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Abstract

This thesis discusses how optical material nonlinearity can be used for ultra-broadband all-optical
signal processing in nano-rib waveguides and optical fibers.

It starts with an introduction to nonlinear optics, especially the so-called four-wave mixing
(FWM) process which is used for the signal processing. To achieve FWM with high efficiency, it is
necessary to perform numerical phase matching – the process of finding optimal laser wavelengths
and laser-to-waveguide mode assignments.

It is further shown how a high processing bandwidth (in the sense of large range of signal
wavelengths) can be achieved by optimizing the geometry of the used waveguides.

A continuous wave propagation simulation is presented, which predicts the output power of
the desired light wave to a high accuracy.

The thesis later explores whether FWM with three or four interacting waveguide modes is
feasible in nano-rib waveguides and fiber waveguides. It is shown that the case with four modes
is impossible and three modes only work with strongly reduced bandwidth and only in nano-rib
waveguides.

Simulation results are compared to measurements of two manufactured waveguides with the
result that the simulation reliably predicts the best-case behavior.

Finally, a special case of phase matching in the TE2 mode of a nano-rib waveguide is shown,
which enables very flexible operation modes of the waveguide.



Zusammenfassung

Diese Arbeit erörtert wie Materialnichtlinearität für extrem breitbandige und rein optische
Signalverarbeitung in nano-rib Wellenleitern und Glasfasern verwendet werden kann.

Sie beginnt mit einer Einführung in das Gebiet der nichtlinearen Optik, insbesondere wird
die Vierwellenmischung (FWM) behandelt, die zur Signalverarbeitung verwendet wird. Um die
Effizienz des FWM zu maximieren, muss eine numerische Optrimierung zur Phasenanpassung
(“phase matching”) durchgeführt werden. Bei diesem Prozess werden die Laserwellenlängen und
die Zuordnung von Lasern zu Modem optimiert.

Des Weiteren wird gezeigt, wie eine hohe Signalverarbeitungsbandbreite (im Sinne von einem
großen Bereich von Signalwellenlängen) erzielt werden kann, indem die Wellenleitergeometrie
optimiert wird.

Weiter wird eine Simulation basierend auf rein sinusförmigen Wellen (CW) vorgestellt, mit der
die Leistung der erwünschten Wellen am Wellenleiterausgang in guter Näherung vorausgesagt
werden kann.

Danach wird die Machbarkeit von FWM mit drei oder vier interagierenden Moden in nano-rib
Wellenleitern und Glasfasern erörtert. Es wird gezeigt, dass der Fall mit vier Moden nicht
verwendbar ist und dass FWM mit drei Moden ausschließlich in nano-rib Wellenleitern und auch
nur mit stark reduzierter Bandbreite verwendbar ist.

Später werden Simulationsergebnisse mit Messungen von zwei Wellenleitern verglichen und
gezeigt, dass die Simulation zuverlässig Voraussagen über den Optimalfall liefert.

Schließlich wird noch ein Spezialfall von Phasenanpassung auf Basis der TE2 Mode eines
nano-rib Wellenleiters vorgestellt. Diese Konfiguration ermöglicht einen extrem flexiblen Betrieb
des Wellenleiters.
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1
Introduction

The vast majority of internet traffic is carried by different kinds of optical fiber connections.
Short-reach access networks typically use multimode fibers to build datacenter, campus or research
networks. Metropolitan area networks join the access networks and also provide connections
for, e.g., mobile radio stations. The highest bit rates are needed in long-haul trans-oceanic links
which transmit data in the terabit per second range over singlemode fibers. All these connections
are operated in a very robust way and rarely become the matter of public interest due to failures.
For example, the Tonga islands are connected to the internet by only one undersea cable, which
was destroyed by an earthquake in January 2022. Although satellite communications were set
up as fallback, data rates were lower by many orders of magnitude and internet access was
highly restricted. This incident brought the dangers of natural or malignant destruction of these
important internet backbone links to public attention.

One ever ongoing research topic is to increase the data throughput capacity of optical links.
Major improvements were achieved when two light polarizations were used to transmit orthogonal
data, when higher order modulation schemes were applied and most importantly when wavelength
division multiplexing was introduced. In the latter technique, several optical channels at different
carrier wavelengths in the optical C-band are used in parallel for different data streams. However,
the throughput gain by all these techniques starts to saturate and new ideas are explored actively
(see e.g. [1] and [2]). The most prominent one is space-division multiplexing (SDM), where either
several fiber modes, multiple cores of multicore fibers or a combination of both are modulated
with individual data. For example, a throughput of 1.2Pbit/s was achieved in [3]. Another
approach – more related to this work – is to extend transmission beyond the optical C-band.
For example, a throughput of 0.6Pbit/s was achieved in [4] by transmitting in the S- C- and
L-bands over a four-core fiber. The problem with this approach is that different transmitters
and receivers are needed for different wavelength ranges, increasing the cost and/or decreasing
flexibility of transmission systems.
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Figure 1.1.: Schematic of a routing scenario where all-optical WLC helps to resolve a wavelength conflict.

However, wavelength converting devices can be used to shift modulated channels from the C-band
to other wavelengths into, e.g., the S-band. These devices need to operate in an all-optical
fashion without any optical-electrical-optical conversion (otherwise the need for new transmitters
and receivers remains). One main task of this thesis are numerical optimizations to build such
all-optical wavelength conversion (WLC) devices.

A further potential application of all-optical WLC can be found in optical routing nodes of
metropolitan networks and potentially even in access networks. Figure 1.1 shows a schematic of
a situation where two signals at the same wavelength (red) arrive at a routing node and should
be transmitted in the same outgoing fiber. With WLC, one signal can be converted to another
wavelength (green) and transmitted in parallel with the other signals. This can also be beneficial
in datacenter interconnect networks [5].

Wavelength conversion has already been studied for optical meshed networks in the late
nineties [6]. Among the wavelength multiplexing techniques in [6], “Four-Wave-Mixing in Passive
Waveguides” is similar to our approach and to recent experiments [7] with promising results.

The nonlinear response of the fiber’s silica core leads to the accumulation of phase distortions
in trans-oceanic links with huge transmission distances. Fortunately, these distortions are
deterministic and they can be compensated with a variety of different techniques – a comprehensive
overview can be found in [8]. One of these methods is optical phase conjugation (OPC) (also
called mid-span spectral inversion), which is illustrated in Fig. 1.2. An OPC device is placed in
the middle of the transmission link to phase-conjugate the signal. When the two spans of the
link are symmetric w.r.t. loss and dispersion profiles, the accumulated phase distortion from the
first half is canceled in the second half. Since the two spans can never be symmetric (especially
the loss profile), a higher (odd) number of OPC devices can be distributed along the link to
make the spans more symmetric. Mid-span spectral inversion is described in more detail in [9,
Chapter 7.3].
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Tx OPC Rx

𝑡 𝑡 𝑡 𝑡

𝜔 𝜔 𝜔 𝜔

Span 1 Span 2

Figure 1.2.: Simple schematic of a transmission system with optical phase conjugation.

The idea of compensating distortions by OPC has already been suggested in the late seventies
[10], demonstrated in a fiber-based experiment in [11] and shown that it can improve optical
signal to noise ratio in more recent experiments, e.g. [12]. One goal of our work were numerical
optimizations for OPC devices.

The propagation of light in every material shows nonlinear effects when the propagating field
amplitudes are high enough. While this effect is detrimental in trans-oceanic links mentioned
above, it can also be used to achieve all-optical WLC and OPC. A general survey on all-optical
signal processing can be found in [13] – some applications besides WLC and OPC are wavelength
multicasting, tunable optical delays, equalization and optical correlators.

One prominent technique for all-optical signal processing is based on utilizing the third order
nonlinear process called FWM. In these experiments, the signal is usually launched into a
nonlinear medium together with one or two strong pump lasers and a so-called idler wave with
the desired properties is generated along the waveguide. There are many experiments based on
(highly nonlinear) fibers, e.g. [14], [15] to name two. However, using silicon on insulator (SOI)
waveguides as nonlinear medium is a very promising alternative, [16] gives a good overview.
There are three main reasons why SOI waveguides are a better choice than fibers:

1. They can be manufactured in well-established BiCMOS silicon foundries otherwise used to
produce electronic chips. This not only lowers costs, but enables co-integration of optics
with electronic processing on one single chip [17].

2. Silicon has a more than two orders of magnitude higher nonlinearity compared to silica:
𝑛2(SiO2) = 0.026 ⋅ 10−18 m2/W [18], 𝑛2(Si) = 10 ⋅ 10−18 m2/W [19, Fig. 6] and [20]. This
means the size of the processing device can be drastically reduced from fibers with several
hundreds of meters to SOI waveguides of only 1 or 2 centimeters.
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3. The refractive index contrast in SOI waveguides (roughly 3.48 − 1.44 ≈ 2) is much higher
than in fibers (1.46 − 1.44 ≈ 0.02), which additionally allows smaller waveguide cross
sections and thus higher nonlinearity due to higher field amplitudes at the same power.

Therefore, we focus on silica fibers and SOI nano-rib (NR) waveguides in this thesis.
Many all-optical signal processing experiments have been conducted with SOI waveguides.

Broadband WLC is shown in theory in [21] and with experimental confirmation in [7], [22]–
[24]. One can achieve additional degrees of freedom for optimizing FWM, when more than the
fundamental waveguide mode is used. In [25], the authors perform a tedious manual geometry
optimization for a strip SOI waveguide to achieve broadband WLC. Such multi-modal WLC was
experimentally shown in [26]–[28]. Multi-modal OPC experiments can be found in [29], [30].

Most of our work was conducted in the research project “SPP 2111: Electronic-Photonic
Integrated Systems for Ultrafast Signal Processing” [31] by the German research foundation
DFG. The goal is to develop an integrated, all-optical ultra-broadband photonic signal processor
which can be used for OPC and WLC. Our task at Technische Universität München (TUM) was
the optimization of laser wavelengths, laser-to-mode assignments and waveguide geometries to
achieve broadband FWM with high efficiency. Our partners at Technische Universität Berlin
(TUB) and Innovations for High Performance Microelectronics GmbH (IHP) were responsible for
the technical aspects of waveguide design like layouting, grating coupler (GC) design, adding
mode multiplexers (MUXs), etc. and for manufacturing. Our partners at Fraunhofer-Institut
Heinrich-Hertz-Institut für Nachrichtentechnik (HHI) were responsible for conducting WLC
system experiments with the waveguides.

The presented material is partly based on our publications [32]–[40]1. To the best of our
knowledge, the numerical phase matching approach presented in Section 3.1 has not been done
before.

1 One further contribution was the joint work [41]. However, it is unrelated to the topic of this thesis.



2
Fundamentals of Waveguide Modes and
Four-Wave Mixing

In this chapter, we introduce mathematical basics and concepts relevant for the thesis. The main
focus lies on the theory of optical waveguide modes, dispersion, four-wave mixing (FWM) and
phase matching (PM).

2.1. Waveguide Modes and Dispersion

This section recaps the basics of waveguide modes and chromatic dispersion. We only consider
classical waveguides and no others like photonic crystal (hollow core) fibers or structures which
guide the wave with metallic surfaces. More specifically, we only deal with silica fibers and SOI
NR waveguides. In these classical waveguides, light propagates in a core region surrounded by
material with lower refractive index.

The main subject of this thesis is the optimization of FWM in multimode waveguides. As a
rule of thumb, the larger the waveguide’s core and the greater the refractive index difference, the
more modes are guided by the waveguide. In order to optimize FWM, light waves at different
frequencies need to propagate with similar speeds in the waveguide – the optimization of which
is called phase matching. Since dispersion in the waveguide depends on frequency and is different
among modes, both factors play key roles in PM and hence are introduced here.



Chapter 2. Fundamentals of Waveguide Modes and Four-Wave Mixing 6

2.1.1. Modeling the E-Field and Waveguide Modes

The propagation of light is at the core of optical communications. The classical (non-quantum)
model of the propagation of light is based on Maxwell’s equations

𝛁 • �̃� = 𝜌 (2.1)

𝛁 • 𝑩 = 0 (2.2)

𝛁×𝑬 = −𝜕�̃�
𝜕𝑡

(2.3)

𝛁×𝑯 = 𝜕�̃�
𝜕𝑡

+ ̃𝑱 , (2.4)

which describe the interplay of electric and magnetic fields 𝑬 and 𝑯 , electric displacement
field (or flux density) �̃�, magnetic flux density �̃�, the free charge density 𝜌 and the current
density in a conducting material ̃𝑱 = 𝜎𝑬 (with conductivity 𝜎)2. The material permittivity 𝜀
and permeability 𝜇 connect fields and flux densities via the constitutive relations3

�̃� = 𝜀𝑬 = 𝜀0𝜀r𝑬 (2.5)

�̃� = 𝜇𝑯 = 𝜇0𝜇r𝑯, (2.6)

where 𝜀r and 𝜇r are in general frequency and location dependent and 𝜀0 and 𝜇0 are the vacuum
permittivity and permeability constants. These quantities are related to the speed of light in
vacuum as

𝑐0 = 1
√𝜀0𝜇0

(2.7)

and to the familiar refractive index 𝑛 as

𝑛 = √𝜀r𝜇r. (2.8)

For the propagation of light in optical waveguides, we can further assume that:

• There are no free charges, hence 𝜌 = 0 and 𝜎 = 0.

• We only consider non-magnetic materials, hence 𝜇r = 1.

• The frequency dependence of 𝜀 is very slow compared to the fast oscillating light fields,
hence 𝜕𝜀

𝜕𝑡 ≈ 0 for calculations with continuous wave (CW) (also called monochromatic)
light waves.

• The waveguide is uniform in the propagation direction, hence 𝜕𝜀
𝜕𝑧 = 0.

2 The quantities in this section are passband signals, denoted by the tilde. See Appendix A.1.2 for our notation
of passband, analytic, baseband and complex phasor signals.

3 These relations are valid for a linear medium only. We extend �̃� by the nonlinear material polarization in
Section 2.4 and Chapter 4.
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Light

𝑥

𝑦

𝑧

Figure 2.1.: The coordinate system used for light propagation throughout the thesis. The wave travels
towards the observer in the +𝑧 direction and it’s polarization is defined by the 𝑬 field in the (𝑥, 𝑦) plane.

Using the first three assumptions, we can simplify Eqs. (2.1) to (2.4) to

𝛁 • �̃� = 𝛁 • (𝜀𝑬) = 0 (2.9)

𝛁 • �̃� = 𝛁 • (𝜇𝑯) = 0 (2.10)

𝛁×𝑬 = −𝜇0
𝜕𝑯
𝜕𝑡

(2.11)

𝛁×𝑯 = 𝜀𝜕𝑬
𝜕𝑡

. (2.12)

Taking the curl of Eq. (2.11), using the generic vector field identity

𝛁×(𝛁×𝑬) = 𝛁 (𝛁 • 𝑬) − Δ𝑬 (2.13)

and inserting Eq. (2.12) yields the wave equation

Δ𝑬 − 𝛁 (𝛁 • 𝑬) − 𝜀𝜇0
𝜕2

𝜕𝑡2 𝑬 = 0, (2.14)

which is a second order partial differential equation. Equation (2.14) is a full 3-dimensional model
of the wave in space and time. However, for modeling the propagation of light in a waveguide, it
is beneficial to split the transversal field distribution from the evolution along the propagation
direction. See Fig. 2.1 for our definition of the coordinate system.
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It is customary to model the 𝑬 field as4

𝑬(𝑥, 𝑦, 𝑧, 𝑡) = ℛ𝑒{ ̂𝐸(𝑧, 𝑡)𝜳(𝑥, 𝑦)e𝑗𝜔𝑡e−𝑗𝛽𝑧} , (2.15)

where e𝑗(𝜔𝑡−𝛽𝑧) represents a plane wave at frequency 𝜔 and with propagation constant 𝛽, ̂𝐸(𝑧, 𝑡)
is the slowly varying wave amplitude (potentially modulated with data) and 𝜳(𝑥, 𝑦) is the
3-dimensional transversal light profile. With 𝑬 defined as in Eq. (2.15), the solutions of Eq. (2.14)
are called modes and each mode consists of a pair of 𝜳 and 𝛽.

A waveguide can support one or more guided modes, depending on its core size, the refractive
index difference Δ𝑛 between core and surrounding material, and the propagating light’s wavelength
𝜆. As a general rule, a larger core, a higher refractive index difference5 and a smaller wavelength
increase the number of guided modes. All waveguides have at least one mode that is guided
for all wavelengths of propagation light, called the fundamental mode. Every other mode has a
specific cutoff wavelength, which means that it only guides waves with smaller wavelengths.

In symmetric waveguides, there exist two identical “copies” of each mode, just rotated by
90°. They are typically called 𝑥 and 𝑦 polarized. These copies are frequently regarded as two
versions of one mode, although they are two distinct and independent solutions of Eq. (2.14)6.
For instance, a standard single-mode fiber has a core diameter of about 8 µm and, as the name
states, supports only one mode at typical telecommunications wavelengths in the C-band around
1550 nm. Since the fiber has circular symmetry, the fundamental mode has actually two versions
called HE11e and HE11o. In contrast, plastic optical fibers have a core diameter of about 1mm
and support millions of modes. In between, there exist few-mode fibers (FMFs) and multi-mode
fibers with core diameters around 20 µm and 50 µm, respectively. They support from some few
up to hundreds of modes.

We define the set of all supported and considered modes of the waveguide as

M = {TE0, TE1, TE2, TE3, … } . (2.16)

Mode names depend on the waveguide, e.g. M = {LP01x, LP01y, LP11ax, LP11ay, … } for a
fiber, etc. Their order is according to their propagation constants 𝛽 in decreasing order, where
the first is the fundamental mode.

4 The field in Eq. (2.15) is given as a decomposition into its analytic representation, converted back to the
passband. See Appendix A.1.2 for our notation of passband, analytic, baseband and complex phasor signals.

5 The index difference can be exactly defined for some geometries where one material is uniformly surrounded by
another material, e.g. Δ𝑛 = 𝑛core − 𝑛clad for a circular fiber. For more complicated geometries like, e.g., a
NR waveguide with different materials surrounding a T-shaped core, it is not possible to define Δ𝑛 exactly.
However, the general trend mentioned in the text is still valid – increasing the refractive index difference by
using a higher core index or a lower index in one of the surrounding regions, increases the number of guided
modes.

6 For example, the modes (in the linear polarized (LP) approximation, see Section 2.3) of a few-mode fiber are
usually labeled LP01, LP11a, LP11b, etc. Each of these modes exists in two polarizations, e.g., LP01x, LP01y,
LP11ax and LP11ay, etc.
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We can then model the superposition of CW signals at discrete frequencies propagating in a
waveguide in different modes and at different frequencies as

∑
𝑎∈S

∑
(𝑚)∈M

𝑬(𝑚)
𝑎 (𝑧) = ∑

𝑎∈S
∑

(𝑚)∈M
ℛ𝑒{ ̂𝐸(𝑚)

𝑎 (𝑧)𝜳 (𝑚)
𝑎 (𝑥, 𝑦)e𝑗(𝜔𝑎𝑡−𝛽(𝑚)

𝑎 𝑧)}

= 1
2

∑
𝑎∈S

∑
(𝑚)∈M

̂𝐸(𝑚)
𝑎 (𝑧)𝜳 (𝑚)

𝑎 (𝑥, 𝑦)e𝑗(𝜔𝑎𝑡−𝛽(𝑚)
𝑎 𝑧) + c.c.

(2.17)

with the set of all considered positive frequencies S , complex amplitudes ̂𝐸(𝑚)
𝑎 and plane waves

exp(𝑗 (𝜔𝑎𝑡 − 𝛽(𝑚)
𝑎 𝑧)). The variables 𝑎 and (𝑚) are to be interpreted as indices to the sets M

and S , respectively, e.g. 𝛽(𝑚)
𝑎 is the propagation constant of the (𝑚)-th mode in M, evaluated

at the 𝑎-th frequency in S and needs to be understood as 𝛽(𝑚)(𝑓𝑎). The transversal field profile
𝜳 has an implicit slow frequency dependence which is frequently ignored. However, we need
to consider it when we perform integrals over mode fields and therefore state the dependence
explicitly in Eq. (2.17).

Numerical methods are needed to compute modes of most waveguide geometries, while
analytical methods exist for some special cases. Section 2.3 is devoted to the computation of
modes and also contains figures for different waveguides.

2.1.2. Dispersion

Despite it’s name, the propagation “constant” 𝛽(𝜔) is actually frequency dependent and the
cause for several effects. It is common to expand it into its Taylor series around some center
frequency 𝜔0

𝛽(𝑚)(𝜔) = 𝛽(𝑚)
0 + 𝛽(𝑚)

1 Δ𝜔 + 𝛽(𝑚)
2
2

Δ𝜔2 + ⋯ + 𝛽(𝑚)
𝑖
𝑖!

Δ𝜔𝑖 + … ,

𝛽(𝑚)
𝑖 = d𝑖𝛽(𝑚)(𝜔)

d𝜔𝑖 ∣
𝜔=𝜔0

(2.18)

with Δ𝜔 = 𝜔 − 𝜔0. The summands have different physical interpretations: 𝛽0 is responsible for
the propagation phase delay of the wave, 𝛽1 for the linear group delay, 𝛽2 for group velocity
dispersion, 𝛽3 for the dispersion slope and all higher terms are negligible for typical optical
communication applications.

Normalized group delay and the dispersion parameter are defined by derivatives of 𝛽

𝜏 (𝑚)
g (𝜔) = d𝛽(𝑚)(𝜔)

d𝜔
= d𝛽(𝑚)(𝜆 (𝜔))

d𝜆
d𝜆
d𝜔

(2.19)

𝐷(𝑚)(𝜆) = d𝜏 (𝑚)
g (𝜆)
d𝜆

= d𝜏 (𝑚)
g (𝜔 (𝜆))

d𝜔
d𝜔
d𝜆

= d2𝛽(𝑚)(𝜔)
d𝜔2

d𝜔
d𝜆

, (2.20)

where d𝜔
d𝜆 = −2𝜋𝑐0

𝜆2 and d𝜆
d𝜔 = −2𝜋𝑐0

𝜔2 . Our figures mostly show relative normalized group delays
𝜏g, where the curves are vertically shifted by a common offset, such that the fastest plotted mode
(with lowest normalized group delay) has a value of zero at 1550 nm.
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Figure 2.2.: Effective, material and waveguide dispersion (expressed as refractive indices) of the funda-
mental modes in a FMF and NR waveguide.

The total or effective chromatic dispersion Eq. (2.20) can be divided into

𝐷 = 𝐷material + 𝐷waveguide. (2.21)

Material dispersion is caused by the frequency dependence of the waveguide material’s refractive
index itself. This part can be modeled with Sellmeier equations of the form Eq. (2.22) or Eq. (2.23).
Waveguide dispersion is caused by the waveguiding effect, which in turn is determined by the
transversal profile of the refractive index 𝑛 (equivalently 𝜀r). Therefore, waveguide dispersion
highly depends on the geometry of the waveguide and there is no obvious way to compute it
apart from subtracting material from effective dispersion. Figure 2.2 shows an example of the
three dispersion values for an FMF and a NR waveguide. The waveguide dispersion is strongly
pronounced in the NR waveguide and almost negligible in the fiber.

The Sellmeier equation

𝑛 = √1 + ∑
𝑖

𝐴𝑖𝜆2

𝜆2 − 𝑙2𝑖
(2.22)

is a commonly used approximation for the wavelength dependent behavior of a material’s
refractive index. The Sellmeier-like equation

𝑛 = √𝜀inf + 𝐴
𝜆2 + 𝐵𝑙21

𝜆2 − 𝑙21
, (2.23)

is a simplification of Eq. (2.22), which is specifically used for silicon [42]. Table 2.1 lists coefficients
to be inserted in Eq. (2.22) or Eq. (2.23) for all materials used in this thesis.
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Table 2.1.: Sellmeier (-like) coefficients of different materials, to be inserted in Eqs. (2.22) and (2.23).

Material & References 𝐴1 & 𝑙1 [µm] 𝐴2 & 𝑙2 [µm] 𝐴3 & 𝑙3 [µm]

SiO2 [43] 0.696 166 3
0.068 404 3

0.407 942 6
0.116 241 4

0.897 479 4
9.896 161

GeO2 [43] 0.806 866 42
0.068 972 606

0.718 158 48
0.153 966 05

0.854 168 31
11.841 931

99%SiO2, 1%F
[44], [45]

0.693 25
0.067 24

0.397 20
0.117 14

0.860 08
9.7761

Si3N4 [46] 3.0249
0.135 340 6

40 314
1239.842

Material & References 𝜀inf 𝐴 [µm2] 𝐵 & 𝑙1 [µm]

Si [47, p. 548], [42] 11.6858 0.939 816 8.104 61 · 10−3

1.1071
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Figure 2.3.: Wavelength dependent refractive index of crystalline silicon, silicon nitride doped with 2%
silica, pure silica and silica doped with germanium and fluorine.

Figure 2.3 shows the refractive indices of materials and composite materials used in the thesis.
The procedures to compute refractive indices of composite materials differ. For SiO2 + F, we use
coefficients from direct measurements of the composite material [44], [45]. For SiO2 + GeO2, we
can linearly combine the Sellmeier coefficients of the two component materials [43]

𝐴𝑖,SiO2+GeO2
= (1 − 𝑋)𝐴𝑖,SiO2

+ (𝑋)𝐴𝑖,GeO2

𝑙𝑖,SiO2+GeO2
= (1 − 𝑋)𝑙𝑖,SiO2

+ (𝑋)𝑙𝑖,GeO2

𝑛SiO2+GeO2
= √1 + ∑

𝑖

𝐴𝑖,SiO2+GeO2
𝜆2

𝜆2 − 𝑙2𝑖,SiO2+GeO2

(2.24)

where 𝑋 is the fraction of GeO2. Finally, for SiO2 + Si3N4 we can linearly combine the refractive
indices of the component materials [48]

𝑛SiO2+Si3N4
= (1 − 𝑋)𝑛SiO2

+ (𝑋)𝑛Si3N4
(2.25)

where 𝑋 is the fraction of Si3N4.



Chapter 2. Fundamentals of Waveguide Modes and Four-Wave Mixing 13

Table 2.2.: Parameters of FMFs used in the thesis. 𝑋GeO2
and 𝑋F are the percentage of GeO2 in the

core and F in the trench, respectively.

Waveguide 𝑟core
[µm]

𝑤trench
[µm]

𝑟clad
[µm] 𝛾grad

𝑋GeO2
[%]

𝑋F
[%]

1 (step index) 10 0 30 ∞ 10.4
2 (graded index) 10 0 30 1.82 10.4
3 (depressed cladding) 10 10 30 1.82 10.4 1
4 (large core) 40 0 60 1.82 10.4
5 (example) 20 20 60 1.82 10.4 1

Table 2.3.: Parameters of NR waveguides used in the thesis.

Waveguide 𝑤rib
[nm]

ℎslab
[nm]

ℎSOI
[nm]

Num.
Dips

𝑤dip
[nm]

ℎdip
[nm]

𝛼tilt,l
[°]

𝛼tilt,r
[°]

𝑤lower
[nm] 𝑛lower

1 (regular) 2000 100 200
2 (dips) 2000 100 200 2 200 50
3 (tilted rib walls) 2000 100 200 30 30
4 (lower rib sides) 2000 100 200 200 3.181
5 (zero dispersion) 1947 80 220
6 (PM fails) 1210 70 220
7 (third kind PM) 2000 70 220 2 200 150

2.2. Examples of Light Waveguides

In this section, we introduce the two waveguide types used throughout this thesis – silica fibers
and SOI NR waveguides. In fibers, the core is surrounded by a cladding and the difference in
refractive indices is very small – typically 𝑛clad = 1.44 and 𝑛core = 1.46. In NR waveguides, light
propagates in the slab and rib regions, which are surrounded by a silica substrate and several
coating layers with both much lower refractive indices than the core – typically 𝑛rib = 3.48 and
𝑛substrate = 1.444. The sum height of rib and slab is around 200 nm, hence the name “nano”.

We present transversal refractive index profiles, mode fields and dispersion curves for selected
examples of both waveguide types. For this purpose, it is enough to know the refractive index
profile and no further waveguide properties like nonlinearity are needed (nonlinear effects are
introduced in Section 2.4 and Chapter 4).

We collect waveguide parameters like dimensions, doping fractions and grading exponents for
all waveguides used across this thesis in Tables 2.2 and 2.3.
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(b) Values along 𝑦 = 0 in Fig. 2.4a.

Figure 2.4.: Refractive index profile of a graded index, depressed cladding FMF. Parameters are the
core radius, cladding radius, trench width and grading index, the values in this example are taken from
FMF 5 (example) in Table 2.2.

2.2.1. Silica Fibers

Figure 2.4 shows our definition of dimensions for graded index depressed cladding few-mode
fibers. They consist of a cladding, a trench with lower refractive index and a core with higher
refractive index.

While the cladding consists of pure SiO2, core and trench are doped with GeO2 and F,
respectively (see Tables 2.1 and 2.2 and Fig. 2.3). The resulting refractive indices are wavelength
dependent and can be calculated with the help of Eq. (2.22).

The concentration of GeO2 in the core has a graded profile and the refractive index can be
computed as

𝑛 = √𝑛2
core − (𝑛2

core − 𝑛2
clad) ( 𝑟

𝑟core
)

𝛾grad

, (2.26)

where 𝑛core is the index in the center of the core, 𝑟 the distance from the center and 𝛾grad the
grading exponent (typically close to 2 or infinity for step index fibers).

Depressed cladding fibers have a trench around the core with a refractive index lower than in
the cladding.

Figure 2.5 shows the four selected mode fields (starting with the fundamental one) of FMF 2
(graded index) in Table 2.2. The figure shows “vectorial” mode fields, which are the physical
modes of the waveguide. While some of them are approximately linearly polarized in 𝑥 or 𝑦
direction (HE11 and HE12 in Fig. 2.5), others have complex polarization profiles (TE01 and EH11o
in Fig. 2.5). In the latter cases, the 𝑬-fields point in arbitrary directions in the 𝑥, 𝑦, 𝑧 plane
(with usually negligible 𝑧 component). Vector modes can be combined to yield approximately
linear polarized (LP) modes, see Section 2.3.3 and Appendix A.4.2. Mode fields of the step index
fiber (FMF 1 (step index) in Table 2.2) are very similar to those in Fig. 2.5, except that the
grading “squeezes” the modes and they are smaller compared to the step index fiber.

The depressed cladding graded index fiber (FMF 3 (depressed cladding) in Table 2.2) has
almost the same mode fields as without the trench, except that slightly less power is guided
outside of the fiber’s core due to the higher index contrast.
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Figure 2.5.: Transversal electric field distributions of the four modes HE11e, TE01, EH11o and HE12o of
FMF 2 (graded index) in Table 2.2. Colors encode magnitudes (high values are red and low values are
blue) and arrows encode polarization directions.

Finally, Fig. 2.6 shows relative normalized group delays and dispersions of the same four modes
that are shown in Fig. 2.5 – for a step index, graded index, depressed cladding graded index fiber
and a fiber with very large core. By comparing Figs. 2.6a, 2.6c and 2.6e, one can clearly see that
differential mode delay (DMD) is reduced by adding a grading and even further by adding a
trench. Although the DMD in the fiber with large core is even lower, it’s not possible to exploit
it. We have to keep in mind that this fiber supports a vast number of guided modes and the
DMD of all its guided modes is much larger than that of the four depicted modes.

Depressed cladding fibers have traditionally been used to minimize dispersion in single-mode
fibers by shifting the zero dispersion wavelength [49]. However, they are also beneficial to reduce
DMD and to equalize dispersion slopes among modes7 [50], [51]. For example, the dispersion
slopes in Fig. 2.6f are almost equal among the modes, in contrast to Fig. 2.6d.

7 We briefly show in Section 3.1.2 how similar dispersion helps with FWM.
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Figure 2.6.: Normalized relative group delay and dispersion of four selected modes of FMFs 1 (step
index), 2 (graded index), 3 (depressed cladding) and 4 (large core) in Table 2.2. The legend at the top is
valid for all plots.
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Figure 2.7.: Refractive index profile of NR waveguide 1 (regular) in Table 2.3, with layer stack and rails.
Note that the axes are scaled differently and the waveguide appears to be taller than it is.

2.2.2. Silicon on Insulator Nano-Rib Waveguides

Definitions of our NR waveguide parameters are shown in Fig. 2.7. The core is made of the
silicon parts slab, rib and rails and is surrounded by the silica substrate and coating8. During
manufacturing, silicon nitride and silica protective layers are added above the core. We show
these layers only once in Fig. 2.7 and don’t mention them again, although they are used in all
simulation results later in the thesis9. The rails on the left and right of the slab are used to
apply a reverse voltage to reduce free carriers and therefore attenuation [20]. Since the voltage
does not affect neither dispersion nor nonlinearity and the rails are far enough from the rib that
they also don’t affect dispersion or mode fields, we don’t include rails in our simulations.

8 Sellmeier coefficients for all used materials are listed in Table 2.1 and plotted in Fig. 2.3. Note that in contrast
to fibers, we don’t list material doping fractions in Table 2.3. The NR waveguide consists of pure silicon and
silica, except for the silicon nitride protective layers which are fixed by the manufacturing process (that we
can’t influence) and their effect is marginal anyways.

9 Note that the thickness and refractive index values of the protective layers are slightly randomized. The exact
values are subject to a non-disclosure agreement with the manufacturing partner we were collaborating with,
because they would reveal confidential information about the etching process. We performed our simulations
with the exact values, but if we used the randomized ones instead, the effect on results would be negligible.
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(c) Rib sidewalls with lowered refractive index, dimen-
sions like waveguide 4 (lower rib sides) in Table 2.3.

Figure 2.8.: Variants of the NR waveguide with tunable parameters: Number, width and height (etching
depth) of dips, angles of the wall tilts (positive and negative angles possible), and width and refractive
index of rib sides with lowered refractive index.

Fig. 2.8 shows further waveguide parameters we defined and used in some simulations. For
example, Fig. 2.8a shows dips we can etch into the waveguide to alter the dispersion for FWM
optimization. As parameters, we can choose the number of dips, their width and depth10.
Furthermore, we tested hypotheses about manufacturing errors in Chapter 6. There, we needed
the extra geometry parameters like tilted rib walls (Fig. 2.8b).

Figures 2.9 and 2.10 show the four lowest order modes of waveguides 1 (regular) and 2 (dips)
in Table 2.3, respectively. All modes are approximately linear polarized and are usually called
TE0, TE1, TE2 and TE3 (meaning “Transversal Electric” with zero, one, two and three polarity
inversions). The first two resemble LP01 and LP11 of a FMF – except for the smaller size and
much narrower vertical than horizontal dimension. The higher order modes don’t have equivalents
in fibers, but they are also approximately linearly polarized. We don’t show mode field plots for
waveguides with tilted rib walls and lowered rib side refractive indices, since there is almost no
visual difference to Fig. 2.9.

10 Since SOI waveguides are manufactured by an etching process, we have to obey some rules. For example, it is
not possible to have too narrow structures in the 𝑥 dimension and only discrete etching depths are possible.
Both limitations can be mitigated, albeit at increased costs (more etching steps, better etching process, etc.).
Therefore, we ignore these limitations in some proof-of-concept simulations.
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Figure 2.9.: Transversal electric field distributions of the four lowest order modes TE0, TE1, TE2 and
TE3 of waveguide 1 (regular) in Table 2.3. Colors encode magnitudes (high values are red and low values
are blue) and arrows polarization directions.
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Figure 2.10.: Transversal electric field distributions of the four lowest order modes TE0, TE1, TE2 and
TE3 of waveguide 2 (dips) in Table 2.3 which has two dips. Colors encode magnitudes (high values are
red and low values are blue) and arrows polarization directions.
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The most important parameters of NR waveguides are 𝑤rib and ℎSOI. Since most of the light
power propagates in the rib and slab region below it (see e.g. Fig. 2.9a), the rib width and SOI
height determine the core’s size similar to 𝑟core in fibers. The larger these values, the better the
guiding and the higher the number of guided modes. When the light wavelength approaches
a mode’s cutoff wavelength, increasing fractions of the power propagate in the slab sides, i.e.,
the mode field gets larger (see e.g. the lower part of the outer lobes in Fig. 2.9d and especially
Fig. 2.10d). Hence, the slab height also has an impact on dispersion and mode confinement.

Imagine slab height in Fig. 2.9d is slowly increased. More and more of the power left and
right outside of the rib will also propagate in silicon and the mode’s dispersion shifts closer to
lower order modes (which propagate almost only in silicon). As a consequence, the dispersion of
modes close to cutoff will deviate more from the lower order modes in waveguides with low slabs.
This can lead to a very broad zero dispersion region useful for FWM (see e.g. TE3 in Fig. 2.11f,
Section 3.1.3 and Chapter 7).

Finally, Fig. 2.11 shows group delay and dispersion of waveguides 1 (regular), 2 (dips), 5 (zero
dispersion) and 6 (PM fails) in Table 2.3. When comparing e.g. Figs. 2.6b and 2.11b, one can
see that NR waveguides have orders of magnitude larger dispersion and also the wavelength
dependent behavior is quite different from fibers – leading to substantially different FWM
behavior.

Etching dips into the rib mostly affects modes that have significant power at the dip positions.
For example, the mode fields in Fig. 2.10 show that TE3 is severely affected, while TE2 hardly
is. Dips have a similar effect as lowering the slab or shrinking the core, except that they act
on certain modes only. For example, the effect on mode TE3 is clearly visible in Fig. 2.11d
(compared to Fig. 2.11b), while TE2 almost does not change. Therefore, adding dips can be
beneficial for fine-tuning waveguide dispersion for PM.
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Figure 2.11.: Normalized relative group delay and dispersion of the four lowest order modes in NR
waveguides 1 (regular), 2 (dips), 5 (zero dispersion) and 6 (PM fails) in Table 2.3. The legend at the top
is valid for all plots.
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2.3. Computing Waveguide Modes

In this section, we introduce different methods for computing transversal mode fields 𝜳 (𝑋)(𝑥, 𝑦)
and their associated propagation constants 𝛽. The amplitude ̂𝐸(𝑧, 𝑡) of a fully characterized
wave as in Eq. (2.15) is excluded from computing mode fields, i.e., the mode field is determined
except for a multiplication factor. Apart from this factor, modes are fully determined by the
transversal relative permittivity 𝜀r(𝑥, 𝑦) of the waveguide and the frequency we evaluate the
modes at.

All mode solving methods start from the wave Eq. (2.14) without nonlinearity. Later in Sec-
tion 2.4 we introduce the nonlinear material polarization (see Eqs. (2.42) and (2.43)). Throughout
the whole thesis, it is assumed that propagating wave amplitudes are small enough, such that
nonlinearity does not influence the modal profiles. This assumption is justified for our applications
in communications, but might fail for high intensity laser physics, where effects like self-focusing
start to emerge.

Since modes are always computed at one fixed frequency, we don’t explicitly include frequency
dependence in the nomenclature of 𝜳, 𝛽 and 𝜀r in this chapter. To get the frequency dependent
behavior as in Figs. 2.6 and 2.11, one needs to repeat the computation of modes over a sweep of
frequencies. This also affects the wavelengths in the Sellmeier equations Eqs. (2.22) and (2.23).

For a limited set of waveguide geometries, Eq. (2.14) has analytic solutions. For a further
number of geometries, there exist approximative methods. However, modes have to be computed
with numerical methods in the general case.

2.3.1. Analytical Methods

The geometries with known analytic solutions include circular step index and graded index
fibers, elliptical fibers and strip waveguides. In-detail derivation of mode fields and propagation
constants of the above mentioned waveguides can be found in [52, Chapter 12]. Alternatively,
derivations for circular fibers are also found in [53, Chapter 2.4] and [54, Chapter 2.2].

As an example, we summarize the solution for circular fibers in the weakly guiding approxima-
tion (valid if the refractive index difference between core and cladding is small, which is true for
typical optical fibers). The 𝑬 and 𝑯 fields of a propagating wave have 6 components (𝐸𝑥, 𝐸𝑦,
𝐸𝑧, 𝐻𝑥, 𝐻𝑦, 𝐻𝑧), out of which only two are independent due to the four Maxwell equations the
fields have to fulfill11. Usually 𝐸𝑧 and 𝐻𝑧 are computed and the other components are derived
from these two. The 𝐸𝑧 component is modeled in a separable form and in cylindrical coordinates
(the procedure for 𝐻𝑧 is similar) [54, Chapter 2.2]

𝐸𝑧(𝑟, 𝜙, 𝑧, 𝜔) = 𝐴(𝜔)𝐹(𝑟)e𝑗𝑚𝜙e−𝑗𝛽𝑧. (2.27)

In this equation, the field is in frequency domain and 𝐴(𝜔) contains the time and frequency
dependence.

A solution of Eq. (2.14) can be obtained, if Eq. (2.27) it is inserted and cylindrical coordinates
are used. The radial behavior of light intensity 𝐹(𝑟) is oscillatory in the core and is modeled by
Bessel functions of the first kind 𝐽𝑖(𝑟) (𝑖 being the radial mode index). In the cladding, the fields
decay quickly, which is modeled by modified Bessel functions of the second kind 𝐾𝑖(𝑟). The
azimuthal behavior e𝑗𝑚𝜙 is also oscillatory, with azimuthal mode index 𝑚. Connecting continuous
11 We use the analytic form of fields in this chapter, see Appendix A.1.2.
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Figure 2.12.: Refractive index regions of a buried rectangular waveguide, defined in Marcatili’s approxi-
mation.

field components at the core-cladding boundary yields an eigenvalue equation, solutions of which
are the propagation constants. Since the resulting equation is transcendental, it has to be solved
by a numerical or graphical method. Nevertheless, this method is regarded as analytical since the
only numerical computation is solving one equation (with e.g. Newton’s method). The demand
on computational power is very low, especially if compared to numerical linear algebra based
methods like presented in Section 2.3.3.

2.3.2. An Approximate Method by Marcatili

A famous example of an approximative solution is Marcatili’s method for a buried optical
waveguide [55] (also described in detail in [53, Chapter 2.3]). The main idea is to divide the
refractive index profile into the five zones shown in Fig. 2.12.

Marcatili introduced the approximation that fields vanish in the hatched corner regions. This
way, the continuity conditions reduce to the direct borders between 𝑛1 and the four regions 𝑛2 to
𝑛5, permitting an analytical solution. With this approximation, the fields have a doubly-cosine
like behavior cos(𝑘𝑥𝑥 + 𝛼1) cos(𝑘𝑦𝑦 + 𝛼2) in the central region 𝑛1

12. In the outer regions, the
fields decay exponentially with distance from region 1 and oscillate in the direction parallel to
the core. For example, the fields in region 2 are proportional to cos(𝑘𝑥𝑥𝛼1) exp(−𝛾𝑦(𝑦 − 𝑏)),
where 𝛾𝑦 is a decay constant13. Connecting fields at the region borders leads to the characteristic
equation, which can be used to determine the values for the constants 𝑘{𝑥,𝑦}, 𝛼{1,2} and 𝛾{𝑥,𝑦}.
Finally, 𝛽 is computed as 𝛽2 = 𝑘2

0𝑛2
1 − 𝑘2

𝑥 − 𝑘2
𝑦.

Marcatili’s method also requires to solve the transcendental characteristic equation, which
also needs numerical or graphical computations. Nevertheless, the computations are again much
faster compared to numerical methods and can give good estimates of mode fields in this kind of
waveguides – almost instantaneously on modern computers.

12 The constants 𝛼 should not be confused with waveguide attenuation 𝛼 introduced in Section 2.4.1.
13 The constants 𝛾 should not be confused with the nonlinearity parameter 𝛾 introduced in Section 2.4.7.
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2.3.3. Numerical Finite Difference Methods

The analytical and approximative methods are limited to a small set of fixed waveguide geometries.
To lift this restriction and be able to compute modes and propagation constants of arbitrary
waveguide profiles, numerical methods need to be used. Since our main goal was to optimize
the geometry of NR waveguides, we clearly needed this flexibility. Hence, all our results were
computed with solvers based on finite-difference methods (FDMs)14.

The general idea of FDM is to discretize the waveguide cross section into a grid and approximate
all differential operators in Eq. (2.14) by truncated Taylor expansions of the fields on the grid
points. The discrete field points can be reorganized into a matrix eigenvalue equation where
eigenvectors are the mode fields and eigenvalues the associated propagation constants. FDM
also makes use of the fact that only two out of the 6 field components have to be solved and
the others can be derived from those two. The precision only depends on the grid point density,
which directly translates into computation time and memory demand. One convenient property
is, that already small grid sizes of 100 × 100 points are sufficient to get a first estimate of mode
fields and propagation constants and thus dispersion properties. Computing 12 modes with
such a small grid only takes less than a second on recent hardware and therefore exploring
dispersion for changing geometries can be performed very quickly. However, larger grids need to
be used to obtain reliable and resilient data without artifacts (see Appendix A.4.3 for grid size
optimizations).

In this section, we present two FDM solvers. The first solver is semi-vectorial and based on
[53, Chapter 4]. It computes modes in the LP approximation, which means that each mode has
two nonzero components – either 𝐸𝑥 and 𝐻𝑦 (TEn modes), or 𝐸𝑦 and 𝐻𝑥 (TMn modes). The
second solver is based on [56] and computes the physical waveguide modes which are hybrid in a
sense that all components of the 𝑬 and 𝑯 fields are nonzero.

Both solvers need the same input:

• The frequency to compute modes at.

• The number of modes to compute.

• The discretization grid.

• The waveguide’s refractive index profile 𝑛(𝑥, 𝑦), sampled at the discretization grid’s points
and valid for the frequency above.

With this information, both solvers compute the requested number of modes and return their
transversal field components 𝜳 (𝑋)(𝑥, 𝑦) and 𝛽(𝑋) – valid for the requested frequency.

In Appendix A.4, we collected some implementation details and issues which concern both
types of solvers.

14 It should be mentioned that there also exist finite-element methods (FEMs). Both methods – FDM and FEM –
are widely used to compute waveguide modes. In this work, we exclusively used FDM.
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2.3.3.1. The Semi-Vectorial Linear Polarized FDM Solver

Starting with the analytic signal form of the E-field from Eq. (2.15) with constant amplitude

𝑬(𝑥, 𝑦, 𝑧, 𝑡) = ̂𝐸𝜳(𝑥, 𝑦)e𝑗𝜔𝑡e−𝑗𝛽𝑧, (2.28)

the wave Eq. (2.14) becomes

Δ𝑬 − 𝛁 (𝛁 • 𝑬) − 𝑘2
0𝜀r𝑬 = 0, (2.29)

where 𝑘2
0 = 𝜔2𝜀0𝜇0. With using

𝛁 • 𝑫 = 0 = 𝛁 • (𝜀𝑬) = 𝜀0𝛁 (𝜀r) • 𝑬 + 𝜀0𝜀r𝛁 • 𝑬

⇒ 𝛁 • 𝑬 = −𝛁𝜀r
𝜀r

• 𝑬, (2.30)

we get

Δ𝑬 + 𝛁 (𝛁𝜀r
𝜀r

• 𝑬) + 𝑘2
0𝜀r𝑬 = 0. (2.31)

With the Laplace operator split into transversal and longitudinal components

Δ = Δ𝑡 + 𝜕2
𝑧 , (2.32)

we get

Δ𝑡𝑬 + 𝛁 (𝛁𝜀r
𝜀r

• 𝑬) + 𝑘2
0𝜀r𝑬 = 𝛽2𝑬. (2.33)

This is an operator eigenvector/eigenvalue equation of the form 𝒪𝒫 {𝑬} = EV ⋅ 𝑬. Its multitude
of solutions are the sought mode fields 𝜳 (𝑋)(𝑥, 𝑦) and propagation constants 𝛽(𝑋) which generate
the set M defined in Eq. (2.16).

After several algebraic manipulations (see [53, Chapter 4]), the wave equation

𝜕2
𝑥𝐸𝑥 + 𝜕2

𝑦𝐸𝑥 + 𝜕𝑥 ( 1
𝜀r

𝜕𝜀r
𝜕𝑥

𝐸𝑥) = (𝛽2 − 𝑘2
0𝜀r)𝐸𝑥 (2.34)

is obtained. In the process, several approximations were used. Firstly, 𝜕𝜀
𝜕𝑧 = 0, i.e., the refractive

index is constant in the propagation direction. This is a valid assumption, since computing
modes does not consider any effects which disturb the propagation along the waveguide like
linear or nonlinear mode coupling. Secondly, 𝑬 = 𝐸𝑥𝒆𝒙, i.e., the E-field is linear polarized in x
direction. This is a linear polarized method, hence this assumption.
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Figure 2.13.: Non-equidistant discretization grid used in the FDM solvers, c.f. [53, Fig. 4.3].

Finally, the semi-vectorial approximation neglects the second order derivatives 𝜕𝑥 ( 1
𝜀r

𝜕𝜀r
𝜕𝑦 𝐸𝑦) for

the TE modes and 𝜕𝑦 ( 1
𝜀r

𝜕𝜀r
𝜕𝑥 𝐸𝑥) for the TM modes which arise in the calculations. These terms

otherwise couple the 𝑥 and 𝑦 components.
Now the main FDM idea to discretize fields on a grid is applied. Figure 2.13 shows one node

in the grid and all its direct neighbors to the north, east, south and west. The grid points are
labeled with horizontal and vertical coordinates 𝑝 and 𝑞, respectively. The distances between
points 𝑛, 𝑒, 𝑠 and 𝑤 are allowed to vary along the grid.

The next step is to approximate all derivatives in Eq. (2.34) with the help of Taylor series
expansions. For example, the expansions of the E-field in four directions

𝐸𝑥,𝑝+1,𝑞 = 𝐸𝑥,𝑝,𝑞 + 𝜕𝐸𝑥
𝜕𝑥

∣
𝑝,𝑞

⋅ 𝑒 + 1
2!

𝜕2𝐸𝑥
𝜕𝑥2 ∣

𝑝,𝑞

⋅ 𝑒2 + 𝑂(𝑒3) (2.35)

𝐸𝑥,𝑝−1,𝑞 = 𝐸𝑥,𝑝,𝑞 − 𝜕𝐸𝑥
𝜕𝑥

∣
𝑝,𝑞

⋅ 𝑤 + 1
2!

𝜕2𝐸𝑥
𝜕𝑥2 ∣

𝑝,𝑞

⋅ 𝑤2 + 𝑂(𝑤3) (2.36)

𝐸𝑥,𝑝,𝑞+1 = 𝐸𝑥,𝑝,𝑞 + 𝜕𝐸𝑥
𝜕𝑦

∣
𝑝,𝑞

⋅ 𝑠 + 1
2!

𝜕2𝐸𝑥
𝜕𝑦2 ∣

𝑝,𝑞

⋅ 𝑠2 + 𝑂(𝑠3) (2.37)

𝐸𝑥,𝑝,𝑞−1 = 𝐸𝑥,𝑝,𝑞 − 𝜕𝐸𝑥
𝜕𝑦

∣
𝑝,𝑞

⋅ 𝑛 + 1
2!

𝜕2𝐸𝑥
𝜕𝑦2 ∣

𝑝,𝑞

⋅ 𝑛2 + 𝑂(𝑛3) (2.38)

can be truncated (by ignoring the O-terms) and combined as (𝐸𝑞. (2.35)) ⋅ 𝑤 + (𝐸𝑞. (2.36)) ⋅ 𝑒
to yield an approximation for the derivative

𝜕2𝐸𝑥
𝜕𝑥2 ∣

𝑝,𝑞

≈ 2
𝑒𝑤(𝑒 + 𝑤)

(𝑤 ⋅ 𝐸𝑥,𝑝+1,𝑞 + 𝑒 ⋅ 𝐸𝑥,𝑝−1,𝑞 − (𝑒 + 𝑤) ⋅ 𝐸𝑥,𝑝,𝑞) . (2.39)

The error is 𝑂(ℎ2) for an equidistant grid. In the non-equidistant case, an additional error with
𝑂(𝑒 − 𝑤) emerges and hence there should not be too many non-equidistant nodes in the grid
and if there are, the difference in distances should be small.

A similar derivation can be performed for 𝜕2𝐸𝑥
𝜕𝑦2 ∣

𝑝,𝑞
and a slightly more involved derivation for

𝜕
𝜕𝑥 ( 1

𝜀r

𝜕𝜀r
𝜕𝑥 𝐸𝑥).
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After all derivatives in Eq. (2.34) are replaced by their approximations, we get a set of difference
equations for all points in the grid15

𝛼𝑤𝐸𝑥,𝑝−1,𝑞 + 𝛼𝑒𝐸𝑥,𝑝+1,𝑞 + 𝛼𝑛𝐸𝑥,𝑝,𝑞−1 + 𝛼𝑠𝐸𝑥,𝑝,𝑞+1+

(𝛼𝑥 + 𝛼𝑦) 𝐸𝑥,𝑝,𝑞 + (𝑘2
0𝜀r,(𝑝,𝑞) − 𝛽2) 𝐸𝑥,𝑝,𝑞 = 0,

(2.40)

where

𝛼𝑛 = 2
𝑛(𝑛 + 𝑠)

𝛼𝑒 = 2
𝑒(𝑒 + 𝑤)

2𝜀r,(𝑝+1,𝑞)

𝜀r,(𝑝,𝑞) + 𝜀r,(𝑝+1,𝑞)

𝛼𝑠 = 2
𝑠(𝑛 + 𝑠)

𝛼𝑤 = 2
𝑤(𝑒 + 𝑤)

2𝜀r,(𝑝−1,𝑞)

𝜀r,(𝑝,𝑞) + 𝜀r,(𝑝−1,𝑞)
(2.41)

𝛼𝑦 = −(𝛼𝑛 + 𝛼𝑠) 𝛼𝑥 = −4
𝑒𝑤

+ 𝛼𝑒 + 𝛼𝑤.

All points of 𝐸𝑥 on the grid can be rearranged into a vector 𝜱 (e.g. by stacking the columns
of the grid matrix on top of each other) and the 𝛼{𝑛,𝑒,𝑠,𝑤,𝑥,𝑦} coefficients can be collected into
a matrix 𝑨

̃
. With this, the discrete wave Eq. (2.40) can be rewritten as a classical matrix

eigenvalue problem 𝑨
̃

𝜱 = 𝛽2𝜱, solvable with linear algebra software. The eigenvalues are the
squared propagation constants 𝛽2 belonging to the transversal field values 𝐸𝑥, which need to be
rearranged from vector into matrix form by unstacking the columns.

Finally, to get all components of the TE and TM modes, similar derivations need to be
performed for the 𝐸𝑦, 𝐻𝑥 and 𝐻𝑦 components.

Figure 2.14 shows the six lowest order modes of a circular fiber, computed with the linear
polarized solver. In addition to the fields in the figure, there are six 𝑦 polarized modes with
identical power distributions and propagation constants. Note that the mode profiles are
different from the vector modes in Fig. 2.5, which were computed with the solver presented in
Section 2.3.3.2. In Appendix A.4.2, we show how a set of vector modes can be combined into a
set of linearly polarized modes. The NR waveguide modes are almost linearly polarized and the
two solvers give very similar results. We have already shown the modes in Fig. 2.9.

15 The constants 𝛼 should not be confused with waveguide attenuation 𝛼 introduced in Section 2.4.1.
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Figure 2.14.: Transversal electric field distributions of the six modes LP01x, LP11ax, LP11bx, LP02x,
LP21ax and LP21bx of FMF 2 (graded index) in Table 2.2, computed with the linear polarized solver.
Colors encode magnitudes and arrows polarization directions.

2.3.3.2. The Full-Vectorial FDM Solver

The solver we almost exclusively use throughout the thesis is a full-vectorial FDM, based on [57].
We started from the freely available MATLAB code [58] of [56] and dropped support for material
anisotropy.

The derivation is similar to the procedure presented in Section 2.3.3.1, but with some important
differences. Since it does not matter which two of the six field components are computed, one
can choose the 𝐻𝑥 and 𝐻𝑦 components instead. This has the benefit that the magnetic field
is continuous at permittivity borders and 𝛁 • 𝑯 = 𝟎 ensures that there are no spurious (non-
physical) modes [59]. The resulting difference equations (which now also couple the 𝑥 and 𝑦
components) can again be collected into a matrix-vector eigenvalue problem where the solution
gives propagation constants and mode fields again.

The main difference to the computed modes of the semi-vectorial solver presented in Sec-
tion 2.3.3.1 is, that now all E- and H-field components are nonzero. Depending on the waveguide
and mode order, the ratio between both transversal components can assume all values. For
example, the TE0 mode of a NR waveguide is very close to linear polarization and its 𝐸𝑥
component is much stronger than its 𝐸𝑦 component (similarly 𝐻𝑦 ≫ 𝐻𝑥). As a second example,
consider a circular step or graded index fiber. The circular geometry leads to degenerate 𝑥 and 𝑦
modes. Now assume that the 𝑥 polarized HE11 mode is rotated by 45°. The resulting mode’s 𝐸𝑥
and 𝐸𝑦 components now assume the same amplitude. The 𝐸𝑧 and 𝐻𝑧 components have small
but nonzero amplitudes for all geometries and modes.
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2.4. Material Nonlinearity and Four-Wave Mixing

This section covers an introduction to nonlinear propagation of light in matter, with focus on
communications. We recommend [60] for a similar but more detailed introduction and in-depth
analysis of the topics only briefly mentioned here, as well as [61], [62] (in German language) and
[63] where the latter two focus on communications. The ultimate goal of this section is to arrive at
very useful and remarkably simple equations, which enable us to assess the conversion efficiency
of the nonlinear processes we want to use for all-optical signal processing in the remainder of
the thesis. Here, we derive an approximation for the generated signal’s power at the end of the
waveguide. In Chapter 4, we derive propagation equations for a discrete set of CW waves in
frequency domain which model the evolution of wave powers along the waveguide.

2.4.1. The Nonlinear Material Polarization

We start by adding nonlinear material polarization effects to the constitutive relation Eq. (2.5)
of the electric displacement field. When a light wave interacts with material, it slightly displaces
the electrons from their nuclei and atoms from their equilibrium positions in molecules, creating
small dipoles. Since light frequency is in the Terahertz regime, the dipoles radiate back to the
medium and influence light propagation. Therefore, the electric displacement is driven by two
components: directly by the electric field – proportional to the vacuum permittivity 𝜀0 – and by
the induced dipoles. The constitutive relation can now be written as

�̃�(𝑡) = 𝜀0𝑬(𝑡) + 𝑷 (𝑡), (2.42)

where the material polarization 𝑷 (𝑡) measures the dipole moment per unit volume and can be
expanded as a power series of the electric field16:

𝑷 (𝑡) = 𝜀0
↔𝝌[1]𝑬(𝑡) + 𝜀0

↔𝝌[2] .. 𝑬(𝑡)𝑬(𝑡) + 𝜀0
↔𝝌[3] ... 𝑬(𝑡)𝑬(𝑡)𝑬(𝑡) + …

= 𝑷 [1](𝑡) + 𝑷 [2](𝑡) + 𝑷 [3](𝑡) + … .
(2.43)

Note that we assume an instantaneous material response in this chapter and extend this power
series to a Volterra series in Chapter 4. The first order susceptibility is related to the relative
permittivity via

↔𝝌[1] + 𝟏
̃
= 𝜺

̃r
(2.44)

for the general case of anisotropic materials. The real part models refraction and the imaginary
part the light attenuation

𝒫 ∝ e−𝑗𝛼𝑧, (2.45)

i.e., the exponential loss of light power in the medium.
All higher order susceptibilities give rise to different types of nonlinear effects, with decreasing

magnitude for increasing order. Susceptibilities are tensors of increasing rank, i.e. ↔𝝌[1] is a tensor
of second rank (a matrix), ↔𝝌[2] a tensor of rank 3, etc.

Figure 2.15 shows three different exemplary potentials by which electrons can be bound to
their atoms, see [60, ch. 1.4]. The displacement and retraction force of an electron are the first

16 We introduce material polarization 𝑷 (𝑡) in the constitutive relation as shown. Alternatively, it is possible to
introduce a current density 𝑱(𝑡) = 𝜕𝑡𝑷 (𝑡) in Ampère’s law Eq. (2.12) driven by the material polarization. See
for example [64, Chapter 3.3].
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Figure 2.15.: Schematic of different types of electron potential wells. Harmonic potential (no nonlinearity),
potential in a non-centrosymmetric medium (all susceptibilities ↔𝝌[1], ↔𝝌[2], ↔𝝌[3], ⋯ are nonzero) and potential
in a centrosymmetric medium (only odd susceptibilities ↔𝝌[1], ↔𝝌[3], ↔𝝌[5], ⋯ are nonzero).

derivative of the potential. Hence, a parabolic potential leads to purely linear behavior and all
other potentials introduce nonlinear effects. The two depicted non-parabolic potentials have a
term of third and fourth order, respectively and it can be seen that they are very close to the
parabolic one for low displacements, i.e., low light intensities of the electric field do not create
strong nonlinear effects. In this regime, the material response is linear in very good approximation
and only ↔𝝌[1] is of relevance. However, with increasing light intensity and electron displacement
nonlinear effects start to grow and higher order susceptibilities ↔𝝌[2], ↔𝝌[3], etc. start to become
important. Note that not only the light intensity is important, but also the propagation length
where nonlinear effects can build up. For example, due to the long distances in trans-oceanic
communications, nonlinearity plays a significant role – even though optical fibers have relatively
low nonlinearity.

If the electric field is rotated by 180° in a material with inversion symmetry (centrosymmetric
material), the material polarization field also has to rotate accordingly. Hence, all even orders of
susceptibilities need to vanish and the electron potential is symmetric in electron displacement
(see nonlinear potentials in Fig. 2.15).

The effects of a linear medium on light are a frequency-dependent attenuation and phase shift,
but no new frequency component can arise. A nonlinear material however, will always generate
new frequencies at harmonics, sums and differences of the propagating frequencies.

We only consider centrosymmetric materials, since the core materials we use are always either
silicon or silica – both have inversion symmetry. Furthermore, all susceptibilities higher than third
order are negligible for optical communications. Therefore, the constitutive relation simplifies to

�̃�(𝑡) = 𝜀0 (𝟏
̃
+ ↔𝝌[1]) 𝑬(𝑡) + 𝜀0

↔𝝌[3] ... 𝑬(𝑡)𝑬(𝑡)𝑬(𝑡). (2.46)

However, it is instructional to start with the second order nonlinearity induced by ↔𝝌[2](𝑡) for
the discussion of generated frequencies. For this discussion we also drop the tensor and vector
nature of susceptibilities and fields. To see all types of second order nonlinear effects, we need to
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model the electric field with at least two real sinusoidal components

𝐸(𝑡) = ̂𝐸1e𝑗𝜔1𝑡 + ̂𝐸2e𝑗𝜔2𝑡 + ̂𝐸 ∗
1e−𝑗𝜔1𝑡 + ̂𝐸 ∗

2e−𝑗𝜔2𝑡 =∶ ̊𝑝1 + ̊𝑝2 + �̊�1 + �̊�2, (2.47)

where we define ̊𝑝𝑖 = ̂𝐸𝑖e𝑗𝜔𝑖𝑡 and �̊�𝑖 = ̊𝑝 ∗
𝑖 = ̂𝐸 ∗

𝑖 e−𝑗𝜔𝑖𝑡 as shorthand for fields at positive and
negative frequencies (the circles are added to avoid confusion between �̊� and the refractive index
𝑛). Now we can compute the second order material polarization

̃𝑃 [2] = 𝜀0𝜒[2]𝐸2 = 𝜀0𝜒[2] ( ̊𝑝1 + ̊𝑝2 + �̊�1 + �̊�2)2

= 𝜀0𝜒[2]( ̊𝑝2
1 + 2 ̊𝑝1�̊�1 + 2 ̊𝑝1 ̊𝑝2 + 2 ̊𝑝1�̊�2

+�̊�2
1 + 2 ̊𝑝2�̊�1 + 2�̊�1�̊�2

+ ̊𝑝2
2 + 2 ̊𝑝2�̊�2

+�̊�2
2 )

= 𝜀0𝜒[2]( ̊𝑝2
1 + ̊𝑝2

2⏟
A

+ 2 ̊𝑝1 ̊𝑝2⏟
B

+ 2 ̊𝑝1�̊�2⏟
C

+ ̊𝑝1�̊�1 + ̊𝑝2�̊�2⏟⏟⏟⏟⏟
D

+ c.c.⏟
E

),

(2.48)

with 16 summands in total. For 𝜔1 ≠ 𝜔2, the resulting field has 9 + 4 = 13 distinct frequencies:
nine generated frequencies (note that both, ̊𝑝1�̊�1 and ̊𝑝2�̊�2, combine to frequency zero) and four
input frequencies. Figure 2.16a shows all non-degenerate positive frequency components. The
categories of generated fields have different interpretations:

• A: Frequencies at the double of one input frequency, this is called second harmonic
generation (SHG).

• B: Frequencies at the sum of two input frequencies, this is called sum frequency generation
(SFG).

• C: Frequencies at the difference of two input frequencies, this is called difference frequency
generation (DFG).

• D: Frequencies at frequency zero, this is called optical rectification (OR).

• E: All other frequencies are complex conjugate copies of the above groups and are collected
in the c.c. term17.

To see all third order nonlinear effects, we need real sinusoidal fields at least at three frequencies

𝐸(𝑡) = ̂𝐸1e𝑗𝜔1𝑡 + ̂𝐸2e𝑗𝜔2𝑡 + ̂𝐸3e𝑗𝜔3𝑡 + c.c. =∶ ̊𝑝1 + ̊𝑝2 + ̊𝑝3 + �̊�1 + �̊�2 + �̊�3. (2.49)

17 We divided the two terms 2�̊�1�̊�1 and 2�̊�2�̊�2 which have frequency zero among the positive and negative half of
the spectrum. Thus, half of them is hidden in the c.c. and the factor 2 disappears.
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Figure 2.16.: Frequencies generated by nonlinear propagation of two and three sinusoidal waves in
a nonlinear medium. Only the positive spectral components are shown since the negative spectrum is
the conjugated and mirrored copy of the positive one. Input waves are blue, SHG and third harmonic
generation (THG) terms are red and FWM terms are green.
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This time, we have to compute the third power of six components leading to 216 summands

̃𝑃 [3] = 𝜀0𝜒[3]𝐸3 = 𝜀0𝜒[3] ( ̊𝑝1 + ̊𝑝2 + ̊𝑝3 + �̊�1 + �̊�2 + �̊�3)3

= 𝜀0𝜒[3]( 3 ̊𝑝2
1�̊�1 + 6 ̊𝑝1 ̊𝑝2�̊�2 + 6 ̊𝑝1 ̊𝑝3�̊�3⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

A

+ ̊𝑝3
1⏟

B

+ 6 ̊𝑝1 ̊𝑝2 ̊𝑝3⏟
C

+ 6 ̊𝑝1 ̊𝑝2�̊�3 + 6 ̊𝑝1�̊�2 ̊𝑝3 + 6�̊�1 ̊𝑝2 ̊𝑝3⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
D

+ 3 ̊𝑝2
1 ̊𝑝2 + 3 ̊𝑝2

1 ̊𝑝3 + 3 ̊𝑝2
1�̊�2 + 3 ̊𝑝2

1�̊�3⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
E

+ [⋯]⏟
F

+ c.c.⏟
G

).

(2.50)

However, many summands produce the same frequency and for 𝜔1 ≠ 𝜔2 ≠ 𝜔3, the resulting field
has 38+6 = 44 distinct frequencies (generated + input frequencies). Figures 2.16b and 2.16c show
all non-degenerate positive frequency components. Again, the groups have different meanings:

• A: Frequencies at 𝜔1, this leads to the intensity dependent refractive index (also called
Kerr effect) 𝑛 = 𝑛0 + 𝑛2𝐼, where 𝑛0 is the regular refractive index. Self-phase modulation
(SPM) and cross-phase modulation (XPM) also belong to this group.

• B: Frequencies at three times 𝜔1, called THG.

• C: Frequencies at the sum of three input frequencies, called SFG.

• D: Frequencies at the sum of two positive and one negative input frequency, the result of
DFG processes. This is called FWM.

• E: We collected all processes at the double of one frequency plus or minus one other
frequency in this group. Several processes belong here, among others degenerate FWM
and modulational interaction (e.g. ̊𝑝2

1�̊�2).

• F: In Eq. (2.50), we mainly listed processes for ̊𝑝1. There exist alike terms for ̊𝑝2 and ̊𝑝3
which are hidden in this ellipsis – for a more complete list, see [60, p. 13].

• G: Again, all complex conjugate copies of the terms in categories A to F are hidden in c.c.

We are interested in the FWM processes (category D), which are all the product of three
interacting frequencies: two positive and one negative. They are typically further categorized
into optical phase conjugation (OPC) and Bragg scattering (BS). Their generated wave will be
a phase conjugate copy of the wave which has a negative contribution in the summand. For
example, the result of 6 ̊𝑝1 ̊𝑝2�̊�3 will be a conjugate copy of the wave at 𝜔3. Hence, if 𝜔3 is the
frequency of the signal to be converted (in the case of 6 ̊𝑝1 ̊𝑝2�̊�3), the process is called OPC and
BS18 otherwise.

18 According to [65], the name BS comes from an analogy to a spatial process which was analyzed in [66]. In that
process, two photons with opposite momentum are annihilated and two photons at anti-Stokes frequencies are
emitted in the process. Although the analogy is somewhat weak (the process in [66] is for counter-propagating
waves and deals with the instability of modal profiles due to self-focusing), the name BS is widely used for this
kind of FWM process.
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Figure 2.17.: Energy diagrams and frequencies for a BS and an OPC FWM process. In both processes,
two photons are destroyed to elevate an atom or molecule to a higher virtual state. Then, the state
falls back to the ground level due to stimulated emission (depicted as photons passing through a state
transition) and creates two new photons. One photon at the frequency of pump 2 for BS (at the frequency
of the signal for OPC) and one photon at the idler frequency. The gray arrows in Fig. 2.17c and Fig. 2.17d
indicate the idler frequency’s direction when the signal frequency is changed.
This figure shows the contribution of electrons in the matter, Fig. 2.19 shows the molecular contribution.

2.4.2. Electronic Contribution to Nonlinearity

The processes in Eq. (2.50) can have a variety of quantum mechanical origins, an overview is
found in e.g. [19, Fig. 5]. We are interested in BS and OPC in silicon or silica crystals. In these
cases, the main contributions come from the displacement of electrons and nuclei by the electric
field. Energy level diagrams and involved frequencies of a BS and an OPC process are shown in
Fig. 2.17. We call the interacting waves pump 1 (P1), pump 2 (P2), signal (S) and idler (I) in
anticipation of the FWM principle we use in the rest of the thesis (introduced in Section 2.4.5):
two pumps and the signal are launched into a waveguide and generate an idler by nonlinear
interaction during propagation.

In the figure, state transitions are depicted with regular arrows and wavy arrows depict
photons. If photons terminate in a transition arrow, they are annihilated. If they originate
from a transition arrow, they are created. If they go through a transition arrow, they stimulate
that transition and are not affected otherwise. Energy conservation dictates that the sum of
photon frequencies stays constant in the process, since photon energy is ℏ𝜔. This translates to
conservation of transition lengths in the energy diagrams, i.e. the sum length of the two upward
transitions on the left needs to match the sum length of the two downward transitions on the
right.
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To understand the energy level transitions, consider Fig. 2.17a which shows a BS process.
Here, a photon of pump 1 and a signal photon are annihilated to elevate an electron or nucleus
to a higher virtual state. A virtual state can only be occupied for a very brief moment in the
order of femtoseconds [62, p. 212]. Hence, the state immediately transitions back to the ground
state by emitting two new photons. This emission process is not spontaneous, but stimulated by
the presence of the strong pump 2 field and the presence of the idler field (which grows along the
waveguide). In this case, energy conservation dictates

𝜔P1
+ 𝜔S = 𝜔P2

+ 𝜔I (2.51)

or
𝜔I = 𝜔P1

+ 𝜔S − 𝜔P2
. (2.52)

This determines which idler frequency is generated when signal and pumps are fixed, as well
as in which direction the idler frequency moves if the signal frequency is changed. In the BS
process, the idler follows the signal (which is indicated in Fig. 2.17c) and always maintains the
same distance (exactly the frequency separation between the two pumps).

Figures 2.17b and 2.17d show the energy levels and frequencies for an OPC process. In this
case, we have

𝜔I = 𝜔P1
− 𝜔S + 𝜔P2

, (2.53)

which means the idler will move in opposite direction as the signal and the pump separation
does not impose a constraint on the distance between the two.

2.4.3. Molecular Contribution to Nonlinearity

A second important contribution to the two FWM processes comes from interactions with the
crystal lattice – Raman and Brillouin scattering. This is a very brief section and we refer the
reader to [62, Chapters 8 and 9], [63, Chapters 10 and 11] and [60, Chapters 8-10] for a detailed
analysis.

In Raman and Brillouin scattering, lattice vibrations (or their associated quantum particle
the phonon) are either stimulated or annihilated in the process. Since the quantum state of
the material is changed after the interaction, it is non-parametric. This implies that energy is
transferred to or from the material and that energy diagrams involve actual energy states, not
only virtual states. The simplest forms of Raman scattering are shown in Fig. 2.18. Figure 2.18a
shows how a Stokes wave is created by annihilating a photon at frequency 𝜔 and emitting a
photon at the lower frequency 𝜔St. The energy difference between the photons is used to emit a
phonon. The phonon energy spectrum depends on the material and determines both, Raman
gain and the frequency difference between the source and Stokes waves 𝜔St = 𝜔 − Ω𝑅. For silicon
and silica, the Raman gain peak is near 15THz with a full width at half maximum (FWHM)
bandwidth of roughly 10THz in silica [63, chapter 10.2] and 100GHz in silicon [67].
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Figure 2.18.: Energy diagrams of the two Raman scattering processes. In the Stokes process, power
is transferred to lower frequencies by elevating a molecule or atom to a higher vibrational energy state
(creating an optical phonon). In the anti-Stokes process, the power is transferred to higher frequencies by
annihilating an optical phonon and creating a photon with the sum energy.
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Figure 2.19.: Stimulated Raman scattering contribution to the BS process in Fig. 2.17.

Figure 2.18b shows the anti-Stokes process where a photon scatters with an atom or molecule
which is already in a higher energy state (i.e. scatters with a phonon) and emits a photon at
higher frequency 𝜔aSt = 𝜔 + Ω𝑅. Since the anti-Stokes process requires a phonon, it is much less
likely to happen, compared to the Stokes process.

The Raman contribution to BS is shown in Fig. 2.19. The process starts with a stimulated
creation of a Stokes photon, leaving the system in a higher energy state. From there, a stimulated
anti-Stokes process takes place and annihilates the phonon.

The two kinds of phonons which can exist in a crystal are shown in Fig. 2.20. On the one
hand, scattering of photons with optical phonons (Fig. 2.20a) is the Raman scattering described
above. On the other hand, scattering of photons with acoustic phonons (Fig. 2.20b) is called
Brillouin scattering. Optical phonons can be thought of as particles of molecule vibrations and
acoustic phonons as particles of sound waves and Brillouin scattering is the reflection of photons
from acoustic waves traveling along the waveguide.
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(a) Optical phonon. (b) Acoustic phonon.

Figure 2.20.: The two types of possible phonons in a crystal, c.f. [62, p. 311].

𝜔
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Figure 2.21.: Energy diagram of two-photon absorption. Two photons are annihilated to lift an atom or
molecule to a higher energy state.

Hence, the energy of acoustic phonons is much lower and with it the frequency shift – it is in
the order of 10GHz with FWHM bandwidth of roughly 20MHz [62, p. 278]. Usually, Brillouin
scattering is an unwanted process in optical communications, and suppression techniques are
utilized [54, chapter 9.2.3].

2.4.4. Further Nonlinear Processes

A multitude of further processes can contribute to nonlinear interaction. For example, the electric
fields can rotate polar molecules in liquids and gases, which is a large contribution to attenuation
in fibers with residual water in the core. We ignore this effect in the thesis.

Another important non-parametric process is two-photon absorption (TPA). When the sum
energy of two photons is close to a transition energy between two (real, non-virtual) states, they
can be annihilated and the system is left in a higher energy state. Figure 2.21 shows the simple
energy diagram of this absorption process. Since this process removes two photons from the
propagating light, it leads to a nonlinear attenuation.

The system eventually falls back to the ground state by either emitting a non-coherent photon
at a the sum frequency, by emitting a phonon, or by stimulated emission from the propagating
fields (called free-carrier absorption (FCA)). The latter case leads to yet another nonlinear
attenuation. To reduce the number of free carriers and thus FCA, a diode under reverse bias can
be added to the waveguide [20]. Thus, we assume that all free carriers are removed by such a
diode and ignore FCA in the rest of this thesis.

2.4.5. Bragg Scattering and Optical Phase Conjugation

Our goal is the optimization of waveguide geometries for all-optical signal processing. With
the help of FWM, we can achieve wavelength conversion through the BS process and optical
phase conjugation through OPC. For that, 2 pumps are launched together with the signal into a
waveguide with material nonlinearity. At the output of the waveguide, pumps and signal are
filtered away and the generated idler with desired properties is extracted.

The principle is sketched in Fig. 2.22 for an example of a NR waveguide. In the most general
case of inter-modal FWM, the four interacting waves can be in up to four different waveguide
modes (𝑜), (𝑝), (𝑞) and (𝑚). No mode multiplexer is shown in the figure, but is of course needed
in such an experiment.
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Figure 2.22.: Working principle of inter-modal FWM-based all-optical signal processing. Two pumps
and the signal enter the waveguide in modes (𝑜), (𝑝) and (𝑞) and generate a FWM idler through nonlinear
interaction in mode (𝑚).
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Figure 2.23.: Example of an OPC FWM process. Note that this figure is merely an example and modes
are not selected according to any specific condition.

Figure 2.23 shows an example of OPC in a multimode fiber, where modes were arbitrarily
selected. The horizontal arrow indicates that a (conjugated) copy of the signal is created in the
process.

In the rest of the thesis, we consider the OPC process and one BS process, namely

BS ∶ 𝜔I = 𝜔P1
+ 𝜔S − 𝜔P2

(2.54)

OPC ∶ 𝜔I = 𝜔P1
− 𝜔S + 𝜔P2

. (2.55)

We do not include the BS process with

𝜔I = −𝜔P1
+ 𝜔S + 𝜔P2

(2.56)

in optimizations, since it can always be converted to Eq. (2.54) by simply swapping pump
frequencies.
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2.4.6. Phase Matching

𝒌I 𝒌P2

𝒌S 𝒌P1

(a) PM in a crystal.

𝒌I 𝒌P2

𝒌S 𝒌P1

(b) PM in a waveguide.

Figure 2.24.: Phase matching diagrams in a crystal and in a waveguide. In the latter, one is not free
to choose the propagation direction, since all waves travel along the waveguide. Hence, PM needs to be
achieved by means of the magnitude of the wave vectors.

Up to now, we completely ignored that not only energy but also momentum needs to be
conserved in all nonlinear processes. The photon momentum is given as 𝒑 = ℏ𝒌 with wave vector
𝒌. Since we deal with light propagation in a waveguide in communications applications, it is
customary to define the component of the wave vector in the propagation direction as 𝛽 = 𝒌 • 𝒆𝑧.
This is the so-called propagation constant already introduced in Eq. (2.15). In a FWM process,
the momentum of all annihilated photons has to match the momentum of all created photons.
For example, the momentum of signal and pump 1 has to match the momentum of idler and
pump 2 for the BS process in Fig. 2.17a. In Fig. 2.24, two types of momentum conservation are
shown. In the general case of FWM in a crystal, the waves can have arbitrary directions, as
shown in Fig. 2.24a. However, for propagation in a waveguide all waves are collinear (i.e. they
travel in the same direction) and momentum conservation can only be fulfilled by adjusting wave
vector lengths (see Fig. 2.24b). Therefore, momentum conservation dictates that the propagation
constants have to fulfill

BS ∶ 𝛽P1
+ 𝛽S = 𝛽P2

+ 𝛽I (2.57)

OPC ∶ 𝛽P1
+ 𝛽P2

= 𝛽S + 𝛽I. (2.58)

The process of adjusting parameters such that Eq. (2.57) or Eq. (2.58) are fulfilled is called phase
matching. In a perfectly phase-matched experiment, the idler amplitude grows linearly along the
waveguide [60, p. 77]. However, if PM is not perfect, the residual phase mismatch

BS ∶ Δ𝛽 = 𝛽P1
+ 𝛽S − 𝛽P2

− 𝛽I (2.59)

OPC ∶ Δ𝛽 = 𝛽P1
− 𝛽S + 𝛽P2

− 𝛽I (2.60)

leads to an oscillation in the idler’s amplitude, with a period that depends on the magnitude of
the phase mismatch [63, chap. 7.3]. Since propagation constants are frequency dependent and
differ for waveguide modes (see Eqs. (2.17) and (2.18)), PM becomes the process of minimizing

BS ∶ Δ𝛽 = 𝛽(𝑜)(𝜔P1
) + 𝛽(𝑝)(𝜔S) − 𝛽(𝑞)(𝜔P2

) − 𝛽(𝑚)(𝜔I) (2.61)

OPC ∶ Δ𝛽 = 𝛽(𝑜)(𝜔P1
) − 𝛽(𝑝)(𝜔S) + 𝛽(𝑞)(𝜔P2

) − 𝛽(𝑚)(𝜔I). (2.62)
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We usually maximize the FWM efficiency

𝜂FWM(Δ𝛽) =
1 − exp(−(𝛼 + 𝑗Δ𝛽)𝐿wg)

(𝛼 + 𝑗Δ𝛽)𝐿wg
(2.63)

instead (we show in Appendix A.2 that optimizing the FWM efficiency minimizes Δ𝛽). 𝐿wg and
𝛼 are the waveguide length and the waveguide attenuation exponent, respectively. The FWM
efficiency was first derived in [68] and extended to FMFs in [15], by using Eq. (17) from [69]. A
very similar idea is used, e.g., in [70] to assess FWM efficiency in silicon rib waveguides. Our
numerical PM procedure is described in Chapter 3.

2.4.7. Idler Power Estimation

The efficiency of signal conversion can be ultimately defined by the idler power at the waveguide
output, or, equivalently, by the CEIO:

Definition 1. We define the input-output conversion efficiency (CEIO) as

CEIO =
𝒫I(𝑧 = 𝐿wg)
𝒫S(𝑧 = 0)

, (2.64)

where we always assume that signal power is measured before the waveguide and before any
coupling losses occur. Similarly, the idler power is measured after the waveguide and after all
output coupling losses occurred.

For given input powers 𝒫P1
, 𝒫S and 𝒫P2

, the idler power can be estimated as [15]

𝒫I = 4 (𝛾(𝑚𝑜𝑝𝑞))2 𝐿2
wg𝒫P1

𝒫S𝒫P2
e−𝛼𝐿wg |𝜂FWM(Δ𝛽)|2. (2.65)

The nonlinearity coefficient is defined as [15], [71]

𝛾(𝑚𝑜𝑝𝑞) = 𝜔0𝑛2

𝑐0𝐴(𝑚𝑜𝑝𝑞)
eff×

(2.66)

with the material parameter nonlinear refractive index 𝑛2 and speed of light in vacuum 𝑐0. The
cross effective area between involved modes is given by [54, Chapter 10.2.1]

𝐴(𝑚𝑜𝑝𝑞)
eff× =

√
ℐ(𝑚)ℐ(𝑜)ℐ(𝑝)ℐ(𝑞)

∣∬ [(𝜳 (𝑚)) ∗
• 𝜳 (𝑜)] [(𝜳 (𝑝)) ∗

• 𝜳 (𝑞)] dA∣
, (2.67)

where 𝜳 (𝑋) are the transversal mode profiles defined in Eq. (2.15), ℐ(𝑋) = ∬ ∣𝜳 (𝑋)∣2 dA and dA
denotes integration over the waveguide cross section.
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(a) Acceptable nonlinear interaction with
(𝑚, 𝑜, 𝑝, 𝑞) = (TE3, TE1, TE2, TE2).
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(b) Poor nonlinear interaction with
(𝑚, 𝑜, 𝑝, 𝑞) = (TE3, TE0, TE2, TE2).

Figure 2.25.: An example of overlapped mode fields (𝑚), (𝑜), (𝑝), and (𝑞) of waveguide 1 (regular) in
Table 2.3, demonstrating good and bad nonlinear interaction. The 1D plot shows the magnitude of the
field at 𝑦 = 100 nm. Only the power distribution is of interest here, hence no scale is shown.

From Eq. (2.65), it is clear that 𝒫I ∝∼ |𝜂FWM(Δ𝛽)|2. However, this estimate of idler power relies
on the three main approximations in 𝜂FWM: 1) The attenuation is constant (neither frequency,
nor mode dependent). 2) There is no linear coupling. 3) The pumps and signal are only depleted
by linear attenuation and not by nonlinear interaction. The third assumption is usually valid in
all-optical signal processing experiments, since the pumps and signal are much stronger (usually
around 20 dBm and 10 dBm) than the generated idler (typically less than −20 dBm). However,
due to the first two assumptions, 𝜂FWM fails to capture variable attenuation and linear coupling,
which usually need to be considered in real-world applications. The FWM efficiency can be
remarkably exact, though, when linear coupling is low due to few propagating modes and the
attenuation is flat due to small considered wavelength differences, e.g. in [15] or [14]. In many
of the investigated configurations in this thesis, attenuation is quite likely frequency dependent
due to the large considered bandwidths. Also, the considered waveguides potentially allow the
propagation of many guided modes. Since the group delays of neighboring modes are very close
in waveguides with large cores, linear coupling will also have an effect on FWM. Nevertheless,
Eq. (2.65) serves as a good metric for a best-case analysis. For example, FWM efficiency predicted
the bandwidth quite well in our experiments in Chapter 6. The idler power is computed with
high accuracy in our propagation simulation in Chapter 4.

Equation (2.67) adds a dependency of CEIO on the selection of modes, especially the denom-
inator can become very small for certain choices of (𝑚), (𝑜), (𝑝) and (𝑞). Figure 2.25 shows
the intensities for two configurations of overlapped and multiplied fields of an exemplary NR
waveguide (1 (regular) in Table 2.3). The surface plot depicts the integrand of the denominator
in Eq. (2.67) and the black lines show the cross section along 𝑦 = 100 nm. It can be seen that
the integral over Fig. 2.25a will give a positive number and the integral over Fig. 2.25b will be
close to zero, since positive and negative lobes cancel each other. Therefore, the idler power will
be much higher in the first case. In the shown example, the numerically computed nonlinearity
coefficients are 𝛾(TE3,TE1,TE2,TE2) = 20.69/(Wm) and 𝛾(TE3,TE0,TE2,TE2) = 0.0147/(Wm) – a
factor of 1411 or 31.50 dB. These numbers highly depend on the grid size used for the mode
solver. For example, the grid size for the numbers above was (𝑥 × 𝑦) = (800 × 1200) points.
Reducing the grid to (200 × 300), we get 𝛾(TE3,TE1,TE2,TE2) = 20.71/(Wm) and
𝛾(TE3,TE0,TE2,TE2) = 0.0031/(Wm) – a factor of 6747 or 38.29 dB.

For these integrals, we only consider regions inside of the waveguide cores (as shown in
Fig. 2.25). This way, we avoid integrating over material borders where the electric field shows
Dirac-delta-like behavior. Integrating over borders needs a much higher resolution and even then
the results are distorted.
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We show in Chapter 5 that good PM can almost exclusively be achieved when either one mode
is used for all lasers ((𝑚) = (𝑜) = (𝑝) = (𝑞)), or exactly two modes are used with two lasers in
each. These cases represent the good case of overlap integrals (similar to Fig. 2.25a), since the
product of the fields behaves like a function of fourth order in one case and like two quadratic
functions in the second case. In both cases, the lobes are always positive and the integral never
becomes zero.

In summary of this rather long Section 2.4, we can optimize PM by maximizing the FWM
efficiency 𝜂FWM(Δ𝛽) with underlying phase mismatch equations Eq. (2.61) and Eq. (2.62). The
idler power is influenced by modal overlap as well, which also needs to be considered and can be
derived from 𝜂FWM with the help of Eq. (2.65).



3
Numerical Phase Matching and Waveguide
Optimizations

In this section, we present our numerical simulation framework for phase matching and for
optimizing waveguide dimensions, both based on the FWM efficiency defined in Eq. (2.63).

3.1. Numerical Phase Matching

Our main goal is achieving PM for ultra-broadband operation. We define the FWM bandwidth
as metric of quality:

Definition 2. The FWM bandwidth 𝐵FWM is the frequency range the signal can be moved,
while the estimate of idler power (|𝜂FWM|2) does not drop by more than 3 dB from its peak value.
All other parameters like waveguide dimensions, pump frequencies and mode assignments are
kept constant.

The task of our numerical phase matching algorithm is to find the highest achievable 𝐵FWM
of a waveguide with given dimensions and for given FWM process BS or OPC. The result is
the optimal choice of wavelengths and waveguide modes for the four propagating waves (pumps,
signal and idler). We have several possibilities for constraining the optimization. First of all,
we need to provide the set of modes which are considered, e.g. we only want guided modes and
usually only a subset of them. Secondly, all wavelengths can be constrained. For example, we
can force the signal into the C-band and the idler into the O-band to get the optimal PM for
C-to-O-band conversion in the considered waveguide. In this work, we focused on combination of
signal and idler wavelengths shown in Fig. 3.1. The pumps can optionally also be constrained if,
e.g., only high power lasers for some wavelengths or bands are available in a physical experiment.

Furthermore, if two or more of the four lasers have the same wavelength, FWM is degenerate.
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O E S C L U

Figure 3.1.: Signal and idler range combinations considered in this work.

Degenerate FWM is not a problem per se, but can lead to problems in the FWM processes we
are interested in (BS and OPC). In our experiments, the pumps are stronger than the signal
which again is much stronger than the generated idler – roughly 20 dBm, 10 dBm and −30 dBm.
Due to linear coupling, the pumps leak into all modes. If the idler wavelength coincides with a
pump, it becomes impossible to filter away the pump at the waveguide’s output. For the OPC
process (Eq. (2.55)) this means, that the signal can never have the same wavelength as neither
pump 1 nor pump 2. For the BS process (Eq. (2.54)) this means that the signal can never have
the same wavelength as pump 2. For the alternative BS process (Eq. (2.56)) this means that the
signal can never have the same wavelength as pump 1.

Further, enforcing a separation between the two pumps is not necessary for the OPC process.
However, the idler in the BS process then has the same wavelength as the input signal, which, of
course, defeats the purpose of wavelength conversion. Hence, we always remove configurations
from the search space where signal or idler are closer to a pump than 250GHz (roughly 2 nm) and
where the two pumps are closer to each other than 800GHz (roughly 6.4 nm). Note that these
values are suitable for optimizing NR waveguides. We have to use the approach in Appendix A.4.4
for fiber optimizations.

Figure 3.2 shows the normalized squared FWM efficiency |𝜂FWM(Δ𝛽)/ max |𝜂FWM||2 in loga-
rithmic scale, for the BS process in fiber 3 (depressed cladding) in Table 2.2. Normalization
is not strictly necessary, it is only convenient to have unit maximum 𝜂FWM(Δ𝛽 = 0) = 1. We
show in Appendix A.2 that indeed the maximum is achieved for Δ𝛽 = 0. This exemplary plot
is intended to be similar to the simulated and measured BS results in [15], Fig. 2 (e) and (f).
In our example, pump 1 is fixed at its optimum 𝜆P1

= 1538.0 nm and the mode assignment is
P1 → HE11e, P2 → TE01, S → TE01, I → HE11e

19. The wavelengths of signal and pump 2 are
on the horizontal and vertical axes, respectively. The dashed gray lines mark where FWM is
degenerate, i.e., pump 1, pump 2 or signal coincide. In this plot, the line where pump 1 and
pump 2 coincide is out of the depicted range at P2 = 1538 nm.

19 Note that the mode assignment is swapped compared to [15], i.e. in our simulation I and P1 are in the
fundamental mode HE11e and S and P2 in the higher order mode TE01, in contrast to [15] where I and P1 are
in LP01 and S and P2 in LP11. In our fiber, the relative group delay of HE11e is above TE01 (see Fig. 2.6e),
while in the fiber used in [15] LP01 is below LP11 (see [14, Fig. 2] where a similar fiber is used). The swapping
of group delays depends on the fraction of Germanium in the core and since we do not have that data available,
we can’t adjust our fiber. However, we get a good match by just swapping the mode assignment which is
sufficient for this comparison.
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Figure 3.2.: Example of FWM efficiency |𝜂FWM(Δ𝛽)/ max |𝜂FWM||2 for fiber 3 (depressed cladding) in
Table 2.2, for the BS process. The fiber and 𝜂FWM are similar to [15]. Here, 𝜆P1

= 1538.0 nm and the mode
assignment is P1 → HE11e, P2 → TE01, S → TE01, I → HE11e. The best PM region (𝜆P2

= 1544.85 nm)
and exemplary signal and idler wavelengths for 𝜆P2

= 1544.7 nm are marked.

Two possible operating points are marked in the plot, where neither signal nor idler cross a
pump when S is moved from S1 to S2. In this example, input wavelengths are P2 = 1544.7 nm,
S1 = 1545 nm and S2 = 1546 nm and the idler will be generated with high efficiency between
I1 = 1538.3 nm and I2 = 1539.3 nm. The small discrepancy in wavelengths and tilt of the “arms”
between our Fig. 3.2 and Fig. 2 in [15] can be attributed to the fact that fiber parameters of [15]
are not fully available.

Having introduced Fig. 3.2, we can explain one last constraint of our optimization. To ensure
that PM is not too sensitive to variations of pump 2’s wavelength, we only count regions of
good PM for 𝐵FWM where pump 2 can vary at least 50GHz (roughly 0.4 nm). In other words,
only those parts of the red region in the figure are considered for 𝐵FWM, which are at least
0.4 nm high. Hence, the best PM region (marked in the figure) would not be considered by the
optimization process, since its height is only about 0.1 nm. We only included it (by temporarily
lowering the requirement to 0.1 nm) to be able to compare our results to [15].

The implementation of our PM optimization algorithm is based on Fig. 3.2. For all combina-
tions of considered mode assignments and pump 1 wavelengths (usually 400 values uniformly
sampled from low O-band to high U-band), such an image is generated in memory and the best
achievable 𝐵FWM is computed. For that, the algorithm computes 𝐵FWM in each line of the image,
incorporating all constraints mentioned above.
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For example, 2 nm are subtracted if the signal crosses a pump in the region (e.g. P2 in the
marked optimum in Fig. 3.2). The highest bandwidth for this image is then stored. After the
process is repeated for all images, the mode assignments and wavelengths which result in the
highest 𝐵FWM are returned.

One caveat for optimizing fibers (but not NR waveguides) is explained in Appendix A.4.4.

3.1.1. Filtering Mode Combinations

The wavelength-independent coefficient 𝛽0 in Eq. (2.18) is subject to high fluctuations along
the propagation in fibers [14]. It tends to disturb PM and inhibit a buildup of the idler in
multi-modal FWM. Therefore, most of the times we assign modes (𝑚), (𝑜), (𝑝), (𝑞) in Eqs. (2.61)
and (2.62) in a way, that the 𝛽(𝑋)

0 terms cancel out. It requires further studies to determine if this
assumption also holds for NR waveguides with propagation distances in the range of centimeters.
However, this was not subject of the thesis. With this assumption, three possibilities per FWM
process remain:

BS

⎧{{
⎨{{⎩

Δ𝛽 = +𝛽(𝐴)(𝜔P1
) + 𝛽(𝐴)(𝜔S) − 𝛽(𝐴)(𝜔P2

) − 𝛽(𝐴)(𝜔I)

Δ𝛽 = +𝛽(𝐵)(𝜔P1
) + 𝛽(𝐴)(𝜔S) − 𝛽(𝐵)(𝜔P2

) − 𝛽(𝐴)(𝜔I)

Δ𝛽 = +𝛽(𝐵)(𝜔P1
) + 𝛽(𝐴)(𝜔S) − 𝛽(𝐴)(𝜔P2

) − 𝛽(𝐵)(𝜔I)

(3.1)

(3.2)

(3.3)

OPC

⎧{{
⎨{{⎩

Δ𝛽 = +𝛽(𝐴)(𝜔P1
) − 𝛽(𝐴)(𝜔S) + 𝛽(𝐴)(𝜔P2

) − 𝛽(𝐴)(𝜔I)

Δ𝛽 = +𝛽(𝐵)(𝜔P1
) − 𝛽(𝐵)(𝜔S) + 𝛽(𝐴)(𝜔P2

) − 𝛽(𝐴)(𝜔I)

Δ𝛽 = +𝛽(𝐵)(𝜔P1
) − 𝛽(𝐴)(𝜔S) + 𝛽(𝐴)(𝜔P2

) − 𝛽(𝐵)(𝜔I)

(3.4)

(3.5)

(3.6)

Note how there is always one pair of 𝛽 in the same mode with opposite sign. This limits
multi-modal FWM to using either one mode for all lasers, or two modes with two lasers in
each. In Chapter 5, we analyze how FWM with 3 or 4 distinct modes performs, ignoring this
restriction.

3.1.2. Graphical Phase Matching

In [14], the authors presented a graphical PM method which works for the processes Eqs. (3.2),
(3.3), (3.5) and (3.6). They showed that PM is achieved if the normalized group delays (see
Eq. (2.19)) fulfill

𝜏 (𝐴)
g (𝜔1 + 𝜔2

2
) = 𝜏 (𝐵)

g (𝜔3 + 𝜔4
2

), (3.7)

where 𝜔{1,2,3,4} ∈ {𝜔S, 𝜔I, 𝜔P1
, 𝜔P2

}, depending on which of the processes is considered. Or, in
words, the group delay of mode (𝐴), evaluated at the mean frequency of the waves propagating
in mode (𝐴), needs to match the group delay of mode (𝐵) evaluated at the mean frequency of
the waves in mode (𝐵).
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Figure 3.3.: An example of the graphical phase matching approach introduced in Section 3.1.2. A BS
process as in Eq. (3.3) is shown.
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Figure 3.4.: Hypothetical optimal group delay curves leading to broadband intra-band PM for the
OPC process. Arrows indicate in which directions signal, idler and the lines with same group delay (see
Eq. (3.7)) move.

Consider Fig. 3.3 for an example. The group delay in mode (𝐴) at the mean frequency of idler
and pump 1 matches the group delay in mode (𝐵) at the mean frequency of signal and pump 2,
highlighted by the green horizontal dashed line (at roughly 2 ns/km).

Since a BS process is depicted, the idler will follow the signal in the same direction if its
frequency is changed. Therefore, good PM is maintained if the slopes of the two group delay
curves are close to each other, i.e., the two modes have similar dispersion 𝐷(𝐴) ≈ 𝐷(𝐵). This is
why the authors in [15] chose a depressed cladding fiber (see Section 2.2.1).

For OPC, group delay curves of the shape shown in Fig. 3.4 would be optimal, since the signal
and idler move in opposite directions (see Eq. (2.55)). However, this shape does not exist in
NR waveguides and fibers since it requires negative dispersion for one mode and positive for the
other mode with same magnitudes. Modes close to cutoff come close to this picture, but the
effect is not achieved and PM optimization always returns other (better) configurations.

Hence, numerical optimizations like the one introduced in Section 3.1 need to be used in the
general case.
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Figure 3.5.: An example of the third kind PM in waveguide 7 (third kind PM) in Table 2.3. The two
pumps are in a mode with regular group delay and signal and idler in a mode with low dispersion in the
regime of interest.

3.1.3. Different Kinds of Phase Matching

In this short section, we present selected PM constellations which can arise in waveguides with
different types of group delay curves. This is not an exhaustive list, we just show three interesting
cases.

In the first kind, one mode with a broad low dispersion region is used for all propagating lasers.
e.g. TE3 in Figs. 2.11e and 2.11f. This broad close-to-zero dispersion region is only found in NR
waveguides and not in fibers. It can be used for very versatile BS and OPC FWM configurations,
due to the vast wavelength region it covers. Note that this differs only slightly from classical
singlemode FWM by the fact that it’s usually not the fundamental mode TE0, but a higher
order mode.

The second kind of PM could be called the classical approach, since it is commonly used in
fiber-based FWM experiments such as in [15] or [14]. This PM type works as the graphical
approach in Section 3.1.2. Two waveguide modes with different group delays are used, but the
dispersion of both modes is very similar, i.e., the group delay curves have almost the same slope
and Eq. (3.7) is fulfilled. This kind of PM works for BS, but not for OPC. When the signal is
shifted towards longer wavelengths, the idler will follow (see Eq. (2.54)) and the group delays at
the mean wavelengths in both modes both move at similar “speeds”.

The third kind of PM is a combination of the first two kinds and an example is shown in
Fig. 3.5, for waveguide 7 (third kind PM) in Table 2.3. One mode has regular group delay and
the other mode a region with low dispersion. When the signal is moved, the group delay at mean
signal and idler wavelength does not change significantly due to the low dispersion and Eq. (3.7)
is fulfilled again. This kind of PM also only works for BS and not for OPC. Further note that this
PM process is very sensitive to pump placement and to small variations in waveguide parameters
(see [33]).
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Figure 3.6.: Highest achievable FWM bandwidths for C- to O-band WLC (BS FWM process) in
waveguides with different geometries. Two-mode configurations are enforced. All bandwidths are
normalized to the C-band’s width.

3.2. Waveguide Geometry Optimization

One of our main goals is to optimize waveguide geometry to achieve maximal FWM bandwidth
𝐵FWM. For that, we sweep over dimension parameters of interest and perform the PM explained
in Section 3.1 for each combination of values.

For fibers, we usually sweep over core radius 𝑟core and trench width 𝑤trench (both defined in
Fig. 2.4). For NR waveguides, we usually sweep over rib width 𝑤rib and slab height ℎslab (both
defined in Fig. 2.7). However, our framework supports sweeping over many more parameters like,
e.g., core material or number and size of etched dips in the rib (see Fig. 2.8a for the definition of
dips).

We presented geometry optimizations of NR waveguides over rib width, slab height, number of
dips, dip width and dip depth in [33]. Table 3.1 lists the main results. Each scenario controls
three parameters: 1) The FWM process OPC or BS. 2) Either the optimizer was allowed to
freely choose from one-mode and two-mode configurations, or it was forced to use two-mode
configurations (called “2M”). 3) Signal and idler were enforced to be in certain optical bands,
selected from O,S,C and L – according to Fig. 3.1. The two pumps were always free to be placed
in the O, S, C and L-bands. We reported all scenarios in Fig. 3.1 for BS. Additionally, we
included C- to C-band OPC.

As an example, Fig. 3.6 shows highest achievable C- to O-band WLC bandwidths for enforced
two-mode operation (“2M”). It can be seen that many geometries lead to a bandwidth of at least
the C-band (which is the maximum of this scenario).

The main conclusion in [33] is that all-optical processing can be achieved with very high
bandwidth for all scenarios – most of them even with close-to or maximum possible bandwidth.
Only O-to-O-band conversion is limited to 52 nm.
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Table 3.1.: Optimization results of our work in [33]. Each scenario defines the FWM process (BS or OPC),
the source and target bands and whether multimode operation was enforced (“2M”) or the optimizer
was allowed to use one or two modes. The modes in the second column are given in the order pump 1,
signal, pump 2, idler. The last column shows the obtained and maximum possible FWM bandwidth for
the scenario, where the maximum depends on the width of source and target bands, the FWM process,
pump placement and enforced signal to pump separation (5 nm in this case).

Scenario Modes
[TEx]

𝑤rib
[nm]

ℎslab
[nm]

Num.
Dips

𝑤dip
[nm]

ℎdip
[nm]

𝐵FWM
[nm]

BS, O→O 0,1,1,0 3000 70 2 400 150 52 / 95
BS, S→S 2,2,2,2 1500 70 0 200 70 65 / 65
BS, C→C 2,2,2,2 1500 70 0 200 70 29 / 30
BS, L→L 2,2,2,2 1500 70 0 200 70 54 / 55
BS, C→O 1,2,2,1 1500 70 1 300 70 35 / 35
BS, C→S 2,2,2,2 1500 70 0 200 70 35 / 35
BS, C→L 2,2,2,2 1500 70 0 200 70 35 / 35

BS, O→O, 2M 0,1,1,0 3000 70 2 400 150 52 / 95
BS, S→S, 2M 1,2,1,2 2000 70 2 200 150 61 / 65
BS, C→C, 2M 2,1,2,1 1800 70 1 200 150 29 / 30
BS, L→L, 2M 2,1,2,1 1600 70 1 200 120 53 / 55
BS, C→O, 2M 1,2,2,1 1500 70 1 300 70 35 / 35
BS, C→S, 2M 2,1,1,2 1650 100 1 400 70 35 / 35
BS, C→L, 2M 2,1,1,2 2100 100 1 400 70 35 / 35

OPC, C→C 2,2,2,2 1750 70 2 200 70 35 / 35
OPC, C→C, 2M 2,1,1,2 1800 100 1 400 70 19 / 30
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Table 3.2.: Geometry parameter search space for a small optimization over dip parameters. Dip
parameters are defined in Fig. 2.8a.

Parameter Considered Values

𝑤rib [nm] 1700
ℎslab [nm] 72
ℎSOI [nm] 220

Number of dips [0, 1, 2]
𝑤dip [nm] [200, 300, 400]
ℎdip [nm] [70, 150]

3.2.1. The Effect of Dips

The second main result in [33] was that dips can greatly influence dispersion properties and hence
introduce useful additional degrees of freedom for PM. Dips force the mode fields into different
shapes (see e.g. Fig. 2.10) and alter the group delay and dispersion curves in a non-trivial
way. Instead of repeating the results of [33], we show a small dip parameter optimization with
parameters listed in Table 3.2 for O- to O-band WLC. Here, the optimizer was allowed to freely
choose configurations with one or two modes. The achievable FWM bandwidths for each dip
configuration are presented in Fig. 3.7.

For this waveguide, the configuration with no dips is able to achieve a bandwidth of roughly
23% of the O-band while the best configuration has two dips and achieves roughly 54% of the
O-band. When one dip is etched into the middle of the waveguide, it is best to make it as wide
and as deep as possible, while for two dips it is best to etch them as narrow and as shallow as
possible.

The group delay curves of the waveguide without dips and the waveguide with highest 𝐵FWM
are compared in Fig. 3.8. The largest effect is on modes which have significant fractions of power
at the dip positions (TE1 and TE3) and the effect is stronger for the weakly guided mode TE3.
The altered TE3 mode makes it possible to use a configuration with modes TE2 and TE3, while
in the case without dips TE0 and TE1 are used.

This small simulation highlights the fact that dips really can be beneficial to fine-tune dispersion.
Unfortunately it turned out that manufactured waveguides with dips have very high loss and
we could not achieve FWM in those waveguides. However, improving the etching process and
potentially the coupling of light in- and out of the waveguide could be able to mitigate the effect.
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Figure 3.8.: Normalized relative group delays for two waveguides of Fig. 3.7.



4
Frequency Domain Model of Light Propagation in
Matter

As explained in Section 2.4.7, the idler power based on Eq. (2.65) does not cover several effects.
To be able to predict the idler power with higher accuracy, we developed a CW frequency domain
propagation simulation framework which computes complex amplitudes as the waves propagate along
the waveguide. The effects of mode dependent attenuation, linear mode coupling and nonlinear coupling
are all considered here.

4.1. Derivation of the Propagation Equations

In general, the material response to light is not instantaneous and the power series expansion of
material polarization Eq. (2.46) needs to be generalized to a Volterra series

�̃�(𝑡) = 𝜀0𝑬(𝑡) + 𝑷 [1](𝑡) + 𝑷 [3](𝑡) = 𝜀0𝑬(𝑡) + 𝜀0

∞

∫
−∞

↔𝝌[1](𝜏)𝑬(𝑡 − 𝜏)d𝜏

+ 𝜀0

∞

∭
−∞

↔𝝌[3](𝜏𝑏, 𝜏𝑐, 𝜏𝑑) ... 𝑬(𝑡 − 𝜏𝑏)𝑬(𝑡 − 𝜏𝑐)𝑬(𝑡 − 𝜏𝑑)d𝜏𝑏d𝜏𝑐d𝜏𝑑 ,

(4.1)

where 𝑷 [1] is responsible for waveguiding and dispersion and 𝑷 [3] for third order material nonlinearities.
With the Fourier convolution theorem Eq. (A.5), the frequency domain representation of 𝑷 [1](𝑡) is

𝑷 [1](𝑓) = 𝜀0
↔
𝜲[1](𝑓)𝑬(𝑓),

↔
𝜲[1](𝑓) =

∞

∫
−∞

↔𝝌[1](𝑡)e−𝑗2𝜋𝑓𝑡d𝑡 .
(4.2)
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To convert 𝑷 [3](𝑡) into the frequency domain, we start with

𝑷 [3](𝑓) =
∞

∫
−∞

𝑷 [3](𝑡)e−𝑗2𝜋𝑓𝑡d𝑡

= 𝜀0

∞

∫
−∞

∞

∭
−∞

↔𝝌[3](𝜏𝑏, 𝜏𝑐, 𝜏𝑑) ... 𝑬(𝑡 − 𝜏𝑏)𝑬(𝑡 − 𝜏𝑐)𝑬(𝑡 − 𝜏𝑑)e−𝑗2𝜋𝑓𝑡d𝜏𝑏d𝜏𝑐d𝜏𝑑d𝑡 .

(4.3)

With the Fourier time shift property Eq. (A.3) we can replace the E-fields with

𝑬(𝑡 − 𝜏𝑏) =
∞

∫
−∞

𝑬(𝑓𝑏)e−𝑗2𝜋𝜏𝑏𝑓𝑏e𝑗2𝜋𝑓𝑏𝑡d𝑓𝑏

𝑬(𝑡 − 𝜏𝑐) =
∞

∫
−∞

𝑬(𝑓𝑐)e−𝑗2𝜋𝜏𝑐𝑓𝑐e𝑗2𝜋𝑓𝑐𝑡d𝑓𝑐

𝑬(𝑡 − 𝜏𝑑) =
∞

∫
−∞

𝑬(𝑓𝑑)e−𝑗2𝜋𝜏𝑑𝑓𝑑e𝑗2𝜋𝑓𝑑𝑡d𝑓𝑑 .

(4.4)

Inserting Eq. (4.4) in Eq. (4.3) and reordering terms leads to

𝑷 [3](𝑓) = 𝜀0

∞

∭
−∞

∞

∭
−∞

↔𝝌[3](𝜏𝑏, 𝜏𝑐, 𝜏𝑑)e−𝑗2𝜋𝑓𝑏𝜏𝑏e−𝑗2𝜋𝑓𝑐𝜏𝑐e−𝑗2𝜋𝑓𝑑𝜏𝑑d𝜏𝑏d𝜏𝑐d𝜏𝑑

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
↔
𝜲[3](𝑓�𝑓𝑏,𝑓𝑐,𝑓𝑑)

...

... 𝑬(𝑓𝑏)𝑬(𝑓𝑐)𝑬(𝑓𝑑)
∞

∫
−∞

e𝑗2𝜋(𝑓𝑏+𝑓𝑐+𝑓𝑑)𝑡e−𝑗2𝜋𝑓𝑡d𝑡
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛿(𝑓−𝑓𝑏−𝑓𝑐−𝑓𝑑)

d𝑓𝑏d𝑓𝑐d𝑓𝑑

= 𝜀0

∞

∭
−∞

↔
𝜲[3](𝑓�𝑓𝑏, 𝑓𝑐, 𝑓𝑑) ... 𝑬(𝑓𝑏)𝑬(𝑓𝑐)𝑬(𝑓𝑑)∗

∗ 𝛿(𝑓 − 𝑓𝑏 − 𝑓𝑐 − 𝑓𝑑) d𝑓𝑏d𝑓𝑐d𝑓𝑑 .

(4.5)

The susceptibility
↔
𝜲[3](𝑓�𝑓𝑏, 𝑓𝑐, 𝑓𝑑) does not have a direct dependence on 𝑓, but since that is the

frequency at which the nonlinear material polarization is generated, it is included in the nomenclature.
It is nevertheless separated with an arrow to make clear that it depends on 𝑓𝑏, 𝑓𝑐 and 𝑓𝑑 and is not a
parameter of

↔
𝜲[3].

With the susceptibilities in frequency domain at hand, Eq. (4.1) can be written as

�̃�(𝑓) = 𝜀0𝑬(𝑓) + ↔𝝌[1](𝑓)𝑬(𝑓) + 𝑷 [3](𝑓) = 𝜀0 (𝜀′
r𝟏̃

+ Δ𝜺
̃r) 𝑬(𝑓) + 𝑷 [3](𝑓), (4.6)

where 𝟏
̃
is the identity matrix and we split the permittivity into a waveguiding and dispersion part 𝜀′

r,
and a part modeling linear coupling due to waveguide imperfections Δ𝜺

̃r.
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Note that both, 𝜀′
r(𝑥, 𝑦) and Δ𝜺

̃r(𝑥, 𝑦) vary with transversal coordinates 𝑥 and 𝑦.
We heuristically introduce 𝜀′′

r which models mode and frequency dependent linear attenuation and
get

�̃�(𝑓) = 𝜀0𝜀′
r𝑬(𝑓)⏟

Waveguiding & Dispersion

−
Attenuation

⏞⏞⏞⏞⏞𝑗𝜀0𝜀′′
r 𝑬(𝑓) + 𝜀0Δ𝜺

̃r𝑬(𝑓)⏟⏟⏟⏟⏟
Linear Coupling

+

Nonlinear Coupling
⏞̃𝑷 [3](𝑓) . (4.7)

Rearranging all perturbations into

𝑷 ′(𝑓) ∶= −𝑗𝜀0𝜀′′
r 𝑬(𝑓) + 𝜀0Δ𝜺

̃r𝑬(𝑓) + 𝑷 [3](𝑓) (4.8)

yields
�̃�(𝑓) = 𝜀0𝜀′

r𝑬(𝑓) + 𝑷 ′(𝑓). (4.9)

We start again with Maxwell’s Eqs. (2.9) to (2.12). Since we operate in frequency domain now, we
can replace time derivatives by 𝑗2𝜋𝑓 = 𝑗𝜔 (see Eq. (A.4)). Taking the curl of Eq. (2.11) and using the
double curl identity Eq. (2.13) gives

Δ𝑬(𝑓) − 𝛁 (𝛁 • 𝑬(𝑓)) = −𝜇0𝜔2�̃�(𝑓). (4.10)

Inserting Eq. (4.9) for the displacement field in Eq. (2.9) gives

𝛁 • �̃�(𝑓) = 𝜀0𝛁 • (𝜀′
r𝑬(𝑓)) + 𝛁 • 𝑷 ′(𝑓) = 𝟎 (4.11)

⇒ 𝛁 • 𝑬(𝑓) = −𝛁𝜀′
r

𝜀′
r

• 𝑬(𝑓) − 1
𝜀0𝜀′

r
𝛁 • 𝑷 ′(𝑓) (4.12)

With Eq. (4.9) and Eq. (4.12), Eq. (4.10) becomes

Δ𝑬(𝑓) + 𝛁
⎛⎜⎜⎜
⎝

𝛁𝜀′
r

𝜀′
r

• 𝑬(𝑓) + 1
𝜀0𝜀′

r
𝛁 • 𝑷 ′(𝑓)

⏟⏟⏟⏟⏟⏟⏟
«A»

⎞⎟⎟⎟
⎠

+ 𝑘2
0𝜀′

r𝑬(𝑓) = −𝜇0𝜔2𝑷 ′(𝑓), (4.13)

where we used the free-space wave number 𝑘2
0 = 𝜇0𝜀0𝜔2.

The perturbation 𝑷 ′(𝑓) in the displacement field Eq. (4.9) is much smaller than the E-field part and
we can use the approximation that 𝑷 ′(𝑓) does not alter mode fields. Using this perturbation approach
in Eq. (4.11), we get

𝛁 • 𝑷 ′(𝑓) = 𝟎. (4.14)

Hence, the part of Eq. (4.13) marked with «A» vanishes. Transforming the E-field model Eq. (2.17)
into frequency domain

𝑬(𝑓) = 1
2

∑
𝑎∈S

∑
(𝑚)∈M

̂𝐸(𝑚)
𝑎 (𝑧)𝜳 (𝑚)

𝑎 (𝑥, 𝑦)e−𝑗𝛽(𝑚)
𝑎 𝑧𝛿(𝑓 − 𝑓𝑎) + c.c. (4.15)

and inserting it into Eq. (4.13), we can evaluate the 𝑥, 𝑦 and 𝑧 components.
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Since all operations are linear (we deal with nonlinearity later and keep it hidden in 𝑷 ′(𝑓) for now),
we can take out the summations over frequencies and modes. After some calculus and algebra and the
assumption 𝜕𝜀′

r
𝜕𝑧 ≈ 0, the equation for the 𝑥 component is

1
2

∑
𝑎∈S

∑
(𝑚)∈M

{ (𝜕2
𝑥 + 𝜕2

𝑦) (Ψ(𝑚)
𝑥,𝑎 ) + (𝑘2

0𝜀′
r − 𝛽(𝑚)

𝑎
2
) Ψ(𝑚)

𝑥,𝑎

+𝜕𝑥 [ 1
𝜀′

r
(Ψ(𝑚)

𝑥,𝑎 𝜕𝑥𝜀′
r + Ψ(𝑚)

𝑦,𝑎 𝜕𝑦𝜀′
r)] } ̂𝐸(𝑚)

𝑎 e−𝑗𝛽(𝑚)
𝑎 𝑧𝛿(𝑓 − 𝑓𝑎)

+ (d2�̂�(𝑚)
𝑎

d𝑧2 − 2𝑗𝛽(𝑚)
𝑎

d�̂�(𝑚)
𝑎

d𝑧 ) Ψ(𝑚)
𝑥,𝑎 e−𝑗𝛽(𝑚)

𝑎 𝑧𝛿(𝑓 − 𝑓𝑎) + c.c. = −𝜇0𝜔2 ̃𝑃 ′
𝑥(𝑓).

(4.16)

Since the field amplitude ̂𝐸(𝑚)
𝑎 (𝑧) only changes due to the perturbations in 𝑷 ′(𝑓), all addends with

d�̂�
d𝑧 (marked green ) vanish in the homogeneous equation (𝑷 ′(𝑓) = 𝟎). Due to mode orthogonality,
this is valid for all summands in Eq. (4.16). Based on the assumption that 𝑷 ′(𝑓) does not alter 𝜳,
this also has to hold for 𝑷 ′(𝑓) ≠ 𝟎 and the parts marked red are always zero. The equation for
the 𝑦 component is obtained by simply switching 𝑥 and 𝑦 indices in Eq. (4.16) after removing the
red parts. The 𝑧 component is slightly different, but with the slowly varying wave approximation
∣𝜕𝑧 ̂𝐸(𝑚)

𝑎 ∣ ≪ ∣𝛽(𝑚)
𝑎 ̂𝐸(𝑚)

𝑎 ∣, the result is the same as switching 𝑥 and 𝑧 indices in Eq. (4.16) after removing

the red parts. With the second slowly varying wave approximation ∣d2�̂�(𝑚)
𝑎

d𝑧2 ∣ ≪ ∣2𝛽(𝑚)
𝑎

d�̂�(𝑚)
𝑎

d𝑧 ∣, we get
the vectorial equation

1
2

∑
𝑎∈S

∑
(𝑚)∈M

−2𝑗𝛽(𝑚)
𝑎

d ̂𝐸(𝑚)
𝑎

d𝑧
𝜳 (𝑚)

𝑎 e−𝑗𝛽(𝑚)
𝑎 𝑧𝛿(𝑓 − 𝑓𝑎) + c.c. = −𝜇0𝜔2𝑷 ′(𝑓). (4.17)

The next step is inserting the E-field model Eq. (4.15) into the third order nonlinearity Eq. (4.5):

𝑷 [3](𝑓) = 𝜀0

∞

∭
−∞

↔
𝜲[3](𝑓�𝑓𝑏, 𝑓𝑐, 𝑓𝑑)...

(1
2

∑
𝑏′∈S

∑
(𝑜)∈M

̂𝐸(𝑜)
𝑏′ 𝜳 (𝑜)

𝑏′ e−𝑗𝛽(𝑜)
𝑏′ 𝑧𝛿(𝑓𝑏 − 𝑓𝑏′) + c.c.)

(1
2

∑
𝑐′∈S

∑
(𝑝)∈M

̂𝐸(𝑝)
𝑐′ 𝜳 (𝑝)

𝑐′ e−𝑗𝛽(𝑝)
𝑐′ 𝑧𝛿(𝑓𝑐 − 𝑓𝑐′) + c.c.)

(1
2

∑
𝑑′∈S

∑
(𝑞)∈M

̂𝐸(𝑞)
𝑑′ 𝜳 (𝑞)

𝑑′ e−𝑗𝛽(𝑞)
𝑑′ 𝑧𝛿(𝑓𝑑 − 𝑓𝑑′) + c.c.)

∗ 𝛿(𝑓 − 𝑓𝑏 − 𝑓𝑐 − 𝑓𝑑) d𝑓𝑏d𝑓𝑐d𝑓𝑑 .

(4.18)

We dropped the (𝑧) and (𝑥, 𝑦) arguments of ̂𝐸(𝑧) and 𝜳(𝑥, 𝑦) for brevity and changed to primed indices
for the summations, since they are distinct from the integration indices.
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Taking out the summations and defining the terms

𝒯(𝑜)
𝑏′ = ̂𝐸(𝑜)

𝑏′ 𝜳 (𝑜)
𝑏′ e−𝑗𝛽(𝑜)

𝑏′ 𝑧𝛿(𝑓𝑏 − 𝑓𝑏′) (4.19)

𝒯(𝑝)
𝑐′ = ̂𝐸(𝑝)

𝑐′ 𝜳 (𝑝)
𝑐′ e−𝑗𝛽(𝑝)

𝑐′ 𝑧𝛿(𝑓𝑐 − 𝑓𝑐′) (4.20)

𝒯(𝑞)
𝑑′ = ̂𝐸(𝑞)

𝑑′ 𝜳 (𝑞)
𝑑′ e−𝑗𝛽(𝑞)

𝑑′ 𝑧𝛿(𝑓𝑑 − 𝑓𝑑′) , (4.21)

we can rewrite Eq. (4.18) as

𝑷 [3](𝑓) = 1
8

𝜀0 ∑
𝑏′,𝑐′,𝑑′

∈S

∑
(𝑜),(𝑝),(𝑞)

∈M

∞

∭
−∞

↔
𝜲[3](𝑓�𝑓𝑏, 𝑓𝑐, 𝑓𝑑) ... [𝒯(𝑜)

𝑏′ 𝒯(𝑝)
𝑐′ 𝒯(𝑞)

𝑑′ +

+ 𝒯(𝑜)
𝑏′ 𝒯(𝑝)

𝑐′ (𝒯(𝑞)
𝑑′ )

∗
+ 𝒯(𝑜)

𝑏′ (𝒯(𝑝)
𝑐′ )

∗
𝒯(𝑞)

𝑑′ + 𝒯(𝑜)
𝑏′ (𝒯(𝑝)

𝑐′ )
∗
(𝒯(𝑞)

𝑑′ )
∗
+

+ (𝒯(𝑜)
𝑏′ )

∗
𝒯(𝑝)

𝑐′ 𝒯(𝑞)
𝑑′ + (𝒯(𝑜)

𝑏′ )
∗
𝒯(𝑝)

𝑐′ (𝒯(𝑞)
𝑑′ )

∗
+ (𝒯(𝑜)

𝑏′ )
∗
(𝒯(𝑝)

𝑐′ )
∗
𝒯(𝑞)

𝑑′ +

+ (𝒯(𝑜)
𝑏′ )

∗
(𝒯(𝑝)

𝑐′ )
∗
(𝒯(𝑞)

𝑑′ )
∗
]𝛿(𝑓 − 𝑓𝑏 − 𝑓𝑐 − 𝑓𝑑) d𝑓𝑏d𝑓𝑐d𝑓𝑑 .

(4.22)

The terms of interest have exactly one phase conjugation and are marked with a blue background.
These nonlinear products have two positive and one negative frequency component, leading to idlers
with wavelengths in the vicinity of the input fields. Expanding the 𝒯(𝑜)

𝑏′ 𝒯(𝑝)
𝑐′ (𝒯(𝑞)

𝑑′ )
∗

term gives

𝑷 [3](𝑓) = 1
8

𝜀0 ∑
𝑏′,𝑐′,𝑑′

∈S

∑
(𝑜),(𝑝),(𝑞)

∈M

∞

∭
−∞

↔
𝜲[3](𝑓�𝑓𝑏, 𝑓𝑐, 𝑓𝑑) ... [𝜳 (𝑜)

𝑏′ 𝜳 (𝑝)
𝑐′ (𝜳 (𝑞)

𝑑′ )
∗

∗ ̂𝐸(𝑜)
𝑏′

̂𝐸(𝑝)
𝑐′ ( ̂𝐸(𝑞)

𝑑′ )
∗

∗ e−𝑗(𝛽(𝑜)
𝑏′ +𝛽(𝑝)

𝑐′ −𝛽(𝑞)
𝑑′ )𝑧𝛿(𝑓𝑏 − 𝑓𝑏′) 𝛿(𝑓𝑐 − 𝑓𝑐′) 𝛿(𝑓𝑑 + 𝑓𝑑′) +

+ 𝒯(𝑜)
𝑏′ (𝒯(𝑝)

𝑐′ )
∗
𝒯(𝑞)

𝑑′ + (𝒯(𝑜)
𝑏′ )

∗
𝒯(𝑝)

𝑐′ 𝒯(𝑞)
𝑑′ + 𝒯(𝑜)

𝑏′ 𝒯(𝑝)
𝑐′ 𝒯(𝑞)

𝑑′ + … ]∗

∗ 𝛿(𝑓 − 𝑓𝑏 − 𝑓𝑐 − 𝑓𝑑) d𝑓𝑏d𝑓𝑐d𝑓𝑑 ,

(4.23)

where all terms with more than one complex conjugation are hidden in the ellipsis.
Now we can apply the three integrals to the terms independently to obtain

𝑷 [3](𝑓) = 3
8

𝜀0 ∑
𝑏,𝑐,𝑑
∈S

∑
(𝑜),(𝑝),(𝑞)

∈M

↔
𝜲[3](𝑓�𝑓𝑏, 𝑓𝑐, −𝑓𝑑) ... 𝜳 (𝑜)

𝑏 𝜳 (𝑝)
𝑐 (𝜳 (𝑞)

𝑑 )
∗
∗

∗ ̂𝐸(𝑜)
𝑏

̂𝐸(𝑝)
𝑐 ( ̂𝐸(𝑞)

𝑑 )
∗
e−𝑗(𝛽(𝑜)

𝑏 +𝛽(𝑝)
𝑐 −𝛽(𝑞)

𝑑 )𝑧𝛿(𝑓 − 𝑓𝑏 − 𝑓𝑐 + 𝑓𝑑)

+ 1
8

𝜀0 ∑
𝑏,𝑐,𝑑
∈S

∑
(𝑜),(𝑝),(𝑞)

∈M

↔
𝜲[3](𝑓�𝑓𝑏, 𝑓𝑐, 𝑓𝑑) ... 𝜳 (𝑜)

𝑏 𝜳 (𝑝)
𝑐 𝜳 (𝑞)

𝑑 ∗

∗ ̂𝐸(𝑜)
𝑏

̂𝐸(𝑝)
𝑐 ̂𝐸(𝑞)

𝑑 e−𝑗(𝛽(𝑜)
𝑏 +𝛽(𝑝)

𝑐 +𝛽(𝑞)
𝑑 )𝑧𝛿(𝑓 − 𝑓𝑏 − 𝑓𝑐 − 𝑓𝑑)

+ … .

(4.24)



Chapter 4. Frequency Domain Model of Light Propagation in Matter 58

We made use of the fact that the three terms 𝒯(𝑜)
𝑏′ 𝒯(𝑝)

𝑐′ (𝒯(𝑞)
𝑑′ )

∗
, 𝒯(𝑜)

𝑏′ (𝒯(𝑝)
𝑐′ )

∗
𝒯(𝑞)

𝑑′ and
(𝒯(𝑜)

𝑏′ )
∗
𝒯(𝑝)

𝑐′ 𝒯(𝑞)
𝑑′ are equivalent under permutation of the indices (hence the new factor 3). The ellipsis

still captures terms with more than one complex conjugation and we also included the expansion of
𝒯(𝑜)

𝑏′ 𝒯(𝑝)
𝑐′ 𝒯(𝑞)

𝑑′ for clarity. We further removed the primes from 𝑏′, 𝑐′ and 𝑑′ after the integration, since
there is only one set of indices left.

We now insert the E-Field model Eq. (4.15) into the perturbation term Eq. (4.8) to obtain

𝑷 ′(𝑓) = − 1
2

∑
𝑎″∈S

∑
(𝑜″)∈M

𝑗𝜀0𝜀′′(𝑜″)
r,𝑎″

̂𝐸(𝑜″)
𝑎″ 𝜳 (𝑜″)

𝑎″ e−𝑗𝛽(𝑜″)
𝑎″ 𝑧𝛿(𝑓 − 𝑓𝑎″) + c.c.

+ 1
2

∑
𝑎′∈S

∑
(𝑜′)∈M

𝜀0Δ𝜺
̃r𝜳

(𝑜′)
𝑎′

̂𝐸(𝑜′)
𝑎′ e−𝑗𝛽(𝑜′)

𝑎′ 𝑧𝛿(𝑓 − 𝑓𝑎′) + c.c.

+ 𝑷 [3](𝑓),

(4.25)

where we made sure to introduce unique summation indices distinguished by primes. Now we can
insert Eq. (4.24) and Eq. (4.25) into Eq. (4.17) to obtain

«A»{1
2

∑
𝑎∈S

∑
(𝑚)∈M

−2𝑗𝛽(𝑚)
𝑎

d ̂𝐸(𝑚)
𝑎

d𝑧
𝜳 (𝑚)

𝑎 e−𝑗𝛽(𝑚)
𝑎 𝑧𝛿(𝑓 − 𝑓𝑎) + c.c. =

«B»{ + 1
2

∑
𝑎″∈S

∑
(𝑜″)∈M

𝑗𝑘2
0𝜀′′(𝑜″)

r,𝑎″
̂𝐸(𝑜″)
𝑎″ 𝜳 (𝑜″)

𝑎″ e−𝑗𝛽(𝑜″)
𝑎″ 𝑧𝛿(𝑓 − 𝑓𝑎″) + c.c.

«C»{ − 1
2

∑
𝑎′∈S

∑
(𝑜′)∈M

𝑘2
0Δ𝜺
̃r𝜳

(𝑜′)
𝑎′

̂𝐸(𝑜′)
𝑎′ e−𝑗𝛽(𝑜′)

𝑎′ 𝑧𝛿(𝑓 − 𝑓𝑎′) + c.c.

«D»{ − 3
8

∑
𝑏,𝑐,𝑑
∈S

∑
(𝑜),(𝑝),(𝑞)

∈M

𝑘2
0

↔
𝜲[3](𝑓�𝑓𝑏, 𝑓𝑐, −𝑓𝑑) ... 𝜳 (𝑜)

𝑏 𝜳 (𝑝)
𝑐 (𝜳 (𝑞)

𝑑 )
∗
∗

∗ ̂𝐸(𝑜)
𝑏

̂𝐸(𝑝)
𝑐 ( ̂𝐸(𝑞)

𝑑 )
∗
e−𝑗(𝛽(𝑜)

𝑏 +𝛽(𝑝)
𝑐 −𝛽(𝑞)

𝑑 )𝑧𝛿(𝑓 − 𝑓𝑏 − 𝑓𝑐 + 𝑓𝑑) + … .

(4.26)

Our goal is to derive an equation that models a wave at (positive) frequency 𝑓𝑎+ and in mode (𝑚+),
where the (⋅)+ is used to distinguish frequency and mode indices of the wave of interest from summation
indices. We define the normalization factor

ℐ(𝑚)
𝑎 =

∞

∬
−∞

∣𝜳 (𝑚)
𝑎 (𝑥, 𝑦)∣

2
d𝑥d𝑦 , (4.27)

multiply both sides of Eq. (4.26) with 1
ℐ(𝑚+)

𝑎+
(𝜳 (𝑚+)

𝑎+ )
∗

and integrate over the transversal plane. Due to

mode orthogonality20

1
ℐ(𝑚)

𝑎

∞

∬
−∞

(𝜳 (𝑚)
𝑎 )

∗
• 𝜳 (𝑜)

𝑎 d𝑥d𝑦 = 𝛿(𝑚)(𝑜), (4.28)

all terms not in mode (𝑚+) vanish in «A» and «B» in Eq. (4.26). Again, we are interested in the wave
at frequency 𝑓𝑎+ .

20 The Kronecker Delta is defined as 𝛿𝑖𝑘 = {
1, 𝑖 = 𝑘
0, 𝑖 ≠ 𝑘

.
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To retain only terms at this frequency in «A», «B» and «C», it is enough to keep only terms with
𝑎 = 𝑎″ = 𝑎′ = 𝑎+. However, the nonlinearity in «D» produces terms at various frequencies determined
by 𝛿(𝑓 − 𝑓𝑏 − 𝑓𝑐 + 𝑓𝑑). There are also similar terms hidden in the ellipsis, but they produce waves at
either negative frequencies or at the sum of three positive input frequencies, hence never at 𝑓𝑎+ . To
select nonlinear terms with the desired frequency only, we change the summation to the reduced set

S𝑎 = {𝑏, 𝑐, 𝑑 ∶ 𝑓𝑎+ = 𝑓𝑏 + 𝑓𝑐 − 𝑓𝑑} , (4.29)

which leads to 𝛿(𝑓 − 𝑓𝑏 − 𝑓𝑐 + 𝑓𝑑) = 𝛿(𝑓 − 𝑓𝑎+). With these changes, we can solve Eq. (4.26) for d�̂�(𝑚+)
𝑎+
d𝑧

and get

d ̂𝐸(𝑚+)
𝑎+

d𝑧
= − 𝑘2

0

2𝛽(𝑚+)
𝑎+

𝜀′′(𝑚+)
r,𝑎+ ̂𝐸(𝑚+)

𝑎+

− 𝑗 𝑘2
0

2𝛽(𝑚+)
𝑎+ ℐ(𝑚+)

𝑎+

∑
(𝑜′)∈M

∞

∬
−∞

(𝜳 (𝑚+)
𝑎+ )

∗
• (Δ𝜺

̃r𝜳
(𝑜′)
𝑎+ ) d𝑥d𝑦 ̂𝐸(𝑜′)

𝑎+ e−𝑗Δ𝛽(𝑚�𝑜′)
𝑎 𝑧

− 𝑗 3𝑘2
0

8𝛽(𝑚+)
𝑎+ ℐ(𝑚+)

𝑎+

∑
𝑏,𝑐,𝑑
∈S𝑎

∑
(𝑜),(𝑝),(𝑞)

∈M

∞

∬
−∞

(𝜳 (𝑚+)
𝑎+ )

∗
• (

↔
𝜲[3](𝑓𝑎+ �𝑓𝑏, 𝑓𝑐, −𝑓𝑑)...

... 𝜳 (𝑜)
𝑏 𝜳 (𝑝)

𝑐 (𝜳 (𝑞)
𝑑 )

∗
)d𝑥d𝑦 ̂𝐸(𝑜)

𝑏
̂𝐸(𝑝)
𝑐 ( ̂𝐸(𝑞)

𝑑 )
∗
e−𝑗Δ𝛽(𝑚�𝑜𝑝𝑞)

𝑎�𝑏𝑐𝑑 𝑧

(4.30)

with linear and nonlinear phase mismatches Δ𝛽 and Δ𝛽 defined in Eqs. (4.32) and (4.33). The last
step is to drop the now redundant (⋅)+ from the indices and restructure some terms to arrive at our
final equation

d ̂𝐸(𝑚)
𝑎

d𝑧
= − 𝛼(𝑚)

𝑎

2
̂𝐸(𝑚)
𝑎

− 𝑗 ∑
(𝑜′)∈M

𝕃(𝑚�𝑜′)
𝑎 ̂𝐸(𝑜′)

𝑎 e−𝑗Δ𝛽(𝑚�𝑜′)
𝑎 𝑧

− 𝑗 ∑
𝑏,𝑐,𝑑
∈S𝑎

∑
(𝑜),(𝑝),(𝑞)

∈M

ℕ(𝑚�𝑜𝑝𝑞)
𝑎�𝑏𝑐𝑑

̂𝐸(𝑜)
𝑏

̂𝐸(𝑝)
𝑐 ( ̂𝐸(𝑞)

𝑑 )
∗
e−𝑗Δ𝛽(𝑚�𝑜𝑝𝑞)

𝑎�𝑏𝑐𝑑 𝑧.

(4.31)

The coefficients in Eq. (4.31) are defined as

Δ𝛽(𝑚�𝑜′)
𝑎 = 𝛽(𝑜′)

𝑎 − 𝛽(𝑚)
𝑎 (4.32)

Δ𝛽(𝑚�𝑜𝑝𝑞)
𝑎�𝑏𝑐𝑑 = 𝛽(𝑜)

𝑏 + 𝛽(𝑝)
𝑐 − 𝛽(𝑞)

𝑑 − 𝛽(𝑚)
𝑎 (4.33)

𝛼(𝑚)
𝑎 = 𝑘2

0

𝛽(𝑚)
𝑎

𝜀′′(𝑚)
r,𝑎 (4.34)

𝕃(𝑚�𝑜′)
𝑎 = 𝑘2

0

2𝛽(𝑚)
𝑎 ℐ(𝑚)

𝑎

∞

∬
−∞

(𝜳 (𝑚)
𝑎 )

∗
• (Δ𝜺

̃r𝜳
(𝑜′)
𝑎 ) d𝑥d𝑦 (4.35)

ℕ(𝑚�𝑜𝑝𝑞)
𝑎�𝑏𝑐𝑑 = 3𝑘2

0

8𝛽(𝑚)
𝑎 ℐ(𝑚)

𝑎

∞

∬
−∞

(𝜳 (𝑚)
𝑎 )

∗
• (

↔
𝜲[3](𝑓𝑎 �𝑓𝑏, 𝑓𝑐, −𝑓𝑑) ... 𝜳 (𝑜)

𝑏 𝜳 (𝑝)
𝑐 (𝜳 (𝑞)

𝑑 )
∗
) d𝑥d𝑦 . (4.36)
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The reader might wonder how the phase mismatches defined in Eqs. (2.61) and (2.62) relate to
Eq. (4.33). The two can be matched by appropriately selecting modes and frequencies of propagating
waves. For example, 𝛽(𝑝)(𝜔S) in Eq. (2.62) is the term with negative frequency and hence maps to 𝛽(𝑞)

𝑑
in Eq. (4.33).

Equation (4.31) models the amplitude evolution of a wave at frequency 𝑓𝑎 and in mode (𝑚)21. The
first term on the right is responsible for linear attenuation. Usually, 𝛼 is actually not derived from 𝜀′′

r ,
but directly inserted based on CW measurements of the waveguide (see Appendix A.1.4 for conversion
from dB/km to Np/m needed here). The second line is responsible for linear mode coupling from
waves at the same frequency 𝑓𝑎. The third line describes nonlinear coupling among all considered
modes and frequencies, including SPM, XPM and FWM. The strength of coupling is determined by 𝕃
and ℕ, while the coupling’s oscillation period is determined by Δ𝛽 and Δ𝛽. Our models for Δ𝜺

̃r and
↔
𝜲[3] are described in Sections 4.2 and 4.3.

To compute the evolution of waves in a waveguide, a set of these coupled differential equations needs
to be numerically integrated for all considered modes, at all input frequencies and at all frequencies
which are generated with high efficiency. Our solver is built around the ode113 ordinary differential
equation solver built into MATLAB. It is a variable step, variable order Adams-Bashforth-Moulton,
Predict–Evaluate–Correct–Evaluate solver of orders 1 to 13 [72]. This means that it adjusts both the
step size and the method order when integrating along the waveguide, depending on an error estimate
computed in each step.

At the start of the waveguide (for roughly one micrometer), the power of waves with no power at
the input increases very quickly. Therefore, the integration step size needs to be very small in that
region. Later in the waveguide, the required step size depends on the actual coupling coefficients and
phase mismatches, which can also change during propagation (see Section 4.2). Hence, ode113 is a
good choice for our problem.

4.2. Linear Coupling Model

The rib walls of our NR waveguide are created by etching of the SOI chip. This has the side effect
that the walls will always have a random roughness. Additionally, the wall roughness varies along
the 𝑧 direction. Two main effects can arise from wall roughness: additional linear attenuation due to
coupling into leaky modes and linear mode coupling to other guided modes (see e.g. [73, Chapter 3]).

In our simulation, the first effect is incorporated into the attenuation coefficients 𝛼(𝑚)
𝑎 , where we use

measured values.
The second effect needs to be covered by an appropriate choice of Δ𝜺

̃r which determines the linear
coupling coefficients 𝕃 via the integral in Eq. (4.35). We create random perturbations Δ𝜀r independently
for the left and right rib walls. Figure 4.1 shows √𝜀′

r + Δ𝜀r, zoomed at the right rib wall. The refractive
index perturbation is zero at almost all positions in the grid and 2.03 or −2.03 at remaining positions
(the difference between the silicon core and silica cladding). The sign depends on whether the rib is
etched too wide or not wide enough and which rib wall is considered. For example, consider the right
rib wall. The sign of Δ𝜀r is positive, if not enough silicon was etched away and the core extends into
the cladding (red peaks pointing right in Fig. 4.1). The sign is negative if too much silicon was etched
away (blue peaks pointing left in Fig. 4.1).

21 The transversal field profiles 𝜳 in Eq. (4.35) and Eq. (4.36) are vectors of matrices of grid size. See Appendix A.4.1
for some implementation details.
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Figure 4.1.: Rib wall with random roughness.

We create the Δ𝜺
̃r matrix22 as

Δ𝜺
̃r = Δ𝜀r

⎡
⎢
⎣

1 1
2

1
2

1
2 1 1

2
1
2

1
2 1

⎤
⎥
⎦

. (4.37)

Since mode coupling is an inherently random process, there is not the one correct way to model it. We
arbitrarily chose the factor 1

2 in Eq. (4.37) to model that coupling among different polarizations is
weaker. Further, the generation process of the random perturbation Δ𝜀r has some parameters: standard
deviation of the roughness, height of vertical blocks and grade of low-pass filtering the roughness
function. The standard deviation determines how much the roughness extends into core and cladding.
Since it is unphysical that roughness changes too quickly with vertical position 𝑦, we firstly use the
same random width in vertical blocks of 2 nm height. This explains the steps in the figure which look
like quantization. Secondly, we low-pass filter the roughness of the vertical blocks.

The wall roughness changes along the propagation direction of real waveguides with some correlation
[74]. However, we used a simplified approach where we simply recompute Δ𝜺

̃r after every 0.5mm of
propagation.

Finally, we adjusted all these parameters to get coupling strengths comparable to measured values.

4.3. Nonlinear Coupling Model

Nonlinear coupling is determined by the third order susceptibility ↔𝝌[3]. This tensor has in general
81 components and depends on three frequencies. Since different waveguide materials have different
susceptibilities, there is also a dependence on the 𝑥 and 𝑦 coordinates. We considered these effects
in the model and simulation presented in [36], [39]. However, in this simulation, we chose to greatly
simplify the susceptibility and reduce computation time by three orders of magnitude. First of all,
we consider ↔𝝌[3] to be constant across the waveguide’s cross section. To reduce the error we make
by this assumption, we limit the integrals in Eq. (4.36) to the rib and slab and thus ignore nonlinear
interaction in the surrounding silica cladding. Thankfully, the neglected interaction is small. Most
power propagates inside the core and silica has a much weaker nonlinearity than silicon.

22 Note that Δ𝜺
̃ r is actually a matrix of matrices. See Appendix A.4.1 for more details.
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Secondly, we ignore the frequency dependence of ↔𝝌[3], except for the selection rule Eq. (4.29). This
implies that we neglect nonlinear interaction due to the Raman effect and only consider the effect of
bound electrons.

Silicon belongs to the point group m3m, which means only 21 of the 81 components of ↔𝝌[3] are
nonzero and they have only four independent values [19]. Namely, the value of all ↔𝝌[3]

𝑖𝑖𝑖𝑖 entries is
the same, likewise of all ↔𝝌[3]

𝑖𝑖𝑘𝑘 entries, ↔𝝌[3]
𝑖𝑘𝑖𝑘 entries and all ↔𝝌[3]

𝑖𝑘𝑘𝑖 entries. Here 𝑖 and 𝑘 address the 𝑥,
𝑦 and 𝑧 components of the output and three input field vectors. Symmetry considerations lead to
↔𝝌[3]

𝑖𝑘𝑘𝑖 = ↔𝝌[3]
𝑖𝑖𝑘𝑘 [19].

We can further use Kleinman’s symmetry condition, since our highest considered frequency is the
edge of the O-band and thus below the bandgap of silicon. This allows us to approximate ↔𝝌[3]

𝑖𝑖𝑘𝑘 ≈ ↔𝝌[3]
𝑖𝑘𝑖𝑘.

For the considered frequency range, experiments [75] have shown that ↔𝝌[3]
𝑖𝑖𝑖𝑖 ≈ 2.36 ↔𝝌[3]

𝑖𝑖𝑘𝑘. Thus, we can
compute all values of ↔𝝌[3] by fixing only one parameter. The effective value of ↔𝝌[3] is given as [19]

↔𝝌[3]
eff = 4

3
𝜀0𝑐0𝑛2𝑛2 + 𝑗2

3
𝜀0𝑐0

2𝑛2

𝜔
𝛽TPA (4.38)

which depends on the nonlinear refractive index 𝑛2 and the two photon absorption coefficient 𝛽TPA – both
of which can be measured. We used the values 𝑛2(Si) = 10⋅10−18 m2/W and 𝛽TPA(Si) = 0.5⋅10−11 m/W
from [19, Fig. 6] and [20]. For the NR waveguides in our experiments, ↔𝝌[3]

𝑖𝑖𝑖𝑖 ≈ ↔𝝌[3]
eff/1.1356 is valid [20,

Eq. 1.15].
Combining all these approximations, we can use23

↔𝝌[3]
𝑖𝑖𝑖𝑖 = (37.7 + 2.25𝑗) ⋅ 10−20 m2/V2

↔𝝌[3]
𝑖𝑖𝑘𝑘 = ↔𝝌[3]

𝑖𝑘𝑘𝑖 = ↔𝝌[3]
𝑖𝑘𝑖𝑘 = (16.0 + 0.95𝑗) ⋅ 10−20 m2/V2

(4.39)

in our simulation for the susceptibility of silicon.

23 Note that the unit here is m2/V2 in contrast to m2/V2/s2 in the list of symbols. The difference is that the latter is
defined as a time dependent impulse response which needs to be applied with convolution integrals and the values
here are simply constants.
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Table 4.1.: Simulated propagating waves in the NR waveguide example.

Mode \ Wavelength 1260.00 nm 1265.50 nm 1553.91 nm 1545.62 nm 1063.47 nm

TE0 𝑤1,1 𝑤1,2 𝑤1,3 𝑤1,4 𝑤1,5
TE1 P1 P2 𝑤2,3 𝑤2,4 𝑤2,5
TE2 𝑤3,1 𝑤3,2 S IBS IOPC

4.4. Examples of Propagating Waves

We usually simulate typical FWM experiments like those described in Section 2.4.5, where PM results
need to be already available. In these experiments, the three input waves (pumps and signal) will
interact and generate new waves in all guided waveguide modes and at new frequencies. By linear
mode coupling, waves at all frequencies couple into all available modes at the same frequencies. Due
to nonlinear interaction, waves at all possible frequency combinations are generated in all available
modes. In theory, this means that more and more idlers are generated along the waveguide. However,
they are much weaker than the input waves and mostly not phase-matched. Therefore, we limit the
simulation by only considering light propagation in a subset of waveguide modes – the input modes,
the phase-matched idler’s mode and sometimes one or two more. We further only consider the input
frequencies 𝑓P1

, 𝑓P2
, 𝑓S and idler frequencies 𝑓IBS

, 𝑓IOPC
. This means that we need to simulate the

coupled propagation of 3 × 5 = 15 propagating wave amplitudes.
As a first example, Fig. 4.2 shows the power evolution in waveguide 7 (third kind PM) of Table 2.3

with the unusual PM configuration shown in Fig. 3.5. We have summarized the propagating fields in
Table 4.1.

The first observable effect in Fig. 4.2a is linear attenuation. We have used 𝛼TE0
= 0.8 dB/cm,

𝛼TE1
= 1.0 dB/cm and 𝛼TE2

= 1.5 dB/cm in the simulation. The figure shows how the pumps in TE1
are attenuated by 1 dB/cm and the signal by 1.5 dB/cm. The TPA process (nonzero imaginary part of
↔𝝌[3]) leads to an additional attenuation of ≈ 0.2 dB.

This waveguide has two large dips, which generate severe linear coupling leading to the noise-like
shape of the curves. Without or with much weaker linear coupling, the curves would look smooth
– compare e.g. with Figs. 5.4 and 6.10. The strong waves generated by linear coupling are shown
in Fig. 4.2b, where powers of up to 15 dBm are reached. Figure 4.2c magnifies a small propagation
distance of Fig. 4.2b24. Six positions where Δ𝜀r and thus linear coupling coefficients are recomputed
are visible (every 0.5mm, e.g. at 2.652 cm). At these positions, the coupling coefficients don’t only
change their magnitude, but sometimes also their sign. This affects the oscillation amplitudes and when
the sign changes, the coupling has a phase change of 𝜋 and the idler power switches from increasing to
decreasing or vice versa. For example, wave 𝑤2,3 (S coupled into TE1) at 2.652 cm gains in strength by
this phase change.

Finally, the lower plot in Fig. 4.2a shows the phase-matched BS idler generated by nonlinear
interaction. PM was optimized for a waveguide length of 2 cm, based on the FWM efficiency. The idler
power peak in the figure is very close to this predicted point.

24 Figure 4.2c shows undecimated data, while Figs. 4.2a and 4.2b show only every 50th 𝑧 sample along the waveguide.
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Figure 4.2.: Simulated power evolution in waveguide 7 (third kind PM) of Table 2.3. PM is of the “third kind”
shown in Fig. 3.5.
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Table 4.2.: Simulated propagating waves in the optical fiber example. Rows denote in which modes the signals
are (mode indices and mode names) and columns denote which frequencies the signals have (frequency indices
and wavelength values).

(𝑚)\ 𝑎 1 (1538.00 nm) 2 (1544.85 nm) 3 (1542.85 nm) 4 (1536.02 nm)

1 (HE11e) P1 (suppressed) (suppressed) IBS
2 (TE01) (suppressed) P2 S (suppressed)

16

20

24

P1 in TE01 P2 in HE11e
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−10

0

10

𝑧[km]

P[
dB

m
]

S in HE11e IBS in TE01

Figure 4.3.: Simulated power evolution of pumps, signal and idler in fiber 3 (depressed cladding) of Table 2.2
with PM according to Fig. 3.2 with wavelengths from Table 4.2.

Another example – this time for an optical fiber – is shown in Fig. 4.3, which is meant to be as close
to [15] as possible. Here we simulated fiber 3 (depressed cladding) of Table 2.2 and PM was according
to Fig. 3.2, but we used the wavelengths from Table 4.2.

However, we had to make some coarse approximations. The linear coupling oscillation periods
are in the mm range and thus very expensive to simulate on the km scale. Nonlinear coupling to
non-phase-matched idlers has the same problem, the periods can even be in the µm range. Hence, we
only simulated the four waves listed in Table 4.2 and totally neglected linear coupling to be able to
simulate kilometers of fiber. We also ignored the small effect of TPA. The last approximation is that
core and cladding have the same susceptibility ↔𝝌[3]. Fortunately, this is not a severe approximation,
since both are made of silica with a small fraction of Germanium doping in the core.

If these results are compared to [15], it is clear that the impact of our approximations is too high.
While the idler power in [15] is 33 dB below the signal at the output after 4 km, our idler is much
stronger at only 16 dB below the signal and we have a strong periodic exchange of power between signal
and idler. We still include these results as a reminder that our CW frequency domain approach is not
really usable for simulating the long propagation distances in fiber-based experiments. There are other
much better suited approaches like the split-step Fourier method applied to the time-domain optical
nonlinear Schrödinger equation, which can be derived with many further steps and approximations
from Eq. (4.31), e.g. by the Manakov-PMD approach [76].

There is a small residual phase mismatch in Fig. 4.3, but that is not responsible for the cyclic
exchange of power between signal and idler. The cause for this effect is analyzed in Appendix A.3.





5
Four-Wave Mixing with Three and Four Modes

Usually, FWM experiments are performed with either all four waves in one mode, or with placing
two waves in one mode and the remaining two in another mode (as explained in Section 3.1.2).
We call these one-mode four-wave mixing (1-FWM) and two-mode four-wave mixing (2-FWM),
respectively. In this chapter, we explore the feasibility of FWM when three or four modes are used
and call it three-mode four-wave mixing (3-FWM) and four-mode four-wave mixing (4-FWM),
respectively. The principle of multi-mode FWM was already shown in Fig. 2.23, in this chapter
we simply make use of the freedom to choose up to four different modes for P1, P2, S and I.
There is no way to cancel 𝛽0 terms with more than two modes and thus we ignore the limitation
in Section 3.1.1 to allow for a fair comparison between 1-FWM, 2-FWM, 3-FWM and 4-FWM.
Furthermore, we allow all lasers to be in the O-, E-, S-, C-, L and U-bands (1260–1675 nm or
179–238THz) without any limitation and don’t restrict FWM to useful configurations (e.g.,
wavelength conversion from C- to O-band, etc.) – in contrast to the results of our work [33]
presented in Section 3.2.

The extension of all-optical signal processing to more than two modes could potentially be
beneficial in future SDM networks, when signals from different fibers and modes need to be
all-optically multiplexed and processed. This kind of multiplexing can be realized by all-optical
WLC based on FWM. Such experiments (using 1-FWM or 2-FWM, we never saw 3-FWM
or 4-FWM in literature) are commonly performed with fibers or NR waveguides as nonlinear
interaction medium, see for example [14], [16]. Hence, we consider graded index depressed
cladding FMFs and NR silicon waveguides for the FWM analysis in this chapter. We compute
and compare FWM bandwidths 𝐵FWM and nonlinearity parameters 𝛾 of FWM configurations
with one to four modes.

This chapter is based on our work [37].
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Table 5.1.: Geometry values considered for optimizations.

Parameter Values Number of Values

Few-Mode Fibers
𝑟core 6–40 µm 18

𝑤trench {0, 0.25, 0.5, 1, 2, 4, 8} µm 7
𝑟clad 𝑟core + 𝑤trench + 10 µm -

Nano-Rib Waveguides
𝑤rib 1000–3000 nm 20
ℎslab 70–180 nm 12
ℎSOI 220 nm 1

5.1. Waveguide Geometry and Phase Matching

The geometry values we used for optimizations in this chapter are listed in Table 5.1. We
always considered all guided modes of the sets {HE11e, HE21e, HE31e, HE12e} for fibers and
{TE0, TE1, TE2, TE3} for NR waveguides.

We optimized the geometry of both FMFs and NR waveguides with the procedure described
in Section 3.2, repeating the optimization for 1-FWM, 2-FWM, 3-FWM and 4-FWM. Figure 5.1
shows the best achievable FWM bandwidths 𝐵FWM. On the left, Figs. 5.1a, 5.1c and 5.1e show
results for FMFs and on the right, Figs. 5.1b, 5.1d and 5.1f for NR waveguides. The first row
shows 1-FWM, the second row 2-FWM and the third row 3-FWM. The bandwidths for 4-FWM
are so low in both waveguides that we did not include them. Therefore, we ignore 4-FWM in the
rest of this chapter with the conclusion that it is unusable due to infeasible PM.

The optimizations for FMFs were performed with only 10m fiber length to be able to cope
with the large searched bandwidth, which would need much more simulation time otherwise (see
Appendix A.4.4). In reality, the lengths need to be in the range of several hundred meters up to
some kilometers to build up sufficient idler powers (see Fig. 4.3)25.

This means that FWM bandwidths of FMFs are much lower in reality than shown here (see,
e.g., [15] and note that length reduces bandwidth in Eq. (2.63)). Our results in this chapter for
FMFs are therefore not comparable to our results for NR waveguides. This is not a problem,
however, since our goal is to compare FWM with different numbers of modes, among the same
type of waveguides.

From Figs. 5.1a, 5.1c and 5.1e, one can conclude that FWM with one, two and three modes
gives roughly the same maximal FWM bandwidth in FMFs. However, note that fibers with huge
cores are needed to achieve high 𝐵FWM in 3-FWM. To understand the reason, compare the group
delays of fibers 2 (graded index) and 4 (large core) in Table 2.2, shown in Fig. 2.6c and Fig. 2.6g,
respectively. Due to the large core of the latter, all the considered mode groups have very similar
group delays and the process effectively becomes 1-FWM for any number of used modes.

25 Even though the idler power in that section was way off from reality, the approximations did not affect the
effect of PM. The fact that the idler power needs a long distance in fibers is still valid and is caused by the
orders of magnitude lower nonlinearity and larger core size (compared to NR waveguides).
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(b) 1-FWM in NR waveguides.
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(d) 2-FWM in NR waveguides.
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(f) 3-FWM in NR waveguides.

Figure 5.1.: Highest achievable FWM bandwidths for FMFs and NR waveguides with different geometries.
All normalized to multiples of the C-band’s frequency range. Waveguides in white areas don’t support
enough guided modes.

The two best waveguides in Fig. 5.1a use the first kind of PM from Section 3.1.3 (a broad zero
dispersion region of one mode), allowing for the high FWM bandwidths.

For NR waveguides, comparing Figs. 5.1b, 5.1d and 5.1f reveals that increasing the number
of utilized modes in the FWM process decreases FWM bandwidths. Here, larger cores also
lead to approaching group delay curves (similar to fibers with small and large cores), but the
difference stays much larger and the process does not effectively become 1-FWM for the geometries
simulated here. The difference in group delay curve shapes and magnitudes in Figs. 2.6 and 2.11
also indicates that NR waveguides behave differently.
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𝛾 >= 1 ⋅ 10−4/(W m).
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(b) 3-FWM in NR waveguides under the constraint
𝛾 >= 30/(W m).

Figure 5.2.: FWM bandwidths for FMFs and NR waveguides with enforced high nonlinearity coefficients.
Bandwidths are normalized to multiples of the C-band’s frequency range. Waveguides in white areas don’t
support enough guided modes. The figures for 1-FWM in FMFs, 1-FWM in NR waveguides, and 2-FWM
in NR waveguides are exactly the same as Figs. 5.1a, 5.1c and 5.1d, respectively, and are not repeated here.
The bandwidths for 3-FWM in FMFs are always zero (𝛾 too small) and hence we don’t include a figure.

By comparing the plots in Fig. 5.1, it is clear that FWM in NR waveguides is more sensitive to
geometry variations than in FMFs, especially for 2-FWM and 3-FWM. The ultra high bandwidths
(more than 10 times the C-band) in Fig. 5.1b are also based on the first kind of phase matching
from Section 3.1.3, see e.g. the TE3 mode in Fig. 2.11f.

5.2. Considering Modal Overlap

From the results in Section 5.1, one could conclude that 3-FWM gives almost equal results as
1-FWM or 2-FWM in the considered parameter ranges. However, the power of a generated
FWM idler (Eq. (2.65)) also depends on the nonlinearity coefficient (Eq. (2.66)). In the following,
we present FWM bandwidths again (in Fig. 5.2) and additionally nonlinearity coefficients
(in Fig. 5.3), but this time forcing the optimizer to only accept FWM configurations where
nonlinearity coefficients have at least a predefined minimal value. For FMFs, this value is
𝛾 >= 1 ⋅ 10−4/(W m) and for NR waveguides 𝛾 >= 30/(W m). We selected these numbers, since
they represent roughly 10% of the highest achievable values in their respective waveguide types.

Even though we performed PM with the artificially short 𝐿wg = 10 m, one has to insert the
actual fiber length in Eq. (2.65) to compute the correct idler power.
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(b) 1-FWM in NR waveguides.
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(c) 2-FWM in FMFs.
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(d) 2-FWM in NR waveguides.
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(e) 3-FWM in NR waveguides.

Figure 5.3.: Approximate nonlinearity coefficients for the configurations in Fig. 5.2. Waveguides in
white areas don’t support enough guided modes. We don’t include a figure for 3-FWM in FMFs, since
the threshold 𝛾 >= 1 ⋅ 10−4/(Wm) is never fulfilled. The scaling multiplier in the FMF figures is to be
understood in a way that gamma values are one thousand times smaller than shown.
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Few-Mode Fibers Firstly, enforcing 𝛾 values above the chosen threshold does not change the
results for 1-FWM, meaning that all configurations in Fig. 5.1a have 𝛾 values above the threshold.
Secondly, comparing Fig. 5.2a with Fig. 5.1c shows that enforcing a minimal 𝛾 also does not
have a huge effect on 2-FWM. We see similar bandwidths, except for fibers with 𝑟core = 40 µm.
A bandwidth of zero in the figure means that our limit on 𝛾 could not be achieved by any FWM
configuration. The reason is that larger cores have larger effective areas, which leads to lower
nonlinearity (see Eq. (2.66)). Finally, there is no 3-FWM configuration in the considered FMFs,
where 𝛾 values are above our limit. Therefore, idler powers are very weak and we consider
3-FWM in FMFs as infeasible.

Figure 5.3a shows the resulting nonlinearity coefficients 𝛾 for the constrained optimization with
minimal 𝛾. It is clear that larger cores have lower nonlinearity and that almost all waveguides
have 𝛾 values at least 5 times higher than our limit. Figure 5.3a and Fig. 5.1a reveal that
waveguides with small cores have high 1-FWM bandwidth and high nonlinearity coefficients. For
2-FWM, Fig. 5.3c shows that 𝛾 values are lower (roughly around our limit) and the good PM
configurations for large cores in Fig. 5.1c have low nonlinearity. However, the configurations with
core sizes around 16 µm have good bandwidth, acceptable nonlinearity coefficients and 2-FWM
is feasible in those fibers.

Nano-Rib Waveguides Enforcing 𝛾 values above the chosen threshold does not change the
bandwidths in 1-FWM and 2-FWM. Comparing Fig. 5.2b with Fig. 5.1f shows that 3-FWM
is severely affected by enforcing high 𝛾 values. But, in contrast to FMFs, NR waveguides do
support 3-FWM. However, the bandwidth is reduced by orders of magnitude to roughly 250GHz,
which still can be enough for processing a few optical channels.

Figures 5.3b and 5.3d show that almost all NR geometries support FWM configurations with
high 𝛾 values. For 1-FWM, all configurations have nonlinearity coefficients above 100/(Wm).
For 2-FWM, the coefficients are close to 100/(Wm), except for some scattered geometries where
PM fails. To understand the reason for this failure, we have to inspect Fig. 2.11g. The group
delay curves do not have any vertical overlap, which means 2-FWM is impossible according to
Eq. (3.7).

Finally, Fig. 5.3e, shows that NR 3-FWM 𝛾 values are not very sensitive to geometry variations
and the coefficients are around 40/(Wm).

5.3. Power Evolution

In this short section, we show some interesting properties of the power evolution – computed
with the same procedure as in Section 4.4 – for an exemplary waveguide with 𝑤Rib = 3000 nm
and ℎSlab = 140 nm. Figure 5.4 shows idler power evolution under different assumptions A to
F. We considered linear attenuation, linear coupling (among modes TE0 to TE3), nonlinear
coupling and we simulated signal, pumps, BS idler and OPC idler. The figure shows the BS
idlers in a 3-FWM configuration where the signal was launched into mode TE2 at wavelength
1502.0 nm with power 10 dBm, pump 1 into TE2 at 1316.0 nm with 20 dBm, pump 2 into TE3
at 1263.9 nm with 20 dBm and the idler evolved in TE1 at 1576.1 nm.
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Figure 5.4.: Simulated evolution of the BS idler in a NR waveguide with 𝑤rib = 3000 nm and ℎslab =
140 nm, with five different propagation settings.

Table 5.2.: Attenuation values in [dB/cm] for simulation B in Fig. 5.4. Each column shows attenuation
values at the frequency of the wave in the first row (IBS, S, etc.).

Mode \ Frequency IBS S P1 P2 IOPC

TE0 0.56 0.64 0.8 0.88 1.04
TE1 0.7 0.8 1 1.1 1.3
TE2 1.05 1.2 1.5 1.65 1.95
TE3 1.4 1.6 2 2.2 2.6

These wavelengths and modes are the optimum which lead to the bandwidth shown in Fig. 5.2
for 𝑤Rib = 3000 nm and ℎSlab = 140 nm.

In scenario A, we assumed a flat attenuation of 1 dB/cm, no linear coupling and perfect PM.
In B, we changed to mode- and frequency dependent loss with values listed in Table 5.2. In C, we
added linear coupling to scenario A. We selected linear coupling values to achieve pump coupling
similar to our measurements in [35]. In D, we moved the signal frequency from its optimum
to the border of the PM region, which created a phase mismatch of Δ𝛽 = 140/m (keeping the
rest as in A). The border was defined in Definition 2 such that the idler should drop by 3 dB
at the waveguide’s end (2 cm). As one can see in the figure, the difference between A and D is
indeed close to 3 dBm at 2 cm. Scenario E combines variable attenuation, linear coupling and
phase mismatch and one can see that its behavior is different from A to D. The interplay of
variable attenuation, linear coupling and phase mismatch can lead to quite different nonlinear
behavior (see e.g. [69] or [64, Ch. 3]). Finally, scenario F is like D, but the two photon absorption
coefficient was set to 𝛽TPA = 0 – the effect is very small.

A waveguide length of 2 cm is not the optimum for this waveguide in terms of generated idler
power. However, our goal was to optimize and compare FWM bandwidths among different
waveguide geometries and FWM types. Hence, we fixed the waveguide lengths to allow for a fair
comparison.





6
Experimental Evaluation

In this chapter, we compare our simulation against one of the first and one of the second generation
of manufactured waveguides. Measurements of the first generation waveguide were published in
[77] and of the second generation in [34], [35]. It should be noted that all measurements were
performed by our partners at TUB and HHI. Simulation and geometry parameters and values
are listed in Table 6.1.

Table 6.1.: Parameters of the first and second generation waveguides and their operation modes. In
the Operation row, e.g. C/L stands for conversion from C- to L-band, etc. Linear attenuations 𝛼 are
measured CW values and exclude GC and MUX losses.

Experiment 1 2

Chip gen. 1 2
Operation WLC C/L WLC C/O
𝑤rib[nm] 1190 1672
ℎslab[nm] 100 100
𝐿wg[mm] 11.7 11.7

𝛼[dB/cm] TE1: 2.5
TE2: 7.0

TE0: 0.9
TE1: 1.8

𝜆P1
[nm] 1591.50 1300.00

𝜆P+
2
[nm] 1541.00 1540.00

𝜆S+ [nm] 1544.85 1548.00
𝜆I+ [nm] 1595.60 1311.75

Mode P1 TE2 TE0
Mode P2 TE1 TE1
Mode S TE1 TE1
Mode I TE2 TE0

𝒫P1
[dBm] 26.0 19.33

𝒫P2
[dBm] 27.0 23.95

𝒫S[dBm] 12.5 11.28
Measured 𝛼GC,out[dB] 3.2 4.8
Measured CEIO[dB] 48.5 44.0
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Figure 6.1.: Back to back measurements of a second generation waveguide’s transmission with only
negligible waveguide length. Measurements include grating coupler and mode multiplexer losses at both
input and output.

6.1. Linear Power Transmission and Group Delay

All our waveguides need grating couplers (GCs) for coupling light in and out of the waveguide, as
well as mode multiplexers (MUXs) to excite different waveguide modes by the input lasers and
to separate the modes at the output. Both components also contribute to frequency and mode
dependent loss, in addition to the attenuation shown in Table 6.1. The combined loss of input
and output GCs and mode MUXs is shown in Fig. 6.1. The figure shows power transmission
measurements for both modes of a second generation waveguide with negligible length 𝐿wg. Total
attenuation is in the range 10–15 dB and depends on the offset of laser wavelengths w.r.t the
coupler optimum.

We noticed in [77] that SOI waveguides can have severe linear mode coupling. This can also
clearly be seen in Fig. 6.2, which shows four measurements of power transmission and linear
coupling in the second generation waveguide. In the presented data, coupling loss from Fig. 6.1
and linear attenuation of the actual wave guiding part (𝛼 in Table 6.1) are subtracted. The
waveguide has wavelength sensitive linear crosstalk, up to more than 10 dB from TE1 to TE0 in
some narrow regions in the C-band. Hence, for the intended C-to-O-band operation, we expect
narrow “dips” in CEIO of up to 10 dB due to linear mode coupling.
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Figure 6.2.: CW power transmission and linear mode coupling of a second generation waveguide.
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Figure 6.3.: Normalized relative group delays of the two waveguides in this chapter, including CW
measurements of each mode. The measurements of the second generation waveguide were shifted down by
170 ns/km for the plot.

Figure 6.3 shows the group delays of the waveguides and modes in Table 6.1, together with C-
or O-band CW measurements of each mode. The TE2 mode of the first generation waveguide
is very weakly guided, i.e. light is poorly confined and a significant fraction of the mode’s
power propagates close to the rib walls and outside of the rib. This leads to interesting PM
properties, but also increases attenuation and linear crosstalk due to the interaction with the
rough waveguide walls. In the second generation waveguide, we use modes TE0 and TE1, which
are more confined and experience less attenuation and mode coupling.

Simulation and measurement in Fig. 6.3 match well, except for a constant offset of 170 ns/km
in the second generation waveguide which we corrected in the figure. A constant group delay
offset – as long as it is identical for both modes – does not affect PM.

Nevertheless, we tested two hypotheses about the origin of this offset. First, we wanted to
know whether slight variations in waveguide dimensions due to manufacturing tolerances could
be the cause. We simulated many waveguide geometries around the nominal values in Table 6.1
and compared them with the measurements. For the first generation, we tested rib widths in
the range 1186–1194 nm, slab heights in 95–105 nm and SOI heights in 215–225 nm. For the
second generation waveguide, we tested rib widths in the range 1655–1687 nm and slab heights
in 92–108 nm with smaller steps in between.
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Figure 6.4.: Group delays of the first generation waveguides for nominal and best-fitting geometry values.

We computed the group delays for each geometry and stored the mean square error (MSE)

MSE = ∑
(𝑚)

1
𝑁 (𝑚)

𝑁(𝑚)

∑
𝑛=1

(𝜏 (𝑚)
g,sim[𝑛] − 𝜏 (𝑚)

g,meas[𝑛])
2

(6.1)

between measured group delays (𝜏g,meas) and simulated group delays of the current geometry
(𝜏g,sim). Here, 𝑛 is the frequency sample index and 𝑁 (𝑚) the total number of measured frequency
points of mode (𝑚). Figures 6.4 and 6.5 show simulated group delays for nominal and best fitting
(lowest MSE) geometry values, as well as the measurements they were compared to. As it can be
seen in the figures, these small geometry fluctuations are not the reason for the vertical offset.
While the TE2 mode in the best fitting geometry of the first generation is slightly closer to the
measured values, the fluctuations were by far not enough to achieve the 170 nm/km shift in the
second generation.

The second hypothesis was that a tilt of the rib walls (𝛼tilt,l and 𝛼tilt,r as shown in Fig. 2.8b)
could be the case. Figure 6.6 shows the MSE for tilts of up to 𝛼tilt,l = ±15° and 𝛼tilt,r = ±15°.
The conclusion is that tilting the walls inwards (replacing core material with silica, upper
left direction in the figure) increases group delays and moves the curves in direction of the
measurement. However, the total effect on the group delay curves is very small (similar to
Fig. 6.5) and thus this is also not the reason for the offset.

We conclude that the vertical shift is most likely a systematic measurement error.
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Figure 6.5.: Group delays of the second generation waveguides for nominal and best-fitting geometry
values.

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Tilt of Left Rib Wall 𝛼tilt,l [°]

T
ilt

of
R

ig
ht

R
ib

W
al

l𝛼
ti

lt
,r

[°]

4.6

4.8

5

5.2

5.4

5.6

5.8

MSE × 103
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shown.
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6.2. Normalized Idler Power

Figures 6.8a and 6.9a show normalized idler power estimates (see Eqs. (2.63) and (2.65))

𝒫I ∝∼ |𝜂FWM(Δ𝛽)/ max |𝜂FWM||2 (6.2)

of both experiments with the manufactured geometries in Table 6.1. The wavelengths used in
the CW experiments are marked as S+, I+ and P+

2 .
Figures 6.8b and 6.9b are slices along P+

2 in Figs. 6.8a and 6.9a, respectively. The slices
also include measured CW idler powers. Several effects need to be explained which lead to
discrepancies between simulation and measurement. Firstly, the tolerance of the etching process
can lead to deviations of up to several nanometers of 𝑤rib and ℎslab, as explained above. In
contrast to the group delay, thse deviations can have a more prominent effect on PM. For the
simulation of experiment 1, we needed to assume 𝑤rib = 1201 nm to match the measured data
and for experiment 2 𝑤rib = 1662 nm and ℎslab = 95 nm (instead of the nominal values shown
in Table 6.1). Secondly, the dips in linear coupling also lead to drops in the idler power (see
[77] for the first generation and Fig. 6.2 for the second generation of waveguides). For example,
PM is optimal in theory when signal and pump wavelengths coincide. However, the measured
idler power in Fig. 6.8b drops close to P+

2 due to severe mode coupling in that wavelength
region. Finally, keep in mind that idler powers estimated from FWM efficiency are not exact
(see Section 2.4.7). Nevertheless, the FWM efficiency 𝜂FWM is a very good tool for estimating
best-case FWM bandwidth 𝐵FWM.

Figure 6.7 shows measured normalized FWM efficiency for varying values of signal and pump,
in analogy to Fig. 6.9a. Comparing the two figures, one can see that the bandwidth is smaller in
Fig. 6.7 and we attribute the difference to the limiting effect of the GCs and to linear coupling.
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Figure 6.7.: Measured FWM efficiency of the second generation waveguide for varying signal and pump 2
wavelengths. Pump 1 is fixed at 1300 nm and each row is normalized to its peak efficiency.
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Figure 6.8.: Simulated and measured normalized idler power in experiment 1 from Table 6.1.
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Figure 6.9.: Simulated and measured normalized idler power in experiment 2 from Table 6.1.
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Figure 6.10.: Simulated idler power evolution along the waveguides in both experiments in Table 6.1
(Experiments 6.1 and 6.2) and in the three experiments in Table 7.1 from Chapter 7 (Experiments 7.1,
7.2 and 7.3). The vertical bars mark waveguide lengths 𝐿wg.

6.3. Absolute Conversion Efficiency

To compare the absolute measured idler power in terms of CEIO (see Definition 1) between
simulation and experimental results, we performed simulations with our propagation framework
introduced in Chapter 4 for both experiments in Table 6.1. We did the same for the three
experiments in Table 7.1 from Chapter 7 and already include the results here. For each simulation,
we considered 12 waves: one in each of the modes TE0, TE1 and TE2, at the frequencies of
pump 1, pump 2, signal and idler. We used 𝑛2 = 10 ⋅ 10−18 m2/W for the nonlinear refractive
index of silicon and 𝛽TPA = 0.5 ⋅ 10−11 m/W for the two photon absorption coefficient. The
simulated idler powers are presented in Fig. 6.10.

The shown powers are inside the waveguides. Therefore, to compute the CEIO, the output GC
loss needs to be subtracted: CEIO = 𝒫I −𝒫S −𝛼GC,out. When we insert the values from Table 6.1
and Fig. 6.10, the simulation predicts CEIO = −31.2 dBm − 12.5 dBm − 3.2 dB = −46.9 dB for
the first experiment, which is close to the measured value of −48.5 dB. For the second experiment,
we get CEIO = −29.3 dBm − 11.28 dBm − 4.8 dB = −45.38 dB, also close to the measured value
of −44.0 dB.
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(b) C- to O-band WLC.
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(c) Nonlinearities [1/(W m)] for Fig. 6.11a.
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(d) Nonlinearities [1/(W m)] for Fig. 6.11b.

Figure 6.11.: Highest achievable FWM bandwidths and nonlinearity parameters for the two experiments
in Table 6.1, in waveguides with different geometries. Two-mode operation with two lasers per mode is
enforced. All bandwidths are normalized and clipped to the C-band’s width.

6.4. Geometry Optimization

We developed our optimization framework after manufacturing the first three generations of
waveguides. Nevertheless, we performed a geometry optimization with our method from Sec-
tion 3.2 for both experiments in Table 6.1, under the constraint that nonlinearity coefficients are
at least 𝛾 >= 50/(W m) (roughly one third of the highest achievable value). The resulting FWM
bandwidths and nonlinearity coefficients can be seen in Fig. 6.11. These figures show which
geometries would have been optimal and what we can expect from our already manufactured
waveguides.

Since we consider a conversion of the C-band into another band, we normalized the FWM
bandwidth to the full width of the C-band and all higher bandwidths are clipped to 1. The
figures show the highest achievable 𝐵FWM for each of the considered waveguides. We enforced
two-mode operation and considered modes TE0, TE1, TE2 and TE3.

The optimizations in Fig. 6.11a show the results for WLC from C- to L-band. According to
the simulation, the manufactured first generation waveguide (𝑤rib ≈ 1190 nm, ℎslab ≈ 100 nm)
would allow for about 60% of the C-band. However, conversion is unfortunately restricted by the
GC transmission bands, which we had to design before having the optimization framework ready.

The optimizations in Fig. 6.11b show the results for WLC from C- to O-band. It can be seen
that our manufactured waveguide (𝑤rib ≈ 1672 nm, ℎslab ≈ 100 nm) is capable of converting more
than the C-band. Here we luckily designed the GC transmission bands suitingly and get the
broadband conversion shown in Fig. 6.9b above.



7
Broadband FWM in the TE2 Mode

The first kind of phase matching in Section 3.1.3 has the benefit of an enormous FWM bandwidth
for both, BS and OPC. In this chapter, we present a geometry optimization with the goal to
have one single waveguide which can be operated in different modes by simply changing pump
wavelengths. The three modes are OPC from C- to L-band, OPC from C- to C-band26 and WLC
from C- to S-band. We have already four generations of manufactured waveguides (see Chapter 6
for experiments with the first two). The results of this chapter are in fabrication at the time of
writing and will be the fifth generation.

We optimized NR geometry for 1-FWM in the TE2 mode, again under the constraint that
nonlinearity coefficients are enforced to be at least 𝛾 >= 50/(Wm) (roughly one third of the
highest achievable value). The results can be seen in Fig. 7.1. The figures show the maximal
achievable 𝐵FWM for each of the considered waveguides, under the additional constraints of the
respective scenario (C- to L- WLC, etc.). Since we consider a conversion from the C-band into
another band, we normalized 𝐵FWM to the full width of the C-band and all higher bandwidths
are clipped to 1. Figure 7.1a shows the results for OPC from C- to L-band, Fig. 7.1b OPC from
C- to C-band and Fig. 7.1c BS from C- to S-band. From comparing the three figures, we decided
on a geometry in the middle of all three regions with high 𝐵FWM: 𝑤rib = 1700 nm, ℎslab = 72 nm.
The regions are broad enough to allow for a manufacturing tolerance margin. Figure 7.1d shows
the nonlinearity coefficients of the waveguide, which are the same for all experiments since all of
them use the TE2 mode and the frequency dependence on the overlap integrals (and hence on
the nonlinearity parameters) is barely noticeable. Fortunately, the selected geometry also has
relatively high nonlinearity coefficients of roughly 180/(Wm).

The group delay of the TE2 mode of this waveguide with its wide low-dispersion region is
shown in Figure 7.2. Optimal PM for the three operating modes is achieved with the laser
wavelengths listed in Table 7.1.

With the optimal values for 𝜆P1
from Table 7.1, the versatility of this waveguide is evident from

Fig. 7.3. The figures show normalized idler power estimates (see Eq. (6.2)). The wavelengths
of signal and pump 2 can be tuned in a very wide range, without affecting the idler power.
S+, I+ and P+

2 are the values used in the propagation simulation below. The waveguide is in
26 Intra-band optical phase conjugation works by placing the pumps symmetrically below and above of the band.

This way, signals from the lower part of the band are conjugated and mirrored at the band’s center to the
upper part of the band.
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(a) 𝐵FWM, C- to L-band OPC.
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(b) 𝐵FWM, C- to C-band OPC.
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(c) 𝐵FWM, C- to S-band WLC.
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(d) Nonlinearity parameters 𝛾 [1/(W m)].

Figure 7.1.: Highest achievable FWM bandwidths and corresponding nonlinearity parameters for the
three operation modes from Table 7.1, in waveguides with different geometries. All lasers are enforced to
propagate in the TE2 mode and waveguides in white areas don’t support this mode. All bandwidths are
normalized and clipped to the C-band’s width.
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Figure 7.2.: Normalized relative group delay of the TE2 mode in the fifth generation waveguide.



Chapter 7. Broadband FWM in the TE2 Mode 87

Table 7.1.: Parameters of the fifth generation waveguide and its three planned operation modes. In the
Operation row, e.g. C/L stands for conversion from C- to L-band, etc. Extrapolating from measurements
of similar waveguides, we expect the shown attenuation values in this waveguide.

Experiment 1 2 3

Chip gen. 5
Operation OPC C/L OPC C/C WLC C/S
𝑤rib[nm] 1700
ℎslab[nm] 72
𝐿wg[mm] 30
𝛼[dB/cm] TE0: 1.4, TE1: 2.3, TE2: 2.5
𝜆P1

[nm] 1606.65 1571.20 1567.56
𝜆P+

2
[nm] 1527.99 1524.13 1606.53

𝜆S+ [nm] 1547.50 1543.81 1547.50
𝜆I+ [nm] 1585.63 1550.82 1511.31

𝒫P1
[dBm] 25

𝒫P2
[dBm] 25

𝒫S[dBm] 12
Estimated 𝛼GC,out[dB] 5

principle capable of much higher bandwidths than the C-band, but operation is limited by the
GC bandwidths (see Chapter 6). We selected the three operation modes in Table 7.1 in a way
that they are achievable with the GCs we use on the chip.

We simulated 12 waves with our propagation framework introduced in Chapter 4: modes TE0,
TE1 and TE2 at the frequencies of pump 1, pump 2, signal and idler in Table 7.1 – once for each
operation mode. The results were already shown in Fig. 6.10. Since we have again idler powers
inside the waveguide, we need to subtract the GC losses. We expect CEIO values of roughly
−27 dBm − 12 dBm − 5 dB = −44 dB for experiments 1 and 3 and −25 dBm − 12 dBm − 5 dB =
−42 dB for experiment 2. The peak power difference comes from GC transmission characteristics
which cause 2 dB extra loss for one pump in experiments 1 and 3 each.

In summary, we expect to have found a very versatile waveguide for different modes of operation,
with simply adjusting pump wavelengths.
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Figure 7.3.: Estimates of normalized idler power in the three operation modes from Table 7.1.



8
Conclusions

We gave a brief introduction into the fascinating field of nonlinear optical processing. The
nonlinear nature of electron and molecular response to propagating light becomes evident
whenever the light is strong enough and/or the interaction length is high enough. While this can
be a disturbing effect in long-haul fiber links, we use this effect for all-optical signal processing
to achieve wavelength conversion and optical phase conjugation.

We introduced models of frequency dependent refractive index, material nonlinearity and
linear mode coupling.

We performed optimizations and simulations in optical fibers and NR waveguides to maximize
FWM efficiency and to predict the resulting CEIO.

In Chapter 3, we presented our numerical approaches for phase matching and waveguide
geometry optimization.

PM is the process of maximizing FWM conversion efficiency in a given waveguide. Laser
wavelengths and the selection of modes are optimized to fulfill energy conservation and match mo-
mentum conservation as close as possible. We also computed overlap integrals of the propagating
mode fields to be able to exclude PM configurations which result in very low idler power.

For optimizing waveguide geometry, we computed FWM bandwidths and approximate idler
powers for several waveguide geometries and compared them. We have shown that good PM is
achievable for both, wavelength conversion and optical phase conjugation for converting between
the C- and other optical bands.

By adding dips, it is possible to alter the dispersion behavior of a waveguide – which is
beneficial for certain kinds of PM.
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In Chapter 4, we presented our CW propagation simulation for computing accurate idler
power estimates in NR waveguides. It considers linear attenuation, linear coupling and nonlinear
coupling.

We base our model for linear coupling on the roughness of the waveguide walls which emerges
from etching the chip while it is manufactured.

We model material nonlinearity by the susceptibility tensor ↔𝝌[3], where we assume that its
values are constant for all considered wavelengths.

In Chapter 5, we showed that 1-FWM and 2-FWM perform better than 3-FWM in both,
FMFs and NR waveguides. FWM bandwidths as well as nonlinearity coefficients are both larger.
However, some NR waveguides do work with acceptable efficiency in narrowband operation.
Depending on the intended use case, it might be acceptable to sacrifice some idler power and
broadband operation to gain the flexibility to place signal, pump and idler in three different
modes. While this holds for 3-FWM in NR waveguides, 4-FWM does not work in neither FMFs,
nor in NR waveguides.

In Chapter 6, we compared our PM and CW propagation simulations against lab measure-
ments of two waveguides. We found that FWM efficiency is a good approximation for maximal
achievable FWM bandwidth. The absolute idler powers computed with our CW simulation
match the measured values very well, even though our linear coupling model is quite simple.

In Chapter 7, we discovered that the TE2 mode of certain NR geometries supports a very
wide region of low dispersion. We showed that it is possible to perform WLC from C- to S-band,
OPC from C- to L-band and OPC from C- to C-band, with one single waveguide. The operation
modes can be switched by merely tuning the pumps to different wavelengths. We will test
the flexible operation modes in the next generation of waveguides which are in the process of
manufacturing.

In summary, we presented a simulation framework which can be used to find waveguides suited
for different all-optical processing tasks and which can predict the resulting idler powers to a
sufficiently high accuracy.

We are especially looking forward to test the performance and versatility of the TE2-based,
next generation waveguides from Chapter 7.
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Appendices

A.1. Conventions And Transformations Used Throughout the Thesis

In this appendix, we collect several transformations and conventions used throughout the thesis.

A.1.1. Fourier Transform

We define the Fourier transform as

𝑥(𝑓) = ℱ{𝑥(𝑡)} =
∞

∫
−∞

𝑥(𝑡)e−𝑗2𝜋𝑓𝑡d𝑡 (A.1)

𝑥(𝑡) = ℱ−1{𝑥(𝑓)} =
∞

∫
−∞

𝑥(𝑓)e𝑗2𝜋𝑓𝑡d𝑓 . (A.2)

If a quantity is in time or frequency domain is either clear from context, or we explicitly write
the time or frequency dependence, as above. We don’t use the convention that lowercase letters
denote time domain and uppercase letters frequency domain quantities. However, sometimes we
do both, e.g. 𝑥(𝑡) c s𝑋(𝑓).

In the rest of this section, we repeat some Fourier theorems we use in the thesis.

Time Shift An offset 𝜏 in time domain is equivalent to multiplication with a complex oscillation
in frequency domain

𝑥(𝑡 − 𝜏) c s𝑋(𝑓)e−𝑗2𝜋𝜏𝑓. (A.3)

Derivatives A derivative in time domain is equivalent to a multiplication with 𝑗2𝜋𝑓 = 𝑗𝜔 in
frequency domain

d𝑥(𝑡)
d𝑡

c s𝑗2𝜋𝑓𝑋(𝑓) = 𝑗𝜔𝑋(𝑓). (A.4)

Convolution Convolution in time domain is equivalent to multiplication in frequency domain

(𝑥 ⊛ 𝑦)(𝑡) c s𝑋(𝑓)𝑌 (𝑓). (A.5)
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(c) Complex baseband signal.

Figure A.1.: Spectra of different representations of the same signal.

A.1.2. Passband, Analytic, and Baseband Signal Conventions

In communications engineering, it is common to encounter modulated signals (e.g. a modulated
laser or radio wave), which consist of the multiplication of a fast sinusoidal carrier wave with a
typically orders of magnitude slower payload signal. The spectrum of such a signal is depicted in
Fig. A.1a. We denote such (rapidly varying) passband signals with a tilde, e.g. 𝑬(𝑡).

Since such a signal is always real-valued, its spectrum obeys the property 𝑬(−𝑓) = 𝑬(𝑓)
∗
.

This means that the negative half of the spectrum is redundant and a passband signal can be
represented as an analytic signal without any loss of information. Figure A.1b shows the analytic
version of a passband signal (in Fourier domain). We denote analytic signals without a tilde as
in 𝑬(𝑡)e𝑗𝜔𝑡, where 𝜔 is the carrier frequency. To convert a passband signal to its analytic form,
the Hilbert transform can be used. It simply removes negative frequencies.

Finally, 𝑬(𝑡) is the baseband signal which is the slowly varying part of 𝑬(𝑡) and is shown in
Fig. A.1c.

An analytic signal can simply be converted back to the passband by removing its imaginary
part

𝑬(𝑡) = ℛ𝑒{𝑬(𝑡)e𝑗𝜔𝑡} .

A complex phasor is a special case of an analytic signal, where the baseband signal is time
invariant. Its spectrum is a Dirac delta instead of the sketched triangles in Fig. A.1.

One needs to be careful when manipulating terms with analytic or baseband signals. Only
linear operations like addition, subtraction, derivatives and integrals are allowed. For example,
these computations give the same result:

𝑬1(𝑡) + 𝑬2(𝑡)

= (1
2

𝑬1(𝑡)e𝑗𝜔1𝑡 + 𝑐.𝑐.) + (1
2

𝑬2(𝑡)e𝑗𝜔2𝑡 + 𝑐.𝑐.)

= ℛ𝑒{𝑬1(𝑡)e𝑗𝜔1𝑡 + 𝑬2(𝑡)e𝑗𝜔2𝑡} ,

meaning that adding analytic signals and transforming the result to passband gives the correct
result. However, whenever nonlinear operations are involved, the passband signals must be used:

𝑬1(𝑡) ⋅ 𝑬2(𝑡)

= (1
2

𝑬1(𝑡)e𝑗𝜔1𝑡 + 𝑐.𝑐.) ⋅ (1
2

𝑬2(𝑡)e𝑗𝜔2𝑡 + 𝑐.𝑐.)

≠ ℛ𝑒{𝑬1(𝑡)e𝑗𝜔1𝑡 ⋅ 𝑬2(𝑡)e𝑗𝜔2𝑡} .
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A.1.3. Plane Wave Convention

We model the propagation of a plane wave in positive 𝑧 direction as

e𝑗(𝜔𝑡−𝛽𝑧). (A.6)

A.1.4. Converting Attenuation

In our propagation model Eq. (4.31), we need attenuation coefficients 𝛼(𝑚)
𝑎 in Np/m. It is easy

to convert values measured in dB/km to Np/m by

𝛼Np/m =
𝛼dB/km

103
1

10 log10 e
≈

𝛼dB/km

4343
. (A.7)
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A.2. The Maximum of FWM Efficiency

In this appendix, we show that FWM efficiency is maximal for Δ𝛽 = 0, irrespective of attenuation
𝛼 and waveguide length 𝐿wg. For that, we show that the maximum of

|𝜂FWM(Δ𝛽)|2 = ∣
1 − exp(−(𝛼 + 𝑗Δ𝛽)𝐿wg)

(𝛼 + 𝑗Δ𝛽)𝐿wg
∣
2

is achieved for Δ𝛽 = 0.
We start with defining some shortened variables

�̅� ≔𝛼𝐿wg (A.8)
̅𝛽 ≔Δ𝛽𝐿wg (A.9)

𝑤 ≔�̅� + 𝑗 ̅𝛽, |𝑤|2 = �̅�2 + ̅𝛽2, (A.10)

to rewrite 𝜂FWM and separate real and imaginary parts as

𝜂FWM(𝑤( ̅𝛽(Δ𝛽))) = 1 − e−𝑤

𝑤
= 1 − e−�̅�e−𝑗�̅�

𝑤

=
1 − e−�̅� cos( ̅𝛽) + 𝑗e−�̅� sin( ̅𝛽)

𝑤
.

(A.11)

Now we can compute the squared magnitude as

F( ̅𝛽) ∶= ∣𝜂FWM( ̅𝛽)∣
2

=
1 − 2e−�̅� cos( ̅𝛽) + e−2�̅� cos2( ̅𝛽) + e−2�̅� sin2( ̅𝛽)

|𝑤|2

=
1 + e−2�̅� − 2e−�̅� cos( ̅𝛽)

�̅�2 + ̅𝛽2 .
(A.12)

To show that the point Δ𝛽 = 0 is the maximum, we need the derivative

dF( ̅𝛽)
d (Δ𝛽)

= dF( ̅𝛽)
d ̅𝛽

d ̅𝛽
d (Δ𝛽)

= dF( ̅𝛽)
d ̅𝛽

𝐿wg

=
|𝑤|2 2e−�̅� sin( ̅𝛽) − (1 + e−2�̅� − 2e−�̅� cos( ̅𝛽)) 2 ̅𝛽

|𝑤|4
𝐿wg.

(A.13)

The efficiency has an extremum for Δ𝛽 = 0, since

dF( ̅𝛽)
d ̅𝛽

∣
�̅�=0

=
|𝑤|2 2e−�̅� sin(0) − (1 + e−2�̅� − 2e−�̅� cos(0)) 2 ⋅ 0

�̅�4 = 0. (A.14)
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To determine the extremum type, we rewrite Eq. (A.13) and use some approximations

dF( ̅𝛽)
d ̅𝛽

= 2e−�̅�

|𝑤|4
(|𝑤|2 sin( ̅𝛽) − (e �̅� + e−�̅�) ̅𝛽 + 2 ̅𝛽 cos( ̅𝛽))

= 2e−�̅�

|𝑤|4
⎛⎜⎜⎜⎜
⎝

|𝑤|2 sin( ̅𝛽)⏟
≈�̅�

−2 ̅𝛽 cosh(�̅�) + 2 ̅𝛽 cos( ̅𝛽)⏟
≈1− �̅�2

2

⎞⎟⎟⎟⎟
⎠

(A.15)

≈ 2e−�̅�

|𝑤|4
( ̅𝛽3 + �̅�2 ̅𝛽 − 2 ̅𝛽 cosh(�̅�) + 2 ̅𝛽 − ̅𝛽3)

= ̅𝛽 2e−�̅�

|𝑤|4
(�̅�2 + 2 − 2 cosh(�̅�))

= ̅𝛽 2e−�̅�

|𝑤|4
(�̅�2 + 2 − 2 (1 + �̅�2

2!
+ �̅�4

4!
+ … ))

= ̅𝛽 2e−�̅�

(�̅�2 + ̅𝛽2)
4

⏟⏟⏟⏟⏟
>0

(− �̅�4

4!/2
− �̅�6

6!/2
+ … )

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
<0

. (A.16)

Equation (A.16) shows that the derivative is positive for ̅𝛽 < 0 and negative for ̅𝛽 > 0 and we
can conclude that we have a maximum.

We used the small angle approximation in Eq. (A.15) for both, sin and cos. Hence, the above
result is only valid in the close vicinity of Δ𝛽 = 0. For larger values we can see from Eq. (A.12)
that the ̅𝛽2 term in the denominator leads to continuous decrease of the function, making ̅𝛽 = 0
the global maximum.

Figure A.2 shows the FWM efficiency, its derivative and our approximative derivative, for
three different values of 𝛼. It can clearly be seen that the small angle approximation is only
valid for very small values of Δ𝛽. From the figure, it is also clear that the global maximum is in
the center.
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Figure A.2.: Typical form of the FWM efficiency 𝜂FWM, its derivative and approximate derivative for
different values of attenuation 𝛼 and fixed length 𝐿wg = 2 cm. The values are selected to resemble a
typical NR waveguide and 𝜂FWM is scaled to fit into the plot.
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Figure A.3.: Simulated power evolution of pumps, signal and idler in fiber 3 (depressed cladding) of
Table 2.2, similar to Fig. 4.3, but with very small phase mismatch.

A.3. Power Evolution With low Phase Mismatch

In this appendix, we analyze a simplified variant of the simulation shown in Fig. 4.3.
Before we start simplifying the problem, Fig. A.3 shows the same experiment, but with

signal wavelength 𝜔S = 1542.69 nm → 𝜔I = 1535.86 nm. At this signal wavelength, the phase
mismatch is very low with 2𝜋

|Δ𝛽| = 524.9 km, as compared to 2𝜋
|Δ𝛽| = 36.48 km in Fig. 4.3. We can

see that signal and idler periodically exchange power, which stops roughly after 150 km when
the propagating powers are so low that nonlinear interaction gets negligible and only linear
attenuation remains. Note that the oscillation period of 524.9 km due to phase mismatch is much
longer than the period we see in the figure. The goal of this appendix is to determine the cause
of the oscillations.

The simulation above involves linear attenuation and nonlinear coupling between all propagating
waves, modeled by Eq. (4.31). Even though it is small, we did not ignore the phase mismatch
Δ𝛽 in this simulation. It was considered via the e−𝑗Δ𝛽(𝑚�𝑜𝑝𝑞)

𝑎�𝑏𝑐𝑑 𝑧 term in the nonlinear coupling
equations.

Now we want to derive an analytic expression for the signal and idler evolution. For that, we
need to introduce the following approximations:

• The phase mismatch is negligible, i.e., PM is perfect. We set Δ𝛽 = 0 for all combinations.

• Attenuation is very low, we set 𝛼 = 0.

• There is no linear coupling, we set 𝕃 = 0.

• Pumps are not depleted in the process, i.e., ̂𝐸P1
and ̂𝐸P2

are constant.

With these approximations, Fig. A.4a shows the simulated evolution along the waveguide. One
can see that FWM is slightly more efficient than in Fig. A.3. Furthermore, the signal and idler
exchange powers in an almost sinusoidal way.



Appendix A. Appendices 98

22
23
24
25
26

P1 in HE11e P2 in TE01

0 5 10 15 20 25 30 35 40 45 50
−30
−20
−10

0
10

𝑧[km]

P[
dB

m
]

S in TE01 IBS in HE11e

(a) Same as in Fig. A.3, but without attenuation and without pump depletion.
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(b) Same as above in (a), but with only the nonlinear terms listed in Eqs. (A.19) and (A.20) (no SPM and no
XPM).

Figure A.4.: Simulated power evolution of pumps, signal and idler similar to Fig. A.3, but with
approximations.
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To derive an analytic expression of the idler evolution, recall that only the four signals in
Table 4.2 propagate along the waveguide, all other nonlinear interaction is suppressed in the
simulation. The evolution of the pumps is clear, they are constant in this approximation so their
amplitude does not change along the waveguide. If we incorporate our approximations (no linear
attenuation, no linear coupling and no phase mismatch) into Eq. (4.31), the idler evolution is
described by the remaining terms

dÎ
d𝑧

= −𝑗 ∑
𝑏,𝑐,𝑑
∈S𝑎

∑
(𝑜),(𝑝),(𝑞)

∈{1,2}

ℕ(𝑚�𝑜𝑝𝑞)
𝑎�𝑏𝑐𝑑

̂𝐸(𝑜)
𝑏 (𝑧) ̂𝐸(𝑝)

𝑐 (𝑧)( ̂𝐸(𝑞)
𝑑 (𝑧))

∗
. (A.17)

We introduced Î = ̂𝐸(𝑚)=(1)
𝑎=4 (𝑧), where the indices (𝑚) = (1) and 𝑎 = 4 are taken from Table 4.2.

Likewise we will use ̂S = ̂𝐸(2)
3 (𝑧), P̂1 = ̂𝐸(1)

1 (0) and P̂2 = ̂𝐸(2)
2 (0) below (note that Ŝ and ̂I are 𝑧

dependent, while P̂1 and P̂2 are constant). The set S𝑎 in the first sum considers all frequency
combinations which give rise to a wave at the idler’s frequency. The summation thus considers
certain combinations of {1, 2, 3, 4} (as defined in Table 4.2).

If we write out both sums, we get

dÎ
d𝑧

= − 𝑗ℕI
P1SP2

P̂1 Ŝ( ̂P2)
∗

− 𝑗ℕI
SP1P2

ŜP̂1(P̂2)
∗

− 𝑗ℕI
III Î Î(Î)

∗

− 𝑗ℕI
P2IP2

P̂2 Î( ̂P2)
∗

− 𝑗ℕI
IP2P2

ÎP̂2(P̂2)
∗

− 𝑗ℕI
P1IP1

P̂1 Î( ̂P1)
∗

− 𝑗ℕI
IP1P1

ÎP̂1(P̂1)
∗

− 𝑗ℕI
SISŜÎ( ̂S)

∗
− 𝑗ℕI

ISS
̂I ̂S( ̂S)

∗
, (A.18)

where we introduced shorter names for the nonlinear coupling coefficient, e.g. ℕI
P1SP2

determines
the coupling strength for the FWM process 𝜔I = 𝜔P1

+ 𝜔S − 𝜔P2
, etc. The two coefficients

ℕI
P1SP2

and ℕI
SP1P2

have the same value and we simply call them ℕI below. Similarly we define
ℕS ∶= ℕS

IP2P1
. The two terms in the first row of Eq. (A.18) are responsible for FWM, the term in

the second row for SPM of the idler and the remaining terms are XPM between the idler and the
three other propagating waves. The equations for the signal can be derived with identical steps.

There are too many coupled terms in Eq. (A.18) to be able to find an analytic solution.
Therefore, our next approximation is to ignore all SPM and XPM terms, both, for signal and
idler. Then we can model the severely simplified interaction with

dÎ
d𝑧

= −2𝑗ℕIŜP̂1(P̂2)
∗

(A.19)

d ̂S
d𝑧

= −2𝑗ℕS ÎP̂2(P̂1)
∗
. (A.20)

Figure A.4b shows the evolution similar to Fig. A.4a but with all SPM and XPM terms removed
from the simulation.
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One can see that when we ignore the SPM and XPM terms, the power oscillation period between
signal and idler becomes slightly longer and the signal and idler exchange more power.

Now we can take the derivative of Eq. (A.19) and insert Eq. (A.20) to get

d2 Î
d𝑧2 = −4ℕIℕS ∣P̂1 ∣

2
∣P̂2 ∣

2 ̂I = −𝜌2 Î, (A.21)

where we defined the constant
𝜌 = 2

√
ℕIℕS ∣P̂1 ∣ ∣P̂2 ∣ . (A.22)

This is a simple differential equation with the general solution

Î = 𝑐1 sin(𝜌𝑧) + 𝑐2 cos(𝜌𝑧) . (A.23)

The constants 𝑐1 and 𝑐2 can be computed from the initial conditions Î(0) = 𝐼0 = 0 (no idler at
the start of the fiber) and ̂S(0) = 𝑆0 (amplitude of the signal at the start of the fiber). We get

Î(0) = 𝑐1 sin(𝜌0) + 𝑐2 cos(𝜌0) != 𝐼0 = 0 ⇒ 𝑐2 = 0. (A.24)

By taking the derivative of Eq. (A.23) and setting it equal to Eq. (A.19), we can solve for

𝑆(𝑧) = −𝑐1𝜌
2𝑗ℕIP̂1(P̂2)

∗ cos(𝜌𝑧) . (A.25)

With 𝑆(0) != 𝑆0 we can also compute the constant

𝑐1 = −𝑗𝑆0

√√√

⎷

ℕI

ℕS

P̂1(P̂2)
∗

(P̂1)
∗
P̂2

. (A.26)

One can see that the oscillation period 2𝜋
|𝜌| depends on the overlap integrals hidden in ℕI and

ℕS, as well as on the pump amplitudes. We get 2𝜋
|𝜌| = 32.26 km if we insert the values, which is

exactly the period in Fig. A.4b and is not too far away from the more realistic Fig. A.4a with
SPM and XPM. Note that the plotted powers show absolute values and thus one period 2𝜋

|𝜌|
extends over two of apparent periods in the figure.

Since we set all Δ𝛽 values to zero, the oscillations in Figs. A.4a and A.4b are not caused by
a phase mismatch, but from the nonlinear “direct” interaction of signal and idler (as shown in
Eq. (A.18)).

In summary, we gained some insight on nonlinear interaction when linear attenuation and
phase mismatch are very low. However, the more approximations we incorporate, the more
the results deviate from the actual behavior in fiber. The most interesting insight gained by
this analytical approach is that the power exchange oscillations between signal and idler not
only happen due to residual phase mismatch, but also due to the “direct” nonlinear interaction
between the propagating waves when the phase mismatch is low.
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A.4. Collected Implementation Details and Issues

In this appendix, we present selected implementation details and some issues we encountered
and had to solve.

A.4.1. Representing Fields as 3D Vectors of Matrices

The working principle of the FDM is to discretize fields on a grid. Implementation-wise, this means
that all components of a three-dimensional field like 𝑬 = [𝐸𝑥 𝐸𝑦 𝐸𝑧]

T
have to be represented

as matrices. Hence, the matrix nature of field components needs to be considered when imple-
menting operations like 𝑬 ∗ •𝑯 or the tensor product ↔𝝌[3](𝜏𝑏, 𝜏𝑐, 𝜏𝑑) ...𝑬(𝑡 − 𝜏𝑏)𝑬(𝑡 − 𝜏𝑐)𝑬(𝑡 − 𝜏𝑑)
in Eq. (4.1). Another example is the matrix multiplication (𝜳 (𝑚+)

𝑎+ )
∗

• (Δ𝜺
̃r𝜳

(𝑜′)
𝑎+ ) in Eq. (4.30),

where Δ𝜺
̃r needs to be a 3 × 3 matrix of grid-sized matrices.

Yet another example is the computation of the nonlinear coupling coefficient in Eq. (4.36).
Each transversal field profile 𝜳 is a vector of three matrices as above and the result of the tensor
product is also such a vector. The scalar product of the vectors yields a matrix (of grid size) and
finally the two integrals turn the matrix into a scalar.

A.4.2. Linear Combination of LP Modes
Mode fields can be represented in different bases. The two most commonly used bases are the
physical modes consisting of

{HE11e, HE11o | HE21e, HE21o, TE01, TM01 | HE31e, HE31o, EH11e, EH11o | HE12e, HE12o}

and the linearly polarized modes

{LP01x, LP01y | LP11ax, LP11ay, LP11bx, LP11by | LP21ax, LP21ay, LP21bx, LP21by | LP02x, LP02y} ,

where | mark mode groups. Propagation constants in a mode group are very similar.
The two sets can be transformed into each other by linear combination of the modes in the

mode groups. For example, we get

LP11ax = +0.501 HE21e +0.000 HE21o −0.000 TE01 +0.500 TM01
LP11by = +0.501 HE21e −0.000 HE21o −0.000 TE01 −0.500 TM01
LP21ax = −0.499 HE31e +0.006 HE31o +0.512 EH11e −0.004 EH11o
LP21by = −0.511 HE31e +0.007 HE31o −0.502 EH11e +0.004 EH11o

from a simple minimization of the MSE between mode fields. Hence, an LP mode launched into
a waveguide will always excite more than one physical mode. Even though the superposition is
always between modes of one mode group where propagation constants are similar, they are not
exactly the same. The modes propagate with slightly different phase velocities which leads to a
beating behavior along the waveguide.

The physical modes of NR waveguides are already very close to linear polarization and hence
are directly excited by linear polarized input waves.
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Figure A.5.: Non-equidistant FDM grid resolution (distance between neighboring points) for computing
NR waveguide modes.

A.4.3. Optimal FDM Grid

It is possible to use non-equidistant grids with the FDM. The grid resolution can thus be increased
at places where we expect fast changes of the fields (i.e. at material boundaries). The drawback
is that the approximation error increases at the border of regions with different resolutions [53,
Chapter 4.1]. Hence, it is desirable to have only few density changes and/or no big differences.

For NR waveguides, we use the point distances shown in Fig. A.5. The horizontal resolution is
very high around the rib wall, medium in the core, changes to low resolution in the cladding with
two steps and to an even lower resolution right of the slab. The resolution in the left half of the
waveguide is the same, but mirrored. In the vertical direction, we have a high density around
the bottom and top of the slab, as well as at the top of the rib. The density is medium in the
core and low below the slab and above the rib. Figure A.6 shows the resulting grid around the
right upper corner of the rib.

It is clear that we do have some places with large difference in point distances. However, the
changes are in places with relatively low field magnitudes and there are not too many changes
in total, limiting the introduced error. The benefit of having a finer resolution at places with
rapidly changing fields outweighs the drawbacks.
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Figure A.6.: Non-equidistant FDM grid mesh for computing NR waveguide modes, zoom on the upper
right corner of the rib.

The reader might have noticed in Figs. A.5a and A.5b that point distances are much higher in
horizontal direction. We found that the vertical resolution has a higher impact on accuracy. To
estimate this effect, we computed modes of a NR waveguide and a FMF for different grid sizes.
In Fig. A.7a, we compare the resulting propagation constants against the propagation constant
computed with the largest number of grid points. It is evident that the vertical dimension is
much more sensitive to a variation of point distances. Based on this result, we always used 500
points in the horizontal dimension and 1000 points in the vertical dimension. Figure A.7b shows
the optimization for a FMF. It is not possible to define meaningful non-equidistant grids for the
circular geometry of fibers (in contrast to finite-element methods, where the mesh can freely be
chosen) and hence we use an equidistant one. We decided to use 600 points in both dimensions.

A.4.4. PM Optimization for Fibers

A caveat when we perform PM for fibers is that their FWM bandwidth is very low. For example,
the experiment in [15] has 𝐵FWM ≈ 2 nm (actually even less if the region around the pump is
excluded). When we try to optimize PM for the full range from O- to U-band, we would need way
too many pixels in our algorithm explained in Section 3.1 to achieve a high enough resolution.
Furthermore, the values for enforced separation between pumps and signal etc. in Section 3.1 are
for NR waveguides. That choice of values excludes all PM configurations in fibers since 𝐵FWM is
always zero with them.

However, we can still use our optimization when we artificially decrease the fiber length from
several kilometers to, e.g., 10m. This leads to much higher 𝐵FWM values and our algorithm
works well for the optimization. Of course, such a low interaction length would lead to very
low idler powers and nonfunctional FWM in reality. It also means that our simulated FWM
bandwidths are a lot higher than in reality. Hence, for those calculations the actual fiber length
has to be used. This approach works well when we want to compare PM in fibers and not between
fibers and NR waveguides.
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Figure A.7.: The effect of grid resolution on computed propagation constants.
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B.3. Mathematical Notation

|⋅| Absolute Value
∝∼ Approximately Proportional to

𝜕2
𝑧 (⋅) Short Form of Partial Derivative w.r.t. z

𝛁 • (𝑨) Divergence Operator
𝛁 (𝑎) Gradient Operator
𝛁×(𝑨) Curl Operator
Δ (⋅) = (𝜕2

𝑥 + 𝜕2
𝑦 + 𝜕2

𝑧 ) (⋅) Laplace Operator
(… ) + c.c. Complex Conjugate of Terms in the Ellipsis
(⋅) ∗ Complex Conjugate
(⋅)T Transpose
(⋅)H Hermitian (Complex Conjugate Transpose)

𝛿(𝑡) Dirac’s Delta Distribution
𝛿𝑖𝑘 Kronecker’s Delta Symbol

𝐹(𝑓) = ℱ{𝑓(𝑡)} Fourier Transform
𝑓(𝑡) = ℱ−1{𝐹(𝑓)} Inverse Fourier Transform
𝑓(𝑡) c s𝐹(𝑓) Fourier Pair

𝒪𝒫 {⋅} A Generic Operator

𝑨 • 𝑩 Inner Product
↔𝒙[2] .. 𝑩𝑪 Contraction of Third Rank Tensor With Two Vectors
↔𝒙[3] ... 𝑩𝑪𝑫 Contraction of Fourth Rank Tensor With Three Vectors
𝑨×𝑩 Cross Product
(𝑥 ⊛ 𝑦)(𝑡) Convolution of Two Functions
(⋅) ∗ (⋅) Multiplication (Used When Split Across Lines)

ℛ𝑒{⋅} Real Part
ℐ𝑚{⋅} Imaginary Part

𝑥 or 𝑋 Scalar
𝒙 or 𝑿 Vector
𝒙
̃

or 𝑿
̃

Matrix
𝟏
̃

Identity Matrix
↔𝒙[𝑛] or

↔
𝑿[𝑛] Tensor of Rank 𝑛
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B.4. Symbols

Symbol Description Unit
(⋅)(𝑚)

𝑎 Quantity At Frequency 𝑓𝑎 and in Mode 𝑚
𝐴(𝑚𝑜𝑝𝑞)

eff× Cross Effective Area Among Modes 𝑚,𝑜,𝑝,𝑞 m2

𝛼 Waveguide Attenuation dB/km

𝑘0 = 𝜔√𝜀0𝜇0 Wave Number in Vacuum 1/m
𝑘 = 𝑛𝑘0 = 𝜔√𝜀𝜇0 Wave Number in a Medium With Refr. Index 𝑛 1/m
𝛽 = 𝑛eff𝑘0 Propagation Constant 1/m
𝛽𝑖 i-th Term of the Taylor Series Expansion of 𝛽 si/m
Δ𝛽(𝑚�𝑜′)

𝑎 Linear Phase Mismatch 1/m
Δ𝛽(𝑚�𝑜𝑝𝑞)

𝑎�𝑏𝑐𝑑 Nonlinear Phase Mismatch 1/m
𝛽TPA Two Photon Absorption Coefficient m/W
𝐵FWM FWM Bandwidth Hz or nm

𝑐0 Speed of Light in Vacuum m/s
CEIO Input-Output Conversion Efficiency
↔𝝌[1], ↔𝝌[3],

↔
𝜲[1],

↔
𝜲[3] Time and Frequency Dependent Linear and Third

Order Susceptibility Tensors in Time and Fre-
quency Domain

1/s,
m2/V2/s3,

-, m2/V2/s2

𝐷 Chromatic Dispersion ps/(nmkm)

̂𝐸 , 𝜳 Amplitude and Transversal Profile of the 𝑬 Field V/m, –
𝜂FWM FWM Efficiency
𝑬, 𝑯, 𝑫, 𝑩 Electric and Magnetic Fields and Flux Densities V/m, A/m,

C/m2,
Wb/m2

𝜀0 Vacuum Permittivity F/m
𝜀r Relative Permittivity
𝜀′

r Waveguiding and Material Dispersion Induced
By ↔𝝌[1](𝑓)

Δ𝜺
̃r Linear Perturbations Part Induced By ↔𝝌[1](𝑓)
𝜀′′

r Source of Linear Attenuation in Maxwell Equa-
tions

Δ𝜀r Random Perturbations of the Permittivity in the
Linear Coupling Model

𝑓 Frequency Hz
𝜔 = 2𝜋𝑓 Angular Frequency 1/s

𝛾(𝑚𝑜𝑝𝑞) Nonlinearity Parameter Among Modes 𝑚,𝑜,𝑝,𝑞 1/(Wm)
𝛾grad Refractive Index Grading Exponent
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Symbol Description Unit

ℎ, ℏ (Reduced) Planck’s Constant m2kg/s

𝜆 Wavelength m
𝐿wg Propagation Length in the Waveguide m

𝕃(𝑚�𝑜′)
𝑎 Linear Mode Coupling Coefficient From Mode 𝑜′

to Mode 𝑚
1/m

ℕ(𝑚�𝑜𝑝𝑞)
𝑎�𝑏𝑐𝑑 Nonlinear Mode Coupling Coefficient From

Modes 𝑜, 𝑝, 𝑞 to Mode 𝑚
m/V2/s2

HE, EH, TE, TM, LP Mode Names
𝜇0 Vacuum Permeability H/m
𝜇r Relative Permeability

𝑛 Refractive Index
Δ𝑛 Refractive Index Difference Between Core and

Cladding
𝑛2 Nonlinear Refractive Index

𝑷 Material Polarization Vector C/m2

𝑷′ Linear and Nonlinear Perturbations C/m2

𝒫X Power of Wave X dBm or W
P1, P2, S, I Pump 1, Pump 2, Signal and Idler

M Set of All Considered Modes
S Set of All Considered Frequencies
S𝑎 Set of All Considered Frequencies Which Fulfill

𝑓𝑎 = 𝑓𝑏 + 𝑓𝑐 − 𝑓𝑑

𝑡 Time s
𝜏g Normalized Group Delay ns/km
𝜏g Normalized Relative Group Delay ns/km
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B.5. Abbreviations

CEIO Input-Output Conversion Efficiency

B2B Back to Back
BS Bragg Scattering

COD Associate Professorship of Coding and Cryptography
CW Continuous Wave

DFG Difference Frequency Generation
DMD Differential Mode Delay (also called Differential Group Delay)

FCA Free-Carrier Absorption
FDM Finite-Difference Method
FEM Finite-Element Method
FMF Few-Mode Fiber
FWM Four-Wave Mixing
1-FWM One-Mode Four-Wave Mixing
2-FWM Two-Mode Four-Wave Mixing
3-FWM Three-Mode Four-Wave Mixing
4-FWM Four-Mode Four-Wave Mixing
FPGA Field Programmable Gate Array
FWHM Full Width At Half Maximum

GC Grating Coupler

HHI Fraunhofer-Institut Heinrich-Hertz-Institut für Nachrichtentechnik

IHP Innovations for High Performance Microelectronics GmbH

LNT Chair of Communications Engineering
LP Linear Polarized
LÜT Associate Professorship of Line Transmission Technology

MSE Mean Square Error
MUX Multiplexer

NR Nano-Rib

OPC Optical Phase Conjugation
OR Optical Rectification

PM Phase Matching
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SDM Space-Division Multiplexing
SFG Sum Frequency Generation
SHG Second Harmonic Generation
SOI Silicon On Insulator
SPM Self-Phase Modulation

THG Third Harmonic Generation
TPA Two-Photon Absorption
TUB Technische Universität Berlin
TUM Technische Universität München

WLC Wavelength Conversion

XPM Cross-Phase Modulation
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