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Abstract

We present an x-ray Computed Tomography setup that integrates a seven degrees of freedom robotic
arm as a sample holder within an existing laboratory x-ray computed tomography setup. We aim to
provide a flexible sample holder that is able to execute non-standard and task-specific trajectories for
complex samples. The robotic arm is integrated with a unified software package that allows for path
planning, collision detection, geometric calibration and reconstruction of the sample. The calibration
is necessary to identify the accurate pose of the sample which deviates from the expected pose due to
inaccurate placement of the robotic arm. With our software the user is able to command the robotic
arm to execute arbitrary trajectories for a given sample in a safe manner and output its reconstruction
to the user. We present experimental results with a circular trajectory where the robotic sample holder
achieves identical visual quality compared to a conventional sample holder.

1. Introduction

In this work we introduce a flexible robotic arm with seven degrees of freedom as a sample holder within a
laboratory x-ray Computed Tomography (CT) setup. The arm adds flexibility to the setup as a sample holder by
enabling arbitrary rotation and placement of the sample. This allows non-standard trajectories that are not
restricted in their sequence, such as conventional circular or helical trajectories. In addition, the robotic sample
holder can avoid occlusions on the projections that would normally be introduced by limitations of static setups
where the sample is inherently mounted to non-moving parts (e.g. mounted on a plate). In the following we
present our work on the integration of a robotic arm with seven degrees of freedom within a lab x-ray CT setup
together with a suitable calibration mechanism. The calibration mechanism is required as a result of the
insufficient placement accuracy of the robotic arm. A purpose-built sample holder with an embedded geometric
structure is used to calibrate the position and orientation of the sample for later use in the reconstruction step.

The system can easily execute specific trajectories that can overcome the limitations of fixed trajectories.
Arbitrary rotations can be reached with the robotic arm’s seven degrees of freedom (seven rotational joints). This
will enable imaging modalities that require non-standard acquisition sequences in the future, such as
Anisotropic x-ray Dark-field Tomography (AXDT). AXDT is a novel imaging technique that allows the
extraction of x-ray scattering and phase contrast information by employing grating interferometers [1, 2]. The
robotic sample holder will enable arbitrary rotations covering the full sphere and hence expose the 3D structures
of the target object by measuring the full dark-field contrast from all possible angles. Conventional sample
holders pose a significant challenge when the acquisition trajectory is required to cover the full sphere of
rotations, as more intervention by the user is required and it may not be possible to measure the sample from
certain angles.

© 2022 The Author(s). Published by IOP Publishing Ltd
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In the following we will provide an overview of related work on imaging with robotic arms and geometric
calibration mechanisms for x-ray CT.

1.1. Related work on x-ray CT with robotic arms

Robotic arms were also used in the past in computed tomography systems [3—5]. The main difference to our
work is the kind of robotic arm that is used. It offers a higher flexibility than the robotic arms that were used in
related work due to its seven degrees of freedom and it has two fingers that make chained pick-and-place tasks
possible without user intervention.

In [3] the source and detector are mounted on robotic arms and the sample is centered between the source
and the detector by the arms The main difference to our work is that this is not a laboratory scale setup but
assembly line scale and that the sample does not move but the source and detector. Therefore it is not directly
comparable to our setup. The detector pixel size (100um theirs versus 150 ;sm ours) and the voxel resolution of
the reconstructions (70 pm versus 100 pm) is very similar to our work. The authors do not specify the exact
models of the robotic arms, but from the figure it can be seen that they have four degrees of freedom (compared
to seven with our robotic arm). The reduced degrees of freedom count means the robot is less flexible and it has
difficulties reaching certain acquisition angles.

In [4] the authors demonstrate the advantage of non-circular CT scanning trajectories. The experiments are
conducted in a simulation using a 3D model of the specimen. With a circular scanning trajectory the specimen
absorbs x-rays when spheres are added to it and reconstruction quality is impacted resulting in streak artifacts. It
is demonstrated that by using a simulated six DoF robotic arm a simulated non-circular trajectory that almost
covers the full rotational sphere would be possible and result in a reconstruction with no artifacts.

The Siemens Healthineers Artis zeego eco angiography platform [5] consists of a single five DoF robotic arm
which is moving the detector and source with a fixed distance between each other. The main differences to our
work are that the detector and source are both mounted to the robotic arm and hence are moving parts. Also the
sample in this case is a living patient. The robotic arm is positioned such that the body part of the patient which is
of interest lies exactly between the source and detector.

In [6] the authors present an x-ray tomography system with two robotic arms. The x-ray source and the
detector can be moved independently from each other by the two arms and the sample is mounted statically
between them. There are two key differences to the system that we propose. The first is that we are moving the
sample while the authors in [6] propose a system that moves the source and detector around the sample. This
means that our system only requires one robotic arm instead of two. Furthermore, moving the sample instead of
the x-ray source means that the system is not restricted to movable x-ray sources and detectors and hence it is
more flexible. On the other hand, this means that samples in our system are more restricted in terms of size and
weight, and the sample should not be deforming when being moved around. The second key difference is that
our robotic arm is significantly smaller and thus fits into an existing x-ray CT setup, while the robotic arms used
in [6] can reach up to 3 meters of height (compared to 1.2 meters with our arm), which might not even fit into an
existing laboratory [7, 8]. Furthermore, the smaller robotic arm in our system is more affordable in comparison.

1.2. Related work on geometric calibration in x-ray CT

The seven joints of our robotic arm imply seven degrees of freedom but a higher number of joints also introduces
ahigher error on the placement of the sample. A calibration mechanism is needed for determining the
projection parameters of the sample. The projection parameters can be split into the external and internal
camera parameters. The external parameters are the rotation and position of the camera relative to the sample
(or vice versa). The internal parameters concern the camera system itself. In our imaging system the internal
parameters are fixed and they are determined beforehand.

In [9] the authors propose a generic calibration method for tomographic imaging systems with flat-panel
detectors. A flat calibration phantom with 44 spheres in total on two parallel planes is used for calibration. Both
sets of camera parameters (internal and external) are extracted from the images in a direct computation step.

In [10] the authors propose a calibration method based on a cylindrical calibration phantom similar to what
we will use here. Atleast two sets of spheres in a circular arrangement are needed in order for this approach to
work because this allows the extraction of the center of the calibration phantom’s coordinate system. The
geometric parameters are computed directly with a closed analytical expression for each image. The
parametrization of the geometry only permits rotational acquisition trajectories, whereas our calibration
method works with arbitrary placements of the sample and hence any kind of trajectory.

In [11] the authors propose a method similar to [10]. A calibration phantom with two sets of spheres that are
arranged in an ellipse is used. The difference to [10] is that the geometric parameters are not calculated directly
but an optimization step is introduced for computing the rotation parameters. Additionally, this method is valid

2



IOP Publishing Eng. Res. Express4(2022) 035022 E Pekel et al

Emergency Switch
I Power

e USB 3.0 >f
3|

Network Switch

—_— Gigabit Ethernet

me—; Proprietary connector

|
| {

Controller

Detector

221n0S Aey-X

Depth Camera
Safety Hutch

(a) Lab photo (b) Hardware schematics

Figure 1. Hardware setup. In figure 1(a) the robotic arm is mounted on a table with the source and the detector inside a safety hutch.
The source to robot distance is 40 cm and robot to detector distance is 176 cm. Two depth cameras monitor the movement of the
robot and send a stop signal to the robot controller when the executed trajectory interferes with obstacles. The robotic arm can also be
stopped by a manual power switch that was routed to the operator table outside of the hutch (see figure 1(b)). The relevant coordinate
systems are visualized in red in figure 1(a). The x and y-axis are determined by the right-hand rule.

for arbitrary geometries, not just rotational trajectories compared to [ 10]. The main difference to our method is
that two ellipses are used for calibration instead of a helix.

In summary when compared to [9] our method offers more flexibility in terms of the constraints on the
calibration phantom because we do not restrict the arrangement of the markers to obtain a certain 3D coverage.
When compared to [10] and [11] our approach is much simpler in terms of the analytical expressions that are
needed and it is decoupled from the specific geometrical structure on the calibration phantom. And in general,
our approach is more suitable for robotic arms with higher degrees of freedom because it is valid for arbitrary
geometries as opposed to the methods in [9] and [ 10] which are restricted to rotational acquisition trajectories.

2. Methods

In this section the methods for operating the robotic arm as a sample holder in a lab x-ray CT setup are discussed
in detail. After introducing the hardware components and software architecture of the system more specific
parts like path planning, collision detection, calibration and reconstruction are described.

2.1. Hardware setup

The hardware components of the system are displayed in figure 1 . The main difference to a conventional x-ray
CT setup is the seven degrees of freedom robotic arm Panda from the manufacturer FRANKA EMIKA [8]. It has
amaximum reach of 855 mm and a repeatability of 0.1 mm when repeatedly moved from a specific starting pose
to a goal pose. It has two fingers that can move on a fixed axis and grasp objects. The maximum allowed payload
is 3 kg. The robotic arm and the depth cameras are connected directly to a computer while the detector is
accessible through a network interface. The robotic arm can be turned off in case of emergency from outside of
the safety hutch with a power switch (see figure 1(b)).

Two Intel Realsense D435 depth camera capture the movements of the robot and provide 3D information
about the surroundings as a point cloud. The cameras are connected directly to the workstation and they are
used for the collision detection mechanism described in section 2.5.

The robotic arm is mounted on a table inside a safety hutch for x-ray CT which houses the x-ray source and
the detector (see figure 1(a)). The detector has a maximum resolution of 2880 x 2880 and is connected to a
different workstation on the network which provides a network interface for triggering image capturing. Our
workstation retrieves the raw 16-bit grayscale image over the network.

2.2. System architecture

In figure 2 alogical overview of the different system components is displayed. The pipeline consists of three main
steps: sample acquisition, calibration and reconstruction. The robotic arm only needs to be active during sample
acquisition; the remaining steps can also be executed in a different environment, for example on a server
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Figure 2. System Architecture. The user interacts with the system with a web browser using a web user interface. All three tasks
(sample acquisition, calibration and reconstruction) can be executed independently. The preconditions for running a task are
represented by arrows, e.g. the calibration can only be run when the sample acquisition is finished, information about the given
sample holder is available and the circles were registered on the detector images. The final output of running all steps of the pipeline is
a 3D reconstruction volume which is saved on the filesystem.
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computer. This decoupling is achieved by saving intermediate results like images or sensor data to the filesystem
and reading the data for the calibration and reconstruction independently. The components that are necessary
for executing the steps in the pipeline that they are connected to are on the bottom of the drawing. For example,
for sample acquisition, path planning, collision detection, and the detector interface need to be active, and the
geometry of the sample holder known for execution.

The user interface is decoupled from the rest of the system into a web-page that runs on any modern device
with a web-browser. The communication between the user interface and the system is carried out with
predefined messages protocols. Intermediate results of the experiment like the currently acquired detector
image are displayed on the interface.

2.3.Sample holder

The sample holder is a critical component of the system as it allows the robotic arm to grasp samples of arbitrary
shape and is a fundamental part of the calibration process where the position and orientation of the sample is
identified. The 3D models of the sample holder and the rail component are visualized in figure 3. The sample
holder consists of two parts. The bottom part is where the robot’s fingers can grasp the holder steadily. The
upper part fulfills the actual purpose of placing a geometric structure around the sample on a cylinder. Prior to
attaching the sample holder to the robotic arm’s fingers the sample needs to be glued to the mounting plate
which is inserted into the cylinder from the top at the intended position. There is no need to screw the mounting
plate, as there is enough friction with the cylinder to hold the plate in place (see figure 3).

The cylinder is 5.6 cm tall and 3.5 cm in diameter inside. The sample holder was designed with a 3D
modeling software and printed using a 3D printer with accuracy of 0.08 to 0.2 mm on all three axes. The printing
accuracy is important as the local coordinates of the spheres in the 3D model are used as reference points in the
calibration algorithm.

The geometric structure embedded in the sample holder is a helix which is made up of 50 embedded
aluminium spheres of 0.678 mm diameter. These spheres were fixed by hand on notches that were included in
the design process of the holder. The spheres appear as circles on the detector images that will be segmented
during calibration.

The helix can be parametrized by the following 3D parametric curve:

u(T) rx cos(p * T+ @)
h(r) =1v(D) | = | r = sin(p * 7+ @)
w(T) T
1 p ¢ €R 1)

7 runs between the local w coordinates of the first sphere and the last sphere of the
helix: Wpin < T < Wmax Where Wipin, Wmax € R.
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Figure 3. Sample holder. (a) The robot can grasp the sample holder with its two fingers by sliding into a conically shaped gap for easier
engagement of the fingers. (b) The middle part of the holder houses a helix structure that is used in the calibration step. The aluminium
spheres are glued into holes and can then be segmented in the acquired images. (c) The sample is fixed on the mounting rail which is
inserted from the top of the holder into the hollow cylindrical structure (d).

The parameters r (radius), p (frequency) and ¢ (phase shift) parametrize the helix. They can be determined
by fitting the sphere coordinates from the 3D model of the sample holder to equation (1) with aleast-squares
term. The source code of this process can be found in the file helix_fitter.py in our repository [12].

The helix can be discretized by choosing a fixed number H € N of points {7}i=1,...g € [Wmin» Wiax] for the
free parameter 7:

.....

hi = (u(m) v(n) wm)'. 2

2.4. Path planning

In this section, we are going to outline the important aspects of controlling the robot for use as a sample holder in
x-ray CT setups. The main component is task planning which includes all steps that are necessary to place the
sample at the correct place.

Task planning consists of multiple steps. The first step is determining the acquisition trajectory for the given
tomographic task. The acquisition trajectory consists of a set of N poses (positions and orientations) for the
center of the sample holder that is currently attached to the robot. The acquisition poses are expected to lie on
the intersection of the central ray of the x-ray source with the vertical operating plane of the robotic arm in order
to fit the sample (holder) in the limited field-of-view of the imaging system. The poses are targeted at the center
of the sample holder because our goal is to image the sample that is contained inside the sample holder. These
poses can be generated from the user interface of our software package.

In the second step of task planning information on which particular link of the robotic arm should reach the
given pose is added. The kinematic representation (a chain) of the robotic arm is extended by a virtual link that
starts at the arm’s last link and points to the center of the current sample holder. The path planning algorithm
can now place the tail of this virtual link at the goal position. This will ensure that the goal pose, which serves as
input to the next step, is exactly at the center of the current sample holder. Without this modification to the
kinematic chain instead of the sample holder’s center the robotic arm’s last link would be placed at the goal pose.

In the third and last step, the inverse kinematics for the given poses are calculated. It calculates the angles at
the joints that are required to reach the given goal pose and calculates a series of angles from the given starting
position to reach the goal. The resulting inverse kinematics is a series of angles and timestamps (also called
trajectory in the robotics literature, different than the acquisition trajectory from step one) where the first set of
angles matches the current state of the robot.

We swapped the default inverse kinematics backend for this task in the franka_ros package provided by the
manufacturer with the TRAC-IK library which has a higher solving rate and a shorter runtime for inverse
kinematics tasks on robotic arms with high degrees of freedom like ours [13].

2.5. Collision detection

The inverse kinematics trajectories from section 2.4 are executed one after another with the robot by sending the
individual joint angles to the controller in figure 1(b). This is a dangerous task as the robot could crash with its
surroundings during trajectory execution. For this reason two collision detection mechanisms are employed:
passive and active.
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2.5.1. Passive collision detection

The passive collision detection reads user-defined configuration files containing information about nearby
objects from the filesystem at system startup and forwards them to the manipulation framework. The
framework passes these objects on to the inverse kinematics such that they are considered as obstacles in the
configuration space when planning the trajectories.

2.5.2. Active collision detection

The active collision detection is a process that retrieves the currently executed trajectory and a point cloud from
the depth cameras (see figure 1(b)). It then checks if there are potential collisions in the retrieved point cloud
with the current trajectory of the robotic arm. If collisions are detected, the arm is stopped immediately.

A similar collision detection mechanism for robotic arms was already implemented in [14]. While the
concepts are similar to our implementation we decided to implement our own algorithm for easier integration
with our robotic arm and our software package.

The process that handles the collision detection loads the 3D structure of the robotic arm’s links from the
filesystem which will be used together with the current joint angles of the arm to calculate the approximate
position of the robotic arm’s links.

The active collision detection mechanism is triggered when a trajectory is received and the robotic arm starts
to move. The trajectory consists of a set of joint angles for each of the seven joints of the robotic arm and is
transferred to a GPU together with the point cloud from the depth cameras and the 3D structure information of
the robot’s links.

All points from the point cloud that resemble the robotic arm are removed otherwise the robot itself would
be registered as a colliding object. This is done by a self filter which calculates the distance of each point in the
point cloud to individual points on each link of the robotic arm and removes all points from the point cloud that
fall below a certain threshold. Afterwards the arm’s movement in 3D space is calculated while executing the
current trajectory. This movement profile is compared to the current point cloud input from the depth cameras
and checked for collisions.

In an additional verification step the algorithm checks if the reported collision points from the point cloud
are not the result of a noisy measurement by checking that the 27 neighbours in discretized 3D space were also
reported as collision points. Finally, the points that fulfill this criterion are reported as actual collision points.

If there are collision points after the noise filtering step the trajectory execution by the robotic arm is
stopped.

The source code can be found in the files CollisionDetector.cpp, detection.cl and verification.clin our
repository [12].

2.6. Calibration

The calibration procedure tackles the issue that the robotic arm does not sufficiently accurately place the sample
at the desired position due to inaccurate path planning and inaccurate electrical motors at its joints. Reading the
sensors of the robotic arm and deducing the samples current position is also insufficient to determine the correct
position as inaccurate values are reported. However the exact position of the sample at each view is required for
the reconstruction. With the calibration procedure we are able to identify the actual positions and orientations
of the sample for the reconstruction step. For the calibration a sample holder with an embedded geometric
structure that can be detected on the detector images is necessary. A suitable sample holder was introduced in
section 2.3.

The calibration is implemented in multiple steps (see figure 4). The first step is the post-processing of the
detector image. Its contrast is enhanced and a median filter with kernel size 5 is applied to reduce noise and
improve the segmentation results. The calibration circles on the image are detected in the next step with the
circle Hough transform algorithm [15]. The result is a set of 2D circle center coordinates i; = ( dyj d},)]-)T on
the detector.

Equation (1) and the current position of the robotic arm are now used to project a set of helix points ;
(equation (2)) onto the detector image for comparison with the segmented points #72; and determining the
geometry of the sample.

For this projection the intrinsic camera matrix K and the external parameters R and t are needed. K is fixed
for the current x-ray CT setup and R, t are determined by the robotic arm’s current position.

In the following we will provide an overview of the equations that will lead to the final least-squares term that
includes the aforementioned comparison algorithm. This least-squares term is used for determining the actual
pose of the sample by utilizing an optimisation algorithm.
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Figure 4. Calibration procedure. In (a) the flat-field corrected detector image is displayed. This image is contrast-enhanced and
subsequently a circle detection algorithm is executed. The resulting image where the detected circle centers are marked with red
crosses is displayed in (b). Given the geometry of the sample holder and the robot’s sensor readings when acquiring the image, an
initial guess of the helix location (blue crosses) is projected onto the image plane (c). The parameters that define the rotation and
translation of the helix are optimized in a least-squares problem in the 2D image domain. The resulting parameters are used to project
the helix again to the image domain to display the final outcome of the calibration (d).

There are three critical coordinate systems in our setup (see figure 1(a)). The first is fixed to the x-ray source
with x, y and z-axis. The second is fixed to the center of the sample holder with u,v and w-axis and moves with the
roboticarm as it is attached to the arm’s fingers. The third is fixed to the detector with d, and d, axis.

The rotation R of the sample holder relative to the source can be parametrized w.l.o.g. by consecutive
rotations about the z, y and x-axis:

R(a, B, 1) = R Ry (B)R(7) 3)
tis the offset of the source center to the sample holder’s center:
t=(x Y 2 4)

Kis fixed and can be calculated with the parameters sdd (source to detector distance), d, ,, d,, , (principal points
ond,and d-axis) and d,,, d), (detector pixel width and height):

sdd
M0 4,
d, ’
K= 5
0 o, ®
dy
0 0 1

These parameters are fixed for the current setup and can be determined beforehand.
We introduce the short notation ¢ = («, 3, ¥, X, y, z) for the free parameters. The camera projection matrix P
can now be calculated:

P() =KR(a, B M| 1) € R4 (6)

The projection matrix is now used to project aset of H € N fixed points #; € R?* on the discretized helix
from equation (2) onto the detector:

dy.i(Q)

d, ()| = P(Ohi ()
d;:(0)

dx,i(o): di(0)/dLi(O) ©
dyi(Q))  \d)i(0)/d.:(O)

d/ are the homogeneous detector pixel coordinates and m; are the projected analytical helix points on the
detector. These points resemble the expected position of the helix structure and they will be used for constructing
an error term in the 2D detector image domain.

An appropriate cost function for comparing the error between the current and expected position of a
measured circle center #1; and a projected point on the helix m; is the reprojection error:

E(G, rhtj, m) = 1, — m;(¢) € R? )

m;(¢) =

Equation (9) will only measure the error for a specific pair of points. In our case there are
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+ c(detected) circles on the current image,
+ sspheres glued onto the holder and
+ Hprojected points on the helix from equation (1).
Itis important to note that ¢ < sbecause the segmentation algorithm might fail to detect all circles.

We now compare each of the c detected circle centers #; to all H sampled and projected points 1;and choose
the pair with the smallest distance (see algorithm 1).

Algorithm 1. Calibration algorithm: cost function

Require: (,,,, circles, helix_points

step:
Ensure: residuals_min

residuals_ min—[]

for j < 1to size(circles) do
1 « circles[ j]
residuals < []

for i < 1to size(helix_points) do
m; «— helix_pointsi]
residuals[i] < E(Cmp, 1, m;)
end for

residuals_min| j] < min(residuals)
end for

We can formulate this algorithm as a least-squares problem:

c
argmin(:m,ﬂmx%z)z min E((, i), m;) (10)
=1

—1<i<H

The optimization problem is nonlinear due to the sine and cosine terms in the rotation parametrization. In
our implementation we use the Levenberg Marquardt algorithm. The Jacobian matrix with the partial derivatives
of the cost function with respect to the free geometry parameters is not computed directly, but the 2-point finite
difference scheme is used for numerical estimation.

The resulting parameters «, (3, 7, x, ¥, z can be used for the reconstruction as the geometry of the given
acquisition.

2.7.Reconstruction

For tomographic reconstruction, the sinogram contained 1000 equidistant x-ray projections along a circular
trajectory sized 720 x 720 pixels with a spacing of 600 . The reconstruction volume was sized

720 x 720 x 720 with isotropic voxel spacing of 100um. Using our C++ reconstruction framework elsa [16],
reconstruction was performed using an iterative conjugate gradient solver run for 50 iterations on a Tikhonov
regularized weighted least squares problem, with the Josephs method for x-ray transform discretization and
parallel beam geometry. Further iterations showed no improvement on the cost function.

2.8. Software stack

The central part of our software stack is the Robot Operating System (ROS) [17] which is a middleware for the
communication of independent processes across a network. Robot manipulation is accomplished with the
Moveltframework [18, 19] and the franka_ros configuration package [20]. For image processing tasks and the
circle segmentation we use OpenCV [21], for multithreading on the CPU OpenMP [22] and on the GPU OpenCL
[23] and for the tomographic reconstruction elsa [16]. The scientific calculations in section 2.6 are implemented
with scipy [24]. The 3D mesh files of the robotic arm are read with OpenMesh [25].

3. Experiments and results

Before running the main experiments, an experiment for determining the accuracy of the robotic arm was
conducted. The sample holder from section 2.3 was used for all experiments for the purpose of geometric
calibration. The collision detection algorithm was running in the background throughout these experiments.
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Figure 5. Robot calibration experiment. (a) Robot placement precision from different starting positions from the top perspective.
Starting positions sampled on a circle parallel to the base of the robot with radius of 18 cm and the default goal position for the sample
holder as center point. The goal position (cross) and orientation was identical for all measurements. The resulting images were
calibrated with the calibration procedure in figure 4 . (b) The centers of the calibrated helix structures are plotted with circles. The z-
axis is omitted for illustration purposes. The expected location of the circles is outlined by the red cross, which lies on the center ray of
the source. The distance of the actual position of the calibration structure (circles) to the central ray (red cross) demonstrates that a
calibration procedure is needed.

3.1. Robot placement error

The robotic arm does not accurately place the sample at the desired goal position and it is also not able to report
the current position of the sample accurately. This hinders the reconstruction of the sample. In the following we
quantitatively demonstrated the need for a calibration mechanism.

We moved the robot from different starting positions to a predefined identical target pose. The starting
positions were sampled on a horizontal circle with radius 180 mm and the center at our default acquisition goal
position along the central x-ray (see figure 5(a)). The resulting positions were determined by running the
calibration algorithm on the acquired images. Deviations from the desired goal position therefore demonstrate
the need for a calibration mechanism.

3.2. Calibration parameters
In this section we are going to state our choices for the three parameters of the calibration method in
section (2.6):

+ arejection threshold on the reprojection error
+ the number of spheres on the holder

+ the sampling rate on the helix structure.

The threshold on the reprojection error determines when a calibration result for a given image is not
accepted as valid and hence not used for the reconstruction of the sample. We chose 2.5 pixels distance between
each detected circle 77i; to smallest m1; as threshold. With this threshold the rejection rate of the calibration
algorithm was 0.8% with 8 out of 1000 for the example walnut dataset (with H = 10.000). All rejections
originated from false positives in the segmentation step when random points on the image were detected as
circles.

The remaining parameters for the calibration algorithm are the number of spheres and the sampling rate on
the helix structure. We have altered one of these parameters while fixing the other one for our walnut dataset and
analysed the change in the reprojection error. Our choice for the helix sampling rate ranged from 500 to 30.000.
For the number of spheres we sampled a different set of n random spheres from the detected spheres without
replacement for each individual image, where 10 < # < 50. The results are plotted in figure 6 .

For our experiments we fixed H to 10.000.
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Figure 6. Calibration parameters. The calibration is influenced by two parameters: The number of points that are sampled on the helix
structure for the distance measurements and the number of spheres on the sample holder. Calibration results were evaluated based on
different choices for the two different parameters. The geometric error between the sampled helix structure and the detected spheres
was used as error metric. A higher sampling rate on the continuous helix structure leads to alower error but increases the runtime
linearly (a). A higher number of spheres decreases the error but physical constraint do not allow to increase this number as there is
limited space on the sample holder (b). Calibration results for different combinations of the parameters are displayed for a region of
the helix structure (c) to (f). Decreasing the number of spheres severely affects the calibration results.

3.3. CT measurements
We conducted four experiments in total: two samples (walnut and pistachio) were each measured with the
robotic arm and a conventional rotational stage.

For each CT measurement, 1000 images were acquired with a source voltage of 30 kV, source power of
14451 A, and exposure time of 1s.

In figure 7(a) the reconstruction of the walnut with the rotational stage is compared to the robotic arm as the
sample holder. The two volumes were registered manually as we found automatic registration of the two
discretized volumes to be unreliable. The slices were chosen manually for illustration purposes. The center slices
of the volume from the top and the front view were extracted and cropped to the region of interest.

4. Discussion

4.1. Robot placement error
We can see in figure 5(b) that there are two issues: The mean of all points is shifted by more than 1 mm in both
directions and the final positions vary significantly from the mean position.

The goal position lies on the intersection of the central ray of the x-ray source with the vertical operating
plane of the robotic arm. This means that the goal position depends on the relative distance between the x-ray
source and the robotic arm’s base. From the shifted mean in figure 5(b) we can conclude that our assumption of
the goal position is not correct. This systematic error likely is the result of an inaccurate measure of the relative
distance between the source and robotic arm.

The second issue arises from the inaccuracy of the inverse kinematics and the limitations of the electrical
motors at the joints. In the ideal case all of the colored points would lie on the same spot. However, the final
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Figure 7. Experimental results. A walnut and a pistachio were measured and reconstructed in order to compare the conventional
rotational stage (reference) with the robotic sample holder (robot). The reconstruction volumes were registered and aligned but small
differences are still visible. The detector images were binned with 4 * 4 and the reconstruction volume has dimensions 720°. The front
slice is from the perspective of the x-ray source. The top slice is from the bird’s eye view. A zoom factor of 2x was applied to the slices to
crop the region of interest. Our observation is that the reconstruction quality is identical despite the fact that the volumes are not
aligned perfectly and hence the contrast does not match.

positions for all measurements form two clusters, without a correlation to the starting point. From the random
distribution of the colored points we cannot determine a systematic pattern and hence no clear reason for these
positions on the graph can be deduced for the starting angles. There is also no obvious reason for the partitioning
of the points in two clusters. From these observations we conclude that a calibration procedure is necessary for
determining the position and orientation of the sample and subsequently reconstructing the sample accurately.

4.2. Calibration parameters

In section 3.2 we have stated our choices for the calibration parameters used in section 2.6. For the rejection
threshold on the reprojection error of the calibrated images we observed in figure 6(b) that the lowest mean error
per circle is 1.77. This value could serve as a lower bound for the threshold that we are trying to determine
because for the given number of spheres this is the lowest achievable reprojection error on the given dataset.
However, when applied to the walnut dataset the 1.77 threshold resulted in a rejection rate of 62.3%. For this
reason a higher threshold with alower rejection rate on the walnut dataset is preferred. We have chosen 2.5
pixels as a threshold because when applied to the walnut dataset the rejection rate is very low with 0.8% and the
reconstruction results are visually identical to the results of the experiment with the rotational stage as discussed
insection 4.4.

For the helix sampling rate H (figure 6(a)) we observed that from 500 to 10.000 the improvement of 111.6 to
88.7 in the mean reprojection error is significant, while the runtime of the calibration per image increases from
0.15t04.0 seconds.

Simulating a reduction in the number of spheres on the sample holder (by random sampling without
replacement) has the expected consequence of worse reprojection error (see figure 6(b)). There is no significant
difference between 46, 48 and 50 circles because on most images between 46 and 50 out of 50 circles are detected
by the segmentation algorithm.

In figure 6 in the bottom row the calibration algorithm was run with different combinations of both
hyperparameters. Blue crosses resemble the calibration result of the helix and red crosses are the detected circles.
We can observe that reducing the number of spheres to 10 makes the calibration unusable and increasing it to
more than 50 was physically not possible as the circles would start to overlap on the images, especially on the
curves of the helix.

4.3. Calibration

A calibration procedure example is displayed in figure 4. Figure 4(a) is post-processed and the circles are
detected. Three circles were not detected. In (c) the current estimate for the external parameters were used to
project H = 10.000 helix points (blue crosses) onto the image. To improve its overlap with the detected circles
(red crosses) the parameters are optimized with the above problem statement. Finally the helix is projected onto
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the image with the improved parameters (see figure 4 (d)). We can see that the overlap has improved
substantially.

4.4. CT measurements

Our observation from figure 7 is that there is no qualitative difference between the results of the robotic sample
holder and a conventional rotational stage as a reference. As the volumes could only be registered manually, we
perform only a qualitative assessment. Two samples of different size and internal structure were measured, a
walnut and a pistachio. We can see in figure 7(a) that the internal structure of the walnut was mapped as
accurately for the reconstruction of the measurement with the robotic arm as with the reference experiment.
The pistachio in figure 7(b) has a simpler structure compared to the walnut, but we can assess the slit in the
kernel and the sharpness of the shell. When comparing the reconstruction of the measurement with the robotic
arm to the reference reconstruction, we can see that there is no loss in the visual quality of the slit in the
pistachio’s kernel and its shell in both the top- and front-view.

4.5. Future work
In future work the system can be improved in several ways.

The sample holder could be more flexible. Its size currently limits the size of the sample but this can be
tackled in another design iteration by embedding the geometrical calibration structure into the base of the
holder when it is positioned upwards of the base and compressed in its height. The cylindrical envelope
surrounding the sample could be removed and as a consequence, the sample also doesn’t strictly need to be
inserted from the top. It could be positioned right were the geometric structure would end. Depending on the
mounting mechanism of the sample, samples of arbitrary sizes could be measured assuming the maximum
payload of 3 kilograms is not exceeded [8].

Moreover, experiments with non-standard trajectories are subject of future work.

Finally, the accuracy of the calibration algorithm could be improved by improving the circle detection
algorithm that is run on the acquired images. Currently, we are using the circle Hough transform algorithm
which could be replaced by a more precise algorithm with sub-pixel segmentation accuracy.

5. Conclusion

In this work we have demonstrated the use of a seven degrees of freedom robot as a sample holder for x-ray
computed tomography using our complete software package with path planning, collision detection and
calibration. Our findings have confirmed that this kind of robot can be used for computed tomography with
consistent results when compared to more conventional sample holders. A suitably sized sample holder with a
geometric structure that can be used for calibration must be provided.
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