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T. Utzschneider, Simone Nüssing, Yang Liao, Teisha Mason, Santiago Valle Torres, Stephen A. Wilcox, Krystian 
Kanev, Sebastian Jarosch, Justin Leube, Stephen L. Nutt, Dietmar Zehn, Ian A. Parish, Wolfgang Kastenmüller, 
Wei Shi, Veit R. Buchholz†, Axel Kallies†. c-Myb orchestrates T cell exhaustion and response to checkpoint inhibi-
tion. Nature (2022) 
 
Anna Purcarea*, Sebastian Jarosch*, Jack Barton, Simon Grassmann, Ludwig Pachmayr, Elvira D’Ippolito, 
Monika Hammel, Anna Hochholzer, Karolin I. Wagner, Joost H. van den Berg, Veit R. Buchholz, John B. A. G. 
Haanen, Dirk H. Busch†, and Kilian Schober†. Signatures of recent activation identify a circulating T cell compart-
ment containing tumor-specific antigen receptors with high avidity. Science Immunology (2022)  
 
Karolin I. Wagner*, Laura M. Mateyka*, Sebastian Jarosch*, Vincent Grass, Simone Weber, Kilian Schober, 
Monika Hammel, Teresa Burrell, Behnam Kalali, Holger Poppert, Henriette Beyer, Sophia Schambeck, Stefan Hold-
enrieder, Andrea Ströges-Achatz, Verena Haselmann, Michael Neumaier, Johanna Erber, Alina Priller, Sarah 
Yazici, Hedwig Roggendorf, Marcus Odendahl, Torsten Tonn, Andrea Dick, Klaus Witter, Hrvoje Mijocevic, Ulrike 
Protzer, Percy A. Knolle, Andreas Pichlmair, Claudia S. Crowell, Markus Gerhard, Elvira D’Ippolito†, and Dirk H. 
Busch†. Recruitment of highly cytotoxic CD8+ T cell receptors in mild SARS-CoV-2 infection. Cell Reports (2022) 
 
 



 

 

David S. Fischer*, Meshal Ansari*, Karolin I. Wagner*, Sebastian Jarosch, Yiqi Huang, Christoph H. Mayr, Maxi-
milian Strunz, Niklas J. Lang, Elvira D’Ippolito, Monika Hammel, Laura Mateyka, Simone Weber, Lisa S. Wolff, 
Klaus Witter, Isis E. Fernandez, Gabriela Leuschner, Katrin Milger, Marion Frankenberger, Lorenz Nowak, 
Katharina Heinig-Menhard, Ina Koch, Mircea G. Stoleriu, Anne Hilgendorff, Jürgen Behr, Andreas Pichlmair, Ben-
jamin Schubert†, Fabian J. Theis†, Dirk H. Busch†, Herbert B. Schiller† & Kilian Schober†. Single-cell RNA sequenc-
ing reveals ex vivo signatures of SARS-CoV-2-reactive T cells through ‘reverse phenotyping’. Nature Communica-
tions (2021) 
 
Sophie Flommersfeld*, Jan P. Böttcher*, Jonatan Ersching, Michael Flossdorf, Philippa Meiser, Ludwig O. Pach-
mayr, Justin Leube, Inge Hensel, Sebastian Jarosch, Qin Zhang, M. Zeeshan Chaudhry, Immanuel Andrae, Mat-
thias Schiemann, Dirk.H. Busch, Luka Cicin-Sain, Joseph C. Sun, Georg Gasteiger, Gabriel D. Victora, Thomas 
Höfer, Veit R. Buchholz† and Simon Grassmann†. Fate mapping of single NK cells identifies a type 1 innate lym-
phoid-like lineage that bridges innate and adaptive recognition of viral infection. Immunity (2021) 
 
Thomas R. Müller, Sebastian Jarosch, Monika Hammel, Justin Leube, Simon Grassmann, Bettina Bernard, Ma-
nuel Effenberger, Immanuel Andrä, M. Zeeshan Chaudhry, Theresa Käuferle, Antje Malo, Luka Cicin-Sain, Peter 
Steinberger, Tobias Feuchtinger, Ulrike Protzer, Kathrin Schumann, Michael Neuenhahn, Kilian Schober† and Dirk 
H. Busch†. Targeted T cell receptor gene editing provides predictable T cell product function for immunotherapy. 
Cell Reports Medicine (2021) 
 
Michael Hiltensperger, Eduardo Beltrán, Ravi Kant, Sofia Tyystjärvi, Gildas Lepennetier, Helena Domínguez 
Moreno, Isabel J. Bauer, Simon Grassmann, Sebastian Jarosch, Kilian Schober, Veit R. Buchholz, Selin Kenet, 
Christiane Gasperi, Rupert Öllinger, Roland Rad, Andreas Muschaweckh, Christopher Sie, Lilian Aly, Benjamin 
Knier, Garima Garg, Ali M. Afzali, Lisa Ann Gerdes, Tania Kümpfel, Sören Franzenburg, Naoto Kawakami, Bern-
hard Hemmer, Dirk H. Busch, Thomas Misgeld, Klaus Dornmair and Thomas Korn†. Skin and gut imprinted helper 
T cell subsets exhibit distinct functional phenotypes in central nervous system autoimmunity. Nature Immunology 
(2021)  
 

* These authors contributed equally 
† Senior authors



 

 I 

Table of Contents 

Table of Contents ..................................................................................... I 

List of Tables .......................................................................................... V 

List of Figures ....................................................................................... VI 

Aberrations .......................................................................................... VIII 

Abstract .................................................................................................. X 

1. Introduction ......................................................................................... 1 

1.1 Allogeneic hematopoietic stem cell transplantation (aHSCT) ............................. 1 

1.2 Graft-versus-host disease (GvHD) is a major complication after aHSCT ........... 3 

1.3 GvHD Pathophysiology ....................................................................................... 4 

1.3.1 Activation of APCs ....................................................................................................... 4 

1.3.2 Donor T cell activation ................................................................................................. 5 

1.3.3 Tissue damage and inflammation ................................................................................ 6 

1.4 Regulatory T cells in GvHD ................................................................................. 7 

1.5 Prevention and treatment of GvHD ..................................................................... 9 

1.6 The influence of the microbiome on GvHD ....................................................... 10 

1.6.1 Associations from human studies .............................................................................. 10 

1.6.2 Mechanisms by which microbiota may influence GvHD ............................................ 11 

1.6.3 Microbiome modulation as a treatment option for GvHD ........................................... 12 

1.7 Multiplexed analysis methods for single-cell characterization .......................... 14 

1.7.1 Single-cell RNA sequencing ...................................................................................... 14 

1.7.2 Multiplexed imaging techniques ................................................................................. 17 

1.7.3 ChipCytometry ........................................................................................................... 19 

2. Aim of this thesis .............................................................................. 20 
 
 



 

 II 

3. Materials and Methods ..................................................................... 21 

3.1 Materials ........................................................................................................... 21 

3.1.1 Devices ...................................................................................................................... 21 

3.1.2 Consumables ............................................................................................................. 22 

3.1.3 Chemicals and reagents ............................................................................................ 22 

3.1.4 Reagent kits ............................................................................................................... 23 

3.1.5 Antibodies .................................................................................................................. 24 
3.1.5.1 ChipCytometry ...................................................................................................................... 24 
3.1.5.2 Flow cytometry ...................................................................................................................... 25 
3.1.5.3 Single cell RNA sequencing .................................................................................................. 25 

3.1.6 Probes for fluorescence RNA in-situ hybridization ..................................................... 26 

3.1.7 Buffers and media ...................................................................................................... 26 

3.1.8 Human samples ......................................................................................................... 27 

3.1.9 Gene Sets .................................................................................................................. 27 

3.1.10 Software ..................................................................................................................... 29 

3.1.11 Code .......................................................................................................................... 30 

3.2 Methods ............................................................................................................ 31 

3.2.1 Generation of single-cell suspensions ....................................................................... 31 
3.2.1.1 PBMC isolation from human blood samples ......................................................................... 31 
3.2.1.2 Generation of single-cell suspension from human gastrointestinal biopsies ......................... 31 
3.2.1.3 Thawing single-cell suspensions ........................................................................................... 31 

3.2.2 Establishment of ChipCytometry on FFPE tissues .................................................... 31 
3.2.2.1 Antigen retrieval testing ......................................................................................................... 31 
3.2.2.2 Autofluorescence treatment tests .......................................................................................... 31 
3.2.2.3 Evaluation of tissue section adherence ................................................................................. 32 
3.2.2.4 Signal-to-Noise (SNR) ratio evaluation ................................................................................. 32 
3.2.2.5 Tissue integrity scoring ......................................................................................................... 32 
3.2.2.6 Manual counting .................................................................................................................... 32 
3.2.2.7 Computer-assisted image analysis of IHC staining ............................................................... 33 
3.2.2.8 IHC staining within a ChipCytometry chip ............................................................................. 33 
3.2.2.9 Fluorescence RNA in-situ hybridization (FISH) ..................................................................... 33 

3.2.3 ChipCytometry on human FFPE tissues from gastrointestinal biopsies .................... 33 
3.2.3.1 Preparation of FFPE tissues ................................................................................................. 33 
3.2.3.2 Staining, imaging, and bleaching .......................................................................................... 34 
3.2.3.3 Data analysis ......................................................................................................................... 34 
3.2.3.4 Distance measurements ....................................................................................................... 34 



 

 III 

3.2.4 Flow cytometry ........................................................................................................... 35 

3.2.5 Single-cell RNA sequencing ...................................................................................... 35 
3.2.5.1 Cell staining and sorting ........................................................................................................ 35 
3.2.5.2 Preparation of single-cell RNA libraries ................................................................................ 35 
3.2.5.3 Sequencing ........................................................................................................................... 36 
3.2.5.4 Sample demultiplexing using HLA information ...................................................................... 36 
3.2.5.5 Data analysis ......................................................................................................................... 37 

3.2.6 16S rRNA sequencing ............................................................................................... 38 

4. Results ............................................................................................... 39 

4.1 Patient cohort for the investigation of GvHD ..................................................... 39 

4.2 Method development for ChipCytometry on FFPE samples ............................. 40 

4.2.1 Implementation of ChipCytometry for FFPE sample handling ................................... 40 

4.2.2 Marker establishment ................................................................................................. 43 

4.2.3 Fluorescence RNA in-situ hybridization (FISH) ......................................................... 44 

4.2.4 Automatic quantification of multiplexed image data ................................................... 46 
4.2.4.1 Stitching ................................................................................................................................ 47 
4.2.4.2 Segmentation ........................................................................................................................ 47 
4.2.4.3 Pre-processing and spatial spillover correction ..................................................................... 49 
4.2.4.4 Cell quantification from ChipCytometry imaging data ........................................................... 51 
4.2.4.5 Quantification of phenotypically complex cell populations .................................................... 53 
4.2.4.6 Clustering of cell populations for unbiased cell type identification ........................................ 54 

4.3 Method development for scRNA sequencing from gastrointestinal biopsies .... 56 

4.3.1 Cell extraction from gastrointestinal biopsies ............................................................. 56 

4.3.2 Pilot scRNA sequencing experiment .......................................................................... 57 
4.3.2.1 Evaluation of sample demultiplexing ..................................................................................... 57 
4.3.2.2 Transcriptomic comparison of fresh and frozen cells ............................................................ 58 

4.4 Clinical parameters of the analyzed patient cohort ........................................... 59 

4.5 Multiparametric analysis of GvHD biopsies ...................................................... 60 

4.6 GvHD is mainly linked to changes in T cell frequencies ................................... 62 

4.7 Antibiotic treatment and immune reconstitution contribute to T cell variance ... 64 

4.8 Antibiotic treatment reduces suppressive capacity of Tregs ............................. 65 

4.9 Certain bacterial species are linked to Treg differentiation ............................... 68 



 

 IV 

4.10 Clonally expanded CD8 T cells are drivers for GvHD severity ....................... 70 

4.11 Expanded T cell clones persist over time and are anatomically spread ......... 72 

4.12 Suppressive capacity of Tregs is directly linked to CD8 expansion ................ 74 

5. Discussion ......................................................................................... 76 

5.1 ChipCytometry allows deep in-situ phenotyping of single cells in gut biopsies 76 

5.2 A titrated protocol allows scRNA seq from gastrointestinal punch biopsies ..... 79 

5.3 GvHD is associated with increased immune and T cell infiltration .................... 80 

5.4 The microbiome can influence Treg numbers and phenotype .......................... 81 

5.5 Antigen-specific, systemically present CD8 T cells are linked to GvHD ........... 82 

5.6 Treg functionality and infiltration density are essential for GvHD suppression . 84 

6. Summary ............................................................................................ 85 

7. Acknowledgements .......................................................................... 86 

8. Bibliography ...................................................................................... 87 
 

  



 

 V 

List of Tables 
 

Table 1. List of devices ......................................................................................................................... 21 

Table 2. List of consumables ................................................................................................................ 22 

Table 3. List of chemicals and reagents ............................................................................................... 22 

Table 4. List of reagent kits .................................................................................................................. 23 

Table 5. List of ChipCytometry antibodies ............................................................................................ 24 

Table 6. List of flow cytometry antibodies ............................................................................................ 25 

Table 7. List of single-cell RNA sequencing antibodies ....................................................................... 25 

Table 8. List of FISH probes ................................................................................................................. 26 

Table 9. Composition of buffers and media .......................................................................................... 26 

Table 10. Origin of human samples ..................................................................................................... 27 

Table 11. Gene sets used in scRNA seq analysis ............................................................................... 27 

Table 12. List of software and python packages .................................................................................. 29 

  



 

 VI 

List of Figures 

Figure 1. Allogeneic hematopoietic stem cell transplantation for cancer treatment. .............................. 1 

Figure 2. Clinical GvHD grading. ............................................................................................................ 3 

Figure 3. Three phases of GvHD. .......................................................................................................... 4 

Figure 4. Regulatory T cell function. ....................................................................................................... 7 

Figure 5. Mucosal immunity in healthy and GvHD situations. .............................................................. 12 

Figure 6. Droplet-based 5’ single-cell RNA sequencing with 10X genomics. ....................................... 15 

Figure 7. Computational analysis of scRNA sequencing experiments. ................................................ 17 

Figure 8. Comparison of antibody-based, FFPE-compatible HMTI methods. ...................................... 18 

Figure 9. ChipCytometry technology. ................................................................................................... 19 

Figure 10. Filtering of cells in the scRNA sequencing experiment. ...................................................... 38 

Figure 11. Human aHSCT patient cohort. ............................................................................................ 39 

Figure 12. Antigen retrieval titration for the analyses of FFPE samples by ChipCytometry. ................ 40 

Figure 13. Enhancement of tissue integrity by the use pre-coated coverslips. .................................... 41 

Figure 14. Titrated autofluorescence quenching and section thickness enhance staining intensity. ... 42 

Figure 15. Cell types detectable with the established markers in human FFPE tissues. ..................... 43 

Figure 16. High-quality, single cell resolution imaging of FFPE colon tissues with ChipCytometry. .... 44 

Figure 17. Implementation of FISH mRNA staining into the ChipCytometry workflow. ........................ 45 

Figure 18. Automated analysis pipeline for highly multiplexed imaging data. ...................................... 46 

Figure 19. Shading correction reduces bleaching-induced artefacts at adjacent positions. ................. 47 

Figure 20. Nuclei staining-based segmentation of single cells from tissue samples. ........................... 48 



 

 VII 

Figure 21. Pre-processing of ChipCytometry images for automated quantification. ............................ 49 

Figure 22. Spatial spillover correction improves the reliability of automated image quantification. ...... 50 

Figure 23. Multiparametric imaging and signal quantification of pancreatic and colon cancer tissues. 52 

Figure 24. Robust detection of rare and phenotypically complex cell populations by ChipCytometry. 53 

Figure 25. Neighbourhood embedding and clustering analysis for unbiased cell classification. .......... 54 

Figure 26. Optimization of cell extraction, freezing and sorting of single cell suspensions. ................. 56 

Figure 27. Pooling and demultiplexing of PBMC samples in scRNA sequencing. ............................... 58 

Figure 28. scRNA sequencing data from fresh and frozen PBMCs. .................................................... 58 

Figure 29. Human patient samples analysed in this study. .................................................................. 59 

Figure 30. Multiparametric analysis of GvHD biopsies by scRNA seq and ChipCytometry. ................ 61 

Figure 31. GvHD is mainly linked to changes in T cell frequencies. .................................................... 62 

Figure 32. Analysis of T cell infiltration by automated quantification of ChipCytometry data. .............. 63 

Figure 33. Analysis of gastrointestinal biopsies from GvHD samples via ChipCytometry. ................... 64 

Figure 34. Treg heterogeneity in the ChipCytometry dataset is correlated to antibiotic treatment. ...... 65 

Figure 35. The phenotype of regulatory T cell is influenced by antibiotic treatment. ........................... 66 

Figure 36. Regulatory T cell differentiation is locked upon antibiotic treatment. .................................. 67 

Figure 37. The abundance of certain bacterial species can influence Treg differentiation. ................. 68 

Figure 38. CD8 T cells are associated with GvHD severity. ................................................................. 70 

Figure 39. Conventional T cells show enhanced clonal expansion in severe GvHD patients. ............. 71 

Figure 40. Expanded CD8 T cells are anatomically distributed and stable over time. ......................... 72 

Figure 41. Direct connection between Tregs and CD8 T cell expansion in severe GvHD. .................. 74 

  



 

 VIII 

Aberrations 
AB Antibody 
ABX Antibiotic treatment 
aHSCT  Allogeneic hematopoietic stem cell 

transplantation 
AI  Artificial intelligence 
AF488  Alexa Fluor 488 
aGvHD  acute graft-versus-host disease 
ANOVA  Analysis of variance 
APC  Antigen-presenting cell 
AR  Antigen retrieval 
ASV  Amplicon sequence variant 
BBKNN  Batch-balanced KNN 
BCoAT  butyryl CoA:acetate CoA  

transferase 
BCR  B cell receptor 
BSA  Bovine serum albumin 
BV421  Brilliant violet 421 
BUV395  Brilliant ultraviolet 395 
cGvHD  chronic graft-versus-host disease 
CD  Cluster of differentiation 
cDNA  complementary DNA  
CDR3  Complementarity-determining  

region 3 
CoA  Co-enzyme A 
cRPMI  complete RPMI 
CTLA4  Cytotoxic T-lymphocyte- 

associated protein 4 
CM  Central memory 
DAMP  Danger-associated molecular  

pattern 
DC  Dendritic cell 
DMSO  Dimethyl sulfoxide 
DNA  Deoxyribonucleic acid 
DPBS  Dulbecco's phosphate-buffered 

saline 
dsDNA double-stranded DNA 
EDTA  Ethylenediaminetetraacetic acid 
eF570 eFluor 570 
EM Effector memory 
EtOH Ethanol 
FCS Fetal calf serum 
FFPE  Formalin-fixed paraffin embedded 

FISH  Fluorescence in-situ hybridization 
FITC  Fluorescein isothiocyanate 
FMT  Fecal microbiota transplantation 
FOXP3  Forkhead box P3 
GATA3  GATA binding protein 3 
G-CSF   Granulocyte colony-stimulating 

factor 
GEM Gel bead in emulsion 
GI  Gastrointestinal 
GSEA Geneset enrichment analysis 
GvHD  Graft-versus-host disease 
GvL  Graft-versus-Leukemia 
GZMB  Granzyme B 
H&E  Hematoxylin Eosin 
HBSS  Hanks' Balanced Salt Solution 
HDAC  Histone deacetylase 
HDR  High dynamic range 
HEPES  4-(2-hydroxyethyl)-1- 

piperazineethane sulfonic acid 
HIER  Heat-induced antigen retrieval 
HLA  Human leukocyte antigen 
HMTI  Highly multiplexed tissue imaging 
HRP  Horseradish peroxidase 
HSD  Honestly significant difference 
IBD  Inflammatory bowel disease 
IEL  Intraepithelial leukocyte 
IFNγ  Interferon gamma 
Ig  Immunoglobulin 
IL  Interleukin 
ILC  Innate lymphoid cell 
IMC  Imaging mass cytometry 
ITGAE  Integrin alpha E 
KEGG  Kyoto Encyclopedia of Genes and 

Genomes 
KNN  K-nearest neighbors 
MAIT  Mucosa-associated invariant T 

MEK  Methyl ethyl ketone 

MHC  Major histocompatibility complex 
mRNA  Messenger ribonucleic acid 
MUC2  Mucin 2 
n.s.  not significant 



 

 IX 

NFκB  Nuclear factor kappa-light-chain-
enhancer of activated B cells 

NGS  Next-generation sequencing 
NK  Natural killer 
PAMP  Pathogen-associated molecular 

pattern 
PB Photobleaching 
PBMC peripheral blood mononuclear cell 
PBS  Phosphate buffered saline 
PBST  PBS-Tween 
PC  Principal component 
PCA  Principal component analysis 
PCR  Polymerase chain reaction 
PD1  Programmed cell death protein 1 
PD-L1  Programmed death-ligand 1 
PE  Phycoerythrin 
PerCP  Peridinin-chlorophyll-protein  

complex 
PI  Propidium iodide 
PLZF  promyelocytic leukemia zinc finger 
PRF1  Perforin-1 
pSTAT3  Phosphorylated STAT3 
pTregs Peripherally induced Tregs 
qPCR  Quantitative PCR 
Reg3a  Regenerating islet-derived protein 

3 alpha 
RNA  Ribonucleic acid 
ROI  Region of interest 
RPMI  Roswell Park Memorial Institute 

Medium 
rRNA  Ribosomal ribonucleic acid 
RT  Room temperature

SARS-CoV-2 Severe acute respiratory  
syndrome coronavirus 2 

SB  Sodium borohydride 
SBB  Sudan Black B 
SCFA  Short-chain fatty acid 
scRNA seq Single cell RNA sequencing 
SCT  Stem cell transplantation 
SMA  Smooth muscle actin 
SNP  Single-nucleotide polymorphism 
SNR  Signal-to-noise ratio 
STAT3  Signal transducer and activator of 

transcription 3 
TCR  T cell receptor 
Teff  Effector T cell 
TGFβ  Transforming growth factor beta 
Th  T-helper 
TLR  Toll-like receptor 
TNFα  Tumor necrosis factor alpha 
TNFSF  Tumor necrosis factor superfamily 
Treg  Regulatory T cell 
TRA  TCR alpha 
TRB  TCR beta 
TRIS  tris(hydroxymethyl)aminomethane 
TRM  Tissue-resident memory 
t-SNE  t-distributed stochastic neighbor 

embedding 
TSO  Template switch oligo 
tTregs Thymus-derived Tregs 
UMAP  Uniform manifold approximation 

and projection 
UMI  Unique molecular identifier 
UV  Ultraviolet 



Introduction - Allogeneic hematopoietic stem cell transplantation (aHSCT) 

 X 

Abstract 
Allogeneic hematopoietic stem cell transplantation (aHSCT) is a treatment option for several human 
diseases and shows promising curative results, especially in treating hematological malignancies. A 
major complication during this treatment is the development of a graft-versus-host disease (GvHD), an 
immune reaction against the recipient's organs that can be life-threatening for the patient and limits the 
success of aHSCT as a therapy. One of the main target organs of this T cell-mediated disease is the 
gastrointestinal tract, and first observational correlations to the patient’s microbiome have been made. 

In order to systematically analyze infiltrating immune cells of GvHD patients and their relationship to the 
microbiome and GvHD outcome, existing studies need to be expanded towards multiplexed analysis 
methods with single-cell resolution. 
  
In this project, we analyzed a cohort of aHSCT patients regarding their immune infiltrates in gastroin-
testinal biopsies. We further monitored the microbiome status via 16S rRNA sequencing of stool sam-
ples and the patient's clinical status via urinary and serum biomarkers. To retrieve the maximum infor-
mation on the immune infiltration, we combined two emerging techniques for single-cell analytics, which 
are single-cell RNA sequencing and multiplexed imaging via ChipCytometry. A single-cell RNA se-
quencing workflow was adapted to fit the needs of small punch-biopsies regarding cell recovery after 
isolation. The ChipCytometry technology, developed for the analysis of cryopreserved tissue samples, 
was transferred to FFPE biopsies in order to be able to analyze an existing repository of patient samples. 
Furthermore, we developed an automated quantification pipeline to analyze infiltration differences based 
on multiplexed imaging data. 
  
Utilizing the established methods, we found an increased density of immune infiltration in severe GvHD 
patients with a particular enrichment of CD8 T cells. This inflammation was counterbalanced by regula-
tory T cells, but these were tightly dependent on the microbiome of the respective patients. Regarding 
this connection, we found a reduction in the numbers and suppressive capacity of Tregs upon microbi-
ome disruption introduced by broad-spectrum antibiotic treatment. Furthermore, we detected a depend-
ency of Treg differentiation on a healthy microbiome and, more specifically, on the presence of SCFA-
producing bacteria in the gut. CD8 T cells, strongly connected to GvHD severity in our dataset, were 
clonally expanded in GvHD patients. Clonotypes were stable over long periods and were found at dif-

ferent anatomic locations. This systemic antigen specificity of the disease-driving cells is an important 
finding regarding the mechanistic pathophysiology of GvHD, and identification of the specific target an-
tigens might open up new therapeutic possibilities in the future. 
  
Notably, we could show in a single patient of a clinical FMT trial that restoration of the microbiome can 
induce regulatory T cells, which we observed to be able to suppress the clonal expansion of disease-
driving CD8 T cells. This suppression could finally lead to the mitigation of GvHD, further encouraging 
the idea of microbiome-targeting interventions as therapeutic but also prophylactic treatment options for 
aHSCT patients.
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1. Introduction 

1.1 Allogeneic hematopoietic stem cell transplantation (aHSCT) 

Allogeneic hematopoietic stem cell transplantation (aHSCT) allows to replace the hematopoietic system 
of a patient with the one from a healthy donor and represents a promising treatment option for several 
human diseases. It can be utilized for the treatment of patients with anemias (Bolanos-Meade and 
Brodsky, 2009) or immune deficiencies (Dvorak and Cowan, 2008), and it allows the therapy of hema-

tological malignancies with myeloablative doses of irradiation or chemotherapy (Jenq and van den Brink, 
2010). Especially in cancer treatment, aHSCT has become one of the most potent treatment options for 
liquid tumors.  
 
 

 
Figure 1. Allogeneic hematopoietic stem cell transplantation for cancer treatment. 
Schematic depiction of aHSCT: The patient receives myeloablative conditioning to extinguish the malignant cells, 
which are then replaced by a hematopoietic stem cell graft. Donor immune cells then mediate the GvL effect and 
GvHD, where the recipient's organs are affected by a T cell-mediated inflammation. Mainly affected organs are the 
skin, liver, and gastrointestinal tract. Modified from (Shono and van den Brink, 2018). 

After identifying the bone marrow as a source of hematopoietic stem cells (Lorenz et al., 1951), the first 
successful human transplantations were performed in 1959 for leukemia patients with identical twins as 
stem cell donors (Thomas et al., 1959). In the following years, aHSCT was further optimized and has 
become a routine treatment with more than 25.000 transplantations performed annually (Ferrara et al., 
2009). Fully human leukocyte antigen (HLA)-matched siblings are the preferred donors for an aHSCT 
since, in this situation, the risk for complications during the procedure is minimized regarding graft re-
jections or graft-versus-host disease (GvHD, see 1.2). If such a sibling is unavailable, fully HLA-matched 
unrelated donors, partially HLA-matched relatives, or partially HLA-matched umbilical cord blood units 
can be used, broadening the applicability of stem cell transplantations (SCTs) at the expense of a higher 

risk for mismatch-associated complications. Fully haploid mismatched transplantations have recently 
gained popularity as they allow, in combination with post-transplant cyclophosphamide treatment, al-
most every patient to be transplanted from a haploidentical family member (Luznik et al., 2008). This is 
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especially important for countries with suboptimal donor registries and is nowadays more often applied 
than unrelated donor transplantations.  
 
Hematopoietic stem cells are either derived from the bone marrow by aspiration from the iliac crest, 
mobilized from peripheral blood by granulocyte colony-stimulating factor (G-CSF), or extracted from 
umbilical cord blood (Giralt and Bishop, 2009). In most cases, stem cells from peripheral blood are used 
as the incidence of complications during stem cell extraction is very low, and the graft products have 

demonstrated high safety and efficiency (Stem Cell Trialists' Collaborative, 2005). Umbilical cord blood 
units can be a good alternative in fast-progressing malignancies since stem cells are faster available 
compared to the identification and processing of an unrelated, matched donor (Grewal et al., 2003). 
However, due to the low cell numbers available from umbilical cord blood, haploidentical transplanta-
tions are additional fast alternatives, more often used today. 
 
Besides some treatments of benign hematological disorders like autoimmune diseases, primary immu-
nodeficiencies or anemias and clinical trials for the treatment of solid tumors, the main field of application 
is still hematological malignancies (Storb et al., 2003). In this treatment strategy, the patient’s hemato-
poietic cells are removed by myeloablative conditioning to extinguish the malignant cells. The compart-
ment is subsequently replaced by the stem cell graft from an HLA-matched donor (Figure 1). The reason 
for its great potential in cancer treatment is that besides the higher curative rate of the myeloablative 
treatment, the immune-mediated graft-versus-leukemia (GvL) effect from the graft, representing an im-
mune reaction against the tumor cells, leads to lower relapse rates and higher long-term survival (Kolb, 
2008, Kolb et al., 1995). Unfortunately, allogeneic transplants are also associated with the risk of GvHD, 
an immune reaction against the recipient’s organs, which still limits the success of this treatment strat-
egy. Separating GvHD and GvL effects has been a central area of interest in aHSCT research in recent 
years. Both effects have been initially linked to an antigen-specific (either neo- or self-antigens) re-
sponse of the T cell compartment (Korngold and Sprent, 1978), but also natural killer (NK) cells have 
recently been identified as substantial mediators for GvL responses (Ruggeri et al., 2002). Promising 
strategies for specific GvL induction after aHSCT are secondary adoptive NK cell transfers from the 
same donor (Miller et al., 2005) and adoptive T cell therapies with in vitro expanded or vaccine-primed 
autologous, tumor-antigen specific T cells (Rapoport et al., 2005). 
 

Besides the tremendous therapeutic potential of aHSCT, it is still associated with several treatment-
related toxicities, resulting in significant morbidity or even mortality after the transplantation. Apart from 
the risk of rejection (destruction of the graft by immunocompetent cells of donor origin), graft failure (loss 
of marrow function or failure to build up a hematopoietic system) or GvHD (see 1.2), infections are a 
severe risk in these immunocompromised patients (Giralt and Bishop, 2009). In many cases, a prophy-
laxis regimen via broad-spectrum antibiotics, antifungals, or antivirals is needed to prevent the patients 
from developing sepsis. These unavoidable treatments against infections alter the patient’s microbiome, 
which plays an essential role in the maintenance of immune tolerance and in the development and 
severity of GvHD (see 1.6).  
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1.2 Graft-versus-host disease (GvHD) is a major complication after aHSCT 

GvHD can be a life-threatening complication after aHSCT and limits the success of this potent, in many 
cases curative immunotherapy for hematological malignancies and other diseases. It is characterized 
by an immune reaction of donor T cells against the recipient’s organs. The disease is subclassified into 
acute GvHD (aGvHD, within the first 100 days after transplantation) and chronic GvHD (cGvHD) at later 
stages (Billingham, 1966), with overlapping cases being reported (Schoemans et al., 2018). The inci-
dence of acute GvHD among aHSCT patients is relatively high (35-50%), with 50% of the patients with 

aGvHD eventually developing a cGvHD (Jacobsohn and Vogelsang, 2007). HLA matching is used to 
avoid major histocompatibility differences between donor and recipient cells leading to GvHD reactions, 
and it has been shown that the incidence of GvHD is related to the number of mismatch alleles between 
the donor and recipient (Loiseau et al., 2007). 

 
Figure 2. Clinical GvHD grading. 
Overview of the clinical grading of GvHD for the individual organs and the resulting overall clinical severity grade. 
BSA=Body surface area. Visualized from (Glucksberg et al., 1974) 

The three main affected organs are the skin, liver, and gastrointestinal tract (Vogelsang et al., 2003). 
The skin is the most common and early affected organ, and skin GvHD is marked by a maculopapular 
rash, able to spread throughout the body (Vogelsang et al., 2003). Gastrointestinal (GI) GvHD is char-
acterized by diarrhea and can lead to vomiting, anorexia, and abdominal pain (Ferrara and Deeg, 1991). 
Liver GvHD can lead to hyperbilirubinemia and clinical jaundice, but it is difficult to differentiate from 
other reasons for liver dysfunction (Fujii et al., 2001). Clinical grading of GvHD is performed according 
to the Glucksberg criteria (Glucksberg et al., 1974) by scoring the involvement of the three mentioned 
target organs, and it is defined as 1 (mild), 2 (moderate), 3 (severe), and 4 (very severe) (Figure 2) with 
long-term survival rates as low as 5% for grade IV (Cahn et al., 2005). To minimize the risk of GvHD 
development, patients receive immunosuppressive therapeutics, which negatively affect susceptibility 
to infections due to slower immune reconstitution and can reduce the GvL effect. Therefore, it is essen-
tial to better understand the pathophysiology of GvHD and develop new treatment strategies to improve 
the effectiveness of aHSCT in treating hematological malignancies. 
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1.3 GvHD Pathophysiology 

Already more than 50 years ago, Billingham formulated three required factors for GvHD development: 
(1) the graft needs to contain a sufficient number of immunocompetent cells, (2) the host needs to ex-
press antigens that are unknown to the graft, and (3) the host immune cells are not able to mount an 
immune response against the graft (Billingham, 1966).  
 
All of these proposed concepts still fit the knowledge about GvHD nowadays as it is an inflammatory 

disease where activated donor T cells cause damage to the recipient’s organs, especially the skin, the 
liver, and the GI tract. The preconditioning of the patients leads to tissue damage, serving as a starting 
point of an inflammatory cascade by the release of danger-associated molecular patterns (DAMPs) (Hill 
et al., 1997, Matzinger, 2002). The resulting inflammation can be subdivided into three main phases of 
GvHD: activation of antigen-presenting cells (APCs), donor T cell activation, and tissue destruction 
(Ferrara et al., 2009) (Figure 3).  
 

 
Figure 3. Three phases of GvHD. 
In the first phase, conditioning-induced tissue damage leads to the production of cytokines via danger- and patho-
gen-associated molecular patterns (DAMPs/PAMPs). These signals lead to the activation of APCs by upregulation 
of costimulatory receptor- and MHC expression. In the second phase, donor T cells are activated by host APCs 
presenting minor histocompatibility antigens, which leads to T cell activation, proliferation, further enhanced cyto-
kine secretion and recruitment of other immune cells. The primed and activated T cells can kill the target cells, 
finally leading to tissue destruction and severe GvHD symptoms. Visualized from (Ferrara et al., 2009) 

1.3.1 Activation of APCs 

The tissue damage in the recipient induced by the preconditioning regimen leads to the release of dan-
ger signals by dying cells, resulting in the production of cytokines, chemokines, and expression of cost-
imulatory molecules by innate immune cells. Proinflammatory cytokine levels like TNFα (Choi et al., 
2008) or IL12 (Mohty et al., 2005, Holler et al., 1990) have been correlated to the risk and severity of 
GvHD. Further, these signals lead to enhanced expression of MHC molecules and costimulatory recep-
tors on the surface of host APCs, thereby activating those cells (Figure 3, left). Tissue damage in the GI 
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tract is exceptionally important in the development of GvHD because of the potential translocation of 
pathogen-associated molecular patterns (PAMPs) from the lumen into the tissue due to epithelial barrier 
disruption (Hill and Ferrara, 2000). These signals can be detected by innate immune receptors like toll-
like receptors (TLRs), which sense microbial patterns and thereby further enhance the risk of immune 
cell and especially APC activation. The importance of activated APCs from the gastrointestinal tract has 
been underlined by findings in murine models that the Peyer’s patches are an essential site for T cell 
priming in the setting of GvHD (Murai et al., 2003). Furthermore, a more direct association between 

PAMPs and GvHD in the gut has been demonstrated by reduced GvHD severity in mice treated with a 
lipopolysaccharide (LPS) antagonist, impairing the recognition of one of the most important PAMPs 
(Cooke et al., 2001). Because of these findings, the conditioning intensity is kept moderate in order to 
reduce toxicity and tissue damage, which eventually lead to a reduced risk of GvHD development. 
 

1.3.2 Donor T cell activation 

The second phase of the GvHD reaction is the activation of donor T cells by the before-activated APCs, 
and this step is crucial for determining the disease severity and tissue damage (Figure 3, middle). It has 
been shown in murine models that host APCs, still present in the tissues early after transplantation, are 
required for GvHD and GvL reactions (Zhang et al., 2002). After the loss of host APCs in the process of 
immune reconstitution, the donor cells can take over T cell stimulation by presenting host antigens, thus 
supporting the ongoing GvHD (Matte et al., 2004).  
 
In HLA-mismatched transplantations, donor T cells can recognize the MHC molecules of host tissues 
(probably in the context of commonly expressed self-peptides), leading to T cell activation and prolifer-
ation. In HLA-matched situations, minor histocompatibility antigens (miHAs), which derive from poly-
morphic genes that differ between donor and recipient, are presented by the matched MHC molecule 
and eventually activate donor T cells. Some of these antigens have been identified, like the male-specific 
SMCY gene (Wang et al., 1995), the human HA-1/HA-2 (den Haan et al., 1995) alleles as well as specific 
genes that are only expressed in the donor and not in the recipient (Murata et al., 2003). It has been 
shown in mice that MHC II differences lead to CD4 T cell-mediated GvHD, whereas MHC class I differ-
ences mount alloreactive CD8 T cell responses (Csencsits and Bishop, 2003).  
 

The activation of T cells leads to the production of cytokines (IL2, IFNg, TNFα), causing further prolifer-
ation and activation of T cells as well as the recruitment of other immune cells. Regulatory T cells (see 
1.4) and NKT cells can suppress these alloreactive responses and are, therefore, attractive candidates 
for cell therapy interventions of GvHD (Cohen and Boyer, 2006, Zeng et al., 1999, Hoffmann et al., 2002, 
Edinger et al., 2003).  
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1.3.3 Tissue damage and inflammation 

The activated T cells ultimately mediate the destruction of host tissues (Figure 3, right). T cells using 
the Fas/FasL pathway of target cell killing are preferentially found in the liver, whereas T cells in the GI 
tract and the skin are mainly lysing target cells via the release of perforin or granzyme cytotoxic mole-
cules (van den Brink and Burakoff, 2002). This target cell lysis can be detected histologically via the 
apoptosis of epithelial cells, known as a hallmark of GvHD (Azad et al., 2019, Epstein et al., 1980).  
 

The migration of activated effector cells back into the circulation and to the target organs plays an es-
sential role in disease development, and specific chemokines and homing receptors have been de-
scribed to be associated with GvHD (Waldman et al., 2006, Wysocki et al., 2005). Stimulation of TLRs 
in the gut or the skin promotes innate immune cells to produce cytokines like TNFα, which can cause 
direct tissue damage by necrosis. Other cytokines indirectly mediate tissue damage by their immune-
stimulatory activity, leading to further T cell activation (Hill and Ferrara, 2000). The synergistic effect of 
cytokines and immune cells promotes inflammation, tissue injury and, finally, target organ damage. 
Eventually, extended tissue damage can lead to organ dysfunction and, therefore, life-threatening com-
plications.  
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1.4 Regulatory T cells in GvHD 

The gastrointestinal tract is a unique organ from an immunological point of view because of the frequent 
exposure to foreign antigens. This requires, on the one hand, tightly regulated tolerance mechanisms 
for food antigens and commensal bacteria to prevent chronic inflammation and tissue damage. On the 
other hand, immune responses against potentially harmful pathobionts must be reliably mounted. There-
fore, a controlled balance between potent immune cells fighting infections and regulatory mechanisms 
to dampen overshooting immune responses is inevitable in the gastrointestinal tract to keep a healthy 

environment.  
 
Regulatory T cells (Tregs), specialized cells of the T helper cell 
lineage, are capable of suppressing immune responses and are 
the key players in maintaining peripheral tolerance, including im-
mune homeostasis in the gut (Sakaguchi et al., 1995). Identified 
by the expression of the transcription factor forkhead box protein 
p3 (FOXP3) (Fontenot et al., 2003, Hori et al., 2003), they can 
suppress immune responses by direct cell-to-cell interaction, for 
example, via CTLA4 that, antagonistically binding to CD80/86 on 
APCs, hinders CD28 binding and therefore co-stimulation of T 
cells. Furthermore, the secretion of regulatory and immunosup-
pressive cytokines like IL-10 and TGF-β, directly acting on inflam-
matory cells, or consumption of IL-2, which is a stimulus for proliferation of activated T cells (Figure 4), 
are important modes of action for regulatory T cells (Josefowicz et al., 2012).  
 
Based on their site of development, they are subdivided into thymic Tregs (tTregs) and peripherally-
induced Tregs (pTregs). CD4 T cells that show a high affinity to self-antigens in the thymus are con-
verted to tTregs, while pTregs develop in the periphery from mature conventional CD4 T cells upon 
antigen recognition in the presence of TGF-β. Tregs can be induced in solid cancer patients by the 
tumor microenvironment to avoid immunosurveillance and dampen antitumor immune responses 
(Togashi et al., 2019). On the contrary, deficiencies in the development and maintenance of Tregs are 
associated with autoimmune diseases and immune dysregulation, marking a high clinical potential for 

these cells. 
 
In the case of GvHD, Tregs play an essential role in the control of the disease by suppressing inflam-
mation. Many studies observed an inverse correlation between Treg frequencies in peripheral blood 
(Fujioka et al., 2013) or absolute counts in tissue samples (Rieger et al., 2006) and the development of 
acute GvHD. Preclinical studies also underlined the importance of Tregs for GvHD progression since 
their absence led to the aggravation of GvHD, and the simultaneous transfer of Tregs could inhibit the 
expansion of alloreactive T cells (Edinger et al., 2003, Cohen et al., 2002). The early availability of Tregs 
has thereby proven critical since GvHD was reduced compared to a later Treg administration (Nguyen 

Figure 4. Regulatory T cell function. 
Regulatory T cells can inhibit immune 
responses by cytokine release, cell 
contact dependent inhibition and IL2 
consumption. 
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et al., 2007). Although therapeutic transfer of donor Tregs has substantial activity in preclinical models 
(Riegel et al., 2020), transferring sufficient numbers of regulatory T cells in human patients is challeng-
ing, and physiological frequencies have no protective capacity against GvHD. Tregs were administered 
in a 1:1 ratio to the conventional T cells (Hoffmann et al., 2002) in the mouse models of GvHD, but these 
numbers are very hard to achieve for human regulatory T cells.  
 
Even the latest technological efforts, like the in vitro expansion or induction of regulatory T cells, have 

been unsuccessful so far due to the preferential proliferation of conventional CD4 T cells and the insta-
bility of the induced Tregs (Beres et al., 2011). However, data from our lab showed that the technology 
of Treg isolation might influence Treg recovery and that minimally manipulated Tregs, isolated label-
free, have an improved recovery and capacity to suppress GvHD in preclinical models (Mohr et al., 
2017). Such technologies would allow for the transfer of lower cell numbers and overcome the previously 
mentioned limitations in adoptive Treg transfer. However, unfortunately, the transfer of Tregs brings the 
risk of diminishing the GvL effect. For this reason, other prevention and treatment options for GvHD are 
currently used and are under further investigation. 
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1.5 Prevention and treatment of GvHD 

Since T cells play a significant role in GvHD pathophysiology, T cell depletion was tested for GvHD 
prophylaxis in the early days of stem cell transplantations. The depletion methods included the negative 
selection of T cells by anti-TCRαβ antibodies, positive selection of CD34+ stem cells, and the use of T 
cell neutralizing antibodies in the patient. These approaches showed a significant reduction of GvHD 
development but especially ex vivo T cell depletion is associated with reduced GvL effects, graft failure, 
and severe infections, therefore not improving the overall survival (Marmont et al., 1991, Platzbecker et 

al., 2004).  
 
The most used strategy for GvHD prevention nowadays is the inhibition of T cell activation by admin-
istration of calcineurin inhibitors (e.g., cyclosporine, tacrolimus), often in combination with other immu-
nosuppressants (e.g., methotrexate, mycophenolate mofetil) to improve the efficiency of immune cell 
suppression (Nash et al., 2000). In addition to the suppression of immune responses, the intensity of 
the conditioning regiment was reduced in order to mitigate tissue damage and GvHD initiation; however, 
in many cases, this therapeutic scheme leads only to a delayed onset of the disease (Mielcarek et al., 
2003). 
 
Since none of the GvHD prevention strategies applied so far were effective in extinguishing the risk of 
GvHD development, the incidence of acute GvHD today is still above 50% after aHSCT. The standard 
of care for acute GvHD is based on steroids, which have potent anti-inflammatory and immunosuppres-
sive activity (MacMillan et al., 2002). However, more than 50% of severe GvHD patients develop a 
resistance to steroid treatment. Thereby, additional treatment options are needed. At the moment, ex-
tracorporeal photopheresis, an apheresis method inducing apoptosis of white blood cells by exposure 
to Methoxalen and UV light (Greinix et al., 2006), TNFα blockade (Levine et al., 2008) and Ruxolitinib 
as second-line treatment (Zeiser et al., 2020) are some promising intervention candidates as shown in 
clinical trials.  
 
Still, GvHD prevention or risk adapted (e.g., biomarker guided) preemptive treatment would be of high 
interest since all the currently available treatment options have severe side effects and the patients need 
complex supportive care from specialized medical staff in order to prevent toxicities, severe infections, 

or irreversible tissue damage. A better understanding of GvHD pathophysiology and investigation of 
new treatment and prevention strategies is essential to reduce the risk of GvHD development and en-
hance the potential of aHSCT. 
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1.6 The influence of the microbiome on GvHD 

Since the main target organs of GvHD (gut, skin, liver) are exposed to bacteria, the investigation of 
potential interactions with the microbiome has been started early in the history of aHSCT and GvHD 
research. A particular focus of research has been the interplay between the microbiome and gastroin-
testinal GvHD as a primary indicator for total GvHD severity (Figure 2) and the main interaction site with 
commensal bacteria. Already in 1971, it was found that germ-free mice were protected from GvHD and 
had a prolonged survival (Jones et al., 1971). Since this protection may be derived from the less devel-

oped immunity in germ-free mice, van Bekkum et al. further showed that also antibiotic-treated (“de-
contaminated”) mice had prolonged survival after transplantation (van Bekkum et al., 1974). These early 
findings represent an auspicious connection between GvHD and the microbiome in murine experiments. 
 

1.6.1 Associations from human studies 

After these early observations from preclinical models, some clinical studies have been performed using 
broad-spectrum antibiotics for “gut decontamination” and isolation of the patients to mimic the germ-free 
situation of preclinical models in humans (Beelen et al., 1992). However, no clear trend of a benefit has 
been found for GvHD prevention (Passweg et al., 2016), and gut decontamination is, for this reason, 
not routinely recommended for treatment (Tomblyn et al., 2009). In more recent studies, technological 
advancements in microbiome research like 16S sequencing allowed to investigate the microbiome of 
GvHD patients in more detail. It was found that GvHD patients are associated with decreased stool 
microbial diversity (Jenq et al., 2012). 3-indoxyl sulfate, an indole metabolism product generated by gut 
bacteria, has been established as a clinical marker for microbial diversity, and low urinary levels are 
significantly correlated to GvHD severity (Weber et al., 2015). Furthermore, loss of microbial diversity 
has been linked to reduced survival and increased transplant-related mortality (Taur et al., 2014). Be-
sides microbial diversity, increased abundance of Lactobacilli and reduced presence of Clostridiales has 
been associated with GvHD occurrence (Jenq et al., 2012). Other cohorts revealed Blautia species to 
reduce the risk of GvHD-related mortality (Jenq et al., 2015) and Enterococci to increase the risk of 
GvHD development (Holler et al., 2014). Lower abundance of Bacteroides and Parabacteroides and 
lower levels of the SCFA propionate, another fermentation product of the gut flora, were also linked to 
the risk of GvHD development (Biagi et al., 2015). These first findings of the interplay between microbi-

ota and GvHD demonstrated the complexity of these interactions and need to be validated in multi-
center studies to exclude site- and treatment-specific effects. One of these recent multi-center studies 
confirmed the association between the abundance of certain Enterococci species and the risk of GvHD 
(Stein-Thoeringer et al., 2019). Other observational studies have proven the positive effect of bacterial 
metabolites like short-chain fatty acids in more extensive, multi-center patient cohorts (Meedt et al., 
2022, Markey et al., 2020). Taken together, there is increasing evidence that microbiota plays an es-
sential role in GvHD development; however, mechanistic explanations and species-level associations 
are still under investigation, also drawing attention to inter-institutional differences (Peled et al., 2020).  
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1.6.2 Mechanisms by which microbiota may influence GvHD 

At first view, the findings from human studies regarding the microbiome’s influence on GvHD develop-
ment seem paradoxical. On one side, there is evidence that germ-free mice and, in some clinical trials, 
also human individuals receiving gut decontamination are better protected from GvHD, suggesting that 
gastrointestinal bacteria drive GvHD. On the other side, high bacterial diversity is associated with a 
reduced risk of GvHD, hinting toward a beneficial role of microbiota in suppressing GvHD. One expla-
nation for this paradox would be the need for proper balance between beneficial and potentially patho-

genic bacteria in a healthy gut, which may be disrupted in an aHSCT setting by the preconditioning as 
well as the often-unavoidable antibiotic treatment of the immunocompromised patients. Furthermore, 
gut decontamination is only partially effective in human patients, leading to a dysbiosis with a high fre-
quency of antibiotic-resistant, potentially pathogenic bacteria.  
 
Detrimental effects of the microbiota on GvHD development are mainly dependent on bacterial translo-
cation (Cooke et al., 2001), which in turn induces inflammation and recruitment of immune cells. The 
outgrowth of pathogenic bacteria in an imbalanced community can lead to a higher chance of PAMP 
translocation, for example by mucus-degrading bacteria, further reducing the intestinal barrier integrity. 
The translocation could be reduced with a decontamination. However, this would also affect the long-
term advantageous effects of a diverse microbiome. 
 
The beneficial effects of bacteria are linked to the production of bacterial metabolites like SCFA and 
riboflavin. The SCFA butyrate is an important energy source for intestinal epithelial cells and can im-
prove wound healing and barrier integrity (Ma et al., 2012), favoring recovery after the damage induced 
by the preconditioning therapy. Furthermore, SCFAs can directly influence the immune response by 
induction of regulatory T cells (Arpaia et al., 2013). This induction can be mediated by binding to the g-
protein-coupled receptor 43 (GPR43), an SCFA receptor expressed on regulatory T cells, or by inhibition 
of the histone deacetylase (HDAC), both leading to induction, proliferation, and accumulation of Tregs 
(Smith et al., 2013). The beneficial effects of microbiota in the setting of GvHD have been proven by the 
increased abundance of SCFA-producing bacteria, identified by copy numbers of the enzyme butyryl 
CoA:acetate CoA transferase (BCoAT) in stool samples of patients with low-grade GvHD (Meedt et al., 
2022). This observation was correlated with the low abundance of Clostridiales, one of the main SCFA-

producing classes, in severe GvHD patients and is thereby perfectly in line with other human studies 
assessing the link between the gut microbiome and GvHD (see 1.6.1). Riboflavin, synthesized by spe-
cific bacterial strains, can enhance the control of GvHD by recruiting MAIT cells, which can suppress 
immune responses as well (Varelias et al., 2018).  
 
A “healthy” microbiome could largely reduce the risk of GvHD by maintaining regulatory mechanisms 
and barrier integrity (Figure 5, left). Most of these mechanisms are related to regulatory T cells, which 
directly interact with the microbiome via bacterial metabolites. Unfortunately, due to the preconditioning 
and antibiotic treatment, aHSCT patients have to deal with a disrupted epithelial barrier, an imbalanced 
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microbiome, and the risk of outgrowing pathogenic bacteria. All these factors together favor an inflam-
matory situation, which is finally responsible for T cell activation and tissue damage in the target organs 
(Figure 5, right). The strong associations between the microbiome and GvHD suppression via regulatory 
T cells is still an important therapeutic target for clinical interventions, and the systematic investigation 
of this interaction may help to develop new treatment strategies. 
 

 
Figure 5. Mucosal immunity in healthy and GvHD situations. 
In a healthy human gut, bacteria mount a regulatory milieu, allowing the induction and maintenance of regulatory T 
cells, which can dampen overshooting immune responses (left). The conditioning-induced damage in the epithelial 
barrier and the reduction of bacterial diversity leads to less Treg induction, mucus degradation, more danger signals, 
and finally, the inflammatory cascade of GvHD. 

 

1.6.3 Microbiome modulation as a treatment option for GvHD 

The previously described connection between microbiota richness and GvHD suggests microbiome 
modulation as a potential treatment strategy. Most patients show a loss of bacterial diversity due to the 
preconditioning in the weeks after transplantation, often leading to the outgrowth of pathogenic bacterial 
strains (Holler et al., 2014, Taur et al., 2012). This microbial imbalance is often further pronounced due 
to the treatment with broad-spectrum antibiotics, essential for many immunocompromised patients.  
 
Fecal microbiota transplantation (FMT) is the most direct approach of microbiome modulation and has 
been applied to treat steroid-refractory GvHD patients. In the first patient reports, this strategy was cu-
rative in more than 75% of the patients, which otherwise have mortality rates of 70-80% (Kakihana et 
al., 2016, Spindelboeck et al., 2017, Malard et al., 2021). Furthermore, even prophylactic FMT treatment 
has been proven to be safe in aHSCT patients and restore microbial diversity (DeFilipp et al., 2018). 
Oral microbiota administration is achieved by capsules of frozen microbiota from healthy donors 
(Youngster et al., 2014), and it is still under investigation if the stem cell donor might be superior to 

unrelated donors. Besides transferring the total microbiome, single strain administration has been in-
vestigated and proven to modulate GvHD outcome, but with the risk of sepsis development in immuno-
compromised patients (Mehta et al., 2013). A safer approach would be the direct administration of 
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microbial metabolites like SCFAs (Mathewson et al., 2016) or indoles (Swimm et al., 2018). Similar 
effects can be achieved by sterile filtrates of fecal material from healthy donors, which would be a safer 
alternative to FMT by not containing living bacteria but only components and metabolites (Ott et al., 
2017). Although there are promising and ongoing clinical trials, there is still a substantial lack of 
knowledge regarding the mechanistic understanding of the connection between the microbiome, infil-
trating immune cells, and GvHD outcome. 
 

Most studies conducted so far in the field of GvHD research have been performed with conventional 
methods from the pathology and molecular biology. These include immunohistochemistry staining of 
single markers in tissue samples and qPCR for gene expression analysis to quantify differences in tissue 
immune infiltrates concerning GvHD. However, since the disease is associated with a very complex 
phenotype and multiple factors like disease severity, timepoint, treatment strategy, and the microbiome 
can influence the immune infiltrates, novel and advanced technologies are needed for systematic stud-
ies of patient samples. These methods should, in particular, be able to achieve deep phenotyping of 
immune cells at single-cell and high spatial resolution to gain more information on the specific cell types 
involved, as well as their spatial location or interplay in the setting of the disease.  
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1.7 Multiplexed analysis methods for single-cell characterization 

The development of sequencing techniques towards next-generation sequencing (NGS) allowed for the 
first time to perform gene expression analysis on cell populations and to compare the transcriptomes of 
certain groups. However, these bulk sequencing experiments provide only the average information of 
transcriptomic signatures in a population of cells. To overcome this limitation, transcriptomic sequencing 
on the level of single cells was developed, opening a new area of research. Several single-cell multi-
omics techniques combine single-cell RNA sequencing with additional information like surface protein 

expression, T cell and B cell receptor (TCR/BCR) sequencing, chromatin accessibility, and many more. 
It has become a state-of-the-art technology, and the routinely developing tools for data analysis even 
enhance the power of existing scRNA seq datasets. In parallel to the advances in single-cell RNA se-
quencing, imaging methods were developed to analyze cells in their spatial context. Here, the resolution 
of imaging and the throughput for multiparameter imaging are continuously improved. Today, much 
effort has been made to bring those two fields together and develop methods that can interrogate the 
whole transcriptome in the spatial context of a tissue sample.  
 

1.7.1 Single-cell RNA sequencing 

After initial approaches using microarray analysis of amplified complementary DNA (cDNA) from single 
cells (Kurimoto et al., 2006), the first whole transcriptome analysis on single cells was performed in 2009 
on a single mouse blastomere (Tang et al., 2009). From here on, the interest in scRNA sequencing was 
tremendous, leading to the development of several different techniques and a zoo of analysis packages. 
Single-cell isolation methods include the low-throughput methods of limited dilution (pipetting cells in 0.5 
cells/aliquot) and micromanipulation (picking cells under the microscope). Higher throughput can be 
achieved by cytometry-based sorting of single cells (Picelli et al., 2013), combinatorial barcoding by 
splitting cell suspensions several times to a set of unique barcodes (Rosenberg et al., 2018), and drop-
let-based microfluidics, where single cells are encapsulated in aqueous spheres within an emulsion 
(Zheng et al., 2017, Macosko et al., 2015). scRNA seq utilizing droplet-based microfluidics is the most 
commonly used technique today. After singularization of cells, the mRNA is reverse transcribed to 
cDNA, which can be further amplified and modified for subsequent NGS. 
 

In this project, we used the commercially available droplet-based microfluidic system from 10X ge-
nomics for single-cell RNA sequencing on flow cytometry sorted cells (Zheng et al., 2017). This method 
relies on a pool of uniquely barcoded gel beads and the encapsulation of single cells with single beads 
in an aqueous droplet in emulsion. The surface of each bead contains DNA tails composed of a capture 
sequence, a bead-specific barcode, and a trail-specific UMI to quantify the absolute abundance of 
mRNA molecules. After reverse transcription in emulsion, the molecules can be processed in bulk and 
traced back to individual cells and mRNA molecules thanks to the bead- and tail-specific barcodes (Fig-
ure 6A).  
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The methodology was initially developed for the 3’ capture of mRNA molecules via the poly-A tail, com-
mon for all mRNA sequences. For polymorphic T cell receptor or B cell receptor sequences, however, 
most of the variability (and epitope specificity) is encoded in the CDR3 region at the 5’ end of the tran-
script. Therefore, for profiling TCR/BCR repertoires, it is necessary to capture the mRNA on the 5’ end 
to create constructs that contain the variable CDR3 region of the receptor and are short enough to be 
compatible with NGS-based sequencing. This is possible due to the use of a template switch oligonu-
cleotide (TSO), which allows the addition of any sequence at the 3’ end of a cDNA (Zhu et al., 2001). 

These technological optimizations allow now to simultaneously analyze the whole transcriptome and the 
immune cell receptor in the same single cell (Figure 6B). Immune cell receptor sequences can be am-
plified by using primers specific to the known gel bead sequence and the constant region of a TCR or 
BCR to perform immune profiling of single cells (Figure 6C).  
 

 
Figure 6. Droplet-based 5’ single-cell RNA sequencing with 10X genomics. 
(A) Schematic depiction of the 10X genomics 5’ scRNA sequencing workflow: each unique gel bead is loaded with 
oligonucleotide tails, encoding Read 1 (R1), the bead-specific barcode (BC), the tail-specific unique molecular iden-
tifier (UMI), and a template switch oligo (TSO). By limited dilution, every cell is encapsulated with one gel bead and 
the reagents needed for reverse transcription in an emulsion within the microfluidic system. This allows amplifying 
and processing of the pooled cDNA, still capturing the cellular origin and the number of transcripts via BC and UMI. 
(B) The TSO captures the 5’ end of the mRNA, and reverse transcription is initiated with a poly-T primer. After cDNA 
amplification, the DNA is fragmented, the Illumina Read 2 (R2) is added via ligation, and the indices are added via 
overhang PCR. (C) VDJ cDNA of TCR or BCR transcripts is amplified with an R1 primer and a specific primer 
binding to the constant region. Library preparation is performed similarly to the total mRNA (B). (D) Capturing anti-
body conjugated oligos works via a specific capture sequence (Cap) and reverse transcription initiated with an R2 
primer. After cDNA amplification, the indices are added via index PCR. Figure adapted from (www.10xge-
nomics.com). 
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An additional advancement has been the implementation of antibodies conjugated to a barcoded, single-
stranded DNA to capture surface marker expression. The DNA barcode can also be captured on the gel 
beads and amplified with specific primers (Figure 6D). Barcoded antibodies against broadly expressed 
markers (eg. CD45, MHC class I) can be used for the pooled analysis and demultiplexing of different 
samples within the same reaction via a cell “hashtag”, meaning one specific barcode identifying each 
subsample (Stoeckius et al., 2018). Furthermore, multiplexed surface expression profiling can be per-
formed by combinatorial staining of several differently barcoded antibodies specific for a set of different 

epitopes (Stoeckius et al., 2017). Additional developments in the multi-omics direction include the inte-
gration of chromatin accessibility (Cao et al., 2018) and DNA methylation (Angermueller et al., 2016) to 
investigate epigenetic changes. 
 
The rising interest in single-cell RNA sequencing datasets has led to a fast-developing field of bioinfor-
matics, which provides researchers with analysis tools for datasets with high and increasing complexity. 
Various tools are used for quality filtering, alignment, and pre-processing of datasets, and guidelines 
have been formulated to guarantee a harmonized data analysis with high quality (Luecken and Theis, 
2019). After filtering and pre-processing datasets, some general concepts of analysis help to understand 
and visualize high-dimensional datasets. One vital method to facilitate the analysis is dimensional re-
duction, which allows to visualize a gene expression landscape of several thousand genes in a two-
dimensional space. The linear principal component analysis (PCA), as well as non-linear dimensional 
reduction methods like t-SNE (van der Maaten and Hinton, 2008) and UMAP (McInnes et al., 2018), are 
used to visualize the complex expression differences between single cells. Clustering algorithms on the 
neighborhood graph like Louvain or Leiden (den Haan et al., 1995) facilitate the detection of cells with 
similar expression profiles, and these clusters can finally be annotated to specific cell types within a 
single-cell RNA sequencing dataset (Figure 7A). For clonotype analysis of single-cell immune receptor 
data (TCR/BCR), additional tools have been developed, including algorithms for investigating receptor 
similarity based on gene usage and CDR3 sequences (Sturm et al., 2020). 
 
All of the mentioned analyses generate new variables for every single cell or every single gene, with the 
need for special data formats suitable for scRNA sequencing datasets. One of these annotated data 
formats, specially developed for this purpose, is anndata (Virshup et al., 2021). Besides the count matrix 
(cells x genes), it contains a collection of arrays aligned to the cells (observables) and genes (variables) 

and additional annotation structures (Figure 7B). This data storage allows easy access and result stor-
age for the different analyses of a scRNA sequencing experiment. 
 
Besides annotation, pre-processing, and “classical” analysis of scRNA seq data based on the gene 
expression profile of single cells, computational methods allow the extraction of additional information 
without the need to change the experimental procedure. The possibilities are enormous and include the 
detection of copy number variants, allowing the investigation of inter-clonal differences in tumor samples 
(Fan et al., 2018) and analysis of genetic variation between donors (Kang et al., 2018). Furthermore, 
many tools have been developed in the field of transcriptional dynamics by RNA velocity analysis, 
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pioneered by La Manno et al. in 2018 (La Manno et al., 2018). These tools allow lineage tracing and 
pseudotime analysis and have shown to be able to unbiasedly detect the root cells of a trajectory 
(Bergen et al., 2020). RNA velocities are generally based on the ratio between spliced and un-spliced 
mRNA still containing intronic regions for each gene, which can be translated into gene activity per cell 
(Figure 7C). The ratio between spliced and unspliced mRNA can be used to differentiate cells into three 
central states for each gene: gene expression induction, repression, and steady-state (Figure 7D). By 
extracting dynamical genes, subpopulation kinetics can be identified for the whole dataset to infer each 

cell’s developmental state in relation to the rest of the cells (Figure 7E). 
 

 
Figure 7. Computational analysis of scRNA sequencing experiments. 
(A) After annotation and pre-processing, dimensional reduction is performed to visualize the gene expression land-
scape in two dimensions. Clustering cells according to their similarity is a good starting point for analyzing different 
cell populations. (B) Structure of anndata: in parallel to the count matrix X, one-dimensional annotations (obs/var), 
multi-dimensional annotations (obsm/varm), and pairwise relationships (obsp/varp) are stored for cells and genes. 
Unstructured annotations are separated (uns). Modified from (Virshup et al., 2021). (C) Processing steps of mRNA 
from transcription to degradation. (D) Transcriptional states of a cell for one hypothetical gene according to the 
frequency of spliced vs. unspliced mRNA. (E) Transcriptional dynamics over all genes can be visualized on the 
level of single cells as directionality of differentiation. (C-E) visualized from (Bergen et al., 2020, La Manno et al., 
2018) 

1.7.2 Multiplexed imaging techniques 

Single-cell transcriptomics has expanded our knowledge about cell types and phenotypes in tissue sam-

ples, but it requires tissue dissociation and lacks the spatial context for cell-to-cell interactions. Tissues 
are characterized by defined ensembles of different cell types, interacting in complex networks that 
maintain organ health and tissue functions. Imbalances within these compositions can lead to tissue 
damage and pathological events. Therefore, the understanding of cellular phenotypes, together with 
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their spatial context, gains more and more importance in clinical research. There have been methods 
established which add the spatial component to RNA sequencing technologies by barcode-coated sup-
plies that can track the spatial position of transcriptomic information (Stahl et al., 2016). However, the 
resolution is still limited and has not reached the single-cell level yet. Recent developments are increas-
ing the resolution of spatial transcriptomics for fresh-frozen tissues (Chen et al., 2022). However, the 
whole transcriptome analysis still has some disadvantages compared to conventional imaging methods 
regarding spatial resolution.  

 
Figure 8. Comparison of antibody-based, FFPE-compatible HMTI methods. 
Antibody-based HMTI method can be subclassified according to the antibody conjugation and the staining and 
detection method. Metal-labeled antibodies are stained in one round and imaged via laser ablation and absorption 
into a mass spectrometer (left). DNA-labeled antibodies are also stained in one round and imaged in iterative cycles 
with complementary, fluorescently labeled DNA oligos, which are de-hybridized by heating after each step (middle). 
Fluorophore-labeled antibodies are stained and imaged in iterative cycles, and the fluorophore is inactivated after 
each acquisition (right). Modified from (Hickey et al., 2022). 

Highly multiplexed tissue imaging (HMTI) has gained much interest in the last few years. In parallel to 
the efforts to increase resolution in spatial transcriptomics, the number of markers to be analyzed on a 
tissue sample is increasing toward whole-transcriptome approaches. Most HMTI methods are based on 
antibodies conjugated to fluorophores, DNA, or metal tags, depending on the readout of the system 
(Figure 8). Tissues can be stained with up to 40 metal-tagged antibodies, micro-dissected using laser 
ablation, and particles analyzed by time-of-flight mass-spectrometry to finally reconstruct the tissue sec-
tion (Giesen et al., 2014, Angelo et al., 2014). In addition to being a destructive method, imaging mass 

cytometry (IMC) requires expensive and complex instrumentation and user skills. Furthermore, the res-
olution of laser ablation might still be limited compared to fluorescent imaging. In these one-shot exper-
iments, all epitopes of interest are stained and acquired simultaneously, thus preventing additional ex-
perimental steps. DNA-labeled antibodies expand the multiplexing capacity of isotope tags (restricted 
to 40 epitopes) and can be detected by cyclic imaging with fluorescently-labeled, complementary DNA 
oligos, which are removed after each imaging step (Goltsev et al., 2018, Kennedy-Darling et al., 2021). 
This methodology, called co-detection by imaging (CODEX), has further been developed using DNAses 
for specific de-staining (SeqStain) (Rajagopalan et al., 2021), and signal amplification has been 
achieved via primer exchange (ImmunoSABER) (Saka et al., 2019). Currently, the number of analyzed 
markers is theoretically unlimited, and researchers have used the technology to investigate more than 
100 epitopes on the same tissue sample. Besides its excellent multiplexing capacity, these methods 
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rely on custom-conjugated antibodies, which is why direct fluorescence-based methods are still key 
technologies in the field of HMTI. Tissue-based cyclic immunofluorescence (t-CyCIF), for example, uses 
iterative cycles of staining with fluorescently labeled primary or secondary antibodies, fluorescence ac-
quisition with a slide scanning microscope, and fluorophore-inactivation by chemical bleaching (Lin et 
al., 2018). Additional technologies, e.g., cellDIVE (Gerdes et al., 2013), IBEX (Radtke et al., 2020), and 
ChipCytometry (Jarosch et al., 2021, Jarosch et al., 2022, Hennig et al., 2009) developed according to 
the same principle. All of these methods are compatible with off-the-shelf antibodies and have been 

proven to detect more than 60 epitopes. 
 

1.7.3 ChipCytometry 

ChipCytometry (Jarosch et al., 2021, Jarosch et al., 2022, Hennig et al., 2009) expands on the basic 
principles of t-CyCIF, adding two critical technological advantages. Firstly, 32-bit high dynamic range 
(HDR) imaging allows a better resolution between high and low signal intensities. Secondly, a proper 
HDR background is recorded before every staining and subtracted from the image to receive a net-
fluorescence image. In addition, tissue sections are mounted into microfluidic chips, where they can be 
stored for later re-interrogation and staining, adding an essential value for precious sample material. 
After mounting a section on a chip, cyclic immunofluorescence is performed. The cycles include i) back-
ground acquisition before staining, ii) incubation of fluorophore coupled antibodies in up to five different 
channels, iii) imaging with an upright, inverted microscope, rediscovering each position in each cycle, 
and iv) photobleaching with the build-in HBO lamp (Figure 9). Due to an easier sample handling, this 
technology was tested and established for cryopreserved tissue samples only, which marks a disad-
vantage in regards to the applicability to retrospective clinical tissue repositories that contain almost 
exclusively formalin-fixed and paraffin-emended (FFPE) tissues since this is still the preferred method 
for long-term preservation (Gaffney et al., 2018). Still, for the discussed advantages of the technology, 
we have chosen the ChipCytometry technology for multiplexed imaging, also aiming for a transfer of the 
technology to FFPE samples to decipher the spatial context of immune cells in GvHD patients and 
combine this information with the depth of scRNA sequencing for accurate phenotyping. 
 

 
Figure 9. ChipCytometry technology. 
Schematic overview of the ChipCytometry method. Sections are mounted on glass coverslips and later on chips 
containing a microfluidic chamber. Within the chip, the tissue can be stored, and cyclic immunofluorescence can 
be applied, meaning iterative cycles of background acquisition, antibody staining, imaging, and photobleaching for 
dye inactivation. Modified from (Jarosch et al., 2021).
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2. Aim of this thesis 

GvHD is a significant complication after aHSCT and limits the success of this otherwise promising treat-
ment strategy for hematological malignancies. The disease is marked by donor cells attacking the re-
cipient’s organs, especially the skin, the gastrointestinal tract, and the liver, after T cell activation linked 
to the preconditioning of the patient. All primarily affected organs are seeded by commensal bacteria, 
and several preclinical as well as clinical studies have emphasized a connection between the microbi-

ome and the severity of GvHD. However, the exact causal relationship between immune infiltrates, gas-
trointestinal GvHD, and microbiome composition remains unresolved.  
  
In this study, we set out to characterize the immune infiltrates in GI biopsies of tumor patients who 
underwent aHSCT by the cutting-edge technologies of ChipCytometry multiplexed tissue imaging and 
scRNA seq. This experimental setting would allow obtaining the highest possible spatial and phenotyp-
ical resolution of immune infiltrates. The unique dataset should then be analyzed in relation to the pa-
tient-specific disease state and microbiome signatures. For this purpose, we specifically aimed at: 
 

• establishing protocols for the application of ChipCytometry on FFPE samples 

• adapting protocols of scRNA seq to small-sized GI biopsies 

• characterizing the immune infiltrates of GI biopsies in relation to clinical parameters  
 
ChipCytometry has some advantages compared to other multiplexed imaging approaches, but it had 
only been established for single cell suspensions and cryopreserved tissue samples. As large FFPE 
repositories of gastrointestinal biopsies were already available, it was essential to establish a protocol 

for ChipCytometry on FFPE tissue samples. For that, we aimed to test different methods for antigen 
retrieval, reduction of autofluorescent background and optimal tissue adherence. In parallel, we aimed 
to the set up an analysis pipeline that allows the automated quantification of signal intensities and, 
ultimately, the analyses of immune cell infiltration differences between samples. For transcriptomic anal-
ysis of single cells from small punch biopsies, we wanted to optimize single cell extraction, freezing, and 
enrichment of immune cells to maximize cell recovery for the following analyses. Further, we needed to 
develop a good pooling strategy of multiple samples for a cost-efficient experimental setup.  
 
After the technological establishments, we set out to generate an extensive transcriptomic and imaging 
dataset that would allow the investigation of GI-infiltrating immune cells in GvHD. This information was 
then supposed to be connected to clinically relevant GvHD biomarkers, treatment status of the patient 
and microbiome composition via 16 rRNA sequencing of stool samples. The output of these analyses 
should contribute to a better understanding of the mechanistic connections between immune cells, the 
microbiome, and GvHD severity, which will help to develop efficient treatment strategies against GvHD 
and improve the potential of HSCT for cancer treatment.
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3. Materials and Methods 

3.1 Materials 

3.1.1 Devices 

Table 1. List of devices 

Device Model Supplier 

10X Instrument Chromium Controller 10x Genomics, Pleasanton, USA 

Automated electrophoresis  2100 Bioanalyzer Agilent, Santa Clara, USA 

Automated staining system Ventana Benchmark XT Roche, Basel, Switzerland 

Balance EG 2200-2NM 

ACJ 320-4M 

Kern & Sohn GmbH, Balingen, Germany  

Kern & Sohn GmbH, Balingen, Germany 

Benchtop fluorometer Qubit 2.0 Life Technologies, Carlsbad, USA 

ChipCytometry Instrument Zellscanner ONE Canopy Biosciences, St. Louis, USA 

Counting Chamber Neubauer improved Paul Marienfeld & Co. KG, Lauda- 
Königshofen, Germany  

Coverglass staining rack - Epredia, Michigan, USA 

Flow Cytometer / cell sorter CytoFLEX S 

FACS Aria II 

MoFlo Astrios 

Beckman Coulter, Fullerton, USA 

Becton Dickinson, Heidelberg, Germany 

Beckman Coulter, Fullerton, USA 

Incubator HERAcell 240 Heraeus, Hanau, Germany 

Laminar flow hood HERAsafe Heraeus, Hanau, Germany 

Microscope Axiovert 40C Carl Zeiss, Jena, Germany 

Microtome RM2245 Leica, Wetzlar, Germany 

Oven Hybaid Shake `n` stack Thermo Scientific, Waltham, USA 

pH-meter 766 Knick, Berlin, Germany 

Pressure cooker 6L Amazon Basics Amazon, Seattle, USA 

Slide scanner BX61VS 

Aperio AT2 

Olympus, Tokio, Japan 

Leica, Wetzlar, Germany 

Sequencer HiSeq2500 

NovaSeq6000 

Illumina, San Diego, USA 

Illumina, San Diego, USA 

Thermo shaker Thermomixer comfort Eppendorf, Hamburg, Germany 

Waterbath WNB10 Memmert, Schwabach, Germany 
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3.1.2 Consumables 

Table 2. List of consumables 

Name Supplier Identifier 

Automat-Star glass coverslips (24 x 50 
mm, No. 1) 

Engelbrecht, Edermünde, Germany K12460A1,0 

Microscopy slides Superfrost® Plus  Thermo Scientific, Waltham, USA #J1800AMNZ 

 

3.1.3 Chemicals and reagents 

Table 3. List of chemicals and reagents 

Name Supplier 

Beta-mercaptoethanol Life Technologies, Carlsbad, USA 

Bovine serum albumin (BSA) Sigma Aldrich, Taufkirchen, Germany 

Collagenase IV Sigma Aldrich, Taufkirchen, Germany 

Dimethyl sulfoxide (DMSO) Sigma Aldrich, Taufkirchen, Germany 

Dulbecco's phosphate-buffered saline (DPBS) PAN-Biotech, Aidenbach, Germany 

Eosin Morphisto, Offenbach, Germany 

Ethanol 70%, 1 % MEK Carl Roth, Karlsruhe, Germany 

Ethanol absolute, 1 % MEK Carl Roth, Karlsruhe, Germany 

Ethylenediaminetetraacetic acid (EDTA) Carl Roth, Karlsruhe, Germany 

Fetal calf serum (FCS) Sigma Aldrich, Taufkirchen, Germany 

Ficoll Sigma Aldrich, Taufkirchen, Germany 

Gentamycin Life Technologies, Carlsbad, USA 

HBSS Sigma Aldrich, Taufkirchen, Germany 

Hematoxylin Morphisto, Offenbach, Germany 

HEPES Carl Roth, Karlsruhe, Germany 

Hoechst Thermo Fisher, Darmstadt, Germany 

Hydrogen peroxide (H2O2) Sigma Aldrich, Taufkirchen, Germany 

L-Glutamine Sigma Aldrich, Taufkirchen, Germany 

Opal 520 Akoya Bioscience, Massachusetts, USA 

Opal 570 Akoya Bioscience, Massachusetts, USA 

Opal 650 Akoya Bioscience, Massachusetts, USA 

Penicillin Life Technologies, Carlsbad, USA 

Propidium Iodide Thermo Fisher, Darmstadt, Germany 

Roticlear Carl Roth, Karlsruhe, Germany 



Materials 

 23 

RPMI 1640 Life Technologies, Carlsbad, USA 

Sodium Borohydrate Sigma Aldrich, Taufkirchen, Germany 

Sodium Chloride (NaCl) Carl Roth, Karlsruhe, Germany 

Sodium Citrate  Sigma Aldrich, Taufkirchen, Germany 

Sodium Hydroxate (NaOH) Sigma Aldrich, Taufkirchen, Germany 

Sudan Back B Sigma Aldrich, Taufkirchen, Germany 

Tris(hydroxymethyl)aminomethane (TRIS) Carl Roth, Karlsruhe, Germany 

Tween20 Carl Roth, Karlsruhe, Germany 

 

3.1.4 Reagent kits 

Table 4. List of reagent kits 

Kit Supplier Identifier 

5’ Feature Barcode Kit 10x Genomics, Pleasanton, USA 1000256 

Chromium Next GEM Chip G Single Cell Kit 10x Genomics, Pleasanton, USA 1000120 

Chromium Next GEM Chip K Single Cell Kit 10x Genomics, Pleasanton, USA 1000286 

Chromium Next GEM Single Cell 5’ Kit v2 10x Genomics, Pleasanton, USA 1000263 

Chromium Next GEM Single Cell 5’ Library 
and Gel Bead Kit v1.1 

10x Genomics, Pleasanton, USA 1000165 

Chromium Single Cell 5’ Feature Barcode 
Library Kit, 

10x Genomics, Pleasanton, USA 1000080 

Chromium Single Cell 5’ Library Construc-
tion Kit 

10x Genomics, Pleasanton, USA 1000020 

Chromium Single Cell Human TCR Amplifi-
cation Kit 

10x Genomics, Pleasanton, USA 1000252 

Chromium Single Cell V(D)J Enrichment 
Kit, Human T Cell 

10x Genomics, Pleasanton, USA 1000005 

dsDNA hs assay kit Life Technologies, Carlsbad, USA Q32854 

Dual Index Kit TN Set A 10x Genomics, Pleasanton, USA 1000250 

Dual Index Kit TT Set A 10x Genomics, Pleasanton, USA 1000215 

High sensitivity DNA Kit Agilent, Santa Clara, USA 5067-4626 

RNAscope Multiplex Fluorescent Reagent 
Kit v2 

ACDBio, Newark, USA 323100 

RNAscope Probe Diluent ACDBio, Newark, USA 300041 

Single Index Kit N Set A 10x Genomics, Pleasanton, USA 1000212 

Single Index Kit T Set A 10x Genomics, Pleasanton, USA 1000213 

UltraView Universal DAB Detection Kit Roche, Basel, Switzerland 5269806001 

ZellSafe Chip kit FFPE Canopy Biosciences, St. Louis, USA 28050606/04 
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3.1.5 Antibodies 

3.1.5.1 ChipCytometry 

Table 5. List of ChipCytometry antibodies 

Epitope Clone Conjugate Supplier Identifier Dilution 

Annexin A1 EPR19342 PE abcam ab225512 1:100 

anti-Rabbit polyclonal 2nd FITC BioLegend 406403 1:200 

anti-Rabbit polyclonal 2nd PE BioLegend 406421 1:300 

beta-Catenin L54E2 PE Cell Signaling 6898S 1:300 

CD103 EPR4166(2) AF488 abcam ab225152 1:100 

CD117 104D2 PE Thermo Fisher 12-1178-41 1:100 

CD123 6H6 PE BioLegend 306006 1:150 

CD133 clone 7 PE BioLegend 372803 1:100 

CD14 EPR3653 AF488 Abcam ab133335 1:100 

CD20 H1 PE BD Bioscience 561174 1:200 

CD20 H1 PerCP/Cy5.5 BD Bioscience 558021 1:25 

CD3 SP7 - Thermo Scientific RM-9107-S1 1:150 

CD4 polyclonal AF488 R&D systems FAB8165G 1:50 

CD45 HI30 BUV395 BD Bioscience 563791 1:80 

CD45 HI30 PerCP/Cy5.5 BioLegend 304028 1:50 

CD45RA HI100 BV421 BioLegend 304129 1:100 

CD45RA HI100 PE BioLegend 304108 1:600 

CD45RA HI100 PerCP/Cy5.5 BioLegend 304122 1:100 

CD45RO UCHL1 PE BioLegend 304206 1:150 

CD56 123C3.D5 PerCP Novus  33132PCP 1:100 

CD57 HNK-1 PE BioLegend 359611 1:100 

CD68 KP1 FITC Santa-Cruz sc-20060  1:100 

CD79a HM47 PE BioLegend 333503 1:100 

CD8 C8/144B PE SantaCruz sc53212 PE 1:50 

Collagen IV 1042 AF488 Thermo Fisher 53-9871-80 1:100 

Cytokeratin (Pan) C11 AF488 BioLegend 628608 1:100 

E-Cadherin 24E10 PE Cell Signaling 7559S 1:100 

Foxp3 236A/E7 PE eBioscience 12-4777-42 1:30 

GATA-3 L50-823 PE BD Pharmingen 560074 1:50 
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Ki-67 B56 PE BD Bioscience 556027 1:50 

Ki-67 B56 PerCP/Cy5.5 BD Bioscience 561284 1:50 

Mast Cell Chymase CC1 PE SantaCruz sc-59586 1:100 

Mast Cell Tryptase G3 PE SantaCruz sc-33676 1:200 

Muc2 SPM296 PE Novus 34757PE 1:300 

NF-kb E379 AF488 abcam ab190205 1:50 

PD-1 NAT105 PE BioLegend 367404 1:50 

PD-L1 29E.2A3 PE BioLegend 329706 1:200 

pSTAT3 D3A7 PE Cell Signaling 8119 1:150 

SMA 1A4 eF570 eBioscience 41-9760-80 1:500 

Vimentin O91D3 AF488 BioLegend 677809 1:300 

Vinculin 7F9 AF488 Invitrogen 53-9777-82 1:100 
 

3.1.5.2 Flow cytometry 

Table 6. List of flow cytometry antibodies 

Epitope Clone Conjugate Supplier Identifier Dilution 

CD3 UCHT1 PE Beckman Coulter A07747 1:50 

CD45 T29/33 Pacific Blue Dako PB986 1:50 
 

3.1.5.3 Single cell RNA sequencing 

Table 7. List of single-cell RNA sequencing antibodies 

Epitope Clone Sequence Supplier Identifier Dilution 

TotalSeq-C0251 LNH-94/2M2 GTCAACTCTTTAGCG BioLegend 394661 1:100 

TotalSeq-C0252 LNH-94/2M2 TGATGGCCTATTGGG BioLegend 394663 1:100 

TotalSeq-C0253 LNH-94/2M2 TTCCGCCTCTCTTTG BioLegend 394665 1:100 

TotalSeq-C0254 LNH-94/2M2 AGTAAGTTCAGCGTA BioLegend 394667 1:100 

TotalSeq-C0255 LNH-94/2M2 AAGTATCGTTTCGCA BioLegend 394669 1:100 

TotalSeq-C     
Human Univer-
sal Cocktail 
V1.0 

Several Several BioLegend 399905 - 
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3.1.6 Probes for fluorescence RNA in-situ hybridization 

Table 8. List of FISH probes 

Gene Target region Opal dye Supplier Identifier 

CD3E 26 - 1288 Opal 520 ACDBio, Newark, USA 553971 

CTLA4 307 - 1224 Opal 650 ACDBio, Newark, USA 554341 

IL10 122 - 1163 Opal 570 ACDBio, Newark, USA 602051 

IFNG 80 - 1152 Opal 570 ACDBio, Newark, USA 310501 
 

3.1.7 Buffers and media 

Table 9. Composition of buffers and media 

Buffer Composition 

Antigen retrieval buffer, pH 8.5   ddH2O 
 10.00 mM TRIS 
 1.00  mM EDTA 

Blocking buffer   PBS 
 0.10  % (v/v) Tween-20 
 5.00 % (v/v) Goat serum 

Complete RPMI (cRPMI)   RPMI 1640 
 10.00 % (v/v) FCS 
 0.12  % (w/v) HEPES 
 0.02  % (w/v) L-Glutamine 
 1.00 % (v/v) Penicillin/Streptomycin 
 0.10 % (v/v) Gentamycin 
 0.10 % (v/v) ß-Mercaptoethanol 

Digestion buffer   HBSS w/o Ca2+, Mg2+ 

 25.00  mM HEPES 
 0.10  % (w/v) Collagenase IV 

Digestion wash buffer   cRPMI 
 25.00  mM HEPES 

EB buffer, pH 8.5   ddH2O 
 10.00  mM Tris-HCl 

FACS Buffer, pH 7.5   PBS 
 0.50 % (w/v) BSA 

Freezing medium   FCS 
 10.00  % (v/v) DMSO 

PBST   PBS 
 0.10  % (v/v) Tween-20 

Quenching buffer   PBS 
 4.50  % (v/v) Hydrogen Peroxide 
 24.00  mM Sodium hydroxide 



Materials 

 27 

 
Sodium saline citrate buffer (20X), pH 7.0   

 
ddH2O 

 3.00  mM Sodium Chloride (NaCl) 
 2.90  mM Sodium citrate 

Sudan Black B solution   70% EtOH 
 0.10  % (w/v) Sudan Black B 

 

3.1.8 Human samples 

All procedures were approved by the local ethics committee and, after informed, written consent of 
patients regarding the use of the tissue samples. Tissue samples were kindly provided from the repos-
itories of Dr. Katja Steiger, Prof. Dr. Klaus-Peter Janssen, and Prof. Dr. Ernst Holler. Details can be 

found in the following table. 
 
Table 10. Origin of human samples 

Sample type Source 

Biopsies from aHSCT patients University hospital of Regensburg (Prof. Ernst 
Holler) 

Breast cancer resections TUM Pathology Department (Dr. Katja Steiger) 

Colorectal cancer resections TUM Pathology Department (Dr. Katja Steiger) 

Healthy adjacent tissues from colon resections Molecular Tumor Biology (Prof. Dr. Klaus-Peter 
Janssen) at the Dept. of Surgery (TUM) 

Pancreatic cancer resections TUM Pathology Department (Dr. Katja Steiger) 

PBMC samples Voluntary, healthy donors 
 
 

3.1.9 Gene Sets 

Table 11. Gene sets used in scRNA seq analysis 

Geneset Source Genes 

G2M genes (Tirosh et 
al., 2016) 

BIRC5, TPX2, TOP2A, NDC80, CKS2, NUF2, CKS1B, MKI67, TMPO, CENPF, 
TACC3, FAM64A, SMC4, CCNB2, CKAP2L, CKAP2, AURKB, BUB1, KIF11, 
ANP32E, TUBB4B, GTSE1, KIF20B, HJURP, CDCA3, HN1, CDC20, TTK, CDC25C, 
KIF2C, RANGAP1, NCAPD2, DLGAP5, CDCA2, CDCA8, ECT2, KIF23, HMMR, 
AURKA, PSRC1, ANLN, LBR, CKAP5, CENPE, CTCF, NEK2, G2E3, GAS2L3, 
CBX5, CENPA 

S genes (Tirosh et 
al., 2016) 

MCM5, PCNA, TYMS, FEN1, MCM2, MCM4, RRM1, UNG, GINS2, MCM6, CDCA7, 
DTL, PRIM1, UHRF1, MLF1IP, HELLS, RFC2, RPA2, NASP, RAD51AP1, GMNN, 
WDR76, SLBP, CCNE2, UBR7, POLD3, MSH2, ATAD2, RAD51, RRM2, CDC45, 
CDC6, EXO1, TIPIN, DSCC1, BLM, CASP8AP2, USP1, CLSPN, POLA1, CHAF1B, 
BRIP1, E2F8, HMGB2, CDK1, NUSAP1, UBE2C 

Teff genes (Höllbacher 
et al., 2020) 

ACE, ACER1, ACSL6, ACSM1, ACVR1B, ACVR1C, ADAM23, ADAMTS10, 
ADAMTS17, ADCY9, ADGRE1, ADGRE5, AFF3, AGAP1, AGAP3, AGPAT9, AIF1, 
AJUBA, AK5, AKR1E2, ALOX5, ALPK1, AMIGO1, AMPD2, ANK3, ANKRD42, 
ANXA1, APBA2, APOL3, APP, AREG, ARHGAP32, ARHGAP39, ARHGEF40, 
ARL4A, ARMC12, ARMCX2, ARRDC4, ASB13, ASTL, ATF3, ATHL1, AXIN2, 
AZIN2, B3GNT9, B4GALNT4, BACH2, BAIAP3, BAMBI, BCL2A1, BCL7A, BEGAIN, 
BFSP1, BHLHE40, BRSK1, BTBD11, C11orf74, C16orf54, C1orf115, C1orf162, 



Materials 

 28 

C1orf228, C1orf233, C2orf40, C3orf52, CACFD1, CACNA1I, CAMK2N1, CAND2, 
CASS4, CBR3, CCDC112, CCDC184, CCND1, CCND3, CCR7, CCSAP, CD226, 
CD300A, CD40LG, CD69, CDC42EP4, CDH23, CDKN1A, CDS1, CERS6, CFH, 
CFL2, CHD7, CHN2, CHPF, CILP2, CKAP4, CLIC6, CLU, CMPK2, CNN3, COL1A1, 
COL27A1, COL6A1, CR1, CR2, CTSL, CXCL16, CYB561, CYP4F12, DCHS1, 
DDIT4, DENND5A, DHRS3, DISC1, DLG4, DLL1, DMXL2, DNAJC6, DOCK3, 
DPYSL4, DSE, DST, DTX1, DUSP1, DUSP2, DUSP5, DUSP8, DYNC2H1, DYNLT3, 
ECHDC3, EDA, EFHC2, EGR2, EHD4, ELMO2, ENPP2, EPHA1, EPHA4, EPS8, 
ETNK2, ETS2, EXD2, F2RL1, FADS3, FAM160A1, FAM19A1, FAM213A, FAM26F, 
FAM65A, FAM89A, FBP1, FBXL8, FGF9, FHL1, FKBP2, FKBP5, FLOT1, FOS, 
FOSB, FZD3, FZD8, GADD45G, GAS2L1, GAS7, GCLM, GCSAM, GIMAP7, 
GIMAP8, GLB1L2, GLUL, GNAO1, GNG7, GPR150, GPR160, GPR35, GRASP, 
GRB10, GREM2, GRIP1, GSAP, H1F0, HBEGF, HDGFL3, HID1, HIPK2, HOOK1, 
HS6ST1, HSF4, ID1, ID2, IER3, IER5, IFI44L, IFITM5, IGFBP3, IGFBP4, IL15, IL2, 
IL4I1, IL4R, IL5RA, IL7R, INPP4B, INSR, IQCK, IQSEC2, IRF2BP2, ISM1, ITGA1, 
JAKMIP3, JAM3, JUN, KCNQ1, KCTD3, KDM6B, KIAA2022, KIF13A, KIF19, KLF4, 
KRT2, LARGE, LATS2, LDOC1L, LMO4, LMTK3, LONRF1, LPGAT1, LPIN2, LRP1, 
LRP6, LRRC6, LYNX1, LYPD3, LYSMD2, MAGI3, MAML3, MAMLD1, MAN1C1, 
MAP9, MAPRE3, MAPT, MARVELD1, MATK, MBNL3, MBOAT2, MCOLN2, 
MCOLN3, ME3, MEST, METTL1, MFAP3L, MID1IP1, MID2, MMP11, MMP15, 
MMP9, MPP2, MPP7, MTUS1, MTUS2, MYADM, MYO6, NAP1L3, NBEA, NBL1, 
NCOA7, NELL2, NEO1, NEU4, NFIA, NFKB1, NFKBIA, NINJ1, NINL, NKX3-1, 
NLGN2, NLRP3, NLRP6, NME4, NOL3, NPTXR, NR3C2, NR4A1, NR4A2, NT5C3B, 
NUDT11, OSBPL5, OSM, OTUD7A, P3H3, PARD3B, PARK2, PCSK5, PDE4D, 
PDZD4, PELI2, PFN2, PHLDB2, PIFO, PIK3C2B, PIM3, PLAC8, PLAG1, PLAUR, 
PLEKHA7, PLEKHG5, PLK2, PLXDC1, PLXNA4, PLXND1, PM20D2, PMEPA1, 
PNP, POMGNT2, PPM1L, PPP4R4, PRKCA, PRKCE, PROSER2, PRRT1, PRRT4, 
PRSS22, PTGER4, PTK2, PTPRK, PVRL1, PVRL2, PVRL3, PWWP2B, RAB20, 
RAB27B, RALA, RALGPS2, RARA, RARG, RASD1, RASGEF1A, RASGEF1B, 
RASGRF2, RASSF2, RASSF6, RBM11, RBMS1, RELB, RGAG4, RGL1, RGS16, 
RHOB, RHOU, RIMKLB, RIPK4, RNASE6, RND1, RNF122, RNF130, RNF144A, 
RNF207, ROBO3, RRAGD, RRAS2, RSAD2, RUFY3, S1PR1, SAV1, SBF2, 
SCML1, SCML4, SDK2, SEC14L2, SECTM1, SEMA4C, SERPINB6, SFMBT2, SFN, 
SGK1, SH2B3, SHF, SIAH3, SIPA1L2, SKIL, SLC22A17, SLC22A23, SLC22A31, 
SLC29A2, SLC30A4, SLC36A4, SLC39A8, SLC40A1, SMAD5, SMIM3, SNTB1, 
SOAT2, SORBS3, SOS2, SOX8, SPATA6, SPEF2, SPEG, SPG20, SPRY1, 
SREBF1, SSBP2, SSPO, ST6GALNAC1, ST6GALNAC2, STARD10, STOM, 
STXBP1, SUSD4, SVIL, SYDE2, SYNM, TAF4B, TANC1, TBC1D16, TC2N, TCEA3, 
TCEAL2, TCF7, THEMIS, TIMP1, TLE1, TLR2, TMEM121, TMEM170B, 
TMEM184B, TMEM200A, TMEM30B, TMEM45B, TMEM63C, TMEM71, TMEM88, 
TMIGD2, TMOD2, TNFAIP3, TNFRSF10B, TNFRSF13C, TOP1MT, TPBGL, TPM2, 
TRABD2A, TRADD, TRAT1, TRIM2, TRIP10, TSPAN18, TSPAN6, TSPAN9, 
TXNRD3, UBE2E2, ULBP2, UNC13B, USP2, USP44, USP46, USP6NL, UST, 
VEGFB, VIPR1, WDR86, WNT1, WNT10B, WNT11, WNT7A, WWC2, XBP1, YES1, 
ZBED3, ZBTB10, ZBTB18, ZBTB42, ZBTB47, ZDHHC11, ZDHHC11B, ZFP36, 
ZFP36L2, ZFYVE9, ZMYND15, ZNF165, ZNF208, ZNF219, ZNF358, ZNF418, 
ZNF439, ZNF467, ZNF502, ZNF516, ZNF607, ZNF618, ZNF629, ZNF703, ZNF711, 
ZNF814, ZNF827, ZSCAN18, ZSWIM5 

Treg genes (Höllbacher 
et al., 2020) 

ABHD11, ACTA2, ADAM28, ADAT2, ADRBK2, ADTRP, AKAP2, AKAP5, AKIP1, 
AKR1C3, ANKDD1B, ANKS1B, APOBEC2, AQP7, ARAP3, ARHGAP11A, 
ARHGAP11B, ARHGAP25, ARHGEF12, ASF1B, ASIC1, ASPM, ATP1B1, 
ATP6V0A1, BARD1, BFSP2, BLM, BLZF1, BUB1, C15orf53, C16orf74, CACNB2, 
CAMK1, CARD16, CARD17, CASC5, CASP1, CASP8, CBR4, CCDC141, CCM2, 
CCR3, CCRL2, CD27, CD79A, CD79B, CDC45, CDCA2, CDCA7L, CDHR3, CDK14, 
CDKL4, CDKN2A, CEACAM4, CENPE, CENPF, CENPJ, CEP128, CEP55, CHST2, 
CIITA, CIT, CLDN4, CPA5, CPNE2, CSF2RB, CTLA4, CTNNAL1, CTTNBP2NL, 
CXCR6, DCLRE1A, DCP1B, DDI2, DEPDC1, DOCK6, DSCC1, DUSP10, DUSP4, 
E2F7, ENTPD1, EPSTI1, ERI1, ETV7, F5, FAM110C, FAM174B, FAM179A, 
FAM184A, FAM19A2, FANK1, FBXO18, FCRL1, FDXR, FHL3, FITM2, FOXP3, 
GALNT3, GCNT1, GEN1, GINS2, GIPR, GJB6, GK, GLCE, GLRX, GNG8, GNRH1, 
GPLD1, GPR155, GPR19, GSN, GSTA4, GTSF1L, GXYLT1, HAVCR1, HDAC9, 
HECW1, HELLS, HES1, HIBCH, HIST4H4, HLA-DMA, HLA-DMB, HLA-DOA, HLA-
DPA1, HLA-DPB1, HLA-DRA, HLA-DRB1, HLA-DRB5, HMCN1, HOXB2, HOXB3, 
HPGD, HS3ST3B1, HSPA1L, IKZF2, IKZF4, IL12A, IL1R1, IL1R2, IL2RA, IL32, 
INPP1, INPP5F, IRAK3, IRF4, ITGB8, JSRP1, KHDC1, KIAA1841, KIF14, KIF18A, 
KLHL2, LAMC3, LAYN, LGR4, LIMD1, LIN7A, LMCD1, LRG1, LRRC2, LRRC32, 
LSP1, MACC1, MARCH3, MELK, MEOX1, METTL7A, MFGE8, MGST2, MPST, 
MYB, MYL6B, MYOF, NABP1, NCAPG, NDC80, NEBL, NEK2, NINJ2, NTHL1, 
NTNG2, NUF2, NUSAP1, OAS1, OGT, OR2A7, PAFAH2, PBK, PCED1B, PECR, 
PGM2L1, PIK3R3, PITPNM2, PLGLB1, PLS3, PM20D1, PMAIP1, PMCH, POLE2, 
PRDM8, PRKAG1, PROB1, PRR11, PRR33, PSD3, PTGIR, PTGS1, PYHIN1, 
RAB31, RAB37, RACGAP1, RAD51AP1, RASGRP4, RGPD2, RTKN2, RTP4, 
RYR1, SASS6, SELP, SEMA3G, SFT2D1, SGMS1, SH3RF2, SHCBP1, SHMT2, 
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SHTN1, SIM1, SIRPG, SKA1, SLC12A6, SLC16A10, SLC1A4, SLC2A8, SLC36A1, 
SLC43A1, SLC46A3, SLC9A7, SLFN14, SMC6, SMTN, SOX4, SPATS2L, SPC24, 
SPON2, SRGAP3, ST8SIA4, ST8SIA6, STAC, STAM, STRIP2, SUOX, SWAP70, 
TCF19, TCHP, TEP1, TIAM1, TICRR, TIGIT, TIMD4, TLDC2, TMEM169, TMEM244, 
TNFRSF13B, TNFRSF19, TNFRSF8, TNFRSF9, TNIP3, TOP2A, TOR4A, TOX, 
TOX2, TPP1, TPX2, TRIB1, TRPV6, TSHR, TTC22, TTN, TYMS, UBALD1, UTS2, 
VANGL1, VAV3, WBSCR27, WSCD2, XKRX, XYLB, YPEL2, ZBP1, ZBTB32, 
ZC3H12C, ZNF662, ZNF80 

Treg suppres-
sion genes 

This work FOXP3, IL2RA, CTLA4, CD27, TNFRSF4, TNFRSF18, TNFRSF9, TIGIT, BATF, 
CCR4, CXCR3 

Y-chromo-
some genes 

ENSEMBL AMELY, BCORP1, BPY2, BPY2B, BPY2C, CDY1, CDY1B, CDY2A, CDY2B, DAZ1, 
DAZ2, DAZ3, DAZ4, DDX3Y, EIF1AY, HSFY1, HSFY2, KDM5D, NLGN4Y, 
PCDH11Y, PRKY, PRORY, PRY, PRY2, PRYP3, PRYP4, RBMY1A1, RBMY1B, 
RBMY1C, RBMY1D, RBMY1E, RBMY1F, RBMY1J, RPS4Y1, RPS4Y2, SLC9B1P1, 
SRY, TBL1Y, TGIF2LY, TMSB4Y, TSPY1, TSPY10, TSPY2, TSPY3, TSPY4, 
TSPY8, TTTY10, TTTY12, TTTY13, TXLNGY, USP9Y, UTY, VCY, VCY1B, XKRY, 
XKRY2, ZFY 

KEGG 2021 
GvHD 

KEGG KIR3DL3, GZMB, HLA-A, HLA-B, HLA-C, HLA-DMA, HLA-DMB, HLA-DOA, HLA-
DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-
DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-E, HLA-F, HLA-G, IFNG, FAS, 
IL1A, IL1B, IL2, FASLG, IL6, KIR2DL1, KIR2DL2, KIR2DL3, KIR3DL1, KIR3DL2, 
KLRC1, KLRD1, PRF1, KIR2DL5A, TNF, CD28, CD80, CD86 

 

3.1.10 Software 

Table 12. List of software and python packages 

Software Version Developer/Publication Website 

Affinity Desig-
ner 

1.9 Serif Europe Ltd., Notting-
ham, UK 

https://affinity.serif.com/de/designer/  

anndata 0.7.6 (Virshup et al., 2021) https://github.com/scverse/anndata 

Aperio Ima-
geScope 

12.4.0 Leica, Wetzlar, Germany https://www.leicabiosystems.com/de-
de/digitalpathologie/verwaltung/aperio-
imagescope/  

arcasHLA 0.4 (Orenbuch et al., 2020) https://github.com/RabadanLab/ar-
casHLA  

BaSiC - (Peng et al., 2017) https://github.com/marrlab/BaSiC  

Cellranger 6.0.2 10x Genomics, Pleasan-
ton, USA 

https://support.10xgenomics.com/single-
cell-gene-expression/software/pipe-
lines/latest/installation  

diffxpy  David Fischer & Florian 
Hölzlwimmer 

https://github.com/theislab/diffxpy 

fcswrite 0.5.2 Zellmechanik Dresden, 
Dresden, Germany 

https://github.com/ZELLMECHANIK-
DRESDEN/fcswrite  

Fiji 1.53 (Schindelin et al., 2012) https://imagej.net/software/fiji/ 

FlowJo 10 FlowJo LLC, Ashland, USA https://www.flowjo.com/  

Freebayes 1.3.1 (Garrison and Marth, 2012) https://github.com/freebayes/ 

leidenalg 0.8.3 (Traag et al., 2019) https://github.com/vtraag/leidenalg  

matplotlib 3.3.4 (Thomas et al., 2021) https://matplotlib.org/ 
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Microsoft 
Office 

2019 Microsoft, Redmond, USA - 

numpy 1.19.5 (Harris et al., 2020) https://numpy.org/  

pandas 1.2.3 (Jeff et al., 2021) https://pandas.pydata.org/  

Prism 9 Graphpad, La Jolla, USA https://www.graphpad.com/scientific-
software/prism/  

samtools 1.9 (Li et al., 2009) http://www.htslib.org/ 

scanpy 1.8.1 (Wolf et al., 2018) https://github.com/scverse/scanpy  

Scikit-bio 0.5.6  https://github.com/biocore/scikit-bio  

scikit-learn 0.24.1 (Pedregosa et al., 2011) https://scikit-learn.org/stable/  

scipy 1.6.1 (Virtanen et al., 2020) https://scipy.org/ 

scirpy 0.10.0 (Sturm et al., 2020) https://github.com/scverse/scirpy  

scVelo 0.2.3 (Bergen et al., 2020) https://github.com/theislab/scvelo  

seaborn 0.11.1 (Waskom, 2021) https://seaborn.pydata.org/ 

Souporcell 2.0 (Heaton et al., 2020) https://github.com/wheaton5/souporcell  

StarDist 0.3.0 (Weigert, 2020) https://github.com/stardist/stardist-
imagej  

statsmodels 0.12.2 (Seabold and Perktold, 
2010) 

https://www.statsmodels.org  

subset-bam 1.0 10x Genomics, Pleasan-
ton, USA 

https://github.com/10XGenomics/subset-
bam  

umap 0.4.6 (McInnes et al., 2018) https://github.com/lmcinnes/umap  

vcftools 0.1.16 (Danecek et al., 2011) https://github.com/vcftools/vcftools  

Velocyto 0.17 (La Manno et al., 2018) https://github.com/velocyto-team/ve-
locyto.py  

 

3.1.11 Code 

All original code used and generated in this thesis has been deposited at the Github repository 
(https://github.com/SebastianJarosch/ChipCytometry-Image-Processing). The software release v1.1.0 
available at Zenodo (SebastianJarosch, 2022) was used within this thesis, further updates on the pipe-
line will be made available in future releases.  
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3.2 Methods 

3.2.1 Generation of single-cell suspensions 

3.2.1.1 PBMC isolation from human blood samples 

Fresh blood was diluted 1:5 in PBS before PBMC isolation. Leukosept tubes containing 15 ml Ficoll 
were centrifuged (1000 x g, RT, 2 min) before 35 ml of diluted fresh blood were added on top. After 
centrifugation (1000 x g, RT, 15 min), the leukocyte layer was collected and transferred to a new tube. 

Finally, the cells were washed with PBS and centrifuged (1500 rpm, RT, 7 min) before processing with 
either staining or freezing the generated cell suspensions. A maximum density of 2x107 cells/ml was 
frozen in freezing medium at -80°C (freezing speed of 1°C/min). 
 

3.2.1.2 Generation of single-cell suspension from human gastrointestinal biopsies 

Biopsies were transferred into pre-warmed (37°C) HBSS medium (Hank’s Balanced Salt Solution w/o 
Mg2+/Ca2+) as soon as possible after resection. Tissue pieces were disrupted mechanically, transferred 
into 5 ml digestion buffer, and vortexed. Digestion takes place at the thermo shaker for twice 15 min 
(37°C, 220 rpm), vortexing the solution between the incubation steps. The resulting suspension was 
filtered using a 100 µm nylon mesh into a 50 ml Falcon tube, and the digestion was stopped by the 
addition of 40 ml digestion wash buffer. Centrifugation (1500 rpm, RT, 7 min) was followed by another 
washing step with wash buffer before the cells were resuspended in 250 µl freezing medium and frozen 
at -80°C (freezing speed of -1°C/min). 
 

3.2.1.3 Thawing single-cell suspensions 

Each vial of frozen cell suspension was resuspended in 10 ml pre-warmed (37°C) cRPMI by pipetting 
back and forth the warm medium. Centrifugation (1500 rpm, 4°C, 7 min) was followed by washing with 
cold FACS buffer before staining the cells for flow cytometry. 
 

3.2.2 Establishment of ChipCytometry on FFPE tissues 

3.2.2.1 Antigen retrieval testing 

Slides or coverslips mounted with FFPE tissue samples were either heated for 10, 20, or 30 min using 
a staining dish containing the antigen retrieval buffer and a water bath at a buffer temperature of 90 °C 
or directly heated in a pressure cooker containing the retrieval buffer for 10 min at ~120 °C. Staining 
was performed overnight (see 3.2.3.2) for signal-to-noise ratio (SNR) evaluation (see 3.2.2.4). 
 

3.2.2.2 Autofluorescence treatment tests 

Autofluorescence quenching by Sudan Black B, sodium borohydride, and photobleaching was tested. 
For Sudan Black B treatment, sections were incubated for 5, 10, 20, or 30 min in Sudan Black B solution 
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before they were washed extensively, firstly with 70 % EtOH, ensuring to remove all remaining reagent 
from the tissue, and subsequently with PBST. For sodium borohydride, sections were incubated three 
times for 10 min in 0.1 % (m/v) solution in PBS and washed extensively with PBST. Photobleaching was 
conducted by incubating the sections in PBST underneath a white light source for 30 min. During this 
incubation time, the buffer was exchanged every 5 min to minimize the heating of the tissue during the 
process.  
 

3.2.2.3 Evaluation of tissue section adherence 

Tissue sections were mounted on either glass coverslips, polysilane-coated microscopy slides, or pre-
treated coverslips (kindly provided by the Zellkraftwerk company) as tissue supplies, treated with differ-
ent antigen retrieval intensities (no AR, 20 min 90°C water bath, 10 min 120°C pressure cooker) and 
processed for tissue integrity scoring via H&E staining (see 3.2.2.5) 
 

3.2.2.4 Signal-to-Noise (SNR) ratio evaluation 

Staining quality analysis was done by acquiring two areas of tissue, each covering five positions. The 
contrast and background of the HDR image were adjusted (same parameters for each condition), and 
images were exported as 16-bit grayscale .tiff images. The mean intensity measurements for SNR eval-
uation were performed with ImageJ with slightly different strategies for the areal, non-bleachable pan-
cytokeratin staining, and the bleachable surface marker stainings: For pan-cytokeratin staining, crypts 
and background regions (lamina propria regions between the crypts) were segmented as freehand se-
lections, and the SNR was calculated as crypt intensity divided by the mean of all background intensities. 
For bleachable surface markers, an additional background after photobleaching was recorded. The sur-
face of cells was selected as a freehand line (3-pixel thickness) in ImageJ, and SNR was calculated as 
the staining intensity divided by the background intensity for each cell. 
 

3.2.2.5 Tissue integrity scoring  

Tissue integrity evaluation was performed by Dr. Sabrina Sarker and Dr. Katja Steiger on a scale from 
0 (no tissue loss) to 3 (complete loss of tissue), based on Hematoxylin Eosin (H&E) staining. Slides or 
coverslips were first incubated in Mayer’s Hematoxylin solution for 6 min, washed in tap water, and 

incubated in Eosin (1%) for another 6 min. After washing in tap water, dehydration of the slides or co-
verslips was achieved by incubation in 70% ethanol for 1 min, followed by 2 x 5 min absolute ethanol 
and 3 x 5 min Xylene incubation. Mounted sections were scanned with a slide scanner for subsequent 
transfer to the pathology department for integrity scoring.  
 

3.2.2.6 Manual counting 

All counting procedures were performed blinded by two scientists, and mean values were used for plot-
ting and further analysis. Cells or positive staining events were evaluated only considering intact cells 
with an ordinary shape and complete surface marker staining.   



Methods 

 33 

3.2.2.7 Computer-assisted image analysis of IHC staining  

Automated IHC and subsequent analysis were performed according to pathology standards by Dr. Sa-
brina Sarker and Prof. Dr. Katja Steiger from the pathology department. For more details on the meth-
odology, refer to (Jarosch et al., 2021). 
 

3.2.2.8 IHC staining within a ChipCytometry chip 

For parallel ChipCytometry and IHC staining, IHC was performed within the chip after multiplexed im-
munofluorescence staining. After rinsing with tap water, 1 ml of Mayer’s Hematoxylin solution was trans-
ferred to the chip and incubated for 6 min. The chip was washed with 10 ml tap water before incubation 
with 1 ml Eosin (1%) was performed for 6 min. The washing procedure with tap water was repeated, the 
chip was rinsed with 5 ml PBS and images were acquired on a slide scanner. 
 

3.2.2.9 Fluorescence RNA in-situ hybridization (FISH) 

RNA in situ hybridization in combination with ChipCytometry was performed as described before 
(Jarosch et al., 2022), using the RNAscope Multiplex Fluorescent Kit (ACD Bio). Briefly, after probe 
hybridization, the chip was loaded, a background was acquired, and the hybridized probes were finally 
detected with opal dyes. Opal 520, Opal 570, and Opal 650 were used for detection in the FITC, PE, 
and PerCP channels, respectively. 
 

3.2.3 ChipCytometry on human FFPE tissues from gastrointestinal biopsies 

ChipCytometry of human FFPE biopsies was performed according to the procedure described by us 
(Jarosch et al., 2021, Jarosch et al., 2022). Briefly, tissue sections were rehydrated on coverslips, and 
antigen retrieval was performed using TRIS-EDTA buffer (pH 8.5). Sections were then transferred to 
CellSafe chips, and cyclic immunofluorescence with photobleaching was performed within the chip. A 
detailed description of the methods can be found in the following section. 
 

3.2.3.1 Preparation of FFPE tissues  

Pre-cooled FFPE blocks (-10°C) were sectioned at a thickness of 4-5 µm, transferred to a water bath 

(40°C), and ultimately mounted on glass coverslips. The coverslips were dried for at least 10 h before 
paraffin melting was performed overnight at 60°C following an additional incubation for 30 min at 70°C 
to melt completely. After melting, coverslips were immediately immersed in Xylene for 10 min, followed 
by washing in two other Xylene-containing dishes for 10 min and 2 x 10 min absolute ethanol incubation. 
Coverslips were sequentially immersed in staining dishes containing 90% ethanol, 70% ethanol, 50% 
ethanol, and tap water for 5 min each to achieve rehydration. The antigen retrieval was performed in a 
dish with antigen retrieval buffer, placed within a water bath at 90 °C buffer temperature for 20 min. The 
coverslips were transferred into PBS at RT, before they were loaded onto the chip according to the 
manufacturer’s recommendations. Chips were rinsed with PBST. Sections were blocked using 500 µl 
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blocking buffer for 1 h at RT and rinsed with 500 µl Sudan Black B solution for autofluorescence quench-
ing. After 10 min Sudan Black B incubation, chips were extensively washed with 70% EtOH and PBST. 
A first scan of the chip area containing the tissue sample was performed in the FITC channel (highest 
autofluorescence) to assess tissue quality and select the desired positions for multiplexed imaging.  
 

3.2.3.2 Staining, imaging, and bleaching 

After background acquisition to assess autofluorescence for each channel of the scheduled antibody 

mix, chips were rinsed with PBST to prepare them for subsequent staining. Up to five fluorophore-con-
jugated primary antibodies (Table 5) were pooled in PBST and centrifuged (14.000 rpm, 4 °C, 10 min), 
before staining to avoid the transfer of dye aggregates. Chips were incubated with 300 µl of the antibody 
cocktail overnight at 4 °C, followed by extensive washing with 15 ml PBST. For staining with unconju-
gated primary antibodies followed by detection with a fluorophore-conjugated secondary antibody, the 
latter was incubated for 2 h at RT. Nuclei staining (Hoechst 33342) was incubated for 5 min at RT before 
acquisition. For more details on incubation times, dilutions, and tested antibodies, refer to section 
3.1.5.1, Table 5 and (Jarosch et al., 2021). For final acquisition, exposure times were reduced compared 
to fresh frozen tissues due to the intrinsic higher autofluorescence of FFPE tissues: 300 ms for PE, 500 
ms for FITC, 300 ms for PerCP-Cy5.5, 50 ms for BV421, and 1000 ms for BUV395. Photobleaching was 
performed directly after imaging by exposing each tissue position for 20 seconds to white light from the 
microscope build-in HBO lamp with a 364 nm long-pass filter to protect epitopes from UV light-induced 
damage. 
 

3.2.3.3 Data analysis 

Data analysis was performed based on an ImageJ script developed in this thesis for automatic signal 
quantification from ChipCytometry images. Briefly, images were first stitched and corrected for shading 
using the BaSiC plugin. Cells were segmented on the nuclei staining, and mean intensities were calcu-
lated for each cell and marker on spatial spillover-corrected images. The resulting matrix was then con-
verted into an FCS file using the fcswrite function in python before populations were gated and quanti-
fied. For detailed information, refer to (Jarosch et al., 2021, Jarosch et al., 2022). 
 

3.2.3.4 Distance measurements 

Distances between pre-defined cell populations were calculated according to the coordinates of two 
individual cells using the following formula (Pythagorean theorem): 
 

𝐷 = #(𝑥! − 𝑥")! + (𝑦! − 𝑦")!
!  

 
The distance between a pair of cells is thereby defined by the square root of the summed squares of x 
and y coordinate differences between the cells. 

  



Methods 

 35 

3.2.4 Flow cytometry 

A maximum of 5x106 cells from colon tissue single-cell suspensions (see 3.2.1.2) were stained per 50 
µl master mix containing the respective antibodies (Table 6) per well of a V-bottom 96-well plate. Stain-
ing was performed for 30 minutes at 4 °C in the dark. Cells were washed twice with FACS buffer and 
either analyzed by flow cytometry using a CytoFLEX instrument or sorted using the MoFlo Astrios/FACS 
Aria II cell sorter. All centrifugation steps with cells were performed at 1500 rpm at 4 °C. 
 

3.2.5 Single-cell RNA sequencing 

3.2.5.1 Cell staining and sorting 

A target 96-well V-bottom plate was coated with 250 µl FCS per well for at least 4 hours at 37 °C in the 
incubator. Before cell sorting, the FCS from the sorting plate was removed and replaced by 100 µl FACS 
buffer per well. A master mix containing fluorescently labeled and eventually DNA-barcoded antibodies 
was prepared and centrifuged (14.000 rpm, 4°C, 10 min) to remove antibody aggregates. After thawing 
single-cell suspensions (see 3.2.1.3), cells were resuspended in 100 µl of the master mix and stained 
for 30 minutes at 4 °C in the dark. Cells were washed two times with FACS buffer and filtered. PI (1:200) 
was added immediately before the sorting procedure, and living (PI-) CD45+ cells were finally sorted. 
Cells from individual samples were pooled during the sort resulting in one well containing pooled sam-
ples for one scRNA seq reaction. Cells from the same patient were always kept in separate pools. 
 

3.2.5.2 Preparation of single-cell RNA libraries 

After sorting the cells, they were centrifuged (1500 rpm, 4°C, 3 min), and the supernatant was carefully 
removed. Each cell pellet was resuspended in the master mix for reverse transcription (containing 37.8 
µl of water to account for the volume of cell suspension) before 70 µl of the cell suspension was trans-
ferred to the Chromium Next GEM chip. The pellet integrity was checked under the microscope after 
each step to ensure that all cells were loaded onto the chip. Subsequently, 10x experiments have been 
performed according to the manufacturer’s protocol. Briefly, after singularization of cells into Gel Beads-
in-emulsion (GEMs), cells were lysed, and reverse transcription was completed within the GEMs. At this 
point, GEMs can be broken up and cDNA pooled since each molecule contains its specific combination 
of cell barcode and UMI. Following cDNA amplification, size selection was performed using SPRI beads 

to split cDNA molecules resembling antibody barcodes (short molecules, around 180 bp) and molecules 
derived from the mRNA (longer molecules, > 200 bp). Target enrichment for TCR sequences was ac-
complished by a nested PCR on the cDNA fraction using specific primers for the constant region of the 
TCR. Fragmentation, adapter ligation, and index PCR were performed on a fraction of the cDNA and 
the enriched cDNA to obtain the gene expression and VDJ libraries, respectively. The surface protein 
library was also generated via index PCR. All libraries were purified using SPRI beads to remove primers 
and molecules of irregular size. Quality control and fragment size analysis have been performed with a 
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High Sensitivity DNA Kit on a Bioanalyzer 2100 as recommended in the protocol, and library concentra-
tion was quantified with the Qubit dsDNA hs assay kit. 
 

3.2.5.3 Sequencing 

The different libraries (see 3.2.5.2) have been pooled according to their minimal required read counts 

(20.000 reads/cell for gene expression libraries, 5.000 reads/cell for cell surface libraries, and 5.000 

reads/cell for VDJ libraries). Concentrations have been calculated using the following formula: 
 

𝑐($%) =
𝑐($'/)*)
𝐹 × 	𝑠𝑖𝑧𝑒 

 

The concentration in ng/µl is determined from the Qubit DNA quantification, the size of the library is 

determined from the Bioanalyzer measurement, and the size factor (F) is set as 660 g/mol as DNA 

weight per base pair. Individual samples from one experiment have been pooled according to the cell 
number per sample, resulting in the following formula defining the dilution factor (DF) for each individual 

library: 
 

𝐷𝐹 =	
2 𝑐+$,𝑐($%)

×
𝑟*-./0/1
𝑟2320*

×
𝑁*-./0/1
𝑁2320*

5

𝑛*-./0/-+4
 

 

𝑐+$,  = target concentration of the library pool	
𝑟*-./0/1  = required reads for the library	
𝑟2320*  = sum of required reads for all libraries	
𝑁*-./0/1  = expected number of cells for the library 
𝑁2320*  = sum of expected cell numbers for all libraries 
𝑛*-./0/-+4  = total number of libraries 
 

Illumina paired-end sequencing was performed on the pooled libraries according to the total required 

reads with 150 cycles either on a Hiseq2500 or a Novaseq6000 instrument. 
 

3.2.5.4 Sample demultiplexing using HLA information 

Sample demultiplexing according to genetic variation was performed using souporcell (Heaton et al., 
2020), resembling a pipeline of processing steps to finally achieve demultiplexing into n clusters. Briefly, 
the reads from the annotation file are first re-mapped to the reference before candidate variants (SNPs) 
are called using freebayes. After that, the variant alleles were quantified for each cell, and cells clustered 
according to this variant genotype. In the last step, doublets are inferred from the genotype information 
and the results (cell-cluster association) can be used for demultiplexing the transcriptomic data. For 
detailed information on the clustering, refer to (Heaton et al., 2020). 
 
The more complicated part than clustering is the annotation of clusters back to individual patients by the 
HLA information. Unfortunately, HLA typing from scRNA seq data is not as reliable as from genomic 
data since many intronic regions (which often contain the minor differences between the HLA alleles) 
are missing in the NGS sequencing from mRNA molecules. We, therefore, developed a scoring system, 
allowing for donor reallocation using the patients’ HLA information and the predicted HLA genotype 
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inferred with arcasHLA (Orenbuch et al., 2020). The scoring formula is represented by four sub-scores, 
calculated for each pair of patients and clusters of a pool: (1) a 4-digit HLA matching score, (2) a 2-digit 
HLA matching score, (3) a gender-related score, and (4) a cell number related score. The HLA matching 
scores are calculated by the number of allele matches between cluster and patient, subtracted by half 
of the number of matches with other patients to account for specificity in each allele. The 2-digit score 
is calculated as the 4-digit score but is weighted in half. The 2-digit score helps to gain associations 
between genotype and prediction due to the low resolution of HLA genotyping from scRNA seq data. 

The gender is accounted for by the male score of a cluster relative to the pool, multiplied by 1 for a male 
patient and -1 for a female patient. A male cluster would be expected to have a positive score, and a 
female cluster would be expected to have a negative score, resulting in a positive score in case of a 
gender match. The last information, which can be used for demultiplexing, is the number of cells that 
have been sorted in relation to the number of cells for a cluster. The whole score is divided by the 
positive difference between the cell number in the cluster and 10 % of the sorted cells but maximally 
divided by 1. These considerations lead to the following formula: 
 

78𝑁502-+$2	(78,-'-2) − 0.5	 × 𝑁329+/4	(78,-'-2)< + 	0.5	 × 8𝑁502-+$2	(!8,-'-2) − 0.5	 × 𝑁329+/4	(!8,-'-2)<

+	8(𝑚:*;42+/ −𝑚<33*) ∗ 𝑔<@ ×
1

𝑚𝑎𝑥C80.01 × #(𝑐3.4+/=+, − 0.1	 ×	𝑐43/2+,)!
! <, 1E

 

 
𝑁  = Number of allele matches	
𝑚  = Male gene score	
	𝑔  = Gender (male = 1, female = -1)	
	𝑐  = Cell number 
 
Having calculated the matrix of scores between donors and clusters, allocation can be performed. To 

solve this logical problem, scores are sorted in descending order, and allocation is done from the highest 
to the lowest score, stopping at the point where all clusters are annotated to a patient.  
 

3.2.5.5 Data analysis 

Annotation against the human reference genome (GRCh38/Ensembl 98) and the related VDJ reference 

was performed using Cell Ranger. All subsequent analysis has been performed using SCANPY (Wolf 
et al., 2018). The control dataset from the human gut cell atlas (James et al., 2020) was imported from 

the Cell Ranger output files, down-sampled to a maximum of 1000 cells per sample to fit the biopsy 

sizes, and included in all pre-processing steps in parallel to our samples. General data pre-processing 

was performed according to good practice in scRNA seq analysis (Luecken and Theis, 2019) with the 

following modifications: since the dataset contains plasma cells that are bigger in size compared to the 

other cell types, filtering was performed according to the factor between the number of counts and the 

number of genes per cells. This allowed excluding cells lying in between plasma cells and other leuko-

cytes on the plot (Figure 10).  
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Figure 10. Filtering of cells in the scRNA sequencing experiment. 
(A) Cells containing less than 20% mitochondrial genes were filtered. (B) Expression values of the JCHAIN gene, 
which is specific for plasma cells, show the separation of these cells on the number of counts vs. the number of 
genes plot. (C) Cells passing filter (black) and excluded (grey) cells are depicted. The following filters were applied: 
number of genes < 5.000, number of counts < 60.000, number of counts/number of genes < 5 OR number of counts 
/ number of genes > 9, fraction mitochondrial genes < 0.2. 

The number of counts, the fraction of mitochondrial genes, and cell cycle scores were regressed out, 

and batch effect correction was performed using batch-balanced k-nearest neighbors (bbknn). Donor 
reallocation was performed using souporcell and arcasHLA (see 3.2.5.4) or hashsolo (Bernstein et al., 

2020) in combination with barcoded antibodies. Surface antibody reads were normalized by centered 

log-ratio transformation and scaled for each cell. Cell type annotation was based on Leiden clustering 

combined with sub-clustering of heterogeneous clusters and final annotation with known marker genes. 

Clonotype analysis was performed using scirpy (Sturm et al., 2020). Cells belonging to one clonotype 
were defined to have identical alpha and beta chain CDR3 nucleotide sequences. Both pairs of 
TRA/TRB sequences were considered in case additional chains were present. RNA velocities were 

calculated using velocyto (La Manno et al., 2018) and analyzed with scVelo (Bergen et al., 2020). 

 

3.2.6 16S rRNA sequencing 

16S sequencing was performed by Dr. Andreas Hiergeist from the Institute für Mikrobiologie und Hy-
giene in Regensburg according to core facility standards. Briefly, single-end sequencing was performed 
on the amplified V1-V3 region of the 16S gene. Normalization and absolute quantification were achieved 
by the spike in of specific amounts of alicyclobacillus acidiphilus, agrobacterium radiobacter, and al-
canivorax borkumensis (Stammler et al., 2016). Amplicon sequence variants (ASV) were generated 
from demultiplexed and pre-processed sequencing reads using a dada2-based workflow (Callahan et 
al., 2016), and taxonomy was predicted using a SILVA classifier (Quast et al., 2013). For more details 
on the methodology of 16S rRNA sequencing and analysis, please refer to (Orberg et al., 2022) 
 
For annotation of SCFA-producing species, the species producing Butyrate, Propionate, and Acetate 
were downloaded from the Virtual Metabolic Human database (Magnusdottir et al., 2017, Noronha et 

al., 2019), and bacterial species present in one or more of the lists were annotated with the respective 
metabolite.
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4. Results 

4.1 Patient cohort for the investigation of GvHD 

To investigate the mechanistic connections between the gut microbiome, gastrointestinal immune cell 
infiltrates, and severity of acute GvHD in aHSCT patients, we analyzed a unique human patient cohort 
collected by the group of Prof. Dr. Ernst Holler at the University Hospital of Regensburg (Figure 11).  
 

 

 
Figure 11. Human aHSCT patient cohort. 
Graphical representation of the patient cohort. Stool and serum/urine samples are taken for the analysis of the 
microbiome and GvHD biomarkers respectively (bottom). Patients can take different paths of disease progression 
(middle) and gastrointestinal biopsies are taken according to the patient status (top) 

In this study, the gut microbiome is profiled by 16S rRNA sequencing of stool samples and GvHD se-
verity is assessed by urinary or serum biomarkers. In addition, gastrointestinal biopsies are harvested 
at different time points during patient treatment, allowing in-depth analysis of infiltrating immune cells. 
To extract as much information as possible from these precious patient biosamples, we combined two 
emerging techniques for multiplex single-cell analysis: scRNA sequencing as the current state of the art 
for deep cell profiling and multiparametric imaging for spatially resolved phenotyping of cells within the 
tissue environment. 
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4.2 Method development for ChipCytometry on FFPE samples 

At the beginning of this project, more than 300 gastrointestinal biopsies had already been collected as 
FFPE tissue samples, which is the most commonly used storage method for clinical samples (Gaffney 
et al., 2018). However, the ChipCytometry technology was available at the beginning of the project only 
for freshly frozen material, and methods for automated quantification of signal intensities were poorly 
developed. Therefore, as first steps, we had to adopt the technology for FFPE samples. This protocol 
development (Jarosch et al., 2021, Jarosch et al., 2022) will be further described within the next sections. 

 

4.2.1 Implementation of ChipCytometry for FFPE sample handling 

Before immunofluorescence staining can be applied on FFPE samples, epitopes need to be retrieved 
in order to make them accessible for staining antibodies. A commonly used retrieving strategy is heat-
induced antigen retrieval (HIER), where the tissue is heated using a pressure cooker at 120 °C in a 
special buffer for antigen unmasking.  
 

 
Figure 12. Antigen retrieval titration for the analyses of FFPE samples by ChipCytometry. 
(A) Hematoxylin-eosin staining of consecutive tissue sections after different antigen retrieval treatments. Zoom in 
(marked area in the upper row) is shown at higher magnification in the lower panel. Numbers indicate regions of 
mucosa (1), submucosa (2), and muscularis (3). (B) Scoring of tissue loss (0 = no tissue integrity loss, 3 = complete 
loss of the tissue). Data are shown as mean ± standard deviation. (C) Representative staining of CD3, CD45, and 
pan-cytokeratin according to different antigen retrieval conditions. (D) Quantification of SNR for the markers shown 
in (C). TRIS-EDTA buffer was used for retrieval titrations. Data are depicted as interquartile ranges, with whiskers 
extending to 10% and 90% and outliers plotted as dots. Individual crypts (pan-cytokeratin staining) or cells 
(CD3/CD45 staining) were quantified for eight positions per section. In (B) and (D), significances are calculated 
using Tukey’s test, followed by Dunn’s multiple comparisons test (*p<0.05; **p<0.01; ****p<0.0001). A minimum of 
three donors in two or three independent experiments are shown. Modified from (Jarosch et al., 2021). 
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For ChipCytometry, tissue sections are mounted directly on coverslips instead of positively charged 

glass slides with polysilane-treated surfaces for improved tissue adhesion. This results in weaker tissue 
attachment and architecture preservation. Therefore, to overcome this limitation, we titrated the intensity 
of the antigen retrieval (Figure 12A). The lower temperatures achieved by tissue incubation in a water 
bath significantly reduced tissue loss (Figure 12B) while still preserving epitope accessibility, as indi-
cated by the good SNR (Figure 12C-D). Eventually, we selected the 20-minute incubation at 90 °C in a 
water bath as optimal compromise between tissue preservation and staining intensity and as standard 

condition for our ChipCytometry experiments with FFPE sample material. 
 
Although an increase in tissue integrity has been observed using a milder antigen retrieval, especially 
submucosa and muscularis tissue parts were still significantly affected by the retrieval treatment on 
coverslips. In collaboration with Canopy Biosciences, we were able to mimic the polysilane treatment 
commonly used on conventional microscopy slides on the coverslips for ChipCytometry. The use of 
these pre-treated coverslips could further reduce tissue detachment. Remarkably, we reached a com-
parable level of tissue integrity as observed with conventional microscopy slides (Figure 13A-B), poten-
tially facilitating the use of the pressure cooker for hard-to-retrieve antigens again in the future. Quanti-
fication of differences between tissue supplies at our titrated retrieval condition of 90°C in the water bath 
showed significant reduction of tissue loss in submucosa and muscularis tissue parts on pre-treated 
compared to conventional coverslips and no significant differences to microscopy slides (Figure 13C). 
 

 
Figure 13. Enhancement of tissue integrity by the use pre-coated coverslips. 
(A) Hematoxylin-eosin staining of consecutive tissue sections after antigen retrieval on different glass supplies. 
Numbers indicate regions of mucosa (1), submucosa (2), and muscularis (3). (B) Scoring of tissue loss for different 
retrieval conditions and supports (0 = no tissue integrity loss, 3 = complete loss of the tissue). (C) Scoring of tissue 
loss comparing different supports at the titrated retrieval condition of 20 min incubation at 90°C. Data in (B) and (C) 
are shown as mean ± standard deviation. Statistical testing in (C) was conducted by Tukey’s test followed by Dunn’s 
multiple comparison (**p<0.01; ***p<0.001; ****p<0.0001). A minimum of three donors in two independent experi-
ments are shown. Modified from (Jarosch et al., 2021). 
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FFPE samples have been described to have an intrinsically high autofluorescence and we observed 
this tendency in the experiments described so far. ChipCytometry offers the unique opportunity to sub-
tract the actual autofluorescence background from the staining images for each channel and each cell. 
However, high autofluorescence could dramatically reduce SNR eventually. We therefore wanted to 
reduce the autofluorescence of tissue samples to a minimum in order to guarantee a high staining in-
tensity and image quality. For that purpose, we tested the three most commonly described autofluores-
cence quenching methods (Davis et al., 2014, Yang et al., 2017), which include treatments with photo-

bleaching, Sudan Black B and Sodium Borohydride.  
 
On slides pre-treated with antigen retrieval in TRIS-EDTA buffer at 90 °C in a water bath, we identified 
Sudan Black B to reduce autofluorescence most efficiently, leading to a higher SNR compared to the 
other tested treatments (Figure 14A-B). Chemical quenching seems to be more effective than light-
induced quenching, since photobleaching performed the worst in this comparison. In a titration of Sudan 
Black B incubation times, we observed the highest gain in SNR at 10 min, with a decreasing staining 
intensity at longer incubation times (Figure 14C-D). The last parameter we optimized for tissue pre-
treatment was the thickness of the sections, which can influence both the staining intensity and the 
autofluorescence. We cut consecutive slides of different tissue thickness, treated them for 10 min with 
Sudan Black B and analyzed the SNR for the different conditions. In these experiments, we identified 
4-5 µm as the ideal thickness regarding SNR of FFPE samples (Figure 14E). 
 

  
Figure 14. Titrated autofluorescence quenching and section thickness enhance staining intensity. 
(A) Representative images for pan-cytokeratin staining in healthy colon sections pre-treated with different autofluo-
rescence quenching methods. (B) Quantification of background area intensity and SNRs of pan-cytokeratin stain-
ing. (C) Representative images for pan-cytokeratin staining in healthy colon sections with titrated Sudan Black B 
incubation time. (D) Quantification of background intensity, SNRs and staining intensity is shown for conditions 
depicted in (C). (E) SNR values for different tissue thicknesses are shown regarding pan-cytokeratin staining. Data 
in figure (B), (D) and (E) are pooled from 3 donors and 2 independent experiments, depicted as interquartile ranges 
(whiskers extending to 10% and 90%, outliers plotted as dots). 8 positions per section were analyzed. Non-epithelial 
tissue parts were quantified as autofluorescence background. Statistical testing was conducted by Tukey’s test 
followed by Dunn’s multiple comparison (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). PB=Photobleaching, 
SBB=Sudan Black B, SB=Sodium borohydride. Modified from (Jarosch et al., 2021). 
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4.2.2 Marker establishment 

To fully exploit the potential of ChipCytometry in highly multiplexed spatial analysis, we needed to search 
for antibodies capable of recognizing epitopes in FFPE samples and that are ideally directly conjugated 
with a photo-bleachable fluorophore. Since the majority of commercially available antibodies for immu-
nofluorescence are usually not conjugated but rather detected with fluorescently labeled secondary an-
tibodies, or conjugated to photostable dyes, we had to rely on staining information for unconjugated 
clones and test the performance of the less validated corresponding conjugated batches for each anti-

body separately. After testing more than 100 different antibodies, we finally established a list of 32 vali-
dated clones (Table 5), which can be used for the staining of markers related to the general tissue 
architecture as well as of antigens for further deep characterization of especially immune cells, able to 
differentiate more than 30 different cell types (Figure 15). For the latter goal, immune cells are first 
identified by the expression of CD45 and then subclassified into different lineages using markers as 
CD3 (T cells), CD20 (B cells), CD56 (NK cells), CD14 (monocytes), CD68 (macrophages). T cells can 
be further characterized into cytotoxic (CD8) and helper (CD4) T cells, with resting/activated regulatory 
T cells being the most complex phenotype in this scenario.  
 

 
Figure 15. Cell types detectable with the established markers in human FFPE tissues. 
All markers together can classify cells into the main compartments of a tissue (epithelium, mesenchymal cells, 
muscle and endothelium). Cells can be further subclassified into distinct functional subsets of epithelial cells (shown 
in magenta) and all different lineages of immune cells (shown in red). Finally, phenotypic subtyping can be achieved 
by several phenotypic markers (shown in light grey). 

This set of markers allows a variety of analyses ranging from the qualitative detection of architectural 
changes to the deep characterization of cell populations. As an example, we have stained a colorectal 
cancer sample with the architectural markers pan-cytokeratin (epithelium), vimentin (lamina propria 
cells) and SMA (muscular cells). This three-marker combination already revealed obvious differences 
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in crypt architecture between tumor tissue and adjacent non-tumor tissue (Figure 16A). Deep phenotyp-
ing of immune cells was demonstrated in an inflamed colon tissue sample by visualizing the infiltration 
of T cells (CD3), B cells (CD20) and monocytes (CD14) as well as their relative position to the epithelium 
(Figure 16B). These images illustrate the potential of multiparameter imaging and showcase the reso-
lution that allows to investigate each marker on each single cell. One example for such phenotypically 
complex event in this scenario is the activated regulatory T cell (nuclei+CD45+CD45RA-CD45RO+ 
CD3+CD8-CD4+CD20-FoxP3+), which can be identified by the combined expression of several differ-

ent markers (Figure 16C). Overlay of co-expressed markers as well as the absence of overlay between 
mutually exclusive markers served as quality control to show specificity of selected antibodies (Figure 
16D). 
 

 
Figure 16. High-quality, single cell resolution imaging of FFPE colon tissues with ChipCytometry. 
(A) ChipCytometry image of colon tumor and non-tumor adjacent tissue (above and below the dashed line, respec-
tively). Asterisks (*) and crosses (+) indicate normal and degenerated crypts, respectively. (B) Representative im-
ages of multiplexed ChipCytometry in a high grade GvHD biopsy. Zoom areas shown in (C) and (D) are marked 
with dashed rectangles. (C) Single marker images are shown for a selected area from (B). High multiplexing enables 
to characterize for example an activated CD4+ Treg (yellow), a B cell (blue), an activated/memory (red) and a naïve 
(white) CD8+ T cell. Scale bar indicates 10 µm. (D) Multiplex ChipCytometry overlay of mutually exclusive markers 
(CD3/CD20/CD14, CD45RA/CD45RO, and CD4/CD8) and co-expressed markers (CD4/Foxp3). Exemplary cells 
are annotated from left to right as *:CD14+, +:Ki-67+, #:CD4+Foxp3+ cells. Modified from (Jarosch et al., 2021). 

4.2.3 Fluorescence RNA in-situ hybridization (FISH) 

Especially intranuclear markers and low-expressed proteins like cytokines are difficult to be detected 
via antibodies. In order to facilitate the detection of such targets, we aimed to combine the ChipCytom-
etry technology with multiplexed fluorescence RNA in-situ hybridization (FISH) using the RNAscope 
technology (Wang et al., 2012). We established a protocol (Jarosch et al., 2022) that allows to stain up 
to three markers with multiplexed FISH, before continuing with the conventional ChipCytometry protocol 
(Figure 17A). Briefly, mRNA specific probes (Table 8) are hybridized after antigen retrieval but before 
chip loading and detected with an amplification system of complementary probes and dyes in a second 
step when the chip is loaded. We first checked the specificity of FISH by targeting CD3, a relatively 
abundant marker for which reliable antibody staining is available. Co-staining of CD3 on the mRNA and 
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protein level revealed a very good co-localization of staining signals as a sign for FISH specificity (Figure 
17B).  
 
As next step, we moved into the analyses of markers not detectable via antibody staining due to either 
low expression (CTLA4) or difficult preservation in tissues (cytokines like IFN-γ and IL10). FISH as 
methodological addition to ChipCytometry enabled us to perform even deeper characterization of cell 
types for example by measuring the expression of effector molecules like IFNγ for effector T cells or 

crucial effector molecules of regulatory T cells like IL10 and CTLA4 (Figure 17C). In this last case, co-
localization of CTL4 and IL10 signals with the intranuclear antibody staining of Foxp3 served as quality 
validation of FISH. It is important to perform FISH staining before cyclic antibody staining due to the 
instability of the mRNA molecules. This allows to multiplex up to three mRNA targets in one cycle of 
FISH staining at the moment, which might be expanded to additional cycles in the future. 
 

 
Figure 17. Implementation of FISH mRNA staining into the ChipCytometry workflow. 
(A) Workflow of tissue pre-treatments before cyclic immunofluorescence is performed. Two options are depicted: 
either the conventional pre-treatment “AB only” without FISH (lower option), or the combination with FISH (upper 
option). (B) Exemplary staining of CD3 protein and mRNA on the same chip. (C) Multiplexed FISH combined with 
multiplexed antibody (AB) staining of a colon cancer sample. Modified from (Jarosch et al., 2022). 
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4.2.5 Automatic quantification of multiplexed image data 

Multiparameter imaging generates a huge amount of data with a large number of markers for every cell 
down to subcellular resolution. Manual counting of cells is still a widely used procedure for cell quantifi-
cation in routine diagnostics but becomes unrealistic to be applied to multiparameter imaging. For auto-
mated image analysis, the aim is to consider every cell within a tissue instead of analyzing representa-
tive views, and to capture complex phenotypes of individual cells consisting of co-expression of several 
markers. Indeed, the only option to achieve meaningful quantifications of multiplexed tissue staining is 

an automated approach for the quantification of all fluorescence intensities related to each segmented 
cell.  
 
By adopting some preexisting tools (Lin et al., 2015, Lin et al., 2018) and implementing some new as-
pects of image correction, we developed an automated analysis pipeline for highly multiplexed imaging 
data. The pipeline uses ChipCytometry output files or stitched images from any multiplexed imaging 
method as input, and performs cell segmentation, image pre-processing and value calculation for each 
cell and each marker (Figure 18A). Calculated values are then converted into the FCS format, allowing 
for quantification similar to flow cytometry experiments by gating populations in two dimensional plots. 
The pipeline has been written as ImageJ plugin and can be downloaded together with its documentation 
from a continuously updated GitHub repository. Running the pipeline on an imaging dataset does not 
require any programming knowledge and the user will be guided through the steps of parameter speci-
fication by simple click-and-select actions (Figure 18B). Methodological details of the individual pipeline 
steps will be described in the following section. 
 

 
Figure 18. Automated analysis pipeline for highly multiplexed imaging data. 
(A) Schematic overview of the individual steps of image quantification. (B) Screenshots from the actual ImageJ 
pipeline guiding the user through the steps of image analysis. Modified from (Jarosch et al., 2021, Jarosch et al., 
2022). 
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4.2.5.1 Stitching 

Before ChipCytometry images are processed for signal quantification, images of independently acquired 
positions must be stitched in order to generate one single image per marker containing the whole tissue 
area. Due to the photobleaching steps and the illumination characteristics of the instrument, areas of 
the tissue can be illuminated twice at the overlap of single positions, resulting in a grid of reduced signal 
intensity after image stitching (Figure 19, left image). This effect can be corrected using the BaSiC 
method for shading correction (Peng et al., 2017), which extrapolates a repetitive shading profile from 

a set of microscopy tiles. In order to apply this method on our images, we used the non-background 
subtracted fluorescent images to extract the shading profile for each staining and applied this profile on 
the individual tiles before stitching, resulting in a shading-corrected image (Figure 19, right image). It is 
important to perform this analysis not only on every channel, but on every staining, since the bleaching 
effect due to double illumination is exaggerated with the number of cycles, leading to stronger artefact 
in later acquisitions. 
 

 
Figure 19. Shading correction reduces bleaching-induced artefacts at adjacent positions. 
Differences between an uncorrected, stitched image (left) and a stitched image from tiles that have been corrected 
for repetitive shading beforehand (right). An exemplary shading profile corresponding to one of markers (pan-cy-
tokeratin) in the composite image above is depicted in the lower part of the figure. Modified from (Jarosch et al., 
2022). 

4.2.5.2 Segmentation 

Cell segmentation is a crucial part for automated analysis of imaging data. Several approaches have 
been exploited already, mainly differentiating into membrane-based and nuclei-based segmentations. 
Membrane-based segmentation is an advanced approach with the need of a good pan-membrane 
marker for all different cell types. It usually requires a seed, which is expanded towards the membrane 
staining and is essential for cells with a special shape like neurons or fibroblasts as well as for non-
nucleated cells. For the aim of our project, we went with a nuclei-based approach, which has the 
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advantage of easy and robust stainability and showed a good performance in segmenting the cell types 
of our interest, having a convex shape with a low fraction of cytoplasm.  
 

 
Figure 20. Nuclei staining-based segmentation of single cells from tissue samples. 
(A) Different steps for cell segmentation are depicted. After blurring of the nuclei image, a threshold is applied, and 
shapes are refined by the watershed algorithm. Finally, particles can be detected, and boundaries enlarged for 
complete surface marker signal capture. Qualitative representation (B) and quantification (C) of segmented cells 
for either standard or separate epithelial/non-epithelial cell segmentation on a selected area of colon tissue samples 
from three different donors are depicted. Each dot represents one position (n per donor ≥ 6). (D) Ratio between the 
number of cells segmented either via standard or separate cell-type segmentation as shown in (C) and the number 
of cells quantified by manual counting. Data are depicted as interquartile range with whiskers extending from the 
minimum to the maximum of the dataset. (E) Representative segmentation images are depicted for different tissue 
types, each processed with separate segmentation of epithelial and non-epithelial cells. (F) Qualitative comparison 
between manual thresholding and neuronal network segmentation using StarDist is shown. Statistical testing in (C) 
and (D) was conducted by paired t test (****p < 0.0001). Modified from (Jarosch et al., 2021, Jarosch et al., 2022). 

We started out with a manual thresholding approach for nuclei detection, which allows the user to correct 
for differences in staining intensities between samples. Briefly, the nuclei image is blurred in order to 
reduce information and avoid over-segmentation. The blurred image is then binarized by applying a 
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manual threshold and the binary image is refined by watershed. Finally, particles are segmented, and 
regions of interest enlarged in order to capture the complete surface signal of a cell (Figure 20A). Since 
the particle detection is refined by some specific parameters regarding size and shape of the cells, we 
found that a separate segmentation of differently shaped cell types results in a better overall segmen-
tation efficiency. For our case, we separated the elongated epithelial cells from the more roundly-shaped 
non-epithelial cells and obtained a higher number of segmentation events as well as a better accordance 
with cell numbers defined by manual counting, which served as a reference (Figure 20B-D). This ap-

proach is robustly working on different types of tissue; in lymphoid samples the expansion of ROIs is 
reduced in order to avoid spillover in these densely packed tissues (Figure 20E).  
 
One major disadvantage of manual thresholding is the potential bias introduced by threshold selection. 
We therefore implemented the option of using a neuronal network model pre-trained on nuclei images 
from StarDist (Weigert, 2020). This algorithm is trained to predict distances to an object’s boundaries in 
a star-shape and applies non-maximum suppression (removal of overlapping objects in machine learn-
ing) on candidate polygons to obtain the final segmentation. By still separating different cell types ac-
cording to their shape, we can get an even improved and very robust segmentation of cells from more 
dense nuclei images, avoiding the risk of bias by manual thresholding, but more prone to over segmen-
tation (Figure 20F). 
 

4.2.5.3 Pre-processing and spatial spillover correction 

As observed in all fluorescence imaging approaches, also in the ChipCytometry stainings, there is a 
chance of unspecific antibody binding, leading to a scattered background signal (Figure 21A).  
 

 
Figure 21. Pre-processing of ChipCytometry images for automated quantification. 
(A) Fluorescence images often contain some scattered unspecific signal. A single cell image including noise is 
depicted together with the intensity profile of the intensity sums in x and y direction. (B) Same depiction as in (A), 
but processed with an outlier removal filter (replaces a pixel by the median of the pixels in the surrounding if it 
deviates from the median by more than a certain value). (C) Image from (B) was additionally processed with a 
minimum filter (grayscale erosion by replacing each pixel in the image with the smallest pixel value in that pixel’s 
neighborhood). 

In order to ensure a good and unbiased signal quantification for each segmented cells, we titrated and 
implemented some mild pre-processing steps in our quantification pipeline. The first filter that is applied, 
is the outlier removal. This filter replaces a pixel by the median of the pixels in the surrounding if it 
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deviates from the median by more than a certain value, leading to the removal of unspecific signal 
(Figure 21B). In a second step, the signal is sharpened by a minimum filter replacing each pixel in the 
image with the smallest pixel value in that pixel’s neighborhood (Figure 21C), thereby minimizing the 
potential of signal spillover to neighboring cells. 
 

 
Figure 22. Spatial spillover correction improves the reliability of automated image quantification. 
(A) Schematic depiction of SSC. Cells are sub-segmented into quadrants and the signal of a marker is deleted if 
the quadrant signal as fraction of total signal is exceeding a threshold value. (B) Representative data showing CD4 
and CD8 staining on CD3 positive cells either with or without SSC on an inflamed colon tissue. (C) Quantification 
of cells positive or negative for CD8 and CD4 staining. Signal intensities were automatically quantified with or with-
out SSC and cells were gated according to signal intensity. Cell count refers to the number of cells present in each 
corresponding gate. (D) Positive cells for CD3, CD4, and CD8 markers were quantified by either manual counting 
or automatic quantification, with or without SSC. Each dot represents one out of 10 representative positions for 
three donors. For automated quantification, number of positive cells was obtained by gating strategy using FlowJo 
software. Correlation analysis was done by Pearson’s correlation. (E and F) Human healthy colon sections were 
stained with antibodies against pan-cytokeratin, CD3, CD8, and Foxp3. (E) Representative images of multiparam-
eter ChipCytometry and individual marker IHC on consecutive slides. (F) Pearson’s correlation between automated 
quantification of ChipCytometry staining and automated quantification of IHC staining. Each dot represents one out 
of 15 positions analyzed per donor (n = 3). Correlation analysis on CD3 staining with IHC and ChipCytometry on 
the same section (G) with corresponding images (H) is depicted to prove that consecutive slides lead to intrinsic 
variation in cell numbers. Modified from (Jarosch et al., 2021). 
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Whenever it comes to the signal quantification from cells within a tissue, spatial spillover is an important 
factor to consider. Spatial spillover describes the fact that the signal from a cell might also be detected 
within a neighboring cell due to their spatial organization. In our newly developed spatial spillover cor-
rection (SSC), each cell is sub-segmented into quadrants and surface marker signals are removed if the 
quadrant signal as fraction of total signal is exceeding a titrated threshold of 60% (Figure 22A). When 
we applied SSC to CD4 and CD8 staining data, known to be predominantly mutually exclusive, we found 
a strong reduction in the frequency of double positive cells (Figure 22B). Additionally, we also observed 

a substantial reduction of absolute cell numbers for single positive cells (Figure 22C), indicating the high 
extent at which spatial spillover could bias tissue imaging analyses.  
 
To evaluate the accuracy of SSC, we next correlated cell numbers from corrected and non-corrected 
quantifications with manual counted cell numbers. Despite a good correlation in both scenarios, we 
found an overestimation of cell numbers without SSC, as indicated by correlation slopes above the value 
of 1.0 (Figure 22D). For corrected quantification, the correlation’s slope values around 1.0 indicated that 
SSC could reduce most of the false-positive signals without influencing the true-positive events.  
 
As a final validation, we compared the automatically generated data from ChipCytometry experiments 
with immunohistochemistry (IHC), still the gold standard in histological diagnostics. Consecutive sec-
tions were stained with single marker via IHC (CD3, CD8, FoxP3 and pan-cytokeratin); in parallel a 
single section was stained simultaneously for all markers using ChipCytometry (Figure 22E). Notably, 
we found a robust correlation between automated quantification for both methods (Figure 22F) with 
some variation being explained by the use consecutive slides. This hypothesis was validated by CD3 
staining via ChipCytometry and IHC on the same section, leading to an increased correlation between 
those methods (Figure 22G-H).  
 

4.2.5.4 Cell quantification from ChipCytometry imaging data 

Once the images have been pre-processed and cells been segmented, the mean fluorescence intensity 
per cell for each marker can be used to identify and quantify cell populations in the dataset via gating 
(meaning thresholding marker expression to identify a cell population as either positive or negative for 
the specific marker). To facilitate this approach, the value table was converted into the FCS format and 

handled identically to flow cytometric data. This method allows to hierarchically navigate into the cell 
populations, starting from very basic discrimination of epithelial cells and leukocytes towards phenotyp-
ing of lineage populations like the assessment of PD1 expression within the T cell compartment (Figure 
23A).  
 
Besides qualitative analyses, the approach can be used to quantify the abundance of individual popu-

lations, which was done as a proof-of principle on tissue sections from colorectal and pancreatic ade-
nocarcinoma containing also non-diseased adjacent tissue. Different populations were gated according 

to eleven markers (Figure 23A) and subsequently enumerated. As expected, we observed higher 
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abundance of epithelial cells in cancer tissues, most likely representing the malignant compartment, as 

well as higher infiltration of CD45+ immune cells both in the lamina propria and in the epithelial com-

partment of tumor regions, but to a lesser extent in pancreatic cancers (Figure 23B-C).  

 

 
Figure 23. Multiparametric imaging and signal quantification of pancreatic and colon cancer tissues. 
(A) Gating strategy applied for quantification of each sub-position of cancer and adjacent non-tumor tissues from 
colorectal and pancreatic tissue samples (B) Comparison of cancer and adjacent non-tumor tissues (n=2). Each 
column represents one of 10 representative positions of each tissue type and each row refers to a gated cell pop-
ulation. The color depicts the number of cells per mm2, normalized per row (cell population). (C) Quantification of 
immune infiltrates in cancer and adjacent non-tumor tissues (n=4). Each dot indicates one representative position. 
Depicted mean +SD. Statistical testing was conducted by Mann-Whitney-test (**p < 0.01, ***p < 0.001, ****p < 
0.0001). 

These observations are in good accordance with earlier findings that describe a strong prognostic im-
pact for tumor-infiltrating leukocytes for colorectal cancer (Angell et al., 2020, Sperlich et al., 2018) and 

a lower degree of immune infiltration in pancreatic cancers, which could explain unresponsiveness to 

checkpoint inhibitors (Skelton et al., 2017). The high proliferation state, measured by expression of Ki67, 

and pronounced PD-L1 expression marked the epithelial tumor cells (Figure 23B). T cells were also 

more abundant in tumor areas, including potentially exhausted PD-1+ T cells (Yaghoubi et al., 2019). 

Interestingly, lower infiltration of cytotoxic CD8+ T cells but higher presence of Tregs was observed in 

pancreatic tumors compared to colon tumors. The ability to detect populations such as PD1+Tregs and 

Foxp3+ IELs (Figure 23B-C) is clinically important, since these populations can be crucial for cancer 
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therapy outcome (Kumagai et al., 2020). Anti-PD-1 therapy was shown in some cases to amplify the 

suppressive activity of PD-1+ Tregs, thus leading to cancer progression (Kamada et al., 2019). Alterna-

tively, the ratio of intraepithelial effector cell to Tregs has been suggested as a predictor for clinical 

outcome (Sinicrope et al., 2009). 
 

4.2.5.5 Quantification of phenotypically complex cell populations 

Having set all parameters for signal quantification, we started developing gating strategies to define rare 
and complex cell populations within a tissue by the expression of several markers. Given the importance 
of regulatory T cells in GvHD pathophysiology, we firstly focused on the quantification as well as sub-
characterization of these cells in the gut biopsies of our patient cohort.  
 

 
Figure 24. Robust detection of rare and phenotypically complex cell populations by ChipCytometry. 
Tissue section from GvHD gut biopsy was stained with 18 markers (CD45, CD45RA, CD45RO, CD3, CD4, CD8, 
CD14, CD68, CD20, CD25, Foxp3, Gata3, pan-cytokeratin, Ki-67, PD-1, PD-L1, vimentin, SMA). (A) Representative 
gating strategy used to define tissue-infiltrating immune cells. Tregs were identified by sequential gating according 
to CD45+CD3+CD4+Foxp3+ expression and finally discriminated according to CD45RO expression. (B) Replotting 
of the gated Treg populations from (A) into the original stained tissue, to assess the spatial distribution/location. (C) 
Original staining images of the seven Tregs identified in (A and B). Modified from (Jarosch et al., 2021). 
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Regulatory T cells are often extremely rare events with complex phenotype. Here, we identified Tregs 
by the expression of CD45, CD3, CD4 and FoxP3, ending up with a population representing only 0.04% 
of the total quantified cells. This already rare population was further characterized by the expression of 
CD45RO as marker for activated regulatory T cells, leading to five activated Tregs (0.03% of all cells) 
and two resting Tregs (0.01% of all cells) as final characterized events (Figure 24A). We next wanted to 
check if the detected events represent real staining or are attributed to imaging artefacts. Since the 
position of each single cell is recorded in combination with the intensity values, we were able to track 

the gated cells back to their tissue localization (Figure 24B). This procedure allowed us to analyze the 
quality of the original images and to prove the reliability of the seven identified regulatory T cells by the 
original staining data (Figure 24C). 
 

4.2.5.6 Clustering of cell populations for unbiased cell type identification 

Subjective gating as qualitative or quantitative analysis approach is still knowledge-driven and therefore 
prone to biased analyses towards previously defined populations and phenotypes. This problem can be 
overcome by an unbiased, unsupervised clustering of highly multiplexed tissue staining data as it is 
routinely performed for complex datasets like for example from scRNA sequencing experiments. 
 

 
Figure 25. Neighbourhood embedding and clustering analysis for unbiased cell classification. 
(A) Protein expression of 18 markers, was used as input to perform neighbourhood embedding and leiden cluster-
ing. Detected clusters were then annotated according to the fluorescence intensity per cluster. Subclusters of cluster 
12 are annotated as a, b and c. (B) UMAPs showing distribution of pan-cytokeratin, vimentin, SMA and CD45 
fluorescence intensities. (C) Fluorescence intensity distribution of markers that were used for annotation of clusters 
as depicted in (A). (D) Cell type annotation based on clustering together with the intensity data shown in (B) (top) 
is compared with gated populations is shown (bottom).  

We performed an embedding based on expression of 18 proteins in inflamed colon biopsies via uniform 
manifold approximation and projection (UMAP) (Becht et al., 2018), using tools from the field of scRNA 
sequencing analysis. Leiden clustering (Traag et al., 2019) of the neighborhood-graph revealed a total 
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of 19 clusters, annotated to 13 cell types (Figure 25A) according to their marker expression (Figure 25B 
and C). The cluster annotation led to similar results compared to manual gating (Figure 25D).  
 
Besides the cell type classification, this approach allows to explore additional variation in the individual 
cell types, as it can be detected in the CD8 T cell population/cluster 12 (Figure 25A). Here, we see three 
subclusters: CD3+CD8+CD45RO+ effector/memory CD8 T cells (cluster 12a), CD3+CD8+CD45RO- 

naïve CD8 T cells (cluster 12b) and CD3-CD8+CD45RO± cells (cluster 12c). The latter one could either 
be CD8-expressing NK cells (McKinney et al., 2021), which could be checked by additional staining for 

CD56. Or they could represent intestinal intraepithelial lymphocytes (Lin et al., 1994) that do not express 
CD3, which would perfectly fit in this scenario and would be in line with the additional pan-cytokeratin 
expression that can be detected in the cluster (Figure 25B). This population would have been missed 
by knowledge-driven gating approaches, since usually only CD3 positive cells would have been checked 
for CD8 expression, underlining the advantage of unbiased lustering approaches.  
 
Taken together, we established with ChipCytometry a robust method for multiparametric staining of 
FFPE tissue samples. The high quality of staining allowed the further development of methods for au-
tomatic quantification and rare cell detection, which will facilitate the analysis of the immune infiltrates 
in GvHD patient samples. 
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4.3 Method development for scRNA sequencing from gastrointestinal biopsies 

Tissue staining has the great advantage of preserving the in situ spatial information of the analyzed cells 
but, despite high multiplexing, the number of markers that can be simultaneously analyzed is still limited. 
For this reason, we decided to complement the information obtained by tissue staining with single-cell 
RNA sequencing, the state-of-the-art method for deep phenotyping of single cells. The whole transcrip-
tome of each single cell can be investigated using this method, and further supplementation with paired 
TCR data or surface protein quantification is possible. Gastrointestinal biopsies are limited in size and 

the number of infiltrating immune cells might be very low after aHSCT conditioning, depending on the 
timepoint after aHSCT and the GvHD status of the patient. We therefore carefully optimized single-cell 
extraction procedures from gastrointestinal biopsies in order to analyze as many single cells per biopsy 
as possible with scRNA sequencing. 
 

4.3.1 Cell extraction from gastrointestinal biopsies 

The generation of single cell suspensions from tissues is a procedure that should be completed right 
after the collection of the tissue of interest in order to preserve high viability. In this project, cell extraction 
was performed at the University of Regensburg using mechanical disruption and collagenase digestion 
of tissue samples.  
 

 
Figure 26. Optimization of cell extraction, freezing and sorting of single cell suspensions. 
Exemplary FACS plots for single cell suspensions from colon tissue are shown for living cells (A) and leukocytes 
(B). Plots represent form left to right: freshly isolated cells, thawed cells and CD45+ sorted cells from the same 
material. (C) Percentage of CD45 positive cells is plotted for fresh and thawed material. (D) Cell loss in percent is 
plotted for all cells and CD45+ cells. (E-F) Loss of CD45 positive cells is plotted according to cell density in 1 ml 
freezing volume (E) and freezing volume for 5x106 cells/ml (F). (G) Cell recovery after FACS sorting is depicted 
with and without FCS coating of the plate. Statistical testing in (C-G) was conducted by Mann-Whitney U test. 
(*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). 
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Single cell suspensions from multiple patients needed to be collected at different days before scRNA 
sequencing could be performed on a valuable number of cells, making it unavoidable to freeze the cells 
immediately after extraction. In this way, several samples can be thawed, cell-sorted and processed for 
scRNA sequencing in a pooled manner, guaranteeing sufficient cell numbers for a scRNA sequencing 
sample. Cell sorting in this procedure will ensure a pure population and defined cell number of living, 
CD45 positive cells for further processing. In order to minimize the impact of this procedure on our 
samples, we analyzed in detail the effect of freezing/thawing cycles on the quality of the generated 

single cell suspension, as cell viability is an important prerequisite for successful scRNA sequencing.  
 
As expected, freezing and thawing reduced the total number of cells and the percentage of living cells, 
which could be selected by flow cytometry-based sorting prior further processing for sequencing (Figure 
26A). Importantly, most of the cells suffering from the freezing procedure were non-immune cells as the 
percentage of CD45+ cells significantly increased after thawing (Figure 26B-C). This effect resulted in 
a cell-recovery of around 50% for CD45+ cells after thawing, which lies in the expected range for frozen 
cells (Figure 26D). We further checked on the influence of cell density on cell viability during freezing 
and found higher densities leading to improved cell survival (Figure 26E). For low cell numbers, which 
are expected from the gut biopsies used in this study, freezing volume therefore would need to be re-
duced. However, we found an increased cell loss when reducing the volume beyond 200 µl (Figure 
26F). Altogether, as optimal compromise, we decided to freeze the cells in 250 µl independent of the 
cell counts. The cell loss appearing during the sort due to cell recovery afterwards could be further 
reduced by coating the sort plate with FCS (Figure 26G). 
 

4.3.2  Pilot scRNA sequencing experiment 

Before we started analyzing the precious gut biopsies from aHSCT patients, we performed a pilot ex-
periment in order to find out if the pooling of patient samples for scRNAseq and the following demulti-
plexing with only HLA information would suffice for efficient donor separation. Additionally, we tested if 
freezing/thawing cycles might introduce a bias in gene expression compared to a fresh sample. 
 

4.3.2.1 Evaluation of sample demultiplexing 

PBMCs from four donors with known HLA status were pooled before scRNA sequencing in order to test 

demultiplexing performance in such an experiment (Figure 27A). Souporcell (Heaton et al., 2020) was 
used to cluster cells according to single nucleotide polymorphisms (SNPs), which are unique for each 
individual, resulting in four distinct clusters and some detected doublets (Figure 27B). To allocate each 
cluster to one of the initial donors, HLA genotyping was performed on each cluster and a comparative 
score including the matching of HLA alleles together with gender allocation (see 3.2.5.4) was used for 
final re-allocation (Figure 27C). With this pilot experiment we were able to set up an analysis pipeline 
for demultiplexing of unlabeled cells based on SNPs and re-allocation via HLA haplotype. 
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Figure 27. Pooling and demultiplexing of PBMC samples in scRNA sequencing. 
(A) Schematic of the experimental setup: 7500 PBMCs from four individuals were sorted and processed as sample 
pool with scRNA sequencing. (B) PCA analysis on the single nucleotide polymorphisms of the individual donors 
resulting in four clusters annotated by souporcell. (C) An annotation score matrix was used to allocate each cluster 
to one of the donors according to the HLA genotype. The X marks the matching combination between donor and 
cluster. 

4.3.2.2 Transcriptomic comparison of fresh and frozen cells 

The second point we wanted to address with the pilot experiment was to evaluate the transcriptomic 
bias induced by freezing and thawing of cells. Therefore, we compared the transcriptome of fresh and 
frozen PBMCs from the same patient with scRNA sequencing (Figure 28A). We found a good correlation 
between the mean gene expression in the fresh and the frozen sample except of a few genes (IFITIM, 
FOS, JUN, JUNB, DUSP1) related to apoptosis (Ameyar et al., 2003, Gil-Araujo et al., 2014, Park et al., 
2016), that were upregulated in the frozen samples (Figure 28B). A similar good correlation was de-
tected when comparing the cell type frequencies of the two conditions (always keeping in mind that 
blood was drawn at different timepoints) for both high and low abundant cell types (Figure 28C). Others 
have later confirmed these findings, identifying DMSO cryopreservation as the optimal storage method 
for samples processed with droplet-based scRNA sequencing methods (Wohnhaas et al., 2019). 

 
Figure 28. scRNA sequencing data from fresh and frozen PBMCs. 
(A) Schematic of the experimental setup: fresh and frozen PBMCs from the same donor were processed with scRNA 
sequencing. (B) Gene expression correlation between the fresh and frozen sample. Plotted is the mean expression 
over all cells. (C) Cell number per annotated leiden cluster are plotted for fresh vs frozen PBMCs. Correlation 
analysis in (B) and (C) was done by Pearson’s correlation (****p<0.0001).  
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4.4 Clinical parameters of the analyzed patient cohort 

After establishing the methodologies for FFPE tissue staining via ChipCytometry (see 4.2) and single 
cell RNA sequencing (see 4.3), we applied these methods to the available cohort of human gut biopsies 
from GvHD patients (Figure 29A). Fresh biopsies were used for single cell extraction and subsequent 
single cell RNA sequencing whereas FFPE biopsies were used for multiplexed tissue imaging via Chip-
Cytometry. The main parameters analyzed were GvHD severity, antibiotic treatment (ABX) and micro-
bial diversity. Time points of sample collection were balanced between early and late biopsies (Figure 

29B-C).  
 
GvHD severity was clinically scored (see 1.2 and Figure 2) into mild (grade 1-2) and severe (grade 2-
4), and correlated with increased levels of GvHD biomarkers like tumorigenicity 2 (ST2) (Vander Lugt et 
al., 2013), regenerating islet-derived 3-alpha (Reg3a) (Ferrara et al., 2011), and the MAGIC algorithm 
probability (MAP) score, which combines these two markers (Figure 29D). Microbial richness and alpha 
diversity were evaluated both via 16S RNA sequencing of stool material and urinary 3-Indoxyl-sulfate, 
which is an indirect parameter for microbial diversity (Weber et al., 2015). Remarkably, these clinical 
parameters regarding the microbiome were significantly reduced in antibiotic treated patients, revealing 
the causal link between the use of broad-spectrum antibiotics and microbiome disruption (Figure 29E). 
 

 
Figure 29. Human patient samples analysed in this study. 
(A) Sample numbers and the workflow of the two analysis methods is depicted. (B) Patient characteristics of sam-
ples included in the scRNA dataset. (C) Patient characteristics of samples included in the ChipCytometry dataset. 
(D) Clinical parameters at the timepoint of the biopsy are correlated with GvHD severity. (E) Clinical parameters 
correlated with antibiotic treatment. Statistical testing in (D) and (E) was conducted by Kruskal-Wallis H test 
(*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001).  
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4.5 Multiparametric analysis of GvHD biopsies 

For the characterization of infiltrating immune cells, we extracted single cell suspensions from 31 aHSCT 
patient biopsies, sorted CD45 positive cells and performed single cell transcriptome, VDJ region and 
surface expression analysis by sequencing (Figure 30A). As controls, we used healthy adjacent tissue 
from colon resections and we integrated the scRNA sequencing data from the human gut atlas (James 

et al., 2020) containing data from healthy GI tissue samples.  
 

After filtering and data processing, more than 22.000 cells from distinct immune cell lineages were left, 
representing tissue samples with different GvHD severity, from different time points after transplantation 
as well as from different anatomical locations within the gastrointestinal tract (Figure 30B). The distribu-
tion of cells revealed already some differences regarding GvHD severity, interestingly independent from 
the anatomical site. For example, an enrichment of CD8 T cell in the severe GvHD compartment can be 
observed from the UMAP, including cells from different anatomic locations and timepoints after SCT 
(Figure 30B).  
 
Cell type annotation was performed via leiden clustering and annotation according to known cell type 
specific genes, for example CD19 and MS4A1/CD20 for the B cell compartment or CD3 and TCR con-
stant chain expression for T cells (Figure 30C). Subclassification was further performed on differentiation 
genes, activation signatures or subset specific genes like FoxP3 and CTLA4 for Tregs (Figure 30D). 
The expression of surface markers further confirmed the annotation of cells via separating the annotated 
lineage populations independent from the leiden clustering (Figure 30E).  
 
Using the ChipCytometry technology, we were able to analyze immune infiltrates within their spatial 
environment in GvHD biopsies, allowing us to quantify infiltration densities instead of absolute/relative 
cell numbers. Gastrointestinal biopsies of GvHD patients were thereby processed with the cyclic immu-
nofluorescence approach, followed by automated quantification of the stained immune cell populations 
(Figure 30F). Hereby, we focused on the T cell compartment as significant immune population in the 
course of GvHD. The tissue architecture was visualized by markers like Hoechst (nuclei), pan-Cy-
tokeratin (epithelium) and smooth muscular actin (muscular layer), whereas immune cells were stained 
by specific markers for each cell type. The visualization of CD4 and CD8 T cells showed already a 

difference in the CD4/CD8 ratio between the mild and the severe GvHD sample in line with our first 
observations from the scRNA seq dataset (Figure 30G). 
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Figure 30. Multiparametric analysis of GvHD biopsies by scRNA seq and ChipCytometry. 
(A) Schematic workflow of the scRNA sequencing experiments: Single cells were first isolated from fresh biopsies, 
sorted on living, CD45+ cells and processed with the scRNA seq workflow. (B) Annotation of cell types (left) as well 
as sample distribution according to GvHD severity, time point of collection and anatomical origin (right) are depicted 
on the UMAP. Cell type annotation was performed according to cell type specific marker genes (C) and sub-differ-
entiation was according to phenotypic markers (D). (E) Validation of the annotated cell types by surface marker 
expression plots for lineage-specific surface markers. (F) Schematic representation of the ChipCytometry experi-
ments: Cyclic immunofluorescence of gastrointestinal biopsies was followed by automated quantification of infil-
trates. (G) Exemplary image of a severe (left) and mild (right) GvHD sample. The zoom- in demonstrates multiplexed 
single cell resolution of the applied method. Plots on the right show the distribution of CD4, CD8 and Treg cells 
within the tissue samples. Scale bars indicate 100 µm in the overviews and 10 µm in the zoom-in. 
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4.6 GvHD is mainly linked to changes in T cell frequencies 

When we compared cell type frequency distributions for the individual patients between control, mild 
and severe GvHD samples, we observed some group-specific differences like the higher frequencies of 
plasma cells in control samples and the high frequency of activated CD8 T cells and CD4 memory T 
cells in severe GvHD samples (Figure 31A).  
 

 
Figure 31. GvHD is mainly linked to changes in T cell frequencies. 
(A) Cell type frequencies are depicted as bar plots for each individual sample, grouped into control, mild and severe 
GvHD samples. (B) Volcano plots show differential cell type frequencies between control and aHSCT samples (left) 
or between mild and severe GvHD (right). (C) Frequencies of infiltrating T cell subsets grouped by GvHD severity 
are depicted. Each dot represents an individual sample. (D) Linear regression analysis between activated CD8 T 
cell and regulatory CD4 T cell frequencies in aHSCT vs. control samples. (E) Frequencies of all other annotated 
cell populations grouped by GvHD severity are depicted. Each dot represents an individual sample. Statistical test-
ing in (B) was conducted by Kruskal-Wallis H test. Statistical testing in (C) and (E) was conducted by one-way 
ANOVA followed by Tukey’s HSD multiple comparison. Correlation analysis in (D) was done by Pearson’s correla-
tion. (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). 

These differences were quantified by calculating fold change differences between control and aHSCT 
patients and between mild and severe GvHD samples (Figure 31B). Besides the fact that the control 
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samples had significantly higher frequencies of B cells and plasma cells, which is the compartment of 
slowest reconstitution after aHSCT (Fiorenza and Turtle, 2021), we found especially the T cell compart-
ment to be modified in association to GvHD severity. Indeed, GvHD severity was significantly linked to 
an increase in CD8 T cell frequencies, resulting in a drop of the CD4/CD8 ratio (Figure 31B-C). Further-
more, we observed a significant increase in regulatory T cell frequencies in severe compared to mild 
GvHD patients. The increased Treg frequencies strongly correlated with frequencies of activated CD8 

T cells, suggesting a counter-regulation of inflammation (Figure 31D). Intriguingly, the slope of this cor-

relation was reduced in aHSCT patients compared to healthy control samples. This speaks in favor of 
an insufficient regulation of inflammation by regulatory T cells, which is obviously not able to suppress 

GvHD.  

 

Although not significant, we detected other interesting features of cell frequency differences between 

the three sample groups. Those are for example the gradual decrease of mast cells as well as the 

association of NK cells to the severe GvHD patients (Figure 31E). NK cells are known for a bilateral 
association in GvHD development, and can participate in GvHD reduction by repressing alloreactive T 
cells as well as promote GvHD by contribution to an inflammatory environment (Simonetta et al., 2017). 
This study will now focus on the significant differences in the T cell subsets, leaving space for follow-up 
studies investigating other aspects within the valuable datasets produced in this thesis. 
 

The quantification of cell densities per square millimeter in the 52 analyzed biopsies showed significantly 
higher leukocyte and T cell infiltration in severe cases of GvHD. We could again detect a skewed 
CD4/CD8 ratio primarily dependent on a higher infiltration of CD8 T cells in severe GvHD, in contrast to 
the otherwise more stable CD4 T cell numbers (Figure 33A). The Treg infiltration also showed a trend 
of increase with GvHD severity, which was correlated with CD8 T cell infiltration as observed before in 
the single-cell RNA sequencing dataset (Figure 33B).  
 

 
 

Figure 32. Analysis of T cell infiltration by automated quantification of ChipCytometry data. 
(A) Quantified infiltration differences between mild and severe GvHD. (B) Correlation between CD8 T cell infiltrates 
and regulatory T cells. Statistical testing was conducted by Mann-Whitney U test. Correlation analysis in (B) was 
done by Pearson’s correlation. (*p<0.05; **p<0.01; ***p<0.001). 
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4.7 Antibiotic treatment and immune reconstitution contribute to T cell variance 

We performed principal component analysis (PCA) on the data in order to find the clinical parameters 
explaining the main variance of the dataset. As input data for the PCA analysis, we used information 
generated by ChipCytometry such as the density of leukocytes, T cells, T helper cells, cytotoxic T cells 
and Tregs, as well as the CD4/CD8 ratio and the frequency of activated Tregs within the Treg compart-
ment. Importantly, we found that samples do not cluster depending on GvHD severity (Figure 33A). 
Additionally, the principal components of the data were composed of parameters of general T cell infil-

tration on PC1 and parameters connected to regulatory T cells on PC2 (Figure 33B). To predict the 
clinical variables causing the highest variance within the dataset, we calculated the fold change in the 
single PCs for every clinical parameter, meaning that all parameters were divided in two groups (true 
vs. false, high vs. low, mild vs. severe) and the fold change between the mean value of the principal 
component was calculate between the two groups (Figure 33C-D). On the one hand, we found the time, 
in terms of days after SCT, to be significantly connected to PC1 and thereby with T cell infiltration. On 
the other hand, antibiotic treatment (ABX) as induction of dysbiosis, and urinary 3-indoxyl sulfate levels 
as indirect marker for microbial diversity were correlated with PC2 and the Treg infiltration (Figure 33C-
D). Antibiotic treatment in our cohort is defined as systemic broad-spectrum antibiotic treatment up to 
seven days before the biopsy was taken, leading to a strong impact on the microbiome, which is why 
we see the inverse correlation between 3-indoxyl sulfate levels and ABX. According to these findings, 
we evaluated the absolute counts of infiltrating Treg according to the antibiotic treatment and GvHD 
severity. In this scenario, we detected an increase of Treg infiltration for severe GvHD cases in patients 
without antibiotic treatment as observed before. However, if the patient received systemic antibiotic 
treatment, this effect was suppressed (Figure 33E). Taken together, the analysis of the factors that 
explain the variance in the cohort showed that the time of immune reconstitution should be considered 
when analyzing biopsies from different time points and underlines the importance of the microbiome, 
especially in regard of regulatory T cells.  
 

 
Figure 33. Analysis of gastrointestinal biopsies from GvHD samples via ChipCytometry. 
(A) PCA analysis of the ChipCytometry dataset. The color indicates the GvHD severity of the corresponding patient. 
(B) PCA loadings are depicted as heatmap for PCA analysis in (A). (C) Volcano plot shows the fold change of 
clinical parameters along components 1 and 2. (D) Scatterplot for significantly associated clinical parameters. (E) 
Treg frequencies are plotted for the individual patients grouped on Antibiotic treatment and GvHD severity. Statis-
tical testing was conducted by Mann-Whitney U test. (*p<0.05; **p<0.01).  
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4.8 Antibiotic treatment reduces suppressive capacity of Tregs 

After observing a connection between antibiotic treatment and abundance of the regulatory T cell infil-
trate, we tried to investigate the mechanism behind this phenotype. We observed that antibiotic treat-
ment induced a significant reduction in microbial diversity (Figure 29E), as also shown by others. In 
addition, the microbiome plays a crucial role in inducing and sustaining Treg phenotypes in the gut 
(Omenetti and Pizarro, 2015). Thereby, it is reasonable to speculate that the antibiotic-induced dysbiosis 
could impair Treg functions.  

 
As first step, we analyzed the phenotype of in situ infiltrating Tregs. Tregs could be identified in the 
ChipCytometry dataset by the expression of CD3, CD4 and FoxP3, and were further sub-characterized 
into activated and resting Tregs by the expression of CD45RA/CD45RO (Miyara et al., 2009) (Figure 
34A). Notably, we observed a significant reduction in the frequency of activated Tregs in patients that 
had received a systemic antibiotic treatment (Figure 34B), again linking antibiotics-induced dysbiosis to 
the Treg infiltrate, but this time in regard of functionality. 
 

 
Figure 34. Treg heterogeneity in the ChipCytometry dataset is correlated to antibiotic treatment. 
(A) ChipCytometry image of 4 regulatory T cells defined by the expression of markers shown on the right for each 
individual cell. (B) activated Treg frequency is shown for the ChipCytometry dataset. Statistical testing in (B) was 
conducted by Mann-Whitney U test (****p<0.0001). 

To get more insights, we next analyzed the transcriptomic profiles of regulatory T cells. For the purpose, 

we extracted 207 regulatory T cells for in-depth analysis and re-clustered them according to their tran-
scriptome. Leiden clustering separated the cells into three distinct clusters that showed slight differences 
in FOXP3 expression (Figure 35A). Tregs from antibiotic-treated patients were enriched in clusters 1 
and 2, which showed reduced expression of FOXP3. GvHD groups were instead more equally distrib-
uted among the clusters (Figure 35A). Differential gene/surface antigen expression analysis between 
patients with or without systemic antibiotic treatment showed a suppression of genes or proteins asso-
ciated with Treg phenotype or functionality (e.g., FOXP3, TNFSF4, CTLA4 gene expression and CD134, 
CD25, CD39, CCR4 and CXCR3 in surface markers) in antibiotic-treated patients (Figure 35B). On the 
contrary, this group showed increased expression of genes associated with conventional T cells (CD69, 
CD38, CD40) or with Treg instability (IRF1). Therefore, we scored genes associated with Treg 



Results - Antibiotic treatment reduces suppressive capacity of Tregs 

 66 

functionality (FOXP3 (Hori et al., 2003), IL2RA (Chinen et al., 2016), CTLA4 (Wing et al., 2008), CD27 

(Muth et al., 2022), TNFRSF members (Ono et al., 2006), TIGIT (Yu et al., 2009), BATF (Hayatsu et al., 

2017), CCR4 (Sugiyama et al., 2013), CXCR3 (Hoerning et al., 2011)) as well as gene sets for Treg and 
conventional effector CD4 T cells (Höllbacher et al., 2020). Notably, we found a significantly lower Treg 
suppression score in patients that had received systemic antibiotic treatment (Figure 35C). Moreover, 
we found an inverse correlation of Teff and Treg gene scores (Figure 35D), with enriched gene signa-
tures of effector T cells in the antibiotic-treated group. The three Treg clusters thereby significantly dif-
fered in the described scores: Clusters 1 and 2 shared an effector-like signature whereas cluster 3 had 
a significantly higher Treg score and Treg suppression score signatures (Figure 35E-F). Altogether, 
these data indicate that systemic antibiotic treatment can negatively influence the proper reconstitution 
of the gut Treg niche after aHSCT.  

 

 
Figure 35. The phenotype of regulatory T cell is influenced by antibiotic treatment. 
(A) 207 regulatory T cells have been extracted from the total dataset and were clustered into 3 distinct groups. (B) 
Differential gene expression analysis (left) and surface expression analysis (right) is shown according to antibiotic 
treatment (ABX). (C) Literature-defined genes were scored as Treg suppression signature. (D) Teff and Treg gene 
scores (Höllbacher et al., 2020) are depicted grouped according to antibiotic treatment. (E) UMAPs depict the dis-
tribution of the individual scores. (F) Scores are plotted for each individual cell grouped by leiden clustering. Differ-
ential gene expression analysis in (B) was performed using Welch’s t-test in diffxpy. Statistical testing in (C) and 
(D) was conducted by Kruskal-Wallis H test. Statistical testing in (F) was conducted by one-way ANOVA followed 
by Tukey’s HSD multiple comparison (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). 

We next asked the question whether the observed less suppressive Tregs resulted from a de-differen-
tiation of Tregs due to Treg instability or from an incomplete peripheral differentiation from convention 
CD4 T cells. RNA velocity analysis of transcriptional dynamics allowed getting insights into the devel-
opmental direction of Tregs in the dataset. The suggested path derived from latent time analysis moved 
from leiden cluster 1 via cluster 2 to cluster 3, which was the cluster with the highest Treg suppression 
score (Figure 36A-B). In line, Treg suppression score and Treg gene score increased with latent time 
whereas the Teff gene score decreased (Figure 36C). Pseudo-temporal gene expression analysis of 
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the top 100 velocity-associated genes showed overlap with the Teff gene signature in the early stage 
and with the Treg signatures in the later stage (Figure 36D), and the directionality of differentiation has 
even been detected within a single clonotype (Figure 36E). This evidence further confirmed the direc-
tionality of differentiation by cells derived from the same progenitor. We further observed reduced dif-
ferentiation of Tregs in antibiotic-treated patients as well as a higher differentiation in severe GvHD 
cases, potentially related to counter-regulation of inflammation (Figure 36F). However, when we dis-
criminated severe GvHD patients according to AB treatment, we again found the correlation between 

antibiotic treatment and Treg differentiation (Figure 36G). Altogether, our data indicate a GvHD-inde-
pendent effect of reduced suppressive capacity in Tregs upon antibiotic treatment.  
 

 
Figure 36. Regulatory T cell differentiation is locked upon antibiotic treatment. 
(A) Dynamic modelling of transcriptional dynamics revealed the directionality of regulatory T cell differentiation from 
the Teff-like cluster 1 to the most suppressive cluster 3. Sown is partition-based graph abstraction (PAGA). (B) 
Latent time plotted as heatmap on the UMAP space. (C) Latent time is plotted against the gene signatures described 
before (see Figure 35). Each dot represents one cell and the color indicates the leiden clusters. (D) Heatmap of 
pseudo-temporal gene expression of the top 100 velocity-defining genes. Each column represents one cell (ordered 
by latent time) and each row represent one gene. Leiden cluster, antibiotic treatment and GvHD severity are indi-
cated on the top of the graph and overlapping genes with the gene signatures are indicated on the right. (E) One 
expanded Treg clonotype is highlighted on the latent time vs. Treg suppression score plot also depicted in (C). (F-
G) Latent time is plotted grouped by ABX or GvHD severity for all samples (F) and for severe GvHD patients only 
(G). Statistical testing in (C) and (D) was conducted by Kruskal-Wallis H test. Statistical testing in (F) was conducted 
by one-way ANOVA followed by Tukey’s HSD multiple comparison (*p<0.05; ***p<0.001). 

 

  



Results - Certain bacterial species are linked to Treg differentiation 

 68 

4.9 Certain bacterial species are linked to Treg differentiation 

Since we found a significant connection between microbiome disruption via antibiotic treatment and 
Treg functionality, we wanted to further characterize this interaction on the level of bacterial species 
from 16S rRNA sequencing of matched stool samples. Therefore, we calculated the mean fold change 
of each of the three scores according to species presence in a patient for each bacterial species.  
 
According to these fold-changes, species were clustered into five distinct groups: cluster 1, 2 and to a 

less extend cluster 4 seemed to support Treg development, whereas cluster 3 and 5 were more in favor 
for the less differentiated Tregs (Figure 37A). Within the clusters supporting Treg differentiation, we 
found an enrichment of Clostridia and Bacteroidia species, which have reduced frequencies in the clus-
ters 3 and 5 (Figure 37B). These classes have been described to play an important role in regulatory T 
cell induction (Atarashi et al., 2011, Pandiyan et al., 2019). The clusters 3 and 5 were in contrast marked 

by a higher abundance of Gammaproteobacteria, which have previously been identified as a GvHD risk 

factor (Han et al., 2018).  
 

 
Figure 37. The abundance of certain bacterial species can influence Treg differentiation. 
(A) Presence of bacterial species has been associated with changes in the gene expression scores defined in 
Figure 35. Species were subdivided by hierarchical clustering according to their association pattern into 5 distinct 
subgroups. (B) bacterial class abundance within the individual clusters is shown. (C) Ability of SCFA production for 
the individual species was retrieved from the Virtual Metabolic Human database and the frequency of metabolite 
producing species is depicted per cluster. (D) Linear regression analysis of the bacterial abundance of species from 
the clusters defined in (A) plotted against the mean latent time of Tregs as measure of differentiation. Statistical 
testing in (A) was conducted by Kruskal-Wallis H test. Correlation analysis in (D) was done by Pearson’s correlation. 
(*p<0.05; **p<0.01). 

An often-described pathway of Treg induction via specific microbiota is through bacterial metabolites. 

We therefore checked at the species level for known metabolites in the gut microbiome resource of the 

Virtual Metabolic Human database (Magnusdottir et al., 2017, Noronha et al., 2019), which contains 
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more than 800 semi-automatically curated strain-specific metabolic reconstructions for more than 600 

species. By searching for all clustered strains in the database, we found enrichment in butyrate and 

propionate producing species in clusters 1, 2 and 4, which is in line with the supportive role of SCFAs 

to Treg development (Arpaia et al., 2013) (Figure 4C). Finally, the abundance of species from the Treg 

supporting clusters (cluster 1, 2 and 4) showed a positive correlation to the differentiation state of Tregs 

within a sample (Figure 37D). 
 
In summary, we detected specific groups of bacteria that are positively associated with Treg differenti-
ation in the gastrointestinal tract. These groups are enriched for SCFA producing species, suggesting 
this axis as potential mechanism of Treg regulation. 
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4.10 Clonally expanded CD8 T cells are drivers for GvHD severity  

Our data indicate that the suppression of GvHD by Tregs could be strongly dampened by the antibiotic-

induced gut bacteria disruption, and is therefore a potentially important finding for clinical interventions. 

On the pro-inflammatory side, we have seen that conventional T cells are significantly higher abundant 

in severe GvHD, and we therefore wanted to take a deeper look into this compartment. After extracting 

7218 T cells from our scRNA seq cohort (Figure 38A), we performed differential gene expression anal-

ysis according to GvHD severity. We found cytotoxic effector gene signatures (NKG7, GZMA, GZMB, 

GZMK, HAVCR2) to be associated with T cells from severe GvHD patients (Figure 38B). Mild GvHD 

patients in contrast showed enrichment of memory-associated genes (IL7R, KLRB1), in line with the 

generally lower inflammation.  
 

 
Figure 38. CD8 T cells are associated with GvHD severity. 
(A) 7218 conventional T cells have been extracted from the total dataset and the individual cell types as well as 
marker expression are depicted. (B) Differential gene expression analysis is shown according to GvHD severity. 
(C) Gene set enrichment analysis for the KEGG 2021 human database was performed on genes that were higher 
expressed in sever patients as shown in b). (D) Graft-versus-host disease score from (C) is depicted grouped by 
GvHD severity (left) or T cell subset (right). (E) Box Blots for cell type frequencies of CD4, CD8, CD8 activated T 
cells and CD8 TRM T cells (from left to right) are depicted. Patients are grouped according to low or high Reg3a 
levels. Differential gene expression analysis in (B) was performed using Welch’s t-test in diffxpy. Statistical testing 
in (D) and (E) was conducted by Kruskal-Wallis H test or by one-way ANOVA followed by Tukey’s HSD multiple 
comparison for more than two groups (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001). 

Gene set enrichment analysis (GSEA) was next performed on the genes that were enriched in T cells 

from severe GvHD patients, and graft-versus-host disease was the top hit among other pathways asso-

ciated with transplantation and autoimmunity (Figure 38C). When we scored the genes from this 
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pathway on our single cells, we found a positive correlation of GvHD severity with a higher score only 

in CD8 but not in CD4 T cells (Figure 38D). This is in line with our finding that especially CD8 T cells are 

associated with GvHD severity (Figure 31B-C and Figure 33B). Finally, the frequency of CD8 T cells 

were elevated in patients with high Reg3a levels and primarily depended on activated CD8 T cells (Fig-
ure 38E), underlining their importance in GvHD pathophysiology by connection to epithelial barrier dis-

ruption (Ferrara et al., 2011).  

 

VDJ sequencing allowed us to investigate clonality within the T cell compartment and we found increas-

ing clonal expansion with GvHD severity (Figure 39A), including some highly expanded clonotypes with 

more than 15 cells per TCR. As expected, we could observe a connection between clonal expansion 

and TCR repertoire diversity for the individual patients, the latter being significantly reduced in severe 

GvHD samples for the whole T cell pool as well as for the CD8 compartment (Figure 39B). Regarding 

the T cell subset frequencies between control, mild and severe patients, the increased Treg frequency 

in control samples and the high proportion of activated CD8 T cells in severe GvHD patients are obvi-
ously detectable. These differences in frequencies are accompanied by clonal T cell expansion, which 

comprised some large clonotypes especially in the severe GvHD patients (Figure 39C). Although the 

absolute expansion was more obvious in the CD8 T cell compartment (Figure 39B-C), we found a sig-

nificant relative expansion (clone size divided by number of T cells) in both, CD4 and CD8 T cells, with 

CD4 effector memory and activated CD8 T cells being the main drivers of expansion, respectively (Fig-
ure 39D). Altogether, we could show that activated CD8 T cells mainly drive severe GvHD. Furthermore, 

the clonal expansion associated with severity of the disease suggests for an antigen-specific inflamma-

tion rather than an unspecific activation of the overall T cell compartment. 

 

 
Figure 39. Conventional T cells show enhanced clonal expansion in severe GvHD patients. 
(A) UMAPs show clonal expansion of T cells for the different patient groups. (B) Clonal expansion (top) and diversity 
(bottom) is shown for all T cells (left, CD4 T cells (middle) and CD8 T cells (right). (C) Pie charts depict the T cell 
type frequencies and clonal expansion in control, mild and severe GvHD patients. Clonal expansion analysis has 
been performed for all T cells and separated for CD4 and CD8 T cells. Clonotypes with a size smaller than 3 cells 
are depicted in gray. (D) relative clone size (clone size/number of T cells) is depicted for all individual clonotypes 
separated into CD8 (top) and CD4 T cells (bottom). Statistical testing in (B) and (D) was conducted by Kruskal-
Wallis H test (*p<0.05; ****p<0.0001).  
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4.11 Expanded T cell clones persist over time and are anatomically spread 

For three patients, multiple biopsies have been taken either longitudinally or from different sides of the 
gastrointestinal tract. This gave us a unique opportunity to investigate the persistence of expanded 
clonotypes over time and their anatomical spread within the gastrointestinal tract. When we calculated 
the repertoire overlap of these biopsies, intriguingly, we found some similarity in the TCR repertoire of 
biopsies from the same patients (Figure 40A).  
 

 
Figure 40. Expanded CD8 T cells are anatomically distributed and stable over time. 
(A) The heatmap shows the repertoire overlap between all longitudinal samples (top). The schematic explains sam-
ple origins of biopsies 17 and 27 from the same patient. (B) UMAPs depict the distribution of the biopsies (top) and 
the clonal expansion (bottom) for patient C. (C) Cell type clusters (top) and location of shared clonotypes (bottom) 
are depicted for both biopsies. (D) All 21 shared clonotypes are depicted with the number of cells from the individual 
biopsies (inner circle) and the cell type each individual cell has been assigned to (outer ring). (E-F) Overlapping 
clonotypes and time course of GvHD with the respective biopsies for patient A (E) and patient B (F) are depicted. 
(G) T cell subset clonal expansion for CD4 effector memory T cells (top), CD8 activated T cells (middle) and T cell 
frequencies (bottom) are plotted over time for patient B. 

For patient C, we in-depth analyzed two biopsies: biopsy 17 was collected at day 154 from the sigma, 
whereas biopsy 27 was taken at day 350 from the duodenum (Figure 40A). Although these biopsies 
were taken from anatomically distant sides and over the course of almost 200 days, we found similar 
immune infiltrates in both biopsies, except of the enriched CD4 effector memory cell frequency in the 
duodenal biopsy. Furthermore, and surprisingly, we observed 21 clonotypes overlapping between the 
biopsies (Figure 40B-C). These obviously systemically relevant clonotypes shared most of the time a 

rather activated phenotype (Figure 40C-D).  
 
We could further validate this global appearance of expanded, activated CD8 T cells in another pair of 
biopsies from sigma and duodenum (Patient A) taken at the same time point (Figure 40E). For patient 
B, four longitudinal biopsies were available, and we found some clonal overlap only at the later time 
points between biopsies 30 and 34 (Figure 40F). Interestingly, here the overlapping clones predomi-
nantly derived from CD4 Tem T cells, and this cell type showed an increase in frequencies due to clonal 
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expansion over all time points (Figure 40G). Still two out of seven overlapping clonotypes are from the 
CD8 activated T cell compartment with a similarly increasing clonal expansion over time (Figure 40G).  
 
Taken together, we found clonal overlap between biopsies from the same patients independent from 
the anatomical location and stable over long time periods. This underlines clinical importance of antigen-
specific T cell activation for GvHD pathophysiology, due to systemic relevance and stable antigen 
presentation, preserving the activated phenotype of the detected CD8 T cells. 
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4.12 Suppressive capacity of Tregs is directly linked to CD8 expansion 

Results from our investigation of a sample cohort of GvHD patients revealed CD8 T cells with an acti-
vated signature as key players in GvHD progression. We furthermore found that regulatory T cells, which 
have the potential to suppress GvHD (Edinger et al., 2003), are dependent on the microbiome and can 
be suppressed in their numbers and functionality upon microbiome disruption.  
 
In order to link these findings, we analyzed the relative clone size of T cells from severe GvHD patients 

according to the suppressive capacity of co-infiltrating Tregs in the same patient. Here we found a sig-
nificantly lower clonal expansion for CD8 – but not CD4 – T cells in patients with high suppressive 
potential in the Treg compartment (Figure 41A).  
 

 
Figure 41. Direct connection between Tregs and CD8 T cell expansion in severe GvHD. 
(A) Relative clone sizes are depicted for CD8 T cells (left) and CD4 T cells (right), grouped by the patients Treg 
suppression score being higher or lower than the mean. (B-D) Original ChipCytometry images of biopsies from a 
patient before (B) and after FMT (C) as well as the replotted, gated T cell populations (D) are depicted. (E) Eight 
CD8 T cells with the lowest distance to a Treg are depicted before and after FMT treatment. The circle indicates a 
radius of 30 µm. (F) The boxplot depicts the minimal distance to a Treg for each CD8 T cell before and after FMT 
treatment. Statistical testing in (A) and (F) was conducted by Kruskal-Wallis H test (***p<0.001; ****p<0.0001). 
Modified from (Orberg et al., 2022). 

These findings highlight the importance of an intact microbiome to preserve a functional gastrointestinal 
Treg population, and support the potential of FMT or other probiotic approaches as therapeutic options 
for GvHD treatment. First pilot studies showed increasing abundance of protective bacterial species 
producing protective metabolites as well as an increase in Treg numbers after FMT treatment (Orberg 
et al., 2022, Kakihana et al., 2016). To assess whether FMT-induced restoration of gut Tregs could 
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ameliorate GvHD severity by suppressing CD8 T clones, we performed ChipCytometry on biopsies be-
fore and after FMT in a single patient and checked for the spatial organization of Tregs and CD8 T cells.  
 
Firstly, we found a reduced density of CD8 T cell infiltration, accompanied by a higher density of regu-
latory T cells (Figure 41B-D). Furthermore, we calculated the minimal distance to the next regulatory T 
cells for each CD8 T cell in order to assess the interaction probability between regulatory and CD8 T 
cells. This analysis revealed more CD8 T cells having a Treg within a distance of 30 µm after FMT, 

presumably allowing interaction and suppression of CD8 T cells by spatial proximity (Figure 41E). Fur-
thermore, we observed a significantly reduced distance between CD8 T cells and Tregs over the whole 
analyzed tissue (Figure 41F). 
 
Taken together, with these analyses, we were able to link our two major findings by observing the sup-
pression of clonal expansion of the systemically spread and disease driving CD8 T cells by differentiated 
regulatory T cells, dependent on an intact microbiome. We could further observe in a single patient, that 
FMT can restore microbial diversity and thereby lead to higher Treg frequencies. The higher Treg den-
sity upon FMT would then be able to favor interaction with CD8 T cells, facilitating a potential suppres-
sion of GvHD. 
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5. Discussion 

5.1 ChipCytometry allows deep in-situ phenotyping of single cells in gut biopsies 

At the start of this project, we had to bring together an existing repository of FFPE tissue samples from 
human aHSCT patients with ChipCytometry as a newly evolved technology to perform multiplexed im-
aging with spatial single-cell resolution and superior image quality. The technology advancements in 
detail are the subtraction of a true background, the high dynamic range imaging, and the ability to store 

samples for later re-interrogation. The methodology was developed for cryopreserved tissue samples, 
meaning that we had to generate a new treatment protocol to transfer the technology to FFPE tissue 
samples of our retrospective cohort. The main changes to the protocol were a tightly titrated step of 
antigen retrieval and the minimization of tissue autofluorescence to achieve the best possible signal-to-
noise ratio.  
 
After setting up a handling protocol for FFPE samples, we established antibodies compatible with the 
antigen-retrieved tissues. The current set of 32 markers allows the differentiation of more than 30 differ-
ent cell types in tissue samples, focusing on immune cells. For broader applicability, this list of antibodies 
might be expanded for the staining and phenotyping of additional lineages, such as innate immune cells 
and cancer cells or apoptotic markers and checkpoint molecules to facilitate the phenotyping of tumor 
samples. The technology per se can be used with any antibody, as long as it can recognize its target 
within a fixed tissue sample and is conjugated to a suitable fluorophore. The platform, therefore, allows 
the study of particular cell types as it has been shown for MAIT cells, for example, identified by antibod-
ies against Vα7.2, CD161, PLZF, and CD3 (Leng et al., 2019). Existing repositories like the list of vali-
dated antibodies from the CyCIF-methodology (Lin et al., 2018) contain potential candidates for panel 
expansion.  
 
For low-expressed markers that are difficult to detect via primary antibody staining, we combined the 
methodology with a fluorescence in-situ hybridization (FISH) approach (Wang et al., 2012). This ad-
vancement allows three additional targets to be stained, and the cyclic application could enable the 
expansion of the number of mRNA targets. Depending on mRNA stability, multiple cycles of fluorescent 
in situ hybridization could be performed with a chemical bleaching step to remove the signal and an 

additional HRP blocking in between each cycle to avoid the detection of probes from a previous channel. 
An alternative approach for up to twelve mRNA targets is the new RNAscope HiPlex Kit v2, which would 
enable one step of hybridization for 12 target probes followed by the specific, cyclic detection in rounds 
of three channels (488, 550, 650, all matched with the ChipCytometry filter sets). This procedure would 
be fully compatible with the proposed protocol for the combined detection of mRNA and protein targets. 
 
Imaging experiments are often used for qualitative analysis of spatial cell type distribution and infiltration 
densities based on single markers. Quantitative studies are still mainly based on manual counting, which 
becomes unrealistic for the depth of phenotyping possible with the ChipCytometry technology. 
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Therefore, we developed an automated approach that enables us to perform robust quantification of 
phenotypically complex as well as very rare cell populations within tissue samples. Besides the ad-
vancement of superior data quality, we could implement an effective strategy of spatial spillover correc-
tion, leading to a more sophisticated quantification approach. This correction method for surface mark-
ers, based on validation of the signal distribution throughout a cell, mostly extinguished the detection of 
false positive events from both spatial spillover and unspecific staining artifacts and, therefore, highly 
increased the correlation between manual counts and automated quantification. Others have proposed 

methods for spatial spillover correction based on the spatial neighborhood of cells using adjacency ma-
trices and correcting for the fraction of shared boundary between cells (Goltsev et al., 2018, Bai et al., 
2021). However, these quantifications still lack the power to resolve positive and negative populations 
for each marker from imaging data. The quantification of staining intensities derived from ChipCytometry 
images can serve as a starting point for many different analyses, like the detection of phenotypically 
complex events by iterative gating, clustering of cells for unbiased cell type identification, and neighbor-
hood analysis within a tissue sample. 
 
Other imaging methods are specialized for higher throughput and increased multiplexing capacity, like 
the new PhenoCycler solution (Akoya Biosciences, former CODEX technology) or the GeoMx/CosMx 
system (Nanostring). However, the data quality of the ChipCytometry is still superior due to the special 
image acquisition (HDR, background subtraction), and it is fully compatible with third-party reagents as 
conventional immunofluorescent antibodies are used. A new instrument, the CellScape ChipCytometry 
device, was recently launched as a successor to the CellScanner used in this study. Besides the walk-
away automation for up to four chips, this machine is equipped with a new optical core unit that allows 
higher resolution and up to 8x larger scan area per position for increased sample throughput. Since the 
general methodology has not changed, our handling protocol for FFPE samples is still applicable to this 
new generation platform, catching up on throughput with other methods. Furthermore, our work raised 
the company’s interest in FFPE sample processing, and specific ChipCytometry kits for FFPE samples 
containing coated coverslips for better tissue adhesion are now on the market.  
 
The developed pipeline for automated quantification can continuously be updated with new modules to 
be adapted to the current state-of-the-art image analysis. For example, we implemented the segmenta-
tion via a neuronal network approach and the correction of shading artifacts in the second version of the 

pipeline. The quantification of FISH signals is still in the testing phase, and there are additional ideas to 
be implemented, like the separate segmentation of the nucleus, cytoplasm and membrane to retrieve 
further information on the subcellular localization of the signal. This quantification of signal localization 
within the cell becomes particularly interesting in combination with the CellScape instrument and its 
higher resolution of 182 nm/pixel. 
 
The technological achievements in multiplexed imaging led to the development of powerful image anal-
ysis tools, and ChipCytometry output data is primarily compatible with this software. Besides commercial 
software solutions like HALO (Indica labs), the Visiopharm software bundle, or Aperio ImageScope 
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(Leica), to name some of the commonly used ones, there are compelling open source tools like QuPath 
(Bankhead et al., 2017) as graphical user interphase based analysis suite or the more advanced mod-
ular pipeline MCMICRO (Schapiro et al., 2022). Several AI-based image analysis algorithms are devel-
oped every month, and the combination of the best-performing models will ultimately lead to an optimal 
image analysis pipeline. For this reason, MCMICRO is an excellent framework for combining several 
toolsets developed by different groups, expanding on the basic principles that we proposed specifically 
for ChipCytometry data analysis.  

 
The inter-sample variability is one significant challenge not resolved so far in image analysis. In our 
dataset, we overcame this problem by manually thresholding (gating) the marker intensity for each sam-
ple based on the marker distribution. However, pooled intensity data analysis would not be possible for 
multiple samples due to sample-specific differences in background intensity, signal intensity, or addi-
tional artifacts. Benchmarking and batch-correction, which has made substantial progress in the field of 
scRNA sequencing (Korsunsky et al., 2019, Haghverdi et al., 2018, Polanski et al., 2020), for different 
samples will be one of the main challenges in increasing applicability and automation in computer-as-
sisted image analysis in the future.  
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5.2 A titrated protocol allows scRNA seq from gastrointestinal punch biopsies 

Gastrointestinal punch biopsies are very limited in size (1-2 mm²), and we had to extract enough cells 
to perform transcriptomic phenotyping via scRNA sequencing. In addition to the limited size, immune 
reconstitution might not be completed depending on the time point after transplantation, yielding a fur-
ther reduced density of immune cells within the biopsy as a specific challenge for aHSCT biopsies. We 
optimized cell extraction, cell suspension freezing, and immune cell enrichment and could extract suffi-
cient numbers of cells to continue with scRNA sequencing experiments. The most important parameter 

here was keeping a high density of cells frozen without reaching too low volumes for sufficient cell 
recovery.  
 
There have been advancements made in the meantime for the problems we were facing with our study: 
several patient samples collected on different days over a long period that should be analyzed in the 
same scRNA seq experiment. One solution for this problem could be the recently launched fixed-RNA 
scRNA sequencing kit (10X genomics) that allows to fix the sample on the day of the preparation and 
to generate scRNA sequencing libraries as soon as all samples are collected. This genome-wide, probe-
based approach allows for whole transcriptome analysis, but since the original mRNA is never amplified, 
the CDR3 region, determining the specificity of immune cell receptors, cannot be sequenced with the 
technology. For this reason, the new approach is an excellent advancement for the field but would not 
have helped in our case for TCR profiling.  
 
Before we performed scRNA sequencing with the aHSCT patient cohort, we checked for the correlation 
of gene expression between fresh and frozen samples. Besides a good correlation, in line with other 
studies suggesting DMSO cryopreservation for scRNA sequencing (Wohnhaas et al., 2019), we found 
a few differentially expressed genes associated with a stress response. Since these genes, however, 
were not specific for immune cell populations, they should not represent a significant problem as we 
processed all our samples the same way.  
 
For sample pooling, we used SNP-based demultiplexing approaches which, in contrast to other methods 
published at this time like demuxlet (Kang et al., 2018), cluster cells solely on SNP differences, inde-
pendent from the genotypes of the individual samples. After starting with scSplit (Xu et al., 2019), we 

moved on with Souporcell (Heaton et al., 2020), which in our hands showed a better capacity for sample 
demultiplexing. The better performance is most probably due to the modelling of ambient RNA in the 
sample as confounding factor for sample demultiplexing. Nowadays, most of these technologies have 
become less relevant due to the availability of cell tagging methods like cell hashing with barcoded 
antibodies (Stoeckius et al., 2018) or via lipid anchors (CellPlex technology, 10X genomics). However, 
they might still be interesting for limited sample material since additional staining steps, and correspond-
ing sample loss, can be avoided.  
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5.3 GvHD is associated with increased immune and T cell infiltration 

In our two datasets of immune infiltration from aHSCT biopsies, we found GvHD to be associated with 
increased immune infiltration, especially on the site of T cells, which have been previously described as 
cellular GvHD mediators (van den Brink and Burakoff, 2002). In addition, we detected some exciting 
trends of differential composition regarding other immune cell populations in the single-cell sequencing 
data. For example, the frequency of B cells and plasma cells was significantly reduced in aHSCT sam-
ples, which is somehow expected due to the slow reconstitution of these cell types in the tissue (Fiorenza 

and Turtle, 2021). Since current interest is raised on the role of B cells in aHSCT as their depletion 
showed a reduction in GvHD (Shimabukuro-Vornhagen et al., 2009), our data might serve as a starting 
point for further investigations, and B cell receptor data might be generated from the existing cDNA 
libraries. In addition to B cells, the frequency of mast cells was significantly increased in the control 
samples and sequentially decreased in mild and severe GvHD. This effect of reduced mast cell numbers 
in severe GvHD patients has been described before in combination with the immunoregulatory function 
of these cells (Ustun et al., 2020). Although our data contains many valuable information on several 
immune cell types, we mainly focused with this thesis work on the T cell compartment as it showed the 
most significant difference in both datasets. Nevertheless, our comprehensive dataset should become 
a starting point for many follow-up studies also deeper looking at other immune cells. 
 
Besides some haploidentical transplantations, most of our patients were transplanted with a graft either 
fully HLA-matched (12/12 alleles, 32,1% of the patients) or with one mismatch in an HLA class II allele 
(DPB mismatch: 11/12 or 10/12 alleles, 39,3% of the patients). The enrichment of T cell frequencies, 
especially within the MHC class I-restricted CD8 T cell compartment, hint towards the recognition of 
minor mismatches in case of alloreactivity. Importantly, besides the enrichment of T cells among all 
immune cells, we could also observe an increased T cell density as an absolute measure of infiltration 
in the biopsies of severe GvHD patients, speaking for T cell recruitment to the side of inflammation. The 
enrichment of CD8 T cells translated into a decreasing CD4/CD8 ratio from controls to mild GvHD to 
severe GvHD. In response to such inflammation, we detected an increase in regulatory T cells, as was 
described before for FoxP3 expression in the tissue (Ghimire et al., 2021). In addition, we could further 
correlate the Treg with the CD8 T cell infiltration. Therefore, we could directly show for the first time that 
the counterintuitive higher Treg infiltration in severe GvHD is a response to the higher inflammation and 

conventional T cell infiltration. Furthermore, we showed that the increase in Treg frequencies is still not 
high enough to fully counterbalance the effects mediated by the abundance of conventional T cells. 
 
Interestingly, GvHD was not the main driver of the observed differences in cell composition, besides it 
associated with an increased CD8 T cell infiltrate. In contrast, we found two other clinical parameters 
most likely explaining the main variance of the dataset. The time point of the biopsy relative to the 
transplantation seemed to explain the extent of immune infiltration in general, in line with immune re-
constitution after transplantation in the tissue. Microbiome disruption, in contrast, explained variance in 
Treg density and phenotype within the tissue, which led us to investigate this correlation further.  
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5.4 The microbiome can influence Treg numbers and phenotype 

After observing several indications regarding the interplay between Tregs and the microbiome, like the 
reduced frequency of Tregs and the lower proportion of activated CD45RO+ Tregs in antibiotic-treated 
patients, we investigated the regulatory T cell compartment in-depth with a specific focus on the interplay 
with microbiome disruption. By doing so, we found two transcriptomically distinct subsets of regulatory 
T cells, one of them showing a higher gene signature of effector T cell genes with a low expression of 
Treg effector markers. In contrast, the other subset showed a more stable Treg phenotype characterized 

by a high score of suppression-associated genes and a stronger Treg signature. By analyzing transcrip-
tional dynamics, we observed a differentiation pathway starting from the cluster with the lower Treg 
signature and developing into the more suppressive Tregs upon induction. Altogether, the phenotypic 
signature of the clusters and the directionality of differentiation would refer to the generation of periph-
erally induced Tregs. Interestingly, and further supporting the hypothesis of pTregs induction, the differ-
entiation was dependent on an intact microbiome, since we observed less maturated Tregs in antibiotic-
treated patients. pTregs have been previously described to play an essential role in mucosal tolerance 
induction, as pTregs were induced in the colon by local microbial antigens and TCR repertoires did not 
overlap with thymic-derived Tregs (Lathrop et al., 2011). 
 
Further investigation of the involved species showed positive correlation between Treg differentiation 
and SCFA-producing bacteria from the Clostridia and Bacteroidia classes. SCFA-producing bacteria 
have been linked to Treg induction (Arpaia et al., 2013, Smith et al., 2013) and were described to play 
a beneficial role in the context of GvHD (Meedt et al., 2022). Surprisingly, the species most significantly 
associated with Treg differentiation belongs to the Enterococcus genus, which was earlier described as 
promoting GvHD (Stein-Thoeringer et al., 2019). Enterococcus avium is a vancomycin-resistant species, 
and human infections are rare, meaning that further investigation is needed to confirm its association 
with Treg induction. Its ability to produce SCFAs (Noronha et al., 2019) might, however, explain the 
observed connection with Treg differentiation and underline the complexity regarding opportunistic in-
fection and positive influence on Treg induction. It also underscored the importance of analysis on the 
species level since Enterococcus faecium, the dominant species in the association studies with GvHD 
(Stein-Thoeringer et al., 2019), cannot produce the protective SCFAs.  
 

The number of patients included in our microbiome dataset is limited, and further investigation in larger 
cohorts on the role of different bacterial species on GvHD is required to confirm our findings. Importantly, 
as an internal control, we found that the detected signatures from our data have, for the most part, been 
previously described in the context of anti-inflammatory effects in the gut, supporting the directionality 
of our data. From the Treg-supporting cluster 1, for example, Streptococcus salivarius (Laws et al., 
2021), Faecalibacterium prausnitzii (Qiu et al., 2013), Blautia wexlerae (Benitez-Paez et al., 2020), and 
Bacteroides ovatus (Tan et al., 2019) have been described to reduce inflammation and to induce toler-
ance or regulatory mechanisms. 
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5.5 Antigen-specific, systemically present CD8 T cells are linked to GvHD 

T cells in severe GvHD patients showed an activated phenotype, and the upregulated genes were fur-
ther associated with GvHD via GSEA. The connection to GvHD-related genes was mainly driven by 
CD8 T cells and less by CD4. The pathway gene set from the Kyoto Encyclopedia of genes and ge-
nomes (KEGG, entry hsa05332) contains curated genes from literature associated with GvHD patho-
physiology. These genes are related to the three steps of GvHD development (see 1.3): IL1, IL6, and 
TNF are related to the generation of an inflammatory environment due to tissue damage (step 1). MHC 

class I and class II molecules, as well as other APC activation markers, are associated with antigen 
presentation to adaptive immune cells (step 2). Cytotoxicity markers like GZMB, PRF1, and T cell acti-
vation markers like IL2 or CD28 are linked to the tissue damage of target organs (step 3).. The correla-
tion between Reg3a levels in the circulation of patients and the frequency of CD8 activated T cells 
created an additional link to GvHD pathophysiology. Reg3a is a marker for tissue damage in GvHD 
(Ferrara et al., 2011), suggesting that CD8 T cells directly mediate the target organ damage by their 
cytotoxic function.  
 
The analysis of the TCR repertoires revealed that the observed enrichment of CD8 T cells is associated 
with clonal expansion. The expanded clonotypes mostly showed an activated CD8 T cell signature, 
defined by the expression of granzymes, perforin, IFNG, and CD27, and low expression of ITGAE as a 
marker for tissue residency. Some patients in parallel showed a clonal expansion in CD4 effector 
memory T cells. The observation of increasing oligoclonality with GvHD severity support the hypothesis 
that the observed GvHD might be the result of an antigen-specific process rather than an unspecific 
activation of T cells.  
 
It has been known for decades that T cells play an essential role and are required for GvHD develop-
ment. However, the oligoclonality of these T cells has been investigated only partially in mouse models 
so far (Zheng et al., 2020, Wu et al., 2021). These studies found trends of expansion in the allogenic 
transplantation setting, without phenotypic information on the T cells. Our findings confirmed previous 
data on clonal expansion, but shed, with a previously unseen depth of information, new light on the field 
of TCR repertoires in human GvHD patients. The observation that the clonotypes are stable over time 
in longitudinal samples and systemically distributed within the gastrointestinal tract, as indicated by 

matched samples from different anatomic regions, further corroborated the importance of antigen-spec-
ificity in the setting of GvHD. In a patient with four longitudinal samples between day 21 and 238 after 
stem cell transplantation, we could further observe an increase in clonal expansion over time with a 
more polyclonal repertoire at the early timepoints and increasing oligoclonality and shared clonotypes 
at the later time points. Overall, the data revealed that a restricted set of antigens seems to be respon-
sible for the disease development. The removal of either antigen or specifically expanded T cells might 
be considered a therapeutic approach in the future. 
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One crucial step of future investigation will be the identification of the target epitopes recognized by the 
T cell receptors of the expanded T cells. Minor histocompatibility antigens have been described in the 
setting of GvHD, and TCRs were identified specific against the HA-1 and HA-2 peptides derived by point 
mutations of the HMHA1 gene (Spierings et al., 2009, Nicholls et al., 2009, den Haan et al., 1998), ACC-
1 and ACC-2 peptides, derived from the BCL2A1 gene (Akatsuka et al., 2003), and LRH1 peptide gen-
erated by a frameshift mutation in the P2X5 gene (de Rijke et al., 2005). Bacteria play an essential role 
in modulating GvHD, and the question remains if, in addition to allogenic epitopes, bacterial epitopes 

could play a role in the observed CD8 T cell activation and clonal expansion.  
 
To test this hypothesis and to identify potential antigen targets, we re-expressed the TCRs identified 
during this work in reporter cell lines for antigen screening techniques. In principle, there are two basic 
approaches for TCR epitope screening: screening of a fully randomized peptide library or working with 
a known peptidome, for example based on the human proteome. The entirely random screening is un-
biased and not species-specific, with the drawback of an overwhelming number of targets to be tested. 
For a nonamer peptide pool, ~8x1011 possible peptides need to be considered, making an unbiased 
screening almost unrealistic. Therefore, we are working on a semi-randomized peptide library approach, 
where all possible peptide combinations for a given length are computationally restricted to a given HLA 
molecule, calculating probabilities of anchor residues from peptide databases (in collaboration with 
Kilian Schober and Benjamin Schubert). This approach would allow us to check the presence of candi-
date peptides in the human and bacterial genomes to further specify the source of target antigens for 
GvHD. 
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5.6 Treg functionality and infiltration density are essential for GvHD suppression 

We identified and in-depth characterized two main mechanisms involved in the development of GvHD 
in aHSCT patients. These are the clonal expansion of CD8 T cells, leading to organ destruction and 
thereby driving gastrointestinal GvHD, and the dependence of Treg differentiation on an intact microbi-
ome. We could finally show that these two findings are connected since the Treg differentiation status 
was inversely correlated with CD8 T cell expansion in patients. This connection, together with our find-
ings regarding the interplay between microbiome and Tregs, strongly supports the idea of microbiome 

intervention for GvHD treatment or even prophylaxis. After some more experimental FMT approaches, 
there is increasing evidence that this type of microbiome intervention can dramatically increase the 
survival rates of severe GvHD patients (Zhao et al., 2021, Goeser et al., 2021).  
 

We were able to analyze a first patient who developed steroid-refractory grade IV GvHD at day 290 after 
transplantation and was treated with FMT. For GvHD therapy, the patient received two FMT treatments 
(on days 306 and 314) from the same screened donor. This resulted in a restoration of microbial diversity 
and community towards the donor’s microbiome, accompanied by an increase in protective metabolites 
like SCFAs (Orberg et al., 2022). ChipCytometry analysis of biopsies before and after FMT revealed 
regeneration of crypt structure, increased infiltration of regulatory T cells, and decrease in CD8 T cell 
density after FMT, again underlining the importance of the crosstalk between the microbiome and im-
mune cells (Orberg et al., 2022). We could further observe a decreased distance between CD8 and 
Treg cells in the patient after FMT, potentially allowing spatial interaction and Treg-mediated suppres-
sion of inflammation. The patient remained GvHD-free until the last follow-up nine months after FMT. 
Despite being a single case, this evidence again demonstrates the curative potential of FMT for patients 
with otherwise very high mortality rates, reported to be greater than 90% (Westin et al., 2011). 
 

Regarding GvHD prophylaxis, FMT might not be the best option for immunocompromised aHSCT pa-
tients due to the high risk of bacteremia or sepsis development. Since our data, as well as other studies 
(Arpaia et al., 2013, Smith et al., 2013), strongly support SCFAs as the mode of action for Treg induction 
by bacteria, the treatment with SCFAs might be a good alternative for a safer microbiome-related inter-
vention in case of GvHD prophylaxis. Furthermore, butyrate can improve intestinal barrier integrity (Ma 
et al., 2012), which would be an intervention in the early development of GvHD. The treatment of in-
flammatory bowel diseases (IBD), which has been connected to SCFAs as protective metabolites as 
well, was unfortunately only effective in a subset of patients in the first clinical trials (Breuer et al., 1997). 
Pre- and probiotic approaches to increase the abundance of SCFA bacteria showed diverse clinical 
outcomes (Parada Venegas et al., 2019), and more systematic trials need to be performed to under-
stand the reasons for treatment failure. However, although not effective in all patients, there are encour-
aging results of remission cases in IBD, and further mechanistic understanding might help to improve 
therapies in the future. For GvHD, preclinical studies showed GvHD protection through treatment with 
either butyrate or SCFA-producing bacterial species (Mathewson et al., 2016). Clinical translation is still 
pending, but there is increasing evidence that combinations of the elaborated treatment options might 
help to increase survival rates after aHSCT in the future. 
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6. Summary 

GvHD is a significant thread after aHSCT, and a detailed understanding of the underlying pathogenic 
mechanisms is crucial for developing new therapies to treat the disease and thereby improve the po-
tential of aHSCT for treating hematological malignancies. Several factors influencing disease severity 
have been known for a while, like the microbiome diversity and preconditioning intensity. However, these 
observations did mainly come from preclinical models. Direct mechanistic connections in human GvHD 

patients are lacking due to the often-low availability of human sample material and missing methods for 
in-depth immune cell characterization. This study aimed to systematically analyze the microbiome, clin-
ical status, and immune infiltrates from a cohort of human aHSCT patients. 
 
According to the repository of gastrointestinal biopsies from our patient cohort, we adapted and devel-
oped methods for multiplexed imaging and single-cell RNA sequencing of gastrointestinal immune cells. 
We developed an optimized cell extraction method to apply scRNA seq on the immune cell infiltrates of 
gastrointestinal punch biopsies and transferred the ChipCytometry technology for multiplexed imaging 
to FFPE samples. We complemented ChipCytometry as an HMTI method with an analysis pipeline for 
the automated quantification of imaging data to facilitate the investigation and phenotyping of immune 
populations within tissue samples. 
 
We created a multi-omics scRNA sequencing dataset from 31 aHSCT biopsies containing tran-
scriptomic, proteomic, and T cell receptor information. ChipCytometry imaging data from 52 biopsies 
containing spatial and phenotypic information on T cell infiltrates completed our dataset. In combination 
with the microbiome and clinical data, we found that GvHD is associated with an increased infiltration 
and clonal expansion of CD8 T cells, which were stable over time and systemically distributed through-
out the gastrointestinal tract. Regulatory T cells are essential regulators for a balance between tolerance 
and protection from infections and have been described as critical players in suppressing GvHD. Re-
garding this regulatory pillar, we found a strong dependence on an intact microbiome, and particularly 
on SCFA-producing bacterial species, for the induction and differentiation of regulatory T cells. The 
differentiation status of Tregs was inversely correlated with the clonal expansion of CD8 T cells, pro-
nouncing the suppressive role of Tregs and their ability to diminish GvHD progression.  
 

Our data underline the importance of an intact microbiome in reducing GvHD severity. Recent clinical 
trials have shown that FMT can be curative for GvHD patients. We detected an increased Treg infiltration 
after FMT, associated with a decreased infiltration of CD8 T cells and a reduced distance between Tregs 
and CD8 T cells, allowing direct interaction. Besides shedding new light on the pathophysiology of 
GvHD, our data strongly support microbiome interventions for GvHD treatment. The strong phenotype 
of clonal expansion might be another target for therapies, and identifying the recognized antigens will 
be an essential follow-up of the project.  
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