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Abstract: The content of polyunsaturated fatty acids (PUFA) in complex lipids essentially influences
their physicochemical properties and has been linked to health and disease. To investigate the
incorporation of dietary PUFA in the human plasma lipidome, we quantified glycerophospholipids
(GPL), sphingolipids, and sterols using electrospray ionization coupled to tandem mass spectrometry
of plasma samples obtained from a dietary intervention study. Healthy individuals received foods
supplemented with different vegetable oils rich in PUFA. These included sunflower, linseed, echium,
and microalgae oil as sources of linoleic acid (LA; FA 18:2 n-6), alpha-linolenic acid (ALA; FA 18:3 n-3),
stearidonic acid (SDA; FA 18:4 n-3), and docosahexaenoic acid (DHA; FA 22:6 n-3). While LA and
ALA did not influence the species profiles of GPL, sphingolipid, and cholesteryl ester drastically,
SDA and DHA were integrated primarily in ethanolamine-containing GPL. This significantly altered
phosphatidylethanolamine and plasmalogen species composition, especially those with 38–40 carbons
and 6 double bonds. We speculate that diets enriched with highly unsaturated FA more efficiently
alter plasma GPL acyl chain composition than those containing primarily di- and tri-unsaturated FA,
most likely because of their more pronounced deviation of FA composition from typical western diets.

Keywords: lipidomics; phosphatidylethanolamine; plasma; plasmalogen; PUFA; vegetable oil

1. Introduction

Nature features a huge diversity of lipid molecules, including glycerophospholipid(s)
(GPL), sphingolipid(s) (SL), and sterols, which are major cell membrane components [1,2].
The fatty acyl composition of GPL critically influences the physicochemical properties of
lipid bilayers. The proportions of unsaturated fatty acyls determine membrane viscosity be-
cause the molecular shapes of acyl moieties affect lipid packing [3]. In contrast to saturated
acyl chains packed with higher densities, forming non-fluid gel phases, monounsaturated
fatty acyls with kinked shapes reduce packing density and increase fluidity. Polyunsatu-
rated fatty acyls have extraordinary flexibility since they can switch easily between different
conformations, allowing adaption to different membrane shapes. GPL containing docosa-
hexaenoic acid (DHA; FA 22:6 n-3) facilitate membrane shaping and fission of dynamin
and endophilin involved in endocytic vesicle formation [4]. Polyunsaturated fatty acid(s)
(PUFA) are found at very high concentrations in the GPL of synaptic vesicles [5]. Neu-
ron axon tips are enriched with DHA-phosphatidylcholine (PC) [6] and the brain with
PUFA-phosphatidylethanolamine (PE) and -phosphatidylserine [7,8]. Interestingly, n-3
unsaturated GPL provide more flexibility to membranes than n-6, which might explain why
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the relative amounts of n-3 and n-6 are so important in the membranes of brain cells [9].
The n-3/n-6 ratio, in addition to its relevance for membrane biophysical properties, is also
key for the generation of inflammatory eicosanoids and anti-inflammatory specialized pro-
resolving mediators critical for numerous cellular processes, including cell death/survival
and inflammatory disease [10,11]. Higher intake of n-3 PUFA correlates with a lower
incidence of chronic inflammatory diseases, including cardiovascular disease (CVD) [12].
Intervention trials using eicosapentaenoic acid (EPA, FA 20:5 n-3) and DHA indicate lower
mortality of CVD patients and a significant inverse linear dose–response relationship with
pathological outcomes.

The impact of dietary PUFA on the human lipidome is complex, particularly because
lipid species composition (within organs and cell types) is conserved, as it is custom-
fitted to its biological function [13–17]. Disturbances are equalized since the mammalian
lipidome is extremely dynamic to ensure cell functionality [3,18]. To determine if and
how dietary PUFA are integrated into endogenous complex lipids, we here analyzed GPL,
sphingolipid (SL), and sterol composition of plasma samples obtained from a randomized,
double-blind crossover dietary intervention study, where healthy individuals received
foods supplemented with different vegetable oils rich in PUFA [19].

2. Materials and Methods
2.1. Study Design and Participants

A total of 59 volunteers (39 f; 20 m) between 25 and 75 years old recruited around
Jena (Germany) were enrolled in the randomized, placebo-controlled, double-blind, cross-
over study (Figure 1) [19]. The 10-week (wk) intervention periods were separated by
a 10-wk washout phase. Participants were in close contact with the study team to en-
sure compliance. The intake of lipid-lowering medications and glucocorticoids were
exclusion criteria as well as taking dietary supplements (e.g., fish oil capsules, vita-
min E), gastrointestinal or metabolic diseases (e.g., diabetes mellitus, hyperthyroidism
or hypothyroidism, hypercholesteremic patients with familial previous impacts), daily
alcohol abuse, and known allergies or foodstuff indigestibility. Written informed con-
sent was obtained from all subjects involved in the study (ClinicalTrials.gov. Identifier:
NCT01437930). The study foods (sausage, 60 g/d; bread rolls, 100 g/d; milk powder,
20 g/d; crispy wafer with chocolate spread, 35 g/d) were fortified with (A) sunflower oil
(62% linoleic acid, LA; FA 18:2 n-6) or (B) linseed oil (53% alpha-linolenic acid, ALA; FA
18:3 n-3) or (C) oil from Echium plantagineum (31% ALA and 11% stearidonic acid, SDA;
FA 18:4 n-3) or (D) microalgae oil from Schizochytrium sp. used as a powder (17% docosa-
hexaenoic acid, DHA; FA 22:6 n-3). Linseed oil and sunflower oil were provided by PPM
e.V. Germany, Magdeburg, and echium oil and microalgae powder were obtained from
HARKE Nutrition, Mühlheim an der Ruhr, Germany.
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Figure 1. Study design and blood sampling. Figure 1. Study design and blood sampling.

Participants consumed (per day) approximately (A) 20.0 g sunflower oil with a mean
content of 10.0 g LA or (B) 20 g linseed oil containing 7.4 g ALA or (C) 20.0 g echium oil
with 4.8 g ALA and 1.6 g SDA or (D) 12.0 g microalgae oil powder with 1.6 g DHA. The
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FA composition of the different vegetable oils was described previously [19]. Comparable
dosages of the study oils/powder resulting in different intakes of ALA, SDA, LA, and DHA
were used to ensure isocaloric interventions. At the beginning and end of each intervention
period, blood samples were drawn by venipuncture after a 12 h overnight fast, and body
weight and blood pressure were measured. Baseline characteristics of study participants
are shown in Table 1.

The Ethics Committee of the Friedrich Schiller University of Jena approved the study
(2610-07/09) and it was registered on clinicaltrials.gov. (NCT01437930).

Table 1. Baseline characteristics of the study population.

n = 59 (39 f, 20 m) Mean ± SD Min Max

Age years 54 ± 12 27 74
Body mass index kg/m2 28.6 ± 5.3 20.0 43.8
Systolic blood pressure mmHg 146.3 ± 20.0 105.0 192.0
Diastolic blood pressure mmHg 89.7 ± 10.9 60.0 117.0
Pulse beats per minute 71.4 ± 13.0 53.0 120.0
Triacylglycerol mmol/L 2.18 ± 1.40 0.70 7.36
Total cholesterol mmol/L 5.74 ± 1.06 3.13 8.29
LDL cholesterol mmol/L 3.61 ± 0.96 1.64 6.00
HDL cholesterol mmol/L 1.09 ± 0.37 0.54 2.32
LDL/HDL 3.60 ± 1.18 0.70 7.71
hs-CRP mg/L 3.64 ± 3.74 0.50 14.70

2.2. Lipidomics

Lipids were quantified by direct flow injection electrospray ionization tandem mass
spectrometry (ESI-MS/MS) in positive ion mode using the analytical setup and strategy
described previously [20,21]. Lipid extraction was performed according to the method of
Bligh and Dyer [22] in the presence of non-naturally occurring lipid species as internal
standards. The following lipid species were added as internal standards: PC 14:0/14:0,
PC 22:0/22:0, PE 14:0/14:0, PE 20:0/20:0 (di-phytanoyl), PI 17:0/17:0, LPC 13:0, LPC 19:0,
Cer 18:1;O2/14:0, Cer 18:1;O2/17:0, D7-FC, CE 17:0, and CE 22:0.

A fragment ion of m/z 184 was used for phosphatidylcholine (PC), sphingomyelin
(SM) [20], and lysophosphatidylcholine (LPC) [23]. Neutral loss fragments were used
for the following lipid classes: Phosphatidylethanolamine (PE) and phosphatidylinositol
(PI) with a loss of 141 and 277, respectively [24]. PE-based plasmalogens (PE P) were
analyzed according to the principles described by Zemski-Berry [25]. Sphingosine-based
ceramides (Cer) were analyzed using a fragment ion of m/z 264 [26]. Free cholesterol (FC)
and cholesteryl ester (CE) were quantified using a fragment ion of m/z 369 after selective
derivatization of FC [21]. Quantification was achieved using two non-naturally occurring
internal standards (IS) for each lipid class (except for PI, SM was calculated using PC IS,
and PE-based plasmalogens were calculated using PE IS) and calibration lines generated by
the standard addition of a number of naturally occurring species to the plasma. Calibration
lines were generated for the following naturally occurring species: PC 34:1, 36:2, 38:4, 40:0
and PC O-16:0/20:4; SM 18:1;O2/16:0, 18:1, 18:0; LPC 16:0, 18:1, 18:0; PE 34:1, 36:2, 38:4,
40:6 and PE P-16:0/20:4; Cer 18:1;O2/16:0, 18:0, 20:0, 24:1, 24:0; FC, CE 16:0, 18:2, 18:1, 18:0.
Deisotoping and data analyses for all lipid classes were performed by self-programmed
Excel macros as previously described [20]. Lipid species were annotated according to
the latest proposal for shorthand notation of lipid structures that are derived from mass
spectrometry [27]. GPL species annotation was based on the assumption of even-numbered
carbon chains only. The annotation of the SM species is based on the assumption that a
sphingoid base with two hydroxyl groups is present.

Sample material was not available/suitable for the lipidomic analysis from all study
participants. Thus, the n-values in the analyses figures may not match the number of study
participants shown in Figure 1.
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2.3. Lipidomic Data Processing and Statistical Analyses

The lipid species profiles of lipid classes shown as “% of total” in the bar plots were
calculated from molar concentrations. For volcano plot analyses, only the lipid species with
an average contribution > 1% per lipid class were included. Missing or zero values were
replaced by 1/5 of the smallest non-zero value of each lipid species and data were log2
transformed. A paired t-test was used to test for significant differences between “before”
and “at the end of the 10 wk intervention period”. To correct for multiple testing, the FDR
was controlled at 0.01 using the Benjamini–Hochberg method. Statistical analyses were
performed with Microsoft Excel 2016.

3. Results and Discussion
3.1. Lipidomics and Data Analysis

A quantitative lipidomic analysis of plasma samples was performed using direct
infusion electrospray ionization coupled to tandem mass spectrometry (ESI-MS/MS) com-
prising: (i) Glycerophospholipids (GPL: phosphatidylcholine, PC; lyso-PC, LPC; phos-
phatidylethanolamine, PE; PE-based plasmalogens, PE P; phosphatidylinositol, PI);
(ii) Sphingolipids (SL: ceramide, Cer; sphingomyelin, SM) and (iii) sterols (free choles-
terol, FC; cholesteryl ester; CE). In total, 298 species were quantified in plasma samples.
CE was the dominating lipid class, followed by PC and FC (Figure S1). To test whether
vegetable oils affect lipidomic profiles, plasma samples at baseline were compared with
those obtained after 10 weeks (wks) of dietary intervention. Lipid species were considered
significantly different between baseline and 10 wks if their p-value passed the multiple-
testing correction threshold (FDR < 0.01). The data analysis was applied to species profiles
of lipid classes that were calculated from molar concentrations since the calculation of lipid
profiles normalizes the data and minimizes inter-individual differences and variations.
Similarly, this data analysis strategy was recently successfully applied to investigate the
lipidomes of tumor samples from colorectal cancer patients [17,28].

3.2. Linoleic Acid from Sunflower Oil Associates with Saturated Fatty Acids in Cholesteryl Ester
and Glycerophospholipids

Dietary intervention with food enriched in sunflower oil (62% linoleic acid, LA;
FA 18:2 n-6) did not alter total lipid amounts (Figure 2B). An analysis of the lipid species
pattern revealed marginal (fold change: −1.2 to +1.1), but highly significant alterations
after 10 wks, primarily in CE and GPL (Figure 2A). Proportions of di-unsaturated lipid
species, including CE 18:2, PC 34:2, PC 36:2, PE P-18:0/18:2, and PI 36:2 were higher after
dietary intervention, while saturated and monounsaturated lipid species were lowered
(Figure 2D–F and Figure S2). Interestingly, higher unsaturated GPL, such as PC 38:6 and
PE 38:6, were unchanged, suggesting that FA 18:2 n-6 rather associates with FA 16:0 and
FA 18:0 than with 20:4. Together, we conclude that LA primarily enriches in plasma CE
and GPL. We have previously shown that linoleic acid is preferentially incorporated into
neutral lipids including CE in human macrophages [29]. Tracing the fate of [U13C]-labeled
FA 18:2 n-6 over 24 h in healthy subjects, Hodson and colleagues found elevated levels of
LA in plasma CE and GPL [30].
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Figure 2. Impact of sunflower oil intervention on the human plasma lipidome. (A) Volcano plots
showing a significantly different lipid species after 10 weeks (wks) of intervention. (B) Total con-
centration and distribution of all analyzed lipids. (C–F) Lipid species profiles, double bond (DB)
composition in FA moieties, and total lipid levels for cholesteryl ester (CE), phosphatidylcholine (PC),
phosphatidylethanolamine (PE), and PE-based plasmalogens (PE P). Shown are means ± SD of the
lipid species with an average contribution > 1% from n = 45. ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3.3. Alpha-Linolenic Acid from Linseed Oil Lowers Total Lipid Levels

Supplementation with linseed oil (53% alpha-linolenic acid, ALA; FA 18:3 n-3) low-
ered total lipid concentrations by 23%, including GPL, SL, and sterols (Figure 3B). The
fraction of CE 18:3 was 1.6-fold higher at 10 wks compared to baseline, while that of CE
16:0 was reduced (Figure 3A,C). In the group of GPL, solely PE 34:3 proportions were
elevated after 10 wks. Profiles of Cer and SM were unaltered (Figure 3D–F and Figure
S3). Compared to the sunflower oil group, fewer lipid species were altered (6 vs. 25),
but the magnitudes of change were higher (Fold change: −1.3 to +1.6) (Figure 3A). More-
over, linseed oil supplementation did not alter the contents of highly unsaturated GPL
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with DB > 5, suggesting that FA 18:3 n-3 is preferably inserted in GPL acyl combinations
with saturated FA, as observed for LA, and that it is not significantly metabolized to
FA 22:6 n-3. It was previously reported that the formation of DHA from ALA is negligible
(<1%) in humans as well as independent of the dietary PUFA content [31,32].
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3.4. Stearidonic Acid from Echium Oil Enriches in Glycerophospholipids with 4–5 Double Bonds

Although the intervention with echium oil (31% ALA and 11% stearidonic acid,
SDA; FA 18:4 n-3) did not alter total lipid concentrations, lipid species composition was
more drastically affected than observed for sunflower and linseed oils (Figure 4A,B). The
proportions of 22 lipid species were significantly altered with fold changes between −1.2
and +2.5-fold. After 10 wks of intervention, the GPL pattern shifted towards species with
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4–5 double bonds (Figure 4C–F and Figure S4). PC 36:4, PC 36:5, PC 38:5, PE 38:5, PE 40:5,
PI 38:5, and PI 40:5 increased up to 1.8-fold, suggesting that SDA associates with saturated
and monounsaturated FA, such as FA 18:0, FA 18:1, FA 20:1, FA 22:1.
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In contrast to ALA, SDA is more efficiently converted to EPA [32], explaining the
1.4-fold elevated PE P-18:0/20:5 levels. However, its conversion to DHA is limited [32]
confirmed by the unchanged fraction of GPL with DB > 5. ALA, which is also a major
component of echium oil with 31%, is incorporated in triunsaturated CE and GPL species
(CE 18:3, PC 36:3, PC 38:3; PE 34:3, PE 38:3, and PI 36:3) as observed in the linseed oil group.
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3.5. Docosahexaenoic Acid from Microalgae Oil Changes the Species Profiles of
Ethanolamine-Containing Glycerophospholipids

Microalgae oil, as a plant-based source of highly unsaturated n-3 PUFA, was cho-
sen, as the intake of sea fish is restricted due to limited resources, overfishing, and sen-
sory aspects. In general, the establishment of alternative plant-derived dietary n-3 PUFA
sources is of urgent need. Amongst all groups, microalgae oil (17% docosahexaenoic acid,
DHA; FA 22:6 n-3) most significantly affected the plasma lipidome. 36 species, includ-
ing 26 ethanolamine-containing GPL, were altered with fold changes from −1.5 to +2.1
(Figure 5A).
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DHA was incorporated into FA 16:0, FA 18:0, and FA 18:1 containing PE P, as well
as in PC, PE, and PI species with 38–40 carbons and 6 double bonds (Figure 5D–F and
Figure S5). Shorter and less unsaturated GPL with 1–3 double bonds, including PC/PE
32:1, PC 34:2, PC/PE 36:3, and PC/PE 38:3 were reduced after 10 wks of microalgae oil
intervention. Saturated GPL and SL as well as total lipid levels (Figure 5B and Figure S5)
remained unchanged. DHA from fish oil was previously shown to elevate plasma PUFA-PE
concentrations [33,34] and to incorporate in plasma PC already after 1–2 h after intake in
healthy humans [35]. In agreement with our results, applying [13C]-labeled DHA in young
adults demonstrated that it accumulates more efficiently in plasma PE than PC [36]. This is
most likely due to the pronounced specificity of liver ethanolamine phosphotransferase
for 1-saturated, 2-docosahexaenoyl-glycerol, in contrast to choline phosphotransferase [37].
We also hypothesize that PE and PE P simply provide a higher capacity for the enrichment
of highly unsaturated FA since their acyl chains are generally longer and more unsaturated
than those of PC.

4. Conclusions

Together, we show that PUFA from vegetable oils incorporate into plasma CE and
GPL. We hypothesize that they are evenly distributed into endogenous lipids to minimize
alterations and sustain the existing and optimized lipid composition. Because the fraction
of higher unsaturated PUFA in typical western diets is low, SDA and DHA induce more
pronounced alterations of acyl chain composition of PE, PE P, and PC by shifting it towards
long and highly unsaturated species. Plasma PUFA are transported to peripheral tissues
and become part of cell membranes, which influence membrane biophysics, such as GPL
acyl chain flexibility as well as PUFA-derived inflammation-related lipid messenger profiles.
We previously showed that regular consumption of foods enriched with echium oil and
microalgae oil leads to health-promoting anti-inflammatory effects [38,39].
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