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Despite its high prevalence, the cellular and molecular mechanisms of chronic

obstructive pulmonary disease (COPD) are far from being understood. Here,

we determine disease-related changes in cellular and molecular compositions

within the alveolar space and peripheral blood of a cohort of COPD patients

and controls. Myeloid cells were the largest cellular compartment in the

alveolar space with invading monocytes and proliferating macrophages

elevated in COPD. Modeling cell-to-cell communication, signaling pathway

usage, and transcription factor binding predicts TGF-b1 to be a major upstream

regulator of transcriptional changes in alveolar macrophages of COPD patients.

Functionally, macrophages in COPD showed reduced antigen presentation

capacity, accumulation of cholesteryl ester, reduced cellular chemotaxis, and

mitochondrial dysfunction, reminiscent of impaired immune activation.
KEYWORDS

chronic obstructive pulmonary disease, bronchoalveolar lavage, blood, macrophage,
monocyte, impaired immune activation, TGF-b1
Introduction

Worldwide, chronic obstructive pulmonary disease

(COPD) is the third leading cause of death (1, 2). Due to

smoking and increasing air pollution, the current prevalence

of 10.1% is estimated to further increase in the next

decades (2). Considering the enormous medical and

financial burden of COPD, there is a need to develop

efficient biomarker-based diagnostics, and molecularly

guided therapies. It is now accepted that COPD is a

heterogeneous disease manifesting as a clinical syndrome

with structural pulmonary abnormalities, lung function

impairment, chronic respiratory symptoms, or any

combination of these. Consequently, the pathogenesis of the

disease is complex with numerous co-existing mechanisms

with inflammation being one of the most prominent and

important mechanisms (3). Lung inflammation in COPD is

characterized by alterations in the number and function of

immune cells. Alveolar macrophages (AMs) are considered to

be one of the major orchestrators (4). Yet, little is known

about the heterogeneity of AMs in COPD as well as

the underlying molecular mechanisms leading to AM

alterations, particularly during earlier disease stages.

To characterize molecular and functional alterations in the

myeloid compartment in COPD, we here applied single-cell

transcriptomics combined with extended data analytics, as well

as phenotypic and functional assays to characterize the molecular

changes in myeloid cells derived from bronchoalveolar lavage

fluid (BALF) and peripheral blood obtained from patients with

early-stage COPD (Global Initiative for Chronic Obstructive

Lung Disease (GOLD) stage 2).
02
Results

Heterogeneous cellular states of
macrophages in the human alveolar
space

We obtained freshly isolated BALF material and peripheral

blood (Figure 1A) from COPD patients and donors with

chronic cough, but without any signs for pathophysiological

alterations of the lung (hereafter referred to as ‘control’)

(Table S1). We conducted a pilot experiment, in which we

obtained single-cell RNA-sequencing (scRNA-seq) data using

the most widely used droplet-based solution [Chromium from

10x Genomics (5)] and a well-based method [Seq-Well (6)].

After identification of cell-types based on marker gene

expression of defined clusters (Figure S1A), we compared the

cell populations between the two technologies. As ground

truth, we characterized the cellular compartment in the

alveolar space using multi-color flow cytometry (MCFC)

(Table S2, see methods). All three approaches identified

macrophages as the predominant cell type in the alveolar

space (Figure S1B). When determining the cell type

distribution for the droplet- and well-based scRNA-seq

methods, granulocytes (neutrophils, eosinophils) were almost

undetectable in the droplet-based method (Figure S1B).

Since the population structure in Seq-Well was more

closely related to MCFC data, we continued with the well-

based scRNA-seq method and generated 60,925 single-cell

transcriptomes from BALF derived from 9 patients with

early-stage COPD (GOLD stage 2) and 6 controls, as well as

54,569 single-cell transcriptomes from peripheral blood of 6
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FIGURE 1

scRNA-seq data of BALF samples obtained from COPD patients and healthy controls. (A) Schematic workflow of the present study. Bronchoalveolar
lavage fluid (BALF) and peripheral blood was obtained from control donors and COPD patients (GOLD stage 2). After enrichment for immune cells
(CD45+ cells), single-cell RNA-seq was performed. (B) UMAP representation of integrated BALF data obtained from all COPD patients and control
donors. Coloring and numbering according to identified main clusters. (C) Heatmap of the calculated marker genes per main cluster with a bar
chart representation of the relative cell type proportions at the top. The marker gene expression per cluster is represented as a z-transformed value
(across all clusters). Rows of the heatmap are clustered hierarchically. At the bottom of the plot, the main cell type is displayed, which is contained
in the respective main cluster. (D) Schematic workflow of the four-step annotation approach, including machine learning-based cell type
annotation, clustering, assignment and subsequent confirmation of a cluster to a cell type according to the machine learning-based cell type
annotation, and identification of ‘contaminating’ cells (referred to as ‘mixed cells’). (E) Final cell type annotation of integrated BALF data according to
the four-step annotation approach. (F) Volcano plot visualization of log2 fold changes and negative log10 p-values (Wilcoxon rank sum test) of
changes in cell type occurrence in BALF of samples obtained from COPD patients and controls. BALF, bronchoalveolar lavage fluid; alv., alveolar;
MDM, monocyte-derived macrophage; DC, dendritic cell; n, number; MФ, macrophage.
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COPD patients and 4 controls (Figure 1A; Table S1). Starting

with BALF cells, we first used a classical clustering approach

and visualized the data viaUMAP in 17 clusters (Figure 1B). By

marker gene identification on the majority of cells in each of

the clusters, we identified the major cell types present in BALF

(Figure 1C). A more detailed inspection of individual clusters

revealed further cluster substructures. To better describe the

cellular compartment in BALF we developed and applied a

four-step cell type annotation procedure (Figure 1D, S1C–G)

(for details see methods section ‘four-step cell type annotation’).

Macrophages were not only the most prevalent, but also the

most heterogeneous class of immune cells in the alveolar space

(Figure 1E, Table S3), but we also identified dendritic cells

(DCs), monocytes, neutrophils, eosinophils, mast cells and T

cells in BALF which is in line with recent reports (7).

Determination of relative frequencies between COPD and

control revealed one of the macrophage states (MФ8) to be

elevated in COPD, while the majority of cell types and states

did not significantly differ between the COPD and control

group (Figure 1F). Collectively, single-cell transcriptomics

reveals a heterogeneous landscape of myeloid cells in BALF

with slight shifts in cell state distributions between early stage

COPD (GOLD stage 2) and controls.
Frontiers in Immunology 04
Proliferating and monocyte-like
macrophage states are elevated in COPD

To further characterize the most prevalent and

heterogeneous cell types in the alveolar space, we subclustered

macrophages and monocytes excluding non-immune cells,

neutrophils, basophils, eosinophils, mast cells, DCs, and T

cells, which resulted in a total of 13 clusters (Figures 2A, B).

Except for cluster 10 (monocytes), all other clusters expressed

macrophage cell lineage markers (MSR1, MRC1, MARCO).

BALF-der ived macrophages d i sp layed remarkab le

transcriptional plasticity. The MФ8 macrophage state, elevated

in COPD, was characterized by proliferation-associated genes

(MKI67, TOP2A, and NUSAP1), as well as increased expression

of histone genes (HIST1H4C and HIST1H1D) and most of the

MФ8 cells were computationally assigned to the G2/M cell cycle

phase (Figure S2A), strongly supporting these cells representing

proliferating macrophages. MФ6 and MФ9 macrophage states

were highly enriched for major histocompatibility class (MHC)

II expression (HLA-DQ and HLA-DR respectively), while the

MФ12 cell state carried hemoglobin genes (HBA2, HBA1, and

HBB) either due to engulfed erythrocytes or induction of

hemoglobin genes in macrophages.
B

CA

FIGURE 2

Exploration of the macrophage and monocyte cell types and states in human BALF. (A) UMAP representation and clustering of cells annotated
as monocytes or macrophages by the four-step annotation approach (according to Figure 1). (B) Heatmap of marker genes per macrophage/
monocyte cluster (referred to as ‘macrophage states’; according to Figure 2A). The marker gene expression per macrophage state is
represented as a z-transformed value across all macrophage states. On the left side of the heatmap, conserved macrophage markers are
depicted. Columns and rows of the heatmap are sorted by hierarchical clustering. (C) Box visualization plot (with marked median values) of
most significant differences in population sizes within the identified macrophage states between COPD and control (error bars indicating the
standard deviation; statistics based on Wilcoxon rank sum test). n, number; MФ, macrophage.
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Except for the macrophage states MФ12, 2 and 11, we did

not identify any donor effect (Figure S2B) with the latter being

characterized by CCL5 expression (CCL5+ macrophage state).

The MФ5 state exhibited relatively strong expression of the

monocyte-associated genes VCAN and S100A8 together with the

monocyte attractant CCL2 and the late monocyte-to-

macrophage differentiation marker CHIT1 and was therefore

designated as ‘monocyte-like’ (mono-like) macrophages.

Furthermore, these cells, together with the proliferating

macrophages, exhibited the largest relative increase in

population size in COPD (Figure 2C). The monocyte-like

macrophages also shared some markers with the MФ7 cell

state, which was additionally high in interferon-response genes

(IFIT1 and IFIT2), and MФ3 cells characterized by increased

expression of complement components (C1QA-C) and alpha-1-

antitrypsin (SERPINA1).

Next, we predicted the functions of each macrophage state

by gene set variation analysis (GSVA) (Figure S2C, D),

illustrating shared, but also cluster-specific functions.

Among the shared terms, we found enrichment of ‘antigen

presentation’, ‘endocytosis’, ‘oxidative phosphorylation’ and

‘b-oxidation’, which reflect some of the basic cellular

processes of macrophages in the alveolar space. Intriguingly,

the MФ4 cell state revealed a specific enrichment of the

mTOR signaling pathway, which was described to be

associated with cellular senescence in non-immune cells

from the lung (8). This was further corroborated by

enrichment analysis of gene sets associated with cellular

senescence, namely genes associated with cell aging and

mitochondrial functions (Figure S2E). Furthermore, a

senescent molecular phenotype of the MФ4 cell state was

supported by downregulation of the genes also downregulated

in the recently described IMM-age signature derived from

aged immune cel l s (9) (Figure S2E) . Col lect ive ly ,

macrophages in BALF exist in numerous different molecular

and functional states with proliferating and ‘monocyte-like’

macrophage states being elevated in COPD.
Altered lipid metabolism and stressed
macrophage phenotypes in COPD

To determine overall functional differences between

control and COPD based on macrophage state information,

we developed ‘GO-shuffling’ as a GO enrichment approach

(Figure S3A, see methods section ‘Gene set distance analysis of

annotated cell types’ for more detail). This enrichment analysis

showed that mainly metabolism-associated terms contributed

to the separation of COPD patients from control donors

(Figure 3A). To examine potential COPD-associated changes

in metabolism, we applied the Compass algorithm (10) to

comprehensively model the metabolic differences between

COPD and control macrophage states. The largest differences
Frontiers in Immunology 05
were found in amino acid and lipid metabolism (Figure 3B),

with an overall higher predicted metabolic activity in COPD

samples (Figure 3C). Among the differential lipid-associated

metabolites and reactions, phosphorylation of inositol was

most prominent, but we also found altered metabolites and

reactions, indicating increased transport (monoacylglycerol),

synthesis (phospholipids and cholesterol) and degradation (b-
oxidation) of lipids in COPD macrophages. In concordance

with the increase in lipid metabolism in COPD patients

(predicted by Compass), we observed an overall higher

expression of genes found in lipid-associated gene sets that

were contained in the top 1% of the functional gene sets (Figure

S3B). Among these genes, we found several receptors for

cholesterol uptake (CD36, LDLR, MSR1, and TREM2) and

genes of cholesterol storage mediated by cholesteryl ester

synthesis (ACAT1/2 and SOAT1), but also genes associated

with cholesteryl ester hydrolases (LIPA, CES1, and NCEH1)

(Figure S3B, C). Next, we validated the in silico prediction of

altered lipid metabolism in COPD by performing lipidomics

analyses of 229 lipid species in macrophages obtained either

from COPD GOLD 2 patients or control donors. We observed

the greatest difference in the lipid class of cholesteryl esters,

which was significantly higher in COPD macrophages than in

controls (Figure 3D, E). These findings indicate that the

macrophages in COPD patients show a pulmonary foam cell-

like response, which has been reported for other lung diseases,

such as pulmonary alveolar proteinosis (11). This cellular

phenotype is characterized by the cells being predominantly

cholesterol-laden. The accumulation of cholesterol in

macrophages of pulmonary alveolar proteinosis patients has

been associated with downregulated expression of the

cholesterol transporter ABCG1 (12). Furthermore, the

accumulation of cholesteryl ester has been described in

microglia as a consequence of deficient TREM2 signaling

(13). Surprisingly, we found an upregulation of ABCG1 and

TREM2 expression in COPD macrophages (Figure S3B).

However, NOTCH signaling was also predicted as a strong

separator of COPD and control macrophages (Figure 3A) and,

as a consequence, might result in perturbed TREM2 signaling.

Investigation of this gene set revealed increased expression

levels of the metalloprotease-disintegrins ADAM10 and

ADAM17 and the g-secretase component APH1A (Figure

S3D). These enzymes can cleave TREM2 from the surface

and thus interfere with the downstream signal transmission

(14). It is possible that elevated TREM2 expression in

macrophages is a consequence of COPD-mediated tissue

damage and thus increased cellular stress.

Since both increased metabolic activity (Figure 3C) and

putative cell stress demand high amounts of energy, we

hypothesized that energy turnover might be increased in

macrophages f rom COPD pat ient s and there fore

investigated the mitochondrial function of AMs. In three

COPD patients and 2 control donors, we were able to isolate
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FIGURE 3
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FIGURE 3

Modeling of themetabolic landscape and alterations in macrophages. (A)Word cloud of themost commonwords in the top predicted terms of the GO-
shuffling approach across all macrophage clusters. (B)Compass results of the modeledmetabolic landscape in macrophages. The pie chart summarizes
and categorizes the predictedmetabolites and pathways that are significantly different between COPD and control. (C)Heatmap showing themetabolites
and pathways that were predicted by Compass as altered in COPD and that were associated with lipid metabolism. Metabolites are shown in black and
reactions in red. Columns and rows of the heat map are sorted by hierarchical clustering. (D) Volcano plot visualization of log2 fold changes and negative
log10 p-values (Wilcoxon rank sum test) of lipid class levels between COPD and control macrophages obtained by lipidomics analysis. (E) Box plot with
marked median values of cholesteryl ester proportions with the representation of individual donors. (F) Evaluation of mitochondrial function via the time-
dependent course of the oxygen consumption rate (OCR) in macrophages using baseline-corrected values. Error bars indicate the standard deviations
(control n = 2, COPD n = 3). Dashed arrows represent the injection of various compounds (shown at the top of the plot) used to assess different aspects of
mitochondrial function (according to Figure S3E). (G) Bar plots showing quantifications of different aspects of mitochondrial function inferred from the
OCRmeasurement in Figure 3F (according to Figure S3E; error bars indicating the standard deviation; statistics based on t-test). (H)Heatmap
representation of proteins detected in BALF with a p-value < 0.1 according to theWilcoxon rank sum test between COPD patients and control donors
(control n = 11, COPD n = 12). Themean protein expression (identified by Olink Proteomics) per donor is represented as a z-transformed value (across all
donors). Columns of the heatmap are sorted by hierarchical clustering. (I)Quantification of themigratory capability of macrophages towards CCL3
displayed in a box plot with markedmedian values and the representation of individual donors (control n = 4, COPD n = 4; error bars indicating the
standard deviation; statistics based on t-test). BALF, bronchoalveolar lavage fluid; OCR, oxygen consumption rate.
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sufficient numbers of viable cells to measure mitochondrial

function. Indeed, we observed an increased baseline

respiration rate in macrophages derived from COPD

patients (Figure 3F, G, Figure S3E), which reflects an

elevated energy demand. In line with previous reports (15),

we found a significant increase in proton leakage in COPD

macrophages, despite similar levels of ATP production, which

is indicative for mitochondrial dysfunction and increased ROS

production in COPD (16).

Reduction of chemotaxis was also predicted for COPD

macrophages (Figure 3A). While CCL3 was elevated in BALF

from COPD patients (Figure 3H), the chemotaxis of COPD

macrophages towards CCL3 was reduced (Figure 3I), indicating

that single-cell transcriptomes indeed correctly predicted

macrophage function, while elevated chemokine levels in

BALF did not serve as a surrogate for cellular function. Taken

together, the heterogeneous landscape of BALF-derived

macrophages is linked to numerous molecular and cellular

alterations in COPD, of which we highlight metabolic and

chemotactic changes together with evidence of pronounced

cellular stress.
COPD leads to downregulation of MHC
expression

We next intended to determine differential gene

expression across different macrophage states between

COPD and controls. Here, we applied an approach, which

includes patient information by testing all possible pairs of

patients and controls followed by utilizing the median

Wilcoxon score of the pairwise tests as a test statistic (Figure

S4A–D, for more detail see methods section ‘Distribution-free

DE analysis across patient groups’). Visualization of the DE

genes per macrophage state shows that the majority of the

observed transcriptional differences are macrophage state-
Frontiers in Immunology 07
specific (Figure 4A), albeit trends for differential expression

in the same direction were often seen for other macrophage

states as well (Figure 4B). Interestingly, transcriptional

differences are mainly attributable to increased expression

in COPD.

In accordance with the Compass analysis (Figure 3), lipid

metabolism-associated genes (e.g. CD36, COLEC12, SOAT1, and

PPARG) were identified to be upregulated in COPD (Figure 4B).

Further, metalloprotease-disintegrins ADAM9, ADAM10 and

ADAM17, as well as the surface molecule CD163 were elevated

across many macrophage states in COPD, which corroborates

earlier findings for CD163 by immunohistochemistry (18)

(Figure 4B). Gene set enrichment analysis (GSEA) revealed

terms associated with focal adhesion and antigen processing

and presentation (Figure 4C).

When plotting the expression of the top expressed MHC

class I-encoding genes (HLA-A, HLA-B, HLA-C, HLA-E)

(Figure 4D) and MHC II-encoding genes (HLA-DRA, HLA-

DRB1, HLA-DRB5, HLA-DPA1, HLA-DPB1, and HLA-DQB1)

(Figure S4E), we found these genes largely to be downregulated

in COPD. We identified similar downregulation of MHC-

encoding gene expression in bulk transcriptome data (17)

comparing BALF-derived macrophages from healthy donors,

healthy smokers, and COPD patients (Figures 4E, F).

Downregulation of MHC molecules was most pronounced in

COPD and thus not solely due to smoking. Next, we isolated

BALF macrophages from additional patients and measured

surface protein levels of MHC class I (HLA-A/-B/-C)

(Figures 4G, H) and class II (HLA-DR) (Figure S4F, G). MHC

class I was significantly reduced on macrophages derived from

COPD patients, while MHC class II molecules only showed a

trend towards lower expression. In summary, DEG expression

analysis revealed significant transcriptional changes in

macrophages, including the downregulation of MHC I-

encoding gene expressions, which was also apparent on

protein level.
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FIGURE 4

DE gene analysis of identified macrophage states. (A) UpSet plot of calculated DE genes across macrophage states. DE genes found in the same
states are binned and the size of the bins is represented as a bar chart. At the bottom, dots indicate which macrophage states contained and
shared these DE genes. (B) Heat map representation of the union of all DE genes found in the macrophage states. Depicted is the group median
(group = COPD or control) of the z-transformed mean expression data per donor and macrophage state across all macrophage states, and the
names of some selected DE genes are shown on the right side of the plot. Columns and rows of the heat map are sorted by hierarchical
clustering. (C) Selected functional gene sets from GSEA based on DE genes that reach the defined significance cutoffs for more than two
macrophage states (acc. to Figure 4B). (D) Violin plot with marked median of HLA-A/-B/-C and -E expression in all macrophages based on
scRNA-seq data. The plot shows the expression across the donors, whereby the donors were downsampled to the same number of cells,
followed by downsampling to the same number of cells between COPD and control. The plot displays cells with an expression > 0. (E) Box plots
(with marked median values) showing the mean expression per sample of HLA genes expressed in macrophages (error bars indicating the
standard deviation; statistics are based on the Wilcoxon rank sum test). The data are obtained from Shaykhiev et al. (17). (F) Pin plot representing
the enrichments in the samples of Shaykhiev et al. of HLA genes expressed in macrophages. (G) Fluorescence intensity histograms showing
representative samples of flow cytometric analysis of HLA-A/-B/-C expression on the cell surface of isolated macrophages (FMO =
fluorescence minus one). (H) Box plots with marked median of the calculated effect sizes of HLA-A/-B/-C expression in COPD and control with
the representation of individual donors (control n = 8, COPD n = 5; error bars indicating the standard deviation; statistics based on Wilcoxon
rank sum test). MФ, macrophage; mono, monocyte; DE, differentially expressed; GSEA, gene set enrichment analysis; FDR, false discovery rate;
FMO, fluorescence minus one.
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Cell-to-cell communication via TGF-b
signaling explains changes in
macrophage states

To define potential upstream regulators for changes

observed in COPD, we focused on those macrophage states

with a minimum of 30 DE genes between COPD and control

(Table S5). Representation of predicted transcriptional

regulators in an UpSet plot showed that YY1, which is an

important modulator of TGF-b1 and NOTCH signaling, was

the only predicted transcription factor (TF) shared by all

macrophage states included in the analysis (Figure 5A).

Elevated TGF-b signaling was further supported by the

identification of the TFs TFE3 and MYOD1 with co-regulation

being present in monocyte-like macrophages (cluster MФ5) and

C1Q+ macrophages (cluster MФ3) which was similarly true for

the NOTCH signaling related TFs HES1 and HEY1. Other

predicted signaling cascades included WNT signaling (e.g.

TCF3/4, MYC and NFATC1/3) and TNF/NF-kB signaling (e.g.

CEBPB and REL). These major pathways suggested that signals

from the microenvironment are important drivers for

transcriptional alterations in macrophages. We next applied

CellPhoneDB, which models cell-to-cell communications

based on known receptor-ligand interactions (19). Network

construction of cell-to-cell interactions within control samples

revealed monocyte-like and C1Q+ macrophages to be the major

network hubs (Figure 5B). In COPD, cell-to-cell communication

was increased, which was particularly obvious for C1Q+ and

monocyte-like macrophages (Figure 5B). Among the predicted

monocyte-like macrophage interactions, which showed the

strongest difference between COPD and the control, we

identified several receptor-ligand pairs associated with the

TNF superfamily (Figure S5A). Furthermore, we found an

increased likelihood of interaction between the ligand TGF-b1
and the receptor TGFBR1 in COPD.

To corroborate this model, we applied NicheNet (20) to

monocyte-like and C1Q+ macrophages exhibiting the most cell-

to-cell-interactions (Figure 5B) and most DE genes in COPD

(Figure 4B). Ligand activity analysis allowed selection of the top

3 ligands that best predicted DE genes in one of the two

macrophage states (Figure 5C, Figure S5B, C). TGFB1, PTPRM

and PSAP were predicted to regulate monocyte-like cells, while

C1Q+ macrophages were influenced mainly by INHBA and to a

lesser extent ADAM12. As INHBA is part of the TGF-b
superfamily and shares the same signaling cascade via

SMAD2/3/4/7, there might be more commonality in ligand

activity within these two macrophage states. Most of the genes,

for which expression is predicted to be regulated by the

aforementioned ligands, showed a clear DE pattern between

COPD patients in both C1Q+ and monocyte-like macrophages

(Figure 5C), but only weak expression in the other macrophage

states (Figure S5D). In contrast, visualization of the expression of
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the predicted ligands across the different immune cell types from

BALF revealed no clear differences between COPD versus

control cells for INHBA, PSAP and ADAM12 (Figure 5D). If

these genes play a role in COPD, the major sources might be cells

not present in BALF. For instance, Activin-A, whose subunit is

encoded by INHBA, is known to be upregulated on lung

epithelial cells from COPD patients (21). However, for the

ligands CSF1, PTPRM, and TGFB1, we found a direct link

between their ligand activity and the gene expression in BALF

cells from COPD patients (Figure 5D). Since TGFB1 was both

predicted as a signaling pathway of transcriptional regulation

(Figure 5A) and identified as a cell-to-cell-interaction partner for

monocyte-like macrophages by CellPhoneDB (Figure S5A), we

focused further analysis on this ligand. TGFB1 is upregulated in

COPD patients in eosinophils, C1Q+ macrophages, monocyte-

like macrophages, neutrophils and mast cells (Figure 5D). To

assess whether the increase in TGFB1 expression is translated

into elevated protein levels, we examined the BALF of COPD

patients and control donors for the latency-associated peptide

TGF-b1 (LAP TGF-b1), which serves as a surrogate for TGF-b1
protein levels. This analysis showed a tendency towards

increased LAP TGF-b1 levels in COPD (Figure 5E), which is

further supported by reports on elevated TGFB1 levels in

peripheral lung tissue from COPD patients (22).

In addition to elevated TGFB1 expression in COPD, the

receptors with the highest predicted interaction potential score

for TGFB1 (TGFBR1 and TGFBR2) exhibited also higher

expression in monocyte-like macrophages from COPD

patients (Figure 5F). Further, we visualized NicheNet-

predicted signaling and transcriptional regulation events

between TGFB1 and its putative target genes shown to be DE

in COPD (Figure 5F). The nodes in the constructed path were

colored according to the expression fold change between COPD

and control. Among the transcriptional regulators were the

classical TGF-b signaling mediators SMAD3 and SMAD4, with

SMAD4 showing increased expression in COPD (Figure 5F).

Finally, further support for the importance of TGF-b
signaling in COPD came from elevated expression of genes

within the TGF-b signaling cascade in COPD patients but not

smokers when compared to healthy non-smokers, as assessed in

the dataset from Shaykhiev et al. (17) (Figure 5G). In summary,

we predicted TGF-b signaling to be a prominent regulator of

gene expression in BALF-derived macrophages in the context

of COPD.
The macrophage pool is supplied by
blood monocytes in COPD

We predicted TGF-b1 as an important regulator of

monocyte-like macrophages (Figure 5C), and this cytokine has

recently been identified as a crucial cytokine in macrophage
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FIGURE 5

Modeling the cell-to-cell interactions of BALF cells. (A) UpSet plot of predicted transcriptional regulators of DE genes. Dots indicate which
clusters contain and share predicted transcriptional regulators. The names of selected regulators are shown on the right side of the plot with
the font color indicating the association with NOTCH, WNT, TGF-b1, TNF or circadian rhythm signaling. (B) Network representation of predicted
cell-to-cell interactions derived from CellPhoneDB. The names of the two most interconnected cell types are displayed (edge: identified cell-
to-cell interaction; edge width: proportional to number of interactions between two cell types; node size: proportional to number of overall
interactions). (C) Results of NicheNet analysis, in which the heatmap in the top left corner displays the z-normalized ligand activity scores (based
on area under the precision recall curve (AUPR)) of the top 3 ligands for either the DE genes from C1Q+ macrophages or monocyte-like
macrophages, respectively. On the right the top 250 interaction scores of the ligands’ target genes are colored by their interaction score. The
heatmap at the bottom represents the mean expression (z-transformed by gene across all macrophage states; according to Figure S5D) of the
ligands’ target genes in C1Q+ macrophages or monocyte-like macrophages from control and COPD. (D) The mean expression of the top 6
ligands in all identified BALF cell types for either COPD or control patients (z-transformed by gene) is displayed. (E) Box plot with marked
median of the measured protein expression (by Olink Proteomics) in BALF of LAP TGF-b1 in COPD and control with representation of individual
donors (control n = 11, COPD n = 12; error bars indicating the standard deviation; statistics based on Wilcoxon rank sum test). (F)
Representation of inferred ligand-to-target signaling path for TGF-b1 derived from the NicheNet analysis. The nodes representing the genes are
colored by the expression fold change between COPD and control patients. (G) Box plots (with marked median values) showing the mean
expression per sample of TGF-b-signaling genes (error bars indicating the standard deviation; statistics are based on the Wilcoxon rank sum
test). The underlying data are obtained from Shaykhiev et al. (17). signal., signaling; TF, transcription factor; MФ, macrophage; regulat.,
regulatory; mono, monocyte; DC, dendritic cell; transcript., transcriptional.
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differentiation (23). Tissue macrophage replenishment is linked

to the local proliferation of tissue-resident cells, but also influx

and subsequent differentiation of monocyte-derived cells from

the circulation (24). The monocyte-like macrophages had

transcriptional similarities to monocytes (Figure 4B) and, at

the same time, their expression profile was regulated by typical

signaling pathways of cell differentiation (Figure 5A, C),

suggesting that they may be derived from monocytes. To

investigate whether the monocyte-like macrophage state

represents an early stage of monocyte-to-macrophage

differentiation, we used a gene signature of murine monocyte-

derived macrophages (MDM) from the lungs of smoke-exposed

mice (Wohnhaas et al., unpublished data) and assessed the

enrichment of orthologous genes in the human macrophage

states (Figure 6A). The strongest enrichment of the MDM

signature was found in monocyte-like (cluster MФ5) and

C1Q+ macrophages (cluster MФ3). Utilizing orthologous gene

signatures derived from murine lipid-associated macrophages

(LAMs), which were shown to be monocyte-derived by lineage

tracing (25), also revealed the strongest enrichment in

monocyte-like and C1Q+ macrophages (Figure 6A). These

enrichment analyses supported the hypothesis that monocyte-

like, but also C1Q+ macrophages, were derived from monocytes.

To establish a direct link from circulating monocytes to the

monocyte-related macrophages, we performed scRNA-seq of

blood immune cells (Figure 1, Figure 6B) from the same donors

from whom the scRNA-seq data of alveolar space immune cells

were obtained. Application of the four-step cell type

annotation approach (Figure 1B) identified the three known

blood monocyte populations comprising classical monocytes

(CD14+ monocytes), intermediate monocytes (CD14+CD16+

monocytes) and non-classical monocytes (CD16+ monocytes)

along with a small monocyte population that expressed high

numbers of interferon-associated genes (IFIT+ monocytes)

(Figure 6B). We next described the relationship between

blood-derived monocytes and alveolar space-derived

monocytes and macrophages by building a model to

determine which of the monocyte subtypes in the blood

would most likely give rise to the monocyte-like macrophage

state. For this purpose, we combined the blood and BALF data

while considering donor batches. While this approach enabled

the combination of the blood and alveolar space data, we

observed a reduced resolution of the defined macrophage

states and therefore continued with a simplified annotation

for the analysis of the embedded data (Figure 6C, Figure S6A).

Projection of RNA velocity vectors calculated by the scVelo

method (26) in a batch-corrected manner onto the embedded

data (Figure S6B) and inference of the main average vector flow

visualized by velocity streamlines (Figure 6C) revealed a clear

motion of blood monocytes towards the macrophages, further

supporting circulating monocytes to be precursors of

macrophages in the alveolar space. Since RNA velocity

visualization on the UMAP did not reveal a clear link
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between individual macrophage states and blood monocyte

subsets, we calculated a higher-order representation using

partition-based graph abstraction analysis (PAGA) (27)

(Figure 6D). The strongest connection was derived between

blood monocytes and monocytes identified in the alveolar

space. To evaluate the connectivity of the PAGA network

more precisely, we used the connectivity matrix as a test

statistic to define the highest likelihood for each of the blood

monocyte subtypes to be related to the different macrophage

states in the alveolar space (Figure 6D). The monocytes within

the alveolar space served as positive controls indicating very

high relationships. However, among the macrophage states, we

could establish the strongest connections between the CD16+

monocyte subtype in blood and the monocyte-l ike

macrophages in the alveolar space, further supporting that

the monocyte-like macrophages are most likely an early

functional state of macrophages after circulating monocytes

enter this tissue compartment.

Lastly, we investigated whether the DE genes in

macrophages from COPD patients (Figure 4B, C) were already

altered in blood monocytes. For this purpose, we used the DE

genes as signatures of up- and downregulated genes. Clearly,

these signatures were altered in the different blood monocyte

subtypes derived from COPD patients with CD14+CD16+ and

CD16+ monocyte subtypes showing the strongest enrichment of

macrophage DE genes upregulated in COPD (Figure 6E). Of

particular interest, MHC class I and II genes were found to be

expressed at lower levels in COPD-derived monocytes,

supporting a systemic component of COPD leading to

transcriptional changes in circulating monocytes (Figure 6F).

In summary, we provide evidence that blood monocytes

contribute to the macrophage pool, with monocyte-like

macrophages providing a link between blood and lung. The

monocyte-like macrophages are elevated in the alveolar space of

COPD patients (Figure 2C), suggesting an increased infiltration

of blood monocytes. In addition, blood monocytes already show

transcriptional changes reminiscent of those observed in cells

from the alveolar space strongly arguing for a systemic

component in COPD.
Discussion

COPD is an inflammatory lung disease with a high global

burden, increasing incidence, prevalence, morbidity and

mortality, mainly due to rising air pollution and high smoking

rates worldwide (2). Yet, the cellular and molecular mechanisms

of this heterogeneous disease are far from being fully

understood. Not surprisingly, the diagnosis of COPD is solely

based on clinical parameters due to the lack of molecularly

defined biomarkers and, as a consequence, causal therapies are

lacking because of an incomplete understanding of the

complex pathophysiology.
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FIGURE 6

Assessing the relationship between blood monocytes and BALF macrophages. (A) Violin plots (with marked median values) displaying
enrichment of human orthologues of murine monocyte-derived macrophage signature genes across macrophage states in COPD and control
based on Area Under the Curve (AUC). (B) Integrated scRNA-seq data of blood immune cells annotated according to the four-step annotation
approach (according to Figure 1B). (C) UMAP of embedded macrophages/monocytes from BALF and blood monocytes. Inferred main average
vector flow is indicated by velocity streamlines that are projected as vectors. Locations of the main cell types (acc. to the combined labels from
Figure S6A) in the UMAP are indicated by the heat maps at the bottom. (D) PAGA graph derived from embedded BALF and blood data
(according to Figure 6C). The weight of an edge, which reflects a statistical measure of connectivity, is represented as the edge width. The
table below summarizes the results of the PAGA connectivity calculation, where a value of 1 indicates a strong connection and 0 indicates a
weak connection between two cell types. (E) Violin plots (with marked median values) displaying enrichment of macrophage-related DE genes
(according to Figures 4B, C) in blood monocytes based on AUC. (F) Violin plots with marked median of the expression of HLA genes, in blood
monocytes based on scRNA-seq data. The plots show the expression across the donors, whereby the donors were downsampled to the same
number of cells, followed by downsampling to the same number of cells between COPD and control. The plots display cells with an expression
> 0. BALF, bronchoalveolar lavage fluid; mono, monocyte; MФ, macrophage; NФ, neutrophil; proliferat., proliferating; MDM, monocyte-derived
macrophage; LAM, lipid-associated macrophage; ns, means not significant.
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Here, we characterized COPD-associated changes in

immune cells from BALF and blood using scRNA-seq in

combination with the application of advanced computational

approaches. Focusing on alveolar macrophages, the most

prevalent cell compartment in BALF, we found specific

alterations in lipid metabolism, reduced expression of MHC

class I molecules, and identified TGF-b1 as a major factor

responsible for transcriptional reprogramming in COPD.

Overall, our results indicate stressed and dysfunctional

macrophages in COPD. Changes of the molecular phenotype

were further supported by functional analysis, illustrating

mitochondrial leakage and reduced chemotaxis. In addition,

proliferating and monocyte-like macrophages were elevated in

COPD, with evidence that the latter were derived from blood

monocytes (Figure 7).

Recently, it has been hypothesized that reprogramming of

disease-related cells as a potential therapeutic option might only

be possible at earlier stages (28). We therefore focused on

patients diagnosed with early clinical stage disease (GOLD

stage 2). Single-cell transcriptomes from BALF showed many

different cellular states within the myeloid compartment, both in

COPD patients and controls. We identified numerous

alterations, both cell state-specific but also myeloid

compartment-wide changes between COPD and controls. Of
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particular interest is the identification of reduced expression of

MHC class I molecules across macrophage states in COPD. This

finding is in accordance with previous studies linking

downregulation of surface MHC class I in COPD with

impaired immunoproteasome activity (29). Macrophages

expressing low-level MHC class I are less efficient in inducing

antiviral immune responses, which may explain the high

susceptibility of COPD patients to viral infections, one of the

main reasons for disease exacerbations.

To understand the regulation of the DE genes, we performed

transcription factor binding prediction, receptor-ligand

interaction modeling, and downstream transcriptional

signature prediction, which indicated TGF-b signaling

followed by NOTCH-, WNT-, and TNF-signaling to be

elevated in COPD. The predicted pathways might also be

involved in immunosenescence in COPD. For example, TGF-

b1 can signal via the mTOR pathway, which was recently

associated with cellular senescence in lung cells (30). As

COPD develops preferentially in elderly people who often

suffer from several comorbidities, cellular aging has been

suggested as a hallmark of the disease (31). Features of cellular

senescence comprise an increase in the number of mitochondria

and mitochondrial dysfunction, which is reflected by increased

proton leakage and an associated increase in reactive oxygen
FIGURE 7

Schematic representation of the key findings of the present study In healthy lungs, alveolar macrophages survey the alveoli and remove
pathogens and debris to enable proper gas exchange. In the alveoli of COPD patients, the alveolar macrophages accumulate cholesteryl esters.
In addition, blood monocytes invade the alveoli and differentiate into alveolar macrophages. The transcriptome of COPD alveolar macrophages
indicate TGF-b1-associated cell signaling especially in the early stages of monocyte-to-macrophage differentiation. The alveolar macrophages
in COPD show a reduced ability to migrate towards chemokine. Furthermore, they express fewer MHC molecules; especially MHC class I.
Together with the reduced phagocytosis of alveolar macrophages in COPD, the ability of these cells for immune surveillance is severely limited
during the disease. In addition, their mitochondria are leaking (e.g. to protons) and therefore produce high amounts of reactive oxygen species.
Taken together, the guardians of normal lung function (alveolar macrophages) are severely altered in COPD, preventing them from fulfilling their
important physiological functions properly. Furthermore, the observation of reduced MHC expression in blood monocytes indicates that the
manifestation of COPD has a strong systemic component.
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species (ROS) production (16). Oxidative stress due to increased

ROS production is a feature of COPD and there is evidence that

this is partly due to mitochondrial dysfunction (32). In line with

cellular senescence, we found increased proton leakage in

mitochondria of macrophages from COPD patients.

Addit ionally , the reduced chemotact ic capaci ty of

macrophages in COPD might also be a result of aged immune

cells (33). Reduced migratory capacity of macrophages can have

deleterious consequences for the lung, as it reduces the efficient

removal of pollutants from the alveolar space, which can lead to

cell death and the induction of inflammation. Moreover, the

clearance of the alveolar space is further deteriorated due to

decreased phagocytosis in macrophages in COPD (34).

TGF-b signaling can induce downregulation of MHC

expression. This effect has been associated with signaling via

SMAD4 (35), which gives a direct link between the predicted

intercellular signaling pathways and the DE genes observed

between COPD and control patients. Moreover, TGF-b1 is a

known inducer of ADAM10 and ADAM17 expression (36, 37)

and is described to be essential for macrophage homeostasis and

the differentiation of monocytes into macrophages (23).

Following up on this idea, we performed PAGA and RNA

velocity analysis of cells from the peripheral blood and the

alveolar space. This model suggested that a proportion of the

macrophage pool is replenished from the systemic monocyte

pool circulating in peripheral blood. A recently proposed model

(24) suggested that under homeostatic conditions survival of

tissue-resident macrophages is supported by self-renewal within

the local microenvironment while monocyte recruitment is

rather limited. During inflammation, tissue-resident

macrophages retain the ability to self-renew, but at the same

time many blood-derived monocytes are recruited (38). In

COPD, we found evidence for both, local proliferation of some

macrophages and recruitment of blood monocytes. Indeed,

monocyte-like and C1Q+ macrophages exhibited strong

enrichment of monocyte-derived macrophage signatures (25).

Further, RNA velocity analysis supported a differentiation

process from blood monocytes, particularly the CD16+ subset

towards the monocyte-like cell state within the alveolar

macrophage compartment, which is in line with previous

findings demonstrating that the murine counterpart of human

CD16+ monocytes can differentiate into lung macrophages (39).
Limitations of this study

The analysis of high quality-biosamples is an important

prerequisite for high-resolution analysis such as single cell

transcriptomes. While we screened many more patients, only a

subfraction of BALF samples was of sufficiently high quality for

further analyses. In addition, since the beginning of the

pandemic we were not able to obtain further BALF samples

due to hospital restrictions. While the study was comparable in
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pandemic, the last two years have seen an explosion of larger

studies, in particular related to COVID-19. As a consequence,

the size of the study now appears rather small. Yet, we have

identified several important biological findings that characterize

early-stage COPD. We anticipate that our study will provide a

framework for further functional studies on the immune

compartment in COPD, with a particular emphasis on

metabolism, but also to further understand the patient

heterogeneity we observed for some of the functional

outcomes. In this context, it might be of particular interest

that the blood compartment also showed already alterations that

might be more easily assessed in future studies due to the easier

access to this tissue compartment.

We clearly could show that COPD-related signatures

derived from BALF-derived macrophages were already

enriched in the peripheral blood monocyte pool, particularly

in CD14-CD16+ and CD14+CD16+ subsets. These findings

indicate that the pathophysiology of COPD is not restricted to

the lung. More specifically, reduced MHC expression was also

observed on circulating blood monocytes, which further

underlines a systemic component of COPD (40). Importantly,

elevated levels of TGFB1 have been described in plasma of

COPD patients (41) that could explain the low MHC

expression in blood monocytes. Finally, as we provide all

single-cell transcriptome data and analyses in an integrated

fashion on https://www.fastgenomics.org/ (Figure S7) our data

are easily accessible for further analysis.
Methods

Contact for reagent and resource
sharing

Further information and requests for resources and reagents

should be directed to and will be fulfilled by the lead contact,

Prof. Dr. Joachim L. Schultze (joachim.schultze@dzne.de). A

detailed list of the used reagents and resources is provided in

Table S7.
Subject and method details

Human specimens

Human studies were approved by the ethics committees of

the University of Bonn and University hospital Bonn (local

ethics vote 076/16). All patients provided written informed

consent according to the Declaration of Helsinki before

specimens were collected. Each individual included in this

study was diagnosed and the disease stage was stratified

according to the recommendations of the global initiative for
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chronic obstruct ive lung disease (GOLD) (COPD

recommendations, 2020), with a ratio of post-bronchodilator

(salbutamol 400 μg) forced expiratory volume in 1 s (FEV1) to

forced vital capacity (FVC) of less than 0.7, and moderate airflow

limitation (50% <= FEV1 < 80%). For scRNA-seq, the eligible

patients were aged 40 years or older and were either current or

ex-smokers. Since COPD has recently been suggested to be a

clinical syndrome rather than a single disease (42), we

anticipated that despite the focus on GOLD 2 patients, the

current study should include a spectrum of COPD patients

(Table S1). For example, the generated dataset comprised

COPD GOLD 2 patients with different emphysema

proportions, exacerbation histories and even a patient suffering

from combined pulmonary fibrosis and emphysema (CPFE).

The latter patient was admitted based on an external diagnosis of

COPD that was later diagnosed as CPFE. This disease type was

first described by Cottin et al. (43) and is defined radiologically

by the presence of classical features of emphysema in the upper

lobes and pulmonary fibrosis in the lower lobes and subnormal

lung volumes and severe reduction of CO transfer. Irrespective

of the expected heterogeneity within the COPD GOLD 2 patient

cohort, stringent exclusion criteria for the current study were a

primary diagnosis of asthma with a physician-judged need for

oral corticosteroid therapy, clinically significant cardiovascular

disorders or laboratory abnormalities and unstable concurrent

disease (e.g. exacerbation of disease) that could have affected

safety (as judged by the investigator). Individuals suffering from

chronic cough without any signs of severe lung pathophysiology

or subnormal lung functions served as control donors.
Isolation of cells from bronchoalveolar
lavage fluid

Human BALF was obtained from patients with or without

COPD via bronchoscopy (at the University hospital Bonn).

BALF was performed according to the official American

Thoracic Society guideline for interstitial lung disease

patients to ensure highest quality of biospecimen material

(44). According to these guidelines, we excluded more than

half of the clinical samples from further analyses because either

the volume of saline solution recovered compared to the

amount previously injected into the lungs during

bronchoscopy was too low, or blood contamination or

increased upper respiratory secretion was present. Each of

these factors has an influence on the differential cell count of

BALF samples and would have therefore had a negative effect

on the analysis results. BALF samples fulfilling the quality

criteria were once washed with PBS supplemented with 1 mM

EDTA followed by washing with PBS supplemented with 2%

fetal calf serum (FCS) and 1 mM EDTA. Throughout the

isolation process, the samples were kept at 4°C and
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centrifugation steps performed at 300 g for 10 min. To

exclude any macroscopic non-cellular particles and non-

immune cells from further analyses, immune cells were

enriched with MACS columns by using CD45 microbeads

according to manufacturer’s instructions.
Isolation of peripheral blood
mononuclear cells and granulocytes

For the assessment of relationship analysis of the myeloid

cell compartment in BALF with cells from the systemic

circulation, we obtained venipuncture blood on the day of

bronchoscopy. PBMC were obtained by Pancoll density

centrifugation (at 20°C and 700 g for 25min with

centrifugation break was turned off) of the peripheral blood.

After harvesting PBMC from the interphase, all further steps

were conducted at 4°C. Granulocytes were recovered from the

granulocyte/erythrocyte fraction using cold ACK (ammonium

chloride potassium) lysing buffer (1.5M NH4Cl, 0.1M KHCO3

and 1mM EDTA in H2O with pH 7.4 at 8°C) to lyse erythrocytes,

followed by a washing step with PBS supplemented with 2% FCS

and 1 mM EDTA. All centrifugation steps required for

granulocyte isolation were performed with max. 300 g for

10 min. To assess the granulocyte fraction in further analyses

(particularly in scRNA-seq experiments, Table S1), it was mixed

with the PBMC fraction in the ratio PBMC:granulocytes = 2:1.

Finally, the PBMC/granulocyte mix was stained with CD45

microbeads for 15 min in order to use a magnetic field in the

cell loading of Seq-Well arrays (see below). This artificial ratio

allowed to assess the granulocytes in addition to the PBMCs

without sequencing the majority of blood immune cells being

granulocytes al lowing sufficient granulari ty in the

PBMC fraction.
Flow cytometric data generation

Cells were resuspended in PBS supplemented with 2% FCS

and 1 mM EDTA for surface marker staining (Table S2). To

distinguish live from dead cells, the cells were incubated with

LIVE/DEAD Fixable Yellow Dead Cell Stain Kit (1:1000) at

room temperature for 15 min protected from light. After

washing, human FcR blocking reagent was included to reduce

unspecific staining (incubation on ice for 15 min). Next, surface

antibodies were added and after 30 min incubation at 4°C in the

dark, cells were washed and analyzed either on BD FACSAria III

(Becton Dickinson; 3 lasers: violet, blue, and red) for acquisition

and sorting or on BD FACSCanto II (Becton Dickinson; 2

lasers: blue and red) for acquisition only (Table S2).

Fluorescence-minus-one (FMO) controls were prepared for

non-lineage markers.
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Flow cytometric data analysis

Preliminary data analysis was performed using FlowJo

software (version 10). The package ‘flowCore’ (version 1.46.2

(45)) was used to import the compensated data into R. For

dimensionality reduction with UMAP implementation in R

(version 0.2.1.0 (46)), fluorescence parameters were

transformed with logicleTransform (47, 48). Subsequent

clustering of the dataset was performed with the PhenoGraph

algorithm implemented in the ‘Rphenograph’ package (version

0.99.1 (49)) by setting the number of nearest neighbors to 25.

Based on marker detection, the major cell types in the BALF

were defined as macrophages (Lin- (including CD3, CD19 and

CD56) CD66b- HLA-DR+ autofluorescence+), monocytes/DCs

(Lin- CD66b- autofluorescence- HLA-DR+ and either CD14+,

CD16+ or CD14+ CD16+), granulocytes (Lin- HLA-DRlow

autofluorescencelow CD66b+ and either CD16- Siglec-8+,

CD16+ Siglec-8+ and CD16+ Siglec-8-) and T cells/NK cells

including a small fraction of B cells (autofluorescence- CD14-

CD66b- Lin+ and further resolved using the lymphoid panel

(Table S2)). In blood, the major cell types were defined as

monocytes/DCs (CD3- CD19- CD56- CD66b- HLA-DR+ and

either CD14+, CD16+ or CD14+ CD16+), T cells/NK cells

(CD14- CD33- CD66b- CD11c- CD123- CD19- and either

CD3+ CD4+, CD3+ CD8+ or CD56+), granulocytes (CD3-

CD19- CD56- HLA-DRlow CD66b+ CD16+ and either CD16-

Siglec-8+, CD16+ Siglec-8+ and CD16+ Siglec-8-) and B cells

(CD14- CD33- CD66b- CD11c- CD123- CD3- CD56- CD19+).

According to these marker combinations, the identified clusters

were annotated. To unify and simplify the analysis across

multiple datasets, an annotated dataset was defined as the

reference and the other flow cytometry datasets were projected

onto its UMAP coordinates using the ‘umap’ object of the

reference dataset and the logicle transformed flow cytometry

data of the second dataset as input for the predict function in R.

In addition, the same function was also used to predict the

clusters of the remaining datasets with respect to the reference

dataset. This step, together with the visualization of detected

markers, made it possible to assess both the accuracy of the

projection method and the cell type annotation of the

projected datasets.

We performed differential marker intensity measurements

across individuals based on the Cohen’s d definition of effect size

as follows:

effect   size =  
Meancomplete   stain −  MeanFMO  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SD2
complete   stain+SD

2
FMO  

2

q

with FMO = fluorescence minus one and SD = standard

deviation. This procedure was followed since we observed strong

variability in autofluorescence intensities of macrophages among

donors, despite strictest standard operating procedure (SOP)

compliance and the use of SOPs for application settings (50)
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during flow cytometry to minimize potential biases that can

occur during sample-to-sample flow cytometry comparisons.
MitoStress assay on seahorse

For the analysis of the metabolic state of donor-derived

alveolar macrophages, freshly obtained BALF was centrifuged

for 10 min at 300 g. Cell pellet was then washed carefully in PBS

(supplemented with 0.02% EDTA) and finally resuspended in

MACS buffer. Cell suspension was then stained for 15 min with

CD66b microbeads and depleted from granulocytes according to

manufacturer instructions. Granulocyte-depleted cell

suspension was counted and seeded in Seahorse XF RPMI

medium (supplemented with 2 mM L-glutamine, 1 mM

sodium pyruvate, 10 mM glucose, adjusted to pH 7.4 prior to

the assay) at a concentration of 200,000 cell per well; for each

sample, 2 to 4 technical replicates were performed. Cells were

then incubated for 30 min in a 37°C incubator, washed two times

with pre-warmed Seahorse XF RPMI medium to remove all non-

adherent cells and loaded onto the Seahorse XFe96 Analyzer

(Agilent). After 3 cycles of baseline measurement, whereby one

cycle is defined as 3 min of initial mixing and 3 min

measurement, the cells were subsequently injected with

Oligomycin (1:1000), FCCP (1:500) and finally a combination

of Antimycin A and Rotenone (both 1:2000). Following each

injection, oxygen consumption rate (OCR) was measured for

3 cycles.

After the assay, the relative cellular number was determined

via crystal violet staining. Shortly, cells were fixed with 4% PFA

for 5 min at room temperature and stained for 30 min with

crystal violet (0.05% in H2O). After two washes with H2O the

staining was air dried and the formed crystals were dissolved in

200 μL of methanol. Absorbance at 590 nm was measured and

used to normalize the Seahorse assay within the Wave software

(Agilent). The normalized data were finally exported, further

analyzed and visualized in R, with values adjusted to the

measured baseline (baseline-corrected). Basal respiration was

calculated as baseline OCR at the beginning of the measurement

– (OCR after addition of rotenone + antimycin A), maximal

respiration as OCR after addition of FCCP – (OCR after addition

of rotenone + antimycin A), and proton leak as OCR after

addition of oligomycin – (OCR after addition of rotenone +

antimycin A) according to schema in Figure S3E.
Migration assay

Migration was analyzed in 24-well transwell plate containing

a 8 μm polycarbonate membrane. Macrophages were first

purified by FACS according to the expression of CD45,

CD66b, HLA-DR and the absence of CD3, CD19 and CD56.

Cells were also selected according to the strong autofluorescence
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signal (51). Macrophages were cultured in 300 μL starvation

medium (RPMI 1640 medium supplemented with 0.5% FCS and

1% penicillin/streptomycin) and 50,000 macrophages were

seeded in each upper well, while the lower chamber was filled

with 700 μL starvation medium only. After an incubation of 1 h

in a 37°C incubator, the medium in the upper chamber was

exchanged with 300 μL fresh starvation medium and the

medium in the lower chamber with 700 μL starvation medium

supplemented with 100 ng/mL recombinant human CCL3. The

seeded macrophages were incubated at 37°C overnight. Next,

cells on the upper filter surface were removed with a cotton

swab. Transmigrated cells on lower filter surface were incubated

with 2 μM CFSE in 700 mL PBS for 10 min in a 37°C incubator.

The transwell inserts were then transferred into wells containing

700 μL RPMI 1640 medium supplemented with 10% FCS and

1% penicillin/streptomycin and incubated for 10 min in a 37°C

incubator. Finally, transwell inserts were washed with PBS and

imaging of cells was performed using an inverted fluorescent

microscope (Nikon) with a 10-fold objective and GFP filter. The

number of migrated cells was quantified using ImageJ [version

2 (52)].
Measurement of proteins in BALF

After isolation of cells (see above), the supernatant of BALF

samples of both COPD patients and controls were collected and

frozen at −80°C before proteomics measurement. Protein levels

from cell-free BALF samples were determined using the

INFLAMMATION panel from Olink Proteomics, a

commercial multiplex immunoassay for high-throughput

detection of 92 inflammation-related protein biomarkers. The

obtained normalized results (Table S4) were further analyzed in

R, whereby proteins were kept for visualization that showed a

statistically significant difference (Wilcoxon rank sum test-based

p-value < 0.1) between COPD and control samples.
Lipidomics of macrophages in BALF

Macrophages were sorted, washed with PBS and with 150

mM ammonium acetate in a glass tube, pelleted (300 g with slow

brake), and frozen at -80°C until analysis. To the pellet, 500 μL of

extraction mix (CHCl3/MeOH 1/5 containing internal

standards: 210 pmol PE(31:1), 396 pmol PC(31:1), 98 pmol PS

(31:1), 84 pmol PI(34:0), 56 pmol PA(31:1), 51 pmol PG (28:0),

28 pmol CL(56:0), 39 pmol LPA (17:0), 35 pmol LPC(17:1), 38

pmol LPE (17:1), 32 pmol Cer(17:0), 99 pmol SM(17:0),55 pmol

GlcCer(12:0), 14 pmol GM3 (18:0-D3), 359 pmol TG(47:1), 111

pmol CE(17:1), 64 pmol DG(31:1), 103 pmol MG(17:1), 724

pmol Chol(d6), 45 pmol Car(15:0)) were added and each sample

sonicated for 2 min followed by centrifugation at 20,000 g for

2 min. The supernatant was collected into a new tube and 200 μL
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chloroform and 800 μL 1% AcOH in H2O were added. The

sample was then briefly shaken and spun for 2 min at 20,000 g

for 2 min. 200 μL chloroform and 800 μL 1% AcOH in H2O were

added to the supernatant, briefly shaken and spun for 2 min at

20,000 g. The lower phase was transferred into a new tube and

evaporated in a speed vac (45°C, 10 min). Spray buffer (500 μL of

8/5/1 2-propanol/MeOH/H2O, 10 mM ammonium acetate) was

added, sonicated for 5 min and infused at 10 μL/min into a

Thermo Q Exactive Plus spectrometer (Thermo Fisher

Scientific) equipped with the HESI II ion source for shotgun

lipidomics. MS1 spectra (res. 280000) were recorded in 100 m/z

windows from 200 – 1200 m/z (pos.) and 200 – 1700 m/z (neg.)

followed by recording MS/MS spectra (res. 70000) by data

independent acquisition in 1 m/z windows from 200 – 1200

(pos.) and 200 – 1700 (neg.) m/z.

Raw files were converted to mzml files and imported into

and analyzed by LipidXplorer (version 1.2.8 (53)) software using

custom mfql files to identify sample lipids and internal

standards. For further data processing, absolute amounts were

calculated using the internal standard intensities followed by

normalization of the identified lipids on total lipid content. Lipid

class sums were calculated for each donor and log2-transformed.

Differential lipid classes were calculated between COPDGOLD 2

vs control samples using the ‘limma’ package [version 3.42.2

(54)] under consideration of ‘date of sampling’.
Nanodroplet-based scRNA-seq

For comparison of nanodroplet-based scRNA-seq with

array-based scRNA-seq (Seq-Well technology, see below),

cell preparations derived from three blood and three BALF

donors were split in half to be further processed with the two

different scRNA-seq technologies by two teams simultaneously.

For each donor, 10,000 BALF or blood-derived cells were loaded

onto the Chromium™ Controller instrument (10x Genomics)

using the Chromium™ Single Cell A Chip Kit together with the

Chromium™ Gel Bead Kit v2 following the manufacturer’s

recommendations. Libraries were prepared using Chromium™

Single Cell 3’ Library Kit v2 according to manufacturer’s

recommendations and sequenced paired-end as followed: Read

1 26 cycles, i7 index 8 cycles and Read 2 56 cycles on a

NextSeq500 instrument (Illumina) using High Output v2.1

chemistry. Single-cell data was demultiplexed and converted

into fastq format using bcl2fastq2 (v2.20).
Preparation of Seq-Well arrays

Seq-Well arrays were prepared as described by Gierahn et al.

(6). Briefly, Sylgard base and crosslinker were mixed at 10:1 ratio

for 10 min, placed under vacuum pressure for 15 min to remove

air bubbles and were next poured for a 2 h incubation at 70°C
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into a wafer with a mounted 86,000 well pattern-holding

microscope slide. The arrays were then removed from the

molds, excess silicone was cut off with a blade and were

prepared for the functionalization process. This protocol adds

chemical moieties to the surface of the arrays which facilitate the

sealing of a semi-permeable polycarbonate membrane and the

interchange of lysis and RNA hybridization buffers. Arrays were

rinsed with EtOH, plasma treated for 10 min and successively

submerged in APTES (0.05% APTES in 95% EtOH), acetone and

PDITC buffers (0.2% PDITC, 10% pyridine, 90% DMF). Upon

further washes with acetone, the arrays were spun and dried at

70°C for 2 h. Among the most critical steps in the protocol was

the incubation of the arrays with 0.2% chitosan solution

(pH=6.3) at 37°C for 1.5 h, after which an overnight

incubation in PGA buffer (20 μg/mL polyglutamic acid, 2 M

NaCl, 100 mM sodium carbonate (pH=10)) at room

temperature under vacuum pressure followed. Finally, the

arrays were removed from the vacuum and were rotated for

3 h at room temperature and subsequently moved to 4°C for at

least 24 h before use.
Preparation of Seq-Well libraries and
sequencing

Seq-Well libraries were generated as recently described by

Gierahn et al. (6). After loading of the functionalized arrays

with mRNA capture beads, 20,000 CD45+ cells were applied

that were previously coated with CD45+ magnetic beads (see

above) and suspended in RPMI 1640 medium supplemented

with 10% FCS. During the incubation time of 10 min, the

loaded arrays were placed on a strong magnetic plate to

support the settling of the cells via a magnetic field. After

repetitive washing with PBS and soaking with RPMI 1640

medium, the arrays were sealed using polycarbonate

membranes that were 7 min treated with air plasma under

mild vacuum (Diener electronic). Following a 30 min

incubation time in a 37°C cell culture incubator, the arrays

were incubated in lysis buffer (5M guanidine thiocyanate, 1mM

EDTA, 0.5% Sarkosyl and 1% b-mercaptoethanol in H2O) for

20 min and then placed in hybridization buffer (2M NaCl,

3mM MgCl2 and 0.5% Tween-20 in PBS) for 40 min. Next, the

mRNA capture beads were washed from the arrays and

collected using washing buffer (2M NaCl, 3mM MgCl2 and

20mM Tris-HCl pH 8.0 in H2O). The reverse transcription was

performed on the bead pellet using a Maxima Reverse

Transcriptase reaction (Maxima RT buffer, 4% Ficoll PM-

400, 1mM dNTPs, 1U/μL RNase inhibitor, 2.5 μM template

switch oligonucleotide (TSO) primer and 10U/μL Maxima

Reverse Transcriptase in H2O) for 30 min at room

temperature followed by 90 min incubation at 52°C with

end-over-end rotation. The reaction was stopped by washing

the beads with TE buffer (10mM Tris-HCl pH 8.0 and 1mM
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EDTA in H2O) supplemented with 0.1% Tween-20 (TE-TW)

and TE buffer supplemented with 0.5% SDS (TE-SDS). After a

washing step in 10mM TrisHCl pH 8.0, excess primers were

digested in an exonuclease reaction (ExoI buffer and 1U/μL

ExoI in H2O) for 50 min at 37°C with end-over-end rotation

and washed in TE-TW and TE-SDS. Beads were resuspended

in 500 μL H2O and counted with a Fuchs-Rosenthal cytometer

in bead counting solution (10% PEG, 2.5 M NaCl). Pools of

5,000 beads (10 μL) were then added to 40 μL PCR reactions

(2X KAPA HiFi Hotstart Readymix and 25 μM SMART PCR

primer in H2O) for the amplification of reverse transcribed

cDNA libraries (95°C for 3 min, 4 cycles of 98°C for 20 s, 65°C

for 45 s, 72°C for 3 min, 12 cycles of 98°C for 20 s, 67°C for 20 s,

72°C for 3 min and final extension of 72°C for 5 min). After

PCR, 16,000-20,000 beads were combined (thereafter referred

to as ‘pools’) and further processed. The pools were cleaned

with 0.6x volumetric ratio AMPure XP beads (5 min

incubation with beads, followed by 3 min on the magnet, two

washes with 80% EtOH, 5 min dry-out, elution with 13 μL H2O

for 3 min, followed by 2 min on the magnet for collection of the

eluent) and the library integrity was assessed using a High

Sensitivity D5000 assay for the Tapestation 4200 (Agilent).

To reduce library costs, we produced homemade Tn5

transposase according to Picelli et al. (55). Briefly, the Tn5

coding sequence (tnpA gene from Escherichia coli, Uniprot

accession number: Q46731, residues 1-476) was purchased as

a synthesized gene containing the mutations E54K and L372P

for hyperactivation of the enzyme. Overhangs with the

restriction sites XbaI and SpeI were used for cloning into

pTXB1 vector, generating a Tn5-Intein-CBD fusion construct.

The Tn5 coding sequence was validated by Sanger sequencing.

Next, the pTXB1-Tn5-Mxe-CBD plasmid was transformed

into the E.coli strain BL21. Cells were grown in LB media

supplemented with ampicillin at 37°C to an OD600 0.8. The

temperature was then lowered to 10°C and protein expression

was induced by addition of 0.25 mM IPTG. After incubation at

23°C for 4 h cells were harvested by centrifugation at 15,000

rpm on a JA 25.50 rotor (Beckman) for 20 min at 10°C. The

cell pellet was resuspended in running buffer (20 mM Hepes-

KOH, 0.8 M NaCl, 1 mM EDTA, 10% glycerol, 0.2% Triton-X

100) supplemented with 1 mM PMSF and disrupted by

sonication. After centrifugation of cell debris at 15,000 rpm

on a JA 25.50 rotor (Beckman) for 30 min at 10°C, residual

nucleic acid contaminations from E.coli were precipitated by

dropwise addition of polyethyleneimine pH 7.5 to a final

concentrat ion of 0.3%. The lysate was cleared by

centrifugation at 12,000 rpm on a JA 25.50 rotor (Beckman)

for 10 min at 4°C. Chitin resin (10 mL) was equilibrated with

running buffer and then incubated with the prepared lysate for

1 h at 4°C. Beads were washed with 10 column volumes of

running buffer. For elution by self-cleavage via the intein-tag,

the Tn5-loaded resin was incubated overnight at 4°C in 3 mL

elution buffer (20 mM Hepes-KOH, 0.8 M NaCl, 1 mM EDTA,
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10% glycerol, 0.2% Triton-X 100, 100 mM DTT), followed by

dialysis at 4°C overnight in dialysis buffer (100 mM Hepes-

KOH, 0.2 M NaCl, 0.2 mM EDTA, 2 mM DTT, 0.2% Triton-X

100, 20% glycerol). The protein concentration was determined

using Bradford Assay. Glycerol was added to a final

concentration of 50% to the protein sample.

To load Tn5 with linker oligonucleotides (Tn5ME-B/

Tn5MErev (Tn5ME-B: 5`- TCTCGTGGGCTCGGAGATGTG

TATAAGAGACAG-3`; Tn5MErev: 5`-[phos]CTGTCTCTTA

TACACATCT-3`);), single-stranded oligonucleotides were

mixed in a 1:1 ratio. For pre-annealing, 2 μL of the

oligonucleotide solution was mixed with 8 μL of H2O and

incubated in a thermocycler (95°C for 3 min, 70°C for 3 min

and 45 cycles of temperature reduction (-1°C per 30 s)). The

annealed oligonucleotides (0.25 vol.) were added to 0.1 vol. Tn5

solution and supplemented with •0.4 vol. glycerol (100%), 0.12

vol. dialysis buffer and 0.13 vol. H2O. After incubation for

60 min at room temperature, the protein was stored at -20°C.

The cDNA libraries (1 ng) were tagmented with the

prepared single-loaded Tn5 transposase in TAPS-DMF buffer

(50mM TAPS-NaOH (pH 8.5), 25mM MgCl2, 50% DMF in

H2O) for 10 min at 55°C and the tagmented products were

cleaned with the MinElute PCR kit fol lowing the

manufacturer’s instructions. Finally, a master mix was

prepared (2X NEBNext High Fidelity PCR Master Mix, 2.5

μM barcoded index primer, 2.5 μM P5-SMART-PCR primer)

and added to the samples to attach the Illumina indices to the

tagmented products in a PCR reaction (72°C for 5 min, 98°C

for 30 s, 15 cycles of 98°C for 10 s, 63°C for 30 s, 72°C for

1 min). The pools were cleaned with 0.8 x volumetric ratio

AMPure XP beads, were run with a High Sensitivity DNA5000

assay on a Tapestation 4200 (Agilent), and quantified using the

Qubit high-sensitivity dsDNA assay. Seq-Well libraries were

equimolarly pooled and clustered at 1.4pM concentration with

10% PhiX using High Output v2.1 chemistry on a NextSeq500

system. Sequencing was performed paired-end as followed:

custom Drop-Seq Read 1 primer for 21 cycles, 8 cycles for

the i7 index and 61 cycles for Read 2. Single-cell data were

demultiplexed using bcl2fastq2 (v2.20).
Processing of scRNA-seq raw data

For preprocessing, the generated fastq files from both

Chromium™ and Seq-Well were loaded into a data pre-

processing pipeline (version 0.31, available at https://github.

com/Hoohm/dropSeqPipe) that relies on Drop-seq tools

provided by the McCarroll lab (56). STAR alignment within

the pipeline was performed using the human GENCODE

reference genome and transcriptome hg38 release 27 (57). The

resulting datasets were imported into R for further analyses.

For datasets for which TSO primers were used based on the

Smart-Seq2 protocol, sequences starting with either the sequence
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5’-GGG-3’, 5’-ATGGG-3’ or cell barcodes with a Hamming

distance of 1 to 5’-ATGGG-3’ were excluded to avoid

overlapping cell barcodes that are increased with this TSO

primer. All other datasets were generated with the TSO

primers as described in the original Seq-Well protocol. Next,

datasets were examined for content of mitochondrial ribosomal

transcripts. For further downstream analyses, the highly

abundant mitochondrial transcripts MT-RNR1 and MT-RNR2

were excluded. The resulting datasets were then imported

into the R package ‘Seurat ’ [version 3.0.0 (58)] for

downstream analyses.
Quality control of scRNA-seq data

We defined cells and genes to be included for further

analyses by the following criteria for each donor separately

(1): Only genes that were found in at least 3 cells were kept (2);

To retain granulocytes that contain only very limited number

of transcripts, a relatively low threshold of 100 expressed genes

was used to keep cells for further analyses (3); With regard to

the rate of endogenous-to-mitochondrial counts per cell, blood

cells with a rate > 5% and lavage cells with a rate >10% were

excluded. For the comparison of scRNA-seq methods for

clinical applications, these quality control filters resulted in a

Chromium™ dataset of 13,909 cells (BALF = 7,960 cells; blood

= 5,949 cells) across 22,701 genes and a Seq-Well dataset

comprised of 34,622 cells (BALF = 20,106 cells; blood =

14,516 cells) across 21,644 genes. For the integrated analysis

of Seq-Well data from COPD GOLD 2 patients and control

donors, we obtained a Seq-Well dataset of 60,925 lavage cells

across 25,348 genes and 54,569 blood cells across 23,056 genes

(Table S3).
Comparison of different single cell
transcriptome technologies

We conducted a pilot experiment, in which we obtained

single-cell RNA-sequencing (scRNA-seq) data using the most

widely used droplet-based solution [Chromium from 10x

Genomics (5)] and a well-based method [Seq-Well (6)].

After identification of cell-types based on marker gene

expression of defined clusters (Figure S1A), we compared the

cell populations between the two technologies. As ground

truth, we characterized the cellular compartment in the

alveolar space using multi-color flow cytometry (MCFC)

(Table S2). All three approaches identified macrophages as

the predominant cell type in the alveolar space (Figure S1B).

When determining the cell type distribution for the droplet-

and wel l -based scRNA-seq methods , granulocytes

(neutrophils, eosinophils) were almost undetectable in the

droplet-based method (Figure S1B).
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Dataset integration and dimensionality
reduction of scRNA-seq data

If not stated otherwise, all following steps were conducted

using the single-cell analysis pipeline Seurat. To account for

variations in sequencing depth across cells, we applied a log-

normalization strategy using CPM-normalization with a scale

factor of 10,000. Next, the genes with the highest cell-to-cell

variability in the dataset were determined by calculating the top

2,000 most variable genes by selecting the ‘vst’ method of the

‘FindVariableFeatures’ function in Seurat. For the comparison of

scRNA-seq methods, the variable genes were determined

separately for each technology, while for the integrated

analysis of Seq-Well data from COPD GOLD 2 patients and

control donors, variable genes were calculated separately for

each donor.

To analyze the data without having any influence of batch

effects resulting from either different donors or technologies, an

integration approach based on ‘anchors’ across batches (59) was

used to harmonize and integrate the different datasets by using

the Seurat implementation with the default settings. After linear

transformation of the remaining genes (scaling) to ensure

homoscedasticity, the dimensionality of the data was reduced

to 30 principal components (PCs) that was used as input for

UMAP representation.

Next, doublet cells were identified utilizing the R package

‘DoubletFinder’ [version 2.0.2 (60)] by using the first 30

principal components of the non-integrated datasets, assuming

a doublet formation rate of 10% and leaving all other parameters

unaltered. The alleged duplicate cells were not removed from the

dataset, but accumulations of these cells were highlighted and

named accordingly. This procedure revealed, for example, that

none of the identified macrophage states was defined by doublet

cells (data not shown).
Clustering of the integrated scRNA-seq
datasets

The cellular heterogeneity of the integrated datasets was

determined using a shared nearest neighbor (SNN)-graph based

clustering algorithm implemented in the Seurat pipeline. For

both the BALF and the blood data, we used the first 30 principle

components as input and set the resolution to 0.7 and 0.6,

respectively. The default setting for number of neighbors were

used (k=20).
Cell type annotation based on reference
transcriptomic datasets

For cell annotation, we developed a slightly modified Python

implementation of SingleR (61) (commit a4afed8, available at
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https://github.com/dviraran/SingleR) and an additional method

called GenSigPro. We explicitly used two different methods with

different reference datasets to capture variations in the

annotation methods.

To compare and integrate these methods (with varying

reference data), we first defined a common cell type standard

to which all annotated cell types were matched. This standard,

the mapping, and the actual reference data are available at

FASTGenomic s (h t tp s : / / b e t a . f a s t g enomic s . o r g /p /

bassler_scCOPD).

The SingleR method iteratively computes the bivariate

correlations between the respective cluster expression vector

and the multiple reference gene expression vectors for each

cell type based on a set of differentially expressed (DE) genes.

In each iteration, every cell type in the reference dataset is

assigned a score based on these bivariate correlations with the

different reference gene expression vectors of that cell type.

The cell type with the lowest score is dropped and the DE

genes among the remaining cell types are computed and, based

on these genes, the bivariate correlations are computed again.

This procedure thereby iteratively reduces the number of cell

types until only one best fitting cell type is retained. We

reimplemented the SingleR functionality to assign cell types

per cluster in Python to use in our framework and in addition

to the original algorithm, we included a threshold for the

bivariate correlation score based on tests with randomized

reference data. This made it possible to label cell clusters as

“unknown” if the bivariate correlation score of the best fitting

reference cell type was below 0.1 and thus no cell type could be

assigned. As a reference for SingleR, we used data from both

Blueprint+ENCODE (62, 63) and the Human Primary Cell

Atlas (HPCA) (64). In addition to the implementation of the

SingleR algorithm in Python, we also modified the reference

datasets by reducing the reference to immune cells and lung

tissue cells. Furthermore, based on the experimental setting of

the reference dataset, we adapted some cell labels, e.g. the

neutrophils were divided into mature, immature, and

inflammatory neutrophils, whereas the original annotation

had designated all these cells as neutrophils.

In order to capture potentially relevant variations in the

annotation besides SingleR, we developed the similar but distinct

statistical approach GenSigPro (Gene Signature Profiler) and

incorporated a further reference dataset. To incorporate

additional cell types, not included previously, we used

manually curated reference data derived from the leukocyte

expression dataset LM22 (65). This reference dataset

encompasses one gene expression vector (signature) per cell

type. While this made it incompatible to be used with SingleR, it

allowed the reference dataset to be used in a multiple regression

approach. The GenSigPro method fits a multiple linear

regression for each cluster expression vector. The covariates in

this regression are the reference expression vectors for each cell

type that were obtained from the CIBERSORT algorithm (65).
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The more similar the cluster expression vector is to one of the

reference expression vectors, the higher the regression coefficient

for the respective reference vector. If the highest regression

vector is positive and above an uncorrected significance

threshold of a = 0.05, the cluster is assigned the respective

cell-type label of this reference cell type, otherwise, the cluster is

labeled “Unassigned”. To calculate the regression vectors, we

used the Generalized Linear Model (GLM) with an added

intercept from statsmodels [version 0.9.0 (66)] with the

Gaussian family and left all parameters at their defaults.

GenSigPro does not alter the gene expression vectors during

the annotation process, which is in contrast to SingleR where

differentially expressed genes are calculated for each iteration.

This is especially wanted for manually curated gene lists, like the

used LM22 reference, where only high-confidence genes are

included. Furthermore, whereas SingleR iteratively selects

bivariate correlations, GenSigPro includes all reference gene

vectors in a combined model. This allows us to assess the

unique contributions of one reference gene vector over

the others.

Using this different approach and manually curated

reference data, also created more heterogeneous training data

for the final consolidation by machine learning (see below). As

reference data, we used a manually curated version of the

leukocyte expression dataset LM22 (65), where the neutrophils

were subdivided according to their activation state. We

calculated the reference expression vectors by running

CIBERSORT (version 1.06) on the modified LM22 dataset,

leaving the default settings unchanged and setting the option

“Filter non-hematopoietic genes from the signature matrix

during construction”. The obtained signature genes (derived

from the calculated support vectors) were almost completely

(>99%; data not shown) contained in the signature genes of the

original CIBERSORT publication (65). As this reference data

only provides a mean expression vector per cell type, it was not

suitable to be used with the SingleR approach.

Although both SingleR and GenSigPro can be applied also to

vectors of single-cell expressions, we applied it to the mean of

expression vectors within a cluster for more robust results. Since

both GenSigPro and the modified SingleR are Python

implementations, we performed clustering using the Louvain-

clustering (67) function of Scanpy (68) by setting the number of

neighbors to 24 and leaving the remaining parameters unaltered.

To assess the uncertainty of the annotation results, we added

bootstrapping to GenSigPro and SingleR. The basic principle of

bootstrapping is to create an artificial dataset by sampling

subjects, in our case cells, with replacement such that in the

resulting artificial dataset some cells will be excluded, whereas

others will be included more than once. The analyses are then

repeated on multiple of these artificial datasets, resulting in

somewhat different results. For robust and certain patterns,

different bootstrapped datasets generate similar results, while

for random fluctuations different bootstraps result in highly
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different outcomes. Here, we conducted all cell typing analyses

using 100 bootstrapped datasets.
Cell type annotation using machine
learning

To aggregate and consolidate the initial cell type annotation,

we trained a Gradient Boosting Classifier on the combined data

of all datasets to classify each cell into a cell type. Gradient

Boosting is a machine learning technique that combines multiple

classification trees in order to assign an input to different classes.

This method is highly flexible and robust in the classification

task and has high predictive power. We used an implementation

of the Gradient Boosting algorithm from scikit-learn [version

0.19.1 (69)], the leading machine learning library for Python. For

training the model, we used the raw gene expression matrix of

each cell as input feature for the classification. We additionally

extracted features from the data such as the type of tissue, the

number of genes per cell, counts per cell, and the percentage of

mitochondrial gene expression per cell. The training target of

this model were the three cell type labels from GenSigPro and

SingleR (Blueprint+Encode and HPCA). For this, we triplicated

the data such that each cell with its feature vector was included

three times, each with one label of the three cell-type

annotations. Our aim was to apply the classifier to all cells in

our data. However, as no distinct training data were available, we

conducted a 3-fold cross-validation. In this procedure, two

random thirds of a data set were used as training data, and the

model assigned cell type names to the remaining cells.

Importantly, a cell with all three cell type labels was only

assigned either to the test or the training dataset. A major

advantage of this machine learning method is that the

classifier learns the specific expression profile of cell types and

can take any cell type annotation as input, independent of

techniques, such as bulk RNA-seq or microarray used as initial

cell type annotation reference. In addition, we were able to apply

the classifier at the single-cell level instead of the cluster mean

expression level and thus achieved a higher resolution to exploit

the full potential of scRNA-seq. This also allowed us to detect

cell types with very low frequency in individual patients.

Normally, these cells might end up in larger clusters with a

different cell type and are therefore not detected. For all these

reasons, this machine learning-based cell type annotation is

unbiased, reliable, reproducible and scalable.
Marker gene identification of scRNA-seq
data

DE genes between identified cell types/clusters (referred to as

marker genes) were defined using a Wilcoxon rank sum test for

differential gene expression implemented in Seurat. The
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significance threshold for marker genes were set to an adjusted

p-value smaller than 0.001 and the logarithmic fold change

cutoff to at least 0.4. In addition, the detected marker genes

should have been expressed in at least 50% of the cells within the

respective cell types/clusters. Visualization of the obtained

marker genes were mainly done using Seurat functions, such

as dot plot representation of cell type-/cluster-specific marker

gene expression or heatmap representation of marker genes

across single cells. A more global overview of the expression

profiles was obtained by calculating the mean expression values

of marker genes per clusters, followed by scaling and centering of

these values and representing them in a heatmap graph using the

R package ‘pheatmap’ (version 1.0.12, https://CRAN.R-project.

org/package=pheatmap), in which the genes were clustered

according to the ‘ward.D’ agglomeration method.

Similar to the clustering and marker gene identification of

the complete BALF dataset, we performed the same steps also for

the detailed characterization of the macrophage population. In

addition, we assessed the reproducibility of the identified clusters

in the Seq-Well dataset. For this purpose, we used the BALF cells

of the Chromium™ dataset. To consider possible influences of

data integration on cell clustering, we used a different integration

method, namely Harmony [version 1.0 (70)]. For determining

the similarities between the Chromium™ and Seq-Well clusters,

we calculated marker genes and assessed the overlap of the genes

per cluster using the matchScore2 package [version 0.1.0 (71)].

For the majority of clusters, we found strong concordance

between the Chromium™ and Seq-Well clusters (data

not shown).
Four-step cell type annotation

For the final cell type annotation of the integrated 61K BALF

and the 55K blood dataset we used a four-step strategy for cell

annotation and for the identification and finally removal of cells

of inferior quality. The steps of the strategy include 1) the

machine learning-based classifier, 2) cell clustering, followed

by 3) a manual classifier-to-cluster comparison and 4) cluster-

level marker gene analysis, including cleanup.

As the first step, the machine learning-based strategy is used

to assign the most likely cell type to each cell in the dataset

(Figure S1E). To determine the validity of this approach, we

needed a dataset, for which the ground truth of the cell type is

known by a secondary method, e g. flow cytometry data. In order

to test the validity of machine learning-based strategy we

generated a benchmark dataset. The data were obtained by

fluorescence-activated cell sorting of blood-derived immune

cells using cell type-specific markers followed by SMART-seq2

single-cell sequencing, which gives flow cytometry (ground

truth) and scRNA-seq data information for each cell. In this

validation experiment for the computational method only cells

were used for which RNA expression values of typical cell
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markers were available (Figure S1F). Neither SingleR nor

GenSigPro alone were able to correctly annotate all cells

within the benchmark dataset due to incomplete cell type

annotation within the reference (Figure S1C) used in these

approaches. In contrast, the machine learning-based cell

classifier was successful in consolidating the annotation results

and thus resolving the different cell types in the blood scRNA-

seq based benchmark dataset (Figure S1F). Applying the

machine learning-based cell annotation to the integrated BALF

dataset revealed all major immune cell types and for some cell

types a subset structure (Figure S1G).

The second step consisted of clustering of the data in 18

main clusters (Figure 1B), which agreed with the areas that were

enriched for distinct cell types predicted by the classifier (Figure

S1G). However, we also found some cells that were annotated,

e.g. as dendritic cells (DCs) (Figure S1H), which scattered away

from the other DCs.

In the third step of the cell type annotation procedure, we

determined which cell type occurred most frequently per main

cluster according to the machine learning-based annotation and

compared it with the identified marker genes for each cluster

(Figure 1D) (step four). The application of this approach to all 18

major clusters in the BALF dataset led to a detailed resolution of

the immune landscape in the alveolar space and this was

similarly achieved for the blood dataset.
“Gene set distance” analysis of annotated
cell types (GO-shuffling)

This approach takes as input the average gene expression

values per macrophage state of each patient and determines

which functional gene sets, such as those based on gene ontology

(GO) or pathway annotations, explain the strongest separation

of COPD patients from controls in the Euclidean space. Gene set

annotations were downloaded from the Molecular Signatures

Database v7.0 (MSigDB) and comprised gene sets from the

Kyoto Encyclopedia of Genes and Genomes (KEGG) (72)

database, the Pathway Interaction Database (PID) (73), the

Reactome Pathway database (74), Hallmark gene sets (75),

BioCarta Pathways (76) and Gene Ontology (GO) (77, 78). In

addition, we retrieved gene sets from WikiPathways (79). This

search strategy resulted in a list of 12,755 gene sets, each

containing a unique gene set term and a set of associated

gene symbols.

As input, normalized scRNA-seq data was used, in which the

cells were annotated according to the four-step cell-type

annotation approach described above. Cell types containing at

least 10 cells for each patient were retained and genes expressed

in less than 5% of the cells in the respective cell type

were excluded.

For each of the 12,755 gene sets, the “gene set distance” was

calculated as follows for each cell type: Gene sets were taken into
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account that were present with a minimum of 3 genes. For each

gene set, the Euclidean distance between all donors was

calculated using the get_dist function from the R package

‘factoextra’ (version 1.0.5). Next, the mean distance of COPD

patients, the mean distance of controls and the overall mean

distance was calculated. The “gene set distance” was then defined

as the overall mean distance divided by the mean distance of

COPD patients plus the mean distance of control patients.

genesetdistance =
distoverall

distCOPD + distCTRL

This metric allows to determine for which gene set the

quotient takes a value close to or greater than 1, which means

that the distance within the groups (COPD (distCOPD) or control

(distCTRL)) is smaller than the overall distance (distoverall) and

consequently the distance is mainly defined by the difference

between the groups. Since the Euclidean distance metric is prone

to be affected by outliers in higher dimensions, we also tested this

approach by using the Manhattan distance and got comparable

results. For each cell type, we ranked the gene sets by their gene

set distance. Visualization of the most frequent terms contained

in the upper percentile of the predicted gene sets in the

macrophage states was performed using the R package

‘wordcloud’ (version 2.6), in which filler and connective words

were excluded. Alternatively, the gene sets in the upper

percentile were filtered for association with ‘NOTCH’ or

‘lipidomics’ and the expression of the involved genes

visualized in a heatmap.
Modeling of metabolic pathways based
on scRNA-seq data

The metabolic landscape of macrophage states was modeled

using the Compass method [version 0.9.5 (10, 80)] by leaving the

standard settings unaltered (model: RECON2 (81); lambda: 0;

media: media1, which represents a rich extracellular medium,

as defined in the Compass manuscript). As input, we simplified

the s ingle-ce l l data of the macrophages by using

the ‘applyMicroClustering’ function of the R package ‘VISION’

[version 2.1.0 (82)], resulting in approximately 20 microclusters

per patient. Next, we applied Compass to the microclusters for

each donor separately. The output tables representing Compass

scores for single reactions and synthesis of single metabolites of

the individual donors were imported into R. They were

concatenated and finally transformed as described in the

Compass manuscript, except for disabling the division into

meta-reactions. In detail, the concatenated output table x was

first negatively log-transformed (y = -log(1+x)), the global

minimum value of table y was subtracted from the values (z =

y - min(y)) and the resulting table z was then used for further

analysis. To determine which reactions and metabolites are

significantly different between control donors and COPD
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patients, with the differences being reproducible in the COPD

population, we performed Wilcoxon rank sum tests on Compass

scores. We first computed the Wilcoxon p-value for every

patient separately against all controls, took the median of these

p-values, and kept reactions/metabolites for which -log10

(median p-value) ≥ 2.5. We derived a second list of reactions

and metabolites by similarly comparing control donors

separately against all patients. The reactions and metabolites

that have significant differences are the union of these two lists.

Next, we excluded reactions with the lowest confidence score in

the metabolic reconstruction (83), i.e., we discarded reactions

with a confidence score of 1 and kept confidence scores of 2-4 (as

well as 0 which is reserved for unannotated confidence). We also

excluded metabolites that localize to cellular compartments

other than the cytoplasm [c], extracellular space [e] or

mitochondria [m]. Finally, the remaining reactions and

metabolites were annotated using the Virtual Metabolic

Human (VMH) database (84) and visualized in a heat map.
Cell cycle state analysis of scRNA-Seq
data

To categorize the cells within the macrophage states into the

respective cell cycle states, we applied the ‘CellCycleScoring’

function of Seurat and substantiated the results using the

‘cyclone’ function (85) implemented in the R package ‘scran’

(version 1.10.2 (86)).
Gene set variation analysis

To predict the functions of the macrophage states, we

performed gene set variation analysis (GSVA) (87) by using

the R package ‘GSVA’ (version 1.30.0) and defining ‘Poisson’ for

the non-parametric estimation of the cumulative distribution

function of expression levels across donors. For the GSVA input

expression table, we calculated the sum of the expression of

normalized scRNA-seq data for each patient in any macrophage

state. As gene sets we used the gene set collection described in

the section ‘GO-shuffling’ and additionally included the

‘ImmuneSigDB’ collection of MsigDB, whereby this collection

was reduced to gene sets that had one of the following terms in

the gene set description: ‘Mono’, ‘Macro’, ‘MDC’, ‘MDM’,

‘Dend’ and ‘DC’. This resulted in 14,160 gene sets. Similar to

GO-shuffling, we filtered this collection for gene sets that were

present with a minimum of 3 genes in a respective macrophage

state. We applied an additional filter step to increase the

stringency of the analysis. Therefore, we retained only gene

sets in which the sum of the genes contained in the set were

expressed in more than 30% of a macrophage state. The GSVA

results per donor were combined for the respective macrophage

state using a Borda rank and the top 250 ranked gene sets per
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subtype were visualized in an UpSet plot using the R package

‘UpSetR’ [version 1.3.3 (88)].
AUCell for gene set enrichment analysis

Enrichment of gene sets was performed using the ‘AUCell’

method (89) implemented in the package (version 1.4.1) in R.

We set the threshold for the calculation of the area under the

curve (AUC) to the top 3% of the ranked genes and normalized

the maximum possible AUC to 1. The resulting AUC values

were subsequently visualized in a violin plot. For statistical

testing, a Dunn’s Post-Hoc test using the “dunn.test” R

package (version 1.3.5) was performed. Resulting p-values

were corrected for multiple testing using the Benjamini-

Hochberg method. This approach was used, for example, in

Figure 6A to assess the enrichment of monocyte-derived

macrophage signature genes provided by Wohnhaas

(unpublished results). This signature was obtained from

scRNA-seq data of monocyte-derived macrophages that were

identified in BALF of a murine 12-week smoke model. Human

orthologues (obtained from BioMart [version 2.42.0 (90)] of the

murine marker genes were used for the enrichment analysis. In a

similar way, we also performed the enrichment of monocyte-

derived macrophage signatures obtained by Jaitin et al. (25) and

Kim et al. (91).
Distribution-free DE analysis across
patient groups

To analyze the differences between the patient and control

cohort, we employed a distribution-free test that preserves

patient and cell information and thus considered possible

individual donor effects. In contrast to available methods, it

avoids the use of mini-bulk, the pooling of cells from different

patients, and distribution assumptions. As input, we use the

afore-computed macrophage state information and the

normalized (non-integrated) scRNA-seq data.

For each macrophage state, a DE analysis between patient

and control cohort was performed. Therefore, donors not

possessing cells in a cluster – which happened in a few cases –

and genes expressed in less than 10% of cells were disregarded

for the analysis of this cluster. For each gene, the differences

between all possible pairs of patients and controls were assessed

using the non-parametric Wilcoxon rank sum test. To assess the

differences between patient groups, the median Wilcoxon score

of the pairwise tests was considered as a test statistic.

The Wilcoxon rank sum test was chosen because it does not

rely on a specific distribution assumption. This is beneficial as

the distribution of single-cell expressions is often skewed or

shows multiple modes. Furthermore, benchmarking studies
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revealed that the Wilcoxon rank sum test performs well for

the comparisons between two single cell data sets (92, 93).

To assess if the observed value of the test statistic was

significant, the probability of observing an equal or more

extreme value of the test statistic under the null hypothesis

was evaluated. The null hypothesis was that there is no difference

between the two groups. The null distribution was evaluated

with the permutation test, taking all possible permutations into

account. For all permutations the afore-described test statistic –

the median Wilcoxon score – was evaluated. The distribution of

the test statistic over all permutations provided the null

distribution, since reshuffling of patients should not be

significant under the null hypothesis. The p-value for the

observed group assignment was then the fraction of

permutations that led to an equal or more extreme value of

the test statistic than the value of the test statistic of the observed

patient arrangement.
Testing/Simulation study of the DE
method

The DE analysis method was evaluated using simulation

data. A first evaluation – denoted as (I) – showed a good

detection of differences in distributions across groups (patients

and controls) with a similar mean. A second evaluation –

denoted as (II) – indicated that there is no tendency to false

positive discoveries if the distributions across groups are similar.

The simulation study was performed on the basis of the here

examined COPD dataset. The number of individuals per group

and sample sizes per individual were adopted from the original

dataset. Sample sizes (number of cells per patient) were taken

from the macrophage clusters 0, 1, 3 (Table S3).

The mean of the read count data per gene per individual is

sampled from the same log-normal distribution, to ensure

variability between the individuals,

mgroup1
pati ,mgroup2

patj ∼ logN m, sð Þ, with m = 1,  s = 0:15:

Single-cell read count data was then sampled from the

negative binomial distribution, with the beforehand sampled

means mgroup1
pati ,mgroup2

patj

Countsgroup1pati ∼ NB h mgroup1
pati ,s1

� �
,s1

� �

Countsgroup2patj ∼ NB h mgroup2
patj ,s2

� �
,s2

� �
, with h m,sð Þ

=  m · s=(1 − sÞ,

with h (m, s) being the number of successes, and s the

success probability.

For simulating differences in the distributions between the

two groups (I), distinct success probability parameters (s1, s2)
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were used. Various combinations of s1 and s2 were considered
to explore the properties of the methods. For simulating similar

distributions (II) the success probability parameters were set to

the same value (s1=s2). s values were set within the interval

[0.1, 0.9].

For each combination of s1 and s2, read count data was

simulated for 50 m’s per individual, which is in the following

called a ‘set’. In total, for each s-combination, three sets of read

count data were simulated. DE analysis was performed with the

proposed DE method and for a comparison with the widely used

method edgeR [version 3.28.1 (94)], for each set of simulated

read count data.

For the case of different distributions between the groups (I),

the false negative rate (FNR) was calculated for each set of

simulated read count data while evaluating the percentage of

genes with p>0.05. In general, the proposed method identified

the differences between the distributions for the two groups (low

FNR), whereas edgeR failed to identify these differences for all

cases with a FNR of over 90%. If the discrepancies between s1
and s2 were sufficiently large, which led to a clear difference

between distributions (e.g. combinations 1-5 in Table S5), the

proposed method performed well and achieved low FNRs. For

similar values of s1 and s2 (e.g. combinations 6-8 in Table S5),

the differences are – as expected – more difficult to identify and

the FNR increases. The combination 9 was an exception, since

for very small s-values (here s1 = 0.086), sampling from the

negative binomial distribution results in many zero counts,

which then also leads to a clear characteristic of the

distribution. Comparing the results between the distinct

sample size combinations, the DE analysis on the simulated

data sets with the sample size combinations 1 and 2 performed

comparably well, whereas with sample size combination 3,

which contained the lowest numbers of cells, performed

slightly worse. For the case of similar distributions between the

groups (II), the false positive rate (FPR) was evaluated with the

percentage of genes with p<0.05, thus falsely detecting a

difference, whereby no difference exists. For all implemented

combinations both methods performed comparably well,

whereas the proposed method showed slightly higher FPR, on

average 1.47% higher (mean of edgeR: 3.77%, mean of proposed

method: 5.24%).

To confirm the validity of this method, we performed a

simulation study (see detailed methodological description

below) in which we simulated gene expressions with similar

mean expression values between COPD and control donors, but

categorized gene expressions into two groups: 1) with different

distributions between COPD and controls; or 2) with equal

distributions between COPD and controls (Figure S4B). In

comparison to the widely used DE method edgeR 23, the rate

of false-positively identified DE genes was comparable to our DE

method (Figure S4C), however, our method showed a

significantly lower rate of false-negative results (Figure S4D).

This means that our proposed DE method is able to detect
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differences in distributions across patient groups even if the

differences in mean values are small and mostly the shape of the

distributions changed.
Application of the novel DE analysis
approach and GSEA

DE analysis was performed for all macrophage states and the

results are provided in Table S5. For the classification of genes

being significantly DE, a test statistic cutoff of 0.75 was chosen.

Additionally, for each macrophage state, the DE genes were

sorted ascendingly according to their p-values and the 300 top

ranked genes were chosen. The visualization of which DE genes

are found and shared in which macrophage state was performed

using the UpSetR package in R.

Gene set enrichment analysis (GSEA) was performed to

identify shared common biological functions by groups of DE

genes. The web-tool ‘g:Profiler’ (version e98_eg45_p14_ce5b097

(95)) was used to perform the functional profiling of the DE

genes of interest (genes fulfilling the cutoff criteria for DE genes

in >2 macrophage states). As multiple-testing correction

method, g:Profiler’s in-house g:SCS algorithm was chosen,

which corrects for multiple tests that are dependent on each

other, which holds true for the hierarchically arranged GO

terms. The analysis was done using the Gene Ontology (77,

78) database, as well as biological pathway databases, like KEGG

(72), Reactome (74) and WikiPathways (79).
Use of publicly available bulk data for
validation of results

To investigate whether human leukocyte antigen (HLA)

genes, which we found downregulated in macrophages in our

single cell data, showed the same trend in a second cohort, we

used a bulk transcriptome dataset of human macrophages

(GSE13896 (17)), comprising samples from 39 non-smokers,

49 smokers, and 12 COPD patients. We filtered the normalized

genes for HLA genes and visualized them as a box plot

comparing non-smokers vs. smokers, non-smokers vs. COPD,

and COPD vs. smokers using a Wilcoxon rank sum test, as

provided in the R package stats. Additionally, to show whether

the HLA genes shows statistically significant differences in

enrichment between non-smokers and smokers, non-smokers

and COPD, and COPD and smokers, we performed GSEA for

the respective comparisons using the function GSEA with 10,000

permutations and Benjamini and Hochberg to control the false

discovery rate from the package clusterProfiler (version 3.16.1

(96)). The normalized enrichment score (NES) was plotted on

the x-axis where a negative NES shows an enrichment on the left

hand side and a positive NES shows an enrichment on the right

hand side of the plot. The significance of the enrichment was
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color coded using a negative log10 scale where values above 1.3

were considered as significant.
Cell-Cell Communication

Potential cell-cell-interactions were inferred using

‘CellPhoneDB’ [version 2.1.1 (19, 97)]. As input, we used the

normalized gene expression matrix of control and COPD

patients that was filtered separately for cell types, which were

defined by the four-step cell type annotation approach and

identified in at least three patients of any group (COPD or

control) and contained ≥ 10 cells per patient. Genes were filtered

for being expressed in ≥ 5% of a respective cell type. To run

CellPhoneDB, the following parameters were set: –

iterations=1,000 –pvalue=0.1 –result-precision=10.

In order to visualize the cell-cell communication, we filtered

for significant interactions (adjusted (Holm) p-value < 0.05) and

summarized the interactions per cell type pair. Network

visualizations were done with the ‘ggraph’ package (version

1.0.2) setting the layout to “fr”. To visualize single receptor-

ligand pairs, we filtered for group-specific interactions (-log10

(p-value) > 1) and visualized the resulting interactions for

control and COPD.

To evaluate the downstream transcriptomic changes caused

by cell-cell-interactions, we applied ‘NicheNet’ [version 0.1.0

(20, 98)]. As the CellPhoneDB analysis revealed a central role of

the C1Q and monocyte-like macrophages in the cellular

communication in BALF, we focused on these cells for the

subsequent analysis. As the model in NicheNet is based on a

different collection of databases than CellPhoneDB, we defined

potential sender cell-receiver cell interactions independently of

CellPhoneDB. As potential ligands, we accepted all genes that

were expressed in >5% of any cell type within the COPD group

and which matched at least one receptor from the genes

expressed in > 5% of the C1Q macrophages or monocyte-like

macrophages in the COPD group, respectively. As input genes to

infer the ligand activity score from, we defined all DE genes with

a median Wilcoxon score < (-0.75) and p-value of the median

Wilcox score <0.05 for each state separately. As background

genes, we defined all genes that are not DE in monocyte-like

macrophages (or C1Q macrophages) and expressed in > 5% of

monocyte-like macrophages (or C1Q macrophages). For ligand

prioritization, we selected the top 3 genes with the highest AUPR

from each of the comparisons resulting in 6 top ligands.

The expression of these ligands for each cell type was

visualized in a heat map scaled by each gene. The target genes

of all top ligands were visualized in a heat map with their

regulatory potential score for each ligand and their mean

express ion in C1Q macrophages or monocyte-l ike

macrophages for either COPD or control patients (scaled by

gene). To further decipher the exact connection between the

ligand and the target genes, we visualized the transcriptional
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network based on which NicheNet associated the target genes

with TGFB1 in a network with free topology. This network was

subdivided into receptors for TGFB1, transcriptional regulators

between TGFB1 and the target genes. The connections were

subdivided into signaling (which does not induce a direct

transcriptional change) and transcriptional regulation.
Monocyte-to-macrophage trajectory
analysis

To generate a joint embedding of BAL and blood samples,

the data were jointly pre-processed using ‘Scanpy’ [version 1.4.3

commit 0075c62 (68)] on AnnData (version 0.6.22.post2

commit 72c2bde). In concordance with previous analysis, cells

from BALF were filtered out if the fraction of mitochondrial

reads exceeded 0.1, and a threshold of 0.05 was used for blood

samples. Genes that were expressed in fewer than 200 cells were

also filtered out. Following previously published best-practices

(99) we used scran normalization via the computeSumFactors

function on the joint object. Spliced and unspliced counts were

mapped to this object using scVelo [version 0.1.24 commit

e45a65a (26)]. Quality control for spliced and unspliced

counts was performed by removing cells with fewer than 20

spliced and/or 10 unspliced counts. Subsequent normalization

by total counts and log-transformation was performed via the

filter_and_normalize function from scVelo. Subsetting only

relevant monocyte and macrophage populations from blood

and BAL datasets (according to the coarse mapping shown in

Figure S6A) resulted in a dataset of 57,280 cells and

11,530 genes.

The joint embedding of BAL and blood cells was generated

by taking the top 4000 highly variable genes (HVGs) that were

shared by most batches. This was done using the hvg_batch

function from the single-cell data integration benchmarking

package scIB [https://www.github.com/theislab/scib (100)].

This function computes the top 4000 HVGs per batch (here:

donor) using Scanpy’s highly_variable_genes function with

method cell_ranger. These genes are ranked by the number

of batches in which each gene is highly variable, and by their

mean index of dispersion across all batches. Using this ranked

list, we selected the top 4000 genes as a representation of HVGs

that are shared across batches. This constitutes a weak

integration across batches without direct alteration of the

transcriptome data.

Due to an observed batch effect when performing RNA

velocity analysis across patients, we ran scVelo per patient and

aggregated the individual patient velocities to create a joint

velocity embedding. For each donor spliced and unspliced

counts were smoothed using the moments function, velocity

genes were selected by a stringent log likelihood threshold of 0.1

(between 45 and 172 genes per donor), and the dynamical scVelo

model was fit. The resulting inferred single-cell velocities were
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projected onto the joint UMAP computed from all donors by

running velocity_graph on the concatenated object.

Furthermore, partition-based graph abstraction [PAGA

(27)] was used to assess the connectivity of cell identity

clusters that were suggested to show transitions by RNA

velocity. To robustly assess the connectivity of cell identity

clusters across donors, we performed PAGA analysis per

donor. We computed a kNN graph with Scanpy’s neighbors

function (k=15) per donor using the joint PCA embedding

across donors and ran the paga function on this graph. We

used the resulting PAGA connectivities as a statistical test of

kNN-graph connectivity between clusters. The median of PAGA

connectivities over all donors with both blood and BAL samples

was used as a PAGA distance metric.
Data visualization

In general, Seurat and the ggplot2 package [version 3.1.0

(101)] was used to generate figures. For the monocyte-to-

macrophage analysis Scanpy, UMAP and scVelo packages

were used to generate figures. The graphical summary was

created with BioRender.com.
Quantification and statistical analysis

If not otherwise stated, the statistical evaluation was carried

out in relation to the total sample size n. A t-test (two-sided) was

used for n ≤ 10, otherwise a Wilcoxon rank-sum test was used.
Code availability

We deposited the code for the novel DE analysis approach

used in this study on Zenodo (https://doi.org/10.5281/zenodo.

3717776). The analysis code used to generate the majority of the

figures are available via FASTGenomics (https://beta.

fastgenomics.org/p/bassler_scCOPD).
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SUPPLEMENTARY FIGURE 1

Characterization of BALF immune cells using appropriate scRNA-seq

technology and four-step cell-type annotation strategy (related to ). (A)
UMAP representation of integrated blood and BALF data from different

patients and two scRNA-seq technologies (10x Chromium and Seq-Well).
The UMAP is split by technology and colored according to identified

clusters. Clusters were additionally assigned to cell-types based on

marker gene expression (according to Table S6). (B) Stacked bar plots
of the relative cell-type proportions for MCFC, which served as ground

truth, and cell-type proportions based on the assigned clusters of the two
scRNA-seq technologies. (C) Overview of the cell types contained in the

reference files used for cell-type annotation. The orange color indicates
that the respective cell type is included in the reference file. (D) Confusion
plots showing the concordance between the respective cell-type

annotations across different annotation methods (SingleR with the
Blueprint + ENCODE or HPCA as reference and GenSigPro with

signatures from the LM22 dataset as reference). Only cell types that can
be found in all reference files as shown in Figure S1C are displayed. (E)
Scheme of the gradient boosted decision tree-based machine learning-
approach for cell-type annotation. (F) UMAP representation of a

benchmarking blood immune cell dataset (according to Table S1). The

cells in the UMAPs are colored according to the respective cell annotation
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methods. The ground truth is derived based on the unique cell-type
marker gene expression of each cell. Accumulation of cells that are

annotated by the respective annotation methods, but show a deviation
in the annotation with respect to the ground truth, are marked with an

arrow. (G) UMAP representation of integrated BALF data obtained from
COPD patients and control donors via the Seq-Well technology. Coloring

according to machine learning-based cell-type annotation. (H) UMAP
representation of the integrated dataset with the coloring of DCs, as

predicted by the machine learning-based cell-type annotation. Non-DCs

are colored light gray. MCFC = multicolor flow cytometry; BALF =
bronchoalveolar lavage fluid; DC = dendritic cell; MDM = monocyte-

derived macrophage; SR1 = SingleR (HPCA); SR2 = SingleR (Blueprint +
ENCODE); macro = macrophage; mono = monocyte.

SUPPLEMENTARY FIGURE 2

Characterization of identified macrophage states (related to ). (A) Bar plot
representation of the proportion of cells in the respective cell cycle states
per cluster (according to ). (B) Stacked bar plot showing the proportion of

individual donors in each macrophage state. (C) Schematic workflow to
predict the cellular functions of each cluster based on gene set variation

analysis (GSVA). (D) UpSet plot of the GSVA results (according to Figure
S2C). Terms of cellular functions found in the same clusters are grouped

into bins and the size of the bins is represented as a bar plot on the right,

with bins containing more than 25 terms (dashed line) colored red. On the
left side, dots indicate which clusters contain and share the binned terms.

Frequently occurring terms of cellular functions within the bins containing
more than 25 terms are shown. (E) Violin plots (with marked median

enrichment values) displaying enrichment of different gene sets across
clusters based on the Area Under the Curve (AUC). BALF =

bronchoalveolar lavage fluid; sign. = signature; MФ = macrophage;

GSVA = gene set variation analysis; mito. = mitochondrial; degrad. =
degradation; mod. = modification; present. = presentation.

SUPPLEMENTARY FIGURE 3

Characterization of altered lipid metabolism in macrophages of COPD
patients (related to ). (A) Schematic workflow of the GO-shuffling

approach. (B) Heat map of lipid metabolism-associated genes predicted

by the GO-shuffling approach. The mean gene expression per donor is
represented as a z-transformed value (across all donors). Columns and

rows of the heat map are sorted by hierarchical clustering. Genes that
have been described as causing cholesteryl accumulation through the

dysfunctionality of their protein products are marked in yellow. (C)
Schema of the key steps in cholesterol metabolism and storage.

Metabolites predicted by Compass are highlighted with a gray

background. Enzymes involved in metabolism are abbreviated with a
number that identifies them also in Figure S3B. (D) Heat map of

NOTCH-signaling associated genes predicted by the GO-shuffling
approach. The mean gene expression per donor is represented as a z-

transformed value (across all donors). Columns and rows of the heat map
are sorted by hierarchical clustering. (E) Schema of the time-dependent

course of the oxygen consumption rate (OCR) and the inferred

mitochondrial parameters based on the injection of different
compounds (shown at the top of the plot). dist = distance;

visual = visualization.

SUPPLEMENTARY FIGURE 4

Benchmarking of the novel DE-analysis approach (related to ). (A)
Schematic workflow of the permutation test-based DE analysis

approach. (B) Workflow for the simulation study used for the
evaluation of the performance for the proposed DE-method. Two

cases are considered, single cell count data was simulated for
multiple patients within two groups, with I) different distributions

between the groups, II) similar distributions between the groups. For
each patient, the mean of the read counts is sampled from the same

log-normal distribution with m = 1 and s = 0.15. The read counts are

sampled from a negative binomial distribution with success probability
(s) parameters dependent on the considered case. When simulating

different distributions between the groups (I), distinct s-values are
assigned to each group. When simulating the same distributions for
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the groups (II), the same s-values are assigned to the groups. The
number of cells per patient were chosen according to the Seq-Well

dataset, where three sample size combinations were considered,
originating from three macrophage state datasets. (C) False positive

rate (FPR) in simulation study (II) (percentage of genes with a p-value <
0.05) for the proposed method and edgeR for 5 s combinations and for

each sample size realization. Boxplots (with marked median values)
comprise results of three repeated sets of simulated data (one set of

simulated data: 50* m per patient, per s combination). Low FPR denotes

a higher number of correct equally expressed gene classifications. (D)
False negative rate (FNR) in simulation study (I) (percentage of genes

with a p-value > 0.05) for the proposed method and edgeR for 9 s-
combinations and for each sample size realization. Boxplots (with

marked median values) comprise results of three repeated sets of
simulated data (one set of simulated data: 50* m per patient, per s
combination). Low FNR denotes a higher number of correct differential

expressed gene classifications. (E) Violin plot with marked median of
the HLA-DRA/-DRB1/-DPA1/-DPB1/-DQB1 and -DRB5 expression in

macrophages based on scRNA-seq data. The plot shows the
express ion across the donors , whereby the donors were

downsampled to the same number of ce l l s , fo l lowed by
downsampling to the same number of cells between COPD and

control. The plot displays cells with an expression > 0. (F)
Fluorescence intensity histograms showing representative samples of
flow cytometric analysis of HLA-DR expression on the cell surface of

isolated macrophages (FMO = fluorescence minus one). (G) Box plots
with marked median of the calculated effect sizes of HLA-DR

expression in COPD and control with the representation of individual
donors (control n = 8, COPD n = 5; error bars indicating the standard

deviation; statistics based on the Wilcoxon rank sum test). FPR = false

positive rate; FNR = false negative rate; DE = differential expression; m =
sampled mean; logN(m,s) = log-normal distribution with mean m and

standard deviation s; Count = sampled single cell read count data; NB
(h,s) = negative binomial distribution with: h = number of successes,

s = success probability parameter; proliferat. = proliferating; FMO =
fluorescence minus one.
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SUPPLEMENTARY FIGURE 5

Investigation of cell-to-cell interactions to infer important signaling
pathways in macrophages (related to ). (A) Dot plot representation of

monocyte-like macrophage-dependent ligand-receptor interactions
predicted by CellPhoneDB that show significant enrichment (represented

by the p-value) of the interacting pair in the interacting cell types either in
COPD or in the control. Depicted are only selected interactions. (B, C)
Illustration of the selection of potential upstream ligands of monocyte-like
macrophages or C1Q+macrophages based on the NicheNet analysis. The

histograms show distributions based on ligand activity derived from the

area under the precision recall curve (AUPR, upper histogram) and the
Pearson correlation coefficient (PCC, lower histogram). The ligand activity

of the highest ranked ligands is displayed in a color code together with the
names of the 20 highest ranked ligands. The ligands predicted by the

CellPhoneDB analysis (according to Figure S5A) are highlighted in red and
the top 3 ligands based on AUPR for either monocyte-like macrophages or

C1Q+ macrophages (as presented in ) are underlined. (D) Expression of

ligand targets from in macrophage subsets comparing COPD and control
patients (z-transformed by gene). AUPR = area under the precision recall

curve; PCC = Pearson correlation coefficient; MФ = macrophage; DC =
dendritic cell.

SUPPLEMENTARY FIGURE 6

Modeling the association of blood monocytes and BALF macrophages
(related to ). (A) UMAP of embedded macrophages/monocytes from BALF

and blood monocytes with coloring according to the cell types derived
from the combined labels. The dendrogram on the right side illustrates

the transcriptional relationship between the macrophage subtypes and

shows how several subtypes were summarized in the combined labels. (B)
Projection of computed RNA velocity vectors onto the UMAP of the

embedded data. BALF = bronchoalveolar lavage fluid; mono =monocyte;
MФ = macrophage; proliferat. = proliferating.

SUPPLEMENTARY FIGURE 7

Instructions for accessing the COPD Seq-Well dataset and scripts via the

FASTGenomics platform.
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