, and OpenFaaS.
In order to unify monitoring of multiple serverless compute platforms, we developed a tool called FDN-
Monitor (§4.2.2). It is deployed as a sidecar to the virtual nodes representing the serverless compute clusters
for collecting the data. Currently, serverless compute platforms disregard data locality when scheduling
functions, thus causing increased response times and inefficient network traffic, incurring more costs, and
potentially crippling SLOs. Therefore, we created Data Orchestrator within FDN, which is responsible for

183

11. Conclusion and Future Outlook

managing the data across the storage backends in clusters within FDN. It is used by the Courier component
of FDN for creating data-aware delivery policies. Behave represents the behavioral modeling of FaaS func-
tions within FDN based on the monitoring data collected by FDN-Monitor for characterization of the FaaS
functions.

We presented two behavioral models based on the monitoring data collected by FDN-Monitor for character-
ization of the FaaS functions: 1) Functions Performance Model (§5.1), and 2) Function Interaction Model
(§5.2). In §5.1, we demonstrated the impact of various configuration parameters on the Function Capacity
(FC) for the two serverless compute platforms (AWS Lambda and GCF). The introduced methodology and
the tool FnCapacitor aim to solve the problem of estimating the FC at a certain deployment configuration.
In §5.2 we have shown that neural TPPs effectively model the time and class of function invocations in a
serverless application. For this purpose, we introduced TppFaaS, a system for creating synthetic serverless
applications and using their collected data to train and test neural TPPs. With these datasets, we trained and
tested the two TPPs: LogNormMix and TruncNorm. Both models managed to capture the latent tempo-
ral dynamics of the different applications. The TPPs performed well for all measures for datasets without
cold starts. Here, LogNormMix achieved an accuracy of over 0.94 for most applications. Also, the MAE
of TruncNorm’s time prediction was below 22ms for most applications. However, the predictions for the
datasets with cold starts were more challenging. Here, TruncNorm achieved a MAE between 200ms and
750ms for most applications. The high errors resulted from the high variance of the waitTime, which mea-
sures the time an invocation request waits for execution in the internal OpenWhisk system. In addition,
LogNormMix’s function class prediction performance declined for the cold start datasets. Nevertheless, an
accuracy above 0.85 was achieved for most applications, which is still satisfactory.

Courier is used to distribute the incoming function invocations across the serverless compute clusters spread
across the edge-cloud continuum (Chapter 6). It consists of two components: Courier Load Balancer (§6.2)
and Courier Control Plane (§6.3). Courier Load Balancer is based on HAProxy and is composed of two
layers. The first is responsible for delivering the function invocations using two function delivery policies:
1) Function-Aware, and 2) Data-Aware (§6.3.1) to the right clusters. Each function delivery policy selects
a subset of the available clusters and employs a load balancer for load balancing the incoming requests to
the selected backend clusters. We created two load balancing algorithms: 1) Latency-Aware and 2) SLO-
Aware (§6.3.2), for load balancing across the subset of clusters. The Courier Control Plane is the brain
of the Courier and is responsible for configuring the Courier Load Balancer based on the FDN Inventory
Database, and FDN Monitoring Data as the input.

Evaluation results of FDN indicate that it is capable of high-performance function delivering and load bal-
ancing (Chapter 10). Across all the functions and two workloads, the overhead of FDN is below 5%.
Therefore we conclude that the system overhead is negligible (§10.10). We also evaluated the correctness
of function delivery policies generation based on the data collected by Data Orchestrator. Results show
that, the FDN ensures that buckets are only replicated to allowed locations, reacting to changes to keep
the replicated data up-to-date, the replica buckets consistent with user set policies and up-to-date of the
FDN’s function delivery policies. Furthermore, load balancing results indicate that, FDN-SLO-Aware and
its cloud variant performed the best among all the algorithms and for all functions (§10.6). It’s result always
adhered to the defined SLO. Since cloud-centric algorithms have the advantage of load balancing across
high compute capable cloud clusters, we see they have the lowest P90 response time as against their normal
counterparts. FDN-Latency-Aware and FDN-LeastCon performed similarly and better than the FDN-RR al-
gorithm. Edge clusters having low compute resources could not compete with the cloud clusters. However,
in some cases like for gzip-compression function in Figure 10.19a for FDN-LeastCon algorithm, we can
observe that the edge cluster Edge-Jetson-Nano (around 227.14 MSI/min) handled more invocations than
PVT-CLD-LRZ-OW (216.62 MSI/min). Collaboration between edge and cloud clusters provides a perfect
combination to offload the invocations from edge clusters to the cloud clusters. Among cloud clusters, public

184

11.2. Future Outlook

cloud clusters have the advantage of theoretically unlimited resources as compared to private cloud clusters.
In most cases, public cloud clusters have the lowest execution time compared to private cloud clusters.

FDN consists of one external component: SLAM tool, to overcome the problem of finding the optimal
memory configuration for FaaS functions within a serverless application (Chapter7). SLAM uses distributed
tracing to detect the relationship among the FaaS functions within a serverless application. By modeling
each of them, it estimates the execution time for the application at different memory configurations. Using
these estimations, SLAM determines the optimal memory configuration for the given serverless application
based on the specified SLO requirements and user-specified objectives (minimum cost or minimum execu-
tion time). Currently, SLAM only supports serverless compute clusters based on AWS Lambda. Evaluation
results show that the suggested memory configurations guarantee that more than 95% of requests are com-
pleted within the predefined SLOs.

In order to provide reliability across the clusters within FDN, we presented two anomaly detection algo-
rithms for FDN: 1) Online memory leak detection in VMs using Precog in §8.1, and 2) Anomalous VMMs
detection using IAD: Indirect Anomaly Detection in §8.2. The Precog algorithm is most relevant for the
serverless compute clusters, where the cloud administrator does not have access to the source code or know
about the internals of the deployed applications. The performance evaluation showed that the Precog could
achieve a F1-Score of 0.85 with less than half a second prediction time on the real workloads. The IAD
algorithm is useful for detecting anomalous VMMs in serverless compute clusters. We compared it against
the popular change detection algorithms, which could also be applied to the problem. IAD algorithm out-
performs all the others on an average across four datasets by 11% with an average accuracy score of 83.7%.
Both algorithms are easily usable in the cloud environment where the fault-detection time requirement is
low and can quickly help in detection of the problem.

To conclude, we hope the methodology adopted within FDN based on serverless computing will drive future
research to integrate the edge-cloud continuum.

11.2 Future Outlook
Even though we have created the FDN framework diligently, this does not mean it impedes us from per-
forming further improvements and developing other projects around it. During the development of FDN,
many difficulties and challenges have been faced, some of which have not been solved or have simply been
circumvented. For this reason, it is possible to enhance the proposed architecture. In this section, we aim to
explore some future work contributions that could not be completed as part of this dissertation.

11.2.1 Extension of Virtual Kubelet

FDN uses Virtual Kubelet, an open-source Kubernetes kubelet implementation that masquerades as a kubelet
to create virtual Kubernetes worker nodes representing the serverless compute clusters. Currently, it supports
four serverless compute platforms: AWS Lambda, Google Cloud Function, OpenWhisk, and OpenFaaS. It
could be extended to include other public serverless compute platforms, such as Azure Functions, and open-
source platforms, such as Knative. Furthermore, currently, FDN has to query FDN-Monitor (§4.6) to collect
various metrics of functions for decision-making. This could also be integrated within the Virtual Kubelet
pod metrics. One must implement APIs within Virtual Kubelet pods representing the functions to get metrics
from FDN-Monitor for the representing function and use them as pod metrics. Currently, for all serverless
compute platforms, the developed Virtual Kubelet implementation only supports Python-based functions.
This could be extended to other language runtimes as well.

185

11. Conclusion and Future Outlook

11.2.2 Energy Efficiency and Power-aware Scheduling on Edge Clusters

Another important factor that FDN can use is providing energy efficiency for certain workloads due to
the availability of battery-powered target clusters like edge clusters. We have developed a Prometheus-
based exporter [238] for measuring the power consumption of the edge devices and mapping that power
consumption to the function instances running on the edge devices. This is also integrated into the FDN-
Monitor (§4.6. Hence devising the algorithm to use this metric for delivering the function invocations on
the low energy consumption target clusters could be added to the FDN. Thus, it would help in saving much
energy.

11.2.3 Improvement of the Function Delivering Decision-making Policies

Currently, FDN include Function-Aware (§6.3.1.1) and Data-Aware (§6.3.1.2) based delivering of func-
tions. However, it can be improved to include cold starts. This can be done by keeping a low resource
cluster always warm, directing initial function invocations to it, and later using weighted collaboration be-
tween other target clusters. Moreover, it is also possible to create a dynamic rule inside the load balancer
that checks for the warm target platform and directs the initial function invocations to it, leading to better
performance. Function delivery can further be extended to include various aspects such as serverless ap-
plication workflows [95], where functions are delivered to a cluster where all the other functions related
to the overall application workflow are also present, and FaaS function compositions prediction (using the
developed TppFaaS §5.2.2) to pre-warm the function before it gets invoked.

11.2.4 Improvement of the Load-Balancing Algorithms

Another enhancement that we can bring to the architecture is the improvement of the employed load-
balancing algorithms. One of the focuses of this dissertation was the development of a scheduling algorithm
that would optimize the execution of functions across the edge-cloud continuum. Even though we tried to
devise a great solution, it would have been impossible to create the perfect algorithm. Our algorithms are
just a starting point that must be improved steadily with further experiments. We suggest the following two
algorithms for future enhancement:

• Capacity-Aware Load Balancing Algorithm: In this algorithm, we can use the Function Perfor-
mance model constructed for each function in Section 5.1 along with the current free capacity of
function instances on each cluster. Most serverless platforms have a fixed maximum number of func-
tion instances, also called concurrency [10, 79, 44]. For example, AWS has 1000 per user, whereas
GCF has 3000 per function. Additionally, self-hosted serverless platforms limit the number of con-
tainers one can create due to limited resources. Hence, we can use this information to get each
cluster’s current free capacity of function instances. In this algorithm, first, we find the FCs of the
given function on the subset of clusters using the built Function Performance model (§5.1) based on
the given function memory, required SLOs, and current free capacities of the clusters. Afterward, we
can determine the maximum FC from all the FCs and, based on this, calculate the weight of each
cluster by dividing the maximum FC by the FC on that particular cluster. These values can then be
assigned as weights to the clusters.

• SLO-Aware Cloud-Burst Load Balancing Algorithm: During the evaluation (§10.6), we noticed
that even though private cloud and edge clusters had execution times under the SLOs, most invocations
still go to public cloud clusters because they have the lowest execution time. Therefore, it can be

186

11.2. Future Outlook

avoided by modifying the FDN-SLO-Aware algorithm that it first sends requests only to private cloud
clusters and edge clusters until the execution times are below the defined SLOs. Once the execution
times go beyond the SLOs or some percentage of the defined SLOs, some requests burst into the
public cloud clusters. It can help to avoid unnecessary costs.

11.2.5 Shim for Function Code for all the Serverless Compute Platforms

Currently, in the FDN, the user has to provide the code for a function for all the serverless compute platforms
on which it needs to be deployed. Although most of the logic within the different source codes remains the
same, they differ by the input parameters, function handler name, and the returned values. This developed
mechanism is still acceptable for environments with no frequent changes within the logic of the function
code; otherwise, one has to update the function codes for all the platforms. A possible future work could be
to create a shim (such as [40]) that could provide an abstraction on top of the common code required by all
the serverless platforms. It would only take common code input from the user and automatically generate
the function codes for all the serverless compute platforms.

11.2.6 Creating Serverless Storage Backends for the FDN

FDN is currently only capable of interacting with MinIO storage backends. It is because much of the back-
end server logic is specifically dedicated to integrating with MinIO deployments, and the FDN relies on
MinIO’s command-line client to execute replication tasks. MinIO claims to be compatible with AWS S3
storage technologies and therefore suggests the possibility of an S3-compatible FDN. However, this would
still pose challenges for use cases where users might be constrained to non-S3 object-storage technologies.
To tackle such use cases and support different storage technologies, FDN’s architecture could be extended
to include serverless storage backends. Different serverless storage backends would be created for different
storage technologies, hiding the specificities of the different solutions behind a unified storage API. This
strategy would remove code from the FDN’s Data Orchestrator (§4.2.5) specific to particular storage tech-
nologies, making the program more general and diminishing its responsibilities and thus also its points of
failure. Such an architecture would, however, make replication tasks more complex, as it would no longer
be possible to rely on tools like MinIO’s command-line utility for efficient and easy bucket mirroring.

11.2.7 Distributed Anomaly Detection in the FDN

Anomaly detection is vital in IT operations and management, especially in a distributed environment, such as
FDN involving heterogeneous clusters. We have developed some anomaly detection algorithms (Chapter 8),
but these are more suited for the cloud clusters within the FDN. For detecting anomaly detection on the
edge clusters, one needs to either send the collected data from the edge clusters to the cloud or run the
anomaly detection on the edge clusters. In the former, sending data to the centralized cloud servers would
induce latency and violate data privacy legislations like GDPR. In the latter case, one needs to use the high
compute capable edge devices. One solution could be to use distributed anomaly detection algorithms such
as those introduced in [319, 57, 74] in the FDN, allowing the utilization of the edge-cloud continuum to the
full extent.

187

Appendices

188

APPENDIX A
Function Delivery Network Configurations

A.1 FDN Design Configurations Templates

In this section, we present various configuration templates related to FDN. We start with the FDN-Provider
deployment template within the Virtual Kubelet responsible for creating the virtual node and attaching FDN-
Monitor (§4.2.2) as sidecar to it (§A.1.1). In §A.1.2, we provide the function deployment template respon-
sible for creating a pod within the FDN Kubernetes cluster and mapping it to function creation on the
respective serverless compute cluster.

A.1.1 FDN-Provider Deployment Template

For integrating a new cluster, one has to start a virtual-node customized for that cluster using a Kubernetes-
based deployment configuration file with some command line parameters. The template of the deployment
configuration file along with the command line parameters is shown in Listing A.1. This template is auto-
matically generated and applied when a new cluster is added and registered in the FDN respectively. This
design methodology enables using kubectl-based create and delete commands for creating and deleting
functions on the respective serverless compute cluster. The deployment template consists of three contain-
ers: 1) jaeger-tracing for tracing of events within the Virtual Kubelet, however it is currently not used. 2)
fdn-monitor, the container responsible for starting the FDN-Monitor (§4.2.2) and attaching it as sidecar,
3) vkubelet, the container which starts and configures Virtual Kubelet. The match labels on lines 10-11
allow the pod to be deployed on the virtual node. For fdn-monitor container, we pass all the configura-
tion parameters of the serverless compute platform for which it is responsible for collecting metrics (lines
26-33). Furthermore, we pass the other configuration parameters, such as those related to InfluxDB for
storing the monitoring data and MinIO configuration for collecting credentials of GCF serverless compute
platform. The vkubelet container starts the Virtual Kubelet and registers as a virtual node within the Ku-
bernetes cluster. We pass various configuration parameters: node name (line 55), which provider to use and
its configuration within the Virtual Kubelet (lines 57-59), the serverless compute platform to configure (line
63), the configuration of the platform (lines 64-73) and the MinIO configuration (lines 74-76) for extracting
the function code.

189

A. Function Delivery Network Configurations

Listing A.1: FDN-Provider deployment template, responsible for creating the virtual node and attaching it
with FDN-Monitor for collecting various metrics.

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: vkubelet-fdn-edge-2-openfaas-0
5 labels:
6 cluster: vkubelet-fdn-edge-2-openfaas-0
7 spec:
8 replicas: 1
9 selector:

10 matchLabels:
11 cluster: vkubelet-fdn-edge-2-openfaas-0
12 template:
13 metadata:
14 labels:
15 cluster: vkubelet-fdn-edge-2-openfaas-0
16 spec:
17 containers:
18 - name: jaeger-tracing
19 image: jaegertracing/all-in-one:1.22
20 - name: fdn-monitor
21 image: functiondeliverynetwork/fdn-monitor
22 imagePullPolicy: Always
23 env:
24 - name: CLUSTER_API_GW_ACCESS_TOKEN
25 value: hello
26 - name: AWS_ACCESS_KEY_ID
27 value: "test"
28 - name: AWS_SECRET_ACCESS_KEY
29 value: "test"
30 - name: CLUSTER_AUTH
31 value: "test"
32 - name: CLUSTER_GATEWAY_PORT
33 value: "31112"
34 ...
35 - name: MINIO_ENDPOINT
36 value: "minio:9000"
37 - name: MINIO_ACCESS_KEY
38 value: minio
39 - name: MINIO_SECRET_KEY
40 value: sMGwzbks7sMFTW9Y
41 - name: POWER_COLLECTION
42 value: "True"
43

44 - name: INFLUXDB_ADMIN_TOKEN
45 value: a_secure_admin_token_for_admin_fdn

190

A.1. FDN Design Configurations Templates

46 - name: INFLUXDB_BUCKET
47 value: fdn_monitoring_bucket
48 ...
49 - name: vkubelet
50 image: functiondeliverynetwork/virtual-kubelet:latest
51 imagePullPolicy: Always
52 args:
53 - /virtual-kubelet
54 - --nodename
55 - vkubelet-fdn-edge-2-openfaas-0
56 - --provider
57 - fdn
58 - --provider-config
59 - /vkubelet-fdn-openwhisk-0-cfg.json
60 - --startup-timeout
61 - 10s
62 - --serverless-platform-name
63 - openfaas
64 - --serverless-platform-apihost
65 - "vmschulz43.in.tum.de:31112"
66 - --serverless-platform-auth
67 - "MXfUrseR4mlB"
68 - --serverless-platform-config-bucket
69 - "credentials"
70 - --serverless-platform-config-object
71 - "vkubelet-fdn-edge-2-openfaas-0"
72 - --serverless-platform-region
73 - "europe-west3"
74 - --minio-endpoint
75 - "{{ hostvars[inventory_hostname].ansible_host }}:9000"
76 - --minio-accesskey-id
77 ...
78 env:
79 - name: JAEGER_AGENT_ENDPOINT
80 value: localhost:6831
81 - name: KUBELET_PORT
82 value: "10250"
83 - name: VKUBELET_POD_IP
84 ...

A.1.2 FDN-Provider Function Deployment Template

In FDN for creating or deleting functions on the respective serverless compute cluster, one has to create or
delete a pod on the virtual node mapping that cluster. For creating and deleting a pod, we use kubectl-
based create and delete commands. At first, we create a deployment file containing the specification of
the pod and its mapping function. It is automatically created by FDN based on the input specified by the

191

A. Function Delivery Network Configurations

user through the FDN-UI. The Kubernetes deployment file template for creating a function is shown in
Listing A.2. In the file, line 5 tells the Kubernetes the namespace in which the deployment will be created.
This namespace corresponds to the serverless compute cluster on which the function needs to be created. We
take the container image specified on Line 19 as the function image; one can also specify the generic images
specific to the serverless compute platform, for example, python37 on GCF. Lines 23-26 provide the Virtual
Kubelet the location of the function code, which it can use to create the function on the respective serverless
compute cluster. Virtual Kubelet contains the APIs for creating the function on different serverless compute
platforms. Lines 27-36 provide information on configuring the function, such as the amount of memory
allocated to the function, function timeout, and number of maximum function instances.

Listing A.2: FDN-Provider function deployment template responsible for creating a pod within the FDN
Kubernetes cluster and mapping it to function creation on the respective serverless compute
cluster.

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: gzipcompression
5 namespace: vkubelet-fdn-edge-2-openfaas-0
6 labels:
7 function: gzipcompression
8 spec:
9 replicas: 1

10 selector:
11 matchLabels:
12 function: gzipcompression
13 template:
14 metadata:
15 labels:
16 function: gzipcompression
17 spec:
18 containers:
19 - image: ansjin/gzip-compression:openfaas
20 imagePullPolicy: Always
21 name: gzipcompression
22 env:
23 - name: BUCKET_NAME
24 value: "openfaas"
25 - name: OBJECT_NAME
26 value: "gzip.py"
27 - name: FUNCTION_CPU
28 value: "3000"
29 - name: FUNCTION_MEMORY
30 value: "1024"
31 - name: FUNCTION_TIMEOUT
32 value: "50000"
33 - name: FUNCTION_CONCURRENCY
34 value: "10"
35 - name: FUNCTION_LOGSIZE

192

A.2. FDN-Components

(a) infrastructure-centric metrics (b) platform-centric metrics

(c) load balancer metrics

Figure A.1.: Three different Grafana dashboard within FDN-Monitor showcasing various metrics across
the clusters.

36 value: "80"
37 dnsPolicy: ClusterFirst
38 nodeName: vkubelet-fdn-edge-2-openfaas-0
39 nodeSelector:
40 kubernetes.io/role: agent
41 type: virtual-kubelet
42 tolerations:
43 - key: virtual-kubelet.io/provider
44 operator: Exists

A.2 FDN-Components

A.2.1 FDN-Monitor Grafana Dashboards

We have created by default three Grafana dashboards, shown in Figure A.1 representing the metrics from
the infrastructure (Figure A.1a), platform (Figure A.1b), and load balancer (Figure A.1c). Infrastructure-
Centric metrics dashboard in Figure A.1a shows the metrics from the host machines in the cluster. These
metrics only exist for clusters hosted on edge or on-premise. The amount and usage over time of static
resources, such as the number of cores, memory usage, Disk I/O, and network usage of individual nodes
within a cluster, are shown in this dashboard. Platform-Centric metrics dashboard in Figure A.1b shows
the metrics of the functions from the various serverless compute platforms. Metrics such as the number of
function invocations resulting from the received requests, the number of function instances, the execution

193

A. Function Delivery Network Configurations

(a) Clusters within FDN view. (b) Adding a new cluster view.

(c) Functions within FDN view. (d) Adding a new function view.

Figure A.2.: Four different views within FDN-UI.

time of the function (excluding the startup latency), etc., are shown in this dashboard. Additionally, for plat-
forms hosted on Kubernetes, we collect the function’s resource consumption metrics such as CPU, memory,
Disk I/O, and network usage, which are shown as well. Load balancer metrics dashboard in Figure A.1c
shows the metrics of the Courier coming from the HAProxy. We mainly use this dashboard to monitor the
weights assigned to different clusters for functions within the FDN.

A.2.2 FDN-UI

The UI screenshots showing four different views are presented in Figure A.2. Figure A.2a shows the
overview of the clusters which are part of the FDN and assigned to the user. In this view, one can see
how many functions are running on a cluster, along with various configuration parameter values of each
cluster. Figure A.2b shows the view of registering a new cluster as part of the FDN. In Figure A.2c, we
see the overview of the functions created by the user and running in FDN. One can see which clusters the
function is running, the function’s configuration values, and the load balancing algorithm used for the func-
tion. The user can edit, delete, and deploy the function from the same view. Figure A.2d shows the view of
adding a new function in the FDN.

A.3 FDN Test Framework

The configuration file used by the evaluation framework (§9.3.2) for creating the scenarios and evaluating
the FDN. It contains five sections. The first one specifies the global parameters (lines 1-4): the output
directory of evaluation (line 2), the functions’ configuration file (line 3), and the name of the test (line4).

194

A.3. FDN Test Framework

The second section specifies the parameters for configuring the load generator (§9.3.2.3) (lines 7-12). Here
we specify how long one stage (line 8) is for load testing and how many stages to execute (line 9). The load
generator would create VUs based on these configurations. The third section contains all the experiments
under the current test (lines 14-24). Here we specify all the functions to evaluate along with the algorithm
(represented by cluster name on lines 16, 20, and 23) and trace number (line 17) for the evaluation. The
fourth and fifth section provides the configuration parameters for the InfluxDB used by the load generator
and the InfluxDB used by the FDN Monitor. The evaluation framework uses the FDN Monitor InfluxDB for
collecting various metrics and storing them as files for later graph creation. In contrast, the other InfluxDB
stores the load generation data.

Listing A.3: The configuration file used by the evaluation framework for creating the scenarios and evalu-
ating the FDN.

1 global:
2 tests_directory: "./tests"
3 functions_config_file: "config/functions_config.yaml"
4 testName: experiment1
5

6 ## loadGen Settings
7 loadTestSettings:
8 stageDuration: 10s
9 totalStages: 120 # for total test duration to be 120 * 10

10 traces:
11 path: ./traces.csv
12 k6Script: k6/script.js
13

14 experiments:
15 - function_name: func-1-action-primes
16 cluster_name: lrz-cloud-1
17 trace_number: 4
18 ...
19 - function_name: func-1-action-primes
20 cluster_name: fdn-slo
21 trace_number: 4
22 - function_name: func-1-action-primes
23 cluster_name: fdn-rr
24 trace_number: 3
25

26 ## influxdb
27 k6InfluxDB:
28 host: localhost
29 port: 8086
30 db: experiments
31 ## fdn influxdb
32 FDNInfluxDB:
33 host: "fdn.caps.in.tum.de"
34 port: 8086
35 bucket: fdn_monitoring_bucket
36 ..

195

APPENDIX B
Source Code Availability

All the source related to this dissertation exists within the Function-Delivery-Network organization of
GitHub (https://github.com/Function-Delivery-Network). URLs of the individual components pre-
sented in this dissertation within the Function-Delivery-Network organization are shown in Table B.1

Table B.1.: Source code links related to the components presented in this dissertation.
Category Component Name URL

FDN Internal

FDN-Monitor FDN-Monitor
FDN-Courier FDN-Courier

FDN-UI, Cluster Service FDN-Cluster-Service
FDN Virtual Kubelet virtual-kubelet

FDN Database FDN-Postgres-DB

FDN Automation

FDN Evaluation Framework FDN-Testing-Framework
FDN K8s Manifests FDN-K8s-Manifests

FDN Edge-Multiple-Boards IaaC-OpenFaaS-Edge-Multiple-
Boards

FDN Edge-Jetson-Nano IaaC-OpenFaaS-Edge-Jetson-Nano
FDN OpenWhisk Pvt. Cloud IaaC-OpenWhisk-LRZ-Cloud
FDN OpenFaaS Pvt. Cloud IaaC-OpenFaaS-LRZ-Cloud

FDN External

TppFaaS TppFaaS
FaDO for data orchestration FaDO

SLAM SLAM
FnCapacitor fnCapacitor

Memory Leak Detection memory_leak_detection

196

https://github.com/Function-Delivery-Network
https://github.com/Function-Delivery-Network/FDN-Monitor
https://github.com/Function-Delivery-Network/FDN-Courier
https://github.com/Function-Delivery-Network/FDN-Cluster-Service
https://github.com/Function-Delivery-Network/virtual-kubelet
https://github.com/Function-Delivery-Network/FDN-Postgres-DB
https://github.com/Function-Delivery-Network/FDN-Testing-Framework
https://github.com/Function-Delivery-Network/FDN-K8s-Manifests
https://github.com/Function-Delivery-Network/IaaC-OpenFaaS-Edge-Multiple-Boards
https://github.com/Function-Delivery-Network/IaaC-OpenFaaS-Edge-Multiple-Boards
https://github.com/Function-Delivery-Network/IaaC-OpenFaaS-Edge-Jetson-Nano
https://github.com/Function-Delivery-Network/IaaC-OpenWhisk-LRZ-Cloud
https://github.com/Function-Delivery-Network/IaaC-OpenFaaS-LRZ-Cloud
https://github.com/Function-Delivery-Network/TppFaaS
https://github.com/Function-Delivery-Network/FaDO
https://github.com/Function-Delivery-Network/SLAM
https://github.com/Function-Delivery-Network/fnCapacitor
https://github.com/ansjin/memory_leak_detection

APPENDIX C
List of Authored and Co-authored Publications

C.1 Publications Associated with the Dissertation

C.1.1 Journal Articles

• M. Steinbach, A. Jindal, M. M. Chadha. Gerndt and S. Benedict, "TppFaaS: Modeling Serverless
Functions Invocations via Temporal Point Processes," in IEEE Access, vol. 10, pp. 9059-9084, 2022,
https://doi.org/10.1109/ACCESS.2022.3144078.

• A. Jindal, M. Gerndt, M. Chadha, V. Podolskiy, P. Chen. Function delivery network: Extending
serverless computing for heterogeneous platforms. Software Practice and Experience. 2021; 51:
1936– 1963. https://doi.org/10.1002/spe.2966

• A. Jindal., M. Gerndt. From DevOps to NoOps: Is It Worth It?. In: Ferguson, D., Pahl, C., Helfert,
M. (eds) Cloud Computing and Services Science. CLOSER 2020. Communications in Computer
and Information Science, vol 1399. Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-
72369-9_8

C.1.2 Conference Articles

• G. Safaryan, A. Jindal, M. Chadha and M. Gerndt, "SLAM: SLO-Aware Memory Optimization for
Serverless Applications," 2022 IEEE 15th International Conference on Cloud Computing (CLOUD),
2022, pp. 30-39, https://doi.org/10.1109/CLOUD55607.2022.00019.

• C. P. Smith, A. Jindal, M. Chadha, M. Gerndt and S. Benedict, "FaDO: FaaS Functions and Data
Orchestrator for Multiple Serverless Edge-Cloud Clusters," 2022 IEEE 6th International Conference
on Fog and Edge Computing (ICFEC), 2022, pp. 17-25, https://doi.org/10.1109/ICFEC54809.
2022.00010.

197

https://doi.org/10.1109/ACCESS.2022.3144078
https://doi.org/10.1002/spe.2966
https://doi.org/10.1007/978-3-030-72369-9_8
https://doi.org/10.1007/978-3-030-72369-9_8
https://doi.org/10.1109/CLOUD55607.2022.00019
https://doi.org/10.1109/ICFEC54809.2022.00010
https://doi.org/10.1109/ICFEC54809.2022.00010

C. List of Authored and Co-authored Publications

• T. Zubko, A. Jindal, M. Chadha, M. Gerndt (2022). MAFF: Self-adaptive Memory Optimization for
Serverless Functions. In: Montesi, F., Papadopoulos, G.A., Zimmermann, W. (eds) Service-Oriented
and Cloud Computing. ESOCC 2022. Lecture Notes in Computer Science, vol 13226. Springer,
Cham. https://doi.org/10.1007/978-3-031-04718-3_9

• A. Jindal, J. Frielinghaus, M. Chadha, and M. Gerndt (2021). Courier: delivering serverless functions
within heterogeneous FaaS deployments. In Proceedings of the 14th IEEE/ACM International Con-
ference on Utility and Cloud Computing (UCC ’21). Association for Computing Machinery, New
York, NY, USA, Article 11, 1–10. https://doi.org/10.1145/3468737.3494097

• C. Fan, A. Jindal, and M. Gerndt (2020). Microservices vs Serverless: A Performance Comparison on
a Cloud-native Web Application. In Proceedings of the 10th International Conference on Cloud Com-
puting and Services Science - Volume 1: CLOSER http://dx.doi.org/10.5220/0009792702040215

C.1.3 Workshop Articles

• A. Jindal, M. Chadha, S. Benedict, and M. Gerndt. 2021. Estimating the capacities of function-as-
a-service functions. In Proceedings of the 14th IEEE/ACM International Conference on Utility and
Cloud Computing Companion (UCC ’21). Association for Computing Machinery, New York, NY,
USA, Article 19, 1–8. https://doi.org/10.1145/3492323.3495628

• A. Jindal, I. Shakhat, J. Cardoso, M. Gerndt, V. Podolskiy. (2022). IAD: Indirect Anomalous
VMMs Detection in the Cloud-Based Environment. In: Service-Oriented Computing – ICSOC
2021 Workshops. ICSOC 2021. Lecture Notes in Computer Science, vol 13236. Springer, Cham.
https://doi.org/10.1007/978-3-031-14135-5_15

• A. Jindal, P. Staab, J. Cardoso, M. Gerndt, V. Podolskiy (2021). Online Memory Leak Detection
in the Cloud-Based Infrastructures. In: Service-Oriented Computing – ICSOC 2020 Workshops.
ICSOC 2020. Lecture Notes in Computer Science(), vol 12632. Springer, Cham. https://doi.org/
10.1007/978-3-030-76352-7_21

C.1.4 Poster

• A. Jindal, M. Chadha, M. Gerndt, J. Frielinghaus, V. Podolskiy and P. Chen, "Poster: Function Deliv-
ery Network: Extending Serverless to Heterogeneous Computing," 2021 IEEE 41st International Con-
ference on Distributed Computing Systems (ICDCS), 2021, pp. 1128-1129, https://doi.org/doi:
10.1109/ICDCS51616.2021.00120.

C.2 Other Publications

C.2.1 Journal Articles

• V. Podolskiy, A. Jindal, & M. Gerndt (2019). Multilayered autoscaling performance evaluation: Can
virtual machines and containers co-scale? International Journal of Applied Mathematics and Com-
puter Science, 29(2), 227–244.

198

https://doi.org/10.1007/978-3-031-04718-3_9
https://doi.org/10.1145/3468737.3494097
http://dx.doi.org/10.5220/0009792702040215
https://doi.org/10.1145/3492323.3495628
https://doi.org/10.1007/978-3-031-14135-5_15
https://doi.org/10.1007/978-3-030-76352-7_21
https://doi.org/10.1007/978-3-030-76352-7_21
https://doi.org/doi:%2010.1109/ICDCS51616.2021.00120
https://doi.org/doi:%2010.1109/ICDCS51616.2021.00120

C.2. Other Publications

C.2.2 Conference Articles

• S. P. Baller, A. Jindal, M. Chadha and M. Gerndt, "DeepEdgeBench: Benchmarking Deep Neural
Networks on Edge Devices," 2021 IEEE International Conference on Cloud Engineering (IC2E),
2021, pp. 20-30, https://doi.org/10.1109/IC2E52221.2021.00016.

• Thomas van Loo, A. Jindal, M. Chadha, and M. Gerndt. "Scalable Infrastructure for Workload Char-
acterization of Cluster Traces". In Proceedings of the 12th International Conference on Cloud Com-
puting and Services Science (CLOSER 2022), ISBN 978-989-758-570-8, ISSN 2184-5042, pages
254-263.

• L. Espe, A. Jindal., V. Podolskiy and M. Gerndt. (2020). Performance Evaluation of Container
Runtimes. In Proceedings of the 10th International Conference on Cloud Computing and Services
Science - Volume 1: CLOSER http://dx.doi.org/10.5220/0009340402730281

• A. Jindal, M. Gerndt, M. Bauch and H. Haddouti, "Scalable Infrastructure and Workflow for Anomaly
Detection in an Automotive Industry," 2020 International Conference on Innovative Trends in In-
formation Technology (ICITIIT), 2020, pp. 1-6, https://doi.org/10.1109/ICITIIT49094.2020.
9071555.

• A. Jindal, V. Podolskiy, and M. Gerndt. 2019. Performance Modeling for Cloud Microservice Ap-
plications. In Proceedings of the 2019 ACM/SPEC International Conference on Performance Engi-
neering (ICPE ’19). Association for Computing Machinery, New York, NY, USA, 25–32. https:
//doi.org/10.1145/3297663.3310309

• A. Jindal, V. Podolskiy, and M. Gerndt, "Multilayered Cloud Applications Autoscaling Performance
Estimation," 2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2), 2017,
pp. 24-31, https://doi.org/10.1109/SC2.2017.12.

• V. Podolskiy, A. Jindal and M. Gerndt, "IaaS Reactive Autoscaling Performance Challenges," 2018
IEEE 11th International Conference on Cloud Computing (CLOUD), 2018, pp. 954-957, https:
//doi.org/10.1109/CLOUD.2018.00144.

C.2.3 Workshop Articles

• M. Chadha, A. Jindal, and M. Gerndt. 2020. Towards Federated Learning using FaaS Fabric. In
Proceedings of the 2020 Sixth International Workshop on Serverless Computing (WoSC’20). Associ-
ation for Computing Machinery, New York, NY, USA, 49–54. https://doi.org/10.1145/3429880.
3430100

• A. Jindal, V. Podolskiy, and M. Gerndt. 2018. Autoscaling Performance Measurement Tool. In
Companion of the 2018 ACM/SPEC International Conference on Performance Engineering (ICPE
’18). Association for Computing Machinery, New York, NY, USA, 91–92. https://doi.org/10.
1145/3185768.3186293

199

https://doi.org/10.1109/IC2E52221.2021.00016
http://dx.doi.org/10.5220/0009340402730281
https://doi.org/10.1109/ICITIIT49094.2020.9071555
https://doi.org/10.1109/ICITIIT49094.2020.9071555
https://doi.org/10.1145/3297663.3310309
https://doi.org/10.1145/3297663.3310309
https://doi.org/10.1109/SC2.2017.12
https://doi.org/10.1109/CLOUD.2018.00144
https://doi.org/10.1109/CLOUD.2018.00144
https://doi.org/10.1145/3429880.3430100
https://doi.org/10.1145/3429880.3430100
https://doi.org/10.1145/3185768.3186293
https://doi.org/10.1145/3185768.3186293

Index

Access Control List, 79
Actions, 18
Amazon CloudWatch, 38
Ansible, 37
Application Call Graph Builder, 90
AWS Lambda, 20
AWS Lambda function, 20

Bare metal hypervisor, 8
Behave, 47
Branch and Border, 114
Branch and Border online, 114

cgroup, 11
Change Point, 105, 111
Change Points, 105
Change Points Detector, 111
Cloud Clusters, 123
Cloud computing, 12
Cloud Deployment Models, 13
Cloud service model, 13
Clusters Management, 43
Cold-start, 17
Concurrent instances, 54
Conditional intensity function, 60
Container runtime, 11
containerd, 11
Containers, 11
Courier, 48, 76
Courier Control Plane, 77, 81
Courier Load Balancer, 77, 78
Courier Load Balancer Configuration, 79
CPU virtualization, 9
Critical Time, 104

Data Orchestrator, 44
Data-Aware Delivery Policy, 82

DD, 119
Docker, 11

Edge Cluster, 36
Edge Clusters, 122
Edge computing, 14
Edge-Jetson-Nano, 122
Edge-Multi-Boards, 123
Edge-to-Cloud Continuum, 11
Emulation, 10

F1-Score, 115
FaaS, 1
FaaS application architecture, 22
FaaS Function, 16
FaaS functions, 22
Faas-Composer, 121
faas-idler, 19
faas-netes, 19
faas-provider, 19
FDN Functions Management, 46
FDN Inventory Database, 41
FDN Load balancing, 83
FDN Load Generator, 127
FDN Management Cluster, 34
FDN Monitoring Database, 41
FDN Test Framework, 126
FDN-Latency-Aware, 155
FDN-Latency-Aware-Cld, 155
FDN-Least, 155
FDN-LeastCon-Cld, 155
FDN-Monitor, 38, 40
FDN-provider, 33
FDN-RR, 155
FDN-RR-Cld, 155
FDN-SLO-Aware, 155
FDN-SLO-Aware-Cld, 155

200

INDEX

FDN-UI, 49
Firecracker, 11
FnCapacitor, 47, 51
Full virtualization, 9
Function Capacity, 50
Function Code, 20
Function concurrency, 54
Function Delivery Network, 4, 30
Function Delivery Policies, 81
Function initTime, 64
Function Instance, 17
Function Interaction Model, 58
Function Performance Model, 50
Function waitTime, 64
Function-as-a-Service, 15
Function-Aware Delivery Policy, 81
Functions Interaction Model, 47
Functions Performance Model, 47
Functions Sandboxing, 52

Google Cloud Functions, 19
gVisor, 11
Gzip-Compression, 119

HAProxy, 78
Hardware Assisted virtualization, 9
Hazard function, 61
Hosted hypervisor, 9
Hybrid Cloud, 13

I/O virtualization, 10
Image-processing, 120
Image-spec, 11
Indirect Anomaly Detection, 111
Infrastructure-as-a-Service, 13
Infrastructure-Centric metrics, 38
Invocations Traces, 128
Isolation Forest, 115
Isolation Forest Features, 115

Json-loads, 120

K6, 128

Latency-Aware Load Balancing Algorithm, 84
Least-connection, 84
Linear Regression, 53
Linpack, 119
Load balancer, 78

Local Zones, 14
LogNormMix, 62, 66
Lr-prediction, 120

Mean Execution Time, 130
Mean Successful Invocations, 130
Mean-based Detector, 111
Memory leak, 103
Memory virtualization, 9
Microservices application architecture, 21
MicroVMs, 11
MinIO, 44
Monolithic application architecture, 20
Multi-Access Edge Computing, 14
Multi-Cloud, 13

Namespace, 11
Negative Log-Likelihood, 69
Neural Temporal Point Processes, 61
Nodeinfo, 119

OpenFaaS, 19
OpenFaaS Watchdog, 19
OpenTracing, 3
OpenWhisk, 18
OpenWhisk Composer, 58
OpenWhisk Invoker, 18
OS-level virtualization, 10

Para-I/O virtualization, 10
Paravirtualization, 9
Platform-as-a-Service, 14
Platform-Centric metrics, 38
Polynomial Regression, 53
Precog, 104
Primes, 119
Private Cloud, 13
Private Cluster, 36
Private-cloud Cluster, 123
PUB-CLD-AWS, 124
PUB-CLD-GCF, 125
Public Cloud, 13
Public-cloud Cluster, 36, 124
PVT-CLD-LRZ-OF, 123
PVT-CLD-LRZ-OW, 123

Random Forest Regression, 53
Recurrent Marked Temporal Point Processes, 62
Response time, 130

201

INDEX

Reverse Proxy, 78
Ridge Regression, 53
Round Robin, 84
Runtime-spec, 11

Sawtooth pattern, 107
Serverless compute cluster, 4
Serverless compute platform, 2, 18
Serverless computing, 1, 2, 14, 15
Single Root I/O Virtualization, 10
SLAM, 88, 89
SLAM-SLO, 93
SLAM-SLO-Min-Cost, 93, 94
SLO-Aware Load Balancing Algorithm, 85
Softmax, 66
Software-as-a-Service, 14
Storage Deployments, 42

Temporal Point Process, 58

Temporal Point Processes, 58
Terraform, 37
TppFaaS, 48, 58, 63
TruncNorm, 67
Type I hypervisors, 8
Type II hypervisors, 8

User-Centric metrics, 38

Virtual Kubelet, 33
Virtual Machine Monitor, 9
Virtual Node, 33
Virtualization, 8
VM-like containers, 11

Weighted Round Robin, 84
wskCLI, 18

Z-score-based Detector, 111

202

List of Figures

1.1 A schematic overview of the contributions made in this dissertation. 5

2.1 Overview of four isolation methods (VMs, Linux Containers, gVisor-based, and Firecracker-
based) for deploying the applications. VMs use a dedicated VMM such as Xen to provide
isolation between them. Linux containers use the host kernel’s namespace feature to provide
isolation between the containers. gVisor-based containers are isolated using the userspace
kernel. Firecracker-based MicroVMs use lightweight VMM based on KVM for the isolation. 12

2.2 Typical cloud service models comparison from the aspect of virtualization stack abstraction
(y-axis) and focus on business logic (x-axis). Server-based here means that the user or
application developer has to configure/manage certain infrastructure parameters. In contrast,
the cloud service providers manage infrastructure entirely in serverless computing. 15

2.3 Typical FaaS function invocation procedure. The first time the function is invoked, the
serverless compute platform creates an instance of the function and runs its handler method
in it to process the event. When the handler exits or returns a response, it stays active and
becomes available to handle other events. 16

2.4 Overview of three different application architectures. 21

4.1 A high-level design of Virtual Kubelet. Virtual Kubelet is an open-source Kubernetes kubelet
implementation that masquerades as a kubelet to connect Kubernetes to other platforms [164]. 32

4.2 A high-level design of FDN-provider in Virtual Kubelet. Every Virtual Kubelet node created
using FDN-provider acts as a proxy for mapping to actual underneath serverless compute
clusters. Pods created/deleted on virtual worker nodes are automatically mapped to func-
tions in the underneath serverless compute clusters. 33

4.3 A high-level architecture design of the Function Delivery Network (FDN). FDN architec-
ture is divided into six layers, with each row in the figure corresponding to a different layer.
FDN exposes three different types of APIs to distinguish three different types of clients:
user applications that invoke the FaaS function via user APIs, developers, and administra-
tors/operators. All the data within FDN corresponds within the FDN dataplane. 35

4.4 Automation workflow for creating a serverless compute cluster hosted in a private cloud
using Terraform and Ansible. 37

4.5 A simplified UML diagram of FDN-Monitor showcasing the interfaces for data collection
for the different platforms. 40

4.6 Deployment of FDN-Monitor as a sidecar with every virtual-node in FDN. Each FDN-
Monitor instance pulls the metrics from the underneath cluster and aggregate them into
InfluxDB. Grafana queries the data from InfluxDB and showcase them in various dashboards. 40

4.7 FDN Inventory data model schema showing different entities as tables and relationships
between them. 41

4.8 FDN’s Cluster Management workflow showing cluster create/update and delete. 44
4.9 Sequence of events to track a new MinIO deployment. 45

203

List of Figures

4.10 FDN’s Function Management workflow showing function create/update and delete. 47
4.11 FDN’s Function invocation workflow. The user requests are received at the Courier Load

Balancer which selects a subset of clusters based on the set delivering policy, function name
and X-FDN-Bucket header. The Courier Load Balancer then load balances the invocations
across the selected subset of serverless compute clusters based on the set load balancing
algorithm. 48

5.1 Function Capacitys (FCs) (maximum requests per second) variation with different memory
configurations, and function concurrency for AWS Lambda and GCF. 51

5.2 High-level architecture of the FnCapacitor and the interaction between its components in a
general use case [148]. FnCapacitor takes a YAML file as input, and the individual functions
from the given application are segregated. These sandboxed functions are then deployed on a
serverless compute platform. After the deployment, FnCapacitor generates a user workload
and repeatedly changes the functions configurations to collect data. The collected metrics
data is used for creating the function performance models and are then used for estimating
the FCs for different deployment configurations. 52

5.3 execution_durations of the sandboxed functions when executed with a load of 50 RPS and
no limit on the function_concurrency. 54

5.4 concurrent_instances of the sandboxed functions for handling the load of 50 RPS with
five different memory configurations and no limit on the function_concurrency. 55

5.5 FC of the functions when deployed on the two serverless compute platforms for different
function_concurrency with memory configuration fixed to 256MB. 56

5.6 Box plot showing the prediction accuracy on the test data across k-folds using DNN model
for both serverless compute platforms. 57

5.7 A webshop implemented as a composition of FaaS functions [122]. 58
5.8 The conditional probability density function f ⇤

i (ti), the cumulative distribution function
F⇤

i (ti), and the survival function S⇤
i (ti) model the time of the next event ti for a given event

history H (ti) for a TPP model [88]. 60
5.9 In a neural TPP, the distribution over the next event Pi(ti,mi|H (ti)) is parameterized with

the RNN’s hidden state vector hhhi, which encodes the event history H (ti) [270]. 62
5.10 TppFaaS is a system for modeling serverless applications using TPPs. For this purpose,

trace data is collected from synthetic serverless applications that the user can easily create
via configuration. The trace data is then used to train a TPP, which models the interactions
between the functions in the application. 63

5.11 The owspanprocessor adapts start and endpoint of the original span and adds further attributes. 64
5.12 The owspanattacher adds child spans for waitTime, initTime, and executionTime. 65
5.13 The spans of the invoked functions f1 and f2 are mapped to the 3-tuple events e1 and e2,

which carry the inter-event time ti, the function class mi, and the cold start feature ci. Given
the cold invocation of f1, we have c1 = 1. 66

5.14 LogNormMix evaluated via the NLL, with the datasets having no cold starts. A lower value
is better, and zero is optimal, except for accuracy, where a higher value is better, and 1.0 is
optimal. 71

5.15 TruncNorm evaluation on dataset with no cold starts. The lower value is better, and zero is
optimal. A negative value indicates that the predicted time for the invocation was too early. . 72

5.16 LogNormMix evaluated via the NLL, with the datasets having 30% of the invocations as cold
starts. For each application, the TPP is trained and evaluated once with the cold start feature
ci enabled and once with it disabled. A lower value is better, and zero is optimal, except for
accuracy, where a higher value is better, and 1.0 is optimal. 73

204

List of Figures

5.17 TruncNorm evaluation for the dataset having 30% of the invocations as cold starts. For each
application, the TPP is trained and evaluated once with the cold start feature ci enabled and
once with it disabled. The lower value is better, and zero is optimal. A negative value
indicates that the predicted time for the invocation was too early. 74

6.1 A high-level overview design of the Courier component of the FDN, responsible for de-
livering and load balancing user’s functions invocations across the edge-cloud continuum
in FDN. Courier mainly consists of two components: Courier Load Balancer and Courier
Control Plane. The Courier Load Balancer itself consists of two layers. The Courier Con-
trol Plane is responsible for configuring the Courier Load Balancer. 77

6.2 A high-level workflow of the Courier Control Plane, responsible for configuring the Courier
Load Balancer based on various function delivery policies and load balancing algorithms. . 81

7.1 Various factors making it difficult to optimally configure the memory of the FaaS functions. . 88
7.2 High-level architecture of the SLAM and the interaction between its components. 89
7.3 Call graphs for the applications used for evaluating SLAM. 96
7.4 Actual execution time box plot overlaid with the estimated execution time by SLAM run

with different SLOs. 97
7.5 Execution time estimation accuracy percentage for the four test applications at different SLOs. 98
7.6 Percentage of the requests conforming to the given SLOs based on the configurations sug-

gested by SLAM. 99
7.7 Execution time and the cost when configured with configurations selected by SLAM for

various objectives. 100
7.8 SLAM efficiency and scalability performance . 101

8.1 Example memory utilization of a memory leaking VM with the marked anomalous window. 104
8.2 Overall workflow of the Precog algorithm. 105
8.3 Algorithm result on three difficult cases having memory leak (a-c) and one not (d). 107
8.4 Precog’s prediction method scale linearly. 108
8.5 Insensitive to parameters: Precog performs consistently across parameter values. 108
8.6 An example showcasing the propagation of anomalies in a Type-1 hypervisor or VMM to

the VMs hosted on it. These anomalies may lead to VMs failures. 109
8.7 Examples showing CPU utilization of two VMs hosted on a VMM. The left sub-figure

shows an application running only on VM 2, while the right sub-figure shows the application
running on both VMs. We can see a significant decrement in the CPU utilization of the two
VMs when an anomaly (high-CPU load) is generated on the VMM (shown by dotted red
lines). 111

8.8 High-level system workflow of the implemented system for evaluating IAD algorithm and
the interaction between its components in a general use case. 112

8.9 IAD algorithm workflow sequence diagram. 113
8.10 An example profile of an anomalous VMM having 10 VMs in all the datasets used in this

work for evaluation. 114
8.11 F1-score variation with the number of VMs corresponding to each algorithm evaluated in

this work (§8.2.3.2) and on all the datasets (§8.2.3.1). 116
8.12 Algorithm’s detection method scalability with respect to different parameters. 117

9.1 High level workflow of the application used in this work for evaluation. 121
9.2 Schematic high-level diagrams of the two edge clusters based on the embedded devices with

limited resources used in this work for FDN’s evaluation. 122

205

List of Figures

9.3 Schematic high-level diagrams of the two private cloud clusters based on two serverless
compute platforms used in this work for the FDN’s evaluation. 123

9.4 Schematic high-level diagrams of the two public cloud clusters used in this work for FDN’s
evaluation. 124

9.5 A high-level overview of the various FDN components when deployed on the Kubernetes
cluster within the fdn-related-stuff namespace. 127

9.6 Workflow of the FDN Test Framework. Its purpose is to test FDN under different scenarios.
The configuration file is the input to the framework, containing all the scenarios to execute.
The performance metrics data for the scenarios and graphs are the general output of the
framework. The client within the framework starts the execution of the load generation by
simulating the user workload patterns using the k6 tool. 128

9.7 Visualization of the function invocation traces in terms of VUs (y-axis) used in this work
for FDN evaluation. The x-axis represents the unit time, where one unit time represents 10
seconds. 129

10.1 Plots showing the evaluation results of nodeinfo when two Invocations Traces (R1 and R2)
are used for different clusters. 134

10.2 Plots showing the evaluation results of primes when two Invocations Traces (R1 and R2)
are used for different clusters. 135

10.3 Plots showing the evaluation results of linpack when two Invocations Traces (R1 and R2)
are used for different clusters. 137

10.4 Plots showing the evaluation results of sentiment-analysis when two Invocations Traces
(R1 and R2) are used for different clusters. 138

10.5 Plots showing the evaluation results of dd when two Invocations Traces (R1 and R2) are
used for different clusters. 140

10.6 Plots showing the evaluation results of gzip-compression when two Invocations Traces (R1
and R2) are used for different clusters. 142

10.7 Plots showing the evaluation results of json-loads when two Invocations Traces (R1 and
R2) are used for different clusters. 143

10.8 Plots showing the evaluation results of lr-prediction when two Invocations Traces (R1
and R2) are used for different clusters. 145

10.9 Plots showing the evaluation results of image-processing when two Invocations Traces (R1
and R2) are used for different clusters. 146

10.10Percentage overhead introduced in terms of P90 response time by FDN when compared
against the direct approach for nodeinfo function across all the clusters and at two user
workload invocations (R1 and R2). One can see that across all the clusters, the overhead is
below 5%. 151

10.11Mirroring different data amounts from the PVT-CLD-LRZ-OF to PVT-CLD-LRZ-OW using mc
and without it. 154

10.12The average and 90th percentile response times of the invocations load balanced using eight
different algorithms to the nodeinfo function. The results are shown for both Invocation
Traces. 156

10.13Details on how the successful invocations made using Trace R2 to nodeinfo function are
distributed across each cluster along with their execution times using different load balanc-
ing algorithms. 157

10.14Weights distribution among different clusters during evaluation test for nodeinfo function
when load balanced using different algorithms for two Invocation Traces. 158

206

List of Figures

10.15Details on how the successful invocations made using Trace R1 to nodeinfo function are
distributed across each cluster, along with their execution times using different load balanc-
ing algorithms. 161

10.16The average and 90th percentile of the response times of the invocation requests, load bal-
anced using eight different algorithms to the gzip-compression function. The results are
shown for two Invocation Traces. 163

10.17Details on how the successful invocations made using Trace R2 to gzip-compression func-
tion are distributed across each cluster, along with their execution times using different load
balancing algorithms. 164

10.18Weights distribution among different clusters during evaluation test for gzip-compression
function when load balanced using different algorithms for two Invocation Traces. 165

10.19Details on how the successful invocations made using Trace R1 to gzip-compression func-
tion are distributed across each cluster, along with their execution times using different load
balancing algorithms. 166

10.20The average and 90th percentile response times of the invocations load balanced using eight
different algorithms to the lr-prediction function. The results are shown for both Invoca-
tion Traces. 168

10.21Details on how the successful invocations made using Trace R2 to lr-prediction function
are distributed across each cluster, along with their execution times using different load
balancing algorithms. 169

10.22Weights distribution among different clusters during evaluation test for lr-prediction func-
tion when load balanced using different algorithms for two Invocation Traces. 169

10.23Details on how the successful invocations made using Trace R1 to lr-prediction function
are distributed across each cluster, along with their execution times using different load
balancing algorithms. 171

10.24The average and 90th percentile of the response times of the invocation requests, load bal-
anced using four different algorithms to the faas-composer function. The request traces
are lowered-down versions of the original ones, with the maximum number of requests per
second as 10. 172

10.25Details on how the successful invocations load tested using lowered-down version of Trace
R1 to faas-composer following different algorithms are distributed across the functions and
clusters. The rows show the different algorithms (From top to bottom: FDN-RR, FDN-
Latency-Aware, FDN-SLO-Aware and FDN-LeastCon) and columns show different functions.173

10.26Details on how the successful invocations’ execution time load tested using lowered-down
version of Trace R1 to faas-composer application following different algorithms are dis-
tributed across the functions and clusters. The rows show the different algorithms (From
top to bottom: FDN-RR, FDN-Latency-Aware, FDN-SLO-Aware and FDN-LeastCon) and
columns show different functions. 174

10.27Weights distribution among different clusters during evaluation test for faas-composer func-
tion when load balanced using different algorithms for two Invocation Traces. 176

A.1 Three different Grafana dashboard within FDN-Monitor showcasing various metrics across
the clusters. 193

A.2 Four different views within FDN-UI. 194

207

List of Tables

4.1 The summary of the monitoring metrics from Platform-Centric and Infrastructure-Centric
categories for all the four serverless platforms considered in this work, along with the name
used by the FDN-Monitor. For all these metrics, the data is collected per unit of time. For
platforms hosted on Kubernetes, the functions run as pods; therefore, we can also collect the
resources’ consumption metrics of pods. 39

5.1 Comparison of accuracy results (R2 score) for estimated FCs for the different approaches. . . 57
5.2 Symbols and their definitions used in the context of building Functions Interaction Model . . 59

7.1 Symbols and definitions used in the context of SLAM tool. 90

8.1 Symbols and their definitions used in the context of memory leak detection. 103
8.2 Synthetically generated timeseries for each memory leak pattern and their F1-Scores. 106
8.3 Symbols and their definitions used in the context of indirectly detecting anomalous VMMs

in a cloud-based environment. 110
8.4 Datasets used in this work for evaluating the algorithms. 114
8.5 The details of the algorithms used in this work for evaluation, along with their input dimen-

sion and parameters. 115
8.6 F1-score corresponding to each algorithm evaluated in this work (§8.2.3.2) and on all the

datasets (§8.2.3.1). 115

9.1 Summary of the FaaS functions microbenchmarks used as part of this work for evaluating
FDN. 120

9.2 Different target heterogeneous clusters spread across edge-cloud continuum used for evalu-
ating the FDN. 125

9.3 An extract of the dataset containing the number of visits to four Wikipedia pages on different
dates. Each row represents a Wikipedia page, while the columns correspond to the date of
the period from 2015 to 2019. Each cell contains the number of visitors for the given page
on the date. In our tests, each day corresponds to a period of 10 seconds. The number of
visitors is used as the number of function invocations. However, we scaled down the number
of invocations so that the maximum number of VUs is less than 200. 129

10.1 Three Platform-Centric metrics showing the mean usage of the resources by nodeinfo func-
tion on different clusters when handling the two Invocations Traces. 134

10.2 Three Platform-Centric metrics showing the mean usage of the resources by primes-python
function on different clusters when handling the two Invocations Traces. 136

10.3 Platform-Centric metrics showing the mean usage of the resources by linpack function on
different clusters when handling the two Invocations Traces. 138

10.4 Platform-Centric metrics showing the mean usage of the resources by sentiment-analysis
function on different clusters when handling the two Invocations Traces. 139

208

List of Tables

10.5 Platform-Centric metrics showing the mean usage of the resources by dd function on differ-
ent clusters when handling the two Invocations Traces. 141

10.6 Platform-Centric Metrics showing the mean usage of the resources by gzip-compression
function on different clusters when handling the two Invocations Traces. 142

10.7 Platform-Centric metrics showing the mean usage of the resources by json-loads function
on different clusters serving the two Invocations Traces. 144

10.8 Platform-Centric metrics showing the mean usage of the resources by lr-Prediction func-
tion on different clusters serving the two Invocations Traces. 145

10.9 Platform-Centric Metrics showing the mean usage of the resources by image-processing
function on different clusters serving the two Invocations Traces. 147

10.10Summary of the average number of invocations made per minute by each cluster for each
FaaS function when load tested with two Invocation Traces. 148

10.11Summary of the load balancing algorithms results on the FaaS functions. 179

B.1 Source code links related to the components presented in this dissertation. 196

209

List of Algorithms

1 Latency-Aware Load Balancing Algorithm . 85

2 SLO-Aware Load Balancing Algorithm . 86

3 SLAM-SLO Algorithm . 94

210

List of Listings

4.1 An example of JSON input recevied by the cluster register API endpoint for registering the
cluster within FDN . 43

6.1 An example configuration of Couier Load Balancer based on HAProxy. The frontend
specifies the address on which the server is listening and a set of rules for requests forward-
ing. The acl tag defines a path-based routing policy for sorting the incoming requests to the
corresponding backend. Each backend specifies the load balancing algorithm used and the
set of the clusters that will receive the requests. 80

6.2 An example of a Function-Aware Delivery Policy created for function_1 which is deployed
on cluster_1, cluster_2 and cluster_4. 82

6.3 An example of a Data-Aware Delivery Policy created for function_1 which is deployed on
cluster_1, cluster_2. Storage bucket bucket_1 exists on cluster_1 and storage bucket
bucket_2 exists on cluster_1, and cluster_2 . 83

10.1 Configuration file of Courier Load Balancer showing no backends apart from the default
backend. 152

10.2 Configuration file of Courier Load Balancer showing function invocations requiring the
bucket rep-policy-demo solely go to the PVT-CLD-LRZ-OW. 152

10.3 Configuration file of Courier Load Balancer showing three clusters to which function invo-
cations requiring the bucket rep-policy-demo solely go to, after increase in number of replica
count of the bucket. 152

10.4 Configuration file of Courier Load Balancer showing two additional backends after a test
function nodeinfo is deployed; one for the function and one matching both function and bucket153

A.1 FDN-Provider deployment template, responsible for creating the virtual node and attaching
it with FDN-Monitor for collecting various metrics. 190

A.2 FDN-Provider function deployment template responsible for creating a pod within the FDN
Kubernetes cluster and mapping it to function creation on the respective serverless compute
cluster. 192

A.3 The configuration file used by the evaluation framework for creating the scenarios and eval-
uating the FDN. 195

211

Acronyms

ACL Access Control List.
AKS Azure Kubernetes Service.
AMI Amazon Machine Image.
API Application Programming Interface.
ARN Amazon Resource Name.
AWS Amazon Web Services.

BaaS Backend-as-a-Service.
BnB Branch and Border.
BnBO Branch and Border Online.

CNCF Cloud Native Computing Foundation.
CRM Customer Relationship Management.
CSP Cloud Service Provider.

DBMS Database Management System.
DMA Direct Memory Access.
DNN Deep Neural Network.

EC2 Elastic Compute Cloud.
eCDF empirical Cumulative Distribution Function.
EKS Amazon Elastic Kubernetes Service.

FaaS Function-as-a-Service.
FC Function Capacity.
FDaaS Function-Delivery-as-a-Service.
FDN Function Delivery Network.
FDN-LeastCon-Cld FDN Least Connections Algorithm Cloud Only.
FDN-SLO-Aware-Cld FDN SLO-Aware Algorithm Cloud Only.
FDN-Latency-Aware-Cld FDN Latency-Aware Algorithm Cloud Only.
FDN-RR-Cld FDN Round-Robin Algorithm Cloud Only.
FDN-LeastCon FDN Least Connections Algorithm.
FDN-SLO-Aware FDN SLO-Aware Algorithm.
FDN-Latency-Aware FDN Latency-Aware Algorithm.
FDN-RR FDN Round-Robin Algorithm.
FPGA Field-Programmable Gate Array.

212

Acronyms

GCE Google Compute Engine.
GCF Google Cloud Function.
GCP Google Cloud Platform.
GPU Graphics Processing Unit.
GRU Gated Recurrent Unit.

HBA Host Bus Adapter.
HCL HashiCorp Configuration Language.
HPC High-Performance Computing.

IaaS Infrastructure-as-a-Service.
IAD Indirect Anomaly Detection.
IF Isolation Forest.
IFF Isolation Forest Features.
IOMMU Input–Output Memory Management Unit.
IoT Internet of Things.

JSON JavaScript Object Notation.

KVM Kernel-Based Virtual Machine.

LRZ Leibniz-Rechenzentrum.
LTE Long- Term Evolution.

MAE Mean Absolute Error.
MEC Multi-Access Edge Computing.
MET Mean Execution Time.
ML Machine Learning.
MMU Memory Management Unit.
MOC Minimum Overall Cost.
MOET Minimum Overall Execution Time.
MR-IOV Multiple Root I/O Virtualization and Sharing Specifica-

tion.
MSI/min Mean Successful Invocations per minute.

NATS Neural Autonomic Transport System.
NEG Network Endpoint Group.
NFS Network File System.
NIC Network Interface Card.
NLL Negative Log-Likelihood.
NLTK Natural Language Toolkit.

OCI Open Containers Initiative.
OS Operating System.

PaaS Platform-as-a-Service.
PCI Peripheral Component Interconnect.
PCIe Peripheral Component Interconnect Express.

213

Acronyms

PF Physical Function.
PV Persistent Volume.
PVC Persistent Volume Claim.

ReLU Rectified Linear Unit.
REST Representational State Transfer.
RMTPPs Recurrent Marked Temporal Point Processes.
RNN Recurrent Neural Network.
RPC Remote Procedure Call.
RPS Requests per Second.
RR Round-Robin.
RTT Round Trip Time.

SaaS Software-as-a-Service.
SLO Service-Level Objective.
SNS Simple Notification Service.
SQS Simple Queue Service.
SR-IOV Single Root I/O Virtualization and Sharing Specification.
SSL Secure Sockets Layer.

TLB Translation Lookaside Buffer.
TPP Temporal Point Process.
TPPs Temporal Point Processes.
TPU Tensor Processing Unit.

URL Uniform Resource Locator.

VCS Version Control System.
VF Virtual Function.
vHBA virtual Host Bus Adapter.
VM Virtual Machine.
VMM Virtual Machine Monitor.
vNIC virtual Network Interface Card.
VU Virtual User.

WRR Weighted Round-Robin.

YAML YAML Ain’t Markup Language.

214

Bibliography

[5] Alexandru Agache et al. “Firecracker: Lightweight virtualization for serverless applications”. In:
17th USENIX symposium on networked systems design and implementation (NSDI 20). 2020, pp. 419–
434.

[6] Nabeel Akhtar et al. “COSE: Configuring Serverless Functions using Statistical Learning”. In: IEEE
INFOCOM 2020 - IEEE Conference on Computer Communications. 2020, pp. 129–138. DOI: 10.
1109/INFOCOM41043.2020.9155363.

[7] Istemi Ekin Akkus et al. “SAND: Towards High-Performance Serverless Computing”. In: 2018
USENIX Annual Technical Conference (USENIX ATC 18). Boston, MA: USENIX Association, July
2018, pp. 923–935. ISBN: 978-1-939133-01-4. URL: https://www.usenix.org/conference/
atc18/presentation/akkus.

[8] Zaid Al-Ali et al. “Making Serverless Computing More Serverless”. In: July 2018, pp. 456–459.
DOI: 10.1109/CLOUD.2018.00064.

[9] Omid Alipourfard et al. “Cherrypick: Adaptively Unearthing the Best Cloud Configurations for
Big Data Analytics”. In: Proceedings of the 14th USENIX Conference on Networked Systems De-
sign and Implementation. NSDI’17. USENIX Association, 2017, 469–482. ISBN: 9781931971379.
URL: https://www.usenix.org/conference/nsdi17/technical- sessions/presentation/
alipourfard.

[12] Charles Anderson. “Docker [software engineering]”. In: Ieee Software 32.3 (2015), pp. 102–c3.

[15] Dimitris Apostolou, Yiannis Verginadis, and Gregoris Mentzas. “In the Fog: Application Deploy-
ment for the Cloud Continuum”. In: 2021 12th International Conference on Information, Intelli-
gence, Systems & Applications (IISA). 2021, pp. 1–7. DOI: 10.1109/IISA52424.2021.9555532.

[17] Austin Aske and Xinghui Zhao. “Supporting Multi-Provider Serverless Computing on the Edge”. In:
Proceedings of the 47th International Conference on Parallel Processing Companion. ICPP ’18. As-
sociation for Computing Machinery, 2018, pp. 1–6. ISBN: 9781450365239. DOI: 10.1145/3229710.
3229742. URL: https://doi.org/10.1145/3229710.3229742.

[18] S. M. A. Ataallah, S. M. Nassar, and E. E. Hemayed. “Fault tolerance in cloud computing - survey”.
In: 2015 11th International Computer Engineering Conference (ICENCO). Dec. 2015, pp. 241–245.
DOI: 10.1109/ICENCO.2015.7416355.

[46] Ataollah Fatahi Baarzi et al. “On Merits and Viability of Multi-Cloud Serverless”. In: Proceedings
of the ACM Symposium on Cloud Computing. New York, NY, USA: Association for Computing
Machinery, 2021, 600–608. ISBN: 9781450386388. URL: https://doi.org/10.1145/3472883.
3487002.

[47] Ioana Baldini et al. “Serverless computing: Current trends and open problems”. In: Research Ad-
vances in Cloud Computing. Springer, 2017, pp. 1–20. arXiv: 1706.03178v1.

215

https://doi.org/10.1109/INFOCOM41043.2020.9155363
https://doi.org/10.1109/INFOCOM41043.2020.9155363
https://www.usenix.org/conference/atc18/presentation/akkus
https://www.usenix.org/conference/atc18/presentation/akkus
https://doi.org/10.1109/CLOUD.2018.00064
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://doi.org/10.1109/IISA52424.2021.9555532
https://doi.org/10.1145/3229710.3229742
https://doi.org/10.1145/3229710.3229742
https://doi.org/10.1145/3229710.3229742
https://doi.org/10.1109/ICENCO.2015.7416355
https://doi.org/10.1145/3472883.3487002
https://doi.org/10.1145/3472883.3487002
https://arxiv.org/abs/1706.03178v1

Bibliography

[48] Daniel Balouek-Thomert et al. “Towards a computing continuum: Enabling edge-to-cloud integra-
tion for data-driven workflows”. In: The International Journal of High Performance Computing
Applications 33.6 (Sept. 2019), pp. 1159–1174. DOI: 10.1177/1094342019877383. eprint: https:
//doi.org/10.1177/1094342019877383. URL: https://doi.org/10.1177/1094342019877383.

[49] Luciano Baresi, Danilo Filgueira Mendonça, and Martin Garriga. “Empowering Low-Latency Ap-
plications Through a Serverless Edge Computing Architecture”. In: Service-Oriented and Cloud
Computing. Ed. by Flavio De Paoli, Stefan Schulte, and Einar Broch Johnsen. Springer International
Publishing. Cham: Springer International Publishing, 2017, pp. 196–210. ISBN: 978-3-319-67262-5.

[50] Sasa Baskarada, Vivian Nguyen, and Andy Koronios. “Architecting Microservices: Practical Oppor-
tunities and Challenges”. In: Journal of Computer Information Systems (Sept. 2018), pp. 1–9. DOI:
10.1080/08874417.2018.1520056.

[51] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. “Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing”. In: Future generation computer
systems 28.5 (2012), pp. 755–768.

[52] David Bermbach, Ahmet Serdar Karakaya, and Simon Buchholz. “Using application knowledge to
reduce cold starts in FaaS services”. In: Proceedings of the ACM Symposium on Applied Computing
(2020), pp. 134–143. DOI: 10.1145/3341105.3373909.

[53] David Bermbach et al. “Towards Auction-Based Function Placement in Serverless Fog Platforms”.
In: Apr. 2020, pp. 25–31. DOI: 10.1109/ICFC49376.2020.00012.

[55] Kashif Bilal et al. “Potentials, trends, and prospects in edge technologies: Fog, cloudlet, mobile
edge, and micro data centers”. In: Computer Networks 130 (2018), pp. 94–120. ISSN: 1389-1286.
DOI: https://doi.org/10.1016/j.comnet.2017.10.002. URL: https://www.sciencedirect.
com/science/article/pii/S1389128617303778.

[56] Carl Boettiger. “An introduction to Docker for reproducible research, with examples from the R
environment”. In: CoRR abs/1410.0846 (2014). arXiv: 1410.0846. URL: http://arxiv.org/abs/
1410.0846.

[57] Joel W. Branch et al. “In-network outlier detection in wireless sensor networks”. In: Knowledge and
Information Systems 34.1 (2013), pp. 23–54. DOI: 10.1007/s10115-011-0474-5. URL: https:
//doi.org/10.1007/s10115-011-0474-5.

[58] Antonio Brogi et al. “SeaClouds”. In: ACM SIGSOFT Software Engineering Notes 39.1 (Feb. 2014),
pp. 1–4. DOI: 10.1145/2557833.2557844.

[60] Rajkumar Buyya and Satish Narayana Srirama. Fog and edge computing: principles and paradigms.
John Wiley & Sons, 2019.

[61] Rajkumar Buyya and Satish Narayana Srirama. “Internet of Things (IoT) and New Computing
Paradigms”. In: Fog and Edge Computing: Principles and Paradigms. 2019, pp. 1–23. DOI: 10.
1002/9781119525080.ch1.

[62] Rajkumar Buyya et al. “Cloud computing and emerging IT platforms: Vision, hype, and reality
for delivering computing as the 5th utility”. In: Future Generation Computer Systems 25.6 (2009),
pp. 599–616. ISSN: 0167-739X. DOI: https://doi.org/10.1016/j.future.2008.12.001. URL:
https://www.sciencedirect.com/science/article/pii/S0167739X08001957.

[65] Tyler Caraza-Harter and Michael M Swift. “Blending containers and virtual machines: a study of
firecracker and gVisor”. In: Proceedings of the 16th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments. 2020, pp. 101–113.

216

https://doi.org/10.1177/1094342019877383
https://doi.org/10.1177/1094342019877383
https://doi.org/10.1177/1094342019877383
https://doi.org/10.1177/1094342019877383
https://doi.org/10.1080/08874417.2018.1520056
https://doi.org/10.1145/3341105.3373909
https://doi.org/10.1109/ICFC49376.2020.00012
https://doi.org/https://doi.org/10.1016/j.comnet.2017.10.002
https://www.sciencedirect.com/science/article/pii/S1389128617303778
https://www.sciencedirect.com/science/article/pii/S1389128617303778
https://arxiv.org/abs/1410.0846
http://arxiv.org/abs/1410.0846
http://arxiv.org/abs/1410.0846
https://doi.org/10.1007/s10115-011-0474-5
https://doi.org/10.1007/s10115-011-0474-5
https://doi.org/10.1007/s10115-011-0474-5
https://doi.org/10.1145/2557833.2557844
https://doi.org/10.1002/9781119525080.ch1
https://doi.org/10.1002/9781119525080.ch1
https://doi.org/https://doi.org/10.1016/j.future.2008.12.001
https://www.sciencedirect.com/science/article/pii/S0167739X08001957

[66] Joao Carreira et al. “Cirrus: A serverless framework for end-to-end ml workflows”. In: Proceedings
of the ACM Symposium on Cloud Computing. 2019, pp. 13–24.

[67] Rich Caruana, Steve Lawrence, and C Lee Giles. “Overfitting in neural nets: Backpropagation, con-
jugate gradient, and early stopping”. In: Advances in neural information processing systems. 2001,
pp. 402–408.

[70] Paul Castro et al. “The Rise of Serverless Computing”. In: Commun. ACM 62.12 (Nov. 2019), 44–54.
ISSN: 0001-0782. DOI: 10.1145/3368454. URL: https://doi.org/10.1145/3368454.

[71] Mohak Chadha, Anshul Jindal, and Michael Gerndt. “Architecture-Specific Performance Optimiza-
tion of Compute-Intensive FaaS Functions”. In: 2021 IEEE 14th International Conference on Cloud
Computing (CLOUD). 2021, pp. 478–483. DOI: 10.1109/CLOUD53861.2021.00062.

[72] Mohak Chadha, Anshul Jindal, and Michael Gerndt. “Towards Federated Learning Using FaaS Fab-
ric”. In: Proceedings of the 2020 Sixth International Workshop on Serverless Computing. WoSC’20.
Association for Computing Machinery. Association for Computing Machinery, 2020, 49–54. ISBN:
9781450382045. DOI: 10.1145/3429880.3430100. URL: https://doi.org/10.1145/3429880.
3430100.

[73] Narsimha Reddy Challa. “Hardware based i/o virtualization technologies for hypervisors, configu-
rations and advantages-a study”. In: 2012 IEEE International Conference on Cloud Computing in
Emerging Markets (CCEM). IEEE. 2012, pp. 1–5.

[74] P. Chen, S. Yang, and J. A. McCann. “Distributed Real-Time Anomaly Detection in Networked
Industrial Sensing Systems”. In: IEEE Transactions on Industrial Electronics 62.6 (2015), pp. 3832–
3842.

[75] Qian Chen et al. “On state of the art in virtual machine security”. In: 2012 Proceedings of IEEE
Southeastcon. 2012, pp. 1–6. DOI: 10.1109/SECon.2012.6196905.

[76] X. Chen et al. “Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing”.
In: IEEE/ACM Transactions on Networking 24.5 (2016), pp. 2795–2808.

[77] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-decoder for statistical
machine translation”. In: EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Lan-
guage Processing, Proceedings of the Conference (2014), pp. 1724–1734. DOI: 10.3115/v1/d14-
1179. arXiv: 1406.1078.

[83] Eli Cortez et al. “Resource Central: Understanding and Predicting Workloads for Improved Re-
source Management in Large Cloud Platforms”. In: Proceedings of the 26th Symposium on Operat-
ing Systems Principles. SOSP ’17. Shanghai, China: Association for Computing Machinery, 2017,
153–167. ISBN: 9781450350853. DOI: 10.1145/3132747.3132772. URL: https://doi.org/10.
1145/3132747.3132772.

[84] Rodrigo Crespo-Cepeda et al. “Challenges and Opportunities of Amazon Serverless Lambda Ser-
vices in Bioinformatics”. In: Proceedings of the 10th ACM International Conference on Bioinfor-
matics, Computational Biology and Health Informatics. BCB ’19. Niagara Falls, NY, USA: Asso-
ciation for Computing Machinery, 2019, 663–668. ISBN: 9781450366663. DOI: 10.1145/3307339.
3343462. URL: https://doi.org/10.1145/3307339.3343462.

[86] Michael Cusumano. “Cloud computing and SaaS as new computing platforms”. In: Communications
of the ACM 53.4 (2010), pp. 27–29.

[87] Andrea Damiani et al. “BlastFunction: A Full-Stack Framework Bringing FPGA Hardware Acceler-
ation to Cloud-Native Applications”. In: ACM Trans. Reconfigurable Technol. Syst. 15.2 (Jan. 2022).
ISSN: 1936-7406. DOI: 10.1145/3472958. URL: https://doi.org/10.1145/3472958.

217

https://doi.org/10.1145/3368454
https://doi.org/10.1145/3368454
https://doi.org/10.1109/CLOUD53861.2021.00062
https://doi.org/10.1145/3429880.3430100
https://doi.org/10.1145/3429880.3430100
https://doi.org/10.1145/3429880.3430100
https://doi.org/10.1109/SECon.2012.6196905
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://arxiv.org/abs/1406.1078
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3307339.3343462
https://doi.org/10.1145/3307339.3343462
https://doi.org/10.1145/3307339.3343462
https://doi.org/10.1145/3472958
https://doi.org/10.1145/3472958

Bibliography

[88] A De, U Upadhyay, and M Gomez-Rodriguez. Lecture Notes for Human-Centered ML: Temporal
Point Processes. 2019.

[90] P. Di Francesco, P. Lago, and I. Malavolta. “Migrating Towards Microservice Architectures: An
Industrial Survey”. In: 2018 IEEE International Conference on Software Architecture (ICSA). Apr.
2018, pp. 29–2909. DOI: 10.1109/ICSA.2018.00012.

[91] Marcos Dias de Assunção, Alexandre da Silva Veith, and Rajkumar Buyya. “Distributed data stream
processing and edge computing: A survey on resource elasticity and future directions”. In: Journal
of Network and Computer Applications 103 (2018), pp. 1–17. ISSN: 1084-8045. DOI: https://doi.
org/10.1016/j.jnca.2017.12.001. URL: https://www.sciencedirect.com/science/article/
pii/S1084804517303971.

[92] Yaozu Dong, Zhao Yu, and Greg Rose. “SR-IOV Networking in Xen: Architecture, Design and
Implementation.” In: Workshop on I/O Virtualization. Vol. 2. 2008.

[93] Nan Du et al. “Recurrent Marked Temporal Point Processes: Embedding Event History to Vector”.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. KDD ’16. San Francisco, California, USA: Association for Computing Machinery,
2016, 1555–1564. ISBN: 9781450342322. DOI: 10.1145/2939672.2939875. URL: https://doi.
org/10.1145/2939672.2939875.

[95] Simon Eismann et al. “A Review of Serverless Use Cases and their Characteristics”. In: CoRR
abs/2008.11110 (2020). arXiv: 2008.11110. URL: https://arxiv.org/abs/2008.11110.

[96] Simon Eismann et al. “Serverless Applications: Why, When, and How?” In: CoRR abs/2009.08173
(2020). arXiv: 2009.08173. URL: https://arxiv.org/abs/2009.08173.

[97] Simon Eismann et al. “Sizeless: Predicting the Optimal Size of Serverless Functions”. In: Proceed-
ings of the 22nd International Middleware Conference. Middleware ’21. Québec city, Canada: Asso-
ciation for Computing Machinery, 2021, 248–259. ISBN: 9781450385343. DOI: 10.1145/3464298.
3493398. URL: https://doi.org/10.1145/3464298.3493398.

[98] Adam Eivy. “Be Wary of the Economics of "Serverless" Cloud Computing”. In: IEEE Cloud Com-
put. 4.2 (2017), pp. 6–12. DOI: 10.1109/MCC.2017.32. URL: https://doi.org/10.1109/MCC.
2017.32.

[99] Tarek Elgamal et al. “Costless: Optimizing Cost of Serverless Computing through Function Fusion
and Placement”. In: CoRR abs/1811.09721 (2018). arXiv: 1811.09721. URL: http://arxiv.org/
abs/1811.09721.

[101] Ron Emerick. “PCI Express IO Virtualization Overview”. In: SNIA Education (2012).

[102] Lennart Espe. et al. “Performance Evaluation of Container Runtimes”. In: Proceedings of the 10th
International Conference on Cloud Computing and Services Science - CLOSER, INSTICC. SciTePress,
2020, pp. 273–281. ISBN: 978-989-758-424-4. DOI: 10.5220/0009340402730281.

[103] Erwin van Eyk et al. “The SPEC Cloud Group’s Research Vision on FaaS and Serverless Archi-
tectures”. In: Proceedings of the 2nd International Workshop on Serverless Computing. WoSC ’17.
Las Vegas, Nevada: Association for Computing Machinery, 2017, 1–4. ISBN: 9781450354349. DOI:
10.1145/3154847.3154848. URL: https://doi.org/10.1145/3154847.3154848.

[104] Youssef Fahim et al. “Load Balancing in Cloud Computing Using Meta-Heuristic Algorithm.” In:
Journal of Information Processing Systems 14.3 (2018).

218

https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/https://doi.org/10.1016/j.jnca.2017.12.001
https://doi.org/https://doi.org/10.1016/j.jnca.2017.12.001
https://www.sciencedirect.com/science/article/pii/S1084804517303971
https://www.sciencedirect.com/science/article/pii/S1084804517303971
https://doi.org/10.1145/2939672.2939875
https://doi.org/10.1145/2939672.2939875
https://doi.org/10.1145/2939672.2939875
https://arxiv.org/abs/2008.11110
https://arxiv.org/abs/2008.11110
https://arxiv.org/abs/2009.08173
https://arxiv.org/abs/2009.08173
https://doi.org/10.1145/3464298.3493398
https://doi.org/10.1145/3464298.3493398
https://doi.org/10.1145/3464298.3493398
https://doi.org/10.1109/MCC.2017.32
https://doi.org/10.1109/MCC.2017.32
https://doi.org/10.1109/MCC.2017.32
https://arxiv.org/abs/1811.09721
http://arxiv.org/abs/1811.09721
http://arxiv.org/abs/1811.09721
https://doi.org/10.5220/0009340402730281
https://doi.org/10.1145/3154847.3154848
https://doi.org/10.1145/3154847.3154848

[105] Chen-Fu Fan., Anshul Jindal., and Michael Gerndt. “Microservices vs Serverless: A Performance
Comparison on a Cloud-native Web Application”. In: Proceedings of the 10th International Confer-
ence on Cloud Computing and Services Science - CLOSER, INSTICC. SciTePress, 2020, pp. 204–
215. ISBN: 978-989-758-424-4. DOI: 10.5220/0009792702040215.

[106] Charles Ferrari et al. “Edge Computing for Communication Service Providers: A Review on the
Architecture, Ownership and Governing Models”. In: 2021 International Conference on Software,
Telecommunications and Computer Networks (SoftCOM). 2021, pp. 1–6. DOI: 10.23919/SoftCOM52868.
2021.9559056.

[107] Kamil Figiela et al. “Performance evaluation of heterogeneous cloud functions”. In: Concurrency
and Computation: Practice and Experience 30.23 (2018), e4792.

[109] Geoffrey C. Fox et al. “Status of Serverless Computing and Function-as-a-Service(FaaS) in Industry
and Research”. In: (Aug. 2017). DOI: 10.13140/RG.2.2.15007.87206. arXiv: 1708.08028 [cs.DC].
URL: http://arxiv.org/abs/1708.08028http://dx.doi.org/10.13140/RG.2.2.15007.87206.

[110] Geoffrey C. Fox et al. “Status of Serverless Computing and Function-as-a-Service(FaaS) in Industry
and Research”. In: arXiv e-prints, arXiv:1708.08028 (Aug. 2017), arXiv:1708.08028. arXiv: 1708.
08028 [cs.DC].

[111] Joshua D Gagliardi and Timothy S Munger. Content delivery network. https://portal.unifiedpatents.
com/patents/patent/US-8868737-B2. US Patent 7,962,580. 2011.

[112] Nishant Garg. Apache Kafka. Packt Publishing Ltd, 2013.

[114] Joel Gibson et al. “Benefits and challenges of three cloud computing service models”. In: 2012
Fourth International Conference on Computational Aspects of Social Networks (CASoN). 2012,
pp. 198–205. DOI: 10.1109/CASoN.2012.6412402.

[115] M. K. Gokhroo, M. C. Govil, and E. S. Pilli. “Detecting and mitigating faults in cloud computing en-
vironment”. In: 2017 3rd International Conference on Computational Intelligence Communication
Technology (CICT). Feb. 2017, pp. 1–9. DOI: 10.1109/CIACT.2017.7977362.

[122] Martin Grambow et al. “BeFaaS: An Application-Centric Benchmarking Framework for FaaS Plat-
forms”. In: CoRR abs/2102.12770 (2021). arXiv: 2102.12770. URL: https://arxiv.org/abs/
2102.12770.

[123] J. R. Gunasekaran et al. “Spock: Exploiting Serverless Functions for SLO and Cost Aware Resource
Procurement in Public Cloud”. In: 2019 IEEE 12th International Conference on Cloud Computing
(CLOUD). 2019, pp. 199–208. DOI: 10.1109/CLOUD.2019.00043.

[124] Harshit Gupta et al. “iFogSim: A toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing environments”. In: Software: Prac-
tice and Experience 47.9 (June 2017), pp. 1275–1296. DOI: 10.1002/spe.2509. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2509. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/spe.2509.

[127] Joseph M. Hellerstein et al. “Serverless computing: One step forward, two steps back”. In: CIDR
2019 - 9th Biennial Conference on Innovative Data Systems Research 3 (2019). arXiv: arXiv :
1812.03651v1.

[128] Scott Hendrickson et al. “Serverless Computation with OpenLambda”. In: 8th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 16). Denver, CO: USENIX Association, June 2016.
URL: https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/
hendrickson.

219

https://doi.org/10.5220/0009792702040215
https://doi.org/10.23919/SoftCOM52868.2021.9559056
https://doi.org/10.23919/SoftCOM52868.2021.9559056
https://doi.org/10.13140/RG.2.2.15007.87206
https://arxiv.org/abs/1708.08028
http://arxiv.org/abs/1708.08028%20http://dx.doi.org/10.13140/RG.2.2.15007.87206
https://arxiv.org/abs/1708.08028
https://arxiv.org/abs/1708.08028
https://portal.unifiedpatents.com/patents/patent/US-8868737-B2
https://portal.unifiedpatents.com/patents/patent/US-8868737-B2
https://doi.org/10.1109/CASoN.2012.6412402
https://doi.org/10.1109/CIACT.2017.7977362
https://arxiv.org/abs/2102.12770
https://arxiv.org/abs/2102.12770
https://arxiv.org/abs/2102.12770
https://doi.org/10.1109/CLOUD.2019.00043
https://doi.org/10.1002/spe.2509
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2509
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2509
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2509
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2509
https://arxiv.org/abs/arXiv:1812.03651v1
https://arxiv.org/abs/arXiv:1812.03651v1
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson

Bibliography

[129] Jiangshui Hong et al. “An Overview of Multi-cloud Computing”. In: Web, Artificial Intelligence and
Network Applications. Ed. by Leonard Barolli et al. Cham: Springer International Publishing, 2019,
pp. 1055–1068. ISBN: 978-3-030-15035-8.

[131] Bryan Hooi and Christos Faloutsos. “Branch and Border: Partition-Based Change Detection in Mul-
tivariate Time Series”. In: SDM. 2019.

[138] N. Jain and S. Choudhary. “Overview of virtualization in cloud computing”. In: 2016 Symposium on
Colossal Data Analysis and Networking (CDAN). Mar. 2016, pp. 1–4. DOI: 10.1109/CDAN.2016.
7570950.

[139] B. Jambunathan and K. Yoganathan. “Architecture Decision on using Microservices or Serverless
Functions with Containers”. In: 2018 International Conference on Current Trends towards Converg-
ing Technologies (ICCTCT). Mar. 2018, pp. 1–7. DOI: 10.1109/ICCTCT.2018.8551035.

[140] Nicholas A. James and David S. Matteson. ecp: An R Package for Nonparametric Multiple Change
Point Analysis of Multivariate Data. 2013. arXiv: 1309.3295 [stat.CO].

[142] Kris Jamsa. Cloud computing: SaaS, PaaS, IaaS, virtualization, business models, mobile, security
and more. Jones & Bartlett Publishers, 2012.

[143] Jananie Jarachanthan et al. “Astra: Autonomous Serverless Analytics with Cost-Efficiency and QoS-
Awareness”. In: 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
2021, pp. 756–765. DOI: 10.1109/IPDPS49936.2021.00085.

[146] Anshul Jindal and Michael Gerndt. “From DevOps to NoOps: Is It Worth It?” In: Cloud Computing
and Services Science. Ed. by Donald Ferguson, Claus Pahl, and Markus Helfert. Cham: Springer
International Publishing, 2021, pp. 178–202. ISBN: 978-3-030-72369-9.

[147] Anshul Jindal, Vladimir Podolskiy, and Michael Gerndt. “Performance modeling for cloud microser-
vice applications”. In: Proceedings of the 2019 ACM/SPEC International Conference on Perfor-
mance Engineering. ICPE ’19. Mumbai, India: Association for Computing Machinery, 2019, pp. 25–
32. ISBN: 9781450362399. DOI: 10.1145/3297663.3310309. URL: https://doi.org/10.1145/
3297663.3310309.

[148] Anshul Jindal et al. “Estimating the Capacities of Function-as-a-Service Functions”. In: Proceedings
of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion. UCC
’21 Companion. New York, NY, USA: Association for Computing Machinery, 2021. ISBN: 978-1-
4503-9163-4/21/12. DOI: 10.1145/3492323.3495628. URL: https://doi.org/10.1145/3492323.
3495628.

[149] Anshul Jindal et al. “Function delivery network: Extending serverless computing for heterogeneous
platforms”. In: Software: Practice and Experience 51.9 (2021), pp. 1936–1963. ISSN: 1097024X.
DOI: https://doi.org/10.1002/spe.2966. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/spe.2966. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2966.

[150] Anshul Jindal et al. “Poster: Function Delivery Network: Extending Serverless to Heterogeneous
Computing”. In: 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS).
2021, pp. 1128–1129. DOI: 10.1109/ICDCS51616.2021.00120.

[151] Anshul Jindal et al. “Scalable Infrastructure and Workflow for Anomaly Detection in an Automo-
tive Industry”. In: 2020 International Conference on Innovative Trends in Information Technology
(ICITIIT). 2020, pp. 1–6. DOI: 10.1109/ICITIIT49094.2020.9071555.

[152] Eric Jonas et al. “Cloud programming simplified: A berkeley view on serverless computing”. In:
arXiv preprint arXiv:1902.03383 (2019).

220

https://doi.org/10.1109/CDAN.2016.7570950
https://doi.org/10.1109/CDAN.2016.7570950
https://doi.org/10.1109/ICCTCT.2018.8551035
https://arxiv.org/abs/1309.3295
https://doi.org/10.1109/IPDPS49936.2021.00085
https://doi.org/10.1145/3297663.3310309
https://doi.org/10.1145/3297663.3310309
https://doi.org/10.1145/3297663.3310309
https://doi.org/10.1145/3492323.3495628
https://doi.org/10.1145/3492323.3495628
https://doi.org/10.1145/3492323.3495628
https://doi.org/https://doi.org/10.1002/spe.2966
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2966
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2966
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2966
https://doi.org/10.1109/ICDCS51616.2021.00120
https://doi.org/10.1109/ICITIIT49094.2020.9071555

[153] Eric Jonas et al. “Occupy the cloud”. In: Proceedings of the 2017 Symposium on Cloud Computing.
SoCC ’17. Santa Clara, California: ACM, Sept. 2017, 445–451. ISBN: 9781450350280. DOI: 10.
1145/3127479.3128601. URL: https://doi.org/10.1145/3127479.3128601.

[154] Zhu Kai et al. “Building a private cloud platform based on open source software OpenStack”. In:
2020 International Conference on Big Data and Social Sciences (ICBDSS). 2020, pp. 84–87. DOI:
10.1109/ICBDSS51270.2020.00027.

[155] Michael J Kavis. Architecting the cloud: design decisions for cloud computing service models (SaaS,
PaaS, and IaaS). John Wiley & Sons, 2014.

[156] D. Kelly, F. Glavin, and E. Barrett. “Serverless Computing: Behind the Scenes of Major Platforms”.
In: 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). 2020, pp. 304–312.
DOI: 10.1109/CLOUD49709.2020.00050.

[157] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014), pp. 1–15. arXiv: 1412.6980.

[158] Avi Kivity et al. “kvm: the Linux virtual machine monitor”. In: Proceedings of the Linux symposium.
Vol. 1. 8. Dttawa, Dntorio, Canada. 2007, pp. 225–230.

[159] Guenter Klas. “Edge Computing and the Role of Cellular Networks”. In: Computer 50.10 (2017),
pp. 40–49. DOI: 10.1109/MC.2017.3641649.

[160] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Algo-
rithms. USA: Addison-Wesley Longman Publishing Co., Inc., 1997. ISBN: 0201896842.

[161] R. Kochendörffer. “Kreyszig, E.: Advanced Engineering Mathematics. J. Wiley & Sons, Inc., New
York, London 1962. IX + 856 S. 402 Abb. Preis s. 79.—”. In: Biometrische Zeitschrift 7.2 (1965),
pp. 129–130. DOI: https://doi.org/10.1002/bimj.19650070232. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/bimj.19650070232. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1002/bimj.19650070232.

[162] Nane Kratzke. “A brief history of cloud application architectures”. In: Applied Sciences 8.8 (Aug.
2018), p. 1368. DOI: 10.3390/app8081368.

[163] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification with Deep Con-
volutional Neural Networks”. In: Commun. ACM 60.6 (May 2017), 84–90. ISSN: 0001-0782. DOI:
10.1145/3065386.

[166] Kin Lane. “Overview of the backend as a service (BaaS) space”. In: API Evangelist (2015).

[167] M Lavanya and V Vaithiyanathan. “Load prediction algorithm for dynamic resource allocation”. In:
Indian J Sci Technol 8 (2015), p. 35.

[168] Michael Le and Yuval Tamir. “ReHype: Enabling VM Survival across Hypervisor Failures”. In:
SIGPLAN Not. VEE ’11 46.7 (Mar. 2011), 63–74. ISSN: 0362-1340. DOI: 10 . 1145 / 2007477 .
1952692. URL: https://doi.org/10.1145/2007477.1952692.

[169] Hyungro Lee, Kumar Satyam, and Geoffrey Fox. “Evaluation of Production Serverless Computing
Environments”. In: (July 2018), pp. 442–450. DOI: 10.13140/RG.2.2.28642.84165. URL: https:
//www.researchgate.net/publication/324362882.

[171] Ang Li et al. “CloudCmp: Comparing Public Cloud Providers”. In: IMC ’10 (2010), 1–14. DOI:
10.1145/1879141.1879143. URL: https://doi.org/10.1145/1879141.1879143.

221

https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1109/ICBDSS51270.2020.00027
https://doi.org/10.1109/CLOUD49709.2020.00050
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/MC.2017.3641649
https://doi.org/https://doi.org/10.1002/bimj.19650070232
https://onlinelibrary.wiley.com/doi/pdf/10.1002/bimj.19650070232
https://onlinelibrary.wiley.com/doi/pdf/10.1002/bimj.19650070232
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.19650070232
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.19650070232
https://doi.org/10.3390/app8081368
https://doi.org/10.1145/3065386
https://doi.org/10.1145/2007477.1952692
https://doi.org/10.1145/2007477.1952692
https://doi.org/10.1145/2007477.1952692
https://doi.org/10.13140/RG.2.2.28642.84165
https://www.researchgate.net/publication/324362882
https://www.researchgate.net/publication/324362882
https://doi.org/10.1145/1879141.1879143
https://doi.org/10.1145/1879141.1879143

Bibliography

[172] Junfeng Li et al. “Understanding Open Source Serverless Platforms: Design Considerations and
Performance”. In: Proceedings of the 5th International Workshop on Serverless Computing. WOSC
’19. Davis, CA, USA: Association for Computing Machinery, 2019, 37–42. ISBN: 9781450370387.
DOI: 10.1145/3366623.3368139. URL: https://doi.org/10.1145/3366623.3368139.

[173] Man-Lap Li et al. “Understanding the propagation of hard errors to software and implications for
resilient system design”. In: ASPLOS 2008. 2008.

[174] Zheng Li et al. “Performance Overhead Comparison between Hypervisor and Container Based Vir-
tualization”. In: 2017 IEEE 31st International Conference on Advanced Information Networking
and Applications (AINA). 2017, pp. 955–962. DOI: 10.1109/AINA.2017.79.

[175] Ping-Min Lin and Alex Glikson. “Mitigating Cold Starts in Serverless Platforms: A Pool-Based
Approach”. In: CoRR abs/1903.12221 (2019). arXiv: 1903.12221. URL: http://arxiv.org/abs/
1903.12221.

[176] Robert F. Ling. “Comparison of Several Algorithms for Computing Sample Means and Variances”.
In: Journal of the American Statistical Association 69.348 (1974), pp. 859–866. DOI: 10.1080/
01621459.1974.10480219. eprint: https://www.tandfonline.com/doi/pdf/10.1080/01621459.
1974.10480219. URL: https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.
10480219.

[178] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation Forest”. In: 2008 Eighth IEEE Interna-
tional Conference on Data Mining. 2008, pp. 413–422. DOI: 10.1109/ICDM.2008.17.

[179] W. Lloyd et al. “Serverless Computing: An Investigation of Factors Influencing Microservice Perfor-
mance”. In: 2018 IEEE International Conference on Cloud Engineering (IC2E). Apr. 2018, pp. 159–
169. DOI: 10.1109/IC2E.2018.00039.

[180] Jack Lo. “VMware and CPU virtualization technology”. In: World Wide Web electronic publication
(2005).

[183] T. Lynn et al. “A Preliminary Review of Enterprise Serverless Cloud Computing (Function-as-a-
Service) Platforms”. In: 2017 IEEE International Conference on Cloud Computing Technology and
Science (CloudCom). Vol. 2017-Decem. IEEE. IEEE Computer Society, Dec. 2017, pp. 162–169.
ISBN: 9781538606926. DOI: 10.1109/CloudCom.2017.15.

[184] S. Malla and K. Christensen. “HPC in the cloud: Performance comparison of function as a service
(FaaS) vs infrastructure as a service (IaaS)”. In: Internet Technol. Lett. 3 (2020).

[185] Sulav Malla and Ken Christensen. “HPC in the cloud: Performance comparison of function as a
service (FaaS) vs infrastructure as a service (IaaS)”. In: Internet Technology Letters 3.1 (Dec. 2019),
e137. DOI: 10.1002/itl2.137.

[188] Johannes Manner et al. “Cold start influencing factors in function as a service”. In: Proceedings
- 11th IEEE/ACM International Conference on Utility and Cloud Computing Companion, UCC
Companion 2018. 2019, pp. 181–188. ISBN: 9781728103594. DOI: 10.1109/UCC- Companion.
2018.00054. URL: https://www.jeremydaly.com/15-key-takeaways-from-the-serverless-
talk-at-.

[189] G. Mazlami, J. Cito, and P. Leitner. “Extraction of Microservices from Monolithic Software Archi-
tectures”. In: 2017 IEEE International Conference on Web Services (ICWS). June 2017, pp. 524–
531. DOI: 10.1109/ICWS.2017.61.

[190] Garrett McGrath and Paul R. Brenner. “Serverless Computing: Design, Implementation, and Per-
formance”. In: 2017 IEEE 37th International Conference on Distributed Computing Systems Work-
shops (ICDCSW). IEEE. IEEE, June 2017, pp. 405–410. DOI: 10.1109/icdcsw.2017.36.

222

https://doi.org/10.1145/3366623.3368139
https://doi.org/10.1145/3366623.3368139
https://doi.org/10.1109/AINA.2017.79
https://arxiv.org/abs/1903.12221
http://arxiv.org/abs/1903.12221
http://arxiv.org/abs/1903.12221
https://doi.org/10.1080/01621459.1974.10480219
https://doi.org/10.1080/01621459.1974.10480219
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1974.10480219
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1974.10480219
https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10480219
https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10480219
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/IC2E.2018.00039
https://doi.org/10.1109/CloudCom.2017.15
https://doi.org/10.1002/itl2.137
https://doi.org/10.1109/UCC-Companion.2018.00054
https://doi.org/10.1109/UCC-Companion.2018.00054
https://www.jeremydaly.com/15-key-takeaways-from-the-serverless-talk-at-
https://www.jeremydaly.com/15-key-takeaways-from-the-serverless-talk-at-
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/icdcsw.2017.36

[191] G.J. McLachlan and D. Peel. Finite Mixture Models. Wiley Series in Probability and Statistics.
Wiley, 2004. ISBN: 9780471654063. URL: https://books.google.de/books?id=c2_fAox0DQoC.

[192] Daniel A Menascé. “Virtualization: Concepts, applications, and performance modeling”. In: Int.
CMG Conference. 2005, pp. 407–414.

[202] Anup Mohan et al. “Agile cold starts for scalable serverless”. In: 11th {USENIX} Workshop on Hot
Topics in Cloud Computing (HotCloud 19). HotCloud’19. USENIX Association. Renton, WA, USA:
USENIX Association, 2019, p. 21.

[203] T. S. Mohan. “Migrating into a Cloud”. In: Cloud Computing. John Wiley & Sons, Ltd, 2011.
Chap. 2, pp. 43–56. ISBN: 9780470940105. DOI: https://doi.org/10.1002/9780470940105.ch2.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470940105.ch2. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470940105.ch2.

[204] S. K. Mohanty, G. Premsankar, and M. di Francesco. “An Evaluation of Open Source Serverless
Computing Frameworks”. In: 2018 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom). IEEE. Dec. 2018, pp. 115–120. DOI: 10.1109/CloudCom2018.2018.
00033. URL: https://doi.org/10.1109/CloudCom2018.2018.00033.

[205] Roberto Morabito, Jimmy Kjällman, and Miika Komu. “Hypervisors vs. Lightweight Virtualization:
A Performance Comparison”. In: 2015 IEEE International Conference on Cloud Engineering. 2015,
pp. 386–393. DOI: 10.1109/IC2E.2015.74.

[206] Gil Neiger et al. “Intel virtualization technology: Hardware support for efficient processor virtual-
ization.” In: Intel Technology Journal 10.3 (2006).

[210] Jason Nikolai and Yong Wang. “Hypervisor-based cloud intrusion detection system”. In: 2014 In-
ternational Conference on Computing, Networking and Communications (ICNC) (2014), pp. 989–
993.

[211] E. D. Nitto et al. “Supporting the Development and Operation of Multi-cloud Applications: The
MODAClouds Approach”. In: 2013 15th International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing. 2013, pp. 417–423.

[213] Takahiro Omi, Naonori Ueda, and Kazuyuki Aihara. “Fully Neural Network Based Model for Gen-
eral Temporal Point Processes”. In: Proceedings of the 33rd International Conference on Neural
Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2019.

[229] Per-Olov Östberg et al. “Reliable capacity provisioning for distributed cloud/edge/fog computing
applications”. In: 2017 European conference on networks and communications (EuCNC). IEEE.
2017, pp. 1–6.

[230] Manish Parashar et al. “Cloud Paradigms and Practices for Computational and Data-Enabled Science
and Engineering”. In: Computing in Science Engineering 15.4 (2013), pp. 10–18. DOI: 10.1109/
MCSE.2013.49.

[231] Maciej Pawlik, Kamil Figiela, and Maciej Malawski. “Performance evaluation of parallel cloud
functions”. In: Poster Presented at ICPP (2018). [Poster Presentation].

[232] Junjie Peng et al. “Modeling for CPU-intensive applications in cloud computing”. In: Proceedings -
2015 IEEE 17th International Conference on High Performance Computing and Communications,
2015 IEEE 7th International Symposium on Cyberspace Safety and Security and 2015 IEEE 12th
International Conference on Embedded Software and Systems, H (2015), pp. 20–25. DOI: 10.1109/
HPCC-CSS-ICESS.2015.128.

223

https://doi.org/https://doi.org/10.1002/9780470940105.ch2
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470940105.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470940105.ch2
https://doi.org/10.1109/CloudCom2018.2018.00033
https://doi.org/10.1109/CloudCom2018.2018.00033
https://doi.org/10.1109/CloudCom2018.2018.00033
https://doi.org/10.1109/IC2E.2015.74
https://doi.org/10.1109/MCSE.2013.49
https://doi.org/10.1109/MCSE.2013.49
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.128
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.128

Bibliography

[233] Tobias Pfandzelter and David Bermbach. “tinyFaaS: A lightweight faas platform for edge environ-
ments”. In: 2020 IEEE International Conference on Fog Computing (ICFC). IEEE. 2020, pp. 17–
24.

[234] Marc-Arhtur Pierre-Louis. “OpenWhisk: A quick tech preview”. In: DeveloperWorks Open, IBM,
Feb 22 (2016), p. 7.

[237] Pooja and A. Pandey. “Impact of memory intensive applications on performance of cloud virtual
machine”. In: 2014 Recent Advances in Engineering and Computational Sciences (RAECS). Mar.
2014, pp. 1–6. DOI: 10.1109/RAECS.2014.6799629.

[242] Ling Qian et al. “Cloud Computing: An Overview”. In: Cloud Computing. Ed. by Martin Gilje
Jaatun, Gansen Zhao, and Chunming Rong. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 626–631. ISBN: 978-3-642-10665-1.

[244] Kunal Rao et al. “ECO: Edge-Cloud Optimization of 5G applications”. In: 2021 IEEE/ACM 21st
International Symposium on Cluster, Cloud and Internet Computing (CCGrid). 2021, pp. 649–659.
DOI: 10.1109/CCGrid51090.2021.00078.

[245] Steven K. Reinhardt and Shubhendu S. Mukherjee. “Transient Fault Detection via Simultaneous
Multithreading”. In: SIGARCH Comput. Archit. News. ISCA ’00 28.2 (May 2000), 25–36. ISSN:
0163-5964. DOI: 10.1145/342001.339652. URL: https://doi.org/10.1145/342001.339652.

[246] Charles Reiss et al. “Heterogeneity and Dynamicity of Clouds at Scale: Google Trace Analysis”. In:
Proceedings of the Third ACM Symposium on Cloud Computing. Association for Computing Ma-
chinery. New York, NY, USA: Association for Computing Machinery, 2012. ISBN: 9781450317610.
DOI: 10.1145/2391229.2391236. URL: https://doi.org/10.1145/2391229.2391236.

[247] Xiaona Ren, Rongheng Lin, and Hua Zou. “A dynamic load balancing strategy for cloud computing
platform based on exponential smoothing forecast”. In: 2011 IEEE International Conference on
Cloud Computing and Intelligence Systems. IEEE, Sept. 2011. DOI: 10.1109/ccis.2011.6045063.

[248] Andre Oliver Richter. “Mitigating and Resolving Performance Isolation Issues of PCIe Passthrough
and SR-IOV in Multi-Core Virtualization”. Dissertation. München: Technische Universität München,
2017.

[250] Fernando Rodríguez-Haro et al. “A summary of virtualization techniques”. In: Procedia Technology
3 (2012). The 2012 Iberoamerican Conference on Electronics Engineering and Computer Science,
pp. 267–272. ISSN: 2212-0173. DOI: https://doi.org/10.1016/j.protcy.2012.03.029. URL:
https://www.sciencedirect.com/science/article/pii/S2212017312002587.

[253] Gor Safaryan et al. “SLAM: SLO-Aware Memory Optimization for Serverless Applications”. In:
2022 IEEE 15th International Conference on Cloud Computing (CLOUD). 2022, pp. 30–39. DOI:
10.1109/CLOUD55607.2022.00019.

[254] Jyotiprakash Sahoo, Subasish Mohapatra, and Radha Lath. “Virtualization: A Survey on Concepts,
Taxonomy and Associated Security Issues”. In: 2010 Second International Conference on Computer
and Network Technology. 2010, pp. 222–226. DOI: 10.1109/ICCNT.2010.49.

[255] M. Satyanarayanan et al. “The Case for VM-Based Cloudlets in Mobile Computing”. In: IEEE
Pervasive Computing 8.4 (Oct. 2009), pp. 14–23. DOI: 10.1109/mprv.2009.82.

[256] Mahadev Satyanarayanan. “The Emergence of Edge Computing”. In: Computer 50.1 (2017), pp. 30–
39. DOI: 10.1109/MC.2017.9.

[257] Mahadev Satyanarayanan et al. “The case for vm-based cloudlets in mobile computing”. In: IEEE
pervasive Computing 8.4 (2009), pp. 14–23.

224

https://doi.org/10.1109/RAECS.2014.6799629
https://doi.org/10.1109/CCGrid51090.2021.00078
https://doi.org/10.1145/342001.339652
https://doi.org/10.1145/342001.339652
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1109/ccis.2011.6045063
https://doi.org/https://doi.org/10.1016/j.protcy.2012.03.029
https://www.sciencedirect.com/science/article/pii/S2212017312002587
https://doi.org/10.1109/CLOUD55607.2022.00019
https://doi.org/10.1109/ICCNT.2010.49
https://doi.org/10.1109/mprv.2009.82
https://doi.org/10.1109/MC.2017.9

[258] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. “OpenStack: toward an open-source
solution for cloud computing”. In: International Journal of Computer Applications 55.3 (2012),
pp. 38–42.

[263] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. “Architectural implications of function-
as-a-service computing”. In: Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture. 2019, pp. 1063–1075.

[264] Yizhou Shan et al. “LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggrega-
tion”. In: Proceedings of the 13th USENIX Conference on Operating Systems Design and Implemen-
tation. OSDI’18. Carlsbad, CA, USA: USENIX Association, 2018, 69–87. ISBN: 9781931971478.

[265] Vaishaal Shankar et al. “Numpywren: Serverless linear algebra”. In: arXiv preprint arXiv:1810.09679.
SoCC ’20 (2018), 281–295. DOI: 10.1145/3419111.3421287. URL: https://doi.org/10.1145/
3419111.3421287.

[266] G.Siva Shanmugam and N.Ch.S. N. Iyengar. “Effort of Load Balancer to Achieve Green Cloud
Computing: A Review”. In: International Journal of Multimedia and Ubiquitous Engineering 11.3
(Mar. 2016), pp. 317–332. DOI: 10.14257/ijmue.2016.11.3.30.

[269] Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. “Intensity-Free Learning of Temporal
Point Processes”. In: CoRR abs/1909.12127 (2019). arXiv: 1909.12127. URL: http://arxiv.org/
abs/1909.12127.

[270] Oleksandr Shchur et al. “Neural Temporal Point Processes: A Review”. In: Proceedings of the Thirti-
eth International Joint Conference on Artificial Intelligence, IJCAI-21. Ed. by Zhi-Hua Zhou. Survey
Track. International Joint Conferences on Artificial Intelligence Organization, Aug. 2021, pp. 4585–
4593. DOI: 10.24963/ijcai.2021/623. URL: https://doi.org/10.24963/ijcai.2021/623.

[271] Jiacheng Shen et al. “Defuse: A Dependency-Guided Function Scheduler to Mitigate Cold Starts on
FaaS Platforms”. In: 2021 IEEE 41st International Conference on Distributed Computing Systems
(ICDCS). 2021, pp. 194–204. DOI: 10.1109/ICDCS51616.2021.00027.

[272] Olena Skarlat et al. “Resource provisioning for IoT services in the fog”. In: 2016 IEEE 9th inter-
national conference on service-oriented computing and applications (SOCA). IEEE. 2016, pp. 32–
39.

[273] Christopher Peter Smith et al. “FaDO: FaaS Functions and Data Orchestrator for Multiple Serverless
Edge-Cloud Clusters”. In: 2022 IEEE 6th International Conference on Fog and Edge Computing
(ICFEC). 2022, pp. 17–25. DOI: 10.1109/ICFEC54809.2022.00010.

[274] Gaurav Somani and Sanjay Chaudhary. “Application Performance Isolation in Virtualization”. In:
2009 IEEE International Conference on Cloud Computing. 2009, pp. 41–48. DOI: 10.1109/CLOUD.
2009.78.

[275] Vladimir Sor and Satish Narayana Srirama. “A Statistical Approach for Identifying Memory Leaks
in Cloud Applications”. In: CLOSER. 2011.

[276] Josef Spillner. “Resource Management for Cloud Functions with Memory Tracing, Profiling and
Autotuning”. In: WoSC@Middleware 2020: Proceedings of the 2020 Sixth International Workshop
on Serverless Computing, Virtual Event / Delft, The Netherlands, December 7-11, 2020. New York,
NY, USA: ACM, Dec. 2020, pp. 13–18. ISBN: 9781450382045. DOI: 10.1145/3429880.3430094.
URL: https://doi.org/10.1145/3429880.3430094.

225

https://doi.org/10.1145/3419111.3421287
https://doi.org/10.1145/3419111.3421287
https://doi.org/10.1145/3419111.3421287
https://doi.org/10.14257/ijmue.2016.11.3.30
https://arxiv.org/abs/1909.12127
http://arxiv.org/abs/1909.12127
http://arxiv.org/abs/1909.12127
https://doi.org/10.24963/ijcai.2021/623
https://doi.org/10.24963/ijcai.2021/623
https://doi.org/10.1109/ICDCS51616.2021.00027
https://doi.org/10.1109/ICFEC54809.2022.00010
https://doi.org/10.1109/CLOUD.2009.78
https://doi.org/10.1109/CLOUD.2009.78
https://doi.org/10.1145/3429880.3430094
https://doi.org/10.1145/3429880.3430094

Bibliography

[277] Josef Spillner, Cristian Mateos, and David A. Monge. “FaaSter, Better, Cheaper: The Prospect of
Serverless Scientific Computing and HPC”. In: High Performance Computing. Ed. by Esteban Moc-
skos and Sergio Nesmachnow. Springer International Publishing. Cham: Springer International Pub-
lishing, 2018, pp. 154–168. ISBN: 978-3-319-73353-1.

[278] Stefan Stasiewicz. “Worth Getting Hyped Up Over Hyper-V?” In: 21st Annual Conference of NACCQ.
2008.

[279] Markus Steinbach et al. “TppFaaS: Modeling Serverless Functions Invocations via Temporal Point
Processes”. In: IEEE Access 10 (2022), pp. 9059–9084. ISSN: 2169-3536. DOI: 10.1109/ACCESS.
2022.3144078.

[281] Kun Suo et al. “Tackling Cold Start of Serverless Applications by Efficient and Adaptive Container
Runtime Reusing”. In: 2021 IEEE International Conference on Cluster Computing (CLUSTER).
2021, pp. 433–443. DOI: 10.1109/Cluster48925.2021.00018.

[282] Amoghavarsha Suresh and Anshul Gandhi. “FnSched: An Efficient Scheduler for Serverless Func-
tions”. In: Dec. 2019, pp. 19–24. ISBN: 978-1-4503-7038-7. DOI: 10.1145/3366623.3368136.

[283] Jun Suzuki et al. “Multi-root share of single-root I/O virtualization (SR-IOV) compliant PCI Express
device”. In: 2010 18th IEEE Symposium on High Performance Interconnects. IEEE. 2010, pp. 25–
31.

[284] Sharvari T and Sowmya Nag K. “A study on Modern Messaging Systems- Kafka, RabbitMQ and
NATS Streaming”. In: CoRR abs/1912.03715 (2019). arXiv: 1912.03715. URL: http://arxiv.
org/abs/1912.03715.

[285] Davide Taibi, Josef Spillner, and Konrad Wawruch. “Serverless Computing-Where Are We Now,
and Where Are We Heading?” In: IEEE Software 38.1 (2021), pp. 25–31. ISSN: 19374194. DOI:
10.1109/MS.2020.3028708.

[286] Tarik Taleb et al. “On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge
Cloud Architecture and Orchestration”. In: IEEE Communications Surveys & Tutorials 19.3 (2017),
pp. 1657–1681. DOI: 10.1109/COMST.2017.2705720.

[292] Liang Tong, Yong Li, and Wei Gao. “A hierarchical edge cloud architecture for mobile computing”.
In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Commu-
nications. IEEE. 2016, pp. 1–9.

[293] Ruixia Tong and Xiongfeng Zhu. “A Load Balancing Strategy Based on the Combination of Static
and Dynamic”. In: 2010 2nd International Workshop on Database Technology and Applications.
IEEE, Nov. 2010. DOI: 10.1109/dbta.2010.5658951.

[295] James Turnbull. Monitoring with Prometheus. Turnbull Press, 2018.

[298] Tim Verbelen et al. “Cloudlets: Bringing the Cloud to the Mobile User”. In: Proceedings of the
Third ACM Workshop on Mobile Cloud Computing and Services. MCS ’12. Low Wood Bay, Lake
District, UK: Association for Computing Machinery, 2012, 29–36. ISBN: 9781450313193. DOI:
10.1145/2307849.2307858. URL: https://doi.org/10.1145/2307849.2307858.

[299] Massimo Villari et al. “Osmotic computing: A new paradigm for edge/cloud integration”. In: IEEE
Cloud Computing 3.6 (2016), pp. 76–83.

[302] Liang Wang et al. “Peeking behind the curtains of serverless platforms”. In: 2018 {USENIX} Annual
Technical Conference ({USENIX} {ATC} 18). USENIX Association. 2018, pp. 133–146. ISBN: 978-
1-939133-02-1. URL: https://www.usenix.org/conference/atc18/presentation/wang-liang.

226

https://doi.org/10.1109/ACCESS.2022.3144078
https://doi.org/10.1109/ACCESS.2022.3144078
https://doi.org/10.1109/Cluster48925.2021.00018
https://doi.org/10.1145/3366623.3368136
https://arxiv.org/abs/1912.03715
http://arxiv.org/abs/1912.03715
http://arxiv.org/abs/1912.03715
https://doi.org/10.1109/MS.2020.3028708
https://doi.org/10.1109/COMST.2017.2705720
https://doi.org/10.1109/dbta.2010.5658951
https://doi.org/10.1145/2307849.2307858
https://doi.org/10.1145/2307849.2307858
https://www.usenix.org/conference/atc18/presentation/wang-liang

[303] Ben Weissman and Anthony E. Nocentino. “Azure Arc-Enabled Data Services”. In: Azure Arc-
Enabled Data Services Revealed: Early First Edition Based on Public Preview. Berkeley, CA:
Apress, 2021, pp. 25–50. ISBN: 978-1-4842-6705-9. DOI: 10 . 1007 / 978 - 1 - 4842 - 6705 - 9 _ 2.
URL: https://doi.org/10.1007/978-1-4842-6705-9_2.

[304] CNCF Serverless WG. Cncf wg-serverless whitepaper v1. 0. https://gw.alipayobjects.com/
os/basement_prod/24ec4498-71d4-4a60-b785-fa530456c65b.pdf. [Online; Accessed: 15-July-
2020]. March 2018. URL: https://gw.alipayobjects.com/os/basement_prod/24ec4498-71d4-
4a60-b785-fa530456c65b.pdf.

[309] Jonathan Newcomb Swirsky Whitney et al. Hybrid cloud infrastructures. US Patent 9,122,552. Sept.
2015.

[311] Philipp A. Witte et al. “Serverless seismic imaging in the cloud”. In: CoRR abs/1911.12447 (2019).
arXiv: 1911.12447. URL: http://arxiv.org/abs/1911.12447.

[313] Yichen Xie and Alex Aiken. “Context- and Path-sensitive Memory Leak Detection”. In: SIGSOFT
Softw. Eng. Notes 30.5 (Sept. 2005), pp. 115–125. ISSN: 0163-5948. DOI: 10 . 1145 / 1095430 .
1081728. URL: http://doi.acm.org/10.1145/1095430.1081728.

[314] Ying Xiong et al. “Extend cloud to edge with KubeEdge”. In: 2018 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE. 2018, pp. 373–377.

[315] Xin Xu, Ron C. Chiang, and H. Howie Huang. “Xentry: Hypervisor-Level Soft Error Detection”.
In: 2014 43rd International Conference on Parallel Processing. 2014, pp. 341–350. DOI: 10.1109/
ICPP.2014.43.

[316] Sanjay Yadav and Sanyam Shukla. “Analysis of k-fold cross-validation over hold-out validation on
colossal datasets for quality classification”. In: 2016 IEEE 6th International conference on advanced
computing (IACC). IEEE. 2016, pp. 78–83.

[317] Ethan G Young et al. “The True Cost of Containing: A {gVisor} Case Study”. In: 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 19). 2019.

[318] Yang Yu. Os-level virtualization and its applications. State University of New York at Stony Brook,
2007.

[319] Yang Zhang, Nirvana Meratnia, and Paul J.M. Havinga. “Distributed online outlier detection in wire-
less sensor networks using ellipsoidal support vector machine”. In: Ad Hoc Networks 11.3 (2013),
pp. 1062–1074. ISSN: 1570-8705. DOI: https://doi.org/10.1016/j.adhoc.2012.11.001. URL:
http://www.sciencedirect.com/science/article/pii/S1570870512002041.

[321] Tetiana Zubko et al. “MAFF: Self-adaptive Memory Optimization for Serverless Functions”. In:
Service-Oriented and Cloud Computing. Ed. by Fabrizio Montesi, George Angelos Papadopoulos,
and Wolf Zimmermann. Cham: Springer International Publishing, 2022, pp. 137–154. ISBN: 978-3-
031-04718-3.

227

https://doi.org/10.1007/978-1-4842-6705-9_2
https://doi.org/10.1007/978-1-4842-6705-9_2
https://gw.alipayobjects.com/os/basement_prod/24ec4498-71d4-4a60-b785-fa530456c65b.pdf
https://gw.alipayobjects.com/os/basement_prod/24ec4498-71d4-4a60-b785-fa530456c65b.pdf
https://gw.alipayobjects.com/os/basement_prod/24ec4498-71d4-4a60-b785-fa530456c65b.pdf
https://gw.alipayobjects.com/os/basement_prod/24ec4498-71d4-4a60-b785-fa530456c65b.pdf
https://arxiv.org/abs/1911.12447
http://arxiv.org/abs/1911.12447
https://doi.org/10.1145/1095430.1081728
https://doi.org/10.1145/1095430.1081728
http://doi.acm.org/10.1145/1095430.1081728
https://doi.org/10.1109/ICPP.2014.43
https://doi.org/10.1109/ICPP.2014.43
https://doi.org/https://doi.org/10.1016/j.adhoc.2012.11.001
http://www.sciencedirect.com/science/article/pii/S1570870512002041

Webliography

[1] 3 ways to optimize Cloud Run response times. Accessed: 2022-08-27. 2020. URL: https://cloud.
google . com / blog / topics / developers - practitioners / 3 - ways - optimize - cloud - run -
response-times.

[2] About Ansible. 2020. URL: https://docs.ansible.com/ansible/latest/index.html#about-
ansible (visited on 07/09/2020).

[3] About Playbooks. 2020. URL: https : / / docs . ansible . com / ansible / latest / user _ guide /
playbooks_intro.html#playbooks-intro (visited on 07/09/2020).

[4] About VirtualBox. Accessed: 2022-06-20. 2021. URL: https : / / www . virtualbox . org / wiki /
VirtualBox.

[10] Amazon Lambda. AWS Lambda. Accessed on 09/24/2020. URL: https://docs.aws.amazon.com/
lambda/latest/dg/invocation-scaling.html (visited on 03/09/2021).

[11] An introduction to Azure Functions. URL: https://docs.microsoft.com/en-us/azure/azure-
functions/functions-overview.

[13] Apache. Documentation. 2020. URL: https://openwhisk.apache.org/documentation.html
(visited on 07/20/2020).

[14] Apache. OpenWhisk CLI. 2017. URL: https://github.com/apache/openwhisk/blob/master/
docs/cli.md#openwhisk-cli (visited on 07/11/2020).

[16] Architect. Project philosophy. [Online; Accessed: 4-Feburary-2020]. 2020. URL: https://arc.
codes/intro/philosophy.

[19] AT&T and Google Cloud forge 5G edge compute partnership for enterprises. Accessed: 2022-08-
27. 2020. URL: https://www.fiercetelecom.com/telecom/at-t-and-google-cloud-forge-
5g-edge-compute-partnership-for-enterprises/.

[20] AT&T to run its mobility network on Microsoft’s Azure for Operators cloud, delivering cost-efficient
5G services at scale. Accessed: 2022-08-27. 2021. URL: https://news.microsoft.com/2021/
06/30/att-to-run-its-mobility-network-on-microsofts-azure-for-operators-cloud-
delivering-cost-efficient-5g-services-at-scale/.

[21] AWS. Application Load Balancers as targets. 2020. URL: https : / / docs . aws . amazon . com /
elasticload\-balancing/latest/network/application-load-balancer-target.html (visited
on 04/17/2021).

[22] AWS. AWS Elastic LoadBalancer Limits. Accessed: 2021-01-10. URL: $https : / / docs . aws .
amazon.com/de_de/elasticloadbalancing/latest/userguide/how-elastic-load-balancing-
works.html$.

228

https://cloud.google.com/blog/topics/developers-practitioners/3-ways-optimize-cloud-run-response-times
https://cloud.google.com/blog/topics/developers-practitioners/3-ways-optimize-cloud-run-response-times
https://cloud.google.com/blog/topics/developers-practitioners/3-ways-optimize-cloud-run-response-times
https://docs.ansible.com/ansible/latest/index.html#about-ansible
https://docs.ansible.com/ansible/latest/index.html#about-ansible
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html#playbooks-intro
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html#playbooks-intro
https://www.virtualbox.org/wiki/VirtualBox
https://www.virtualbox.org/wiki/VirtualBox
https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-scaling.html
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://openwhisk.apache.org/documentation.html
https://github.com/apache/openwhisk/blob/master/docs/cli.md#openwhisk-cli
https://github.com/apache/openwhisk/blob/master/docs/cli.md#openwhisk-cli
https://arc.codes/intro/philosophy
https://arc.codes/intro/philosophy
https://www.fiercetelecom.com/telecom/at-t-and-google-cloud-forge-5g-edge-compute-partnership-for-enterprises/
https://www.fiercetelecom.com/telecom/at-t-and-google-cloud-forge-5g-edge-compute-partnership-for-enterprises/
https://news.microsoft.com/2021/06/30/att-to-run-its-mobility-network-on-microsofts-azure-for-operators-cloud-delivering-cost-efficient-5g-services-at-scale/
https://news.microsoft.com/2021/06/30/att-to-run-its-mobility-network-on-microsofts-azure-for-operators-cloud-delivering-cost-efficient-5g-services-at-scale/
https://news.microsoft.com/2021/06/30/att-to-run-its-mobility-network-on-microsofts-azure-for-operators-cloud-delivering-cost-efficient-5g-services-at-scale/
$https://docs.aws.amazon.com/de_de/elasticloadbalancing/latest/userguide/how-elastic-load-balancing-works.html$
$https://docs.aws.amazon.com/de_de/elasticloadbalancing/latest/userguide/how-elastic-load-balancing-works.html$
$https://docs.aws.amazon.com/de_de/elasticloadbalancing/latest/userguide/how-elastic-load-balancing-works.html$

[23] AWS. AWS Fargate. 2019. URL: https://github.com/virtual-kubelet/aws-fargate (visited on
10/01/2021).

[24] AWS. AWS SDK for Python (Boto3) Documentation. [Online; Accessed: 14-Feburary-2020]. URL:
https://docs.aws.amazon.com/pythonsdk/.

[25] AWS. How do I attach an Elastic IP address to new or existing internet-facing Network Load Bal-
ancers? 2022. URL: https : / / aws . amazon . com / premiumsupport / knowledge - center / elb -
attach-elastic-ip-to-public-nlb/ (visited on 07/30/2022).

[26] AWS. I need a static IP address for my Application Load Balancer. How can I register an Appli-
cation Load Balancer behind a Network Load Balancer? 2022. URL: https://aws.amazon.com/
premiumsupport/knowledge-center/alb-static-ip/ (visited on 07/30/2022).

[27] AWS. Lambda functions as targets. 2020. URL: https://docs.aws.amazon.com/elasticload\-
balancing/latest/application/lambda-functions.html (visited on 04/17/2021).

[28] AWS. Lambda runtimes - AWS Lambda. URL: https://docs.aws.amazon.com/lambda/latest/
dg/lambda-runtimes.html (visited on 06/16/2021).

[29] AWS. Package google.monitoring.v3. [Online; Accessed: 14-Feburary-2020]. URL: https://cloud.
google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3.

[30] AWS. Serverless Architectures with AWS Lambda. 2017. URL: https : / / d1 . awsstatic . com /
whitepapers/serverless-architectures-with-aws-lambda.pdf (visited on 06/16/2021).

[31] AWS. What is a Network Load Balancer? 2020. URL: https://docs.aws.amazon.com/elasticload\-
balancing/latest/network/introduction.html (visited on 04/17/2021).

[32] AWS. What is an Application Load Balancer? 2020. URL: https://docs.aws.amazon.com/\-
elasticloadbalancing/latest/application/introduction.html (visited on 04/17/2021).

[33] AWS. What Is AWS X-Ray? [Online; Accessed: 4-Feburary-2020]. 2020. URL: https://docs.aws.
amazon.com/xray/latest/devguide/aws-xray.html.

[34] AWS Compute Optimizer. (Accessed on 06/17/2021). 2021. URL: https : / / aws . amazon . com /
compute-optimizer/.

[35] AWS Elastic Load Balancing. Accessed 09/24/2020. URL: https://aws.amazon.com/elastic\-
loadbalancing/.

[36] AWS IoT Greengrass - Amazon Web Services. (Accessed on 07/27/2020). URL: https : / / aws .
amazon.com/greengrass/.

[37] AWS Lambda. URL: https://aws.amazon.com/lambda/.

[38] AWS Lambda Pricing. 2020. URL: https : / / aws . amazon . com / lambda / pricing/ (visited on
05/31/2020).

[39] AWS Lambda releases. 2020. URL: https://docs.aws.amazon.com/lambda/latest/dg/lambda-
releases.html (visited on 05/31/2020).

[40] AWS Lambda Shim. Accessed: 2022-08-20. 2022. URL: https://github.com/ffleet/shim/.

[41] AWS Lambda – Pricing. (Accessed on 07/30/2020). URL: https://aws.amazon.com/lambda/
pricing/.

[42] AWS Local Zones. Accessed: 2022-08-27. 2021. URL: https://aws.amazon.com/about- aws/
global-infrastructure/localzones/.

[43] AWS Nitro System. Accessed: 2022-08-27. 2022. URL: https://aws.amazon.com/ec2/nitro/.

229

https://github.com/virtual-kubelet/aws-fargate
https://docs.aws.amazon.com/pythonsdk/
https://aws.amazon.com/premiumsupport/knowledge-center/elb-attach-elastic-ip-to-public-nlb/
https://aws.amazon.com/premiumsupport/knowledge-center/elb-attach-elastic-ip-to-public-nlb/
https://aws.amazon.com/premiumsupport/knowledge-center/alb-static-ip/
https://aws.amazon.com/premiumsupport/knowledge-center/alb-static-ip/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://cloud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3
https://cloud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3
https://d1.awsstatic.com/whitepapers/serverless-architectures-with-aws-lambda.pdf
https://d1.awsstatic.com/whitepapers/serverless-architectures-with-aws-lambda.pdf
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html
https://aws.amazon.com/compute-optimizer/
https://aws.amazon.com/compute-optimizer/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/pricing/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-releases.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-releases.html
https://github.com/ffleet/shim/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/ec2/nitro/

Webliography

[44] Azure. Azure Functions hosting options. Accessed on 02/18/2021. URL: https://docs.microsoft.
com/en-us/azure/azure-functions/functions-scale (visited on 03/09/2021).

[45] Azure. Kubernetes Virtual Kubelet with ACI. 2022. URL: https://github.com/virtual-kubelet/
azure-aci (visited on 02/01/2022).

[54] Rajesh Bhojwani. Design Patterns for Microservice-To-Microservice Communication - DZone Mi-
croservices. Dec. 2018. URL: https://dzone.com/articles/design-patterns-for-microservice-
communication.

[59] Apache Brooklyn. The Theory behind Brooklyn. Accessed: 2020-01-10. URL: https://brooklyn.
apache.org/learnmore/theory.html.

[63] Renato Byrro. Can We Solve Serverless Cold Starts? Accessed: 2020-04-17. 2019. URL: https:
//dashbird.io/blog/can-we-solve-serverless-cold-starts/.

[64] cadvisor. Monitoring cAdvisor with Prometheus. 2019. URL: https : / / github . com / google /
cadvisor/blob/master/docs/storage/prometheus.md (visited on 06/11/2019).

[68] Alex Casalboni. Announcing AWS Lambda Function URLs: Built-in HTTPS Endpoints for Single-
Function Microservices. 2022. URL: https://aws.amazon.com/blogs/aws/announcing-aws-
lambda-function-urls-built-in-https-endpoints-for-single-function-microservices/
(visited on 04/29/2022).

[69] Alex Casalboni. AWS Lambda Power Tuning. URL: https://github.com/alexcasalboni/aws-
lambda-power-tuning (visited on 03/09/2021).

[78] Citrix Hypervisor Technical overview. Accessed: 2022-06-20. 2022. URL: https://docs.citrix.
com/en-us/citrix-hypervisor/8-2/technical-overview.html.

[79] Cloud Functions Overview. (Accessed on 08/22/2020). URL: https : / / cloud . google . com /
functions/docs/concepts/overview.

[80] CloudFlare. Why use serverless computing? Accessed: 2020/12/16. URL: https://www.cloudflare.
com/learning/serverless/why-use-serverless/.

[81] CloudWatch. Amazon CloudWatch Documentation. URL: https : / / docs . aws . amazon . com /
cloudwatch/index.html (visited on 06/23/2021).

[82] Controlling Scaling Behavior. Accessed 09/24/2020. URL: https://cloud.google.com/functions/
docs/max-instances.

[85] Michael Crosby. What is containerd? Accessed on 17.06.2019 18:57. Docker Inc. 2017. URL:
https://blog.docker.com/2017/08/what-is-containerd-runtime/.

[89] Description of Windows Virtual PC. Accessed: 2022-06-20. 2021. URL: https://support.microsoft.
com / en - us / topic / description - of - windows - virtual - pc - 262c8961 - 90e5 - 1125 - 654f -
d87cd5ba16f8.

[94] Dynamic Configuration with the HAProxy Runtime API. Accessed: 2021-10-10. 2017.

[100] Alex Ellis. A bright 2019 for OpenFaaS. 2019. URL: https://blog.alexellis.io/openfaas-
bright-2019/ (visited on 07/11/2020).

[108] Martin Fowler. Circuit Breaker. Accessed: 2021-01-10. 2014. URL: https://martinfowler.com/
bliki/CircuitBreaker.html.

[113] gcloud CLI overview. Accessed: 2022-08-27. 2020. URL: https : / / cloud . google . com / sdk /
gcloud.

230

https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://github.com/virtual-kubelet/azure-aci
https://github.com/virtual-kubelet/azure-aci
https://dzone.com/articles/design-patterns-for-microservice-communication
https://dzone.com/articles/design-patterns-for-microservice-communication
https://brooklyn.apache.org/learnmore/theory.html
https://brooklyn.apache.org/learnmore/theory.html
https://dashbird.io/blog/can-we-solve-serverless-cold-starts/
https://dashbird.io/blog/can-we-solve-serverless-cold-starts/
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md
https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md
https://aws.amazon.com/blogs/aws/announcing-aws-lambda-function-urls-built-in-https-endpoints-for-single-function-microservices/
https://aws.amazon.com/blogs/aws/announcing-aws-lambda-function-urls-built-in-https-endpoints-for-single-function-microservices/
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://docs.citrix.com/en-us/citrix-hypervisor/8-2/technical-overview.html
https://docs.citrix.com/en-us/citrix-hypervisor/8-2/technical-overview.html
https://cloud.google.com/functions/docs/concepts/overview
https://cloud.google.com/functions/docs/concepts/overview
https://www.cloudflare.com/learning/serverless/why-use-serverless/
https://www.cloudflare.com/learning/serverless/why-use-serverless/
https://docs.aws.amazon.com/cloudwatch/index.html
https://docs.aws.amazon.com/cloudwatch/index.html
https://cloud.google.com/functions/docs/max-instances
https://cloud.google.com/functions/docs/max-instances
https://blog.docker.com/2017/08/what-is-containerd-runtime/
https://support.microsoft.com/en-us/topic/description-of-windows-virtual-pc-262c8961-90e5-1125-654f-d87cd5ba16f8
https://support.microsoft.com/en-us/topic/description-of-windows-virtual-pc-262c8961-90e5-1125-654f-d87cd5ba16f8
https://support.microsoft.com/en-us/topic/description-of-windows-virtual-pc-262c8961-90e5-1125-654f-d87cd5ba16f8
https://blog.alexellis.io/openfaas-bright-2019/
https://blog.alexellis.io/openfaas-bright-2019/
https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://cloud.google.com/sdk/gcloud
https://cloud.google.com/sdk/gcloud

[116] Google. Cloud Functions. [Accessed: 4 September 2021]. URL: https://cloud.google.com/
functions.

[117] Google Cloud. Select metrics when using Metrics Explorer. URL: https://cloud.google.com/
monitoring/charts/metrics-selector (visited on 03/09/2021).

[118] Google Cloud Recommendations. (Accessed on 06/17/2021). 2018. URL: https://cloud.google.
com/compute/docs/instances/apply-machine-type-recommendations-for-instances.

[119] GoogleCloud. Cloud Functions Execution Environment. (Accessed on 08/22/2020). URL: https:
//cloud.google.com/functions/docs/concepts/exec.

[120] GoogleCloud. Cloud Functions Pricing. (Accessed on 08/22/2020). URL: https://cloud.google.
com/functions/pricing.

[121] Grafana. Grafana Dashboards. Accessed: 2021-05-27. 2019. URL: https://grafana.com/docs/
(visited on 06/11/2019).

[125] HAProxy - The Reliable, High Performance TCP/HTTP Load Balancer. Accessed: 2021-10-10.
2021.

[126] HAProxy - They use it ! Accessed: 2021-10-10. 2021.

[130] Andy Honig and Nelly Porter. 7 ways we harden our KVM hypervisor at Google Cloud: security in
plaintext. Accessed: 2022-06-20. 2017. URL: https://cloud.google.com/blog/products/gcp/7-
ways-we-harden-our-kvm-hypervisor-at-google-cloud-security-in-plaintext.

[132] How Terraform Works - CLI. 2020. URL: https://www.terraform.io/ (visited on 07/07/2020).

[133] Hypervisor security on the Azure fleet. Accessed: 2022-08-27. 2022. URL: https://docs.microsoft.
com/en-us/azure/security/fundamentals/hypervisor.

[134] IBM. IBM Cloud Functions. [Accessed: 7 September 2021]. URL: https : / / cloud . ibm . com /
functions/ (visited on 08/01/2021).

[135] Influxdata. Influxdb. Accessed: 2021-05-27. URL: https : / / www . influxdata . com / products /
influxdb/.

[136] Introduction to HAProxy ACLs. Accessed: 2021-10-10. 2018.

[137] Introduction to Hyper-V on Windows 10. Accessed: 2022-06-20. 2022. URL: https : / / docs .
microsoft.com/en-us/virtualization/hyper-v-on-windows/about/.

[141] Frazer Jamieson. Losing the server? 2017. URL: https://www.bcs.org/content-hub/losing-
the-server/ (visited on 07/11/2020).

[144] Anshul Jindal. FDN Virtual Kubelet. 2022. URL: https://github.com/Function- Delivery-
Network/virtual-kubelet (visited on 04/01/2022).

[145] Anshul Jindal. Multi-Serverless-Deployment. 2021. URL: https://github.com/ansjin/multi-
cloud-serverless-deployment (visited on 07/11/2021).

[164] virtual kubelet. Virtual Kubelet. 2021. URL: https://github.com/virtual-kubelet/virtual-
kubelet (visited on 09/01/2021).

[165] Lambda function URLs. Accessed: 2022-08-27. 2022. URL: https://docs.aws.amazon.com/
lambda/latest/dg/lambda-urls.html.

[170] Leibniz Supercomputing Centre. (Accessed on 07/28/2020). URL: https://www.lrz.de/english/.

[177] Linux. dd(1) - Linux manual page. URL: https://man7.org/linux/man-pages/man1/dd.1.html
(visited on 07/14/2021).

231

https://cloud.google.com/functions
https://cloud.google.com/functions
https://cloud.google.com/monitoring/charts/metrics-selector
https://cloud.google.com/monitoring/charts/metrics-selector
https://cloud.google.com/compute/docs/instances/apply-machine-type-recommendations-for-instances
https://cloud.google.com/compute/docs/instances/apply-machine-type-recommendations-for-instances
https://cloud.google.com/functions/docs/concepts/exec
https://cloud.google.com/functions/docs/concepts/exec
https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/pricing
https://grafana.com/docs/
https://cloud.google.com/blog/products/gcp/7-ways-we-harden-our-kvm-hypervisor-at-google-cloud-security-in-plaintext
https://cloud.google.com/blog/products/gcp/7-ways-we-harden-our-kvm-hypervisor-at-google-cloud-security-in-plaintext
https://www.terraform.io/
https://docs.microsoft.com/en-us/azure/security/fundamentals/hypervisor
https://docs.microsoft.com/en-us/azure/security/fundamentals/hypervisor
https://cloud.ibm.com/functions/
https://cloud.ibm.com/functions/
https://www.influxdata.com/products/influxdb/
https://www.influxdata.com/products/influxdb/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://www.bcs.org/content-hub/losing-the-server/
https://www.bcs.org/content-hub/losing-the-server/
https://github.com/Function-Delivery-Network/virtual-kubelet
https://github.com/Function-Delivery-Network/virtual-kubelet
https://github.com/ansjin/multi-cloud-serverless-deployment
https://github.com/ansjin/multi-cloud-serverless-deployment
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/virtual-kubelet/virtual-kubelet
https://docs.aws.amazon.com/lambda/latest/dg/lambda-urls.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-urls.html
https://www.lrz.de/english/
https://man7.org/linux/man-pages/man1/dd.1.html

Webliography

[181] Load Balancing and Reverse Proxying with Nginx, Updated. Accessed: 2021-01-12. 2013. URL:
https://spin.atomicobject.com/2013/07/08/nginx- load- balancing- reverse- proxy-
updated/.

[182] LRZ: Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften. (Accessed on 07/30/2020).
URL: https://www.lrz.de/.

[186] Managing concurrency for a Lambda function. Accessed 09/24/2020. URL: https://docs.aws.
amazon.com/lambda/latest/dg/configuration-concurrency.html.

[187] Managing Lambda provisioned concurrency. Accessed: 2022-08-27. 2022. URL: https://docs.
aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html.

[193] Microsoft. Azure Durable Functions. [Accessed: 4 September 2021]. URL: https://docs.microsoft.
com/en-us/azure/azure-functions/durable/.

[194] Microsoft. Azure Functions. [Accessed: 4 September 2021]. URL: https://azure.microsoft.com/
de-de/services/functions/.

[195] MinIO. MinIO Object Storage. Accessed: 2021-05-27. URL: https://min.io/product/overview.

[196] MinIO, Inc. Bucket Replication. URL: https://docs.min.io/minio/baremetal/replication/
replication-overview.html (visited on 05/10/2021).

[197] MinIO, Inc. mc mirror. URL: https://docs.min.io/minio/baremetal/reference/minio-
cli/minio-mc/mc-mirror.html#command-mc-mirror (visited on 05/10/2021).

[198] MinIO, Inc. MinIO - Go Client API Reference. URL: https://docs.min.io/docs/golang-client-
api-reference.html (visited on 05/10/2021).

[199] MinIO, Inc. MinIO - JavaScript Client API Reference. URL: https : / / docs . min . io / docs /
javascript-client-api-reference.html (visited on 05/10/2021).

[200] MinIO, Inc. MinIO Client (mc). URL: https://docs.min.io/minio/baremetal/reference/
minio-cli/minio-mc.html (visited on 05/10/2021).

[201] MinIO Quickstart Guide. (Accessed on 07/28/2020). URL: https://docs.min.io/docs/minio-
quickstart-guide.html.

[207] NGINX. NGINX Load Balancing Algorithms. Accessed: 2020-01-10. URL: https://www.nginx.
com/blog/choosing-nginx-plus-load-balancing-techniques/.

[208] Nginx. Nginx: The High-Performance Web Server and Reverse Proxy. Accessed 09/24/2020. Sept.
2008. URL: https://www.nginx.com/.

[209] NGINX. What Is DNS Load Balancing? Accessed: 2021-01-12. URL: https://www.nginx.com/
resources/glossary/dns-load-balancing/.

[212] Ekaterina Novoseltseva. Benefits of Microservices Architecture Implementation. [Online; Accessed:
23-March-2020]. 2017. URL: https://dzone.com/articles/benefits- amp- examples- of-
microservices-architectur.

[214] OpenfaaS. faas-idler: Scale OpenFaaS functions to zero replicas after a period of inactivity. 2018.
URL: https://github.com/openfaas-incubator/faas-idler (visited on 07/11/2020).

[215] OpenfaaS. faas-netes. 2017. URL: https : / / github . com / openfaas / faas - netes (visited on
07/11/2020).

[216] OpenfaaS. Kubernetes HPAv2 with OpenFaaS. 2019. URL: https://docs.openfaas.com/tutorials/
kubernetes-hpa/ (visited on 07/11/2020).

232

https://spin.atomicobject.com/2013/07/08/nginx-load-balancing-reverse-proxy-updated/
https://spin.atomicobject.com/2013/07/08/nginx-load-balancing-reverse-proxy-updated/
https://www.lrz.de/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
https://docs.microsoft.com/en-us/azure/azure-functions/durable/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/
https://azure.microsoft.com/de-de/services/functions/
https://azure.microsoft.com/de-de/services/functions/
https://min.io/product/overview
https://docs.min.io/minio/baremetal/replication/replication-overview.html
https://docs.min.io/minio/baremetal/replication/replication-overview.html
https://docs.min.io/minio/baremetal/reference/minio-cli/minio-mc/mc-mirror.html#command-mc-mirror
https://docs.min.io/minio/baremetal/reference/minio-cli/minio-mc/mc-mirror.html#command-mc-mirror
https://docs.min.io/docs/golang-client-api-reference.html
https://docs.min.io/docs/golang-client-api-reference.html
https://docs.min.io/docs/javascript-client-api-reference.html
https://docs.min.io/docs/javascript-client-api-reference.html
https://docs.min.io/minio/baremetal/reference/minio-cli/minio-mc.html
https://docs.min.io/minio/baremetal/reference/minio-cli/minio-mc.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://www.nginx.com/blog/choosing-nginx-plus-load-balancing-techniques/
https://www.nginx.com/blog/choosing-nginx-plus-load-balancing-techniques/
https://www.nginx.com/
https://www.nginx.com/resources/glossary/dns-load-balancing/
https://www.nginx.com/resources/glossary/dns-load-balancing/
https://dzone.com/articles/benefits-amp-examples-of-microservices-architectur
https://dzone.com/articles/benefits-amp-examples-of-microservices-architectur
https://github.com/openfaas-incubator/faas-idler
https://github.com/openfaas/faas-netes
https://docs.openfaas.com/tutorials/kubernetes-hpa/
https://docs.openfaas.com/tutorials/kubernetes-hpa/

[217] OpenfaaS. OpenFaaS stack. 2019. URL: https://docs.openfaas.com/architecture/stack/
(visited on 07/11/2020).

[218] OpenFaaS watchdog. 2016. URL: https://docs.openfaas.com/architecture/watchdog/ (visited
on 05/31/2020).

[219] Openstack. OpenStack Zun. 2020. URL: https://github.com/virtual-kubelet/openstack-zun
(visited on 04/01/2022).

[220] OpenTelemetry. OpenTelemetry Collector: Batch Processor. [Accessed: 30 April 2021]. URL: https:
//github.com/open-telemetry/opentelemetry-collector/tree/main/processor/batchprocessor.

[221] OpenTelemetry. OpenTelemetry Collector: OLTP Receiver. [Accessed: 30 April 2021]. URL: https:
//github.com/open-telemetry/opentelemetry-collector/tree/main/receiver/otlpreceiver.

[222] OpenTelemetry. OpenTelemetry Javascript. [Accessed: 5 May 2021]. URL: https://opentelemetry.
io/docs/js/.

[223] OpenWhisk. Apache OpenWhisk Composer. [Accessed: 4 September 2021]. URL: https://github.
com/apache/openwhisk-composer.

[224] OpenWhisk. OpenWhisk Annotations. [Accessed: 30 April 2021]. URL: https://github.com/
apache/openwhisk/blob/master/docs/annotations.md.

[225] OpenWhisk. OpenWhisk: Open Source Serverless Cloud Platform. [Accessed: 16 May 2021]. URL:
https://openwhisk.apache.org.

[226] Apache OpenWhisk. Apache openwhisk is a serverless, open source cloud platform. [Online; Ac-
cessed: 4-Feburary-2020]. 2018. URL: https://openwhisk.apache.org/documentation.html.

[227] Oracle VM Server for x86 Virtualization and Management. Accessed: 2022-06-20. 2021. URL:
https://www.oracle.com/uk/a/ocom/docs/ovm-server-for-x86-459312.pdf.

[228] Antoni Orfin. How Droplr Scales to Millions With The Serverless Framework. [Online; Accessed:
14-Feburary-2020]. 2017. URL: https://www.serverless.com/blog/how-droplr-scales-to-
millions-serverless-framework.

[235] Google Cloud Platform. Cloud Load Balancing. 2022. URL: https://cloud.google.com/load-
balancing (visited on 04/30/2022).

[236] Google Cloud Platform. Serverless network endpoint groups overview. Accessed: 2021-05-27. URL:
https://cloud.google.com/load-balancing/docs/negs/serverless-neg-concepts.

[238] Power Measurement Framework for edge-enabled IoT devices. Accessed: 2022-08-20. 2022. URL:
https://github.com/Manu10744/esp32-edge-energy-measurement/.

[239] The Linux Foundation Prometheus Authors. Prometheus - Monitoring system & time-series database.
2019. URL: https://prometheus.io/docs/introduction/overview/ (visited on 06/11/2019).

[240] The Linux Foundation Prometheus Autors. MONITORING LINUX HOST METRICS WITH THE
NODE EXPORTER. 2019. URL: https://prometheus.io/docs/guides/node-exporter/ (visited
on 06/11/2019).

[241] PyData. pandas.DataFrame. [Online; Accessed: 19-June-2021]. URL: https://pandas.pydata.
org/docs/reference/api/pandas.DataFrame.html.

[243] rancher/k3s: Lightweight Kubernetes. (Accessed on 07/28/2020). URL: https : / / github . com /
rancher/k3s.

[249] Mike Roberts. Serverless Architectures. Accessed: 2020-04-17. 2018. URL: https://martinfowler.
com/articles/serverless.html.

233

https://docs.openfaas.com/architecture/stack/
https://docs.openfaas.com/architecture/watchdog/
https://github.com/virtual-kubelet/openstack-zun
https://github.com/open-telemetry/opentelemetry-collector/tree/main/processor/batchprocessor
https://github.com/open-telemetry/opentelemetry-collector/tree/main/processor/batchprocessor
https://github.com/open-telemetry/opentelemetry-collector/tree/main/receiver/otlpreceiver
https://github.com/open-telemetry/opentelemetry-collector/tree/main/receiver/otlpreceiver
https://opentelemetry.io/docs/js/
https://opentelemetry.io/docs/js/
https://github.com/apache/openwhisk-composer
https://github.com/apache/openwhisk-composer
https://github.com/apache/openwhisk/blob/master/docs/annotations.md
https://github.com/apache/openwhisk/blob/master/docs/annotations.md
https://openwhisk.apache.org
https://openwhisk.apache.org/documentation.html
https://www.oracle.com/uk/a/ocom/docs/ovm-server-for-x86-459312.pdf
https://www.serverless.com/blog/how-droplr-scales-to-millions-serverless-framework
https://www.serverless.com/blog/how-droplr-scales-to-millions-serverless-framework
https://cloud.google.com/load-balancing
https://cloud.google.com/load-balancing
https://cloud.google.com/load-balancing/docs/negs/serverless-neg-concepts
https://github.com/Manu10744/esp32-edge-energy-measurement/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/guides/node-exporter/
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://github.com/rancher/k3s
https://github.com/rancher/k3s
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html

Webliography

[251] Roles. 2020. URL: https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_
roles.html#roles (visited on 07/09/2020).

[252] runc. Accessed: 2022-08-27. 2020. URL: https://github.com/opencontainers/runc.

[259] Serverless. Documentation. [Online; Accessed: 4-Feburary-2020]. 2020. URL: https://serverless.
com/framework/docs/.

[260] Amazon Web Services. AWS Lambda. [Accessed: 4 September 2021]. URL: https://aws.amazon.
com/lambda/.

[261] Amazon Web Services. AWS Step Functions. [Accessed: 4 September 2021]. URL: https://aws.
amazon.com/step-functions/.

[262] Amazon Web Services. AWS Step Functions Features. [Accessed: 4 September 2021]. URL: https:
//aws.amazon.com/step-functions/features/.

[267] Oleksandr Shchur. Loss with NLL of mark and MAE of inter-event time. [Accessed: 13 September
2021]. 2021. URL: https://github.com/shchur/ifl-tpp/issues/14.

[268] Oleksandr Shchur. Temporal Point Processes 1: The Conditional Intensity Function. [Accessed: 16
June 2021]. 2020. URL: https://shchur.github.io/blog/2020/tpp1-conditional-intensity/.

[280] Ion Stoica and Devin Petersohn. Two missing links in Serverless Computing: Stateful Computation
and Placement Control. 2019. URL: https://medium.com/riselab/two-missing-links-in-
serverless-computing-stateful-computation-and-placement-control-964c3236d18 (visited
on 04/17/2021).

[287] The Four Essential Sections of an HAProxy Configuration. Accessed: 2021-10-10. 2018.

[288] The performance of modern AI for millions of devices NVIDIA Jetson Nano. (Accessed on 07/28/2020).
URL: https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-
nano/.

[289] The PostgreSQL Global Development Group. PostgreSQL - Documentation. URL: https://www.
postgresql.org/docs/ (visited on 04/23/2021).

[290] The regression score. Accessed on 12/17/2020. URL: https : / / scikit - learn . org / stable /
modules/generated/sklearn.metrics.r2_score.html.

[291] Markus Thömmes. Squeezing the milliseconds: How to make serverless platforms blazing fast! [On-
line; Accessed: 14-Feburary-2020]. 2017. URL: https://medium.com/openwhisk/squeezing-the-
milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0.

[294] Andrew Tridgell and Paul Mackerras. rsync(1) man page. URL: https://download.samba.org/
pub/rsync/rsync.1 (visited on 05/10/2021).

[296] Use Image streaming to pull container images. Accessed: 2022-08-27. 2022. URL: https://cloud.
google.com/kubernetes-engine/docs/how-to/image-streaming.

[297] Using AWS Lambda with CloudFront Lambda@Edge. Accessed: 2020-06-20. 2020. URL: https:
//docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html.

[300] VMware ESXi. Accessed: 2022-06-20. 2021. URL: https://www.vmware.com/content/vmware/
vmware-published-sites/us/products/esxi-and-esx.html.html.

[301] VMware Workstation Pro Documentation. Accessed: 2022-06-20. 2021. URL: https : / / docs .
vmware.com/en/VMware-Workstation-Pro/index.html.

[305] What is Azure private multi-access edge compute? Accessed: 2022-08-27. 2022. URL: https://
docs.microsoft.com/en-us/azure/private-multi-access-edge-compute-mec/overview.

234

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html#roles
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html#roles
https://github.com/opencontainers/runc
https://serverless.com/framework/docs/
https://serverless.com/framework/docs/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/features/
https://aws.amazon.com/step-functions/features/
https://github.com/shchur/ifl-tpp/issues/14
https://shchur.github.io/blog/2020/tpp1-conditional-intensity/
https://medium.com/riselab/two-missing-links-in-serverless-computing-stateful-computation-and-placement-control-964c3236d18
https://medium.com/riselab/two-missing-links-in-serverless-computing-stateful-computation-and-placement-control-964c3236d18
https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-nano/
https://www.postgresql.org/docs/
https://www.postgresql.org/docs/
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0
https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0
https://download.samba.org/pub/rsync/rsync.1
https://download.samba.org/pub/rsync/rsync.1
https://cloud.google.com/kubernetes-engine/docs/how-to/image-streaming
https://cloud.google.com/kubernetes-engine/docs/how-to/image-streaming
https://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html
https://www.vmware.com/content/vmware/vmware-published-sites/us/products/esxi-and-esx.html.html
https://www.vmware.com/content/vmware/vmware-published-sites/us/products/esxi-and-esx.html.html
https://docs.vmware.com/en/VMware-Workstation-Pro/index.html
https://docs.vmware.com/en/VMware-Workstation-Pro/index.html
https://docs.microsoft.com/en-us/azure/private-multi-access-edge-compute-mec/overview
https://docs.microsoft.com/en-us/azure/private-multi-access-edge-compute-mec/overview

[306] What is k6? (Accessed on 07/28/2020). URL: https://k6.io/docs/.

[307] What is rkt? Accessed: 2022-08-27. 2021. URL: https://www.redhat.com/en/topics/containers/
what-is-rkt.

[308] What’s LXC? Accessed: 2022-08-27. 2021. URL: https://linuxcontainers.org/lxc/introduction/.

[310] Wikipedia Traffic Data Exploration. Accessed: 2021-10-05. 2021. URL: https://www.kaggle.com/
muonneutrino/wikipedia-traffic-data-exploration/.

[312] XenCenter. Accessed: 2022-08-27. 2022. URL: https://docs.citrix.com/en-us/xencenter.
html.

[320] Zipkin. Zipkin. [Accessed: 4 September 2021]. URL: https://zipkin.io/.

[322] Emrah Şamdan. Dealing with cold starts in AWS Lambda. [Online; Accessed: 14-Feburary-2020].
2018. URL: https://medium.com/thundra/dealing- with- cold- starts- in- aws- lambda-
a5e3aa8f532.

235

https://k6.io/docs/
https://www.redhat.com/en/topics/containers/what-is-rkt
https://www.redhat.com/en/topics/containers/what-is-rkt
https://linuxcontainers.org/lxc/introduction/
https://www.kaggle.com/muonneutrino/wikipedia-traffic-data-exploration/
https://www.kaggle.com/muonneutrino/wikipedia-traffic-data-exploration/
https://docs.citrix.com/en-us/xencenter.html
https://docs.citrix.com/en-us/xencenter.html
https://zipkin.io/
https://medium.com/thundra/dealing-with-cold-starts-in-aws-lambda-a5e3aa8f532
https://medium.com/thundra/dealing-with-cold-starts-in-aws-lambda-a5e3aa8f532

	Zusammenfassung
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Dissertation Contributions
	Organization of the Dissertation

	Background
	Virtualization: a Cloud-Enabling Technology
	Hardware-level virtualization
	CPU Virtualization
	Memory Virtualization
	I/O Virtualization

	OS-level virtualization

	Edge-to-Cloud Continuum
	Cloud Computing
	Cloud Deployment Models
	Cloud Service Models

	Edge Computing

	Serverless Computing
	FaaS Function Invocation Procedure
	Cold-start Problem

	Serverless Compute Platforms
	OpenWhisk
	OpenFaaS
	Google Cloud Functions (GCFs)
	AWS Lambda

	Cloud Application's Architectures
	Monolithic Application Architecture
	Microservices Application Architecture
	FaaS-based Application Architecture

	Related Work
	Microservices vs Serverless Applications
	Heterogeneity in the FaaS Workloads
	Heterogeneity among the Serverless Compute Platforms
	Serverless Computing across the Edge-Cloud Continuum
	Serverless Computing across Multi-Cloud
	Solutions Connecting Multiple Cloud Platforms
	Solutions Connecting Multiple Serverless Compute Platforms

	Data-Aware Scheduling in Serverless Computing
	Memory Optimization of Serverless Applications

	FDN: Function Delivery Network
	FDN Design Overview
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Design Methodology
	FDN High-level Architecture

	FDN Components
	FDN's Serverless Compute Clusters
	Cluster Types
	Clusters Creation Automation

	FDN-Monitor
	FDN Inventory Database
	Clusters Management
	Data Orchestrator
	Functions Management
	Behave
	Courier Control Plane and Load Balancer
	FDN-UI

	Summary

	Behave: Behavioral Modeling of FaaS Functions in FDN
	Functions Performance Model
	Function Capacity (FC)
	FnCapacitor
	Experimental Configuration
	Monitoring Metrics

	Experimental Results
	Memory Effect on Function Execution Duration
	Memory Effect on Function's Concurrent Instances
	Effect of Function Concurrency on the FC
	Function Capacity Estimation

	Functions Interaction Model
	Temporal Point Processes (TPPs)
	Neural Temporal Point Processes Models

	TppFaaS - Developed System
	Sampler
	TPP Models

	Evaluation Settings
	Benchmark Applications
	Infrastructure Settings
	Dataset Generation
	Training Details and Model Parameters
	Performance Quality Measures

	Results
	Predictions on Datasets without Cold Starts
	Prediction on Datasets with Cold Starts

	Summary

	Courier: Users's Functions Invocations Delivering and Load Balancing in FDN
	Introduction
	Courier Load Balancer
	Courier Load Balancer Configuration

	Courier Control Plane
	Function Delivery Policies
	Function-Aware Delivery Policy
	Data-Aware Delivery Policy

	Load Balancing Algorithms
	Latency-Aware Load Balancing Algorithm
	SLO-Aware Load Balancing Algorithm

	Load Balancer Configurator

	Summary

	SLAM: SLO-Aware Memory Optimization of Serverless Applications in FDN
	Introduction
	SLAM Tool
	Load Generator
	Application Call Graph Builder
	Functions Performance Modeler
	Application Execution Time Estimator
	Config Finder
	Optimization Objectives
	Optimal Memory Configuration Finding Algorithm

	SLAM Evaluation
	Evaluation Settings
	Test Applications
	Evaluation Questions

	Results
	Q1. SLAM Estimation Time Accuracy
	Q2. SLAM Configuration Finding Accuracy
	Q3. SLAM Configuration Finding Efficiency and Scalability

	Summary

	Anomaly Detection in the FDN
	Online Memory Leak Detection
	Methodology for Memory Leak Detection
	Problem Statement
	Illustrative Example

	Memory Leak Detection Algorithm: Precog
	Precog Evaluation
	Q1. Memory Leak Detection Accuracy
	Q2. Scalability
	Q3. Parameter Sensitivity

	Anomalous VMMs Detection
	Problem Definition
	Illustrative Example

	Indirect Anomaly Detection (IAD) Algorithm
	IAD Algorithm
	Test Module

	Experimental Settings
	Datasets
	Evaluated Algorithms
	Other Settings

	Results
	Q1. Indirect Anomaly Detection Accuracy
	Q2. Anomalous VMMs Finding Efficiency and Scalability

	Summary

	Function Delivery Network Evaluation Settings
	Benchmarks
	FaaS Functions
	Web-based FaaS Functions
	CPU-Intensive FaaS Functions
	Memory-Intensive and Disk I/O-Intensive FaaS Functions
	Network I/O-Intensive FaaS Functions
	ML-based FaaS Functions

	Serverless Application

	Heterogeneous Target Serverless Compute Clusters
	Edge-Clusters
	Cloud-Clusters
	Private-Cloud-Clusters
	Public-Cloud-Clusters

	Evaluation Infrastructure
	FDN Deployment Settings
	FDN Test Framework
	Configuration File
	FDN Test Client
	FDN Load Generator

	Performance Quality Metrics
	User-Centric Metrics
	Platform-Centric Metrics

	Summary

	Function Delivery Network Evaluation Results
	FaaS Functions Performance and Resources Usage
	Web-based Function
	nodeinfo

	CPU-Intensive Functions
	primes
	linpack
	sentiment-analysis

	Memory- and Disk-Intensive Functions
	dd
	gzip-compression

	Network-Intensive Function
	json-loads

	ML-Based Functions
	lr-prediction
	image-processing

	FaaS Functions Performance and Resources Usage Summary
	FDN's Performance Overhead
	FDN's Function Delivery Policies Correctness
	FDN's Bucket Replication Performance
	FDN's Load Balancing Algorithms Performance
	Individual FaaS Function (nodeinfo)
	Performance on Low Workload (Trace R2)
	Performance on High Workload (Trace R1)

	Individual FaaS Function (gzip-compression)
	Performance on Low Workload (Trace R2)
	Performance on High Workload (Trace R1)

	Individual FaaS Function (lr-prediction)
	Performance on Low Workload (Trace R2)
	Performance on High Workload (Trace R1)

	Serverless Application (faas-composer)
	Performance on Low Workload (lowered-down version of Trace R1)

	FDN's Load Balancing Performance Summary
	Algorithms Performance
	Clusters Performance

	Summary

	Conclusion and Future Outlook
	Conclusion
	Future Outlook
	Extension of Virtual Kubelet
	Energy Efficiency and Power-aware Scheduling on Edge Clusters
	Improvement of the Function Delivering Decision-making Policies
	Improvement of the Load-Balancing Algorithms
	Shim for Function Code for all the Serverless Compute Platforms
	Creating Serverless Storage Backends for the FDN
	Distributed Anomaly Detection in the FDN

	Appendices
	Appendix Function Delivery Network Configurations
	FDN Design Configurations Templates
	FDN-Provider Deployment Template
	FDN-Provider Function Deployment Template

	FDN-Components
	FDN-Monitor Grafana Dashboards
	FDN-UI

	FDN Test Framework

	Appendix Source Code Availability
	Appendix List of Authored and Co-authored Publications
	Publications Associated with the Dissertation
	Journal Articles
	Conference Articles
	Workshop Articles
	Poster

	Other Publications
	Journal Articles
	Conference Articles
	Workshop Articles

	Index
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Acronyms
	Bibliography
	Webliography

