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Exploiting 4D-flow magnetic resonance imaging (MRI) data to quantify

hemodynamics requires an adequate spatio-temporal vector field resolution

at a low noise level. To address this challenge, we provide a learned solution

to super-resolve in vivo 4D-flow MRI data at a post-processing level. We

propose a deep convolutional neural network (CNN) that learns the inter-

scale relationship of the velocity vector map and leverages an e�cient residual

learning scheme to make it computationally feasible. A novel, direction-

sensitive, and robust loss function is crucial to learning vector-field data. We

present a detailed comparative study between the proposed super-resolution

and the conventional cubic B-spline based vector-field super-resolution. Our

method improves the peak-velocity to noise ratio of the flow field by 10 and

30% for in vivo cardiovascular and cerebrovascular data, respectively, for 4×

super-resolution over the state-of-the-art cubic B-spline. Significantly, our

method o�ers 10x faster inference over the cubic B-spline. The proposed

approach for super-resolution of 4D-flow data would potentially improve the

subsequent calculation of hemodynamic quantities.

KEYWORDS

4D-flow MRI, residual learning, flow super-resolution, cerebrovascular flow, flow

quantification

1. Introduction

Assessing quantitative hemodynamic metrics is crucial in diagnosing and managing

flow-mediated vascular pathologies. For example, monitoring wall shear stress along

the aortic vessel wall supports diagnostic assessment in patients with bicuspid aortic

valves (Guzzardi et al., 2015; Garcia et al., 2019); alteration in pressure distribution

(Leidenberger et al., 2020) is observed inMarfan disease. Similarly, local characterization

of the vortex core pattern can assist in rapture risk estimation of the vascular aneurysm

(Futami et al., 2019). 4D-flow magnetic resonance imaging (4D-flow MRI) (Markl et al.,

2012) provides spatiotemporally resolved velocity vector maps of coherent blood flow

through vascular structures. In applications mentioned above, 4D-flow MRI serves as a

basis for quantifying flow parameters and patterns non-invasively.

Accurate computation of image-based quantitative hemodynamic metrics from

4D-flow MRI is limited by the trade-offs between spatiotemporal resolution,

signal-to-noise ratio, and the clinically acceptable in vivo acquisition duration.
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In particular, low spatial resolution at near-wall points hamper

the numerical estimation of spatial derivatives of the three-

dimensional vector field (Petersson et al., 2012). Furthermore,

sometimes image registration is required to standardize the

image space for comparison purposes (Cibis et al., 2017),

which also involves isotropic resampling or super-resolution

of the 4D-flow data. Moreover, clinically important qualitative

visualization, such as streamlines (Cebral et al., 2011) and vortex

core line (Byrne et al., 2014) delineation, relies on improved

spatial resolution. Therefore, having access to high-resolution

4D-flow MRI image data is critical to infer hemodynamic

metrics reliably and using computational routines for improving

the image data after acquisition has become an indispensable

step in processing these data. This brings to the generations

of efficient acquisition algorithms and hardware acceleration,

such as parallel imaging (Stankovic et al., 2014), non-Cartesian

trajectories (Markl et al., 2012), k-t SENSE (Tsao et al.,

2003), k-t GRAPPA (Breuer et al., 2005), which enabled 4D-

flow MRI. In addition, several algorithms have emerged over

time, building on this accelerated acquisition to enhance the

measured 4D-flow MRI. In this direction, there are two parallel

streams of research in the context of MRI super-resolution: 1)

Compressed sensing: MRI super-resolution by improving high-

frequency components from the k-space (Santelli et al., 2016;

Ma et al., 2019) and 2) Single-volume MRI super-resolution:

acquiring conventional MRI at low spatiotemporal resolution

and retrospectively super-resolve data at the image level (Ferdian

et al., 2020) as post-processing.

Previous works based on MRI image quality enhancement

from k-space were focused toward velocity-field denoising (Ong

et al., 2015), divergence reduction (Mura et al., 2016), intravoxel

dephasing (Rutkowski et al., 2021), and streamline denoising

(Callaghan and Grieve, 2017). In contrast, super-resolution as

a post-processing step in the image space is more versatile and

applicable to any collection of images acquired by differing

sequences or MRI scanners, agnostic to the specifics of the k-

space sampling. Once we have the reconstructed MRI images in

the form of DICOM or NIFTI, super-resolution in image space

is an efficient and hustle-free plug-and-play feature. As such,

it is not a competing but a complementary and independent

field of work that is of particular relevance when dealing with

large and inhomogeneous multi-centric data sets or when access

to original k-space recordings is not available. In spite of

an abundance of conceptually related machine learning-based

techniques for video, super-resolution (Chu et al., 2018) and

optical-flow estimation (Liu et al., 2019), (that has not been

used for 4D-flowMRI super-resolution, though) the data-driven

reconstruction in image space remains under-explored in 4D-

flow MRI, which is a commonly used method either rely on

4D cubic spline (Stalder et al., 2008; Dyverfeldt et al., 2014)

or sinc (Bernstein et al., 2001) interpolation. In this work, we

will focus on adapting deep learning-based super-resolution to

the specific requirements of 4D-flow interpolation, leveraging

prior knowledge of flow fields from prior observations. At the

same time, we identify that the loss function is crucial for this

translation and offers a novel loss well-adapted to velocity fields.

1.1. Prior work on super-resolution in
image space

Super-resolution is a well-studied topic in computer vision,

where high-resolution images are reconstructed from low-

resolution images. Recently, deep neural networks based on

super-resolution (Bhowmik et al., 2018) have become popular

due to their high accuracy and fast processing time. Dong

et al. (2016) first introduced a fully convolutional network

for super-resolution. Most of the subsequent super-resolution

approaches rely on residual learning, where we predict the fine

detail using a convolutional network and add them with coarse

upsampled images (i.e., cubic spline). Two distinct approaches

in residual learning for super-resolution evolved in recent times:

a) upsample in the beginning and then extract fine details from it

using residual learning (Kim et al., 2016) and b) extract powerful

image features from the low-resolution image and add them

with the upsampled image at the end (Lim et al., 2017). The

former enjoys extra performance improvement, while the latter

is more efficient regarding the computational budget. Recently,

channel widening before activation in the residual branch has

been proposed (Yu et al., 2018), which not only helps shallow

features to propagate easily into deeper layers but also reduces

the network complexity. Zhang et al. (2018) has proposed a

residual in residual architecture for a very deep network with

a channel attention layer, which exploits non-linear interaction

between global channel statistics to scale individual features.

1.2. Prior work on MRI super-resolution
and challenges

Volumetric MRI super-resolution (Pham et al., 2017;

Lyu et al., 2020) in image space is analogous to the 2D

counterpart. However, the challenge lies in designing memory-

and computation-efficient methods suitable for 3D volume that

can be trained on a limited amount of training data. This

problem is exaggerated for 3D vector-valued data, requiring new

approaches to learn the inter-scale transformation effectively.

Previously, in an attempt to mitigate the 3D computational

complexity, a variation of residual learning called densely

connected convolutional network has been adopted in MRI

super-resolution by Chen et al. (2018). Often super-resolution

is interpreted as a texture synthesis problem using adversarial

learning (Sánchez and Vilaplana, 2018). Although adversarial

learning produces perceptually high-quality images (Xie et al.,

2018), it fails to achieve superior reconstruction metrics
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compared to non-adversarial learning, which is of main interest

in the case of 4D-flow MRI to accurately compute the velocities

and their spatial derivatives. Hence, we are not considering

adversarial learning. Previously, data-driven super-resolution

approaches explored other MRI modalities, such as super-

resolution of temporal perfusion MRI (Meurée et al., 2019) and

vector field super-resolution problem of diffusion MRI (Tanno

et al., 2017; Albay et al., 2018). Note that these methods either

rely on 2D slice-wise super-resolution or individual channel-

wise super-resolution in 3D. Ferdian et al. (2020) proposed

a residual network to super resolve 4D Flow MRI. Although

they also used computational fluid dynamic (CFD) to mitigate

the shortcomings of noisy in vivo data, their method relies

on the magnitude image alongside the velocity image. For

CFD, it is hard to simulate a magnitude image due to the

unknown relationship between the simulated velocity field and

the magnitude image intensities. Fathi et al. (2020) proposed

physics-informed deep learning to super resolve patient-specific

flow. However, they need to retrain their model for each new

patient since the physics-informed model does not generalize

over the computation domain, i.e., the vessel geometry in

this case.

1.3. Related work on 4D-flow MRI and
CFD

Several classical approaches have been applied to improve

the spatial resolution of 4D-fLow MRI, such as ridge-regression

(Bakhshinejad et al., 2017) and Lasso regression (Fathi et al.,

2018). Recently, Rutkowski et al. (2021) proposed a machine

learning-based solution to merge the CFD and MRI data.

Flow data assimilation is another active research field, where

the reduced-order Kalman filter (Habibi et al., 2021) and

local ensemble Kalman filter (Gaidzik et al., 2019, 2021)

have been used. Incorporating CFD simulation using interior-

point optimization framework (Töger et al., 2020) and lattice

Boltzmann-based topology optimization (Klemens et al., 2020).

While these works attempted to improve 4D-flow MRI by

merging CFD data, it requires expensive CFD simulation for

each new acquisition. Hence, we look for an alternative road

where we can learn a model using both CFD and in vivo 4D-flow

MRI data, and the learned solution can be used out of the box for

any newly acquired data without any further CFD simulation.

Along this line, we aim to find an elegant solution to learn

a scalable non-linear mapping from coarse- to fine-scale spatial

velocity field. Further, three channels of 4D-flow MRI together

represent the flow direction in 3D and should be treated as a

joint interpolation problem compared to earlier approaches on

scalar volumes (Chen et al., 2018; Sánchez and Vilaplana, 2018).

Moreover, the commonly used ℓ2 loss is sub-optimal for 4D-

flow MRI because of the non-Gaussian (Gudbjartsson and Patz,

1995) noise distribution and does not prioritize the direction

of point-wise velocity fields. Previously, direction-sensitive loss

functions, such as cosine similarity, have been explored in text

processing (Li andHan, 2013) and face recognition (Nguyen and

Bai, 2010). Since in 4D-flowMRI, the flow direction consistency

is important for all subsequent applications, we identify it as

a crucial aspect and propose including it in a novel mutually-

projected ℓ1 loss function.

1.4. Our contribution

In summary, our contributions are as follows:

• We propose a novel and memory-efficient end-to-end

convolutional neural network architecture, which learns

the non-linear relationship between fine- and coarse-scale

velocity fields and achieves super-resolution of the velocity

field. Moreover, it applies to 4D-flow data irrespective

of the scanner-specific constraints and access to the

k-space information.

• We introduce a novel, robust, and direction-dependent

cost function referred to as mutually projected ℓ1. We

investigate its effect on the proposed network compared to

the standard ℓ1 loss function.

• We further validate our method on in vivo 4D flow MRI

datasets of two anatomical regions, namely: a) an internal

carotid artery (ICA) brain aneurysm (Cerebrovascular

data) and b) whole heart and great vessel (Cardiovascular

data) that were acquired with different MRI scanners and at

different imaging centers. This assesses the generalizability

of the proposed method.

2. Materials and methods

In this section, we describe in detail the proposed learning-

based method (Section 2.1). Subsequently, we describe the

proposed robust loss function (Section 2.2) along with its

implementation details (Section 2.3).

2.1. Network architecture

4D-flow MRI provides time-resolved 3D blood flow velocity

maps over a single cardiac cycle. Our work focuses on super-

resolving along the spatial dimensions and treats each temporal

image frame as an independent sample. Let us denote the

low resolution velocity field and high resolution velocity field

as u and U respectively, where u ∈ RH×W×D×3, U ∈

RsH×sW×sD×3, H,W,D are the spatial dimensions, and s is

the factor of upscaling (s = 2, 3 or 4). We are interested in

learning a supervised data-driven mapping function from u →

U from the input-output pairs {ui,Ui}
n
i=1. Since three channels

denote three velocity components are highly correlated, we
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FIGURE 1

A proposed residual block consists of a sequence of channel widening, convolution followed by activation, channel squeeze and excitation (SE)

block. While the channel widening by a factor of p before activation helps to reduce network parameters, the SE block promotes diverse feature

distribution by compressing interim features by a factor of r.

FIGURE 2

PA proposed SRflow has a series of residual groups made of residual blocks, as shown in Figure 1. The residual grouping strategy maximally

leverages residual learning by exploiting hierarchical skip connections.

opted for a three-channel volumetric super-resolution instead

of individually super-resolving each velocity component. To

reduce the computational overhead, we naturally opt to extract a

rich feature from the low-resolution vector field using residual

learning and add the predicted fine details with upsampled

vector fields to reconstruct high-resolution velocity fields.

2.1.1. Building blocks

In recent times (Yu et al., 2018), wide-activation before the

convolution operation in the residual branch proved to be an

efficient strategy to reduce model complexity without sacrificing

super-resolution performance.We first extend the idea of having

widely activated residual blocks in 3D. Henceforth, we will call

this network WDSR-3D and use it as a baseline method for

evaluation purposes. We keep the weight normalization as was

proposed in Yu et al. (2018). We incorporate a sequence of

residual groups, which effectively accelerates the learning of deep

networks (Zhang et al., 2018). Since channel expansion with a

1×1×1 convolution kernel is applied, new channels are different

linear combinations of the previous layer channel without any

spatial feature propagating in the channel dimension. Thus,

information in the new channels carries redundant information.

We argue that although this redundancy gives multiple paths for

the gradient to propagate easily throughout the residual blocks,

they often share similar information. The recently introduced

squeeze and excitation (SE) (Hu et al., 2018) block helps to inject

useful cross-channel diversity in the residual features. Hence,

we leverage the feature diversity of an SE block to re-calibrate

the channel features. This is depicted in Figure 1. We will

refer to this modified architecture as SRflow in the subsequent

discussion, which is depicted in Figure 2.

2.1.2. SRflow

The first convolution layer transforms the input toC channel

feature maps. After first convolution, it goes through the N

number of residual groupsG1,G2, · · · ,GN. Each of the residual

group consists ofM number of R1,R2, · · · ,RM residual blocks.

The deep features and the input goes through their respective

feature refining convolution layer, which transforms channels

C → s3C. We use voxel shuffling layer [3D pixel shuffling (Shi

et al., 2016) layer] to rearrange features from channel dimension

to increase spatial dimension sH × sW × sD × C. The final

convolution layer merges fine details with the coarse up-scaled

branch and reconstruct super-resolved volume of size sH×sW×

sD× 3.
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FIGURE 3

Left: A 2D delineation of mutually projected ℓ1 (mp-ℓ1) error. The reference and the predicted vectors are u = [u0,u1] and v = [v0, v1],

respectively. Individual local minimas of J1(v;u) and J2(v;u) w.r.t v are shown in red line and purple circle, respectively. However the common

minima of the two losses are unique and are as same as the reference. Middle: A description of the ℓ1 error surface at u = [0.5, 0.5]. Right: A

description of the mp− ℓ1 error surface for the same u and α = β = 0.5, which has a direction sensitivity based on the value of u.

2.2. Robust loss function

4D-flow MRI data acquired in clinical settings are sparse in

both space and time, and they can be easily corrupted by noise.

Since noise in 4D-flow MRI is not Gaussian (Gudbjartsson and

Patz, 1995), it is sub-optimal to use an ℓ2 norm on the error in

our task. Thus, a robust cost function is needed for obtaining

accurate estimates of the super-resolved flow. Let us denote

the reference velocity as {ui}
n
i=1|ui ∈ R3 and the estimated

velocity as {vi}
n
i=1|vi ∈ R3. The most commonly used robust

loss function is ℓ1 loss. For n number of samples, it is defined as

Jℓ1 =
1

n

n
∑

i=1

‖vi − ui‖1 (1)

2.2.1. Mutually projected ℓ1 loss

ℓ1 loss penalizes the estimation error equally, irrespective of

the reference vector direction. Neighboring voxels tend to have

a different correlation in magnitude and direction based on local

blood vessel geometry and the global flow direction. Because

of this, we argue that a magnitude/direction disentanglement

in the loss would benefit the network to arrive at a better

trade-off between the accuracy of magnitude and direction

estimation under noisy circumstances. Also, errors inmagnitude

and direction are very different in the value range across the

spatial location, making it difficult to find optimal weight in the

case of a weighted loss function. To overcome this, we propose

to incorporate a directional sensitivity for the reference velocity

in the loss function. Specifically, we introducemutually projected

ℓ1 (mp-ℓ1) error (c.f. Figure 3). The projected ℓ1 error of v on u

is given by

J1(v; u) = |‖u‖ − ‖v‖ cos(θ)| (2)

Where θ is the angle between u and v. The local minima of

J1(v; u) is the orthogonal subspace of u. Similarly, the projected

ℓ1 error of u on v is given by

J2(v; u) = |‖v‖ − ‖u‖ cos(θ)| (3)

The local minima of J2(v;u) is the sphere centered at u/2 with

radius ‖u‖/2 excluding the origin 0. We take a convex linear

combination of J1 and J2 to construct the Jmp-ℓ1 loss

Jmp-ℓ1 =
1

n

n
∑

i=1

(αJ1(vi; ui)+ βJ2(vi; ui)) (4)

where [α + β = 1 : 0 < α,β < 1]

Note that both J1 and J2 independently have two different

solution spaces (cf Figure 3-left); however, Jmp-ℓ1 has a unique

local minima, which is also the global minima achieved under

the condition of v = u. Figure 3 explains mp-ℓ1 in 2D scenario.

The same interpretation holds in a higher dimension with a

hyper-sphere and a hyper-plane instead of a circle and a line.

Unlike ℓ1 loss, mp-ℓ1 has directional sensitivity depending on

the value of u, which helps the pointwise error to adapt locally

near the minima.

2.2.2. Combined loss

In our experiment, we find that the combination of ℓ1 and

mp-ℓ1 losses helps to achieve the best performance in terms of

training loss and validation PVNR. The complete loss function

is as follows

Jopt = λℓ1Jℓ1 + λmp-ℓ1Jmp-ℓ1 (5)

where λℓ1 and λmp-ℓ1 are two weight parameters.
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FIGURE 4

Typical examples of three data sets used in our experiments.

2.3. Implementation details

We implement our model in PyTorch. In the network

architecture, we use N = 4 andM = 2. We expand the features

by p = 32 times for the wide activation, and for the SE block,

we use r = 8. For loss function, we select α = β = 0.5 and

λℓ1 = λmp-ℓ1 = 1. We select the learning rate at 10−3 and

use the ADAM optimizer for all of our experiments. We train

each model for 200 epochs with a learning rate decay of 0.9

after every 10 epochs with a batch size of 4 in a Quadro P6000

GPU. The best model is chosen based on the validation peak

velocity-to-noise ratio (PVNR).

2.4. Datasets

To study how well our model generalizes in practice, we

chose two different vascular regions, which are also of numerous

clinical relevance (Amili et al., 2018; Garcia et al., 2019).

Importantly, these two datasets are obtained from two different

scanners. The dataset consists of three different sets of flow data;

a) Synthetic Cerebrovascular Data: CFD simulated flow data

of cerebral aneurysm, b) In vivo Cerebrovascular Data: in vivo

4D-flow MRI of ICA aneurysm, and c) In vivo Cardiovascular

Data: in vivo 4D-flow MRI of the whole heart and great vessels.

Exemplary samples from the datasets have been shown in

Figure 4.

2.4.1. Synthetic cerebrovascular data

We obtain patient-specific cerebrovascular aneurysms

(N= 6) in ICA geometries from 3D rotational angiograms.

We segment the blood vessel geometries from the computed

tomography using the MITK v2018.4. We generate the

triangulated mesh using ICEM CFD v.19 (ANSYS Inc). We

model the blood flow as an unsteady Newtonian flow and solve

the Navier-Stokes equations using the finite volume-based

OpenFOAM-v3.0. We impose the inlet patient-specific flow

boundary conditions extracted from 2D phase-contrast MRI

and a zero pressure condition at the outlet. All the vascular walls

are assumed rigid. We use a second-order upwind scheme for

the convective terms and a semi-implicit method for pressure-

linked equations. We employ an algebraic multi-grid-based

solver for high-precision simulation. We simulate the blood

flow with the following parameters: viscosity 0.0032 Pa·s;

density 1,050 kg/m3 (Brindise et al., 2019).

2.4.2. In vivo 4D-flow MRI data

A total number of 24 in vivo 4D-flow MRI data sets are

included: Cardiovascular data of healthy subjects covering the

whole heart (N = 10) or thoracic aorta only (N = 11); and

cerebrovascular data of patients with ICA aneurysm (N = 3). All

in vivo volunteers were recruited prospectively. The institutional

review board approves all imaging studies, and written consent

is obtained before scanning. All cardiovascular data are acquired

using a 1.5 T MRI system (Siemens Avanto) with breathing

navigator gating and prospective electrocardiogram triggering.

Three ICA aneurysm data sets are acquired using a 3 T

MRI system (Philips Achieva TX) with prospective cardiac

triggering using a peripheral pulse unit. No contrast agent is

used. Acquisition parameters for both types of data are listed

in Table 1. For all datasets, Maxwell terms and gradient non-

linearity are corrected during reconstruction. Eddy current

phase offset is corrected offline.

2.5. Data preparation

For synthetic and in vivo data sets, we rely on the following

data preparation steps to create training data. We consider the

acquired image volume as the high-resolution reference data.

1. We first convert the velocity data into phase using a venc =

vmax/π to avoid any phase warping. Next, we combine the

magnitude with phase and transform the reference data into

Fourier space. Note that we use synthetic data’s segmentation

mask as the dummy magnitude.

2. Then, we crop the low-frequency component from the k-

space according to the downsampling factors.
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TABLE 1 Acquisition parameters in our study for the synthetic and in vivo 4D-flow MRI data set.

Synthetic cerebrovascular In vivo Cerebrovascular In vivo Cardiovascular

FOV [mm] 320–440 x 370–520 x 320–470 190 x 210 x 32 340–360 x 210–250 x 80–150

Acquisition matrix - 128 x 128 x 32 160 x 100 x 32–64

Spatial res. [mm] 0.25 x 0.25 x 0.25 0.82 x 0.82 x 0.82 2.1–2.3 x 2.1–2.5 x 2.3–2.5

Temporal res. [ms] 36 55 40

Patient cohort 6 3 21

Scanner - 3.0 T Philips Achieva TX 1.5 T Siemens avanto

TE/TR [ms] - 2.9/4.6 2.54/5

Venc [cm/s] - 80 150

Parallel imaging - SENSE (R = 2) (Pruessmann et al., 1999) PEAK-GRAPPA (R = 5) (Jung et al., 2008)

Cardiac gating - peripheral pulse unit ECG

FOV, field of view; TE, echo time; TR, repetition time; Venc , velocity encoding range; ECG, electrocardiogram.

3. We apply additive Gaussian noise with the k-space.

4. Finally, we apply Fourier inversion and multiply the phase

with venc to obtain the low-resolution training data.

This process closely resembles the sub-sampling process in the

MRI scanner (Gudbjartsson and Patz, 1995). For our training,

we extract patches of sizes 24×24×12×3, 16×16×8×3, and 12×

12× 6× 3 from the low-resolution volume for 2×, 3×, and 4×

super-resolution, respectively. The patches-size corresponding

to the high-resolution volume is 48 × 48 × 24 × 3. The patches

are selected on-the-fly during training from a random location

of the training data.We normalize the input to [-1,1] by dividing

the velocity with vmax, the maximum velocity present.

2.6. Evaluation metrics

Peak velocity-to-noise ratio (PVNR) is commonly used to

quantify the reconstruction quality of the estimated velocity

field. We use PVNR as a primary metric to quantify the

performance of our proposed super-resolution method. PVNR

between reference (u) and the estimated velocity (v) is

PVNR = 20 log10
1

RMSvel
dB (6)

RMSvel =
1

maxi ‖ui‖

√

√

√

√

1

N

N
∑

i=0

‖ui − vi‖
2 (7)

where RMSvel is the normalized-root-mean-squared-error of

velocity. PVNR represents a combined error in the magnitude

estimation and the phase estimation. Furthermore, we aim to

deconstruct the source of error into its magnitude and phase

component. As a measure of the error in magnitude estimation,

we compare the normalized-root-mean-squared-error of speed

(RMSspeed) as described below

RMSspeed =
1

maxi ‖ui‖

√

√

√

√

1

N

N
∑

i=0

(‖ui‖ − ‖vi‖)
2 (8)

We also computeDirection Error (Edir) tomeasure the deviation

of instantaneous velocity direction with respect to the reference

velocity. The error in direction estimation is critical in some

downstream tasks, such as streamline-tracing and path-line

tracking, where the corresponding algorithm’s accuracy depends

on direction estimation accuracy.

Edir =
1

N

N
∑

i=0

(

1−
〈ui · vi〉

‖ui‖ ‖vi‖

)

(9)

Furthermore, we emphasize the flow consistency in terms of the

flow divergence of the super-resolved flow field. We compute

the root-mean-squared divergence in the region of interest and

compare it against the high-resolution reference velocity.

RMSdiv =

√

√

√

√

1

N

N
∑

i=0

|∇ · vi|
2 (10)

3. Results

In this section, we describe our experiments and the main

results. We refer to WDSR-3D as the 3D extension of WDSR by

Yu et al. (2018). For the details of WDSR architecture, please

refer to the original paper by Yu et al. (2018). This is one

of the top-performing methods in the NTIRE super-resolution

challenge. Hence, we select this as the baseline of our study and

build our contribution upon it. We compare our work to the

WDSR-3D for two main purposes. First, it is a strong baseline

that is scalable to 3D. Second, its residual learning architecture

is similar to the existing method (Ferdian et al., 2020) and
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provides a point of reference for comparison. The method by

Ferdian et al. (2020) also requires magnitude images, which is

not a good candidate for training with CFD simulated data.

Since we are not using magnitude images in our training, we

are unable to perform a direct comparison. Although it is not

100% identical, WDSR-3D is analogous to their method and can

serve as a point of reference. In our experiment with WDSR-3D

on synthetic data, we observe that ℓ1 loss offers on average 1dB

PVNR improvement over ℓ2 loss for 2x super-resolution. From

this observation, we choseWDSR-3D with ℓ1 loss as the baseline

model for our experiments. We will denote SRflow (ℓ1), SRflow

(mp-ℓ1), and SRflow (opt) trained with Jℓ1 , Jmp-ℓ1 , and Jopt ,

respectively. The following two subsections (Experiment-1 & -

2) are the descriptions of the experimental setup. For statistical

significance analysis, we performed a Wilcoxon signed-rank

test. For this, we collected predictions from all of the 3-fold

validation.We declare statistical significance when the p-value is

lower than 0.001. The analysis of their results is presented jointly

in Section 4.

3.1. Experiment-1: Train on synthetic
cerebrovascular data

First, we train and test our model on the synthetic

cerebrovascular data. We perform three experiments with three

different train-validation splits and report the combined results.

This allows us to maximize training examples while performing

required cross-validation. For each experiment, we have selected

(120 samples) five subjects as training and the remaining one

as the validation data (24 samples). The train-validation split

was fixed across the models and loss functions for a fair

comparison.

3.1.1. Part A: Evaluation on synthetic
cerebrovascular data

This experiment serves as the proof of concept for both

our model and loss function. We compute each metric’s mean

and SD for the validation data over three independent trials.

We train separate models for three different upscaling factors,

such as 2×, 3×, and 4× SR. Figure 5A shows the boxplot of

four different metrics for the experiments on the synthetic data.

We present the comparative result for different experiments set

in Supplementary Table S1. Supplementary Figure S1 presents

an exemplary temporal visualization of PVNR for a particular

slice from the validation set. Supplementary Figure S2 presents

the error profile of the velocity field for the corresponding

slice location of the same example, which is done using

Paraview.

3.1.2. Part B: Evaluation on in vivo

cerebrovascular data

We evaluate the model trained on synthetic cerebrovascular

data on the 32 in vivo cerebrovascular samples from 2 subjects.

Supplementary Table S2 shows the quantitative comparison of

all the metrics for three different scaling factors. We observe

that the improvement in metrics for scaling factors 2× and 3×

is low compared to 4×. The improvement is also relatively lower

than the improvement observed in Supplementary Table S1.

Although SRflow (opt) consistently performs better than the

cubic spline and baselineWDSR-3D, we investigate the inclusion

of in vivo data during training in the following.

3.2. Experiment-2: Fine-tune on in vivo

cardiovascular data

The previous experiment shows that the model trained on

synthetic data does not offer the same degree of improvement

over cubic-spline on in vivo cerebrovascular data for lower

scaling factors. We attribute this to the fact that different noises

and artifacts are present in the in vivo data (Johnson and Markl,

2010). We fine-tune the model using in vivo cardiovascular data

to overcome this gap. We choose to fine-tune all our model

Experiment-1 on in vivo cardiovascular data instead of in vivo

cerebrovascular data because cardiovascular data have more

samples than cerebrovascular data and consists of a significantly

richer variation of noise and artifacts (Fathi et al., 2018). Similar

to synthetic experiments, we perform three experiments with

three different train-validation splits and report the combined

results. For each experiment, we have selected 17 subjects as

training and the remaining 4 as the validation set. Similar to

before, the train-validation split was fixed across the models and

loss functions for a fair comparison. Finally, we directly translate

the trained model from cardiovascular data to in vivo aneurysm

4D-flow MRI data and evaluate the performance.

3.2.1. Part A: Evaluation of in vivo

cardiovascular data

Similar to our synthetic data experiments, we perform

the experiments for three different scenarios, such as 2×,

3×, and 4× super-resolution. Figure 5B shows the boxplot of

four different metrics for the validation data. The comparative

result for this experiment is shown in Supplementary Table S3.

Figure 6 shows a qualitative comparison of representative

cardiac data from our experiments.

3.2.2. Part B: Re-evaluation of in vivo

cerebrovascular data

We use the trained model from the cardiovascular

experiments and evaluate the in vivo cerebrovascular data
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FIGURE 5

Left → right shows the box plots for peak velocity-to-noise ratio (PVNR), root-mean-squared-error (RMS)speed, Edir , and RMSdiv , respectively.

The x-axis shows di�erent upscaling factors 2×, 3×, and 4× respectively. Higher (↑) PVNR and lower (↓) RMSspeed, Edir and RMSdiv indicates

better performance. Note that SRflow (opt) consistently outperforms the baseline models. (A) Experiment-1 Part A: box plots for synthetic

cerebrovascular data. (B) Experiment-2 Part A: box plots for in vivo cardiovascular data. (C) Experiment-2 Part B: box plots for in vivo

cerebrovascular data.

FIGURE 6

Qualitative comparison of streamlines obtained from di�erent methods on two representative in vivo samples (left-cardiovascular and

right-cerebrovascular). SRflow (opt) shows closer similarity to the reference streamlines for both the cases, while it reduces artifacts.

without further fine-tuning. Supplementary Table S4 shows the

quantitative comparison of all the metrics for three different

scaling factors. Figure 5C shows the boxplot of four different

metrics for the in vivo cerebrovascular data. Figure 6 shows

a qualitative comparison of representative aneurysm data

from our experiments. Additionally, we have shown the
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FIGURE 7

Bland-Altman plot for the three velocity components of 50,000 random samples from the in vivo cerebrovascular data for the SRflow(opt)

model fine-tuned with cardiovascular data. We observe excellent agreement between the prediction and the reference.

FIGURE 8

Qualitative images from di�erent methods on a representative cerebrovascular sample. Note that cubic spline interpolation creates unnecessary

amplification and attenuation of flow where SRflow (opt) preserves the flow intensity closest to the reference (HR).

Bland-Altman plot (Figure 7) for each velocity component,

which shows good agreement with the reference, and the error

is homogeneously scattered across the (mean ±1.96 × SD)

range. Qualitative results from Figure 8 show that SRflow (opt)

produces the closest prediction to the reference.

4. Discussion

4.1. Ablation study and transfer learning

4.1.1. E�ect of squeeze and excite block

From Figures 5A–C and Supplementary Tables S1–S4 in the

Appendix, we observe that cubic-spline-based upsampling is

consistently inferior compared to the learning-based solutions.

The performance gain between these two increases with

the upsampling factor for both the synthetic and in vivo

data. However, the improvement for synthetic cerebrovascular

data (Supplementary Table S1) is greater than the in vivo

cardiovascular data (Supplementary Table S3). We attribute this

to the ‘reference’ 4D-flow MRI data being noisy, which may

hamper the reconstruction quality measure. Furthermore, we

notice that the SRflow (ℓ1) network achieves better PVNR,

RMSspeed, Edir , and RMSdiv. than the WDSR-3D counterpart

for all three cases of super resolutions 2×, 3×, and 4×. We

find SRflow (ℓ1) results are statistically significant (p < 0.001)

compared to WDSR-3D for all four metrics. We believe this is

due to the fact that the diversity in feature space induced by

the SE block better captures the inter-scale relationship of the

velocity field.

4.1.2. E�ect of our proposed loss function
(mp-ℓ1)

We investigate the effect of two different loss functions

discussed in Section 2.2 on the SRflow architecture. For

Experiment 1 (Supplementary Tables S1, S2), we see that SRflow

(opt) performs consistently better than the other loss functions

for all super-resolution factors concerning PVNR and RMSspeed.

For Edir , SRflow (opt) produces the lowest error except 4× factor

in Supplementary Table S1. For RMSdiv, we observe that SRflow

(ℓ1) produces the lowest error. We find the improvements
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TABLE 2 E�ect of divergence loss and data augmentation strategy on synthetic cerebrovascular data.

Methods s PVNR (dB) ↑ RMSspeed (ms−1) ↓ Edir ↓ RMSdiv (s
−1) ↓

SRflow (opt) ×2 39.14± 0.629 0.0161± 0.00487 0.0084± 0.00008 0.0014± 0.00038

SRflow (ℓ1 + div) ×2 38.89± 0.427 0.0138 ± 0.00346 0.0081 ± 0.00005 0.0012 ± 0.00026

SRflow (opt+mixed data) ×2 39.21± 0.301 0.0138 ± 0.00249 0.0084± 0.00008 0.0013± 0.00028

SRflow (opt+ div) ×2 38.93 ± 0.426 0.0138 ± 0.00342 0.0084± 0.00007 0.0012 ± 0.00027

SRflow (opt) ×3 35.20± 0.520 0.0253± 0.00732 0.0102± 0.00008 0.0015± 0.00042

SRflow (ℓ1 + div) ×3 35.45± 0.376 0.0205± 0.00494 0.0088 ± 0.00006 0.0013± 0.00029

SRflow (opt+mixed data) ×3 35.19± 0.260 0.0241± 0.00405 0.0102± 0.00005 0.0015± 0.00026

SRflow (opt+ div) ×3 35.94 ± 0.389 0.0196 ± 0.00478 0.0088 ± 0.00006 0.0012 ± 0.00028

SRflow (opt) ×4 33.87± 0.642 0.0293± 0.00888 0.0097± 0.00015 0.0017± 0.00048

SRflow (ℓ1 + div) ×4 34.44± 0.399 0.0226 ± 0.00560 0.0096 ± 0.00006 0.0014± 0.00032

SRflow (opt+mixed data) ×4 33.24± 0.256 0.0269± 0.00603 0.0096 ± 0.00002 0.0013 ± 0.00030

SRflow (opt+ div) ×4 34.51 ± 0.428 0.0229± 0.00573 0.0098± 0.00003 0.0013 ± 0.00031

The bold values mean the highest score of the corresponding scale factor×2,×3, and×4.

TABLE 3 Comparison on data augmentation strategy on in vivo cerebrovascular data.

Methods s PVNR (dB) ↑ RMSspeed (ms−1) ↓ Edir ↓ RMSdiv (s
−1) ↓

SRflow (opt) ×2 33.52 ± 2.703 0.0164 ± 0.00878 0.0053± 0.00160 0.0083 ± 0.00394

SRflow (opt+mixed data) ×2 33.32± 2.588 0.0167± 0.00878 0.0051 ± 0.00131 0.0083± 0.00387

SRflow (opt) ×3 30.46 ± 2.473 0.0228 ± 0.01188 0.0120 ± 0.00345 0.0070 ± 0.00333

SRflow (opt+mixed data) ×3 30.39± 2.390 0.0229± 0.01177 0.0122± 0.00347 0.0070± 0.00336

SRflow (opt) ×4 28.30 ± 2.321 0.0279 ± 0.01456 0.0242 ± 0.00723 0.0067± 0.00325

SRflow (opt+mixed data) ×4 28.03± 2.258 0.0294± 0.01491 0.0245± 0.00694 0.0062 ± 0.00311

The bold values mean the highest score of the corresponding scale factor×2,×3, and×4.

from SRflow (opt) over baseline (WDSR-3D) and other SRflow

variants to be statistically significant (p < 0.001) for PVNR,

RMSspeed, and Edir . While we do not find any statistically

significant (p > 0.001) difference between the SRflow (ℓ1)

and SRflow (opt) for RMSdiv for S1, the same is statistically

significant (p < 0.001) for Supplementary Table S2.

For experiment 2 (Supplementary Tables S3, S4), SRflow

(opt) improves PVNR for all scale factors compared to

baseline (WDSR-3D) and other SRflow variants. For RMSspeed,

SRflow (opt) and SRflow (mp-ℓ1) result in the lowest

error. For Edir , SRflow (opt) produces the lowest error

except for the 4× factor in Supplementary Table S1. WDSR-

3D and SRflow (ℓ1) produce the lowest RMSdiv. Although

SRflow (opt) reduces Edir consistently, it produces slightly

higher RMSspeed and RMSdiv than SRflow (mp-ℓ1) and

SRflow (ℓ1), respectively. We attribute this to the fact

that mp-ℓ1 offers a trade-off between accurate magnitude

and phase estimation of the velocity field during training

on ‘noisy reference.’ While higher PVNR ensures good

signal quality for accurate quantitative analysis, lower Edir

reduces error in the qualitative assessment, such as streamline

tracing. We find the improvements from SRflow (opt)

over baseline (WDSR-3D) and other SRflow variants to be

statistically significant (p < 0.001) for PVNR, RMSspeed,

and Edir . We find no statistically significant (p < 0.001)

difference between the SRflow (ℓ1) and SRflow (opt) for

RMSdiv for Supplementary Tables S3, S4. In stark contrast with

Supplementary Table S3, this shows the benefit of fine-tuning

using in vivo data.

The mp-ℓ1 alone fails to improve the performance

compared to the standard ℓ1, but it is evident from

Supplementary Tables S1, S3 that when combined with

the ℓ1 it outperforms both. We hypothesize that gradient

from mp-ℓ1 loss is beneficial when the directional error

is large because of the directional sensitivity, which is

helpful for the ‘exploration’ in the early stage of training.

Additionally, since the loss curve of mp-ℓ1 is smoother

compared to ℓ1 loss at lower error, ℓ1 provides a stronger

gradient than mp-ℓ1, which is vital in the ‘exploitation’

of the final stage of training. Hence, the performance

improvement stands out when both loss functions are

used simultaneously.

We experimented with divergence loss function, which can

serve as a physics constrained regularizer. The divergence loss is
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FIGURE 9

Velocity streamlines from an in vivo cerebrovascular 4D-flow

MRI. The seed points are placed using a spherical source. The

landmarks are used in Table 4.

defined below.

Jdiv =
1

n

n
∑

i=1

‖∇ · vi‖2 (11)

We have identical experiment settings for divergence loss as

described before to have a fair comparison. We have observed

from Table 2 that the inclusion of divergence loss improved

the results in both cases. In particular, the divergence metric

improved consistently across the different upsampling factors.

We also observe that the gain is slightly higher in the case

of SRflow (opt) than in standard ℓ1 loss, which reasserts the

effectiveness of our proposed loss function. However, since

divergence cannot be used as a standalone loss function, we

conclude from these experiments that using it as a regularizer

benefits the model.

4.1.3. Transfer learning

We fine-tune our model on the in vivo cardiovascular data

and validate it on the in vivo cerebrovascular data, scanned

in an entirely different scanner and velocity encoding value.

Despite the difference in the anatomical region, we observe that

our proposed SRflow (opt) improves all metrics significantly

(c.f. Supplementary Table S4). Especially we observe that it

produces the lowest RMSdiv compared to other methods, which

is also statistically significant. This observation confirms that

our model can be seamlessly transferred to other existing MRI

acquisition configurations without the need for any further local

fine-tuning.

We have performed additional experiments comprising joint

CFD and in vivo datasets and reported Tables 2, 3. We compare

the result from joint training and training sequentially in

synthetic and in vivo data on both synthetic and in vivo data.

We observe a marginal improvement on the synthetic test set.

However, the results deteriorate slightly on the in vivo test set.

TABLE 4 The mean of relative error in the number of streamlines with

respect to the reference in vivo data over one cardiac cycle, which is

computed at two landmarks as shown in Figure 9 for di�erent

super-resolution methods.

Method Landmark 1 Landmark 2

Cubic-spline 0.66 0.76

WDSR-3D 0.50 0.16

SRflow (ℓ1) 0.37 0.16

SRflow (mp-ℓ1) 0.36 0.21

SRflow (opt) 0.31 0.11

TABLE 5 Runtime comparison between SRflow and cubic spline,

where we see that SRflow is much faster.

Method 2x 3x 4x

Cubic spline 76.42 s 76.19 s 73.09 s

SRflow (opt) 8.17 s 3.80 s 2.86 s

We attribute this to the fact that the MRI artifacts and noise are

difficult to model in the CFD data.

4.2. Global quality evaluation of
reconstructed velocity

Besides the voxel-wise reconstruction metrics, analyzing the

effect of the super-resolved velocity field on a global level, such

as path integration along the flow field, are also important. We

compare the computed streamlines for in vivo 4D-flowMRI data

to assess the global reconstruction quality.

Streamlines (Cebral et al., 2011) is an important visualization

technique, often used as the primary mode for clinicians’

interpretable representation of 4D-flow MRI. The continuity

of streamlines can be used as an alternative way to measure

the quality of the super-resolved vector fields. We start the

streamline tracing near the aneurysm with 2000 seed points and

extend toward both the landmarks as shown in Figure 9. We

compute the relative error between the number of streamlines

produced by each super-resolver volume and the reference

streamline. Table 4 shows the mean of the relative error over

one cardiac cycle at two landmarks for the 4× super-resolution

task. We find that the cubic spline always underestimates the

number of streamlines, and SRflow (opt) produces the lowest

relative errors.

4.3. Runtime comparison

We compare the runtime for a 96 × 132 × 48 3D volume

between the cubic spline and the neural network-based model

for three different resolutions. We compare the runtime in a
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workstation equipped with Intel(R) Xeon(R) W-2123 and 64

GB DDR4 RAM. The comparison is shown in Table 5. SRflow

offers significant computational speedup, which is favorable for

clinical application.

4.4. Limitation and outlook

While the improved resolution will be beneficial in

increased stability for numerical gradient computation, its

accuracy is still limited to finite difference schemes and

the maximum super-resolution factor learned during training

for optimal performance. Furthermore, the current study is

limited in exploring different spatial super-resolution factors,

and temporal super-resolution is of future research interest.

Additionally, including other realistic perturbations, such as

scan-rescan variability, phase aliasing, and eddy current effect,

would be of interest to include in the model. Future research will

include increasing the number of samples of the in vivo cohort.

Future work will also focus on further quantitative assessment of

advanced parameters, such as WSS and KE.

5. Conclusion

This paper investigates the effectiveness of deep learning

in super-resolving 4D-flow MRI data up to 4x resolution.

We have started with a strong baseline model and gradually

improved it by incorporating expressive squeeze and excite

block. Furthermore, we introduce a novel robust loss function

with directional sensitivity suitable for velocity data. With

extensive validation, we demonstrated the effectiveness of the

introduced component. Next, we show that the model learned

from synthetic CFD data still requires finetuning on in vivo

data for improved performance. Importantly, this finetuning

is not dataset-dependant and can be applied seamlessly to

other in vivo datasets without further finetuning. Naturally, we

have improved runtime compared to the classical interpolation

method, which could enable future 4D-flow MRI acquisitions at

lower resolution—and thus with decreased scan time—without

compromising the accuracy of quantitative flow analysis.
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