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Vollständiger Abdruck der von der TUM School of Engineering and Design der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Nikolaus Adams
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Zusammenfassung

Das Beschreiben und Berechnen von hochdimensionalen, nichtlinearen Systemen ist eine der
zentralen Herausforderungen in den Ingenieurwissenschaften und der numerischen Physik.
Wir stellen neuartige Physik-inspirierte Modelle des maschinellen Lernens vor, die sowohl
auf physikalischem Wissen als auch eine kleine Anzahl von Daten basieren und nach einer
anfänglichen Trainingsphase in der Lage sind, die anfangs erwähnten hochdimensionalen
Systeme effizient zu lösen. Das zentrale Element dieses Ansatzes ist das Einbeziehen von
induktiver Verzerrung im Gegensatz zu rein statistischen Algorithmen, die im Allgemeinen
eine sehr große Menge an teuren Trainingsdaten benötigen und deren Interpretierbarkeit in
der Regel nicht gegeben ist.

Wir stellen das Konzept der virtuellen Beobachtungen vor, um physikalische Randbedin-
gungen in unsere Modelle einzubeziehen, und zeigen, dass das Hinzufügen dieser virtuellen
Beobachtungen extrapolative Vorhersagen ermöglicht. Virtuelle Beobachtungen können prob-
lemlos in jedes probabilistische Zustandsraummodell integriert werden und wir können sehr
genaue Modelle reduzierter Ordnung für verschiedene dynamische Systeme berechnen.

Zusätzlich zeigen wir, dass es für Modellreduktionsprobleme in der numerischen Physik von
Vorteil sein kann, die Dynamik der Variablen reduzierter Ordnung per Konstruktion auf
eine stabile Dynamik einzuschränken. Dies basiert auf der Beobachtung, dass die meisten
physikalische System einen Gleichgewichtszustand erreichen, obwohl sie vor allem zu Be-
ginn hochgradig nicht-stationär sein können. Der vorgeschlagene Algorithmus nutzt eine
flexible A-priori Verteilung im komplexen Zahlenraum, welche die Identifikation von verbor-
genen langsamen Prozessen ermöglicht und die Stabilität der gelernten Dynamik garantiert.
Aufgrund dieser induktiven Verzerrung können wir das vollständig probabbilistische Mod-
ell mit einer sehr geringen Menge an Daten trainieren. Wir demonstrieren die Genauigkeit
des Verfahrens am Beispiel mehrstufiger physikalischer Systeme, indem wir probabilistis-
che, langfristige Vorhersagen für nicht in den Trainingsdaten enthaltene Phänomene erzeu-
gen.

Schließlich erweitern wir die sogenannten Deep Operator Network (DeepONet) Architek-
tur, indem wir diese invertierbar machen, um sowohl das Vorwärtsproblem als auch das
inverse Problem mit nur einem Neuronalen Netzwerk lösen zu können. Der resultierende
Algorithmus des maschinellen Lernens ist insbesondere geeignet für physikalische Systeme,
da wir bei diesen im Allgemeinen sowohl am Vorwärtsoperator als auch am Inversen Op-
erator interessiert sind. Das resultierende DeepONet kann auch für Bayessche Inverse
Probleme verwendet werden, wobei wir eine approximative A-posteriori Verteilung ohne
jegliche kostenintensive Markow-Chain-Monte-Carlo (MCMC) Verfahren erzeugen können.
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Abstract

Solving high-dimensional, nonlinear systems is a key challenge in engineering and compu-
tational physics. We propose novel physics-aware machine learning models that rely both
on physical knowledge as well as a small amount of data and are, after an initial train-
ing phase, able to solve these aforementioned high-dimensional systems efficiently. The key
characteristic of this approach is incorporating inductive bias in contrast to purely statisti-
cal frameworks that, in general, lack interpretability and rely on large amounts of expensive
simulation data.

We propose the concept of virtual observables to incorporate physical constraints and show
that the addition of virtual observables enables extrapolative predictions. Virtual observables
can be seamlessly integrated into any probabilistic state space model, and we are able to ob-
tain very accurate reduced order models for different dynamical systems.

Moreover, we show that for model order reduction problems in computational physics, it
can be beneficial to restrict the dynamics of the reduced order variables to dynamics that
are inherently stable. This is based on the observation that most physical systems reach
equilibrium in the long term despite being highly non-stationary. The proposed frame-
work uses a flexible prior on the complex plane that facilitates the discovery of latent slow
processes and ensures the long-term stability of the learned dynamics. Due to the added
inductive bias, we are able to train the fully probabilistic model in the small data regime,
and we demonstrate its accuracy in multiscale physical systems of particle dynamics where
probabilistic, long-term predictions of phenomena not contained in the training data are
produced.

Finally, we extend the Deep Operator Network (DeepONet) architecture by making it in-
vertible to solve both forward and inverse problems with one neural network. The resulting
machine learning algorithm is very suitable for physical problems as, in most cases, we are
simultaneously interested in forward and inverse operators. The obtained invertible Deep-
ONet can also be used for Bayesian inverse problems, for which we can construct an ap-
proximative posterior without the need for any costly Markov Chain Monte Carlo (MCMC)
sampling.
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1. Introduction

This thesis deals with the development of probabilistic machine learning algorithms for phys-
ical systems that account for physical knowledge as inductive bias and only rely on a small
amount of data. As physical data is, in general, high-dimensional, the presented algorithms
perform a model order reduction in order to obtain a surrogate model that can be used for
efficient predictions. Due to the probabilistic nature of physical systems as well as model
uncertainties, we follow a Bayesian approach to account for the uncertainty during model
training and prediction.

This chapter outlines the challenges we want to overcome with our novel physics-aware
machine learning methods and presents the contribution of this thesis toward solving these
challenges.

1.1. Motivation and background

Most machine learning algorithms rely on very large datasets that are easy to obtain or
readily available (Big Data) and limited prior knowledge. While this is, in general, a good
strategy for applications where the aforementioned vast amount of data is available and has
been shown to lead to very promising results (Saharia et al., 2022; Brock et al., 2021), there
are different kinds of applications for which a sufficiently large training data set is hard to
obtain and about which we have more prior knowledge available instead. According to the
author, three main challenges have to be overcome to apply machine learning algorithms
successfully to these kinds of problems:

• We have to account for physical knowledge as inductive bias. Predictions are not
allowed to contradict known physical constraints, and it would be wasteful to ignore
already existing knowledge about the problem.

• We have to adopt a probabilistic approach to capture both the uncertainty due to
model error and randomness in the training data.

• Small Data: Data is, in general, expensive and sparse, especially if we have to run
high-dimensional simulations to generate our datasets. Therefore, we have to develop
algorithms that only rely on a very small amount of data.

In the following subsections, we take a closer look at each of these challenges.

1.1.1. Physics-aware modeling

Whereas machine learning models that rely only on training data can be a reasonable ap-
proach for a Big Data problem, the addition of inductive bias has proven to be very useful
(Battaglia et al., 2018). For example, even for Big Data problems such as Image Recognition,
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specifically designed architectures such as Convolutional Neural Networks (CNN), that are
shift-invariant, have shown to be advantageous (LeCun and Bengio, 1995).

The addition of inductive bias is even more relevant for physical systems as training data
is limited, and there usually is some knowledge about the system a priori available. This
knowledge can have the form of constraints and invariants or can specify characteristics of
the system 1. Without adding constraints such as mass or energy conservation, the machine
learning model could violate these fundamental physical laws during predictions. In gen-
eral, inductive bias is not only able to prevent predictions from violating known physical
constraints and invariants but can also lead to better extrapolative predictions. Moreover,
incorporating inductive bias and thus physical information can allow us to work with less
data as the machine learning model is already a priori better adapted to the targeted appli-
cation.

Based on the observation that most physical systems can be highly non-stationary but con-
verge to an equilibrium in the long term, we moreover can impose some restrictions when
learning the dynamics of such a system. If we use a priori long-term stable dynamics within
our machine learning model, we can also guarantee stability during predictions. This is
especially useful for learning a reduced-order description for a high-dimensional system. In
general, the knowledge about the reduced order system can be minimal a priori, so only
basic physical properties such as the mentioned long-term stability can be used as adequate
inductive bias.

During predictions, we are for most physical systems interested in applying both a forward
as well as an inverse operator to new initial conditions, i.e. we are interested in finding the
solution/output of the system given the system’s inputs and simultaneously in reconstructing
the inputs if the system’s solution/output is given. However, most machine learning models
are only designed to learn one of the mentioned operators. It is, therefore, advantageous
to construct machine learning models that are invertible and can thus learn both of the
operators. This allows us also to make the most of our training data as we can use them for
both the forward and the inverse operator.

1.1.2. Probabilistic modeling

Probabilistic models are, in my opinion, necessary in machine learning due to two main
reasons:

• In nature, we are usually confronted with randomness across all different disciplines.
For instance, in medicine, it is usually only possible to make probabilistic predictions
about the development and spread of cancer and subsequently the survival chances
(Tomasetti et al., 2017). In physics, the state of an atom can be described only
in a probabilistic sense (Flügge, 2012), and in chemistry, the reactions of molecules
are stochastic processes (Van Kampen, 1992). Therefore, we have to capture inherent
randomness and are thus in need of a probabilistic modeling approach. The uncertainty

1A physical system can, for instance, have a dissipative character that directly affects the dynamics of the
system.
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described here is also known as data uncertainty or aleatoric uncertainty (Hüllermeier
andWaegeman, 2021). Uncertainties in the data due to imperfect measurements belong
to this category as well.

• Moreover, the models we propose are only approximations of the true reality. We
may not have enough training data to fit the model accurately and may not yet know
the underlying physical processes, model structure, and model parameter values well
enough Gal et al. (2022). It is therefore advantageous to quantify the model error by
using a probabilistic approach and thus quantify this so-called model uncertainty or
epistemic uncertainty. This uncertainty is, in general, reduced when more data be-
comes available.

We note that while a probabilistic model allows capturing all the aforementioned uncertain-
ties, it is difficult to actually attribute the uncertainty to the different parts. There are
different approaches available regarding this topic (Kiureghian and Ditlevsen, 2009; Wang
et al., 2019), but this is beyond the focus of the present work.

1.1.3. Small Data

To generate the necessary training data for our machine learning models, we have to run,
in general, expensive simulations or conduct equally expensive experiments. Therefore, a
machine learning algorithm that relies only on a small amount of training data is advan-
tageous. Within this work, we train our machine learning models with less than 1000 (for
some cases even less than 100) given training data, i.e. input/output pairs generated by
running a simulation or conducting an experiment. The dimension of each individual data
point can be high which poses an additional challenge for our algorithms due to the ’curse
of dimensionality’ (Bellman, 2010). Moreover, the training data available can be sparse and
our algorithm, therefore, needs to be capable of being trained on sparse data.

To compensate for the lack of data, we use physical knowledge as inductive bias. Fig-
ure 1.1 shows the trade-off between data and knowledge. A physical system can either be
computed with the help of machine learning and a lot of data or with a more classical sim-
ulation approach such as the Finite-Elements-Method (FEM) or Finite-Difference-Method
(FD) based completely on the physical knowledge which needs to be formulated in form
of the physical equations and a very small amount of data, i.e. the boundary and initial
conditions of the system. We target an intermediate area here; we want to use a machine
learning approach that makes use of a small amount of training data and physical knowledge
simultaneously.

1.2. Related work

Data-driven surrogates
As physical systems are, in general, high-dimensional and thus their solution requires sig-
nificant computational resources, the identification of reduced order models and surrogates
for these systems is a crucial task. Besides well-known methods such as Principal Com-
ponent Analysis (PCA) (Abdi and Williams, 2010) and Proper Orthogonal Decomposition
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Figure 1.1: Solution approaches based on available data and knowledge

(POD) (Berkooz et al., 1993), approaches based on recent advances in data-driven learning
(Ghahramani, 2015; Koutsourelakis et al., 2016; Bhattacharya et al., 2021) have shown to
be promising and attracted a lot of attention in the last years. These models are gener-
ally trained offline and are then used for various predictive tasks. Especially for multiscale
modeling (Koutsourelakis and Bilionis, 2011; Givon et al., 2004), these approaches allow
substituting the smallest scales in the computations with an efficient surrogate. Neverthe-
less, these models can even predict the full fine-grained, i.e. high-dimensional system, if a
coarse-to-fine map (Schöberl et al., 2017), i.e. a map from the reduced order description to
the high-dimensional system, is used.

Since the availability of automatic differentiation frameworks (Abadi et al., 2015; Bradbury
et al., 2018; Paszke et al., 2017), surrogates are often represented by deep neural networks as,
under certain conditions, neural networks are universal approximators as shown in Hornik
et al. (1989). The Physics-informed Neural Network (PINN) architecture (Lagaris et al.,
1998; Raissi et al., 2019) as well as the Deep Operator Network (DeepONet) architecture
(Lu et al., 2021; Wang et al., 2021) are prominent examples. The latter also takes input
parameters of the underlying Partial Differential Equation (PDE) as an input to the neu-
ral network and can generate predictions for different parameter inputs. Other notable
approaches are the Fourier Neural Network (Li et al., 2021), which builds upon an inte-
gral kernel in Fourier space, and the Learning Operators with Coupled Attention (LOCA)
framework (Kissas et al., 2022) that makes use of the attention mechanism. The attention
mechanism emphasizes some parts of the input data and diminishes other parts and origi-
nated in Natural Language processing (Vaswani et al., 2017).

To address the specific challenges of multiscale systems, methods such as Learning Effective
Dynamics (LED) (Vlachas et al., 2022) not only identify a surrogate but employ lifting and
restriction operators to switch between scales.

Discovery of dynamics from data
The discovery of dynamics from data is a central task in learning non-stationary physical
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systems. Approaches based on the Koopman-Operator theory (Koopman, 1931; Klus et al.,
2018) try to identify the most suitable linear representation of the system’s dynamics and
the associated transformation to a set of linear variables. Due to the restriction of the dy-
namics to a linear space, most Koopman-based methods (Gin et al., 2021; Lusch et al., 2018;
Champion et al., 2019; Lee and Carlberg, 2020; Pan and Duraisamy, 2020) require a large
set of linear variables in order to represent a complex dynamic.

Other methods that try to identify a non-linear dynamic can counteract this disadvan-
tage. Such methods can, for instance, be based on the Mori-Zwanzig formalism (Mori, 1965;
Zwanzig, 1973). However, Mori-Zwanzig based approaches are restricted to predefined quan-
tities of interest (Kondrashov et al., 2015; Chorin and Stinis, 2007). Other approaches are
based on the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm (Brunton et al.,
2016; Kaheman et al., 2020) which in general requires derivatives as input data. Approaches
based on employing neural networks for the dynamics (Chen et al., 2018; Li et al., 2020) are
the most flexible ones but need a large amount of data.

Infusing domain knowledge as inductive bias
Infusing inductive bias into machine learning methods and especially Deep Learning frame-
works is a challenging task. A popular approach to employing inductive bias is using physical
laws as a regularization term or for augmenting the the loss function (Raissi et al., 2019;
Zhu et al., 2019; Rixner and Koutsourelakis, 2021; Wang et al., 2021). The Deep Operator
Network (DeepONet) (Lu et al., 2021) for instance can be trained without data by employing
a physics-informed loss term (Wang et al., 2021). The performance can subsequently then
be further improved by modifying the neural network architecture (Wang et al., 2022d) but
also by taking causality into account (Wang et al., 2022c).

Other formulations use neural network architectures that are directly inspired by physics such
as the Hamiltonian and Lagrangian Neural Networks (Greydanus et al., 2019; Toth et al.,
2020; Lutter et al., 2019; Cranmer et al., 2020) whose architectures are designed such that
they incorporate the fundamental laws of Hamiltonian or Lagrangian mechanics. These ap-
proaches are, therefore, suitable for physical systems that conserve energy.

1.3. Contribution of this dissertation

This thesis contributes to solving the challenges presented in section 1.1. It consists of four
papers which are all addressing different aspects of the mentioned challenges and which are
presented below:

Paper A: Incorporating physical constraints in a deep probabilistic machine learning
framework for coarse-graining dynamical systems (Kaltenbach and Koutsourelakis, 2020a)
(see Section 3.1 and Appendix A):
This paper introduces the concept of virtual observables and thus a tool that can be
seamlessly integrated into any probabilistic state-space model to account for physical con-
straints/invariants or residuals. We apply the novel concept of virtual observables to different
coarse-graining problems for dynamical systems and are able to generate good extrapolative
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predictions despite working with small data. To identify the dynamics of the coarse-grained
system, we rely on a priori defined feature functions combined with sparsity enforcing priors.
As we are employing a coarse-to-fine map in our coarse-graining scheme, we can reconstruct
the full fine-grained system and do not have to choose the quantities of interest a priori.
With regards to the challenges mentioned in Section 1.1, this paper addresses all three of
them. We employ a fully probabilistic framework, account for physical constraints with vir-
tual observables, and train our models in the Small Data regime.

Paper B: Physics-aware, deep probabilistic modeling of multiscale dynamics in the Small
Data regime (Kaltenbach and Koutsourelakis, 2021a) (see Section 3.2 and Appendix B):
This paper extends the proposed model order reduction scheme in combination with vir-
tual observables as presented in Paper A to cases where the dynamics of the coarse-grained
system are no longer a priori defined by feature functions. Instead, a deep neural network
is employed. Despite having to find the optimal set of coefficients for two neural networks
during training, e.g. the coarse-to-fine map as well as the aforementioned coarse-grained
transition map, the usage of virtual observables still allows us to work in the Small Data
regime.
This paper builds upon the results of Paper A and therefore addresses all three challenges
mentioned in Section 1.1.

Paper C: Physics-aware, probabilistic model order reduction with guaranteed stability
(Kaltenbach and Koutsourelakis, 2021b) (see Section 3.3 and Appendix C):
This paper introduces a physics-aware model order reduction scheme whose stability is guar-
anteed as the dynamics of the reduced order variables are a priori restricted. In particular,
we employ a discretized Ornstein-Uhlenbeck process in the complex plane and enforce a
negative real part of the eigenvalues of the system. This is based on the observation that
the physical systems of interest converge to some kind of equilibrium. Moreover, we can rate
the different reduced order variables according to their slowness. The method is applied to
systems of moving particles, correctly identifies the stable state, and can generate predictions
for unseen initial conditions.
With regards to the challenges mentioned in Section 1.1, this paper addresses all three of
them. However, the main focus of this paper is incorporating inductive bias into a fully
probabilistic model order reduction framework. We do not use the concept of virtual observ-
ables in this paper but guarantee the stability of the dynamics of the reduced order variables
as discussed above. The physics-aware architecture employed allows us to train the model
in the Small Data regime.

Paper D: Semi-supervised Invertible Neural Operators for Bayesian Inverse Problems
(Kaltenbach et al., 2022) (see Section 3.4 and Appendix D):
This paper introduces the invertible DeepONet. We build upon the DeepONet architecture
as introduced by Lu et al. (2021) and combine it with the realNVP network in order to
achieve invertibility. This is especially useful for physical systems as we are now able to rep-
resent both a forward and an inverse operator with the same neural network. The obtained
invertible DeepONet can also easily be used for Bayesian inverse problems as we additionally
introduce a way to obtain an approximate posterior without any costly MCMC sampling .
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With regards to the challenges mentioned in Section 1.1, this paper addresses mainly the
first and third challenges. The invertible DeepONet is not a probabilistic machine learning
framework but can readily be used as surrogate for Bayesian inverse problems. However, we
can train the invertible DeepONet with only a small amount of (labeled) training data. The
framework’s architecture was designed with the needs of physical systems in mind as we are,
in general, interested in both the forward and the inverse operator.

Additional publications
During my time as PhD candidate, I authored two more papers that at least partly also
discuss the challenges mentioned in the section before but are not part of this thesis. One
paper takes another look at model order reduction with guaranteed stability (Kaltenbach and
Koutsourelakis, 2020b), whereas the other shows that even physics-enhanced neural network
architectures such as Hamiltonian Neural Networks can be trained with less data if more
physical information is given instead (Eichelsdörfer et al., 2021). The mentioned approach
will shortly be discussed in the methodology section, together with the physics-enhanced
neural networks.

1.4. Outline of this dissertation

The remainder of this thesis is structured as follows. Chapter 2 introduces the methodology
basics of this thesis. We discuss Bayesian probability theory and probabilistic machine
learning in general before taking a closer look at different methods to perform (approximate)
inference. Moreover, the basics of Deep Learning are introduced within this chapter.
Chapter 3 summarizes the four publications and also outlines my contribution to each of
them.
The thesis is subsequently concluded in chapter 4 where the findings of the publications
mentioned above are discussed, and an outlook is given.





2. Methodology

2.1. Bayesian probability theory

”Probability is orderly opinion ... inference from data is nothing other than the revision of
such opinion in the light of relevant new information.” (Edwards et al., 1963)

The Bayesian viewpoint interprets probability as a belief of certainty or reasonable expecta-
tion about given information. This resembles a sharp contrast to the frequentist viewpoint,
which interprets the probability of an event as the relative frequency of this event in a large
number of trials. In this thesis, we will follow the Bayesian interpretation as this inter-
pretation allows us to describe the uncertainty of model parameters and its change given
new data. The quote above, taken from a paper about Bayesian inference for psychological
research by Edwards et al. (1963), provides a very good summary of this key element of
Bayesian probability theory.

Bayes’ theorem is the central mathematical theorem of Bayesian probability. Introduced by
Thomas Bayes (Bayes, 1763) and later generalized by Pierre-Simon Laplace (de Laplace,
1820), it provides a mathematical description of how the probability of an event/parameter
is changed in the light of new information. In more detail, given random parameters θ and
data D we can derive the conditional probability distribution of the random parameters
given the data p(θ|D) using Bayes’ theorem:

p(θ|D) =
p(D|θ)p(θ)

p(D)
(2.1)

The computed conditional distribution is also called posterior or a-posteriori-distribution
because it represents the probability distribution of the parameters after we have seen the
data. In contrast, we call p(θ) the prior or a-priori-distribution, i.e. the probability distri-
bution of the parameters before we have seen the data. The conditional distribution of the
data given the parameters p(D|θ) is called likelihood and the probability of the data p(D)
is called evidence. The latter is rarely relevant in practice as it only acts as a normalization
constant and can often be omitted.

The choice of the prior is a crucial step when applying Bayes’ theorem. We can choose a very
broad and thus uninformative prior or a prior that already constrains our parameters to a
specific interval and is thus informative. Especially when working with physical systems, the
latter one is generally chosen as we often have some information about the parameters, such
as that some parameters have to be larger than zero or physical laws restrict a parameter
to a specific interval. If this information is a priori available, it should also be incorporated
by choosing a suitable prior. In case we are dealing with a high-dimensional parameter
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set and are assuming that only a few parameter values will take values other than zero,
sparsity-enforcing a-priori-distributions should be chosen. These priors are heavy-tailed and
counteract a possible overfitting by advocating a sparse representation of the parameters.
A popular choice is the Automatic Relevance Determination (ARD) framework by Mackay
(1995).

2.2. Probabilistic machine learning

Most machine learning algorithms do not consider parameters or other quantities as random
variables but instead only as deterministic variables. While this choice can lead to an algo-
rithm that requires less computational resources and is easier to implement, we argue that it
neglects important information, and the predictions of such an algorithm are less informative
as they do not provide any information regarding the uncertainty of the computed solution.

Therefore, we treat all unknown quantities of interest and parameters as random variables.
The reason for this choice is also motivated in more detail in section 1.1.2. In the following
sections, we introduce some of the key methods that are required to do probabilistic machine
learning. However, the methodology part of this thesis is not meant to provide an extensive
description of probabilistic machine learning methods. The interested reader is referred to
the books by Christopher Bishop (Bishop and Nasrabadi, 2006) and Kevin Murphy (Mur-
phy, 2012) that provide a detailed introduction to the topic and discuss all relevant methods.

The key element of almost all probabilistic machine learning algorithms is the Bayesian
posterior. This posterior has to be derived and subsequently quantities of interest based
on this posterior have to be computed afterward. As the posterior can be very high-
dimensional and multimodal and is, in general, analytically intractable, the last step can
be very challenging. Here, multiple methods have been developed that can be used to do
(approximate) inference given a Bayesian posterior. These methods are presented in the
next section.

2.3. Approximate inference

The inference of parameters based on the Bayesian posterior can be intractable, and we have
to use approximate inference methods in order to resolve the posterior and quantities based
upon it.1 Therefore, several approaches exist to do approximate inference:
Some of those approaches are sampling-based, e.g. we only try to generate samples for the
parameters from the posterior distribution because a large enough amount of samples can
provide us with enough information about the a posteriori distribution of the parameters
and can also be used to calculate relevant quantities based upon the posterior dsitribution.
Other approaches turn the inference problem into an optimization problem and identify

1In case the prior is conjugate to the likelihood, the posterior belongs to the same distribution family as the
prior and can be easily computed. For example, a Gaussian prior combined with a Gaussian likelihood
leads to a Gaussian posterior as well.
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either point estimates or the optimal approximate posterior distribution within a family of
distributions.

2.3.1. Monte Carlo method

The Monte Carlo method (Metropolis and Ulam, 1949) is a well-known algorithm that uses
random sampling to compute the outcome of an uncertain event or the approximate solution
of an integration or optimization problem. An early version of the Monte Carlo method was
already used in the 19th century to solve the so-called Buffon’s needle problem (comte de
Buffon, 1770). During World War II, Stanislaw Ulam, John von Neumann, and Nicolas
Metropolis were involved in the development of the modern version of the Monte Carlo
method. As their work on a nuclear weapon project was initially classified, they used the
codename ”Monte Carlo” for the new algorithm.

We will, in the following, use the Monte Carlo method to compute integrals that are based on
our Bayesian posterior. For instance, we are interested in the expectation of some function
h(θ) and define the integral I:

I =

∫
h(θ)p(θ|D) dθ (2.2)

This integral can be solved with the Monte Carlo Method by sampling from the posterior
and then evaluating h(θ) for each sample. In more detail, we

1. generate i = 1, ...N independent samples θi from the posterior distribution p(θ|D)

2. obtain an approximate value for the integral by using the Monte Carlo estimator

IN =
1

N

N∑

i=1

h(θi) (2.3)

The Monte Carlo estimator is unbiased and approximately exact in the limit N → ∞.
Moreover, the convergence of the mean squared approximation error of the Monte Carlo

estimator is O
(
1/
√
N
)
and does not depend on the dimension of the integral. This is a sig-

nificant advantage compared to numerical integration schemes that strongly depend on the
dimension of the integral. The computational cost of the Monte Carlo estimator, however,
does depend on the evaluation cost of h(θ) and therefore the Monte Carlo method can be
computationally challenging in case h(θ) is expensive to evaluate 2 A possibility to lower the
cost is parallelization: the Monte Carlo algorithm can be executed in parallel as the separate
evaluations can be done independently from each other.

We note that applying the Monte Carlo method without any modifications requires that

2We note that the Monte Carlo method is also computationally expensive if generating samples from the
posterior is expensive. Especially for a high-dimensional parameter vector θ, MCMC (see Section 2.3.3
can be cumbersome and computationally costly.
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samples of the posterior are readily available, which unfortunately is only rarely the case.
Therefore we are in the next sections introducing altered versions of this method that allows
us to generate samples in a more general setting.

2.3.2. Importance sampling

Importance sampling can be used to compute quantities of interest based on the posterior
in case directly sampling from the posterior is not possible or the quality of the samples is
low. Instead of directly sampling from the posterior p(θ|D) we sample from an alternative
distribution q(θ). In more detail, Equation 2.2 is rewritten by multiplying both in the
nominator and denominator with the alternative density q(θ).

I =

∫
h(θ)

p(θ|D)

q(θ)
q(θ) dθ (2.4)

We define

hIS(θ) = h(θ)
p(θ|D)

q(θ)
(2.5)

and recover the same structure as in Equation 2.2.

I =

∫
hIS(θ)q(θ) dθ (2.6)

Therefore, we can define the following two steps procedure similar to the original Monte
Carlo method to compute the value of the integral. We

• 1. generate i = 1, ...N independent samples θi from an alternative distribution q(θ)

• 2. obtain an approximate value VN for the integral by using the estimator

VN =
1

N

N∑

i=1

h(θi)
p(θi|D)

q(θi)
=

1

N

N∑

i=1

hIS(θi) (2.7)

The quotient p(θi|D)

q(θi)
is often called importance weight wi.

Importance sampling works best if the alternative distribution is close to the true posterior.
In this case, all importance weights have a similar magnitude, and each sample contributes
similarly to the estimator. The quality of importance sampling can be assessed using the
Effective Sample Size (ESS) (Martino et al., 2017).

ESS =
(
∑N

i=1wi)
2

∑N
i=1 w

2
i

=
1∑N

i=1 w̄
2
i

(2.8)
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with the normalized importance weights

w̄i =
wi∑N
i=1wi

(2.9)

The ESS represents approximately how many direct samples of the actual posterior p(θ|D)
would lead to an estimate of the integral with the same quality. The maximum value of the
ESS is N , and the minimum value is 1. In the latter case, the computed approximation is
usually clearly off, and another alternative distribution should be selected. We note that,
moreover, importance sampling does perform poorly for high-dimensional posteriors. In such
a case, we recommend using another inference method.

2.3.3. Markov Chain Monte Carlo methods

Markov Chain Monte Carlo (MCMC) methods provide a general framework to sample from
various probability density functions. They combine the Monte Carlo method with Markov
chains in order to enable efficient sampling algorithms.
The MCMC method generates samples based on an initial starting point θ0 and a proposal
distribution q(θ∗|θt) which proposes new samples θ∗ based on the current sample θt. These
proposed samples are then either accepted or rejected based on a given criterion. The method
is called MCMC, as the generated samples form a Markov chain. The proposal distribution
as well as the acceptance criteria has to be selected such that the samples follow the targeted
distribution p(θ|D).

A popular choice is the so called Metropolis algorithm (Metropolis et al., 1953) which uses
a symmetric proposal distribution

q(θ∗|θt) = q(θt|θ∗) (2.10)

and an acceptance with probability α(θ∗|θt):

α(θ∗|θt) = min

(
1,

p(θ∗|D)

p(θt|D)

)
(2.11)

To generate N samples with the Metropolis algorithm, we start at θt for t = 0. Subse-
quently,

1. we generate a new sample θ∗ with the given proposal distribution.

2. we check if this new sample is accepted and are therefore sampling a from a uniform
distribution U [0, 1]. This value a is compared with the acceptance probability α(θ∗|θt):

θt+1 =

{
θ∗ if a < α(θ∗|θt)

θt otherwise
(2.12)

The steps above are then reiterated N times until we have our N samples θ1:N . These
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samples are, in general, correlated and not independent. 3 To keep the autocorrelation as
small as possible, we have to ensure that the new proposals are distant from the current
samples while the acceptance rate is high. Moreover, the Markov chain can be thinned by,
for instance, keeping only every third sample and thus reducing the autocorrelation. The
samples at the start of the Markov chain are usually disregarded as the Markov Chain needs
some samples until it reaches the targeted stationary distribution p(θ|D).

The MCMC algorithm can only generate successfully samples if the targeted distribution is
invariant under the transition kernel T (θt,θ∗). A sufficient (but not necessary) condition is
the detailed balance equation:

p(θt|D)T (θt,θ∗) = p(θ∗|D)T (θ∗,θt) (2.13)

If this criterion is fulfilled, the Markov chain is reversible and converges asymptotically to
the targeted distribution (Bishop and Nasrabadi, 2006).

We can show that the Metropolis algorithm fulfills the detailed balance equation. As a
first step, we express the transition kernel with the proposal distribution and acceptance
probability:

T (θt,θ∗) = p(θ∗|θt)α(θ∗|θt) (2.14)

Now we can check the detailed balance equation:

p(θt|D)T (θt,θ∗) = p(θt|D)p(θ∗|θt)α(θ∗|θt) (2.15)

= p(θt|D)p(θ∗|θt)min

(
1,

p(θ∗|D)

p(θt|D)

)

= p(θ∗|θt)min
(
p(θt|D), p(θ∗|D)

)

= p(θ∗|θt)p(θ∗|D)min

(
p(θt|D)

p(θ∗|D)
, 1

)

= p(θt|θ∗)p(θ∗|D)min

(
p(θt|D)

p(θ∗|D)
, 1

)

= p(θ∗|D)p(θt|θ∗)α(θt|θ∗)

= p(θ∗|D)T (θ∗,θt)

We used the property that the proposal distribution of the Metropolis algorithm is symmet-
ric in the fifth line of this proof.

We note that for MCMC algorithms it is sufficient to know the target probability distribution
up to a constant as in the algorithm we only need the quotient of this targeted distribution

3The integrated autocorrelation time (Roberts and Rosenthal, 2001) can be used as a measure to quantify
the autocorrelation between the samples. The higher the autocorrelation time, the larger is the efficiency
loss compared to N independent samples.
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with itself. Therefore, we are not required to compute the evidence term in the Bayesian
posterior and the product of the likelihood and the a-priori-distribution is enough to gener-
ate samples.

Having computed the samples θ1:t via a MCMC algorithm, we can readily evaluate the
targeted integral in Equation 2.2 with

IN =
1

N

N∑

t=1

h(θt) (2.16)

2.3.4. Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (Hastings, 1970) extended the Metropolis algorithm to
asymmetrical proposal distributions. As a consequence, the acceptance criterion has to be al-
tered and does now include the proposal distribution as well.

αMH(θ
∗|θt) = min

(
1,

q(θt|θ∗)p(θ∗|D)

q(θ∗|θt)p(θt|D)

)
(2.17)

It is easy to see that if the proposal distribution should be symmetric, i.e. q(θ∗|θt) = q(θt|θ∗),
we recover the acceptance criterion of the Metropolis algorithm.
The proof of the detailed balance equation can be done identically to Equation 2.15.
We note that we again do not need a normalized targeted density as we still have only a
quotient involved in the acceptance criteria.

2.3.5. Metropolis-adjusted Langevin algorithm

The Metropolis-adjusted Langevin algorithm (MALA) (Besag, 1994; Roberts and Tweedie,
1996) incorporates gradient information in the proposal distribution in order to more effi-
ciently explore the regions of the target distribution with a high probability density.
In more detail, we employ a discretized version of the overdamped Langevin dynamic to
generate new proposals:

θ∗ = θt +
1

2
σ2 ∇θ log p(θ

t|D) + σϵ (2.18)

where σ is a parameter that needs to be specified and allows to control the step size and thus
the acceptance/rejection rate of the algorithm. ϵ is sampled from a multivariate standard
normal distribution. This leads to the following proposal distribution:

q(θ∗|θt) = N (θt +
1

2
σ2 ∇θ log p(θ

t|D), σ2) (2.19)

As this proposal distribution is asymmetric, the Metropolis-Hastings acceptance ratio has
to be computed and proposals have to accepted/rejected accordingly.
If gradient information of the target distribution is available, the MALA algorithm is a
reasonable choice and, in general, performs better than a proposal distribution based on a
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random walk. However, it can suffer from multimodality of the targeted distribution. Here,
other algorithms such as Sequential Monte Carlo (SMC) (Liu and Chen, 1998) could be a
better choice.

2.3.6. Point estimates

Instead of trying to find the actual posterior distribution, we can take a simplified approach
and only find the parameter values that have the highest probability. This leads to point-
based estimates that contain less information than the full posterior but are comparably easy
to compute by finding the maximum of the a-posteriori density.

θMAP = argmax
θ

p(θ|D) = argmax
θ

p(D|θ) p(θ) = argmax
θ

log p(D|θ) + log p(θ) (2.20)

We note that instead of finding the maximum of the actual posterior, we can also find the
maximum of the log posterior. As the log-function is strictly monotonically increasing, the
location of the maximum does not change. Finding the maximum of the log posterior is usu-
ally preferable as the values of the posterior can span several orders of magnitude, especially
if its dimension is high.

Point-based estimates can also be computed based on the likelihood and are then called
Maximum-Likelihood estimates:

θMLE = argmax
θ

p(D|θ) = argmax
θ

log p(D|θ) (2.21)

Again the computation is, in general, easier when using the log-likelihood.

As these point-based estimates do not contain any information regarding the uncertainty
anymore, the calculated predictive uncertainty based on either θMLE or θMAP can be too low.
This is especially the case if the variance of the actual posterior distribution is high, whereas
for very narrow posterior distributions the error is very low.

2.3.7. Variational Bayesian inference

Similar to the point-estimates introduced in the section before, the Variational Bayesian
method turns our inference problem into an optimization problem and can therefore also be
used to compute an approximation for an analytically intractable posterior p(θ|D). These
methods originated in statistical physics (see e.g. (Opper and Saad, 2001)) and were later
adapted for probabilistic machine learning (Neal and Hinton, 1998; Hoffman et al., 2013; Blei
et al., 2017). Instead of finding the values with the highest probability, Variational Bayesian
inference methods want to identify the distribution qϕ(θ) from a parameterized family of
distribution that approximates our posterior distribution p(θ|D) best. The parameters ϕ
are used to parameterize the family of distributions.

qϕ(θ) ≈ p(θ|D) (2.22)
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This distribution is often called the variational distribution. Usually we employ for qϕ(θ)
a family of distributions from which we can easily sample. This allows us to readily use
the obtained distribution to compute further predictions. A good choice is, for instance, a
multivariate normal distribution.

In order to find this distribution, we first have to define a metric that quantifies the differ-
ence between two probability distributions. A popular choice is the Kullback-Leibler (KL)
divergence (Kullback and Leibler, 1951):

KL(qϕ(θ)||p(θ|D)) =

∫
qϕ(θ) log

qϕ(θ)

p(θ|D)
dθ (2.23)

We note that the KL-divergence is non-symmetric and always larger than zero. It is only
zero if the two distributions are identical.

To find the best possible distribution qϕ∗(θ) we now have to minimize the KL-divergence
with respect to the parameters of qϕ(θ).

qϕ∗(θ) = argmin
ϕ

KL(qϕ(θ)||p(θ|D)) (2.24)

However, this is in general not possible as it involves the intractable posterior distribution
p(θ|D). Fortunately, we can use Bayes’ law and obtain a quantity that can be optimized.
We, therefore, decompose the KL-divergence:

KL(qϕ(θ)||p(θ|D)) =

∫

θ

qϕ(θ) log
qϕ(θ)

p(θ|D)
dθ (2.25)

=

∫

θ

qϕ(θ)(log qϕ(θ)− log p(θ|D)) dθ

=

∫

θ

qϕ(θ)(log qϕ(θ)− log p(D|θ)− log p(θ) + log p(D)) dθ

= Eqϕ(θ) [log qϕ(θ)− log p(D|θ)− log p(θ) + log p(D)]

= Eqϕ(θ) [log qϕ(θ)− log p(D|θ)− log p(θ)] + log p(D)

(2.26)

We first used here the properties of the logarithm and subsequently the Bayes’ theorem.
Finally, we can directly compute the expected value of the last term as this term is only a
constant.
We rearrange the resulting equation:

log p(D)−KL(qθ(θ)||p(θ|D)) = Eqϕ(θ) [log p(D|θ) + log p(θ)− log qϕ(θ)] (2.27)

As the log-evidence log p(D) is constant with respect to our variational distribution and the
KL-divergence is always larger than zero, we can maximize the terms on the left and thus min-
imize the KL-divergence by maximizing the tractable term on the right-hand side of the equa-
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tion. This term is called Evidence Lower Bound (ELBO) F(q(θ)):

F(qϕ(θ)) = Eqϕ(θ) [log p(D|θ) + log p(θ)− log qϕ(θ)] (2.28)

We note that we can show that the ELBO is the lower bound of the log-evidence by using
Jensen’s inequality (Bishop and Nasrabadi, 2006):

log p(D) = log

∫

θ

p(D,θ) dθ (2.29)

= log

∫

θ

qϕ(θ)
p(D,θ)

qϕ(θ)
dθ

≥
∫

θ

qϕ(θ) log
p(D,θ)

qϕ(θ)
dθ

=

∫

θ

qϕ(θ) log
p(D|θ)p(θ)

qϕ(θ)
dθ

= Eqϕ(θ) [log p(D|θ) + log p(θ)− log qϕ(θ)] = F(qϕ(θ))

Moreover, we can obtain another expression for the ELBO by introducing the KL-divergence
of the prior with the variational distribution:

F(qϕ(θ)) = Eqϕ(θ) [log p(D|θ) + log p(θ)− log qϕ(θ)] (2.30)

= Eqϕ(θ) [log p(D|θ)]−KL(qϕ(θ)||p(θ))

This result is perfectly in accordance with the Bayesian probability theory. Our best possible
distribution is found as a trade-off between being close to the prior and accounting for the
data via the likelihood term.

The obtained ELBO F(q(θ)) can be maximized using stochastic optimization algorithms
(see Section 2.4) and thus the optimal parameter values ϕ∗ are determined. The quality of
the obtained approximate distribution qϕ∗(θ) depends on how close the actual posterior dis-
tribution is to the chosen variational distribution family. The variational inference method
can only arrive at the exact posterior if the posterior belongs to the chosen variational dis-
tribution family. Therefore, we have to carefully choose our variational distribution family
as it strongly influences the accuracy of the inference algorithm.

We note that the point-based approximations presented before in section 2.3.6 can be de-
scribed as a special case of variational inference with a Dirac delta function as the variational
distribution.

2.4. Stochastic optimization

In this section, the basics of stochastic optimization are presented. As an illustrative exam-
ple, we choose the ELBO F(qϕ(θ)) (see Equation 2.30) which needs to be optimized during
variational inference. Before introducing two stochastic optimization algorithms in more
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detail, we, therefore, show first how to compute gradients of the ELBO with respect to the
parameters ϕ:

∇ϕF(q(θ)) = ∇ϕ

(
Eqϕ(θ) [log p(D|θ)]−KL(qϕ(θ)||p(θ))

)
(2.31)

We note that the KL-term and its gradient can be computed analytically for most cases as
both the prior and the approximative distribution are usually tractable (Kingma andWelling,
2014). In the following, we therefore focus on the gradient∇ϕ

(
Eqϕ(θ) [log p(D|θ)]

)
.

This gradient and the expectation involved can be computed with the help of a Monte Carlo
algorithm (Paisley et al., 2012; Kingma and Welling, 2014):

∇ϕ

(
Eqϕ(θ) [log p(D|θ)]

)
=

∫

θ

log p(D|θ)∇ϕ qϕ(θ) dθ

=

∫

θ

log p(D|θ)qϕ(θ)∇ϕ log qϕ(θ) dθ

= Eqϕ(θ) [log p(D|θ)∇ϕ log qϕ(θ)]

≈ 1

N

N∑

i=1

log p(D|θi)∇ϕ log qϕ(θ
i) with θi ∼ qϕ(θ)

We used the identity ∇ϕ log qϕ(θ) = qϕ(θ)∇ϕ log qϕ(θ). This gradient estimator unfortu-
nately has a very high variance and is therefore not a good choice (Paisley et al., 2012). To re-
duce the variance, we are applying the reparameterization trick (Kingma and Welling, 2014),
i.e. we define our samples in terms of a new distribution p(ϵ) that does not depend on the
parameters ϕ. The function fϕ(ϵ) maps ϵ to θ. In particular,

θ = fϕ(ϵ) (2.32)

with

ϵ ∼ p(ϵ) (2.33)

Given the reparameterization trick, we can now compute the targeted gradient with a dif-
ferent Monte Carlo estimator:

∇ϕ

(
Eqϕ(θ) [log p(D|θ)]

)
= ∇ϕ

(
Ep(ϵ) [log p(D|fϕ(ϵ))]

)
(2.34)

≈ 1

N

N∑

i=1

∇ϕ

(
log p(D|fϕ(ϵ

i))
)

with ϵi ∼ p(ϵi)

This formulation leads to gradients that still have some noise but typically less than the
original formulation. Moreover, the noise of the gradients is increased by usually not pro-
cessing all data D but only a subset of the data, i.e. a minibatch, in each gradient step.

After we have obtained our potential noisy gradients, which we will call g in the following, we
can state a general update rule for a stochastic optimization algorithm:
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ϕt+1 = ϕt + νtg (2.35)

Here, νt is the learning rate at step t. This learning rate has to be always larger than
zero. We note that it would be possible to define different learning rates for each di-
mension, which can be beneficial if the length scales of the different dimensions differ a
lot.

2.4.1. Robbins-Monro stochastic optimization

The Robbins-Monro algorithm (Robbins and Monro, 1951) is one of the first stochastic opti-
mization algorithms and is guaranteed to converge to equilibrium for

∞∑

t=1

νt = ∞ and
∞∑

t=1

(
νt
)2

< ∞ (2.36)

A popular choice for the learning rate is

νt =
α

(β + t)ρ
(2.37)

with the tunable parameters α > 0, β > 0 and ρ ∈ (0.5, 1]

2.4.2. Adam stochastic optimization

Adaptive moment estimation (Adam) (Kingma and Ba, 2014) is a stochastic optimization
algorithm that estimates both the first and second moment of the gradient using a moving
average and uses it to automatically adapt the learning rate. As it requires little to no user
input, ADAM is currently one of the most popular algorithms in stochastic optimization and
is heavily used within the Deep Learning community.

In each step, the algorithm computes an estimate for the first momentm and second moment
v using an exponentially decaying moving average

mt = β1m
t−1 + (1− β1)g

t vt = β2v
t−1 + (1− β2)g ⊙ g (2.38)

where ⊙ indicates the element-wise product. Afterward, a bias correction because of the
starting values m0,v0 = 0 has to be applied:

m̂t =
m

1− βt
1

v̂t =
v

1− βt
2

(2.39)

Finally, we can update the parameters:

ϕt+1 = ϕt +
αm̂√
v̂t + ϵ

(2.40)
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For a detailed description of the algorithm as well as suggested values for the parameters
α, β1, β2, and ϵ, we refer to the original paper by Kingma and Ba (2014).

2.5. Deep Learning & Neural Networks

Deep Learning is considered a subset of machine learning. In particular, Deep Learning
algorithms employ Neural Networks (NN) with multiple hidden layers to learn from an,
in general, large amount of data. Due to the high amount of parameters involved, Deep
Learning methods need large computational resources and have especially benefited from the
technical development regarding GPUs in the last years and the availability of automatic
differentiation frameworks (Abadi et al., 2015; Paszke et al., 2017; Bradbury et al., 2018).
This section introduces the three most popular Neural Networks architectures: Feed-forward
neural networks, convolutional neural networks and recurrent neural network. We note that
this is only a tiny subset of the currently available Deep Learning architecures. A more
detailed summary of Deep Learning is presented in LeCun et al. (2015) or Goodfellow et al.
(2016).

Neural Networks, also known as Artificial Neural Networks (ANNs), are the key element
of most Deep Learning algorithms. They were originally developed with the intention to
mimic the human brain (McCulloch and Pitts, 1943). A neural network usually employs a
large number of parameters and thus requires a comparably large training data set. The
most significant advantage of NN is their flexibility as they can be universal approximators
(Hornik et al., 1989).

2.5.1. Feed-forward Neural Network

The most popular neural network is the feed-forward neural network that takes a value x0

as an input and processes it using multiple hidden layers until an output y is reached. A
possible architecture is shown in Figure 2.1.

From a mathematical point of view, the following operations take place within such a feed-
forward neural network. We start with a d0-dimensional input x0. The values at the first
hidden layer are then computed using a weight matrix W 1, a bias vector b1, and an element-
wise activation function h1. We assume a d1-dimensional first hidden layer with values x1

j

for j = 1, .., d1.

x1
j = h1

(
W 1

j,ix
0
i + b1j

)
for j = 1, ..., d1 (2.41)

Subsequently, the values at the d2-dimensional second hidden layer are computed similarly,
but with a new weight matrix and bias vector as well as possibly another activation function.

x2
j = h2

(
W 2

j,ix
1
i + b2j

)
for j = 1, ..., d2 (2.42)

Finally, we can compute the d3-dimensional output with yet again another weight matrix,



22

Hidden layers

Output layerInput layer

Figure 2.1: Illustrative architecture of a feed-forward neural network

bias vector, and activation function.

yj = h3
(
W 3

j,ix
2
i + b3j

)
for j = 1, ..., d3 (2.43)

The activation functions are usually identical for each layer, but different activation functions
could also be employed. Popular activation functions can for instance be found in Bishop
and Nasrabadi (2006) and are usually non-linear, differentiable and monotonic. As for each
hidden layer, all inputs are connected with all outputs, these layers are also called fully-
connected layers.

For the commonly used activation functions, neural networks are differentiable with re-
gards to their parameters using the chain rule. These derivatives are required during the
training of a neural network 4 and their easy accessibility is beside their flexibility one of
the main reasons for the popularity of neural networks in the machine learning commu-
nity.

We note that we could also treat all parameters as random variables and thus turn the neural
network into a Bayesian neural network. However, the inference is challenging due to the
high-dimensional parameter space (Li and Gal, 2017) and the choice of suitable priors for
the parameters is not straightforward (Fortuin et al., 2022).

2.5.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) (Fukushima, 1980; LeCun et al., 1989) are another
popular neural network architecture. CNNs are designed for grid-like data and are there-
fore primarily used for tasks such as image and video processing and classification but also
for discretized time series data. In contrast to the feed-forward neural networks discussed

4The training of a neural network is equivalent to solving a (stochastic) optimization problem to obtain
the optimal parameter values. The quantity which is minimized is called the loss function.
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in Section 2.5.1, they contain convolutional layers and pooling layers in addition to fully-
connected layers.

Whereas in a fully-connected layer the outputs for each layer are depending on all inputs,
a convolutional layer only has sparse interactions. The outputs of a convolutional layer are
convolutions of the inputs with a fixed-sized kernel that is learned from the data. We note
that due to employing a convolution with a kernel instead of a general matrix multiplication
as in Section 2.5.1, the amount of parameters in a convolutional layer is lower than in the
corresponding feed-forward layer. Convolutional layers are moreover shift-invariant.
Pooling Layers are used to enforce invariance of the outputs with regards to small transfor-
mations (Goodfellow et al., 2016). For instance, a max pooling layer reports the maximum
value within a fixed-size neighborhood.

For a more detailed description the author refers the interested reader to Bishop and Nasrabadi
(2006) and Goodfellow et al. (2016) or similar textbooks with a focus on image analysis and
pattern recognition.

2.5.3. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are neural networks for processing a sequential input
data and learning a propagator for the data. The recurrent neural networks employ an
internal memory state h, which is updated for new information that is received by the
network. Given an initial internal memory state h0 and a time-series x0,x1, ...,xT as input
for the RNN, the RNN updates in each step the internal hidden state given the current
input:

ht+1 = F(ht,xt) (2.44)

Subsequently, the network predicts the desired output, e.g. the the next value for the given
time-series, based upon the internal hidden memory.

xt+1 = G(ht+1) (2.45)

Here, F and G are two non-linear functions. By taking into account memory when pre-
dicting new states a RNN is capable of representing non-Markovian dynamics. Depending
on how exactly F and G are chosen, different variations are possible (Goodfellow et al., 2016).

Unfortunately, the computation of gradients and thus the training of RNNs can be compli-
cated as gradients can become very small or very large as the gradient computation of the
state at a time t depends on all steps taken before (Goodfellow et al., 2016). A possible
remedy is to learn when to incorporate new information into the hidden state and when
to forget old information in order to ensure non-zero gradients. This is done in the Long-
Short-Term-memory network (LSTM) (Hochreiter and Schmidhuber, 1997) by introducing
a self-loop into the architecture.



24

2.6. Physics-aware Neural Networks

This section introduces four of the most popular physics-aware neural network architectures:
the Physics-informed Neural Networks (PINNs) framework, Deep Operator Networks (Deep-
ONets), Learning an Effective Dynamics (LED) as well as the Hamiltonian Neural Network
(HNN).

2.6.1. Physics-informed Neural Networks

PINNs were introduced by Raissi et al. (2019) and have quickly become one of the most
used physics-aware neural network architectures. They model the solution of a PDE with
a neural network and incorporate the residual of the PDE as an additional term in the loss
function, which is minimized to find the optimal parameter values. The method, therefore,
can be described as a collocation method that employs a neural network as the trial function.
Given a PDE

ut +N (u) = 0 with t ∈ [0, T ],x ∈ Ω (2.46)

with the non-linear differential operatorN , we model the solution uϕ(x, t) with a deep neural
network with parameters ϕ. The neural network is trained using a loss that consists of two
parts. The first part MSEBC minimizes the error at the initial and boundary conditions, and

the second part the error within the domain MSERes. Given Nf collocation points {xi
f , t

i
f}

Nf

i+1

and Nu points at the boundary {xi
u, t

i
u,u

i}Nu
i+1, we can state the two loss terms (Raissi et al.,

2019):

MSEBC =
1

Nu

Nu∑
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|uϕ(x
i
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i
u)− ui|2 (2.47)

and

MSERes =
1

Nu

Nf∑

i=1

|N (uϕ(x
i
f , t

i
f )) + (uϕ(x

i
f , t

i
f ))t|2 (2.48)

2.6.2. Deep Operator Networks

This section is based upon the DeepONet review in Kaltenbach et al. (2022):

DeepONets (Lu et al., 2021) have been developed to solve parametric PDEs and significantly
extend the Physics-Informed Neural Network (PINNs, Raissi et al. (2019)) framework as no
additional training phase is required if the input parameters of the PDE are changed. We
consider a, potentially nonlinear and time-dependent, PDE with an input function u ∈
U and solution function s ∈ S where U ,S are appropriate Banach spaces. The former
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can represent e.g. source terms, boundary or initial conditions, material properties. Let:

N (u, s)(ξ) = 0 (2.49)

denote the governing PDE where N : U ×S → V is an appropriate differential operator and
ξ the spatio-temporal coordinates. Furthermore, let:

B(u, s)(ξ) = 0 (2.50)

denote the operator B : U × S → V associated with the boundary or initial conditions.
Assuming that the solution s for each u ∈ U is unique, we denote with G : U → S the
solution operator that maps from any input u to the corresponding solution s. The goal of
DeepONets is to approximate it with an operator Gθ that depends on tunable parameters θ.
The latter can yield an approximation to the actual solution at any spatio-temporal point
ξ which we denote by Gθ(ξ). It is based on a separated representation (Lu et al., 2021).
We omit the NN parameters θ on the right-hand side in order to simplify the notation:

Gθ(u)(ξ) =

Q∑

j=1

bj


 u(η1), ..., u(ηF )︸ ︷︷ ︸

u


 tj(ξ) (2.51)

and consists of the so-called branch network whose terms bj depend on the values of the
input function u at F fixed spatio-temporal locations {ηl}Fl=1 which we summarily denote
with the vector u ∈ RF , and the so-called trunk network whose terms tj depend on the
spatio-temporal coordinates ξ (see Figure 2.2). Both networks have trainable weight and
bias parameters which we denote collectively by θ.

Figure 2.2: DeepONet architecure Kaltenbach et al. (2022)

We emphasize that, once trained, the DeepONet can provide predictions of the solution at
any spatio-temporal location ξ, a feature that is very convenient in the context of inverse
problems as the same DeepONet can be used for solving problems with different sets of
observations.
DeepONets are trained using a loss-function that can both incorporate given data points as
well as a physics-informed term (Wang et al., 2021) similar to PINNs.



26

2.6.3. Learning Effective Dynamics framework

The Learning the Effective Dynamics (LED) framework (Vlachas et al., 2022) resemble a
combination of an auto-encoder with a recurrent neural network.
A high-dimensional input is mapped to a lower-dimensional representation using the Encoder
part of the Autoencoder (Kingma and Welling, 2014) and than propagated in time using a
recurrent neural network. The full high-dimensional state is then restored using the Decoder.

From a mathematical perspective, given a high-dimensional time series xn with n = 1, ..., T
the encoder maps the high-dimensional representation to the latent space as:

zn = EθAE
(xn) (2.52)

The decoder reconstructs the high-dimensional representation based on the latent variables
as:

xn = DθAE
(zn) (2.53)

We denote the parameters of the encoder as well as the decoder by θAE. Subsequently, a
RNN with parameters θRNN is learned as a propagator for the obtained low-dimensional
time series zn with n = 1, ..., T . More details on recurrent neural network can be found
in Section 2.5.3. In the original LED publication (Vlachas et al., 2022), a CNN based Au-
toencoder is used and a LSTM is employed as the recurrent neural network. The two sets
of parameters can be either trained separately by first learning the Autoencoder and after-
wards the LSTM or together by adding up the loss-terms for the Autoencoder and the LSTM.

An important advantage of the LED framework is that if the quality of the LED predic-
tion should be declining, the decoder can be used to lift a lower-dimensional representation
back to its high-dimensional state. Now, based on the obtained high-dimensional state the
time-series can be propagated in case the underlying high-dimensional PDE is known and
more training data could be generated. The additional data can be used to retrain the LED
framework and the obtained new high-dimensional state can be used as a starting point for
new predictions. Vlachas et al. (2022) have obtained very accurate predictions by constantly
switching between the low-dimensional representation and the high-dimensional representa-
tion. Moreover, the computational costs were significantly reduced compared to solving the
system only in the high-dimensional representation.
Unfortunately, it is difficult to decide when to switch back to the high-dimensional represen-
tation as a metric for the accuracy of the lower-dimensional states (generated by using the
LSTM propagator) has to be obtained without access to reference data. Kičić et al. (2023)
have introduced a metric based on UQ and an ensemble of probabilistic networks that is used
to decide when to switch to the high-dimensional representation.

2.6.4. Hamiltonian Neural Networks

HNNs were introduced by Greydanus et al. (2019). This architecture does not include
physical information within the loss term during training but incorporates the principle of
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Hamiltonian mechanics directly as inductive bias into the architecture. In particular, a dif-
ferential representation of the Hamiltonian of a physical system is learned. The Hamiltonian
equations are then invoked to obtain the equations for the generalized coordinates q and
momenta p, i.e.

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(2.54)

The Hamiltonian H expresses the total energy of the system, which is conserved during
the dynamic evolution. HNNs learn the Hamiltonian based on N observations of the state
variables {qi,pi}Ni+1 and their derivatives {q̇i, ṗi}Ni+1 with the following loss function L(ϕ):

L(ϕ) = 1

N

N∑

i=1

∣∣∣∣
∂Hϕ(q

i,pi)

∂p
− q̇i

∣∣∣∣
2

+

∣∣∣∣
∂Hϕ(q

i,pi)

∂q
+ ṗi

∣∣∣∣
2

(2.55)

Here, ϕ are the parameters of the neural network involved.

Eichelsdörfer et al. (2021) showed that the performance of HNNs, especially in the Small
Data regime, can be improved by adding an additional, physics-informed, regularization term
which penalizes the difference between the learned Hamiltonian Hϕ and target values of the

total energy level of the system Ĥ. This additional information has to be collected only once
for each trajectory. The augmented loss function L̂(ϕ) is given by

L̂(ϕ) = 1

N

N∑

i=1

∣∣∣∣
∂Hϕ(q

i,pi)

∂p
− q̇i

∣∣∣∣
2

+

∣∣∣∣
∂Hϕ(q

i,pi)

∂q
+ ṗi
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2

+ λH(Hϕ(q
i,pi)− Ĥi)

2 (2.56)

This augmented loss function involves an additional hyperparameter λH , which is problem
specific and has to be determined by cross-validation or by using an augmented Lagrangian
method during the optimization of the loss function.





3. Summary of Publications

3.1. Paper A: Incorporating physical constraints in a deep
probabilistic machine learning framework for
coarse-graining dynamical systems

3.1.1. Summary

This paper introduces a data-based probabilistic machine learning framework for the effec-
tive discovery of coarse-grained (CG) models of high-dimensional dynamical systems. The
proposed algorithm is especially suitable for multiscale problems and enables the quantifi-
cation of predictive uncertainty. We formulate the coarse-graining process by employing a
probabilistic state-space model and account for physical constraints with the novel concept
of virtual observables. The primary utility of such constraints stems from the undisputed
physical laws such as conservation of mass, energy etc. that they represent. We assume that
these constraints are virtually observed and thus give rise to a virtual likelihood that can be
seamlessly integrated into the computation of the Bayesian posterior. Apart from leading to
physically realistic predictions, they can significantly reduce the requisite amount of train-
ing data which for high-dimensional, multiscale systems are expensive to obtain (Small Data
regime). We, moreover, employ deep neural nets in combination with probabilistic inference
tools to identify the coarse-grained variables and their evolution model without a restriction
(fine-to-coarse) projection and the availability of time-derivatives of the state variables. We
advocate a sparse Bayesian learning perspective that avoids overfitting and reveals the most
salient features in the coarse-grained evolution law. The formulation adopted enables the
quantification of predictive uncertainty due to information loss which is a crucial and often
neglected component in the CG process. Furthermore, we are capable of reconstructing the
evolution of the full, high-dimensional system, and therefore, the observables of interest need
not be selected a priori. We demonstrate the efficacy of the proposed framework by applying
it to systems of interacting particles with advection-diffusion and Burger’s type dynamics
and a series of images of a nonlinear pendulum. In all cases, we identify the underlying
coarse dynamics and can generate extrapolative predictions, including the formation and
propagation of a shock for the particle systems and a stable trajectory in the phase space
for the pendulum.

3.1.2. Contribution

I am the first author of this paper. I developed the methodological framework together
with Phaedon-Stelios Koutsourelakis. The implementation was done by me, and I carried
out all simulations. I discussed the results with Phaedon-Stelios Koutsourelakis and then
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drafted the manuscript. Phaedon-Stelios Koutsourelakis contributed to the manuscript and
reviewed the draft.

3.2. Paper B: Physics-aware, deep probabilistic modeling of
multiscale dynamics in the Small Data regime

3.2.1. Summary

This paper presents a probabilistic perspective that simultaneously identifies predictive,
lower-dimensional CG variables as well as their dynamics given training data of high-
dimensional, multiscale systems. We make use of the expressive ability of deep neural
networks in order to represent the right-hand side of the CG evolution law and to rep-
resent a coarse-to-fine map from the lower-dimensional coordinates to the high-dimensional
system. Furthermore, we incorporate domain knowledge that is very often available in the
form of physical constraints (e.g.conservation laws) in our model with the concept of virtual
observables. The usage of virtual observables enables physically realistic predictions and can
significantly reduce the requisite amount of training data. This enables us to work in the
Small Data regime and reduces the amount of required, computationally expensive multiscale
simulations, although the model employs the aforementioned two deep neural networks. We
demonstrate the efficacy of the proposed framework in a high-dimensional system of moving
particles. We are capable of making accurate extrapolative predictions and quantifying the
predictive uncertainty as well as reconstructing the evolution of the full, fine-scale system,
which allows us to select the quantities of interest a posteriori.

3.2.2. Contribution

I am the first author of this paper. I developed the methodological framework together
with Phaedon-Stelios Koutsourelakis. The implementation and simulations were done by
me. I discussed the results with Phaedon-Stelios Koutsourelakis and then drafted the
manuscript. Phaedon-Stelios Koutsourelakis contributed to the manuscript and reviewed
the draft.

3.3. Paper C: Physics-aware, probabilistic model order
reduction with guaranteed stability

3.3.1. Summary

We propose a generative framework for learning an effective, lower-dimensional, coarse-
grained dynamical model that is predictive of the fine-grained system’s long-term evolution
but also its behavior under different initial conditions. The model only requires (small
amounts of) time-series data from a high-dimensional, fine-grained, multiscale dynamical
system. We target those high-dimensional, fine-grained models as they arise in physical ap-
plications (e.g. molecular dynamics, agent-based models), the dynamics of which are strongly
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non-stationary but their transition to equilibrium is governed by unknown slow processes
which are largely inaccessible by brute-force simulations. The generative framework pro-
posed employs a flexible prior on the complex plane for the latent, slow processes and an
intermediate layer of physics-motivated latent variables that reduces reliance on data and im-
bues inductive bias. The flexible prior on the complex plane is inspired by probabilistic Slow
Feature analysis (Turner and Sahani, 2007) and enables us to rank the identified processes
according to their slowness. It moreover makes use of a discretized version of an Ornstein-
Uhlenbeck process in order to be able to restrict the eigenvalues of the system to negative
real parts and thus restrict the coarse-grained system to a dynamic with guaranteed stability.
We address simultaneously the tasks of dimensionality reduction and model estimation and
thus are not required to a priori define projection operators or encoders. We demonstrate its
efficacy and accuracy in multiscale physical systems of particle dynamics where probabilistic,
long-term predictions of phenomena not contained in the training data are produced. We
are able to make predictions for much more time steps than contained in the training data
and our model converges to the correct steady state.

3.3.2. Contribution

I am the first author of this paper. I developed the methodological framework together
with Phaedon-Stelios Koutsourelakis. The implementation and all simulations were done
by me. I discussed the results with Phaedon-Stelios Koutsourelakis and then drafted the
manuscript. Phaedon-Stelios Koutsourelakis contributed to the manuscript and reviewed
the draft.

3.4. Paper D: Semi-supervised Invertible Neural Operators for
Bayesian Inverse Problems

3.4.1. Summary

This paper employs physics-informed Neural Operators in the context of high-dimensional,
Bayesian inverse problems. Neural Operators offer a powerful, data-driven tool for solving
parametric PDEs by learning operators, i.e. maps between infinite-dimensional function
spaces. In particular, we extend the Deep Operator Network framework by employing a re-
alNVP architecture which yields an invertible and differentiable map between the parametric
input and the branch net output. This allows us to not only solve forward and inverse prob-
lems with one neural network architecture but also to construct accurate approximations of
the full posterior in Bayesian inverse problems, which can be readily adapted irrespective
of the number of observations and the magnitude of the observation noise. As a result, no
additional forward solves are required, nor is there any need for costly sampling procedures.
We demonstrate the efficacy and accuracy of the proposed methodology in the context of
inverse problems based on an anti-derivative equation, reaction-diffusion dynamics, and flow
through porous media. We employ a physics-informed loss term during training and train
our model for each example with unlabeled training data and no or only a small amount of
labeled training data.
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3.4.2. Contribution

I am the first author of this paper. I developed the methodological framework together with
Paris Perdikaris and Phaedon-Stelios Koutsourelakis. Paris Perdikaris especially contributed
regarding the invertible DeepoNets and their numerical parameters, whereas Phaedon-Stelios
Koutsourelakis contributed regarding their application to Bayesian Inverse Problems. The
implementation and the simulations were done by me. I discussed the results with Paris
Perdikaris and Phaedon-Stelios Koutsourelakis and then drafted the manuscript. Phaedon-
Stelios Koutsourelakis and Paris Perdikaris reviewed the draft and contributed to the manuscript.



4. Conclusions & Outlook

4.1. Conclusions and Discussion

In this thesis, different frameworks have been presented that enable probabilistic machine
learning for physical systems in the Small Data regime. These frameworks incorporate
physical constraints as virtual observables (Kaltenbach and Koutsourelakis, 2020a, 2021a),
guarantee stability (Kaltenbach and Koutsourelakis, 2021b) or involve invertible Neural Op-
erators to learn both forward and inverse operators simultaneously in a semi-supervised
setting (Kaltenbach et al., 2022).

All frameworks have in common that we are employing a Bayesian perspective and thus are
able to quantify the predictive uncertainty. This is a large advantage compared to deter-
ministic machine learning frameworks that are, in general, only capable of computing point
estimates. The information loss during model order reduction is also incorporated into the
aforementioned uncertainty as we simultaneously carry out the model and dimensionality
reduction. A separate model order reduction step would make consistent uncertainty quan-
tification much more difficult. However, it would allow us to split the algorithm into two
parts and thus also split the computational workload.
Due to the probabilistic perspective employed, we have to compute a Bayesian posterior and
carry out approximate inference. We have therefore developed inference algorithms that are
suitable for the Small Data regime and can handle complex random variables and predefined
dependencies between variables. These algorithms are based on variational inference (Blei
et al., 2017), but we could also employ advanced gradient-based MCMC methods such as the
No-U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014). The latter would be computa-
tionally more challenging due to the high-dimensional posterior distributions of the models,
but would provide asymptotically exact results. In case MCMC is employed, the computa-
tions involved should be done in a massively parallel way.

Moreover, all models can be trained in the Small Data regime, which is advantageous as
data from physical systems can be sparse and expensive to obtain. Numerical simulations
are computationally costly as the dimensions involved are, in general, very high, whereas
the time scales of interest are very small. Experiments are equally expensive and can be
infeasible given the spatial scales of the system. The frameworks do not require derivatives
as input data in contrast to, for instance, the SINDy framework (Brunton et al., 2016).
As derivatives are for many systems not readily available and can be noisy, this is, in our
opinion, another advantage of our physics-aware probabilistic machine learning algorithms.

The incorporation of physical knowledge is one of the key aspects of this work. While
we firmly believe that inductive bias improves machine learning algorithms, it can also be
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problematic if the inductive bias should be wrong. For instance, if we enforce an incorrect
physical model within our machine learning algorithm, we would potentially need a very
large amount of data to overrule the inductive bias. If the structure of the neural network
architecture is designed according to the incorrect physical model, even a larger amount
of data can, in general, not correct the wrong inductive bias, and the predictive quality of
the model will be very low. We have developed the novel concept of Virtual Observables
(Kaltenbach and Koutsourelakis, 2020a) to account for physical constraints. This allows us
to integrate the constraints seamlessly into our fully probabilistic machine learning frame-
work and decide how strong the constraints are enforced by setting the relevant standard
deviation of the virtual observable. This shares similarities with Raissi et al. (2019) as the
virtual observables act as a regularization term similar to the physics-informed part of the
loss function used for PINNs. The disadvantage of this approach is that we can not guarantee
that the constraints are exactly enforced as the virtual likelihood is optimized together with
the likelihood based on the data and the solution is a trade-off between both likelihoods.
Another possibility would be to directly integrate the constraints into the neural network
architecture to ensure that the constraint is enforced all the time. This is possible for energy
conservation with Hamiltonian Neural Networks (Greydanus et al., 2019) or for symmetry
invariance with equivariant networks (Wang et al., 2022b). Wang et al. (2022a) have shown
that the concept of equivariant neural networks can even be extended to non-perfect sym-
metries.

In Kaltenbach and Koutsourelakis (2021b) we have shown that imposing some constraints
regarding the dynamics of the reduced-order variables can significantly enhance the predic-
tive accuracy for long-term predictions. In our work, the obtained reduced-order dynamic
not only guarantees stability but also provides interpretability. In particular, we can rank
the obtained processes according to their slowness due to the chosen prior. As the dynamics
of the reduced order variables are restricted to a discretized Ornstein-Uhlenbeck process, our
coarse-to-fine map has to be able to map from reduced order variables with such a dynamic
to the high-dimensional system. This can lead to a more complex coarse-to-fine map than
in the case of a more flexible dynamic. We, therefore, introduced an intermediate layer
of physics-motivated variables to facilitate the learning of this map. Moreover, we believe
that the gained stability and interpretability outweigh the slightly more complex coarse-to-
fine map. The interpretability obtained with this method is linked to a priori defining a
parametrized reduced-order dynamics. In our approach we choose an Ornstein-Uhlenbeck
process to directly enforce stability, but choices based on the Koopman-formalism (Pan et al.,
2021) or the Mori-Zwanzig approach (Menier et al., 2023) are also possible. Pan et al. (2021)
learn the most informative Koopman-invariant subspace, whereas Menier et al. (2023) com-
bine a linear reduced-order dynamics with a non-linear closure term. These methods are
all different from for instance the Neural ODEs Chen et al. (2018) or the LED framework
Vlachas et al. (2022) which employ a neural network for the reduced-order dynamics with-
out any restrictions and are therefore not interpretable. The LED framework is based on
the equation-free framework (Kevrekidis et al., 2004) and, due to the high flexibility of the
LSTM employed for the reduced-order dynamics, can be a more promising approach in case
a large amount of training data is available and interpretability or stability are not required.
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Our work on invertible Neural Operators shows the large potential of invertible architectures
in machine learning for physical systems. We are not only able to obtain both a forward
and inverse operator for the targeted physical system, but we are also able to use the invert-
ible DeepONet to solve Bayesian Inverse problems in a very fast and accurate way. In case
the DeepONet is trained on unlabeled training data only, we can compute an approximate
posterior for a Bayesian inverse problem without ever having to solve the underlying PDE.
The addition of some labeled training data is rewarded with higher predictive accuracy. We
strongly believe that invertible Neural Operators have, therefore, immense potential regard-
ing Bayesian inverse problems. In our work, we incorporated the invertible neural network
into a DeepONet, but invertible architectures could enhance other frameworks as well. We
note that the DeepONet approach was developed to learn Neural Operators and does not
necessarily learn a lower-dimensional representation and thus not uses any latent variables.
All aforementioned approaches, however, target dimensional reduction and learning a low-
dimensional latent space. In Table 4.1 a comparison between DeepONets and a framework
based on Autoencoders such as LED can be found.

The DeepONet framework has been extended recently and some of these advantages could
also be used to further improve the invertible DeepONet architecture. For instance, Wang
et al. (2022c) suggested account for causality during training which could be directly in-
corporated into the ivnertible architecture. Seidman et al. (2022) replaced the dot product
which combines the output of the branch and the trunk network with a non-linear mapping
allowing to also learn non-linear manifolds. This is unfortunately with the current invertible
DeepONet architecture not possible as this architecture requires currently a linear combina-
tion in the last layer. Moreover, other Neural Operators based on Variational Autoencoders
Seidman et al. (2023) have recently been introduced.

Another line of research pertains to the interpretability of DeepONets, which could be
improved using a Bayesian formalism (Moya et al., 2023) or incorporating elements from
Singular-Value-Decomposition Venturi and Casey (2023). This is currently a disadvantage
of our invertible architecture whose could be further improved.



36

DeepONet LED and Autoencoder-
based architectures

Target Representing a solution op-
erator for a parametrized
PDE

Learning a reduced order
dynamical representation of
the system

Architecture Summary Two neural networks: A
branch network processes
the input parameters
whereas a trunk network
processes the spatio-
temporal location. The
final solution is a dot prod-
uct of both outputs of these
neural networks. (for more
details see Section 2.6.2)

Three neural networks: An
encoder network maps the
high-dimensional data to a
latent space, a decoder net-
work maps the latent repre-
sentation back to the high-
dimensional space and a
third neural network is used
to represent the tempo-
ral dynamics for the latent
space. (see Section 2.6.3 )

Latent representation No latent representation is
learned

Yes

Temporal dynamics No explicit temporal dy-
namics are learned

Yes

Parametric dependency The parameters of the sys-
tem are the input for the
branch network and can be
changed during predictions

Not possible with the vanilla
version, the parametric de-
pendency would need to be
added to the neural net-
works involved.

Invertible architecture Yes, invertible DeepONets
are possible

No, all temporal dynamics
employed are non invertible.

Table 4.1: Comparison of DeepONets and LED
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4.2. Outlook

We have presented physics-aware probabilistic machine learning algorithms that can be
trained in the Small Data regime and have shown promising results in the application exam-
ples. However, some challenges remain currently unsolved:

4.2.1. Outstanding challenges

• One of the most difficult questions in model order reduction/ coarse-graining is how to
identify the right number of reduced order state variables that are needed. Whereas
we have for physical problems in general an idea which variables would be suitable, we
never have a guarantee that those variables are sufficient. Therefore, augmenting our
frameworks such that they could discover additional and possibly non-physical reduced
order variables could be a very interesting direction for future work. In Kaltenbach and
Koutsourelakis (2021b) we have employed an intermediate layer of physical variables,
which could be combined with a small amount of other non-physical states that are
constructed solely based on the data.

• Another outstanding challenge pertains to the interpretability of our machine learn-
ing framework. Although in Kaltenbach and Koutsourelakis (2020a, 2021b) we have
already presented approaches that are interpretable up to a certain degree, we would
like to increase this even further. Especially the DeepONet formalism does not provide
much interpretability besides the split into trunk and branch network.

• In Kaltenbach and Koutsourelakis (2021b) we have developed a model order reduction
method with guaranteed stability. However, the reduced order temporal dynamic
is discrete, which can be problematic for sparse or irregularly sampled data. We,
therefore, think that an extension to a continuous dynamic could enhance the potential
of this method even further.

• Apart from the invertible DeepONet, our frameworks can not account for dependencies
of the targeted system’s output on input parameters. However, this could be changed
by integrating these input parameters into our reduced-order models. They could either
directly affect the dynamics of the reduced-order model or the mapping between the
reduced-order model and the high-dimensional system. Such parametric dependencies
have for instance been studied in Kalia et al. (2021).

• We have developed surrogates that rely on Deep Neural Networks to represent the
solutions of PDEs. For large scale systems the training of these surrogates can be com-
putationally expensive. Recently, Karnakov et al. (2022) have shown that a machine
learning framework without neural networks can be computationally more efficient due
to the reduced number of model parameters. The idea proposed could, therefore, po-
tentially be integrated into our frameworks and could lead to faster algorithms that
are potentially able to work with even less data due to the aforementioned reduced
number of parameters.

• The developed frameworks have so far shown very good results for all the systems they
have been applied to. There are however still many application areas left where the
frameworks have not been applied so far. An additional challenge would be applying
the frameworks to more areas in order to show that they are general applicable. This
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could involve small modifications to tailor them to the respective application area. For
example, for medical applications interpretability would be even more important.

4.2.2. Future work

We propose the following next steps to resolve some of the aforementioned outstanding
challenges:

• We want to use the ELBO, i.e. the lower bound to the model evidence, as a possi-
ble selection criterion for how many reduced-order variables are needed and to select
the best set of reduced order variables. This could address the issue for how to se-
lect the coarse-grained variables. We suggest to start with a set of physics-inspired
reduced-order variables and then subsequently add additional latent variables until the
improvement in the ELBO is very small.

• The learned dynamics for our reduced order models have currently been based on
either predefined feature functions or neural networks. Yin et al. (2021) have proposed
a framework that augments incomplete physical knowledge with machine learning. A
similar approach could be applied to learning the dynamics of reduced order variables
as we have some knowledge available due to fundamental physical laws. This knowledge
is, in general, not enough to entirely prescribe the dynamics but can help us to select
specific essential components of the dynamics as the physical system should not be
able to violate energy conservation and usually converges to some sort of equilibrium.
We therefore want to split our reduced-order dynamics into on part based on a physical
law and a purely data-driven part and thus increase the interpretability of our reduced-
order dynamics. To accomplish this we have to solve a closure problem in the reduced-
order dynamics. The closure term can be modeled with a neural network. We suggest
to apply a weight regularization to this network such that as much as possible of the
dynamics are represented by the given physical law.

• Another possibility to increase the interpretability is to base our neural network ar-
chitecture on the Mori-Zwanzig formalism. The Mori-Zwanzig formalism provides an
exact equation for the dynamics of a reduced-order. An architecture inspired by this
formalism would split the reduced-order dynamics in a linear part and a non-linear
part representing the memory term of the Mori-Zwanzig formalism. To ensure compu-
tational feasibility, we recommend to include only a limited amount of previous time
steps into this memory computation.

• Employing a continuous dynamics in the latent space can be done by learning a
Stochastic Differential Equations. This requires modifications to our inference algo-
rithms. A possible starting point is described in Li et al. (2020). Their methodology
could be adapted for our frameworks to ensure fast and efficient training of an SDE. An
alternative approach for a continuous latent space could employ a Gaussian Process.

• Another goal for a future work is to add a parametric dependency to the presented
algorithms. This could be done by adding another parameter in the temporal dynamics.
In case a LSTM was employed, we could add any additional parameters to the internal
hidden state. In a more general setting, we could add another neural network that
processes the parameters before they are combined with the neural network responsible
for the temporal dynamics. This idea is based on the DeepONet structure (Lu et al.,
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2021). According to Seidman et al. (2022) a non-linear recombination between the two
neural network architectures could be beneficial.

• We plan to modify the autoencoder that is currently used in our reduced-order frame-
works. In more detail we want to introduce a novel mutltiscale autoencoder that is
able to process input data at different resolutions. For instance for physical simula-
tions, all simulations rarely have exact the same configurations. Therefore a learning
framework that can be trained using data with different discretizations can be benefi-
cial. Moreover, we strongly belief that such a framework can significantly increase the
interpretability as the influence of each latent variable on the the different resolution
levels can be revealed.
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and Frank Noé. Data-Driven Model Reduction and Transfer Operator Approximation.
Journal of Nonlinear Science, 28(3):985–1010, June 2018. ISSN 1432-1467. doi: 10.1007/
s00332-017-9437-7.

Dmitri Kondrashov, Mickaël D. Chekroun, and Michael Ghil. Data-driven non-Markovian
closure models. Physica D: Nonlinear Phenomena, 297:33–55, March 2015. ISSN 0167-
2789. doi: 10.1016/j.physd.2014.12.005.

B. O. Koopman. Hamiltonian Systems and Transformation in Hilbert Space. Proceedings of
the National Academy of Sciences, 17(5):315–318, May 1931. doi: 10.1073/pnas.17.5.315.

P. S. Koutsourelakis, N. Zabaras, and M. Girolami. Special Issue: Big data and predictive
computational modeling. Journal of Computational Physics, 321:1252–1254, September
2016. ISSN 0021-9991. doi: 10.1016/j.jcp.2016.03.028.

Phaedon-Stelios Koutsourelakis and Elias Bilionis. Scalable Bayesian Reduced-Order Models
for Simulating High-Dimensional Multiscale Dynamical Systems. Multiscale Modeling &
Simulation, 9(1):449–485, January 2011. ISSN 1540-3459. doi: 10.1137/100783790.

S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of Mathematical
Statistics, 22(1):79–86, 1951. ISSN 0003-4851. URL https://www.jstor.org/stable/

2236703.

I.E. Lagaris, A. Likas, and D.I. Fotiadis. Artificial neural networks for solving ordinary
and partial differential equations. IEEE Transactions on Neural Networks, 9(5):987–1000,
September 1998. ISSN 1941-0093. doi: 10.1109/72.712178.

Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time series.
In M.A. Arbib, editor, The handbook of brain theory and neural networks, volume 3361.
MIT Press, 1995. Publisher: Cambridge, MA USA.

https://www.jmlr.org/papers/volume23/21-1521/21-1521.pdf
https://www.jmlr.org/papers/volume23/21-1521/21-1521.pdf
https://www.jstor.org/stable/2236703
https://www.jstor.org/stable/2236703


46 References

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code
recognition. Neural computation, 1(4):541–551, 1989.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, May 2015. ISSN 1476-4687. doi: 10.1038/nature14539.

Kookjin Lee and Kevin T. Carlberg. Model reduction of dynamical systems on nonlinear
manifolds using deep convolutional autoencoders. Journal of Computational Physics, 404,
March 2020. ISSN 0021-9991. doi: 10.1016/j.jcp.2019.108973.

Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. Scal-
able Gradients for Stochastic Differential Equations. In Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, volume 108, pages 3870–
3882. PMLR, June 2020. URL https://proceedings.mlr.press/v108/li20i.html.
ISSN: 2640-3498.

Yingzhen Li and Yarin Gal. Dropout Inference in Bayesian Neural Networks with Alpha-
divergences. In Proceedings of the 34th International Conference on Machine Learning,
volume 70, pages 2052–2061. PMLR, July 2017. URL https://proceedings.mlr.press/

v70/li17a.html. ISSN: 2640-3498.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier Neural Operator for Parametric Partial
Differential Equations. arXiv prerint arXiv:2010.08895, May 2021. doi: 10.48550/arXiv.
2010.08895.

Jun S. Liu and Rong Chen. Sequential Monte Carlo Methods for Dynamic Systems. Journal
of the American Statistical Association, 93(443):1032–1044, September 1998. ISSN 0162-
1459. doi: 10.1080/01621459.1998.10473765.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. DeepONet: Learning nonlinear operators
for identifying differential equations based on the universal approximation theorem of
operators. Nature Machine Intelligence, 3(3):218–229, March 2021. ISSN 2522-5839. doi:
10.1038/s42256-021-00302-5.

Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Deep learning for universal linear
embeddings of nonlinear dynamics. Nature Communications, 9(1):4950, November 2018.
ISSN 2041-1723. doi: 10.1038/s41467-018-07210-0.

Michael Lutter, Christian Ritter, and Jan Peters. Deep Lagrangian Networks: Using Physics
as Model Prior for Deep Learning. arXiv preprint arXiv:1907.04490, July 2019. doi:
10.48550/arXiv.1907.04490.

David J. C. Mackay. Probable networks and plausible predictions - a review of practi-
cal Bayesian methods for supervised neural networks. Network: Computation in Neural
Systems, 6(3):469–505, January 1995. ISSN 0954-898X. doi: 10.1088/0954-898X/6/3/011.
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Data-based discovery of effective, coarse-grained (CG) models of high-dimensional dynam-
ical systems presents a unique challenge in computational physics and particularly in the 
context of multiscale problems. The present paper offers a data-based, probabilistic per-
spective that enables the quantification of predictive uncertainties. One of the outstanding 
problems has been the introduction of physical constraints in the probabilistic machine 
learning objectives. The primary utility of such constraints stems from the undisputed 
physical laws such as conservation of mass, energy etc. that they represent. Furthermore 
and apart from leading to physically realistic predictions, they can significantly reduce 
the requisite amount of training data which for high-dimensional, multiscale systems are 
expensive to obtain (Small Data regime). We formulate the coarse-graining process by 
employing a probabilistic state-space model and account for the aforementioned equality 
constraints as virtual observables in the associated densities. We demonstrate how deep 
neural nets in combination with probabilistic inference tools can be employed to identify 
the coarse-grained variables and their evolution model without ever needing to define a 
fine-to-coarse (restriction) projection and without needing time-derivatives of state vari-
ables.
We advocate a sparse Bayesian learning perspective which avoids overfitting and reveals 
the most salient features in the CG evolution law. The formulation adopted enables the 
quantification of a crucial, and often neglected, component in the CG process, i.e. the pre-
dictive uncertainty due to information loss. Furthermore, it is capable of reconstructing the 
evolution of the full, fine-scale system and therefore the observables of interest need not 
be selected a priori. We demonstrate the efficacy of the proposed framework by applying 
it to systems of interacting particles and a series of images of a nonlinear pendulum. In 
both cases we identify the underlying coarse dynamics and can generate extrapolative pre-
dictions including the forming and propagation of a shock for the particle systems and a 
stable trajectory in the phase space for the pendulum.
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1. Introduction

High-dimensional, nonlinear dynamical systems are ubiquitous in applied physics and engineering. The computational 
resources needed for their solution can grow exponentially with the dimension of the state-space as well as with the small-
est time-scale that needs to be resolved and which determines the discretization time-step. Hence the ability to construct 
reduced, coarse-grained descriptions and models that are nevertheless predictive of various observables and at time-scales 
much larger than the inherent ones, is an important task [1].

One strategy for learning such coarse-grained (CG) models is based on data generated by simulations of the fine-grained 
(FG) system. This can yield an automated solution especially in cases where domain knowledge is limited or absent. The 
derivation of CG models from data is also particularly relevant in domains where FG models are not available, such as in 
social sciences or biophysics, but data abound [2,3]. Data-based methodologies have also been fueled by recent advances 
in statistical- [4] or machine-learning [5] which, in large part, have been enabled by large datasets (and the computational 
means to leverage them). We note nevertheless that coarse-graining tasks based on FG simulation data exhibit some fun-
damental differences [6]. Firstly, the acquisition of FG simulation data is by definition expensive and the reduction of the 
required FG simulations is one of the objectives of CG model development. Secondly, in physical applications, significant 
information about the underlying physical/mathematical structure of the problem, and of the CG model in particular, is 
available. This information might come in the form of constraints that reflect e.g. undisputed physical principles such as 
conservation laws (e.g. mass, momentum, energy). Injecting this prior information into the CG models in combination with 
FG data in an automated fashion represents a significant challenge [7], especially in the context of probabilistic models [8]. 
Such a capability would be instrumental not only in reducing the required amount of FG data, but more importantly, in en-
abling predictions under extrapolative settings as those arising e.g. when the initial conditions of the FG system are different 
from the ones in the training data.

In this paper, we propose a generative, probabilistic (Bayesian) machine learning framework [9] which employs FG simu-
lation data augmented by virtual observables to account for constraints. The latter concept which we elucidate in the sequel, 
enables the incorporation of domain knowledge in probabilistic models and represents, in our opinion the most novel con-
tribution of this paper. Furthermore and within the Bayesian framework advocated, it allows us to introduce appropriate 
priors that promote the discovery of slow-varying CG state-variables which is a highly-desirable feature for multiscale sys-
tems [10]. In contrast to most existing techniques which consider the problems of CG state variable discovery and CG model 
construction in two or more steps [11–14], we address both simultaneously [15]. The framework proposed consists of two 
building blocks: a probabilistic coarse-to-fine map [16] and an evolution law for the CG dynamics. The former can be en-
dowed with great flexibility in discovering appropriate CG variables when combined with deep neural nets [17–19], which 
is especially challenging if the number of training data is small.1 We demonstrate nevertheless the efficacy of such an ap-
proach when physical information is incorporated a-priori into the model. The CG variables identified are not restricted to 
indicator functions of sub-domains of the state-space as in other generative models [20,13,21] and which are difficult to 
learn when the simulation data is limited and has not sufficiently populated all important regions of the state-space.

The second component of the proposed framework pertains to the discovery of the CG evolution law which is learned 
by employing a large vocabulary of feature functions and sparsity-inducing priors. This leads to interpretable solutions [22], 
even in the Small Data regime that avoid overfitting and reveal salient characteristics of the CG system [23]. The premise 
of sparsity [24] has been employed in the past for the discovery of the CG dynamics as e.g. in the SINDy method [25–27]. 
This however requires the availability of time-derivatives of the CG variables and does not directly lead to a posterior on 
the model parameters that can reflect inferential uncertainties. Nonparametric models for the CG dynamics have also been 
proposed [28] but have been restricted to low dimensions. The learned CG dynamics are in general nonlinear in contrast 
to efforts based on transfer operators [29] and particularly the Koopman operator [30–32]. While the associated theory 
guarantees the existence of a linear operator, this is possible in the infinite dimensional space of observables, it does not 
specify how many should be used to obtain a good approximation, and more importantly, how one can predict future FG 
states given predictions on the evolution of those observables i.e. the reconstruction step.

The latter constitutes the main difference of the proposed model with non-generative ones based e.g. on information-
theoretic concepts [33–35] or on the Mori-Zwanzig (MZ) formalism [36–38]. Apart from the difficulties in approximating 
the right-hand-side of the MZ-prescribed CG dynamics, and particularly the memory term [39,40], this can only guarantee 
correct predictions of the CG variables’ evolution. If observables not depending on CG variables are of interest, then a recon-
struction operator would need to be added. In contrast, in the proposed model this reconstruction operator is represented 
by the probabilistic coarse-to-fine map which is simultaneously learned from the data and can quantify predictive uncer-
tainties associated with the information loss that unavoidably takes place in any CG process as well as due to the fact that 
finite (and preferably, small) data has been used for training.

The enabling computational technology for training the proposed model is based on probabilistic inference. In order 
to resolve the intractable posterior on latent variables and model parameters in our Bayesian framework, we make use 

1 In the dynamical systems investigated the size of the dataset depends on the length of the FG time-sequences as well as the number of such sequences 
employed for training.
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of Stochastic Variational Inference [41] as MCMC is cumbersome in high dimensions. We operate on the discretized time 
domain [42] and demonstrate how amortized [43,44] and non-amortized approximations can be employed.

The remainder of the paper is structured as follows: In Section 2 we present the general methodological framework with 
special attention on the two building blocks of the state-space model proposed i.e. the transition law for the CG dynamics 
and the incorporation of virtual observables (section 2.2), as well as the emission law which provides the link between CG 
and FG description through a probabilistic coarse-to-fine map (section 2.3). Computational aspects related to inference and 
prediction are discussed in sections 2.4 and 2.5 respectively. Section 3 contains illustrative applications involving coarse-
graining of high-dimensional systems of interacting particles (section 3.1) as well as learning the dynamics of a nonlinear 
pendulum (section 3.2) from a sequence of images. We conclude in section 4 which also contains a discussion on possible 
extensions.

2. Methodology

In general, we use the subscript f or lower-case letters to denote variables associated with the (high-dimensional) 
fine-grained(FG)/full-order model and the subscript c or upper-case letters for quantities of the (lower-dimensional) coarse-
grained(CG)/reduced-order description. We also use a circumflex ˆ to denote observed/known variables. We begin with the 
presentation of the FG and the CG model and subsequently explain the essential ingredients of the proposed formulation.

2.1. The FG and CG models

We consider a, generally high-dimensional, FG system with state variables x of dimension d f (d f >> 1) such that x ∈
X f ⊂ Rd f . The dynamics of the FG system are dictated by system of deterministic or stochastic ODEs i.e.,

ẋt = f (xt, t), t > 0 (1)

The initial condition x0 might be deterministic or drawn from a specified distribution. In the following we do not make 
explicit use of the FG dynamics but rely purely on FG data i.e. time sequences simulated from Equation (1) with a time-
step, say δt . That is, our observables consists of n data sequences over T + 1 FG time-steps δt i.e.,

DT ,n = {x̂(1:n)
0:T δt} (2)

We denote the (unknown) CG state variables by X and assume X ∈ Xc ⊂ Rdc , where dc is the dimension of the CG system. 
We presuppose Markovian dynamics2 for the CG system of the form:

Ẋ t = F (X t, t) (3)

which we discretize using a linear multistep method and a CG time step �t:

Rl(X) =
K∑

k=0

(
αk X (l−k)�t + �tβk F (X (l−k)�t)

)= 0, l = K , K + 1, . . . (4)

where αk, βk are the parameters of the discretization scheme and Rl the corresponding residual at time step l [45]. We 
note that depending on the values of the parameters K , αk, βk , several of the well-known, explicit/implicit, numerical time-
integration schemes can be recovered. In this work, our goal is two-fold:

a) to identify the CG state-variables X and their relation with the FG description x,
b) to identify the right-hand side of Equation (3),

in view of enabling predictions of the FG system over longer time horizons. Traditionally, the aforementioned tasks are not
considered simultaneously. Usually the CG state variables are specified a priori using domain-knowledge (physical insight) 
or based on the observables of interest [34]. In other efforts, linear or non-linear dimensionality reduction procedures are 
first employed in order to identify such a lower-dimensional set of collective variables X (e.g. [46]). In both of these cases, 
X are defined using a fine-to-coarse, projection map e.g. X = �(x) where � : X f ⊂ Rd f → Xc ⊂ Rdc . Irrespective of whether 
this map is prescribed from the physics or learned from data, it is generally a many-to-one function that does not have an 
inverse i.e. if the CG states X are known one cannot readily reconstruct x [47].

We note that this has nothing to do with the quality of the CG evolution law (problem b) above). Even if the Mori-
Zwanzig (MZ) formalism were employed, which in principle provides an exact, closed system of evolution equations for 
any observable of the FG states and therefore for X = �(x), even if all the terms in the right-hand side were available, 
one would simply be able to predict the future evolution of X but not x. This might be sufficient for a lot of problems 

2 As discussed in section 3, this assumption can be relaxed.
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Fig. 1. Proposed probabilistic graphical model. The CG variables X are latent and are inferred together with the parameters θc and θ c f . Apart from the FG 
states x, the observables are augmented by virtual observables R̂, ̂c (see section 2.2). These virtual observables can depend on all CG variables but more 
often this dependence is restricted to only a few of them.

of practical interest where the CG variables (or observables thereof) are of sole interest. Our goal however is a bit more 
ambitious, i.e. we seek to find a X that would allow us to reconstruct as accurately as possible the whole FG vector x
into the future. As with any coarse-graining process, we recognize that this would unavoidably imply some information 
loss which in turn will give rise to predictive uncertainty [48]. In this work, we advocate a probabilistic framework that 
quantifies this uncertainty.

With regards to problem b) above, we note that its solution hinges upon the CG variables X employed (problem a)). 
Irrespective of the breadth of the model forms considered (i.e. functions F in Equation (3)), the evolution of some X might 
fall outside this realm. For example, it is known from MZ theory that memory terms can become significant for certain 
observables. It is well-known that such memory terms can be substituted or approximated by additional variables [49]
which would in turn imply an augmented CG description X in Equation (3) that contains these auxiliary internal state 
variables [50].

We address problems a) and b) in the coarse-graining process simultaneously by employing a probabilistic state-space 
model. This consists of two densities i.e.

• the transition law which dictates the evolution of the CG variables X (section 2.2). Special attention is paid to the 
definition of virtual observables with which the CG states and their dynamics can be injected with physical information.

• the emission law which provides the link between CG and FG description through a probabilistic coarse-to-fine map 
(section 2.3, [15]).

We emphasize that in our formulation, the CG state-variables X are implicitly defined as latent generators of the FG de-
scription x. As discussed in detail in the sequel, this enables a straightforward, probabilistic reconstruction of x when X is 
known. The inverse map (analogous to � above) arises naturally through probabilistic inference as explained in section 2.4. 
An overview of the essential elements of the proposed model can be seen in the probabilistic graphical model of Fig. 1.

2.2. Transition law: CG dynamics and virtual observables

Typical state-space models [51–53,43] postulate Markovian, stochastic dynamics for the hidden variables X , in the form 
of a diffusion process, which are subsequently discretized explicitly using e.g. a Euler-Maruyama scheme with time step 
�t . This gives rise to a, generally Gaussian, conditional density p(X (l+1)�t |X l�t) which can be stacked over multiple time-
instants in order to formulate a generalized prior on the CG-space.

When the CG state-variables X are given (in part or in whole) physical meaning (e.g. as thermodynamic state variables), 
then some of the equations for their evolution are prescribed by associated physical principles e.g. conservation of mass, 
momentum, energy. These can be reflected in the residuals R l of the governing equations as in Equation (4) or alternatively 
as equality constraints of the form:



S. Kaltenbach, P.-S. Koutsourelakis / Journal of Computational Physics 419 (2020) 109673 5

cl(X l�t) = 0, l = 0,1, . . . (5)

which must hold at each time-step. The function cl : Xc ⊂ Rdc → RMc enforces these known constraints at each time-
step (see specific examples in section 3) and the only requirement we will impose is that of differentiability of cl (see 
section 2.4). In order to account for the aforementioned constraints in the transition law of the CG state variables, we 
employ the novel (to the best of our knowledge) concept of virtual observables. In particular for each of the residuals R l in 
Equation (4), we define a new variable/vector R̂l which relates to Rl as follows:

R̂l = Rl(X) + σRεR , εR ∼ N (0, I) (6)

We further assume that R̂l have been virtually observed and R̂l = 0 leading to an augmented version of the data in Equation 
(2), by a set of virtual observations and therefore virtual likelihoods of the type:

p(R̂l = 0 | X,σR) = N (0 | Rl(X),σ 2
R I) (7)

The “noise” parameter σR determines the intensity of the enforcement of the virtual observations and is analogous to the 
tolerance parameter with which residuals are enforced in a deterministic solution of the dynamics. Similarly, for constraints 
of the form of Equation (5), additional variables and virtual observables of the type:

0 = ĉl = cl(X l�t) + σcεc, εc ∼ N (0, I) (8)

can be defined which would lead to an augmented (virtual) likelihood with terms of the type:

p
(
ĉl = 0 |X l�t,σc

)= N
(

0 | cl(X l�t),σ
2
c I
)

(9)

where the role of σ 2
c is analogous to σ 2

R above.
Since the goal is to identify the right-hand side of the evolution laws in Equation (3), we denote by θ c the parameters 

appearing in F i.e. F (X t , t; θ c). Accordingly, the virtual observations in Equation (6) or Equation (8) would depend on 
θ c . We defer until section 3 a detailed discussion on the form, the parametrization as well as the prior specifications in 
the Bayesian setting adopted. The latter plays an important role as with sparsity-inducing priors we can avoid overfitting 
and obtain a parsimonious and physically-interpretable solution for F . We finally remark that physical information taking 
the form of equalities can also be available for the FG states x. While this can be incorporated using appropriate virtual 
observables as above, the inference framework would exhibit significant differences (in brief, FG states would need to be 
inferred as well) and in order to avoid confusion we do not discuss such cases here.

2.3. Emission law: coarse-to-fine map

We make use of a probabilistic generative model in the definition of the CG state-variables through a coarse-to-fine
map [15] as opposed to traditional, many-to-one maps from the FG description to the CG one. We denote the associated 
(conditional) density by:

pcf (xt | X t; θ c f ) (10)

where θ cf denote the (unknown) parameters that will be learned from the data. The form of pcf can be adapted to the 
particulars of the problem and can be endowed with various levels of domain knowledge. In section 3, we provide various 
examples, from particle-systems where pcf is fully determined by the physics, to a more abstract case where deep neural 
networks are employed in order to learn the full pcf . We note finally that a (probabilistic) fine-to-coarse map can still be 
learned in the current setting, and would correspond to the posterior of X t given xt . We discuss this as well as all aspects 
pertaining to inference and learning in the next section.

2.4. Inference and learning

We start this section by summarizing the main elements of the model presented (i.e. data, latent variables and pa-
rameters - see also Table 1) and subsequently describe a fully Bayesian inference scheme based on Stochastic Variational 
Inference (SVI, [41]) tools.

We adopt an enlarged definition of data which we cumulatively denote by D and which encompasses:

• FG simulation data as in Equation (2) consisting of n sequences of the FG state-variables. As the likelihood model im-
plied by the pcf in Equation (10) involves only the observables at each coarse time-step we denote those by {x̂(1:n)

0:T �t}. We 
assume that the number of observations in each sequence is the same although this is not necessary. In fact, the length 
of each time-sequence and the number of time-sequences needed could be the subject of an active learning scheme. 
This would be particularly important in cases where very expensive, high-dimensional FG simulators are employed. The 
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Table 1
Data, latent variables and model parameters.

Observables D x̂(1:n)
0:T �t FG simulation data

R̂
(1:n)

0:T Virtual observables corresponding to CG model residuals

ĉ(1:n)
0:T Virtual observables corresponding to CG constraints

Latent variables X (1:n)
0:T �t CG state variable

Model parameters θ θ c f parameters in the coarse-to-fine mapping
θ c parameters in the CG evolution law

generative, proposed formulation can account for any type of (in)direct or (in)complete/partial, experimental or com-
putational observations relating to FG states which we omit here for simplicity of the presentation. We nevertheless 
illustrate this capability of the model in the example of section 3.2.

• Virtual observables relating to the CG states X at each time-step l consisting of residuals R̂
(1:n)

l as in Equation (6) and/or 
constraints ĉ(1:n)

l as in Equation (8) (the superscript pertains to the time sequence i = 1, . . . , n). Assuming they pertain 

to all time-steps, we denote them by 
{

R̂
(1:n)

0:T , ĉ(1:n)
0:T

}
.

The latent (unobserved) variables of the model are represented by the CG state-variables 
{

X (1:n)
0:T �t

}
which relate to the 

FG data through the pcf (in Equation (10)) and to the virtual observables through Equation (7) or Equation (9).
Finally, the (unknown) parameters of the model which we denote cumulatively by θ consist of3:

• θ c which parametrize the right-hand-side of the CG evolution law (see end of section 2.2),
• θ cf which parametrize the probabilistic coarse-to-fine map (Equation (10)),
• σR , σc involved in the enforcement of virtual observables in Equation (6) and Equation (8) respectively, and,
• hyperparameters associated with the priors employed on the latent variables or the previous parameters.

Following a fully-Bayesian formulation, we can express the posterior of the unknowns (i.e. latent variables and parame-
ters) as follows:

p(X (1:n)
0:T �t, θ | D) = p(D | X (1:n)

0:T �t, θ) p(X (1:n)
0:T �t, θ)

p(D)
(11)

where p(X (1:n)
0:T �t , θ) denotes the prior on the latent variables and parameters.

We discuss first the likelihood term p(D|X (1:n)
0:T �t , θ) which can be decomposed into the product of three (conditionally) 

independent terms, one for each data-type, i.e.:

p(D | X (1:n)
0:T �t, θ) = p(x̂(1:n)

0:T �t | X (1:n)
0:T �t, θ) p(R̂

(1:n)

0:T | X (1:n)
0:T �t, θ) p(ĉ(1:n)

0:T | X (1:n)
0:T �t, θ) (12)

We further note that (from Equation (10)):

p(x̂(1:n)
0:T �t | X (1:n)

0:T �t, θ) =
n∏

i=1

T∏
l=0

pcf (x(i)
l �t | X (i)

l �t, θ c f ) (13)

and (from Equation (7)):

p(R̂
(1:n)

0:T |X (1:n)
0:T �t, θ) =∏n

i=1
∏T

l=0 N
(
0|Rl(X (i)),σ 2

R I
)

∝∏n
i=1
∏T

l=0
1

σ
dim(R)
R

exp

{
− 1

2σ 2
R

∣∣Rl(X (i))
∣∣2} (14)

and (from Equation (9)):

p(ĉ(1:n)
0:T |X (1:n)

0:T �t, θ) =∏n
i=1
∏T

l=0 N (0|cl(X (i)
l �t),σ

2
c I)

∝∏n
i=1
∏T

l=0
1

σ
dim(c)
c

exp

{
− 1

2σ 2
c

∣∣∣cl(X (i)
l �t)

∣∣∣2} (15)

3 If any of the parameters in this list are prescribed, then they are omitted from θ .



S. Kaltenbach, P.-S. Koutsourelakis / Journal of Computational Physics 419 (2020) 109673 7

While the complexity of the expressions involved imply a non-analytic solution for the posterior, we emphasize that the 
terms above encode actual and virtual observables (constraints) and they are differentiable, a property that is crucial for 
carrying out Variational Inference.

Before presenting the inference procedure, we mention an interesting possibility for encoding prior information for 
the latent CG states X (1:n)

0:T �t through the prior term p(X (1:n)
0:T �t). A desirable property of the CG state-variables is that of 

slowness i.e. that they should capture features of the system that evolve over (much) larger time-scales [10]. The discovery 
of such features has been the goal of several statistical analysis procedures (e.g. Slow Feature Analysis [54]) as well as in 
physics/chemistry literature (see a recent review in [29]). In this work we promote the discovery of such slow features by 
appropriate prior selection, and in particular by penalizing the jumps between two successive time-instants, i.e.:

p(X (1:n)
0:T �t) =∏n

i=1 pc,0(X (i)
0 )
∏T −1

l=0 p(X (i)
(l+1) �t |X (i)

l �t,σ
2
X I)

=∏n
i=1 pc,0(X (i)

0 )
∏T −1

l=0 N (X (i)
(l+1) �t |X (i)

l �t,σ
2
X I)

∝∏n
i=1 pc,0(X (i)

0 )
∏T −1

l=0
1

σ dc
X

exp

{
− 1

σ 2
X

∣∣∣X (i)
(l+1) �t − X (i)

l �t

∣∣∣2}
(16)

where pc,0 is a prior density for the initial CG state. We observe that the strength of the penalty is inversely proportional 
to the hyperparameter σ 2

X and in the limit σ 2
X → 0 it implies a constant time history of X t . As the appropriate value for σ 2

X
depends on the problem, we include this in the parameter vector θ that is inferred/learned from the data.

Given the intractability of the actual posterior, we advocate in this work Variational Inference. This operates on a pa-
rameterized family of densities, say qφ(X (1:n)

0:T �t , θ) and attempts to find the one (i.e. the value of φ) that most closely 
approximates the posterior by minimizing their Kullback-Leibler divergence. It can be readily shown [55], that the optimal 
qφ , maximizes the Evidence Lower Bound (ELBO) F(qφ(X (1:n)

0:T �t , θ)) below:

log p(D) = log
∫

p(D, X (1:n)
0:T �t, θ) dX (1:n)

0:T �t dθ

= log
∫ p(D| X (1:n)

0:T �t, θ)p(X (1:n)
0:T �t, θ)

qφ(X (1:n)
0:T �t, θ)

qφ(X (1:n)
0:T �t, θ) dX (1:n)

0:T �t dθ

≥ ∫ log
p(D| X (1:n)

0:T �t, θ)p(X (1:n)
0:T �t, θ)

qφ(X (1:n)
0:T �t, θ)

qφ(X (1:n)
0:T �t, θ) dX (1:n)

0:T �t dθ

= F(qφ(X (1:n)
0:T �t, θ))

(17)

In the examples analyzed we decompose the approximate posterior as:

qφ(X (1:n)
0:T �t, θ) = qφ(X (1:n)

0:T �t) qφ(θ)

=
[∏n

i=0 qφ(X (i)
0:T �t)

]
qφ(θ)

(18)

where the first line is the so-called mean-field approximation and the second is a direct consequence of the (conditional) 
independence of the time sequences in the likelihood. We note that evaluations of the ELBO F involve expectations with 
respect to qφ i.e.:

F
(

qφ(X (1:n)
0:T �t, θ)

)
= Eqφ

[
log p(D| X (1:n)

0:T �t, θ)
]
+ Eqφ

[
log

p(X (1:n)
0:T �t, θ)

qφ(X (1:n)
0:T �t, θ)

]
(19)

and in order to maximize it (with respect to φ), gradients of those are needed. Given the intractability of these expectations 
and their derivatives, we make use of Monte Carlo estimates in combination with stochastic gradient ascent for the φ-
updates. In order to reduce the Monte Carlo error in these estimates, we make use of the reparametrization trick [56], 
for which the differentiability of the residuals/constraints is necessary. We specify the particulars of the algorithm more 
precisely in the numerical illustration section (see e.g. Algorithm 3 or 4).

We note that maximum likelihood or maximum-a-posteriori (MAP) point estimates for any of the parameters involved 
can be obtained as a special case of the aforementioned scheme by employing a qφ that is equal to a Dirac-delta function. 
Furthermore, amortized versions of the approximate posterior qφ i.e. forms that explicitly account on the dependence on 
the data values, can be employed in part or in whole. These have the capability of being able to transfer information 
across data points and are necessary in the realm of Big Data. We note though that we operate in the Small Data regime, 
i.e. the number of time sequences n (and time-steps T ) is not particularly large. Hybrid versions between amortized and 
non-amortized posteriors could also be employed [57].

We note finally that while the ELBO F is used purely as the objective function for the determination of the approximate 
posterior, its role can be quite significant in model validation and refinement. In particular since F approximates the model 
evidence (denominator of Equation (11)), once evaluated, it can be used to comparatively assess different models. These 
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could have different CG states X (in type and/or number) or different parametrizations θ . In this regard, the ELBO F could 
serve as the primary driver for the adaptive refinement of the CG model [58] in order to better explain the observables and 
lead to superior predictions.

2.5. Prediction

An essential feature of the proposed modeling framework is the ability to produce probabilistic predictive estimates. 
These encompass the information-loss due to the coarse-graining process as well as the epistemic uncertainty arising from 
finite (and small) datasets. We distinguish between two settings:

a) the “interpolative” i.e. predictions into the future of a sequence i observed up to time-step T i.e. x̂(i)
0:T �t which was used 

in the training phase - see section 3, or
b) the “extrapolative” i.e. predictions for a completely new initial condition x̂0 - see section 3.

We note that any predictions should account for the domain knowledge incorporated in the training through the resid-
uals Rl or constraints cl . Formally that is, one should enlarge the posterior density defined in Equation (11), in order to 
account for the residuals and/or constraints at future time-steps. This would in turn imply, that future (FG or CG) states 
should be inferred from such an augmented posterior i.e. prediction would imply an enlarged inference process. In the 
examples presented we adopt a simpler procedure that retains the essential features (i.e. probabilistic nature) but is more 
computationally expedient. In particular, for case a) above and if qφ(X (i)

T �t) is the (marginal) posterior of the last, hidden CG 
state and q(θ) the posterior of the model parameters, then we (see also Algorithm 1):

• sample from q(X (i)
T �t), q(θ)

• for each sample, we propagate the CG dynamics of Equation (3) (e.g. by solving the corresponding residual Equations 
(4)) in order to obtain X (i)

(T +1)�t , X
(i)
(T +2)�t , . . ., and,

• we sample x(i)
(T +1)�t from pcf (x(i)

(T +1)�t |X (i)
(T +1)�t , θ cf ), x(i)

(T +2)�t from pcf (x(i)
(T +2)�t |X (i)

(T +2)�t , θ cf ) etc.

We note that this procedure does not necessarily ensure enforcement of the constraints by future CG states. Nevertheless 
it gives rise to samples of the full FG state evolution from which any observable of interest as well as the predictive 
uncertainty can be computed.

Algorithm 1: Prediction - algorithm for interpolative setting.

Result: Sample of x(i)
(T +P )�t

Data: qφ(X T �t ), qφ(θ)

1 Sample from qφ(X (i)
T �t ) and qφ(θ);

2 while Time-step (T + P )�t of interest not reached do
3 Apply the CG evolution law as described in Equation (4);
4 end
5 Sample from pcf (x(T +P )�t | X (T +P )�t , θ)

For the extrapolative setting above, i.e. for a new FG initial condition x̂0, the evolution equations of the CG states as well 
as the emission density pcf can be employed as long as the initial state X0 is specified or better yet inferred. For that 
purpose, the posterior p(X0|x̂0) of X0 needs to be determined which according to Bayes rule will be proportional to:

p(X0 | x̂0) ∝ pcf (x̂0 | X0, θ c f ) pc,0(X0) (20)

where pc,0(X0) is the initial state’s prior (see also Equation (16)). For each sample of θ cf from the (approximate) posterior 
qφ(θ cf ), samples of X0 must be drawn from p(X0|x̂0) and subsequently propagated as in the 3 steps above in order to 
obtain predictive samples of the full FG state vector (see Algorithm 2).

2.6. Computational considerations

We note that in multiscale dynamical systems of physical interest, the computational cost stems primarily from the 
simulation of the FG system due to its generally very high-dimensional state-vector x and very small time-step δt . Hence, 
one of the main objectives of this work is to enable the learning of the CG dynamics with the fewest possible and shortest 
possible FG time-sequences.

We note that once such FG simulation (or experimental) data have been obtained, neither the training phase of the 
CG model (section 2.4) nor the prediction phase (section 2.5) require any additional FG simulations. The cost of training 
depends on the dimension of the CG states X as well as the number of parameters θ c (for the CG dynamics), θ cf (for the 
coarse-to-fine map) and φ (for the approximate posterior).
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Algorithm 2: Prediction - algorithm for extrapolative setting.
Result: Sample of xP�t

Data: pφ(x̂0), qφ(θ)

1 Apply Bayesian Inference as described in Equation (20) to infer p(X0|x̂0);
2 Sample from p(X0|x̂0) and q(θ);
3 while Time-step P�t of interest not reached do
4 Apply the CG evolution law as described in Equation (4);
5 end
6 Sample from pcf (xP�t |X P�t , θ)

We emphasize that this is a one-time, offline cost i.e. once the CG model has been trained, it can be used to produce 
probabilistic predictive estimates of the whole FG state-vector into the future without any further recourse to the FG model. 
One needs only to simulate in such case the CG dynamics which due to the lower-dimensional state-vector X and the much 
larger CG time-step �t are much less cumbersome than the FG system.

Finally, if more FG data (e.g. longer or new sequences) become available at a later stage, the SVI algorithm can be re-
initialized from the previous values and incorporate the new likelihood terms. If a modest amount of data is introduced, 
one would expect small (or even no changes for faraway states) changes and therefore rapid convergence. Naturally the 
introduction of observables at new time instants would introduce additional latent variables for the corresponding CG 
states.

3. Numerical illustrations

We demonstrate the capabilities of the proposed framework in discovering predictive, coarse-grained evolution laws 
as well as effective coarse-grained descriptions, on three examples. Two of those involve very high-dimensional systems of 
stochastically interacting particles (section 3.1, [15]) and the third, a nonlinear pendulum, the dynamics of which we attempt 
to identify simply from sequences of images (section 3.2, [27]). In the sequel, we specify the elements of the proposed model 
that were presented generically in the previous sections and concretize parametrizations and their meaning. The goals of 
the numerical illustrations are:

• to assess the predictive performance of the model under “interpolative” and “extrapolative” conditions (see section 2.5). 
By “interpolative” we mean the ability to predict the evolution of an FG states-sequence when data from this sequence 
has been used for training. By “extrapolative”, we mean the ability to predict the full FG state evolution from new initial 
conditions that were not used in training.

• to examine the effect of the number n and length T of the data sequences and assess the model’s ability to learn the 
correct structure with small n, T and partial observations.

• to examine the enforcement of the residuals/constraints (e.g. conservation of mass) in the inferred and predicted states.
• to examine the ability of the model to identify sparse, interpretable solutions for the CG dynamics.
• to assess the magnitude and time evolution of the predictive uncertainty estimates.
• to assess the ability of the model to learn effective CG state variables and accurate coarse-to-fine maps.

Some of the simulation results as well as the corresponding code will be made available at the following github reposi-
tory4 upon publication.

3.1. Particle systems

3.1.1. FG model
The FG model consists of d f identical particles which can move in the bounded one-dimensional domain [−1, 1] (under 

periodic boundary conditions). The FG variables xt consist therefore of the coordinates of the particles at each time instant 
t and the dimension of the system d f is equal to the number of particles. We consider two types of stochastic dynamics 
that correspond to an advection-diffusion-type (section 3.1.5) and an inviscid-Burgers-type behavior (section 3.1.6). The 
particulars of the microscopic dynamics are described in the corresponding sections. In the following, we discuss common 
aspects of both problems that pertain to the CG description, the CG evolution law and the inference procedures.

3.1.2. CG variables and coarse-to-fine mapping
For the CG representation, we employ the normalized particle density ρ(s, t), s ∈ [−1, 1] [59] which we discretize in 

dc bins. The state vector X t = {Xt, j}dc
j=1 contains the particle density values in each of the bins j, i.e. 

∑dc
j=1 Xt, j = 1 and 

Xt, j ≥ 0 ∀t, j. We emphasize that CG and FG variables are of a different nature (i.e. proportion of particles in each bin vs. 
coordinates of particles) and, more importantly for practical purposes, of very different dimension.

4 https://github .com /SebastianKaltenbach /PhysicalConstraints _ProbabilisticCG .git.
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The nature of the CG variables X t suggests a multinomial for the coarse-to-fine density pcf (section 2.3) i.e.:

pcf (xt |X t) = d f !
m1(xt)! m2(xt)! . . .mdc (xt)!

dc∏
j=1

X
m j(xt )

t, j , (21)

where m j(xt) is the number of particles in bin j. The underlying assumption is that, given the CG state X t , the coordinates 
of the particles xt are conditionally independent. This does not imply that they move independently nor that they cannot 
exhibit coherent behavior [15]. The practical consequence of Equation (21) is that no parameters need to be learned for pcf
(in contrast to section 3.2).

3.1.3. The CG evolution law and the virtual observables
With regards to the evolution law of the CG states (Equation (3)), we postulate a right-hand side F (X t; θ c) ={

F j(X t; θ c)
}dc

j=1 of the form:

F j(Xt, θ c) =∑M
m=1 θc,m ψ

( j)
m (Xt)

=
H∑

h=−H

θ
(1)

c,h Xt, j+h

︸ ︷︷ ︸
1st order

+
H∑

h1=−H

H∑
h2≥h1

θ
(2)

c, (h1,h2)
Xt, j+h1 Xt, j+h2

︸ ︷︷ ︸
2nd order

(22)

which consists of first- and second-order interactions over a window of size H with θ (1)
c and θ (2)

c denoting the vectors 
of the corresponding unknown coefficients. In this case, the total number of unknown coefficients θ c , is M = dim(θ c) =
(2H + 1) + (H + 1)(2H + 1) and grows quadratically with the neighborhood-size H . Since each of the CG variables Xt, j

refers to the particle density at bin j (and at time t), the neighborhood size H corresponds to the number of bins to the 
left or to the right of bin j that affect its evolution in time The feature functions that we generically denote with ψ( j)

m

in Equation (22) can also involve higher-order interactions or be of non-polynomial type. Non-Markovian models could be 
accommodated as well by accounting for memory terms. It is obviously impossible to know a priori which feature functions 
are relevant in the evolution of the CG states or what types of interactions are essential (e.g. first, second-order etc). At the 
same time, and especially in the Small Data regime considered, employing a large vocabulary of feature functions can lead to 
overfitting, lack of interpretability and poor predictions, particularly under “extrapolative” conditions. This highly-important 
model selection issue has been of concern in several coarse-graining studies [60]. We propose of automatically addressing 
this within the Bayesian framework advocated by employing appropriate sparsity-inducing priors for θ c [15]. In particular, 
we make use of the Automatic Relevance Determination (ARD, [61]) model according to which

p(θc,m | τm) = N (θc,m | 0, τ−1
m ), m = 1,2, . . . , M = dim(θ c). (23)

The following hyperprior for the precision hyperparameters τ = {τm}M
m=1 was used:

p(τk | γ0, δ0) = Gamma(τk | γ0, δ0) (24)

The hyperparameters γ0 and δ0 are set to very small values 10−9 in all ensuing studies [62]. As we demonstrate in the 
sequel, the hyperprior proposed can give rise to parsimonious solutions for the CG dynamics even in the Small Data setting 
considered.

A discretized version of the CG evolution law (Equation (3) and Equation (22)) with time step �t is considered by 
employing a forward Euler scheme5 which implies the following residual vector R l at each time-step l (Equation (4)):

Rl(X) = X (l+1)�t, j − X l�t, j − �t F (X l�t, j, θ c), ∀ l (25)

and the corresponding virtual observables R̂ l (Equation (6)).
More importantly, the nature of the CG variables suggests a conservation of mass constraint that has to be fulfilled at each 

time step l. In view of the discussion of section 2.2, this suggests the scalar constraint function as in Equation (5):

cl(X l�t) =
dc∑

j=1

Xl�t, j − 1 = 0, ∀ l (26)

and the corresponding virtual observables ĉl (Equation (8)).

5 This corresponds to a multistep method in Equation (4) with K = 1, a0 = 1, a1 = −1, β0 = 0 and β1 = −1.
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Fig. 2. Sample initial conditions 
{

X (i)
0

}n

i=1
for the Advection-Diffusion problem (orange) and an initial condition (blue) used for “extrapolative” predictions. 

(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.1.4. Inference and learning
Given the multinomial pcf in Equation (21), we employed the following procedure for generating training data which 

consists of n numerical experiments in which the FG model is randomly initialized and propagated for one coarse time-step 
�t i.e. for T = �t

δt microscopic time-steps. In particular:

• For i = 1, . . . , n, we:

– sample CG initial state X̂
(i)
0 from a density pc,0(X̂

(i)
0 ).

– sample FG initial state x̂(i)
0 from pcf (x̂(i)

0 |X (i)
0 ).

– solve the (discretized) FG model for �t
δt microscopic time-steps and record final state x̂(i)

�t

The generated FG data {x̂(i)
�t}n

i=1 over a single CG time-step are used subsequently to draw inferences on the CG model 
states and parameters (section 2.4). We note that longer time sequences could readily be generated (albeit at an increased 
cost). The number of samples n is also something that can be selected adaptively since inferences and predictions can be 
updated as soon as more data become available. The density pc,0(X (i)

0 ) from which initial CG states are drawn, can be 
selected quite flexibly and some indicative samples are shown in Fig. 2 for the advection-diffusion case, and in Fig. 12 for 
the inviscid-Burgers’ case. In summary, the data D employed, apart from {x̂(i)

�t}n
i=1 above consists of the virtual observables 

{R̂
(1:n)

0 , ̂c(1:n)
1 }.

As a result of the data employed and the parametrization adopted, we have X (1:n)
�t as the sole latent vector and θ c, τ

as the unknown (hyper)parameters. Since only a single CG time-step was considered, we omitted the slowness prior (see 
Equation (16)). Hence we sought an approximate posterior qφ(X�t , θ c, τ ) (Equation (17)) which we factorized as in Equation 
(18) as follows:

qφ(X (1:n)
�t , θ c,τ ) =

[
n∏

i=1

qφ(X (i)
�t)

]
q(θ c)q(τ ) (27)

Upon substitution in Equation (19), this yields the following ELBO:

F(qφ(X (1:n)
�t , θ c,τ )) = Eqφ

[
log p(D| X (1:n)

�t , θ c)
]
+ Eqφ [log p( θ c | τ )]

+Eqφ [log p(τ )] − Eqφ

[
log qφ

] (28)

where:

p(D|X (1:n)
�t , θ c) = p(x̂(1:n)

�t |X (1:n)
�t ) p(R̂

(1:n)

0 |X (1:n)
�t , θ c) p(ĉ(1:n)

1 |X (1:n)
�t ) (29)

Based on Equation (28) the optimal variational posterior densities can be obtained as:

log qopt(θ c) = E
qφ(X (1:n)

�t )

[
log p(R̂

(1:n)

0 |X (1:n)
0:1�t, θ c)

]
+ Eq(τ ) [log p(θ c | τ )] (30)
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Algorithm 3: Inference algorithm for particle systems.

Result: {qφ(X (i)
�t )}n

i=1, q(θ c), q(τ )

Data: {X (i)
0 , ̂x(i)

�t }n
i=1

1 Initialize the parameters for the variational distributions;
2 Set iteration counter w to zero;
3 Set convergence limit ε;
4 while ||parametersw − parametersw−1||2 > ε do
5 for i ← 1 to n do
6 Update qφ(X (i)

�t ) by maximizing the ELBO (see Equation (28))
7 end
8 update q(θ c) according to Equation (33) and Equation (34) ;
9 update q(τ ) according to Equation (35) ;

10 update the iteration counter by one ;
11 end

log qopt(τ ) = Eqφ(θc) [log p(θ c | τ )] + log p(τ ) (31)

log qopt
φ (X (i)

�t) = log pcf (xi
�t | X i

�t) + Eqφ(θc)

[
log p(R̂

(i)
0 |X (i)

0:1�t, θ c)
]

+ log p(ĉ(i)
1 |X (i)

�t)

(32)

The equations above are coupled and a closed-form solution can be obtained only for the first two. In particular, the 
optimal posterior approximation for θ c is a multivariate normal with mean μθ c and covariance Sθc .

S−1
θc

= σ−2
R

n∑
i=1

dc∑
j=1

E
qφ(X (i)

�t )

[
ψ ( j)(X (i)

�t)
(
ψ ( j)(X (i)

�t)
)T
]

+ Eqφ(τ )[diag(τ )] (33)

S−1
θc

μθc
= σ−2

R

n∑
i=1

dc∑
j=1

E
qφ(X (i)

�t )

[
ψ ( j)(X (i)

�t)
]

(34)

where the vector ψ ( j) consists of the M feature functions ψ( j)
m in Equation (22). The optimal posterior approximation for 

the vector τ of the hyperparameters {τm}M
m=1 reduces to a product of independent Gamma-densities [62] with parameters 

γm and δm which are given by:

γm = γ0 + 0.5, δm = δ0 + 1

2

(
μθ c,m + Sθ c,(m,m)

)
, m = 0,1, . . . , M = dim(θ c) (35)

Finally and since closed-form updates for the optimal posterior qopt
φ (X (i)

�t) are impossible, we employed Stochastic Vari-
ational Inference (SVI) as detailed in section 2.4 by assuming a multivariate lognormal (in order to ensure positivity of 
X�t, j) with parameters φ = {μi, S i}n

i=1.6 Noisy gradients with respect to the parameters φ were estimated with Monte 
Carlo and the reparametrization trick [56] and φ were updated using stochastic gradient ascent (the ADAM algorithm of 
[63] in particular). The inference steps are summarized in Algorithm 3.

3.1.5. Advection-diffusion system
For the simulations presented in this section d f = 250 × 103 particles were used, which, at each microscopic time step 

δt = 2.5 × 10−3 performed random, non-interacting, jumps of size δs = 1
640 , either to the left with probability plef t = 0.1875

or to the right with probability pright = 0.2125. The positions were restricted in [−1, 1] with periodic boundary conditions. 
It is well-known [64] that in the limit (i.e. d f → ∞) the particle density ρ(s, t) can be modeled with an advection-diffusion 
PDE with diffusion constant D = (plef t + pright)

δs2

2δt and velocity v = (pright − plef t)
δs
δt :

∂ρ

∂t
+ v

∂ρ

∂s
= D

∂2ρ

∂s2
, s ∈ (−1,1). (36)

For the CG description, 64 bins were employed i.e. dc = 64 and a time step �t = 2 (see Table 2). Furthermore we 
employed first- and second-order feature function as in Equation (22) with a neighborhood size H = 5 which implies a 
total of M = 77 unknown parameters θ c . We incorporate virtual observables pertaining to the residuals R̂0 with σ 2

R = 10−6

6 Diagonal covariances S i were employed.
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Table 2
FG/CG state-space dimensions and FG/CG time-steps for particle systems investigated.

d f = dim(x) dc = dim(X) FG time-step δt CG time-step �t

Advection-diffusion 250 × 103 ≤ 64 2.5 × 10−3 2
Inviscid Burgers 500 × 103 ≤ 128 2.5 × 10−3 4

Fig. 3. Histogram of the mass constraint c1.

(Equation (7))7 and the virtual observables ĉ1 pertaining to the conservation-of-mass constraint with σ 2
c = 10−10 (Equation 

(9)).
We employed n = 32 and n = 64 time sequences for training that were generated as detailed in section 3.1.4 with initial 

conditions {X (i)
0 }n

i=1 such as the ones seen in Fig. 2. The initial conditions were generated by sampling the amplitude of a 
sine function, which was shifted up to ensure all values are positive and then normalized.

Fig. 3 provides a histogram of the function values of the conservation-of-mass constraint 
{

c1(X (i)
�t)
}n

i=1
upon conver-

gence. The small values suggest that this has been softly incorporated in the CG states. A similar histogram for the norm of 
the residuals 

{
R0(X (i))

}n
i=1 is depicted in Fig. 4 which also suggests enforcement of the CG evolution with the parameters 

θ c learned from the data. The evolution of the posterior mean μθ c
(Equation (34)) of (a subset of) these parameters over the 

iterations of the SVI is depicted in Fig. 5. Therein, and more clearly in Fig. 6, one can observe the ability of the ARD prior 
to deactivate the vast majority of the right-hand-side feature functions and reveal a small subset of non-zero, salient terms. 
Both with n = 32 and n = 64 training data sequences, only parameters θ c associated with first-order-interactions (Equa-
tion (22)) are activated. In particular, these are θ(1)

c,−3 and θ(1)
c,1 which are associated with the feature functions Xt, j−3 and 

Xt, j+1 respectively in Equation (22). This shares similarities with a finite-difference discretization scheme for the advection-
diffusion and could be considered as an upwind scheme. The two identified coefficients do not form a centered difference 
operator but the center of the operator is shifted to the left and therefore takes into account the direction of the particle 
movement. As the value of the coefficients is not exactly the same the diffusive part is also captured.

Fig. 7 depicts one of the inferred CG states X (i)
�t as well as the associated posterior uncertainty. Once the CG evolution law 

is learned, this state can be propagated into the future as detailed in section 2.5 in order to generate predictions. Indicative 
predictions (under “interpolative” conditions) can be seen in Fig. 8 where the particle density ρx(t, s) up to 25�t into 
the future is drawn. The latter as well as the associated uncertainty bounds are estimated directly from the reconstructed 
FG states. As one would expect, the predictive uncertainty grows, the further into the future one tries to predict. Fig. 9
compares the predictive performance as a function of the training data used i.e. n = 32 or n = 64. In both cases, the ground 
truth is enveloped and as one would expect, more training data lead to smaller uncertainty bounds.

We also tested the trained model (on n = 64) under “extrapolative” conditions i.e. for a different initial condition than 
the ones included in the training data (Fig. 2). The predictive estimates in Fig. 10 show very good agreement with the 
reference solution. It is important to point out that the model can correctly advect and diffuse the particle-bump initially 
introduced around s = 0.5 which suggests that the CG dynamics learned reflect the most important features of the problem.

7 A very interesting possibility which is not explored here would be to learn σ 2
R i.e. the strength of the enforcement of the CG evolution law from the 

data. This would increase the flexibility of the model in cases where the vocabulary of the feature functions selected in the right-hand side of the CG 
dynamics is not rich enough.
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Fig. 4. Histogram of the norm of the residual R0.

Fig. 5. Evolution of a subset of θ c parameters with respect to the iterations of the SVI for n = 64.

Fig. 6. Comparison of the inferred parameters θc for n = 32 (left) and n = 64 (right) training data sequences. The black bars indicate +/ − 1 standard 
deviation. The red vertical line separates first- from second-order coefficients.

Finally, in Fig. 11, the evolution of the mass constraint into the future is depicted and good agreement with the target 
value is observed.
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Fig. 7. Inferred CG state X (i)
�t for a data sequence i. Reference is obtained by sorting the particles into bins according to their position.

Fig. 8. Prediction based on an initial condition contained in the training data. Top: reference data (the vertical lines indicate the time instances with given 
data). Middle: predictive posterior mean. Bottom: snapshots at three different time instances.

3.1.6. Burgers’ system
The second test-case involved an FG system of d f = 500 × 103 particles which perform interactive random walks i.e. the 

jump performed at each fine-scale time-step δt = 2.5 ×10−3 depends on the positions of the other walkers. In particular we 
adopted interactions as described in [65,66,59] so as, in the limit (i.e. when d f → ∞, δt → 0, δs → 0), the particle density 
ρ(s, t) follows the inviscid Burgers’ equation:
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Fig. 9. Comparison of the predictions for n = 32 (left) and n = 64 (right) at 15�t (top) and 25�t (bottom).

∂ρ

∂t
+ 1

2

∂ρ2

∂s
= 0, s ∈ (−1,1). (37)

For the CG description, 128 bins were employed i.e. dc = 128 and a time step �t = 4 (see Table 2). As compared with 
the previous case, we enlarged the neighborhood size H in the first- and second-order interactions to H = 8, which yielded 
M = 170 right-hand-side terms in Equation (22). We incorporate virtual observables pertaining to the residuals R̂0 with 
σ 2

R = 10−7 (Equation (7)) and the virtual observables ĉ1 pertaining to conservation-of-mass constraint with σ 2
c = 10−10

(Equation (9)).
We employed n = 32, n = 64 and n = 128 time sequences for training that were generated as detailed in section 3.1.4

with initial conditions {X (i)
0 }n

i=1 such as the ones seen in Fig. 12. They were generated by randomizing the width and height 
of a triangular profile.

Fig. 13 provides a histogram of the function values of the conservation-of-mass constraint 
{

c1(X (i)
�t)
}n

i=1
upon conver-

gence. The small values suggest that this has been softly incorporated in the CG states. A similar histogram for the norm of 
the residuals 

{
R0(X (i))

}n
i=1 is depicted in Fig. 14 which also suggests enforcement of the CG evolution with the parameters 

θ c learned from the data. The evolution of the posterior mean μθc
(Equation (34)) of (a subset of) these parameters over 

the iterations of the SVI is depicted in Fig. 15. As in the previous example, in Fig. 16 one can observe the ability of the ARD 
prior model to yield sparse solutions for the right-hand side of the CG evolution law. For all three training datasets with 
n = 32, 64, 128 time-sequences, only parameters θ c associated with second-order-interactions (Equation (22)) are activated. 
In particular, these are the negative coefficient θ (2)

c,(0,0) (in all three cases) as well as different second-order coefficients. In 
the cases of n = 32 and n = 64 two coefficients are found with positive mean and high posterior uncertainty, but they also 
have negative posterior correlation (correlation coefficient of −0.88). As all activated coefficients pertain to feature-functions 
involving the actual bin or bins to the left, the learned evolution law could be interpreted as an upwind scheme, which takes 
the direction of the Burgers’ flow into account. Such schemes are considered advantageous for numerical simulations of fluid 
flows.

Fig. 17 depicts one of the inferred CG states X (i)
�t as well as the associated posterior uncertainty. Given the learned CG 

dynamics, this state can be propagated into the future as detailed in section 2.5 in order to generate predictions. Indicative 
predictions (under “interpolative” conditions) can be seen in Fig. 18 where the particle density up to 25�t into the future 
is drawn. The latter as well as the associated uncertainty bounds are estimated directly from the reconstructed FG states. As 
in the previous example, the predictive uncertainty grows, the further into the future one tries to predict. Fig. 19 compares 
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Fig. 10. Prediction based on an initial condition NOT contained in the training data. Top: reference data. Middle: predictive posterior mean. Bottom: 
snapshots at three different time instances.

Fig. 11. Evolution of the mass constraint (target value is 1) in time including future time-instants. “Predicted” corresponds to the posterior mean.

the predictive performance as a function of the training data used i.e. n = 32 or n = 64. The increase in data leads for this 
example to a better fit of the posterior mean to the reference, which captures the location of the shock more precisely. The 
predictive uncertainty bounds are particularly large at the location of the shock which is the most challenging component 
in such systems.

We also test the trained model (on n = 64) under “extrapolative” conditions i.e. for a “bimodal” initial condition which 
was quite different from the ones included in the training data (Fig. 12). The predictive estimates in Fig. 20 show very 
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Fig. 12. Sample initial conditions
{

X (i)
0

}n

i=1
for the Burgers’ problem (orange) and an initial condition (blue) used for “extrapolative” predictions.

Fig. 13. Histogram of the mass constraint c1.

Fig. 14. Histogram of the norm of the residual constraint R0.
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Fig. 15. Evolution of a subset of θ c parameters with respect to the iterations of the SVI for n = 64.

Fig. 16. Comparison of the inferred parameters θc for n = 32 (top-left), n = 64 (top-right) and n = 128 (bottom-left) training data. The black bars indicate 
+/ − 1 standard deviation. The red vertical line separates first- from second-order coefficients.

good agreement with the reference solution. We want to point out that the trained model is capable of capturing the 
development, the position as well as the propagation of a shock front. Finally, in Fig. 21, the evolution of the mass constraint 
into the future is depicted and good agreement with the target value is observed.

3.2. Nonlinear pendulum

In this final example we consider time sequences of images of a nonlinear pendulum in two dimensions as in [27].
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Fig. 17. Example of inferred CG state X (i)
�t for data sequence i.

Fig. 18. Prediction based on an initial condition contained in the training data. Top: reference data (the vertical lines indicate the time instances with given 
data). Middle: predictive posterior mean. Bottom: snapshots at three different time instances.

3.2.1. FG model
For the FG data we generate a series of black-and-white images of a moving disk tied on a string and forming a pen-

dulum (see Fig. 31). Each image consists of 29 × 29 pixels each and each pixel’s value was either 1 (occupied) or −1
(unoccupied). Hence xt was a d f = 292 = 581-dimensional vector of binary variables. The dynamics of the pendulum can 
be fully described by the rotation angle yt which follows a nonlinear, second-order ODE of the form:
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Fig. 19. Comparison of the predictions for n = 32 (left) and n = 64 (right) training data at 15�t (top) and 25�t (bottom).

ÿt + sin(yt) = 0 (38)

The primary goal is to identify the right CG variables as well as CG dynamics solely from image data i.e. binary vectors 
{x̂(i)

0:T �t}n
i=1 collected over T time-steps as the pendulum is initialized from n states/positions. The length of time sequences 

in the following numerical results was T = 74 and the CG time-step �t = 0.05.8 We also considered the effect of missing 
data i.e. only observing a subset of the T + 1 values in each sequence and present respective results in Section 3.2.6.

3.2.2. CG variables and coarse-to-fine mapping
The only knowledge introduced a priori with regards to the CG variables X t is that dim(X) = dc = 2. We intend to 

investigate procedures that can automatically identify dc i.e. the number of CG variables. We note at this stage that such 
efforts could be guided by the ELBO F (e.g. Equation (19)) which approximates the model evidence and therefore provides 
a natural Bayesian score for comparing models with different numbers of CG variables.

The other pertinent model component is the coarse-to-fine map which is enabled by the pcf (xt |X t) (section 2.3). To that 
end, we employed the following logistic model9:

pcf (x|X) =
d f∏

s=1

pcf (xs|X) (39)

with

pcf (xs|X) =

⎧⎪⎪⎨
⎪⎪⎩

1

1 + exp(−Gs(X; θ c f ))
for xs = 1

1

1 + exp(+Gs(X; θ c f ))
for xs = 0

(40)

8 For the generation of images a microscopic time-step δt = 0.01 for the integration of Equation (38) was used.
9 We omit the time-index t for clarity.
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Fig. 20. Prediction based on an initial condition NOT contained in the training data. Top: reference data. Middle: predictive posterior mean. Bottom: 
snapshots at three different time instances.

Fig. 21. Evolution of the mass constraint (target value is 1) in time including future time-instants. “Predicted” corresponds to the posterior mean.

where xs is the value (1, 0) of each of the pixels s = 1, . . . , d f . For the link functions {Gs}d f
s=1, we employed a deep neural 

net with weights θ cf , the details of which are shown in Fig. 22. One fully connected layer followed by two transposed 
convolutional layers were found to be flexible enough to accurately represent the functions Gs . The CNNs were specifically 
chosen because of their ability to extract/map features from/to images.
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Fig. 22. Deep neural net employed for the link functions Gs (Equation (39)). After one dense layer which 32 · 7 · 7 nodes and rectified linear unit activation 
function (ReLU), two two-dimensional transposed convolutional layers with 32 filters and a kernel size of 3 as well as a ReLU activation function are applied 
followed by one-last two-dimensional transposed convolutional layers with one filter, kernel size 3 and without activation to generate the functions Gs.

3.2.3. The CG evolution law and the virtual observables
With regards to the evolution law of the CG states X t = {Xt,1, Xt,2}, we postulate the following form:

Ẋt,1 = F1(X t, θ c) = Xt,2

Ẋt,2 = F2(Xt, θ c) = θ T
c ψ(Xt,1) =∑M

m=0 θc,m ψm(Xt,1)
(41)

where θ c denote the associated parameters. In total we employed M = 101 feature functions of the following type:

ψm(X) =

⎧⎪⎨
⎪⎩

1, m = 0

sin(mX), m = 1, . . . , M/2 = 50

cos((m − 50)X), m = 51, . . . , M = 100

(42)

The form of Equation (41) implies a second-order ODE where the second CG variable plays the role of the velocity. With 
regards to the parameters θ c , the sparsity-inducing ARD prior detailed in section 3.1.2 was employed.

To enforce the associated dynamics, we made use of the symplectic Euler time-discretization scheme, which is a first-
order integrator, that is explicit in the first variable (Xt,1) and implicit in the other (Xt,2).10 The associated virtual observables 
(see Equation (6)) were enforced with σ 2

R = 10−5.

3.2.4. Inference and learning
As in the previous examples (Equation (27)), the approximate posterior was factorized as:

qφ(X (1:n)
0:T �t, θ c,τ ) =

[
n∏

i=1

qφ(X (i)
0:T �t)

]
q(θ c)q(τ ) (43)

and closed-form updates were used for q(θ c) (see Equations (33) and (34)) and q(τ ) (see Equation (35)).

SVI was applied for the posterior densities qφ(X (i)
0:T �t) on the vector of the latent CG states X (i)

0:T �t which we approxi-
mated with multivariate Gaussians. Since the posterior reveals the fine-to-coarse map which apart from insight can be used 
for predictive purposes as well, we employed an amortized version of SVI ([56]) i.e. explicitly accounted for the dependence 
of each qφ(X (i)

0:T �t) on the corresponding FG observables x̂(i)
0:T �t i.e.:

qφ(X (i)
0:T �t) = N

(
μφ(x̂(i)

0:T �t) , Sφ(x̂(i)
0:T �t)

)
(44)

The parameters φ were the weights of a deep convolutional neural net, the architecture of which is shown in Fig. 23. This 
was chosen because it mirrors the DNN architecture employed for the coarse-to-fine map in Fig. 22.

10 This corresponds to a multistep method in Equation (4) with K = 1, a0 = 1, a1 = −1, β0 = 0 and β1 = −1 for the explicit part and K = 1, a0 = 1, a1 =
−1, β0 = −1 and β1 = 0 for the implicit part.
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Fig. 23. DNN architecture for approximate posterior qφ . The input consists of a time series of pictures of the pendulum and can therefore considered to 
be three-dimensional, where the first and second dimension are the number of pixels and the third dimension is the number of time steps available for 
training. This input is given to a three-dimensional convolutional layer with kernel size (3, 3, 2), 32 filters and a ReLU activation followed by another three-
dimensional convolutional layer with kernel size 2 in each dimension, 64 filters and a ReLU activation. The last layer is a fully connected layer with 2dc · T
nodes and without activation to generate the mean and variance values for each time step of the inferred X coordinates.

Finally it should be mentioned that the “slowness” prior was employed on the hidden states X (1:n)
0:T �t as described in Equa-

tion (16).11 Maximum-likelihood estimates for the hyperparameter σ 2
X were employed which readily arise by differentiating 

the ELBO F and which yield the following update equation:

σ 2
X = 1

n T dc

n∑
i=1

T −1∑
l=0

E
qφ(X (i)

0:T �t )

[∣∣∣X (i)
(l+1) �t − X (i)

l �t

∣∣∣2] (45)

Maximum likelihood estimates were also obtained for the parameters θ cf (Equation (39)) by numerically differentiating the 
ELBO F and performing Stochastic Gradient Ascent (SGA).

A general summary of the steps involved for the inference procedure can be found in Algorithm 4. For the implementa-
tion we made use of the Tensorflow framework [67].

Algorithm 4: Algorithm for the pendulum system.

Result: φ,q(θ c),q(τ ),θ cf ,σX

Data: x̂(1:n)
0:T �t

1 Initialize all required parameters;
2 Set iteration counter w to zero;
3 while ||E LB O w − E LB O w−1||2 > ε do
4 Update the parameters θ cf and φ by SGA of the ELBO (Equation (19)) ;
5 update q(θ c) according to Equation (33) and Equation (34) ;
6 update q(τ ) according to Equation (35) ;
7 update the parameter σX according to Equation (45);
8 update the iteration counter by one;
9 end

3.2.5. Results
Each data sequence x̂(i)

0:T �t used consisted of 75 images, i.e. T = 74, generated with a time-step �t = 0.05 (Fig. 24). We 
investigated two cases for the number of data sequences i.e. n = 16 and n = 64. The data generation involved sampling 
uniformly the initial angle y0 ∈ [−π, π ] and assuming zero initial velocity i.e. ẏ0 = 0. We emphasize that none of the data 
sequences contained a complete oscillation of the pendulum i.e. always partial trajectories were observed.

Fig. 25 indicates the posterior means of the inferred θ c that parametrize the CG evolution law (Equation (41)) for n = 16
and n = 64. Of the 101 possible terms, only 2 are activated due the ARD prior.

Fig. 26 illustrates trajectories in the two-dimensional CG state-space obtained with various initial conditions for the CG 
model identified with n = 16 and n = 64 data sequences. The blue curves correspond to “interporlative” settings i.e. to the 
CG states of an observed sequence of images, whereas the orange curves to “extrapolative settings” i.e. to the CG states 
inferred by initializing the pendulum from an arbitrary position not contained in the training data. In Fig. 27 the predicted 

11 For the prior distribution pc,0(X (i)
0 ) a Gaussian mixture distribution with means +1.5 and −1.5 and standard deviation 1.5 was used.
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Fig. 24. Indicative positions of the pendulum in a data sequence x̂(i)
0:T �t . The number indicates the corresponding time-step.

Fig. 25. Posterior means of the inferred θ c that parametrize the CG evolution law (Equation (41)) for n = 16 (left) and n = 64 (right) training data.

Fig. 26. Comparison of trajectories in state space X of the CG dynamics learned for n = 16 (left) and n = 64 (right) training data.

evolution in time of both coarse-grained variables is shown. The periodic nature of the CG dynamics is obvious, even though 
the CG state variables implicitly identified do not correspond to the natural ones i.e. yt and ẏt .

This can be seen in Fig. 28 where for data-sequences x(i)
0:T �t (corresponding to the pendulum at various positions i.e. 

angles y0:T �t ), we compute from the approximate posterior qφ(X (i)
0:T �t |x(i)

0:T �t) (Equation (44)) the mean of the corresponding 
CG states X (i)

0:T �t as well as the (in this case negligible) standard deviation. For each time instant l = 0, 1, . . . , T , we plot 
the pairs of yl�t and (the mean of) Xl�t,1 (i.e. the first of the CG variables identified) to show the relation between the two 
variables. While it is obvious from the scales that the first CG variable identified is not the angle, it appears to be isomorphic 
to y. The latter property persists for n = 64 even though the sign of the relation has been reversed. The difference between 
the first CG variable identified and the natural angle y explains the difference between the CG evolution law identified 
(Fig. 25) and the reference one Equation (38).
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Fig. 27. Predicted posterior mean of CG state variables X t .

Fig. 28. Mapping between the angle of the pendulum and the coarse-grained coordinates for 32 training data and 64 (right) training data.

Fig. 29. Inferred/predicted evolution of the center of mass of the pendulum. The vertical line separates the inferred states from the predictions.

Fig. 29 provides predictive estimates of the position of the center of mass in time. These were obtained by propagating 
the CG variables in time and for each time instant, sampling pcf for corresponding images x. From the latter, the center of 
mass was computed from the activated pixels i.e. the pixels with value 1. Naturally, predictive uncertainty arises due the 
stochasticity in the initial conditions of X as well as in pcf . The latter is quantified by the standard deviation and plotted 
in Fig. 29. As in the previous examples, the predictive uncertainty grows, albeit modestly, with time.

Fig. 30 depicts predictions in time for two pixels in the image. One can clearly distinguish the change-points i.e. when the 
pendulum crosses the pixel and its value is changed from 0 to 1 as well as the predictive uncertainty which is concentrated 
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Fig. 30. Predicted time history of a single pixel: Pixel 1 (left) and Pixel 2 (right).

at those change-points. This demonstrates one of the strengths of our approach as due to the coarse-to-fine mapping the 
whole FG state is reconstructed and every observable can be computed together with the associated predictive uncertainty.

Finally, Fig. 31 compares actual images obtained by the reference dynamics of the pendulum with the predictive posterior 
mean obtained by the CG model and pcf trained on the data. Even though these extend up to 875 time-steps i.e. more than 
11 times longer than the time-window over which observations were available, they match the reference quite accurately, a 
strong indication that the right CG variables and CG dynamics have been identified. An animation containing all frames can 
be found by following this link.

3.2.6. Missing data
The generative nature of the proposed model makes it highly suitable for handling missing FG data either in the form 

of partial observations of the FG state vector xt or observations over a portion/subset of the time-sequence considered. We 
investigate the latter case in this section but note that in both situations the only modification required is removing the 
likelihood terms corresponding to the missing data from Equation (13).

In particular, we investigated the performance of the model when every second FG state xt in the training sequences 
was not observed i.e. the FG observables consisted of {x(i)

0 , x(i)
2�t , x

(i)
4�t , . . . , x

(i)
T �t} for each data sequence i (where T = 74 as 

before). As one would expect, fewer observations lead to higher inferential uncertainties as seen when comparing Fig. 28
(fully observed case) with Fig. 32 (partially observed case). More importantly, fewer observations lead to higher predictive 
uncertainty as seen when comparing the predictions for the center of pendulum in Fig. 29 (fully observed case) with Fig. 33
(partially observed case).

4. Conclusions

We proposed a probabilistic generative model for the automated discovery of coarse-grained variables and dynamics 
based on fine-grained simulation data. The FG simulation data are augmented in a fully Bayesian fashion by virtual ob-
servables that enable the incorporation of physical constraints at the CG level that appear in the form of equalities. These 
could be residuals of the CG evolution law or more importantly conservation laws that are available when CG variables 
have physical meaning. This is particularly important in the context of physical modeling as in many cases such domain 
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Fig. 31. Predictive posterior means of images of the pendulum compared to the reference data.

Fig. 32. Effect of missing data on the CG variables. The figure on the right is zoomed-in to show the higher uncertainty associated with CG states with 
missing data.

knowledge is a priori available and its inclusion can, not only reduce the amount of training data, but endow the CG model 
learned with the necessary features that would allow it to provide accurate predictions in out-of-distribution settings. Our 
approach learns simultaneously a coarse-to-fine mapping and an evolution law for the coarse-grained dynamics by employ-
ing probabilistic inference tools for the latent variables and model parameters. The use of deep neural nets for the former 
component can endow great expressiveness and flexibility. The concept of sparsity, which is invoked in learning CG dynam-
ics from a large vocabulary of right-hand-side terms, is readily incorporated using sparsity-inducing Bayesian priors without 
any hyperparameter tuning. Furthermore, appropriate priors can promote the discovery of slow-varying CG variables which 
better capture the macroscopic features of the system. As a result of the aforementioned characteristics, the framework can 
learn from Small Data (i.e. shorter and fewer FG time-sequences) which is a crucial advantage in multiscale models where 
the simulation of the FG dynamics is expensive and slow in exploring the state-space. The model proposed was successfully 
tested on coarse-graining tasks from different areas. In all three examples, the method performed well under interpolative, 
and more importantly under extrapolative settings i.e. in cases where initial conditions different from the ones seen during 
training, are prescribed. Partial or incomplete FG observations can readily be handled due to its generative nature. Moreover, 



S. Kaltenbach, P.-S. Koutsourelakis / Journal of Computational Physics 419 (2020) 109673 29

Fig. 33. Inferred/predicted evolution of the center of mass of the pendulum for the missing data case. The vertical line separates the inferred states from 
the predictions.

as it is able to reconstruct the entire FG state vector at any future time instant, it is capable of producing predictions of any 
FG observable of interest as well as quantify the associated predictive uncertainty.

There exist various possibilities to extend the proposed framework, both methodologically as well as in terms of appli-
cations. In the latter case and apart from using it for predictive purposes, the CG model learned could also be employed in 
optimization and control applications. On the methodological front an obvious extension would be to account for the virtual 
observables at future time-instants as well. This would ensure their enforcement by future CG states but would unavoidably 
complicate their simulation as a probabilistic inference scheme would need to be employed in order to draw samples.

Another important question pertains to the stability of the CG dynamics identified [68]. This is not currently guaranteed 
in the discretized nor in the continuous version. This could potentially be achieved by an a-priori parametrization of the 
CG dynamics in a way that guarantees stability which could in turn reduce the expressivity of the model. Finally, we note 
that, in our opinion, the most difficult question in coarse-graining multiscale systems, is finding the number of CG state 
variables that are needed. In physics problems, very often one has an idea of which variables would be suitable either based 
on the analysis-objectives and/or physical insight. Almost never though does one have a guarantee that these variables are 
sufficient. Assuming they are, the problem then reduces to finding the appropriate closures (i.e. right-hand sides in the CG 
dynamics) which is the problem we try to address in this paper. The discovery of additional, potentially non-physical CG 
state variables, would require additional advances for which we believe the ELBO, i.e. the (approximate) model evidence, 
could serve as the guiding objective.
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Abstract: The data-based discovery of effective, coarse-grained (CG) models of high-dimen-
sional dynamical systems presents a unique challenge in computational physics and particu-
larly in the context of multiscale problems. The present paper offers a probabilistic perspective
that simultaneously identifies predictive, lower-dimensional coarse-grained (CG) variables as
well as their dynamics. We make use of the expressive ability of deep neural networks in or-
der to represent the right-hand side of the CG evolution law. Furthermore, we demonstrate
how domain knowledge that is very often available in the form of physical constraints (e.g.
conservation laws) can be incorporated with the novel concept of virtual observables. Such
constraints, apart from leading to physically realistic predictions, can significantly reduce the
requisite amount of training data which enables reducing the amount of required, computation-
ally expensive multiscale simulations (Small Data regime). The proposed state-space model is
trained using probabilistic inference tools and, in contrast to several other techniques, does not
require the prescription of a fine-to-coarse (restriction) projection nor time-derivatives of the
state variables. The formulation adopted is capable of quantifying the predictive uncertainty as
well as of reconstructing the evolution of the full, fine-scale system which allows to select the
quantities of interest a posteriori. We demonstrate the efficacy of the proposed framework in a
high-dimensional system of moving particles.

1 INTRODUCTION

The solution of high-dimensional, multiscale system is challenging as the required compu-
tational resources usually grow exponentially with the dimension of the state-space as well as
with the smallest time-scale that needs to be resolved. As such systems are ubiqitious in ap-
plied physics and engineering, reduced/coarse-grained descriptions and models are necessary
that are predictive of various observables or the high-dimensional system, but whose discretiza-
tion time-scales can be much larger than the inherent ones [1].

We adopt a data-based perspective [2, 3] that relies on data generated by simulations of a
fine-grained (FG) system in order to learn a coarse-grained (CG) model. We nevertheless note
that such coarse-graining tasks exhibit fundamental differences from large-scale machine learn-
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ing tasks [4, 5] as the data involved is usually small due to the expensive data acquisition and
as information about the underlying physical structure of the problem is available. When this
domain knowledge is incorporated into the CG model it can improve its predictive ability [6, 7].

In contrast to other frameworks for reduced-order modeling (e.g. SINDy [8]) where the dy-
namics of the CG model is learned based on a large vocabulary of feature functions, we employ
a deep neural network for the CG dynamics in order to gain great flexibility and be able to not
restrict ourselves to an a priori chosen set of feature functions. This approach is similar to the
ideas of Neural ODEs [9] and Neural SDEs [10] which also use neural networks to represent
the dynamics. Another possibility would be the use of Gaussian Processes [11] which would
allow non-parametric, probabilistic modeling.

In this paper, we combine a generative, probabilistic machine learning framework [12] with
virtual observables [6] and deep neural networks for the CG dynamics as well as the mapping
from the CG states to the FG states. In doing so, we propose a framework that can make use of
the flexibility of neural nets, while still obeying physical laws. We carry out the tasks of model
estimation and dimensionality reduction simultaneously and identify the CG states variables,
their dynamics as well as a probabilistic coarse-to-fine map based only on small amounts of FG
simulation data.

2 METHODOLOGY

In general, the subscript f or lower-case letters are used to denote variables associated with
the (high-dimensional) fine-grained(FG) model and the subscript c or upper-case letters are
used for quantities of the (lower-dimensional) coarse-grained(CG) description. We also use a
circumflex ˆ to denote observed/known variables.

2.1 The FG and CG model

The fine-grained system considered is a high-dimensional system with state variables xxx (xxx ∈
X f ⊂ Rd f ), whose dimension d f is very large (d f >> 1). We describe the dynamics of such a
FG system by a system of deterministic or stochastic ODEs i.e.,

ẋxxt = fff (xxxt , t), t > 0 (1)

The FG system is moreover considered to have the initial condition xxx0 that might be determin-
istic or drawn from a specified distribution. In this work, we want to coarse-grain such a system
only based on simulated data, i.e. time sequences simulated from Equation (1) with a time-step
δ t.

Our goal is to simultaneously identify (unknown) CG state variables XXX with XXX ∈Xc ⊂ Rdc

as well as the dynamics of those CG variables. The dimension dc of these CG state variables is
intended to be much smaller than d f . For the CG dynamics a Markovian dynamic is assumed
in the form:

ẊXX t = FFF(XXX t , t), t > 0 (2)
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2.2 Emission law

In contrast to approaches based on the Mori-Zwanzig formalism [13, 14], which include a
mapping from the FG system to the quantities of interest, we employ a probabilistic, generative
coarse-to-fine map [15] from the CG state-variables to the FG description. We indicate the
associated (conditional) density by:

pc f (xxxt | XXX t ; θθθ c f ) (3)

where θθθ c f denote the (unknown) parameters that we will try to learn from the data. This condi-
tional density pc f can be endowed a priori with domain knowledge by adapting its form to the
particulars of the problem or it can parametrized by deep neural networks to allow for maximum
flexibility.

Employing a probabilistic coarse-to-fine map instead of a deterministic, restriction operator
has many advantages as e.g. the full FG system’s reconstruction and probabilistic predictive
estimates.

2.3 Transition law

In the following, we consider discretized time with a fixed time-step ∆t and time-related
subscripts refer to the number of time-steps.

We model the CG dynamics with the help of a deep neural network in order to gain a great
flexibility and be able to express nonlinear functions. Therefore, we assume an explicit dis-
cretization of Equation (2) and model the right-hand-side by the deep neural network NN(.)
parametrized by θθθ NN :

XXX t+1 = XXX t +NN(XXX t ,θθθ NN)+σrεεε, εεε ∼N (000, III) (4)

where the parameter σr ≥ 0 is responsible for the stochastic part of the CG dynamics. This
leads to the following conditional density:

p(XXX t+1 |XXX t ,θθθ NN ,σr) = N (XXX t+1 | XXX t +NN(XXX t ,θθθ NN),σ2
r III) (5)

which effectively represents a discretized version of the neural stochastic ODEs of [10] and is
more flexible as compared to approaches in which the right-hand side consists of a restricted
amount of first- and second-order interactions of XXX t [6].

2.4 Virtual observables

As the CG state-variables XXX employed in multiscale modeling are usually given physical
meaning, we employ the concept of virtual observables [6] in order to incorporate general
physical principles such as conservation of mass, momentum or energy. Let these be expressed
as equalities of the form at each time-step l:

cccl(XXX l) = 000, l = 0,1, . . . (6)
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where cccl : Xc ⊂ Rdc → RMc . The only requirement we will impose is that of differentiability of
cccl [6]. We define a new variable ĉccl which relates to cccl as follows:

ĉccl = cccl(XXX l)+σcεεεc, εεεc ∼N (000, III) (7)

Now, it is assumed that the ĉccl have been virtually observed and this set of virtual observations
ĉccl = 0 leads to to an augmented version of the FG data and therefore virtual likelihoods of the
type:

p(ĉccl = 000 | XXX l,σR) = N (000 | cccl(XXX l),σ2
c III) (8)

The “noise” parameter σc can be used to account for the intensity of the enforcement of the
virtual observations and represents the tolerance parameter with which the constraints would be
enforced in a deterministic setting.

We note that the concept of virtual observables is not restricted to physical constraints but
could also be applied to residuals of temporal discretization schemes [6] or of PDEs [16]. In
both of this cases, it is shown that the incorporation of virtual observables can reduce the amount
of training data required and enable training in the Small Data regime.

2.5 Inference and learning

Due to the introduction of virtual observables, we can adopt an enlarged definition of data
which we cumulatively denote by D =

{
x̂xx(1:n)

0:T , ĉcc(1:n)
0:T

}
and which encompasses:

• FG simulation data consisting of n sequences of the FG state-variables. These are denoted
by x̂xx(1:n)

0:T as the likelihood model implied by the pc f in Equation (3) involves only the
observables at each coarse time-step.

• Virtual observables ĉcc(1:n)
l relating to the CG states XXX l at each time-step l and which relate

to the physical constraints as in Equation (7). In the example they pertain to all time-steps
from 0 to T and are denoted by ĉcc(1:n)

0:T .

We represent the latent (unobserved) variables of the model by the CG state-variables XXX (1:n)
0:T

and relate them to the FG data through the pc f (in Equation (3)) and to the virtual observables
through Equation (8). The parameters of the model are denoted cumulatively by θθθ and consist
of1:

• θθθ NN which parametrize the neural network for the right-hand-side of the CG evolution
law (see section 2.3),

• θθθ c f which parametrize the probabilistic coarse-to-fine map (Equation (3)),

• σr involved in the stochasticity of the transition law Equation (4) and

• σc involved in the enforcement of virtual observables in Equation (7)

1If any of these parameters are prescribed, then they are omitted from θθθ .

4



Sebastian Kaltenbach, Phaedon-Stelios Koutsourelakis

We follow a fully-Bayesian formulation and express the posterior of the unknowns (i.e. latent
variables and parameters) as follows:

p(XXX (1:n)
0:T , θθθ | D) =

p(D | XXX (1:n)
0:T ,θθθ) p(XXX (1:n)

0:T ,θθθ)
p(D)

(9)

where p(XXX (1:n)
0:T ,θθθ) denotes the prior on the latent variables and parameters. The likelihood term

p(D |XXX (1:n)
0:T ,θθθ) involved can be decomposed into the product of two (conditionally) independent

terms, one for the FG data and one for the virtual observables, i.e.:

p(D | XXX (1:n)
0:T ,θθθ) = p(x̂xx(1:n)

0:T | XXX
(1:n)
0:T ,θθθ) p(ĉcc(1:n)

0:T | XXX
(1:n)
0:T ,θθθ) (10)

We further note that (from Equation (3)):

p(x̂xx(1:n)
0:T | XXX

(1:n)
0:T ,θθθ) =

n

∏
i=1

T

∏
t=0

pc f (xxx
(i)
t | XXX (i)

t ,θθθ c f ) (11)

and (from Equation (8)):

p(ĉcc(1:n)
0:T |XXX

(1:n)
0:T ,θθθ) = ∏n

i=1 ∏T
l=0 N (000|cccl(XXX

(i)
l ),σ2

c III)

∝ ∏n
i=1 ∏T

l=0
1

σdim(ccc)
c

exp
{
− 1

2σ2
c

∣∣∣cccl(XXX
(i)
l )
∣∣∣
2
}

(12)

The prior p(XXX (1:n)
0:T ,θθθ) can be decomposed into the transition density of Equation (5) and a prior

for XXX0 as well as the parameters θθθ :

p(XXX (1:n)
0:T ,θθθ) =

n

∏
i=1

p(XXX (i)
0 )

T−1

∏
t=0

p(XXX (i)
t+1 | XXX

(i)
t ,θθθ NN ,σr) p(θθθ) (13)

We advocate the use of Stochastic Variational Inference [17] for computing an approximate
posterior. We select a parameterized family of densities, qφφφ (XXX

(1:n)
0:T , θθθ) and attempt to find

the one that best approximates the posterior by minimizing their Kullback-Leibler divergence.
It can be shown [18], that this optimal qφφφ maximizes the Evidence Lower Bound (ELBO)

F (qφφφ (XXX
(1:n)
0:T , θθθ)):

log p(D) = log
∫

p(D , XXX (1:n)
0:T , θθθ) dXXX (1:n)

0:T dθθθ

= log
∫ p(D | XXX (1:n)

0:T , θθθ)p(XXX (1:n)
0:T , θθθ)

qφφφ (XXX
(1:n)
0:T , θθθ)

qφφφ (XXX
(1:n)
0:T , θθθ) dXXX (1:n)

0:T dθθθ

≥ ∫ log
p(D | XXX (1:n)

0:T , θθθ)p(XXX (1:n)
0:T , θθθ)

qφφφ (XXX
(1:n)
0:T , θθθ)

qφφφ (XXX
(1:n)
0:T , θθθ) dXXX (1:n)

0:T dθθθ

= F (qφφφ (XXX
(1:n)
0:T , θθθ))

(14)
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In the following illustrations, we postulate a mean-field decomposition:

qφφφ (XXX
(1:n)
0:T , θθθ) = qφφφ (XXX

(1:n)
0:T ) pφφφ (θθθ) =

[
n

∏
i=1

qφφφ (XXX
(i)
0:T )

]
δφφφ (θθθ) (15)

where we make use of the (conditional) independence of the time sequences in the likelihood.
We further note that we employed Dirac δφφφ functions for the qφφφ (θθθ) and therefore obtain MAP
estimates θθθ MAP (i.e. φφφ includes θθθ MAP) for the unknown parameters.

Gradients of the ELBO with respect to the parameters φφφ involve expectations with respect to
qφφφ . These were approximated with Monte Carlo estimates which employ the reparametrization
trick [19] and stochastic optimization was carried out with the ADAM algorithm [20].

2.6 Predictions

The proposed framework can produce probabilistic predictive estimates for a sequence which
was observed up to time-step T i.e. x̂xx(i)0:T . This predictive uncertainty reflects not only the
information-loss due to the coarse-graining process but also the epistemic uncertainty arising
from finite (and small) datasets.

In particular, if qφφφ (XXX
(i)
T ) is the (marginal) posterior of the last, hidden CG state and θθθ MAP the

MAP estimate of the model parameters, then we follow the steps described in Algorithm 1. This
procedure generates samples of the full FG state evolution but does not necessarily guarantees
the enforcement of the constraints for the CG states.

We note that if we would also like to enforce the constraints cccl for future predictions, then
these would need to be included in the posterior density defined in Equation (9). Consequently,
future (FG or CG) states would need to be inferred from this augmented posterior and an en-
larged inference process is required for predictions.

Algorithm 1: Prediction - Algorithm

Result: Sample of xxx(i)
(T+P)

Data: qφφφ (XXXT ),θθθ MAP

1 Sample from qφφφ (XXX
(i)
T );

2 while Time-step (T +P) not reached do
3 Sample from the CG evolution law in Equation (4);
4 end
5 Sample from pc f (xxx(T+P) | XXX (T+P),θθθ MAP)

6
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3 NUMERICAL ILLUSTRATIONS

We demonstrate the capabilities of the proposed framework by applying it to a high-dimensional
system of stochastically moving particles.

3.1 FG model

For the simulations presented in this section, we used d f = 250× 103 particles, which, at
each microscopic time step δ t = 2.5×10−3 performed random, non-interacting, jumps of size
δ s= 1

640 , either to the left with probability ple f t = 0.1875 or to the right with probability pright =
0.2125. The positions were restricted to a domain of [−1,1] with periodic boundary conditions.
It is well-known [21] that in the limit (i.e. d f → ∞) the particle density ρ(s, t) can be described
with an advection-diffusion PDE with diffusion constant D = (ple f t + pright)

δ s2

2δ t and velocity
v = (pright− ple f t)

δ s
δ t :

∂ρ
∂ t

+ v
∂ρ
∂ s

= D
∂ 2ρ
∂ s2 , s ∈ (−1,1).. (16)

3.2 CG model specifications

The CG model relates to a discretization of the particle density into dc = 25 equally-sized
bins at each coarse time step . The nature of the CG variables XXX t gives rise to a multinomial for
the coarse-to-fine density pc f (section 2.2) i.e.:

pc f (xxxt |XXX t) =
d f !

m1(xxxt)! m2(xxxt)! . . .mdc(xxxt)!

dc

∏
j=1

Xm j(xxxt)
t, j , (17)

where m j(xxxt) is the number of particles in bin j. We assume that, given the CG state XXX t , the
coordinates of the particles xxxt are conditionally independent. This does not imply that they
move independently nor that they cannot exhibit coherent behavior [22]. The consequence of
Equation (17) is that for this example no parameters need to be learned for pc f .

For the transition law (section 2.3), we assume a coarse time step of ∆t = 4 and employed a
two-layered fully connected neural network NN(.) with ReLU activation functions. Each layers
consisted of 25 neurons.We enforce conservation of mass, using the following constraint at each
time step l:

cl(XXX l) = 1−
dc

∑
j=1

Xl, j = 0, l = 0,1, . . . (18)

These are complemented by the virtual observables presented earlier and with σ2
c = 10−9 (Equa-

tion (7)).
For the family of variational distributions qφφφ (XXX

(i)
(0:T )) and since X (i)

t, j > 0,∀ j, t, we employed

multivariate lognormals with a diagonal covariance matrices i.e. we assume X (i)
t, j are a posteriori

independent. The mean and covariance matrix of the underlying Gaussians for each sequence

7
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i become part of the parameters φφφ with respect to which the ELBO is maximized (see Section
2.5). We note that it would also be possible to use an amortized formulation and explicitly ac-
count for the dependence on the data values by employing a neural network for both mean and
covariance with the time sequence as an input.

3.3 Results
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0.0
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1.0

s

0 5 10 15 20 25 30 35
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Figure 1: Particle density: Inferred and predicted posterior mean (bottom) in comparison with
the ground truth (top). The red line divides inferred quantities from predicted ones.

We employed n = 64 time sequences with T = 9 for training and applied our framework in
order to infer the unobserved CG states but more importantly the model parameters in right-
hand side of the CG dynamics.

In Figure 1 we compare the true particle density with the one predicted by the trained CG
model for one illustrative time sequence. We note that the latter is computed by reconstructing
the xt futures. The trained model is able to accurately track first-order statistics well into the
future for many more time steps than those contained in the training data.

A more detailed view of the predictive estimates with snapshots of the particle density at
selected time instances is presented in Figure 2 and 3 where the predictive posterior mean but
also the associated uncertainty is displayed. Inferred as well as predicted particle densities
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match accurately the ground-truth and reasonable uncertainty bounds are computed.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
s

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

(s
,t

)

Posterior Mean
Reference
+/- 1 Standard Deviation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
s

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

(s
,t

)

Posterior Mean
Reference
+/- 1 Standard Deviation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
s

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

(s
,t

)

Posterior Mean
Reference
+/- 1 Standard Deviation

Figure 2: Inferred particle density profiles at t = 0,5∆t,9∆t (from left to right).
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Figure 3: Predicted particle density profiles at t = 15∆t,20∆t,25∆t,35∆t (from left to right and
top to bottom).

Finally, in Figure 4, the mass constraint is depicted for inferred as well as predicted particle
densities and good agreement with the target value (= 1) is observed. This result is particularly
important as it demonstrates that the virtual observables were able to find CG state variables
that agree with an a priori given physical constraint and additionally a transition law has been
learned that is able to automatically satisfy the constraint in the future.

4 CONCLUSIONS

We combined a probabilistic generative model with physical constraints and deep neural net-
works in order to obtain a framework for the automated discovery of coarse-grained variables
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Figure 4: Mass based on inferred and predicted particle densities.

and dynamics based on fine-grained simulation data. The FG simulation data are augmented in
a fully Bayesian fashion by virtual observables that enable the incorporation of physical con-
straints at the CG level. These could be for instance conservation laws that are available when
CG variables have physical meaning. Deviations from such conservation laws would invalidate
predictions. As a result of augmenting the training data with domain knowledge, the model pro-
posed can learn from Small Data (i.e. shorter and fewer FG time-sequences) which is a crucial
advantage in multiscale settings where the simulation of the FG dynamics is computationally
very expensive.

Our approach learns simultaneously a coarse-to-fine mapping and a transition law for the
coarse-grained dynamics by employing probabilistic inference tools for the latent variables and
model parameters. Deep neural networks can be used in both of these components in order to
endow great expressiveness and flexibility.

The model proposed was successfully tested on a coarse-graining task which involved stochas-
tic particle dynamics. In the example presented, the method was able to accurately predict parti-
cle densities at time steps not contained in the training data. Moreover, as it is able to reconstruct
the entire FG state vector at any future time instant, it is capable of producing predictions of
any FG observable of interest as well as quantify the associated predictive uncertainty.

A shortcoming of presented framework is that the CG dynamics are not fully interpretable
and long-term stability is not guaranteed. These limitations have been addressed in [23] where
an additional layer of latent variables was employed that ensured the discovery of stable CG dy-
namics but also promoted the identification of slow-varying processes that are most predictive
of the system’s long-term evolution.
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ABSTRACT

Given (small amounts of) time-series’ data from a high-dimensional, fine-grained,
multiscale dynamical system, we propose a generative framework for learning an
effective, lower-dimensional, coarse-grained dynamical model that is predictive
of the fine-grained system’s long-term evolution but also of its behavior under
different initial conditions. We target fine-grained models as they arise in physi-
cal applications (e.g. molecular dynamics, agent-based models), the dynamics of
which are strongly non-stationary but their transition to equilibrium is governed
by unknown slow processes which are largely inaccessible by brute-force simu-
lations. Approaches based on domain knowledge heavily rely on physical insight
in identifying temporally slow features and fail to enforce the long-term stability
of the learned dynamics. On the other hand, purely statistical frameworks lack
interpretability and rely on large amounts of expensive simulation data (long and
multiple trajectories) as they cannot infuse domain knowledge. The generative
framework proposed achieves the aforementioned desiderata by employing a flex-
ible prior on the complex plane for the latent, slow processes, and an intermediate
layer of physics-motivated latent variables that reduces reliance on data and im-
bues inductive bias. In contrast to existing schemes, it does not require the a priori
definition of projection operators or encoders and addresses simultaneously the
tasks of dimensionality reduction and model estimation. We demonstrate its ef-
ficacy and accuracy in multiscale physical systems of particle dynamics where
probabilistic, long-term predictions of phenomena not contained in the training
data are produced.

1 INTRODUCTION

High-dimensional, nonlinear systems are ubiquitous in engineering and computational physics.
Their nature is in general multi-scale1. E.g. in materials, defects and cracks occur on scales of
millimeters to centimeters whereas the atomic processes responsible for such defects take place
at much finer scales (Belytschko & Song, 2010). Local oscillations due to bonded interactions of
atoms (Smit, 1996) take place at time scales of femtoseconds (10−15s), whereas protein folding pro-
cesses which can be relevant for e.g. drug discovery happen at time scales larger than milliseconds
(10−3s). In Fluid Mechanics, turbulence phenomena are characterized by fine-scale spatiotemporal
fluctuations which affect the coarse-scale response (Laizet & Vassilicos, 2009). In all of these cases,
macroscopic observables are the result of microscopic phenomena and a better understanding of the
interactions between the different scales would be highly beneficial for predicting the system’s evo-
lution (Givon et al., 2004). The identification of the different scales, their dynamics and connections
however is a non-trivial task and is challenging from the perspective of statistical as well as physical
modeling.

1With the term multiscale we refer to systems whose behavior arises from the synergy of two or more
processes occurring at different (spatio)temporal scales. Very often these processes involve different physical
descriptions and models (i.e. they are also multi-physics). We refer to the description/model at the finer scale
as fine-grained and to the description/model at the coarser scale as coarse-grained.

1



Published as a conference paper at ICLR 2021

Figure 1: Visual summary of proposed framework. The low-dimensional variables z act via a
probabilistic map G as generators of an intermediate layer of latent, physically-motivated variables
X that are able to reconstruct the high-dimensional system x with another probabilistic map F .

In this paper we propose a novel physics-aware, probabilistic model order reduction framework with
guaranteed stability that combines recent advances in statistical learning with a hierarchical archi-
tecture that promotes the discovery of interpretable, low-dimensional representations. We employ
a generative state-space model with two layers of latent variables. The first describes the latent
dynamics using a novel prior on the complex plane that guarantees stability and yields a clear dis-
tinction between fast and slow processes, the latter being responsible for the system’s long-term
evolution. The second layer involves physically-motivated latent variables which infuse inductive
bias, enable connections with the very high-dimensional observables and reduce the data require-
ments for training. The probabilistic formulation adopted enables the quantification of a crucial,
and often neglected, component in any model compression process, i.e. the predictive uncertainty
due to information loss. We finally want to emphasize that the problems of interest are Small Data
ones due to the computational expense of the physical simulators. Hence the number of time-steps
as well as the number of time-series used for training is small as compared to the dimension of the
system and to the time-horizon over which predictions are sought.

2 PHYSICS-AWARE, PROBABILISTIC MODEL ORDER REDUCTION

Our data consists of N times-series {x(i)
0:T }Ni=1 over T time-steps generated by a computational

physics simulator. This can represent positions and velocities of each particle in a fluid or those of
atoms in molecular dynamics. Their dimension is generally very high i.e. xt ∈M ⊂ Rf (f >> 1).
In the context of state-space models, the goal is to find a lower-dimensional set of collective variables
or latent generators zt and their associated dynamics. Given the difficulties associated with these
tasks and the solutions that have been proposed in statistics and computational physics literature,
we advocate the use of an intermediate layer of physically-motivated, lower-dimensional variables
Xt (e.g. density or velocity fields), the meaning of which will become precise in the next sections.
These variables provide a coarse-grained description of the high-dimensional observables and imbue
interpretability in the learned dynamics. Using Xt alone (without zt) would make it extremely
difficult to enforce long-term stability (see Appendix H.2) while ensuring sufficient complexity in
the learned dynamics (Felsberger & Koutsourelakis, 2019; Champion et al., 2019). Furthermore and
even if the dynamics of xt are first-order Markovian, this is not necessarily the case forXt (Chorin
& Stinis, 2007). The latent variables zt therefore effectively correspond to a nonlinear coordinate
transformation that yields not only Markovian but also stable dynamics (Gin et al., 2019). The
general framework is summarized in Figure 1 and we provide details in the next section.
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2.1 MODEL STRUCTURE

Our model consists of three levels. At the first level, we have the latent variables zt which are
connected with Xt in the second layer through a probabilistic map G. The physical variables Xt

are finally connected to the high-dimensional observables through another probabilistic map F . We
parametrize F ,G with deep neural networks and denote by θ1 and θ2 the corresponding parameters
(see Appendix D). In particular, we postulate the following relations:

zt,j = zt−1,j exp(λj) + σjεt,j λj ∈ C, εt,j ∼ CN (0, 1), j = 1, 2, . . . , h (1)
Xt = G(zt,θ1) (2)
xt = F (Xt,θ2) (3)

We assume that the latent variables zt are complex-valued and a priori independent. Complex vari-
ables were chosen as their evolution includes a harmonic components which are observed in many
physical systems. In Appendix H.1 we present results with a real-valued latent variables zt,j and
illustrate their limitations. We model their dynamics with a discretized Ornstein-Uhlenbeck process
on the complex plane with initial conditions z0,j ∼ CN (0, σ2

0,j)
2. The parameters associated with

this level are denoted summarily by θ0 = {σ2
0,j , σ

2
j , λj}hj=1. These, along with θ1,θ2 mentioned

earlier, and the state variables Xt and zt have to be inferred from the data xt. We explain each of
the aforementioned components in the sequel.

2.1.1 STABLE LOW-DIMENSIONAL DYNAMICS

While the physical systems (e.g. particle dynamics) of interest are highly non-stationary, they gen-
erally converge to equilibrium in the long-term. We enforce long-term stability here by ensuring that
the real-part of the λj’s in Equation (1) is negative, i.e.:

λj = <(λj) + i =(λj) with <(λj) < 0 (4)

which guarantees first and second-order stability i.e. the mean as well as the variance are bounded
at all time steps.

The transition density each process zt,j is given by:

p (zt,j | zt−1,j) = N
([
<(zt,j)
=(zt,j)

]
| sj Rj

[
<(zt−1,j)
=(zt−1,j)

]
, I

σ2
j

2

)
(5)

where the orthogonal matrixRj depends on the imaginary part of λj :

Rj =

[
cos(=(λj)) − sin(=(λj))
sin(=(λj)) cos(=(λj))

]
(6)

and the decay rate sj depends on the real part of λj :

sj = exp(<(λj)) (7)

i.e. the closer to zero the latter is, the ”slower” the evolution of the corresponding process is. As in
probabilistic Slow Feature Analysis (SFA) (Turner & Sahani, 2007; Zafeiriou et al., 2015), we set
σ2
j = 1− exp(2 <(λj)) = 1− s2

j and σ2
0,j = 1. As a consequence, a priori, the latent dynamics are

stationary3 and an ordering of the processes zt,j is possible on the basis of <(λj). Hence the only
independent parameters are the λj , the imaginary part of which can account for periodic effects in
the latent dynamics (see Appendix B).

The joint density of zt can finally be expressed as:

p(z0:T ) =

h∏

j=1

(
T∏

t=1

p(zt,j | zt−1,j ,θ0)p(z0,j |θ0)

)
(8)

The transition density between states at non-neighbouring time-instants is also available analytically
and is useful for training on longer trajectories or in cases of missing data. Details can be found in
Appendix B.

2A short review of complex normal distributions, denoted by CN , can be found in Appendix A.
3More details can be found in Appendix B.

3



Published as a conference paper at ICLR 2021

2.1.2 PROBABILISTIC GENERATIVE MAPPING

We employ fully probabilistic maps between the different layers which involve two conditional
densities based on Equations (2) and (3), i.e.:

p(xt |Xt,θ2) and p(Xt | zt,θ1) (9)

In contrast to the majority of physics-motivated papers (Chorin & Stinis, 2007; Champion et al.,
2019) as well as those based on transfer-operators Klus et al. (2018), we note that the generative
structure adopted does not require the prescription of a restriction operator (or encoder) and the
reduced variables need not be selected a priori but rather are adapted to best reconstruct the observ-
ables.

The splitting of the generative mapping into two parts through the introduction of the intermediate
variables Xt has several advantages. Firstly, known physical dependencies between the data x and
the physical variables X can be taken into account, which reduces the complexity of the associated
maps and the total number of parameters. For instance, in the case of particle simulations where
X represents a density or velocity field, i.e. it provides a coarsened or averaged description of the
fine-scale observables, it can be used to (probabilistically) reconstruct the positions or velocities
of the particles. This physical information can be used to compensate for the lack of data when
only few training sequences are available (Small data) and can seen as a strong prior to the model
order reduction framework. Due to the lower dimension of associated variables, the generative map
between zt and Xt can be more easily learned even with few training samples. Lastly, the inferred
physical variablesX can provide insight and interpretability to the analysis of the physical system.

2.2 INFERENCE AND LEARNING

Given the probabilistic relations above, our goal is to infer the state variables X(1:n)
0:T , z

(1:n)
0:T as well

as all model parameters θ. We follow a hybrid Bayesian approach in which the posterior of the state
variables is approximated using structured Stochastic Variational Inference (Hoffman et al., 2013)
and MAP point estimates for θ = {θ0,θ1,θ2} are computed.

The application of Bayes’ rule leads to the following posterior:

p(X
(1:n)
0:T , z

(1:n)
0:T ,θ|x(1:n)

0:T ) =
p(x

(1:n)
0:T |X

(1:n)
0:T , z

(1:n)
0:T ,θ) p(X

(1:n)
0:T , z

(1:n)
0:T ,θ)

p(x
(1:n)
0:T )

(10)

=
p(x

(1:n)
0:T |X

(1:n)
0:T ,θ) p(X

(1:n)
0:T | z(1:n)

0:T ,θ) p(z
(1:n)
0:T | θ) p(θ)

p(x
(1:n)
0:T )

(11)

where p(θ) denotes the prior on the model parameters. In the context of variational inference, we
use the following factorization of the approximate posterior4:

qφ(X
(1:n)
0:T , z

(1:n)
0:T ) =

n∏

i=1




h∏

j=0

qφ(z
(i)
0:T,j |X

(i)
0:T )


 qφ(X

(i)
0:T ) (12)

We approximate the conditional posterior of z given X with a complex multivariate normal which
is parameterized using a tridiagonal precision matrix as proposed in Archer et al. (2015); Bamler
& Mandt (2017). This retains dependencies between temporally neighbouring z, but the number of
parameters grows linearly with the dimension of z which leads to a highly scalable algorithm. For
the variational posterior ofX we employ a Gaussian with a diagonal covariance, i.e.:

qφ(z
(i)
0:T,j |X

(i)
0:T ) = CN (µφ(X

(i)
0:T ),

[
Bφ(X

(i)
0:T )Bφ(X

(i)
0:T )T

]−1

) qφ(X
(i)
0:T ) = N (µ

(i)
φ ,Σ

(i)
φ )

(13)
We denote summarily with φ the parameters involved and note that deep neural networks are used
for the mean µφ(X

(i)
0:T ) as well as the upper bidiagonal matrixBφ(X

(i)
0:T ). Details on the neural net

architectures employed are provided in Section 4 and in Appendix D.

4We note that this factorization does not introduce any error due to the conditional independence of x,z
given X .
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It can be readily shown that the optimal parameter values are found by maximizing the Evidence
Lower Bound (ELBO) F(qφ(X

(1:n)
0:T , z

(1:n)
0:T ),θ) which is derived in Appendix C. We compute

Monte Carlo estimates of the gradient of the ELBO with respect to φ and θ with the help of the
reparametrization trick (Kingma & Welling, 2013) and carry out stochastic optimization with the
ADAM algorithm (Kingma & Ba, 2014).

2.3 PREDICTIONS

Once state variables have been inferred and MAP estimates θMAP for the model parameters have
been obtained, the reduced model can be used for probabilistic future predictions. In order to do so
for a time sequence used in training, we employ the following Monte Carlo scheme to generate a
sample xT+P , i.e. P time-steps into the future:

1. SampleXT and zT from the inferred posterior qφ(z0:T |X0:T )qφ(X0:T ).
2. Propagate zT for P time steps forward by using the conditional density in Equation (5).
3. Sample XT+P and xT+P from p(XT+P | zT+P ,θ

MAP
1 ) and p(xT+P | XT+P ,θ

MAP
2 )

respectively.

More importantly perhaps, the trained model can be used for predictions under new initial con-
ditions, e.g. x0. To achieve this, first the posterior p(z0|x0) ∝

∫
p(x0|X0,θ

MAP
2 ) p(X0 |

z0,θ
MAP
1 ) dX0 must be found before the Monte Carlo steps above can be employed starting at

T = 0.

3 RELATED WORK

The main theme of our work is the learning of low-dimensional dynamical representations that are
stable, interpretable and make use of physical knowledge.

Linear latent dynamics: In this context, the line of work that most closely resembles ours pertains
to the use of Koopman-operator theory (Koopman, 1931) which attempts to identify appropriate
transformations of the original coordinates that yield linear dynamics (Klus et al., 2018). We note
that these approaches (Lusch et al., 2018; Champion et al., 2019; Gin et al., 2019; Lee & Carlberg,
2020) require additionally the specification of an encoder i.e. a map from the original description
to the reduced coordinates which we avoid in the generative formulation adopted. Furthermore only
a small fraction are probabilistic and can quantify predictive uncertainties but very often employ
restrictive parametrizations for the Koopman matrix in order to ensure long-term stability (Pan &
Duraisamy, 2020). To the best of our knowledge, none of the works along these lines employ
additional, physically-motivated variables and as a result have demonstrated their applicability only
in lower-dimensional problems and require very large amounts of training data or some ad hoc pre-
processing. We provide comparative results with Koopman-based deterministic and probabilistic
models in Appendix H.3.

Data-driven discovery of nonlinear dynamics: The data-driven discovery of governing dynamics
has received tremendous attention in recent years. Efforts based on the Mori-Zwanzig formalism
can accurately identify dynamics of pre-defined variables, which also account for memory effects,
but cannot reconstruct the full fine-grained picture or make predictions about other quantities of
interest (Chorin & Stinis, 2007; Kondrashov et al., 2015; Ma et al., 2019). Similar restrictions apply
when neural-network-based models are employed as e.g. (Chen et al., 2018; Li et al., 2020). Efforts
based on the popular SINDy algorithm (Brunton et al., 2016) require additionally data of the time-
derivatives of the variables of interest which when estimated with finite-differences introduce errors
and reduce robustness. Sparse Bayesian learning tools in combination with physically-motivated
variables and generative models have been employed by (Felsberger & Koutsourelakis, 2019) but
cannot guarantee the long-term stability of the learned dynamics as we also show in Appendix H.2
and in the context of the systems investigated in section 4.

Infusing domain knowledge from physics: Several efforts have been directed in endowing neural
networks with invariances or equivariances arising from physical principles. Usually those pertain
to translation or rotation invariance and are domain-specific as in Schütt et al. (2017). More gen-
eral formulations such as Hamiltonian (Greydanus et al., 2019; Toth et al., 2019) and Lagrangian
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Dynamics (Lutter et al., 2019) are currently restricted in terms of the dimension of the dynamical
system. Physical knowledge has been exploited in conjunction with Gaussian Processes in (Camps-
Valls et al., 2018) as well as in the context of PDEs for constructing reduced-order models as in
(Grigo & Koutsourelakis, 2019) or for learning modulated derivatives using Graph Neural Networks
as in (Seo et al., 2020). Another approach involves using physical laws as regularization terms or
for augmenting the loss function as in (Raissi et al., 2019; Lusch et al., 2018; Zhu et al., 2019;
Kaltenbach & Koutsourelakis, 2020). In the context of molecular dynamics multiple schemes for
coarse-graining which also guarantee long-term stability have been proposed by Noé (2018) and Wu
et al. (2017; 2018). In our formulation, physically-motivated latent variables are used to facilitate
generative maps to very high-dimensional data and serve as the requisite information bottleneck in
order to reduce the amount of training data needed.

Slowness and interpretability: Finally, in contrast to general state-space models for analyzing
time-series data such as Karl et al. (2016); Rangapuram et al. (2018); Li et al. (2019), the prior
proposed on the complex-valued zt enable the discovery of slow features which are crucial in pre-
dicting the evolution of multiscale systems and in combination with the variables Xt can provide
interpretability and insight into the underlying physical processes.

4 EXPERIMENTS

The high-dimensional, fine-grained model considered consists of f identical particles which can
move in the bounded one-dimensional domain s ∈ [−1, 1] (under periodic boundary conditions).
The variables xt consist therefore of the coordinates of the particles at each time instant t and the di-
mension of the system f is equal to the number of particles. We consider two types of stochastic par-
ticle dynamics that correspond to an advection-diffusion-type (section 4.1) and a viscous-Burgers’-
type (section 4.2) behavior. In all experiments, the physically-motivated variables Xt relate to a
discretization of the particle density into d = 25 equally-sized bins for advection-diffusion-type
dynamics and into d = 64 equally-sized bins for viscous-Burgers’-type dynamics. In order to auto-
matically enforce the conservation of mass at each time instant, we make use of the softmax function
i.e. the particle density at a bin k is expressed as exp(Xt,k)∑d

l=0 exp(Xt,l)
. Given this, the probabilistic map

(F in Equation (3)) corresponds to a multinomial density, i.e.:

p(xt|Xt) =
f !

m1(xt)! m2(xt)! . . .mk(xt)!

d∏

k=1

(
exp(Xt,k)

∑d
l=0 exp(Xt,l)

)mk(xt)

(14)

where mk(xt) is the number of particles in bin k. The underlying assumption is that, givenXt, the
coordinates of the particles xt are conditionally independent. This does not imply that they move
independently nor that they cannot exhibit coherent behavior (Felsberger & Koutsourelakis, 2019).
Furthermore, the aforementioned model automatically satisfies permutation-invariance which a cen-
tral feature of the fine-grained dynamics. This is another advantage of the physically motivated
intermediate variables X as enforcing such symmetries/invariances is not a trivial task even when
highly expressive models (e.g. neural networks) are used (Rezende et al., 2019). The practical
consequence of Equation (14) is that no parameters θ2 need to be inferred.

The second map pertains to p(Xt | zt,θ1) which we represent with a multivariate normal distribu-
tion with a mean and a diagonal covariance matrix modeled by a neural network with parameters
θ1. Details of the parameterization can be found in Appendix D.

We assess the performance of the method by computing first- and second-order statistics as illus-
trated in the sequel as well as in Appendix F. We provide comparative results on the same examples
in Appendix H where we report on the performance of various alternatives, such as a formulation
without the latent variables zt as well as deterministic and probabilistic Koopman-based models.
Moreover a short study on the effect of the amount of training data is included in Appendix G.

4.1 PARTICLE DYNAMICS: ADVECTION-DIFFUSION

We train the model on N = 64 time-series of the positions of f = 250 × 103 particles over
T = 40 time-steps which were simulated as described in Appendix D.1. Furthermore, we made
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use of h = 5 complex, latent processes zt,j . Details regarding the variational posteriors and neural
network architectures involved can be found in the Appendix D.1.

In Figure 2, the estimates of the complex-valued parameters λj are plotted as well as the inferred
and predicted time-evolution of 2 associated processes zt,j on the complex plane. We note the clear
separation of time-scales in the first plot with two slow processes, one intermediate and two fast
ones. This is also evident in the indicative trajectories on the complex plane. A detailed discussion
of the mapG learned (Equation (2)) between zt andXt can be found in the Appendix E.
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Figure 2: Estimated λj (left) and the time evolution of two zt,j processes where one is slow (middle)
and the other fast (right).

In Figure 3 we compare the true particle density with the one predicted by the trained reduced model.
We note that the latter is computed by reconstructing the xt futures. We observe that the model is
able to accurately track first-order statistics well into the future.
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Figure 3: Particle density: Inferred and predicted posterior mean (bottom) in comparison with the
ground truth (top). The red line divides inferred quantities from predicted ones. The horizontal
axis corresponds to time-steps and the vertical to the one-dimensional spatial domain of the problem
s ∈ [−1, 1].

A more detailed view of the predictive estimates with snapshots of the particle density at selected
time instances is presented in Figure 4. Here, not only the posterior mean but also the associated
uncertainty is displayed. We want to emphasize the last Figure at t = 1000 when the steady state
has been reached which clearly shows that our model is capable of converging to stable equilibrium.
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Figure 4: Predicted particle density profiles at t = 80, 120, 160, 1000 (from left to right).

Since the proposed model is capable of probabilistically reconstructing the whole fine-grained pic-
ture, i.e. xt, predictions with regards to any observable can be obtained. In Appendix F.1 we assess
the accuracy of predictions in terms of second-order statistics, and in particular for the probability
of finding simultaneously a pair of particles at two specified positions.
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Finally, we demonstrate the accuracy of the trained in model in producing predictions under unseen
initial conditions as described in section 2.3. Figure 5 depicts a new initial condition in terms of
the particle density according to which particle positions x0 were drawn. The posterior on the
corresponding z0 (see section 2.3) can be used to reconstruct the density as shown also on the same
Figure.
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Figure 5: New initial condition (not used in training) in terms of the particle density. Reference
shows the actual initial condition, whereas the posterior mean and uncertainty bounds correspond to
the reconstruction of the initial condition based on the inferred latent variables z0.

Figure 6 shows predictions of the particle density (i.e. first-order statistics) at various timesteps. We
want to emphasise the frame on the right, for t = 500 which shows the steady state of the system.
We note that even though the initial condition was not contained in the training data, our framework
is able to correctly track the system’s evolution and to predict the correct steady state.
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Figure 6: Predictions of the particle density at t = 25, 75, 125, 500 (left to right) for on the new
initial condition in Figure 5.

4.2 PARTICLE DYNAMICS: VISCOUS BURGERS’ EQUATION

In this example, we made use of N = 64 sequences of f = 500× 103 particles over T = 40 time-
steps. Details regarding the physical simulator, the stochastic interactions between particles as well
as the associated network architectures are contained in Appendix D.2. As in the previous example,
we employed the particle density with the softmax transformation forXt and h = 5 complex-valued
processes zt at the lowest model level.

In Figure 7 the estimated values for λj are shown where the clear separation of time-scales with
three slow and two fast processes can be observed.
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Figure 7: Estimated λj for the viscous Burgers’ system.

In Figure 8 we compare the evolution of the true particle density with the (posterior mean of) the
model-predicted one. We point out the sharp front at the lower left corner which is characteristic of
the Burgers’ equation and which eventually dissipates due to the viscosity. This is captured in the
inferred as well as in the predicted solution.

8



Published as a conference paper at ICLR 2021

0 25 50 75 100 125 150 175 200
Timesteps in t

1.0

0.5

0.0

0.5

1.0

s

0 25 50 75 100 125 150 175 200
Timesteps in t

1.0

0.5

0.0

0.5

1.0

s

Figure 8: Particle density: Inferred and predicted posterior mean (bottom) in comparison with the
ground truth (top). The red line divides inferred quantities from predicted ones. The horizontal
axis corresponds to time-steps and the vertical to the one-dimensional spatial domain of the problem
s ∈ [−1, 1]

A more detailed view on the predictive results with snapshots of the particle density at selected
time instances is presented in Figure 9. We emphasize again the stable convergence of the learned
dynamics to the steady state as well as the accuracy in capturing, propagating and dissipating the
shock front.
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Figure 9: Predicted particle density profiles at t = 40, 80, 120, 160, 1000 (from left to right).

We compare the accuracy of the predictions for second-order statistics of the fine-grained system
in terms of the two-particle probability in Appendix F.2 where excellent agreement with the ground
truth, i.e. the one computed by simulating the fine-grained system, is observed.

5 CONCLUSIONS

We presented a framework for efficiently learning a lower-dimensional, dynamical representation
of a high-dimensional, fine-grained system that is predictive of its long-term evolution and whose
stability is guaranteed. We infuse domain knowledge with the help of an additional layer of latent
variables. The latent variables at the lowest level provide an interpretabable separation of the time-
scales and ensure the long-term stability of the learned dynamics. We employed scalable variational
inference techniques and applied the proposed model in data generated from very large systems of
interacting particles. In all cases accurate probabilistic predictions were obtained both in terms of
first- and second-order statistics over a very long time range into the future. More importantly, the
ability of the trained model to produce predictions under new, unseen initial conditions was demon-
strated. An obvious limitation for the applicability of the proposed method to general dynamical
systems pertains to the physically motivated variables X . While such variables are available for
several classes of physical systems, they need to be re-defined when moving to new problems and
expert elicitation might be necessary. Furthermore, if an incomplete list of such variables is avail-
able from physical insight, this would need to be complemented by additional variables discovered
from data. To that end, one could envision that some of the abstract latent variables zt or functions
thereof, e.g. f(zt), could be employed in a generative map of the form xt = F (Xt,f(zt)) instead
of Equation (3). A final deficiency of the proposed model is the lack of an automated procedure for
determining the appropriate number of z. We believe that the ELBO, which provides a lower bound
on the model evidence, could be used for this purpose.
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Stefan Klus, Feliks Nüske, Péter Koltai, Hao Wu, Ioannis Kevrekidis, Christof Schütte, and Frank
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A COMPLEX NORMAL DISTRIBUTION

In this Appendix, the complex random normal distribution is reviewed. The mathematical definitions
introduced follow Andersen et al. (1995):

A p-variate complex normal random variable Y ∈ Cp with Y ∼ CN (µC,ΣC) is defined by a
complex mean vector µC ∈ Cp and a complex Covariance Matrix ΣC ∈ Cp×p+ . The density with
respect to Lesbegue measures on Cp can be stated as:

fY (y) = π−p det(ΣC)−1 exp
(
−(y − µC)∗Σ−1

C (y − µC)
)

(15)

where ∗ indicates the conjugate transpose of a matrix.

This complex normal random variable has similar properties to the well-known, real-valued coun-
terpart. For instance, linear transformations of complex random normal variables are again complex
random normal variables.

These properties directly follow from the fact, that for a complex random normal variable there
exists an isomorphic transformation to a real valued 2p-variate normal random variable W ∈ R2p.
This random normal variable is defined with mean

µR =

[
<(µC)
=(µC)

]
(16)

and covariance

ΣR =
1

2

[
<(ΣC) −=(ΣC)
=(ΣC) <(ΣC)

]
(17)

Therefore: W ∼ N (µR,ΣR)

As an example the real valued isomorphic counterpart of the standard complex random normal
distribution CN (0, 1) is the bivariate normal distribution N (0, 1

2I).
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B CHOICE OF VARIANCE FOR A-PRIORI STEADY STATE

We derive transient and stationary properties of the complex-valued latent processes zt,j and justify
our choices for the model parameters. Based on Equation (1) and for each process j, the dynamics
can be written in terms of the real and imaginary parts in two dimensions as follows:[

<(zt,j)
=(zt,j)

]
= Aj

[
<(zt,j−1)
=(zt,j−1)

]
+ σj

[
<(εt,j)
=(εt,j)

]
, (18)

or: [
<(zt,j)
=(zt,j)

]
= At

j

[
<(zt,0)
=(zt,0)

]
+ σj

t−1∑

k=0

Ak
j

[
<(εt−k,j)
=(εt−k,j)

]
(19)

where <(εt,j),=(εt,j) ∼ N (0, 1/2). The matrixAj is given by (see also Equations (6), (7)):

Aj = sjRj = e<(λj)

[
cos(=(λj)) − sin(=(λj))
sin(=(λj)) cos(=(λj))

]
(20)

and can be diagonalized asAj = V Pj V
∗ where:

V =
1√
2

[
1 1
−i i

]
, Pj =

[
eλj 0

0 eλ̄j

]
, (21)

V ∗ is the conjugate transpose of V and λ̄j denotes the complex conjugate of λj . Due to the linearity
of the model and the Gaussian initial conditions, i.e. <(z0,j),=(z0,j) ∼ N (0, σ2

0,j/2), the marginal
will remain Gaussian at all times t. A direct consequence of the above is that the mean of real and
imaginary parts is always zero, i.e.:

µ
(j)
t =

[
E[<(zt,j)]
E[=(zt,j)]

]
=

[
0
0

]
. (22)

Furthermore, the covariance C(j)
t is given by:

C
(j)
t = E

[[
<(zt,j)
=(zt,j)

]
[<(zt,j) =(zt,j)]

]
=
σ2

0,j

2
At
j(A

T
j )t + σ2

k

t−1∑

k=0

Ak
j (AT

j )k (23)

which upon use of the diagonalized form ofAj yields:

C
(j)
t =

σ2
0,j

2
V

[
0 e2t<(λj)

e2t<(λj) 0

]
V T +

σ2
j

2
V


 0 1−e2t<(λj)

1−e2<(λj)

1−e2t<(λj)

1−e2<(λj)
0


V T (24)

As mentioned earlier, a necessary condition for the long-term stability of the processes is that
<(λj) < 0, in which case and as t→∞ it leads to:

C
(j)
t → C(j)

∞ =
σ2
j

2
V

[
0 1

1−e2<(λj)

1

1−e2<(λj)
0

]
V T =

σ2
j

2(1− e2<(λj))
I (25)

This implies that real and imaginary parts are asymptotically uncorrelated with a variance
σ2
j

2(1−e2<(λj))
. By setting σ2

j = 1 − e2<(λj) we enable direct comparisons between zt,j solely on

the basis of Re(λj) i.e. the degree of slowness (Turner & Sahani, 2007; Zafeiriou et al., 2015)).
In this case the asymptotic variance of real and imaginary parts becomes 1/2. Finally by setting
σ2

0,j = 1 we ensure that, a priori, the processes zt,j are stationary, with C(j)
t = C

(j)
∞ = 1

2I , i.e. no
a-priori bias is introduced with regards to their transient characteristics.

We finally note that the autocovarianceD(j)
τ of each of these stationary processes j is given by:

D(j)
τ = E

[[
<(zt+τ,j)
=(zt+τ,j)

]
[<(zt,j) =(zt,j)]

]
= Aτ

jE
[[
<(zt,j)
=(zt,j)

]
[<(zt,j) =(zt,j)]

]
= Aτ

j C
(j)
t

(26)
where Aj and the covariance C(j)

t are given above. By exploiting the diagonalization of Aj and
that C(j)

t = C
(j)
∞ = 1

2I (for the parameter values discussed earlier), we obtain that:

D(j)
τ = eτ<(λj)

[
cos(τ=(λj)) − sin(τ=(λj))
sin(τ=(λj)) cos(τ=(λj))

]
(27)

One can clearly observe harmonic (cross-)correlation terms which depend on the imaginary part of
the λj and can capture persistent periodic effects of the dynamical system in the long-time range.
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C DERIVATION OF THE ELBO

This section contains details of the derivation of the Evidence-Lower-Bound (ELBO) which serves
as the objective function for the determination of the parameters φ and θ during training. In partic-
ular:

log p(x
(1:n)
0:T |θ)

= log
∫
p(x

(1:n)
0:T ,X

(1:n)
0:T , z

(1:n)
0:T ,θ) dX

(1:n)
0:T z

(1:n)
0:T

= log
∫ p(x(1:n)

0:T |X
(1:n)
0:T , z

(1:n)
0:T ,θ)p(X

(1:n)
0:T , z

(1:n)
0:T ,θ)

qφ(X
(1:n)
0:T , z

(1:n)
0:T )

qφ(X
(1:n)
0:T , z

(1:n)
0:T ) dX

(1:n)
0:T dz

(1:n)
0:T

≥
∫

log
p(x

(1:n)
0:T |X

(1:n)
0:T , z

(1:n)
0:T ,θ)p(X

(1:n)
0:T , z

(1:n)
0:T ,θ)

qφ(X
(1:n)
0:T , z

(1:n)
0:T )

qφ(X
(1:n)
0:T , z

(1:n)
0:T ) dX

(1:n)
0:T dz

(1:n)
0:T

= F(qφ(X
(1:n)
0:T , z

(1:n)
0:T ),θ)

(28)
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D DETAILS FOR EXPERIMENTS

This appendix contains details for our experiments involving moving particles that have stochas-
tic interactions corresponding to either an Advection-Diffusion behaviour or viscous Burgers’ type
behaviour.

D.1 PARTICLE DYNAMICS: ADVECTION-DIFFUSION

For the simulations presented f = 250 × 103 particles were used, which, at each microscopic time
step δt = 2.5× 10−3 performed random, non-interacting, jumps of size δs = 1

640 , either to the left
with probability pleft = 0.1875 or to the right with probability pright = 0.2125. The positions were
restricted in [−1, 1] with periodic boundary conditions. It is well-known (Cottet & Koumoutsakos,
2000) that in the limit (i.e. f → ∞) the particle density ρ(s, t) can be modeled with an advection-
diffusion PDE with diffusion constant D = (pleft+pright)

δs2

2δt and velocity v = (pright−pleft) δsδt :

∂ρ

∂t
+ v

∂ρ

∂s
= D

∂2ρ

∂s2
, s ∈ (−1, 1).. (29)

From this simulation every 800th microscopic time step the particle positions were extracted and
used as training data for our system. Sample initial conditions are shown in Figure 10:

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
s

0.02

0.03

0.04

0.05

0.06

(s
,t

)

Figure 10: Sample initial conditions for the advection-diffusion type dynamics.

The architecture of the neural networks for the generative mappings described above as well as for
the variational posteriors introduced in Section 2.2 can be seen in Figure 11. The neural network
used for the generative mapping between the low-dimensional states zt and the mean and covariance
for Xt consists of only one dense layer, whereas the variational posterior on z0:T is parameterized
using a dense Layer with ReLu activation followed by another dense layer.

Figure 11: Neural Net architecture used for the particle dynamics corresponding to an advection-
diffusion equation.

D.2 PARTICLE DYNAMICS: VISCOUS BURGERS’ EQUATION

The second test-case involved a fine-grained system of f = 500 × 103 particles which perform
interactive random walks i.e. the jump performed at each fine-scale time-step δt = 2.5 × 10−3

depends on the positions of the other walkers. In particular we adopted interactions as described in
Roberts (1989); Chertock & Levy (2001); Li et al. (2007) so as, in the limit (i.e. when f →∞, δt→
0, δs→ 0), the particle density ρ(s, t) follows a viscous Burgers’ equation with ν = 0.0005:

∂ρ

∂t
+

1

2

∂ρ2

∂s
= ν

∂2ρ

∂t2
, s ∈ (−1, 1). (30)
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From this simulation every 800th microscopic time step the particle positions were extracted and
used as training data for our system. Sample initial conditions are shown in Figure 12.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
s

0.02

0.03

0.04

0.05

(s
,t

)

Figure 12: Sample initial conditions for the Burger’s type dynamics.

The architecture of the neural networks for the generative mappings described above as well as for
the variational posteriors introduced in Section 2.2 can be seen in Figure 13. The neural network
used for the generative mapping between the low-dimensional states zt and the mean and covariance
forXt consists of several dense layers with ReLu activation and Dropout layers to avoid overfitting,
whereas the variational posterior on z0:T is parameterized using two dense layers with ReLu activa-
tion followed by another dense layer.

Figure 13: Neural Net architecture used for the particle dynamics corresponding to a viscous Burg-
ers’ equation.
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E DETAILED ANALYSIS OF THE GENERATIVE MAPPING AND THE SLOW
LATENT VARIABLES

In this Appendix we take a closer look at the generative mapping and the (slow) latent variables z
learned . For the Advection-Diffusion example, we discovered two slow processes (Section 4.1), z1

and the marginally faster process z2. The rest of the processes were very fast in comparison and
took values close to the zero point of the complex plane during the inference as well as during the
prediction phase.

In order to visualize the influence through the generative mapping of these two slow processes, we
set the value of all other processes to zero and then reconstructed the fine-grained state based on dif-
ferent absolute values of z1 and z2. The result are shown in Figure 14 in terms of the reconstructed
particle density. It is clearly visible that those two processes are responsible for a variety of density
profiles. In accordance with their slowness, z1 (the slightly slower process) is responsible for the
most striking changes, whereas the other slow process generates some smaller scale fluctuations.
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Figure 14: Reconstruction of the particle density profiles for various values of the two slowest
processes z1 and z2 identified. All other latent variables zt,j were set to zero.
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F TWO-POINT PROBABILITY

This appendix contains the predictive estimates for the two-point probability, i.e. the probability of
finding two particles simultaneously in two bins (b1, b2). This two-point probability can be com-
puted based on the reconstructed fine-grained system and corresponds to a second order statistic.

F.1 PARTICLE DYNAMICS: ADVECTION-DIFFUSION

The estimated two-point probability as well as the comparison to test data is shown for two indicative
time-instants in Figure 15 and 16. We note a very good agreement with the ground truth.

0 5 10 15 20
b1

0

5

10

15

20

b 2

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

0.0022

0.0024

0 5 10 15 20
b1

0

5

10

15

20

b 2

0 5 10 15 20
b1

0

5

10

15

20

b 2

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Figure 15: Two-point probability at time step 90: On the left the two-point probability of the data
is shown as reference, the figure in the middle contains the predictive posterior mean whereas the
figure on the right contains the standard deviation. The figure on the left and the figure in the middle
share the same colorbar.
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Figure 16: Two-point probability at time step 140: On the left the two-point probability of the data
is shown as reference, the figure in the middle contains the predictive posterior mean whereas the
figure on the right contains the standard deviation. The figure on the left and the figure in the middle
share the same colorbar.

F.2 PARTICLE DYNAMICS: VISCOUS BURGERS’ EQUATION

The estimated two-point probability as well as the comparison to test data is shown for two indicative
time-instants in Figure 17 and 18. We note a very good agreement with the ground truth.
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Figure 17: Two-point probability at time step 90: On the left the two-point probability of the data
is shown as reference, the figure in the middle contains the predictive posterior mean whereas the
figure on the right contains the standard deviation. The figure on the left and the figure in the middle
share the same colorbar.
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Figure 18: Two-point probability at time step 140: On the left the two-point probability of the data
is shown as reference, the figure in the middle contains the predictive posterior mean whereas the
figure on the right contains the standard deviation. The figure on the left and the figure in the middle
share the same colorbar.
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G EFFECT OF THE AMOUNT OF TRAINING DATA

This section contains a study on the influence of the amount of training data. We illustrate this in the
context of the Advection-Diffusion example (section 4.1) by using 16 time sequences instead of the
64 employed earlier. In the figures below we note that the proposed model is capable capturing the
main features of the system’s dynamics as well as the correct steady state even with fewer training
data. We believe that this is due to the intermediate layer of physically-motivated variables Xt

which introduces an information bottleneck. Finally, and as one would expect, fewer training data
leads to increased predictive uncertainty.
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Figure 19: Predicted particle density profiles at t = 80, 160, 1000 (from left to right) with 64 sam-
ples.
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Figure 20: Predicted particle density profiles at t = 80, 160, 1000 (from left to right) with 16 sam-
ples.
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H COMPARISON WITH OTHER APPROACHES

This appendix contains results obtained by other methods for the test cases discussed in the main
text. The simulation data is identical to the one used for the proposed method and details of the
specific algorithms are described in the following.

H.1 REAL-VALUED LATENT SPACE

To demonstrate the utility of a complex-valued latent space, the two examples were also solved with
a real-valued zt,j . The only difference here is the restriction of the latent variables zt,j and the λj to
real values.

A model with real-valued latent space is also capable of ensuring the stability but it is not capable
of capturing periodic components of the dynamics. As most physical systems (including the two
examples) contain such components, the algorithm is not able to accurately model the dynamics and
fails in generating reliable predictions. This can be readily observed in the extrapolative predictions
of Figures 21 and 22 where, apart for the biased results, one can also note increased predictive
uncertainty.
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Figure 21: Advection-Diffusion system: Predictions at t = 0, 80, 160 and 1000 obtained with real-
valued latent variables zt,j .
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Figure 22: Burgers’ system: Predictions at t = 0, 80, 160 and 1000 obtained with real-valued latent
variables zt,j .
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H.2 NO STABLE LATENT SPACE

Another possibility is to employ only the physically motivated latent variablesXt and remove com-
pletely the latent variables zt in the first layer. This approach is similar to the one investigated in
Felsberger & Koutsourelakis (2019) and Kaltenbach & Koutsourelakis (2020) as well as to the idea
of neural ODEs (Chen et al., 2018). In this case, one must learn directly the dynamics ofXt and for
this purpose we employed a three-layer, fully-connected neural network NN as follows:

Xt+1 = NN(Xt) + σε, ε ∼ N (0, I). (31)

The learned dynamics are in general non-linear and stability is not guaranteed. As it can be observed
in Figures 23 and 24, the trained model is capable of producing accurate predictions for some time-
steps but eventually in both cases predictions become unstable. This could also be problematic when
the trained model is used to make predictions with new initial conditions as the chaotic nature of the
nonlinear dynamics can lead to significant errors even for shorter time horizons.
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Figure 23: Advection-Diffusion system: Predictions at t = 0, 80, 160 and 1000 obtained without zt
and with the model of Equation (31).
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Figure 24: Burgers’ system: Predictions at t = 0, 80, 160 and 1000 obtained without zt and with
the model of Equation (31).
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H.3 KOOPMAN-BASED MODELS

The final alternative explored involved probabilistic and deterministic Koopman-based models for
the latent dynamics. We kept the generative framework of our model and did not use an encoder
as for instance in Gin et al. (2019) in order to remove the effect of the associated model choice.
For the same reason, we retained the intermediate variables Xt even though these do not appear in
any known Koopman-operator implementations. We replaced our complex-valued dynamics of the
latent processes zt,j with the models described in the sequel.

H.3.1 PROBABILISTIC KOOPMAN-BASED MODEL

We used real-valued latent variables zt which are not a-priori independent and whose dynamics are
parameterized with a Koopman matrixK and a diagonal noise matrixW :

zt+1 = Kzt +Wε, ε ∼ N (0, I). (32)

The learned matrix K is not guaranteed to be stable in the absence of additional constraints but
in both cases examined the eigenvalues of the learned K were real smaller than one. Long-term
predictions were stable and for the Burgers’ case in Figure 26 we were also able to reach the true
steady state. For the (simpler) Advection-Diffusion example in Figure 25 an incorrect steady state
was reached and the predictive quality started to deteriorate after some time-steps. In comparison
to our framework, the probabilistic Koopman-based model does not provide a direct separation
between slow and fast processes and therefore its interpretability is reduced.
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Figure 25: Advection-Diffusion system: Predictions at t = 0, 80, 160 and 1000 obtained with the
probabilistic Koopman-based model of Equation (32)).
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Figure 26: Burgers’ system: Predictions at t = 0, 80, 160 and 1000 obtained with the probabilistic
Koopman-based model of Equation (32)).

H.3.2 NON-PROBABILISTIC KOOPMAN LEARNING

We also used real-valued latent variables zt with deterministic dynamics which were parameterized
as follows:

zt+1 = Kzt (33)
The absence of noise in comparison to Equation (32), led in both cases to an estimate for the Koop-
man matrixK that did not yield stable predictions (each of the learnedK matrices had at least one
eigenvalue which was larger than 1). We speculate that the lack of stochasticity made the model less
capable of dealing with the information loss. We also note in Figures 27 and 28 that the predictions
obtained are, with an exception of a few time-steps, highly inaccurate.

24



Published as a conference paper at ICLR 2021

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
s

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

(s
,t

)

Posterior Mean
Reference
+/- 1 Standard Deviation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
s

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

(s
,t

)

Posterior Mean
Reference
+/- 1 Standard Deviation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
s

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

(s
,t

)

Posterior Mean
Reference
+/- 1 Standard Deviation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
s

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

(s
,t

)

Posterior Mean
Reference
+/- 1 Standard Deviation

Figure 27: Advection-Diffusion system: Predictions at t = 0, 20, 80 and 160 obtained with the
deterministic Koopman-based model of Equation (33)).
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Figure 28: Burgers’ system: Predictions at t = 0, 20 and 80 obtained with the deterministic
Koopman-based model of Equation (33)).
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Abstract

Neural Operators offer a powerful, data-driven tool for solving parametric PDEs as they can
represent maps between infinite-dimensional function spaces. In this work, we employ physics-
informed Neural Operators in the context of high-dimensional, Bayesian inverse problems. Traditional
solution strategies necessitate an enormous, and frequently infeasible, number of forward model
solves, as well as the computation of parametric derivatives. In order to enable efficient solu-
tions, we extend Deep Operator Networks (DeepONets) by employing a RealNVP architecture
which yields an invertible and differentiable map between the parametric input and the branch-
net output. This allows us to construct accurate approximations of the full posterior, irrespective
of the number of observations and the magnitude of the observation noise, without any need for
additional forward solves nor for cumbersome, iterative sampling procedures. We demonstrate the
efficacy and accuracy of the proposed methodology in the context of inverse problems for three
benchmarks: an anti-derivative equation, reaction-diffusion dynamics and flow through porous media.

Keywords: Data-driven Surrogates, Invertible Neural Networks, Bayesian Inverse Problems,
Semi-supervised Learning

1 Introduction

Nonlinear Partial Differential Equations (PDEs)
depending on high- or even infinite-dimensional
parametric inputs are ubiquitous in applied
physics and engineering and appear in the con-
text of several problems such as model calibration
and validation or model-based design/optimiza-
tion/control. In all these cases, they must be
solved repeatedly for different values of the input
parameters which poses an often insurmountable

obstacle as each of these simulations can imply
a significant computational cost. An obvious
way to overcome these difficulties is to develop
less-expensive but accurate surrogates which can
be used on their own or in combination with
a reduced number of runs of the high-fidelity,
expensive, reference solver. The construction of
such surrogates has been based on physical/math-
ematical considerations or data i.e. input-output

1
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pairs (and sometimes derivatives). Our contribu-
tion belongs to the latter category of data-driven
surrogates which has attracted a lot of attention
in recent years due to the significant progress
in the fields of statistical or machine learning
(Koutsourelakis et al, 2016; Karniadakis et al,
2021). We emphasize however that unlike typical
supervised learning problems in data sciences, in
the context of computational physics there are
several distinguishing features. Firstly, surrogate
construction is by definition a Small (or smallest
possible) Data problem. The reason we want to
have a surrogate in the first place is to avoid
using the reference solver which is the one that
generates the training data. Secondly, pertinent
problems are rich in domain knowledge which
should be incorporated as much as possible, not
only in order to reduce the requisite training data
but also to achieve higher predictive accuracy
particularly in out-of-distribution settings. In the
context of Bayesian inverse problems which we
investigate in this paper, one does not know a pri-
ori where the posterior might be concentrated in
the parametric space and cannot guarantee that
all such regions will be sufficiently represented in
the training dataset. Nevertheless the surrogate
learned must be accurate enough in these regions
in order to resolve the sought posterior.

Data-driven surrogates which are trained in
an offline phase and are subsequently used for
various downstream tasks have attracted a lot
of attention in recent years (Bhattacharya et al,
2020). Most of these surrogates are constructed
by learning a non-linear operator, e.g. a map-
ping between function spaces and thus between
the inputs and the outputs of the PDE, which
may depend on additional input parameters. A
notable such strategy based on Deep Learning are
the Physics-informed Neural Networks (PINNs)
(Lagaris et al, 1998; Raissi et al, 2019). An alter-
native is offered by Deep Operator Networks
(DeepONets, (Lu et al, 2021; Wang et al, 2021)),
which in contrast to PINNs, not only take the
spatial and temporal location as an input but
can also account for the dependence of the PDE
solution on input parameters such as the viscos-
ity in the Navier-Stokes equation. Furthermore,
Fourier Neural Networks (Li et al, 2020) have
shown promising results by parametrizing the
integral kernel directly in Fourier Space and thus

restricting the operator to a convolution. Finally,
the Learning Operators with Coupled Attention
(LOCA) framework (Kissas et al, 2022) builds
upon the well-known attention mechanism that
has already shown promising results in natural
language processing.
We note that all of the Deep Learning frameworks
mentioned fulfill the universal approximation
theorem and, under certain conditions, can
approximate the non-linear operator to arbitrary
accuracy. Another option, is offered by the Opti-
mizing a Discrete Loss (ODIL, Karnakov et al
(2022)) framework. It does not rely on Deep
Learning and was shown to be faster than PINNs
due to the reduced number of tunable parameters
but can only approximate the solution on a dis-
crete grid.
Apart from the aforementioned techniques and
for time-dependent PDEs in particular, the solu-
tion can be approximated by methods based
on Koopman-operator theory (Koopman, 1931)
which identifies a transformation of the original
system that gives rise to linear dynamics (Klus
et al, 2018). Nevertheless, these methods (Lee
and Carlberg, 2020; Gin et al, 2019; Champion
et al, 2019) usually require a large set of reduced-
order coordinates or an effective encoder/decoder
structure. Especially for physical systems, the
restricted dynamics can be endowed with sta-
bility and physical, inductive bias (Kaltenbach
and Koutsourelakis, 2021; Kalia et al, 2021;
Kaltenbach and Koutsourelakis, 2020).

A common limitation of the aforementioned
architectures is that they usually learn only the
forward operator whereas for the solution of an
inverse problem, its inverse would be more useful.
In this work, we extend the DeepONet frame-
work by replacing parts of the previously proposed
neural-network architecture with an invertible
one. To the authors’ best knowledge, we are thus
presenting the first invertible Neural Operator
framework. This allows one to perform both for-
ward and inverse passes with the same neural
network and the forward and inverse operators can
be learned simultaneously. In particular, we make
use of the RealNVP architecture (Dinh et al, 2016)
which has an analytical inverse.
Furthermore we make use of both labeled and
unlabeled (i.e. only inputs and residuals) train-
ing data in a physics-aware, semi-supervised
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approach. While the use of labeled training data
is straight-forward, unlabeled training data are
incorporated by using the governing equations
and minimizing the associated residuals, similarly
to the physics-informed DeepONet (Wang et al,
2021). Since it is easier and less-expensive to
procure unlabeled data in comparison to labeled
ones, this leads to significant efficiency gains. Even
though our algorithm can produce accurate pre-
dictions without any labeled training data and
by using only a physics-informed loss, we observe
empirically that the addition of labeled training
data generally improves the results.
Finally, we show that the proposed invertible
DeepONet can be used to very efficiently solve
Bayesian inverse problems, i.e. to approximate the
whole posterior distribution, without any need
for multiple likelihood evaluations and cumber-
some iterations as required by alternative infer-
ence schemes such as Markov Chain Monte Carlo
(MCMC, Beskos et al (2017)) or Sequential Monte
Carlo (SMC, Koutsourelakis (2009)) or Stochas-
tic Variational Inference (SVI, Detommaso et al
(2018)). In particular, we propose a novel approx-
imation that employs a mixture of Gaussians,
the parameters of which are computed semi-
analytically. When the proposed Neural Operator
framework is trained solely on unlabeled data,
this means that we can obtain the solution to the
(forward and) inverse problem without ever solv-
ing the underlying PDE. While Deep Learning
has been successfully applied to inverse problems
before (Adler and Öktem, 2017; Ardizzone et al,
2018; Mo et al, 2019), our work differs by mak-
ing use of a fully invertible, operator-learning
architecture which leads to highly efficient approx-
imation of the whole posterior.

The rest of the paper is structured as follows.
In section 2 we review the basic elements of invert-
ible neural networks (NNs) and DeepoNets and
subsequently illustrate how these can be combined
and trained with labeled and unlabeled data. Fur-
thermore we present how the resulting invertible
DeepONet can be employed in order to approx-
imate the posterior of a model-based, Bayesian
inverse problem at minimal additional cost. We
illustrate several features of the proposed method-
ology and assess its performance in section 3 where
it is applied to a reaction-diffusion PDE and a
Darcy-diffusion problem. The cost and accuracy
of the posterior approximation in the context of

pertinent Bayesian inverse problems are demon-
strated in section 3.4. Finally, we conclude in
section 4 with a summary of the main findings
and a discussion on the (dis)advantages of the
proposed architecture and potential avenues for
improvements.

2 Methodology

We first review some basic concepts of invertible
neural networks and DeepONets. We subsequently
present our novel contributions which consist of
an invertible DeepONet architecture and its use
for solving efficiently Bayesian inverse problems.

2.1 Invertible Neural Networks

Neural Networks are in general not invertible
which restricts their application in problems
requiring inverse operations. Invertibility can be
achieved by adding a momentum term (Sander
et al, 2021), restricting the Lipschitz-constant of
each layer to be smaller than one (Behrmann et al,
2019) or using special building blocks (Dinh et al,
2016). These formulations have primarily been
developed for flow-based architectures but we will
apply them to operator learning within this work.
In particular, we make use of the RealNVP (Dinh
et al, 2016) as this architecture enables an analyt-
ical inverse which ensures efficient computations.
Each RealNVP building block consists of the
transformation below which includes two neural
networks denoted by k(.) and r(.). Given a D
dimensional input x = {xi}Di=1 of an invertible
layer, the output y = {yi}Di=1 is obtained as
follows:

y1:d = x1:d (1)

yd+1:D = xd+1:D ◦ exp(k(x1:d)) + r(x1:d), (2)

where d < D. Here, ◦ is the Hadamard or element-
wise product and d is usually chosen to be half of
the dimension of the input vector i.e. d = D/2.
As only d of the components are updated, the
input entries after each building block are per-
muted, e.g. by reversing the vector, to ensure that
after a second building block all of them are modi-
fied. Therefore, for d = D/2, at least two building
blocks are needed in order to modify all entries.
We note, that the dimension of the input can-
not change and it needs to be identical to the
dimension of the output. The two neural networks
involved can consist of arbitrary layers as long as
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their output and input dimensions are consistent
with Equation (2).
The maps defined can be easily inverted which
leads to the following equations:

x1:d = y1:d (3)

xd+1:D = (yd+1:D − r(x1:d)) ◦ exp(−k(x1:d)) (4)

We note that due to this structure, the Jaco-
bian is lower-triangular and its determinant can be
obtained by multiplying the diagonal entries only.

2.2 DeepONets

Before presenting our novel architecture for invert-
ible DeepONets, we briefly review the original
DeepONet formulation by Lu et al (2021). Deep-
ONets have been developed to solve paramet-
ric PDEs and significantly extend the Physics-
Informed Neural Network (PINNs, Raissi et al
(2019)) framework as no additional training phase
is required if the input parameters of the PDE
are changed. We consider a, potentially nonlinear
and time-dependent, PDE with an input function
u ∈ U and solution function s ∈ S where U ,S
are appropriate Banach spaces. The former can
represent e.g. source terms, boundary or initial
conditions, material properties. Let:

N (u, s)(ξ) = 0 (5)

denote the governing PDE where N : U × S → V
is an appropriate differential operator and ξ the
spatio-temporal coordinates. Furthermore, let:

B(u, s)(ξ) = 0 (6)

denote the operator B : U × S → V associated
with the boundary or initial conditions. Assuming
that the solution s for each u ∈ U is unique, we
denote with G : U → S the solution operator that
maps from any input u to the corresponding solu-
tion s. The goal of DeepONets is to approximate
it with an operator Gθ that depends on tunable
parameters θ. The latter can yield an approxima-
tion to the actual solution at any spatio-temporal
point ξ which we denote by Gθ(ξ). It is based on

a separated representation (Lu et al, 2021)1:

Gθ(u)(ξ) =

Q∑

j=1

bj


 u(η1), ..., u(ηF )︸ ︷︷ ︸

u


 tj(ξ)

(7)
and consists of the so-called branch network
whose terms bj depend on the values of the input
function u at F fixed spatio-temporal locations2

{ηl}Fl=1 which we summarily denote with the
vector u ∈ RF , and the so-called trunk network
whose terms tj depend on the spatio-temporal
coordinates ξ (see Figure 2.2). Both networks
have trainable weight and bias parameters which
we denote collectively by θ. We emphasize that,
once trained, the DeepONet can provide pre-
dictions of the solution at any spatio-temporal
location ξ, a feature that is very convenient in
the context of inverse problems as the same
DeepONet can be used for solving problems with
different sets of observations.

We note that in the next section, we will
use a vectorized formulation of Equation (7) and
process various spatio-temporal coordinate data-
points together as this is needed to ensure invert-
ibility of the DeepONet. Labeled data can be
used for training which consist of pairs of u and
corresponding solutions s = G(u) evaluated at cer-
tain spatio-temporal locations. Unlabeled training
data (i.e. only inputs) can also be employed in a
physics-informed approach as introduced by Wang
et al (2021), by including the governing PDE
in Equation (5) in an additional loss term as
discussed section 2.4.

2.3 Invertible DeepONets

The invertible RealNVP introduced in section 2.1
is employed exclusively on the branch network i.e.
we assume that:

D = F = Q (8)

and the input x of section 2.1 is the vector u ∈ RF

containing the values of the PDE-input at D = F

1We omit the NN parameters θ on the right-hand side in
order to simplify the notation.

2These points are usually chosen to be uniformly distributed
over the entire domain, but it is also possible to increase their
density in certain areas, e.g. with high variability.
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Fig. 1 (Left) Classical DeepONet (Lu et al, 2019) and (Right) proposed Invertible DeepONet architecture

spatio-temporal locations whereas the output y of
section 2.1 is now the D = Q values of the branch
net b = [b1, . . . , bQ]

T ∈ RD. We note that this
restriction regarding the equality of the dimen-
sion of the input u and the output of the branch
network b is due to the use of an invertible archi-
tecture. As a consequence, the dimension of the
trunk-network output i.e. {tj(ξ)}Qj=1 is also the
same as the dimension of u. This requirement
does not reduce the generality of the methodol-
ogy advocated as Q is a free parameter in the
definition of the operator Gθ in Equation (7).

In view of the inverse problems we would
like to address, we consider K spatio-temporal
locations, {ξk}Kk=1 and we denote with s ∈ RK

the vector containing the PDE-solution’s values
at these locations i.e. s = [s(ξ1), . . . , s(ξK)]

T
.

Finally we denote with Y the K × D matrix
constructed by the values of the trunk network
outputs at the aforementioned locations, i.e.:

Y =



t1(ξ1) ... tD(ξ1)
... ...

t1(ξK) ... tD(ξK)


 . (9)

As a result of Equation (7), we can write that:

s = Y b (10)

As the matrix Y is in general non-invertible, one
can determine b given s by solving a least-squares
problem, i.e.:

min
b

∥s− Y b∥22 (11)

or a better-behaved, regularized version thereof:

min
b

∥s− Y b∥22 + ϵ∥b∥22 (12)

where a small value is generally sufficient for
the regularization parameter ϵ << 1. We note

that given s and once b has been determined by
solving Equation (11) or Equation (12), we can
make use of the invertibility of the branch net in
order to obtain the input vector u. While other
approaches are possible in order to determine b,
we recommend using the regularized, least-squares
formulation, as this led to robust results in our
experiments. It is nevertheless important to use
the same method during training and when deter-
ministic predictions are sought, since different
methods can lead to different b’s for the same
s. We note that in the proposed method for the
solution of Bayesian inverse problems (see Section
2.5), no use of Equation (12) is made except for
the training of the DeepONet (see Section 2.4).

For the ensuing equations we denote the for-
ward map implied by Equation (10) as:

s = Fθ(u,Y ) (13)

and the inverse obtained by the two steps
described above as:

u = Iθ(s,Y ) (14)

where we explicitly account for the NN parameters
θ.

2.4 A Semi-supervised Approach for
Invertible DeepONets

As mentioned earlier and in order to train the
invertible DeepONet proposed, i.e. to find the
optimal values for the parameters θ, we employ
both labeled (i.e pairs of PDE-inputs u and
PDE-outputs s) and unlabled data (i.e. only
PDE-inputs u) in combination with the govern-
ing equations. The loss function L employed is
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therefore decomposed into two parts as3:

L = Llabeled + Lunlabeled (15)

The first term Llabeled pertains to the labeled data
and is further decomposed as:

Llabeled = Ll,forward + Ll,inverse (16)

Without loss of generality and in order to keep
the notation as simple as possible we assume that
Nl pairs of labeled data are available, each of
which consists of the values of the PDE-input u at
D locations which we denote with u(i) ∈ RD, i =
1, . . . Nl and the values of the PDE-output at K
spatio-temporal locations which we denote with
s(i) ∈ RK , i = 1, . . . Nl. If the K ×D matrix Y is
defined as in Equation (9) and in view of the for-
ward (Equation (13)) and inverse (Equation (14))
maps defined earlier, we write:

Ll,forward =
1

Nl

Nl∑

i=1

∥s(i) −Fθ(u
(i),Y )∥22 (17)

and:

Ll,inverse =
1

Nl

Nl∑

i=1

∥u(i) − Iθ(s(i),Y )∥22. (18)

By employing both loss terms, the NN parameters
θ can balance the accuracy of the approximation
in both maps.

Furthermore and assumingNu PDE-inputs are
available each of which is evaluated at D spatio-
temporal points {ξ(l)}Dl=1 with u(i) ∈ RD denoting
these values, we express the Lunlabeled loss term
as:

Lunlabeled = LBC + Lres + Lu,inverse. (19)

The first LBC and second Lres terms are physics-
informed Wang et al (2021) and account for the
residuals in the boundary (and/or initial) condi-
tions and the governing PDE respectively. In the
case of LBC we select NB (uniformly distributed)

points along the boundary, say ξ
(j)
B , l = 1, . . . , NB .

3All loss functions depend on θ which we omit in order to
simplify the notation.

Then, in view of Equation (6), we employ:

LBC =
1

NuNB

Nu∑

i=1

NB∑

l=1

∥B(u(i), Gθ(u
(i)))(ξ

(l)
B )∥22

(20)
In the interior of the problem domain and in view
of Equation (5), we employ a loss:

Lres =
1

Nu Nres

Nu∑

i=1

Nres∑

l=1

∥N (u(i), Gθ(u
(i))(ξ(l))∥22

(21)
which involves Nres collocation points.

The third term Lu,inverse pertains to the for-
ward and inverse maps in Equations (13), (14) and
can be expressed as:

Lu,inverse =
1

Nu

Nu∑

i=1

∥ui − Iθ(Fθ(u
(i),Y ),Y ))∥22

(22)
where the matrix Y is defined as in Equation (9).

The minimization of the combined loss L, with
respect to the NN parameters θ of the branch and
trunk network, is performed with stochastic gra-
dient descent and the ADAM (Kingma and Ba,
2014) scheme in particular. Gradients of the loss
were computed using the automatic differentiation
tools of the JAX library (Bradbury et al, 2018).
We finally note that the D spatioemporal loca-
tions need not be the same nor do they need to be
equal in number in all data instances as assumed
in the equations above. In such cases the vector
of the observables and the matrices Y involved
would differ which would further complicate the
notation but the same DeepONet parameters θ
would appear in all terms.

2.5 Invertible DeepONets for
Bayesian inverse problems

In this section we discuss how the invertible Deep-
ONets proposed and trained as previously dis-
cussed, can be used to efficiently approximate the
solution of a Bayesian inverse problem in the pres-
ence of, potentially noisy, observations as well as
prior uncertainty about the unknowns. A central
role is played by the readily available invertible
map which the RealNVP architecture affords. In
particular, let ŝ ∈ RK denote a vector of noisy
observations of the PDE-solution at certain K
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spatio-temporal locations. These are assumed to
be related to the PDE-solution’s values at these
locations, denoted summarily by s ∈ RK , as
follows:

ŝ = s+ σ η, η ∼ N (0, I). (23)

where σ2 is the variance of the observational
noise. This in turn defines a conditional density
(likelihood) p(ŝ | s):

p(ŝ | s) = N (ŝ | s, σ2I). (24)

In the context of a Bayesian formulation and
given the implicit dependence of the PDE-output
s on u, the likelihood would be combined with the
a prior density pu(u) on the PDE-inputs in order
to define the sought posterior:

p(u | ŝ) ∝ p(ŝ | s) pu(u).

Even if the trained DeepONet were used to infer
p(u | ŝ) (e.g. using MCMC) several evaluations
would be needed especially if the dimension of
u was high. In the sequel we demonstrate how
one can take advantage of the invertible NN
architecture in order to obtain a semi-analytic
approximation of the posterior in the form of a
mixture of Gaussians and by avoiding iterative
algorithms like MCMC altogether.

We note first that by combining the likelihood
with Equation (10), we can write it in terms of the
D−dimensional, branch-network output vector b
as:

p(ŝ | b) = N (ŝ | Y b, σ2I). (25)

Since u ∈ RD is related to b through the invertible
RealNVP bNN : RD → RD, we can also obtain a
prior density pb(b) on b as:

pb(b) = pu(b
−1
NN (b)) J(b) (26)

where b−1
NN denotes the inverse and J(b) = |∂b

−1
NN

∂b |
is the determinant of its Jacobian. The latter, as
mentioned in section 2.1, is a triangular matrix
and its determinant can be readily computed at a
cost O(D).

We choose not to directly operate with the
prior pb(b), but construct an approximation
pb,G(b) to this in the form of a mixture of
D−dimensional Gaussians as this allows as to

facilitate subsequent steps in finding the posterior.
In particular:

pb,G(b) =

M∑

m=1

wj N (b | mb,m,Sb,m) (27)

where M denotes the number of mixture compo-
nents and mb,m, Sb,m the mean vector and covari-
ance matrix of the mth component respectively.
Such an approximation can be readily computed,
e.g. using Variational Inference (Wainwright and
Jordan, 2008) and without any forward or inverse
model evaluations by exploiting the fact that sam-
ples from pb can be readily drawn using ancestral
sampling i.e. by drawing samples of u from pu and
propagating those with bNN . We note that find-
ing this representation can become more diffucult
in case M is large but the complexity of the algo-
rithms involved in general scales linearly with M
(Bishop and Nasrabadi, 2006).

By combining the (approximate prior) pb,G(b)
above with the Gaussian likelihood p(ŝ | b) of
Equation (25) we obtain an expression for the
posterior p̃(b | ŝ) using Bayes’ theorem:

p̃(b | ŝ) ∝ p(ŝ | b)pb,G(b) (28)

Due to the conjugacy of prior and likelihood,
we can directly conclude that the (approximate)
posterior is also a mixture of Gaussians (Bishop
and Nasrabadi, 2006). Therefore, using expres-
sions for the aforementioned likelihood/prior pair,
we obtain a closed-form posterior p̃(b | ŝ) on b of
the form:

p̃(b | ŝ) =
M∑

m=1

w̃j N (b | µb,m,Cb,m) (29)

where the mean µb,m and covariance Cb,m of each
mixture component can be computed as:

C−1
b,m = σ−2Y TY + S−1

b,m

C−1
b,mµb,m = σ−2Y T ŝ+ S−1

b mb,m
(30)

The weights w̃m (
∑M

m=1 w̃m = 1) would be
proportional to:

w̃m ∝ wm | Dm |−1/2 exp(− 1
2 (ŝ− Y mb,m)T

D−1
m (ŝ− Y mb,m))

(31)
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where:
Dm = σ2I + Y Sb,mY T (32)

Therefore inference tasks on the sought bsu can
be readily carried out by sampling b from the
mixture-of-Gaussians posterior above and prop-
agating those samples through the inverse map
b−1
NN to obtain u-samples. We note that by

employing a mixture of Gaussians with sufficient
components M , one can approximate with arbi-
trary accuracy any non-Gaussian density as well
as capture multimodal posteriors, a task that is
extremely cumbersome with standard, Bayesian
inference schemes (Franck and Koutsourelakis,
2017).

3 Numerical Illustrations

We applied the proposed framework to three
examples, i.e. the antiderivate operator , a
reaction-diffusion PDE as well as a Darcy-type
elliptic PDE. In each of these cases, we report
the relative errors of forward and inverse maps
(on test data) when trained with varying amounts
of labeled and unlabeled training data. For the
reaction-diffusion PDE and the Darcy-type ellip-
tic PDE, we also use the proposed invertible-
DeepONet-surrogate to solve pertinent Bayesian
inverse problems. The code for the aforementioned
numerical illustrations is available here4. In Table
1, we summarize the most important dimensions
for each of the following examples, namely D:
the dimension of the PDE-input, K: the dimen-
sion of the observed PDE-output, Nl: number
of labeled data (Equations (17), (18)), Nu: the
number of unlabeled data (e.g. Equation (22)),
Nres: the number of interior collocation points
(Equation (21)) andNBC the number of boundary
collocation points (Equation (20)).

3.1 Anti-derivative Operator

As a first test case we considered the antideriva-
tive operator on the interval ξ ∈ [0, 1] with:

ds(ξ)

dξ
= u(ξ) with s(0) = 0 (33)

i.e. when the input u corresponds to the right-
hand-side of this ODE and the operator G(u) that

4URL https://github.com/pkmtum/Semi-supervised
Invertible Neural Operators

we attempt to approximate is simply the integral

operator G(u)(ξ) =
∫ ξ

0
u(t) dt. We generated

Nu = 10000 unlabeled training data by sampling
inputs u from a Gaussian process with zero mean
and exponential quadratic covariance kernel with
a length scale ℓ = 0.2. Their values at the same
D = 100 uniformly-distributed locations in [0, 1]
were recorded. We subsequently randomly choose
Nres = 200 collocation points to evaluate the
residuals (see Equation (21)).

Moreover, we used up to Nl = 10000 labeled
training data, for which the inputs were generated
as for the unlabeled training data, and the outputs
were obtained by solving the ODE above and eval-
uating it at K = 200 randomly chosen points. We
trained the invertible DeepONet on Nu = 10000
unlabeled training data with a batch size of 100. In
each batch we added 1, 10 or 100 labeled training
data points per batch (i.e. Nl = 100, 1000, 10000
respectively in Equations (17), (18)). A minimum
of one labeled datapoint is required in order to set
the initial condition correctly as we did not enforce
this separately in the unlabeled loss part. With
regards to the architecture of the networks used,
we employed a MLP with four layers and 100 neu-
rons each for the trunk network and 6 RealNVP
building blocks for the branch network which were
parametrized by a two-layered MLP. Variations
around these values in the number of neurons,
layers were also explored (in the subsequent exam-
ples as well) and did not impact significantly the
performance.

Using the ADAM optimizer and an initial
learning rate of 10−3, we run the model training
for 4 × 104 iterations with an exponential learn-
ing rate decay with rate 0.9 every 1000 iterations.
As test data, we used 1000 new (i.e. not included
in the training data) input-output pairs and com-
pared the predicted forward and inverse solutions
with the actual ones. The results obtained in terms
of the relative errors are summarized in Table 2.

The error values indicate that both the forward
as well as the inverse maps are very well approxi-
mated by the proposed invertible DeepONet. The
addition of more labeled training data results in
even lower errors especially for the inverse map for
which the relative error is decreased from almost
∼ 4% to ∼ 2%.
In order to visualize the results we plot for four
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section 3.1 section 3.2 section 3.3 section 3.4.1 section 3.4.2
D 100 100 64 100 64
K 200 200 3844 25, 100 1922, 3844
Nl 102, 103, 104 0, 500, 5000 103 500 5000
Nu 104 5000 103 104 5000
Nres 200 200 3844 200 200
NBC - 300 - - -

Table 1 Main dimensions for each numerical illustration

labeled data [%] 1 10 100
relative error s (forward map) 0.0152± 0.0151 0.00791± 0.00799 0.00728± 0.00797
relative error u (inverse map) 0.0371± 0.0241 0.034± 0.024 0.0215± 0.0153

Table 2 Relative test errors and their standard deviations depending on the amount of labeled training data for the
anti-derivative operator. The percentage of labeled data is the amount of data used in comparison to unlabeled training
data, e.g. in the 10% case we used ten times more unlabeled training data whereas in the 100% case the
amount of labeled and unlabeled training data was the same.

randomly-chosen test cases the predictions (when
trained with 10% labeled data) of both the for-
ward (Figure 2) and inverse (Figure 3) operator.
In all cases, the predictions are indistinguishable
from the reference functions.

In Appendix A we include additional results
for this problem with varying amounts of unla-
beled and labeled training data in order to further
show their influence.

3.2 Reaction-Diffusion dynamics

The second illustrative example involves the
reaction-diffusion equation on the space-time
domain ξ = (x, t) ∈ [0, 1]× [0, 1]:

∂s

∂t
= Ds

∂2s

∂x2
+ ks2 + u(x) (34)

Here, Ds = 0.01 is the diffusion constant, k =
0.01 the reaction rate and the source-term u(x)
is chosen to be the PDE-input. We used zero val-
ues as initial conditions and boundary conditions.
We generated random source terms by sampling
from a Gaussian process with zero mean and and
exponential quadratic covariance kernel with a
length scale ℓ = 0.2 which were then evaluated
at D = 100 uniformly distributed points over
[0, 1]. The PDE was subsequently solved using an
implicit Finite-Difference scheme and evaluated
at 200 randomly chosen points to generate the
labeled training data.

We trained our model with Nu = 5000 unla-
beled data which were processed in batches of
100 samples and to which varying amounts of
labeled data were added. Since for this problem
the boundary conditions were enforced separately,
the amount of labeled training data used could
also be zero. All unlabeled training data points
were evaluated at Nres = 200 randomly selected
collocation points. With regards to the network
architecture, we employed a MLP with five layers
and 100 neurons each for the trunk network and 3
RealNVP building blocks for the branch network
which were parametrized by a three-layered MLP.
Using the ADAM optimizer and an initial learning
rate of 10−3, we run the model training for 12×104

iterations with an exponential learning rate decay
with rate 0.9 every 2000 iterations. For our test
dataset, we generated 1000 new (unseen) source
terms u and corresponding solutions s. A sum-
mary of the relative errors obtained is contained
in Table 3.

We note that again for all three settings we
achieve very low error rates, which decrease as
the amount of labeled training data increases. In
Figure 4 and 5 we show the predictions (trained
with 500 i.e. 10% labeled data) of both forward
and inverse map for three randomly chosen test
cases.

3.3 Flow through porous media

In the final example we considered the Darcfy-
flow elliptic PDE in the two-dimensional domain
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Fig. 2 Forward map - Comparison of the true PDE-output/solution s (given a PDE-input u) with the one predicted by
the proposed invertible DeepONet and for the anti-derivative operator
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Fig. 4 Forward map - Comparison of the true PDE-output/solution s (given the PDE-input u) with the one predicted by
the proposed invertible DeepONet and for Reaction-Diffusion PDE.
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labeled data [%] 0 10 100
relative error for s 0.00925± 0.00492 0.0105± 0.00519 0.00813± 0.00445
relative error for u 0.024± 0.01021 0.0184± 0.00578 0.0162± 0.00592

Table 3 Relative errors on test data depending on the amount of labeled training data for the reaction-diffusion case.
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Fig. 5 Inverse map - Comparison of the true PDE-input u
(given the PDE-output/solution s) with the one predicted
by the proposed invertible DeepONet and for Reaction-
Diffusion PDE.

ξ = (x1, x2) ∈ [0, 1]2

∇ · (u(ξ)∇s(ξ)) = 10 (35)

where the PDE-input u corresponds to the per-
meability field. We assumed zero values for the
solution s along all boundaries which we a-priori
incorporated in our operator approximation by
multiplying the DeepONet expansion in Equation
(7) with the polynomial x1(1−x1) x2(1−x2). We
used Nu = 1000 unlabeled training data points
with Nres = 3844 collocation points (Equation
(21)) during training and added either no labeled
training data at all (i.e. Nl = 0) or Nl = 1000. In
order to obtain the latter we solved Equation (35)
with the Finite Element library FEniCS (Logg
et al, 2012) on a 128 × 128 mesh with linear ele-
ments and evaluated the solution at 3844 regularly
distributed points. We represent the PDE-input u

as follows5:

ln(u) =

4∑

f1=1

4∑

f2=1

cf1,f2,1 sin(f1x1) cos(f2x2)

+cf1,f2,2 sin(f1x1) sin(f2x2)

+cf1,f2,3 cos(f1x1) sin(f2x2)

+cf1,f2,4 cos(f1x1) cos(f2x2) (36)

using 64 feature functions and corresponding coef-
ficients c. In order to generate the training data,
we sampled each of the aforementioned 64 coeffi-
cients from a uniform distribution in [0, 1]. In this
example the 64-dimensional vector of the c’s serves
as the input in the branch network (i.e. D = 64).
With the help of the c’s and of Equation (36), one
can reconstruct the full permeability field.

With regards to the network architecture, we
employed a MLP with five layers and 64 Neu-
rons each for the trunk network and 3 RealNVP
building blocks for the branch network which were
parametrized by a three-layered MLP. Using the
ADAM optimizer and an initial learning rate of
10−3, we run the model training for 105 iterations
with an exponential learning rate decay with rate
0.9 every 2000 iterations. We tested the trained
model on 2500 unseen test data and obtained the
results in Table 4. As in the previous examples, the
inclusion of labeled data significantly improves the
predictive accuracy of the trained model. For the
case without data the predictive accuracy of the
forward map is slightly lower but the accuracy in
the inverse map is comparably low. The addition
of labeled data improves the predictive accuracy
for both maps.

labeled data [%] 0 100
relative error for s 0.0134± 0.00509 0.0245± 0.0108
relative error for u 0.235± 0.137 0.0566± 0.0198

Table 4 Relative errors on test data depending on the
amount of labeled training data for the Darcy example
with feature coefficients as inputs.

5We employ this expansion for the logarithm of u in order
to ensure that the resulting permeability field is positive
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In Figure 6 we compare the reference solution
for two illustrative test cases with the the forward
map learned with labeled training data. As sug-
gested by the cumulative results in Table 4 the
two predictions are very close to the reference and
the accuracy is very high. In Figures 7 (without
labeled training) and 8 (with labeled training) the
results for two illustrative inverse test cases are
shown.

While locally the error can be significant, the
main characteristics of the PDE-input field u can
be captured.

We discuss in the next section the case where
the input permeability field u is not represented
with respect to some feature functions but rather
as a discretized continuous field.

3.3.1 Coarse-grained (CG) input
parameters

In this sub-case, we modeled the permeability field
u with an exponentiated (to ensure positivity)
Gaussian Process with mean zero and exponen-
tial quadratic covariance with length scale ℓ = 0.1.
The PDE was then again solved on a 128 × 128
FE mesh and the values of the solution s were
assumed to be observed at 3844 regularly dis-
tributed points. We moreover sub-sampled the
generated PDE input on a regular 8× 8 grid and
its D = 64 values represented the branch network
input u. We generated Nu = 1000 unlabeled fields
u in total and used Nres = 3844 collocation points
(Equation (21)) during training. We also trained
the model with Nl = 1000 labeled training data.

The results obtained can be found in Table 5.
The test data in this table consists of 2500 unseen,
discretized, permeability fields and their respec-
tive solutions. The error rates are computed with
respect to the coarse-grained reference input. As
in the previous setting, we observe a significant
improvement in the accuracy of the inverse map
when labeled data are used in training. In Figure

labeled data [%] 0 100
relative error for s 0.0164± 0.00712 0.0164± 0.00748
relative error for u 0.121± 0.041 0.0656± 0.0168

Table 5 Relative errors on test data depending on the
amount of labeled training data for the Darcy example
with coarse-grained input parameters

9 we compare the reference solution for two illus-
trative test cases with the the forward map learned
with labeled training data. As suggested by the
cumulative results in Table 5 the two predictions
are very close to the reference and the accuracy is
very high.

In Figures 10 (without labeled training) and
11 (with labeled training) the results for two illus-
trative inverse test cases are shown. We note again
that the main features of the PDE-input’s spatial
variability are captured, despite the presence of
localized errors.

3.4 Bayesian Inverse Problems

In this section we demonstrate the utility of
the invertible DeepONet proposed in the solu-
tion of Bayesian inverse problems and in obtaining
accurate approximations of the posterior without
any need for additional reference model runs nor
for any costly and asymptotically-exact sampling.
For each of the examples considered, only one
observed output ŝ was assumed to be given. The
variance of the observational noise σ2 was assumed
to be given although this could readily be inferred,
especially if a conjugate inverse-Gamma prior was
used for it. In this manner, any deviations from the
actual posterior could be attributed to inaccura-
cies of the DeepONet-based surrogate. Errors due
to the approximation of the prior with a mixture
of Gaussians as in Equation (27) can be made arbi-
trarily small by increasing the number of mixture
components M .

3.4.1 Reaction-Diffusion dynamics

We employed the trained model of the reaction-
diffusion system (with 10% labeled training data),
in combination with the formulation detailed in
section 2.5 for approximating the posterior. We
use a prior pu(u) arising from the discretization of
Gaussian Process with zero mean and exponential
quadratic covariance kernel with a length scale ℓ =
0.2. For the Gaussian mixture models involved for
the prior and subsequently the posterior on b we
used two components i.e. M = 2 in Equations
(27), (29). The results can be seen in the following
Figures. The obtained posterior encapsulates the
true parameter input for all three cases.
In Figure 12 we used test cases with 100 observed
solution data points for each parameter input and
a noise level of σ2 = 0.001 (see Equation (23)). In
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Fig. 6 Forward map - Comparison of the true PDE-output/solution s (given feature coefficients as the PDE-input u) with
the one predicted by the proposed invertible DeepONet and for Darcy-type PDE.
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Fig. 7 Inverse map - Comparison of the reconstructed PDE-input (given the PDE-output/solution s) with the one predicted
by the proposed invertible DeepONet and for Darcy-type PDE with zero labeled training data.
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Fig. 8 Inverse map - Comparison of the reconstructed PDE-input (given the PDE-output/solution s) with the one predicted
by the proposed invertible DeepONet and for Darcy-type PDE.
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Fig. 9 Forward map - Comparison of the true PDE-output/solution s (given the coarse-grained PDE-input u) with the
one predicted by the proposed invertible DeepONet and for Darcy-type PDE.
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Fig. 10 Inverse map - Comparison of the coarse-grained PDE-input u (given the PDE-output/solution s) with the one
predicted by the proposed invertible DeepONet and for Darcy-type PDE with zero labeled training data.
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Fig. 11 Inverse map - Comparison of the coarse-grained PDE-input (given the PDE-output/solution s) with the one
predicted by the proposed invertible DeepONet and for Darcy-type PDE.

Figure 13 we increased the noise level ten-fold, to
σ2 = 0.01 and, as expected, so did the posterior
uncertainty. In Figure 14 we used σ2 = 0.001 but
decreased the number of observations of the PDE-
solution to 25 points (instead of 100). As expected,
this led to an increase in posterior uncertainty.

Our method can therefore be used as a fast
approach without any need for optimization and
MCMC sampling to generate an approximate pos-
terior. We note that the posterior uncertainty
increases if number of observations decreases or if

the observation noise σ2 increases. In Appendix
B, we show the excellent agreement of the approx-
imate posterior computed with the actual one as
obtained by costly and time-consuming MCMC
simulations.

3.4.2 Flow through porous media

We also solved a Bayesian inverse problem in
the context of the Darcy-type PDE by using our
trained model of section 3.3 with added labeled
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Fig. 12 Bayesian Inverse Problem for Reaction-Diffusion
PDE: 100 observed data points with σ2 = 0.001 and a 100-
dimensional parametric input.

training data. We computed an approximate pos-
terior based on the algorithm presented in section
2.5 and compared it with the true PDE-input.
For the Gaussian mixture models involved for the
prior and subsequently the posterior on b we used
two mixture components i.e. M = 2 in Equations
(27), (29).

Firstly, we considered permeability fields
represented with respect to 64 known feature
functions as described in section 3.3. The 64 coef-
ficients c (Equation (36)) represented the sought
PDE-inputs and a uniform prior in [0, 1]64 was
employed. The results in terms of the permeabil-
ity field u can be seen in the following Figures.
The obtained posterior is in good agreement with
the ground truth, e.g. the PDE-input field used
to generate the data with the PDE-solver.

In particular, in Figure 15 we assumed that
3844 observations of the PDE-output were avail-
able, on a 62× 62 regular grid. The data that was
synthetically generated was contaminated with
Gaussian noise with σ2 = 0.001 (see Equation
(23)). In Figure 16 we increased the noise level
and subsequently the posterior uncertainty was
slightly higher but the posterior mean is still close
to the ground truth. In Figure 17 we used σ2 =
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Fig. 13 Bayesian Inverse Problem for Reaction-Diffusion
PDE: 100 observed data points with σ2 = 0.01 and a 100-
dimensional parametric input.

0.01 but decreased the number of observations by
50% to 1922. As expected, the posterior uncer-
tainty increased again but still encapsulated the
ground truth.

Finally, we considered the case where the PDE-
input is represented on a regular 8 × 8 grid as
in section 3.3.1. The discretized GP described
therein was used as the prior. In Figure 18 we com-
pare the ground truth with the posterior mean and
standard deviation as obtained from 3844 obser-
vations on a 62 × 62 regular grid and for a noise
level of σ2 = 0.01 (see Equation (23)). In Figure
19 we used lower noise with σ2 = 0.001 level and,
as expected, the posterior uncertainty was lower
and the posterior mean was closer to the ground
truth. In Figure 20 we again choose the previous
noise level but decreased the number of observa-
tions by half, to 1922. As expected, the posterior
uncertainty increased but still encapsulated the
ground truth.

4 Conclusions

We introduced an invertible DeepONet architec-
ture for constructing data-driven surrogates of
PDEs with parametric inputs. The use of the Real-
NVP architecture in the branch-network enables
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Fig. 14 Bayesian Inverse Problem for Reaction-Diffusion
PDE: 25 observed data points with σ2 = 0.001 and a 100-
dimensional parametric input.

one to obtain simultaneously accurate approxima-
tions of both the forward and the inverse map (i.e.
from PDE-solution to PDE-input). The latter is
particularly useful for deterministic and stochas-
tic (Bayesian), PDE-based, inverse problems for
which accurate solutions can be readily obtained
once the proposed DeepONet has been trained
offline. The training framework can make use of
expensive, labeled data (i.e. PDE input-output
pairs) as well as inexpensive, unlabeled data (i.e.
only PDE-inputs) by incorporating residuals of
the governing PDE and its boundary/initial con-
ditions into the loss function. The use of labeled
data was generally shown to improve predictive
accuracy and especially in terms of the inverse
map which is something that warrants further
investigation.

In the case of Bayesian formulations in partic-
ular, we showed that the availability of the inverse
map can lead to highly-efficient approximations
of the sought posterior without the need of addi-
tional PDE solves and without any cumbersome
sampling (e.g. due to MCMC, SMC) or iterations
(e.g. due to SVI).

The performance of the proposed strategy was
demonstrated on several PDEs with modest- to

high-dimensional parametric inputs and its effi-
ciency was assessed in terms of the amounts
of labeled vs unlabeled data. Furthermore, the
approximate posterior obtained was in very good
agreement with the exact posterior obtained with
the reference solver and MCMC. The accuracy
persisted for various levels of noise in the data
as well as when changing the number of available
observations. We note finally that unbiased esti-
mates with respect to the exact posterior could
be readily obtained with Importance Sampling
and by using the approximate posterior as the
importance sampling density. This would never-
theless imply additional PDE solves which we
would expect to be modest in number given the
accuracy of the approximation i.e. the proximity of
the Importance Sampling density with the actual
posterior.

A Influence of the amount of
data

This section contains additional results as
obtained for the antiderivative example and for
different amounts of training data. We chose
exactly the same settings as described in Section
3.1 and varied only the amount of labeled and
unlabeled training data. In Figure 21 we plot
the relative error in the foward and inverse map
with regards to the amount of unlabeled training
data. The color indicates the amount of labeled
training data used, i.e. blue curves correspond
to 1% labeled training data, whereas red curves
correspond to 100% labeled training data.

We observe that although the relative errors
decrease with the addition of more data, the bene-
fit is more pronounced with the addition of labeled
data.

B Comparison with MCMC

In the main part of this article we already showed
that the true parameter input is encapsulated
by the posterior. In this section we compare the
approximate posterior computed with the refer-
ence posterior obtained by MCMC.
In particular, for two, randomly-chosen cases in
the reaction-diffusion example, the true poste-
rior was computed using the NUTS sampler from
the Blackjax library (Lao and Louf, 2020). As is
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Fig. 15 Bayesian Inverse Problem for Darcy-type PDE: 3844 observed data points with σ2 = 0.001 and a 64-dimensional
parametric input representing feature coefficients.
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Fig. 16 Bayesian Inverse Problem for Darcy-type PDE: 3844 observed data points with σ2 = 0.01 and a 64-dimensional
parametric input representing feature coefficients.
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Fig. 17 Bayesian Inverse Problem for Darcy-type PDE: 1922 observed data points with σ2 = 0.01 and a 64-dimensional
parameter input representing feature coefficients.
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Fig. 18 Bayesian Inverse Problem for Darcy-type PDE: 3844 observations with σ2 = 0.01 and a 64-dimensional, discretized
permeability field.
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Fig. 19 Bayesian Inverse Problem for Darcy-type PDE: 3844 observations with σ2 = 0.001 and a 64-dimensional discretized
permeability field.
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Fig. 20 Bayesian Inverse Problem for Darcy-type PDE: 1922 observations with σ2 = 0.01 and a 64-dimensional discretized
permeability field.
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Fig. 21 Relative errors on test data for the forward and inverse map depending on the amount of labeled and unlabeled
training data

the case with all MCMC-based inference schemes,
these provide the reference posterior (asymptoti-
cally). The results shown in Figure 22 in terms of
the posterior mean ± 2 posterior standard devia-
tions indicate excellent accuracy of the posterior
approximation proposed. While our method does
not require any new forward model evaluation or
model gradients, the MCMC algorithms require
a forward model solve and its gradients for each
sample. For the MCMC-based results displayed in
total 40000 samples were generated.
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Fig. 22 Bayesian Inverse Problem for Reaction-Diffusion PDE: 100 observed data points with σ2 = 0.01 and a 100-
dimensional parameter input. Left: Posterior based on MCMC (NUTS), Right: Posterior obtained by our algorithm
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