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Abstract: The shift toward electric mobility in Germany is a major component of the German climate
protection program. In this context, public charging is growing in importance, especially in high-
density urban areas, which causes an additional load on the distribution grid. In order to evaluate
this impact and prevent possible overloads, realistic models are required. Methods for implementing
such models and their application in the context of grid load are research topics that are only minorly
addressed in the literature. This paper aims to demonstrate the entire process chain from the selection
of a modelling method to the implementation and application of the model within a case study.
Applying a stochastic approach, charging points are modelled via probabilities to determine the
start of charging, plug-in duration, and charged energy. Subsequently, load profiles are calculated,
integrated into an energy system model and applied in order to analyze the effects of a high density of
public charging points on the urban distribution grid. The case study highlights a possible application
of the implemented probabilistic load profile model, but also reveals its limitations. The primary
results of this paper are the identification and evaluation of relevant criteria for modelling the load
profiles of public charging points as well as the demonstration of the model and its comparison to
real charging processes. By publishing the determined probabilities and the model for calculating the
charging load profiles, a comprehensive tool is provided.

Keywords: public charging; electric vehicle charging; electric avenue; grid load; energy system
modeling; charging point modeling; stochastic modeling

1. Introduction

Electric mobility plays a major role in the German government’s 2030 climate protec-
tion program. Emissions from transport must be reduced by up to 42% by 2030 compared
with 1990 (Climate Protection Program 2030) [1]. This objective is to be achieved particularly
through the establishment of electric mobility and an associated expansion of necessary
charging infrastructure. There are currently around 600,000 battery electric vehicles (BEVs)
registered in Germany (over 1,135,000 electric vehicles (EVs) including plug-in-hybrids).
This represents tremendous growth over the past several years (about 2000 BEVs in 2011),
with numbers nearly doubling in the year of 2021 (about 280,000 new BEVs registrations,
545,000 including plug-in-hybrids) [2,3]. The described development in EV registrations
also requires corresponding development of the charging infrastructure in Germany. This
expansion is associated with challenges. Particularly in high-density conurbations, the
conditions for the installation of charging points (CPs) at private sites or at the workplace
are not available for everyone due to space constraints. One solution to this problem is to
install charging infrastructure in available public places, which would allow entire streets
to be completely electrified and thus could serve as an enabler for electric mobility. As of
December 2021, about 41,993 normal CPs (≤ 22 kW charging power) and 7214 fast CPs
(>22 kW charging power) are publicly accessible in Germany [4], with an expected growth
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between at least 440,000 and 843,000 public CPs by 2030 [5]. However, this development is
confronted with various difficulties. Public charging infrastructure can currently only be
operated economically to a limited extent. High utilization of CPs is desirable to enable
economic viability [6]. A challenging problem which arises in this domain is the integration
of these CPs and consequently processes in the distribution grids’ operation. In order to
ensure the reliability and stability of the future energy system, continuous investigation
of the grid load caused by charging operations at public CPs is essential. Modeling and
simulation of public charging infrastructure can function as important predictors to address
these challenges.

The content of the paper is structured as follows: In Section 1, the research context is
revealed, an insight into the literature is provided and the contribution of this publication
to the state of the art is described. Section 2 provides a comprehensive description of the
applied methods to structure the model. This includes individual subchapters describing
preparation of the input data set, generation of probability distributions and subsequently
calculating load profiles. Section 3 evaluates the resulting load profiles compared to the
input data set and exemplified by data for Munich. Further on, it demonstrates application
of the implemented model as part of a higher-level energy system model. Section 4 provides
a brief excursion into an evaluation of the COVID-19 pandemic’s influence on charging
characteristics. Section 5 includes a conclusion and a critical review in which limitations of
the chosen modelling approach are elaborated. Section 6 concludes by referring to the data
and model provided by the publication.

1.1. Research Context

In order to determine future load caused by charging infrastructure on the distribution
grid, the entire building stock of Munich, including various components in the distribution
grid, was modeled. To provide a reference, the status quo of the grid load was simulated
for characteristic grid topologies, whereby the number of charging processes by BEVs was
negligible [7]. With the objective of realistically presenting effects on the future grid load,
various scenarios were modelled. This includes, for example, the ramp-up of heat pumps
as well as EVs [8]. Subsequently, the potential grid loads in different scenarios and areas in
the city of Munich were investigated for the projection year 2030, assuming a completely
uncontrolled charging of all EVs in distribution grids [9]. The distribution grid and load
modeling methodology used underwent extensive evaluation. Modeling, initialization and
simulation were performed with the power grid and energy system model for distribution
grids “GridSim” [10]. Depending on their main application, EVs are integrated into the
energy system in three different ways:

• Privately used EVs are modeled in the “integrated model for load and mobility profiles
of private households”. In this agent-based model, vehicles are explicitly connected to
the activities and mobility behavior of unique agents who primarily charge at their
own private CPs [11].

• Commercially used EVs are not connected to the activities of individual agents, but
to individual commercial units, enabling entire fleets of vehicles to be assigned to
them [12]. The basis for the mobility profiles of commercially used BEVs is provided
by the study “Motor Vehicle Traffic in Germany” from 2010 [13]. This was followed by
linking the weekly and annual driving profiles of these EVs [14], enabling modeling
of charging load profiles.

• Public charging and the methods employed for the modelling are further described in
this publication.

Within these research activities, investigations focus, in particular, on high-density,
urban areas and the impact of charging processes on distribution grids. A particular focal
point is the analysis of a high concentration of public CPs in the distribution grid. Thus,
equipping an entire street with charging points, a so-called “electric avenue”, is a relevant
research environment. A real “electric avenue” consisting of public CPs does not yet exist,
but several projects consisting of private CPs are already being piloted [15,16]. In order to
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evaluate the distribution grids perspective, the following research questions are addressed
in the context of this publication:

• What concepts are available to model the resulting grid load of public charging points
in distribution grids, and how do they differ?

• Which approach is suitable for modelling the resulting load profiles in a generally
applicable way, and what are the limitations?

• What is the additional load of an “electric avenue” consisting of public charging points?

1.2. Literature Review—Modeling of Public Charging Load Profiles

Considering the planned expansion of the public charging infrastructure and the
increasing number of fast charging stations, the modelling of public charging is becoming
increasingly important. In particular, the resulting grid load in the case of local concentra-
tion effects and the interaction of charging at different locations (private, workplace and
public) are topics explicitly exhibited in the literature as a demand for research [17].

As a first step, approaches for modeling charging load profiles and their differences
are evaluated. When modeling public charging infrastructure, modeling of high-power
charging systems is often the focus of investigation. The corresponding literature on fast
charging stations is only marginally considered, as their characteristics differ substantially,
e.g., the connection in a higher grid level. The primary approaches used to model charging
can be divided into agent-based and stochastic models, which are discussed further below.

1.2.1. Agent-Based Modeling

Agent-based models consider each agent or vehicle individually and create individual
activity profiles. This approach is applied at the FfE for modeling private mobility and
charging processes [11]. An agent is usually represented by a household resident, which
can be assigned to a specific agent group according to its characteristics. On the basis of
individual attributes, synthetic activity profiles are generated which simulate daily routines
and results in corresponding mobility profiles.

An example of agent-based modeling is presented in [18], in which the model includes
a fixed number of households that are composed of agents as well as EVs. Socio-economic
parameters determine the distances covered by respective EVs, and depending on the
technical charging equipment of the destination (private, public and workplace) as well
as consumption, it is determined whether a charging process takes place. In [19], an
agent-based model is used to investigate how policy measures affect charging behavior.
In contrast to simulation models that focus on technical and financial factors, additional
theoretical approaches from environmental psychology are used in this model. Regarding
their mobility pattern the modelled agents use one-day transport diaries, and depending
on the destination of the individual trips, different charging locations are selected.

An advantage of agent-based mobility models is the possibility of combined analysis
of charging in different areas, since agents usually define a destination depending on the
reason for the trip. Also, the behavior of the agents can be defined by individual criteria,
allowing a wide variety of focal points to be analyzed. On the other hand, necessary
knowledge about a large number of factors affecting the behavior of the agents as well as
the technical characteristics of individual vehicles is a disadvantage due to the resulting
complexity of the simulation. In the case of an analysis of individual distribution grids,
e.g., in a city like Munich, a large number of agents would have to be simulated due to
commuter flows, which would further increase complexity.

1.2.2. Stochastic Load Profile Modeling

Stochastic methods do not require knowledge about the individual behavior of ve-
hicle drivers. Based on empirical data from charging infrastructure, algorithms generate
representative charging load profiles. Stochastic modeling approaches in the context of EV
charging are particularly often applied to charging at private CPs, for example in [20,21].
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Stochastic methods are difficult to apply for modeling the grid load caused by public
charging, due to an often very-limited data basis.

In [22], the probability distribution functions for arrival time and required energy of
plug-in hybrid vehicles are extracted based on 40,000 vehicle trips from a national travel be-
havior survey in the USA. Probabilistic and deterministic charging profiles are constructed
and compared. No distinction is made between charging locations; instead, the end of
a trip is utilized as an indicator to calculate the start time of a charging. A comparable
method is used within [23], in which arrival times were statistically evaluated from over
130,000 individual trips in the Netherlands. Daily travel distances of vehicles were used
to identify charging demand, and aggregated charging profiles are generated taking into
account various charging strategies. Paper [24] focuses explicitly on public charging, in
which data on the charging infrastructure in Graz are evaluated and probabilities for start
of charging and charged energy quantities at public charging stations are generated. Proba-
bilities differentiate depending on the location of the considered charging infrastructure.
Charging profiles at charging stations are generated from a defined amount of EV charging
daily. Time of charging start and charged energy for each EV are determined by generated
random numbers and calculated probabilities. Charging time is subsequently calculated
from the energy and the charging power of the station.

Compared to an agent-based approach, stochastic mobility modelling often offers
the advantage of lower modelling effort, as no modelling of individual agents is required.
Input data can also be filtered according to various criteria in order to generate load profiles
for specific use cases. At the same time, this reveals the biggest problem with stochastic
approaches: a sufficiently large database is required, and filtering criteria have to be selected
carefully. Otherwise, the influence of individual data may compromise representativeness.

1.3. Improvements of This Paper in the Context of the Literature

Although there are many studies regarding public charging, the research in modelling
load profiles remains limited. Most studies have relied on data collected by BEVs and not by
CPs. This paper applies parts of the methods of previous works [23,24] and thus verifies the
practicability of these methods. An important contribution and thus progress compared to
the current state of the art is that this paper analyzes the process for calculating probabilities
in great detail. Resulting difficulties and their consequences are identified. The literature
is advanced by demonstrating the process holistically from a basic data set, to processing
it into probabilities, to the calculation of load curves of public charging infrastructure,
to the use of load curves as part of a simulation of an energy system. This paper also
exemplifies the application of load profiles by analyzing the effects of a high number of
public CPs in one string of a distribution grid and provides indicators for dimensioning an
“electric avenue”. Thus, the paper encompasses the entire process chain from data analysis
to application of the model. Further, by publishing the calculated probabilities as well as
the model for the calculation of charging load profiles, a comprehensive tool is provided
which closes a gap in the publicly available model landscape. This paper and the published
data will further assist in research regarding the topics of public charging infrastructure
and the charging operations performed at it.

2. Methodology

Following the analysis of modelling methods in Sections 1.2 and 1.3, the basic struc-
ture is implemented using the stochastic approach. This selection is primarily supported
by an available data set of public charging data from all over Germany, which serves as
input data [25]. Due to framework conditions and in order to continuously and accurately
represent the reality of public charging, requirements emerge for the conceptual design of
the model. Modularity to use the model in stand-alone mode as well as a submodule of the
GridSim model [10] is a key factor. With increasing market coverage of EVs and further
charging infrastructure expansion, expected new input data in coming years should be
incorporated with little effort. These requirements lead to the structural modelling setup
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shown in Figure 1. The model is divided into two connected modules which calculate
the load profiles of public CPs. The core of this model is the “module for modeling the
probabilities”, from which output corresponding load profiles are generated in the superor-
dinate “module for modelling electric load profiles”. The structure of the two modules is
discussed in the following sections.
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2.1. Module for Modeling the Probabilities

Within the “module for modeling the probabilities”, empirical data is used to char-
acterize charging behavior at different CPs via probabilities. Each charging process is
characterized by the timestamp for the start of charging, a corresponding plug-in duration
and charged energy. This process only needs to be performed once if the input data base
remains the same and can be easily expanded if the data base is updated. The following
subsections describe the data basis, applied methods to calculate probabilities for public
charging infrastructure as well as its restrictions.

2.1.1. Data Basis

The data basis for the calculation of probabilities is an anonymized data set of the
Central Data Monitoring (ZDM) of NOW GmbH. ZDM collected operating and charging
data from EVs and charging stations with data loggers. Over a period from 2013 to 2020,
more than 400,000 charging processes were recorded at 630 different charging stations in
Germany [26]. Recorded data includes information about the used charging station, as well
as the timestamps at which the BEVs and CPs’ connection starts and stops. The end of
charging is defined by the timestamp at which a charging plug is disconnected from the CP.
In addition, the charged energy as well as the location (city level) are available [25].

In order to ensure a high degree of representativeness, the raw data set is firstly
processed and filtered according to various criteria. Initially, measurement errors, duplicate
readings and implausible charging processes are excluded from the anonymized raw data
set. This process removes charging operations that last less than 2.5 min or more than 24 h.
Also, charging operations with zero charged energy are excluded. Since the focus of the
model is public charging infrastructure, all charging processes measured at CPs located
at private sites or at the workplace are removed. Recorded data are further divided into
alternating and direct-current CPs. Since the availability of data for fast chargers (nominal
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power > 50 kW) is negligible, these CPs and the charging processes conducted at them
are also excluded. Applying this procedure, 107,404 charging operations from 527 CPs
remain after filtering according to these criteria. Table 1 lists the main characteristics of the
processed and further considered data set.

Table 1. Overview of the processed data set.

CPs Charging Processes Recording Period Considered Sites Plug-In Duration Charged Energy Charging Power

527 107,404
03/2012

until
06/2020

Semi-public,
Public

2.5 min
to

24 h

0.1 Wh
to

102 kWh

3.7 kW,
11 kW,
22 kW

The processed data corresponds well to the expected pattern for public charging
described in related studies. Three quarters of plug-in durations are within the range of
a few hours (<4.90 h), which corresponds to the typical interim charging pattern at public
CPs [6]. Statistical analysis of charged energy clarifies this pattern, according to which
three-quarters of the charging operations charge less than 12.40 kWh. Assuming standard
charging powers of 11 or 22 kW, the majority of plug-in durations are less than five hours
(cf. Figure 2).
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2.1.2. Calculation of Start of Charging Probabilities

Starting from the processed data set, the calculation of probabilities follows, which
is necessary for modelling charging curves considering the stochastic approach. For each
charging process the parameters start, plug-in duration and charged energy are extracted
from the data set. These attributes are analyzed in a preliminary analysis with regard to
different characteristics. Analysis on start-of-charging probabilities includes an examination
of the influence of the day of the week, the recording period, the region as well as the
season. Within the model no distinction is made between public (91.49% of CPs) and semi-
public (8.51% of CPs) accessibility, since restrictions regarding accessibility are impacted
by regional and individual circumstances. The probabilities for the start of a charging
process are thus calculated from all CPs, taking into account various criteria. Subsequently,
an overall average probability is calculated using weighting coefficients corresponding to
different recording periods of the individual CPs.

In the first evaluation, the probability for the start of charging is determined as
a function of the day of the week. Weekdays (Monday to Thursday) are combined in
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one probability and are referenced as weekdays below. This assumption is based on [27],
which shows that the mobility profiles, according to the analysis of a German time-use
survey, have very similar characteristics on these days. The characteristic days—weekdays,
Friday, Saturday and Sunday—are hereafter referred to as type-days. No differentiations
are applied with regard to public holidays and resulting changes to charging behavior.
In theory, charging operations on these days could be combined with Sunday profiles,
since very similar conditions apply regarding public life on public holidays. Since the
CPs of the data set are distributed over the whole of Germany with various regional
holidays, this differentiation is neglected due to a disproportionately high required effort.
An evaluation requested in the review containing the recalculation of probabilities with the
inclusion of nationwide public holidays as Sundays is provided in Appendix A. Table 2
shows significant differences in average characteristics for different days of the week. On
weekdays and Fridays, the utilization of CPs is considerably higher than at weekends,
with the opposite case occurring in terms of charged energy. This is also reflected in the
probabilities of a start of charging calculated for these days (cf. Figure 3).

Table 2. Characteristics of the processed data classified by type-days.

Day of the Week Charging Processes Average Charging
Processes per Day

Average Plug-In
Duration in h

Average Charged
Energy in kWh

All 107,404 0.65 4.58 9.93

Sunday 9240 0.39 5.05 12.43
Weekday 68,684 0.72 4.70 9.54

Friday 16,508 0.70 4.28 9.86
Saturday 12,972 0.55 3.99 10.34
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Figure 3 shows the interpolated discrete start of charging probability distributions
classified by type-day at a temporal resolution of 15 min. On weekdays and Fridays,
charging processes start slightly earlier in relation to the weekend, which is also reflected in
the probabilities. This can be attributed to commuting traffic, which is predictably higher
on these days. This also accounts for increased utilization and thus probability of start of
charging in the evening on weekdays. This clear distinction highlights the significance of
differentiation according to the type-day criterion.
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In the second evaluation, the start of charging probability is determined as a function
of the recording period. Figure 4 clarifies a clear difference when considering specific time
periods in the calculation of the probability distributions. In Figure 4a, all of the charging
processes from the start of the recording period to the respective year were taken into
account for calculation. It is evident that in relation to the recording period, only a small
number of charging processes occurred in the first years. The probability for charging
processes increases due to higher utilization of CPs recorded in later years. In Figure 4b,
only charging processes within the explicit time intervals were included in calculation.
The closer the selected time interval is to the present, the higher probabilities increase.
Also, there is a noticeable saturation when comparing the latest time intervals “2017 to
2019” (39,952 charging processes at 201 recorded CPs) and “2019 to end” (58,862 charging
processes at 416 recorded CPs). Comparison of the curves “All” from Figure 4a and “2019 to
end” from Figure 4b clarifies that inclusion of all loading processes over the entire recording
period certainly leads to a reduction in the probability. However, due to comparatively
small deviations as well as the significant reductions in the resulting charging events
(only 58,862 out of 107,404 in the “2019 to end” period), it was decided to include all
measured values.
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In the third evaluation, the start of charging probability is determined as a function of
the region. CPs and associated charging processes are categorized and aggregated with
reference to their installation region. Population statistics of respective regions serve as
an indicator for categorization. Categories are defined and assigned according to classifi-
cation of city and municipality types in Germany by the Federal Institute for Research on
Building, Urban Affairs and Spatial Development. CPs are subdivided into the categories
large, medium, small cities and rural municipalities:

1. Large city: Municipality of an association of municipalities or unitary municipality
with at least 100,000 inhabitants.

2. Medium city: Municipality of an association of municipalities or unitary municipality
with 20,000 to less than 100,000 inhabitants.

3. Small city: Municipality of an association of municipalities or unitary municipality
with 5000 to less than 20,000 inhabitants.

4. Municipality: Rural municipality with up to less than 5000 inhabitants [28].
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An evaluation in Figure 5 illustrates the first differences with regard to regional
characteristics over the monitoring period. Figure 5a presents the progression of the number
of CPs measured each week, while Figure 5b part shows the weekly average charging
operations performed at them. Progression over time shows that there is a considerable
increase in the number of CPs measured weekly until the end of the recording period
(approx. at beginning of 2020).
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Analysis of the average weekly charging processes of measured CPs, in Figure 5b,
highlights an increase in charging processes across all regional categories through linear
trend lines (least squares of error). A precise explanation of this development is not possible
with the available information. Analyzed CPs and processes in corresponding categories, as
well as average values for plug-in duration and charged energy, are listed in Table 3, which
shows an uneven distribution of CPs and processes for different categories. The primary
share of CPs is located in large- and medium-sized cities. In theory, this represents the
situation of the expansion of public charging infrastructure in Germany very well. Public
CPs are predominantly set up in larger cities, as they can only be operated economically if
they are heavily utilized [29].

Table 3. Characteristics of the processed data classified by region.

City
Category

Cities in
Category CPs Charging

Processes
Average Charging
Processes per Day

Average Plug-In
Duration in h

Average Charged
Energy in kWh

All 190 527 107,404 0.65 4.58 9.93

Large 34 264 47,071 0.71 6.41 7.44
Medium 77 182 49,383 0.68 3.12 11.99

Small 59 85 9896 0.46 3.41 11.50
Municipality 20 21 1054 0.25 2.16 10.25

A further notable observation is a significantly higher average plug-in duration in
large cities relative to smaller regions. Analysis shows, that this can be attributed to EVs
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being plugged in at public CPs overnight more often, which is considered to be due to
the limited private parking capacity in dense residential areas. In contrast, mean charged
energy in large cities is significantly lower in relation to smaller regions, which can be
attributed to short utilization of CPs in large cities during the day. Figure 6 shows the
interpolated discrete start of charging probability distributions classified by region at
a temporal resolution of 15 min.
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Significantly higher utilization of urban CPs from Table 3 is also evident in the region-
ally classified probabilities of charging starts (cf. Figure 6). Despite significant differences
and clear tendencies, it cannot be excluded that the presented curves are massively dis-
torted by the input data set, since only a small share of total public charging infrastructure
in Germany is analyzed. A comparison of the amount of public CPs in the analyzed data
set with the amount in Germany described in [4] results in a minor share of 1.25% of all
public German CPs. Also, the probabilities of the different categories are distorted due to
the small number of CPs and charging processes in small municipalities. The theoretically
necessary combination with subdivision into type-days, which is considered relevant,
would further distort the data. Due to these uncertainties, this categorization is not taken
into consideration for modelling the general probabilities, despite more severe differences
in amplitude than in the subdivision into type-days.

In the fourth evaluation, the probability of start of charging is determined as a function
of the season. Evaluated charging processes, as well as the average values for plug-
in duration and the resulting charged energy, are listed in Table 4. The values do not
indicate any significant seasonal differences in average plug-in duration and charged
energy. Figure 7 shows the associated discrete start of charging probability function
classified by season at a temporal resolution of 15 min.

A slightly higher probability in autumn is notable. Therefore, the absolute number of
recorded seasons per CPs is evaluated and aggregated to exclude any imbalance due to
the recording (cf. Table 4). No significant differences in the number of recorded seasons
are apparent. An explanation is provided by the development of the recording period
(cf. Figure 5), according to which the peak of measured CPs, with a tendency towards
increasing charging frequency over the years, occurred in autumn 2019. Since the effects
of this disaggregation only affect the amplitude and are minor in relation to the overall



Energies 2022, 15, 4748 11 of 28

probability of starting a charging process, it is neglected, and only classification by type-
days is considered further and probabilities in different temporal resolutions are calculated.

Table 4. Characteristics of the processed data classified by season.

Season Recorded Seasons Charging Processes Average Plug-In Duration in h Average Charged Energy in kWh

All 2209 107,404 4.58 9.93

Spring 513 23,751 4.74 9.26
Summer 493 25,520 4.69 9.54
Autumn 568 35,146 4.39 10.51
Winter 635 22,987 4.58 10.17
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2.1.3. Calculation of Plug-In Duration Probabilities

The probability for the plug-in durations is also calculated as discrete distribution.
Equivalent to the procedure for calculating start of charging probabilities, a dependence of
plug-in duration on the type-day and as a function of the timestamp for start of charging
is examined (cf. Figure 8). No significant deviations to the mean value over all recorded
plug-in durations are evident. However, significant fluctuations appear, especially at night,
which can be attributed to the limited amount of charging processes starting at these times
(cf. Figures 4–6). This limited sample and the associated fluctuation is a reason to not
classify plug-in duration by type-days. However, the figure clarifies the dependency of
plug-in duration on the time of day, which is evaluated further.

In order to decrease fluctuation due to the influence of a limited number of sample
points during the night, it is reasonable to define a suitable time interval for the calculation
of the plug-in duration probabilities and aggregate all available values within these periods.
It is important to avoid choosing a disproportionately large time interval in order to
adequately reproduce the time dependency shown in Figure 8. For this purpose, different
temporal resolutions are evaluated (5 min, 15 min, 30 min, and 1 to 4 h), and the minimum
number of plug-in durations per time step are calculated. The conducted analyses and
comparison show that the time interval of two hours represents a reasonably good trade-
off between the number of sample points (minimum 340 in the time interval between
2:00 a.m. to 3:55 a.m.) and an appropriate representation of temporal dependence. Figure 9
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illustrates the resulting plug-in duration probabilities for different time periods in which
charging processes can start. Again, it is evident that the impact of the small number of
sample points at night cannot be completely suppressed even by selecting two-hour time
periods. Two trends are identified within time periods during the day that support this
subdivision. First, the probability of a short plug-in duration increases from morning to
midday and decreases again into the evening hours, which can presumably be attributed
to short intermediate charging. Second, a trend to higher probabilities for a long plug-in
duration (about 19 h to 15 h at 12 a.m. to 8 p.m.) is apparent from midday onwards,
with the duration decreasing at later time periods (about 12 h to 8 h at 8 p.m. to 12 p.m.).
This is presumably due to EVs being charged overnight on public CPs. Therefore, the
probability of a higher plug-in duration in the afternoon is recognizably lower than the
plug-in duration overnight in the evening. For the calculation of the plug-in duration
within the implemented model, the calculated, time-dependent probabilities shown in
Figure 9 are further considered.
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2.1.4. Calculation of Charged Energy

A decisive factor influencing charging duration and thus also plug-in duration is the
nominal power of the CPs. During the raw-data processing, all charging processes with
charging power greater than 22 kW are discarded, which only permits the subdivision
into 3.7 kW, 11 kW and 22 kW. Since the structure of the input data set does not allow for
a unique assignment of charging power across all entries, plug-in duration and charged
energy cannot be filtered by this criterion. Also, this characterization would have to take
into account a vehicle-side power constraint, since many EVs only support single-phase
charging, which prevents them from accessing the theoretically available nominal power of
the CPs [5]. Since the plug-in duration together with the maximum transferable charging
power limit the possible charged energy per charging process, an alternative approach is
selected when calculating these probabilities.

The charged energy probability is not calculated as a function of the time of charging
start, but as a function of the plug-in duration. Instead of determining the probabilities of
a different charged energy regarding each plug-in duration, this approach approximates the
probability of the charged energy as a continuous probability density function. Conducted
analyses show that logarithmic normal distribution most accurately describes charged
energy distribution. Therefore, for each plug-in duration and temporal resolution, the
logarithmic mean and logarithmic standard deviation of charged energy quantities are
determined. Individual application of the logarithmic normal distribution particularly
limits overestimation of charged energy quantities at high plug-in durations. The choice of
a continuous distribution also offers the advantage of interpolating data gaps within the
discrete distribution. Figure 10 shows an example of how the charged energy distribution is
modeled by the logarithmic normal distribution compared to its discrete distribution. The
graph shows charged energy probabilities for a plug-in duration of two hours calculated at
a time resolution of five minutes.
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The deviations between values from the discrete probability distributions and the
calculated logarithmic normal distributions are evident and vary considerably depending
on the plug-in duration and temporal resolution. In order to evaluate the resulting deviation
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by choosing the logarithmic normal distribution over a discrete distribution, these are
calculated and compared for all evaluated, temporal resolutions (cf. Figure 11).
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Figure 11. Absolute deviation of the percent probability from discrete and logarithmic normal
distribution for different temporal resolutions.

The differences of the values selected from the discrete probability distribution com-
pared with the continuous value of the charged energy is determined for each possible
plug-in duration. Figure 11 clarifies this deviation of distributions statistically. Each boxplot
includes deviations of all discrete data points from the respective continuous values for
all plug-in durations. As expected, especially small temporal resolutions reveal significant
differences concerning extreme values. Overall deviation decreases over larger temporal
resolutions, which can be attributed to sample size becoming more comprehensive in each
step. Starting with an averaging of data in a temporal resolution of five minutes, 90% of
absolute deviation is located in a positive and negative single-digit interval.

2.1.5. Scaling of Start of Charging Probabilities

The chosen method for modeling the probability of charging events represents a very
comprehensive approach. In its application, the model still confronts certain restrictions.
First, the dispersion of the start of charging probability for different regions shown in
Section 2.1.2 represents a limitation. Since the module for modeling the probabilities does
not distinguish between different regions due to the input data, these spreads are not
reproduced by the model. Second, the calculated probabilities are based on historical data
and therefore can only reflect historical charging behavior. However, the number of EVs
will increase significantly in the upcoming years, which will also increase the utilization of
public CPs. Continuous updates of input data would be required to maintain the modeled
charging behavior up to date, which limits the current model to the simulation of the status
quo charging behavior.

To exceed these limitations, a simple method is applied as an example to adjust the
start of charge probability in order to achieve a prescribed value for the average charges per
day. Assuming that plug-in durations and charged energy remain constant, this enables us
to model future scenarios or regions with different public charging characteristics while
still taking into account the original framework conditions. In order to achieve this, a factor
is varied from 0 to 5 and multiplied with the start of charging probabilities. For each factor
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3000 annual charging profiles are calculated in order to avoid a random scattering of values.
Subsequently, the average number of charging processes per day and CPs are calculated.
In this example the range of the factor is chosen to achieve a number of about two charges
per day. Figure 12 shows the resulting datapoints of this analysis.

Energies 2022, 15, x FOR PEER REVIEW 16 of 30 
 

 

possible plug-in duration. Figure 11 clarifies this deviation of distributions statistically. 
Each boxplot includes deviations of all discrete data points from the respective continuous 
values for all plug-in durations. As expected, especially small temporal resolutions reveal 
significant differences concerning extreme values. Overall deviation decreases over larger 
temporal resolutions, which can be attributed to sample size becoming more 
comprehensive in each step. Starting with an averaging of data in a temporal resolution 
of five minutes, 90% of absolute deviation is located in a positive and negative single-digit 
interval. 

2.1.5. Scaling of Start of Charging Probabilities 
The chosen method for modeling the probability of charging events represents a very 

comprehensive approach. In its application, the model still confronts certain restrictions. 
First, the dispersion of the start of charging probability for different regions shown in 
Section 2.1.2 represents a limitation. Since the module for modeling the probabilities does 
not distinguish between different regions due to the input data, these spreads are not 
reproduced by the model. Second, the calculated probabilities are based on historical data 
and therefore can only reflect historical charging behavior. However, the number of EVs 
will increase significantly in the upcoming years, which will also increase the utilization 
of public CPs. Continuous updates of input data would be required to maintain the 
modeled charging behavior up to date, which limits the current model to the simulation 
of the status quo charging behavior. 

To exceed these limitations, a simple method is applied as an example to adjust the 
start of charge probability in order to achieve a prescribed value for the average charges 
per day. Assuming that plug-in durations and charged energy remain constant, this 
enables us to model future scenarios or regions with different public charging 
characteristics while still taking into account the original framework conditions. In order 
to achieve this, a factor is varied from 0 to 5 and multiplied with the start of charging 
probabilities. For each factor 3000 annual charging profiles are calculated in order to avoid 
a random scattering of values. Subsequently, the average number of charging processes 
per day and CPs are calculated. In this example the range of the factor is chosen to achieve 
a number of about two charges per day. Figure 12 shows the resulting datapoints of this 
analysis. 

 
Figure 12. Determination of the factor for manipulating the start of charging probability. 

It turns out that the adjustment does not follow a linear behavior. This is explained 
by the circumstance that only time steps with no ongoing charging processes are 

Figure 12. Determination of the factor for manipulating the start of charging probability.

It turns out that the adjustment does not follow a linear behavior. This is explained by
the circumstance that only time steps with no ongoing charging processes are examined to
determine whether a charging process is about to begin. With increasing plug-in probability
at a higher chosen factor, the CPs are charging more frequently and the assessment of
whether a charging process is starting occurs less frequently. In order to model this behavior,
a polynomial of the third degree is fitted into the resulting sample points. Equation (1)
contains the resulting polynomial function, where x represents the average number of
charges per day and CPs, and F represents the calculated factor. The resulting curve
described by the polynomial is also shown in Figure 12.

F = 0.1793 × x3 + 0.1512 × x2 + 1.6330 × x − 0.0067 (1)

This polynomial fitting function allows the model to calculate a target value for the
number of charging processes per day and CPs. Within the model, the factor F is calculated
by using Equation (1), and the resulting factor is multiplied with the start of charging
probability. Provided that a sufficiently large number of CPs is simulated, the target value
is reached with neglectable deviation. It applies to consider that the manipulation via this
exact polynomial is only be conducted up to two charging processes per day, as this number
can only be scaled up to a limited extent. Since the function is based on the probabilities
evaluated from the data set described in Section 2.1, the calculated coefficients are only
valid for these. With different input data, the polynomial would have to be recalculated.

2.2. Module for Modeling the Electric Loads

Within the comprising module, the probabilities are used to calculate load curves
coupled to user inputs. This can be used in stand-alone applications for corresponding
end-use applications, such as the calculation of CP utilization, as well as embedded within
the GridSim model. In this model the generated load profiles are analyzed as part of
a comprehensive energy system, e.g., to evaluate the resulting grid load in different sce-
narios. The workflow and restrictions of the module according to the setup in Figure 1 are
discussed further.
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The simulation to generate load profiles is initialized by different user inputs, which
include metadata such as time period and time step size, the number of CPs as well as their
nominal power. Load profiles are calculated on the basis of the characteristic probabilities
and possible adjustments. To create these profiles, the time of start of charging, plug-in
duration and charging duration are determined using random numbers and the calculated
probabilities. This basic process is described in the following flowchart (cf. Figure 13).
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After initialization, the module follows the sequence and calculates the load profile for
each CP and time step. The calculation distinguishes between plug-in time and charging
time, since vehicles can be fully charged before plug-in time has elapsed. Maintenance
charges within the plugged-in period after full charge is reached are neglected. After
successful initialization, values for uniformly distributed random numbers are calculated
depending on the defined time step width as well as on the idle status of the CPs (cf.
box “Random calculation: Start of a charging process” in Figure 13). These values are
compared with the calculated probability for this time step, according to the type-day
criteria specified in Section 2.1.2. For all idle CPs whose resulting random value is less
than the probability, a charging process starts at this time step. If this initiates at least one
charging process, values for two further random numbers are calculated regarding the
associated CPs. These also uniformly distributed random values are applied to define
plug-in duration and charged energy.

The process of determining the plug-in duration is almost analogous to the process of
determining time of the start of charging. Random numbers are generated and compared
with a stacked probability consisting of proportions of the overall probability for the plug-
in duration in the respective time window. Figure 14 exemplifies this random selection
process for a plug-in duration in the time period from 8:00 a.m. to 9:55 a.m. calculated in
hourly resolution. In the example, the random numbers calculate with the value of 0.25,
which then translates to a charging time of two hours from the aggregated probability. On
statistical average, this method ensures the representation of plug-in duration according to
proportions of the input data.

The selection of a plug-in duration is followed by the determination of the charged
energy for each charging process, which is obtained via a corresponding random number
as a function of the determined plug-in duration. A logarithmic normal distribution is
formed for this purpose. The parameters used for calculation are the logarithmic mean
and the logarithmic standard deviation. The charged energy corresponds to the value at
which the random number exactly matches the value of the logarithmic normal distributed
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probability (cf. example in Figure 15). Based on the nominal power of the CPs and temporal
resolution, the charged energy is afterwards converted into a unique charging duration.
If the charging time exceeds the plug-in or simulation period, the charging process is cut
off at the end of the period. In the shown example, the random numbers calculate with
the value of about 0.72, which then results in a charged energy of about 14 kWh. The
figure further highlights the significant differences in the probability of different amounts
of charged energy as a function of plug-in duration.
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3. Results and Discussion

The following section evaluates results generated by the model. For this reason, load
profiles of public CPs generated with the model are compared with the characteristics of the
input data to validate the models’ representativeness. Furthermore, the model is applied
within a case study, whereby its results are evaluated and assessed.

3.1. Evaluation of Resulting Charging Profiles

To evaluate the model and validate the results, several assessments are performed.
In order to calculate a negligible variance regarding characteristics like the number of
charging processes per day, charging load profiles are calculated for different numbers
of CPs. Afterwards the variation of the characteristics depending on the number of CPs
is examined. A calculated number of 500 CPs shows a negligible variance regarding the
characteristic values. Therefore, annual charging profile for this number of CPs with
a power of 11 kW is calculated for evaluation. These profiles are first compared with the
input data and second with the characteristic values for Munich [30]. Figure 16 shows
the relative frequency of the consumed energy per charge for the conducted validation
(simulation) and for the input data (reference). Distributions show that both curves fit
very well, with the biggest deviations occurring in the range between 1 and 9 kWh. These
deviations are explained by the fact that no distinction is made between different charging
powers when determining probabilities for plug-in duration and charged energy. Thus, for
a given charging duration, an amount of charged energy that does not match the selected
charging power could also be determined. In such a case, the CPs cannot deliver the total
energy in the specified time. If necessary, this amount of energy is limited to the maximum
possible value.
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As in the previous evaluation, the relative frequencies are also calculated for the plug-
in and plug-out time. These are illustrated over the course of the day in hourly resolution
in Figure 17. Once again, results of the simulation are compared with an analysis of the
input data (reference). However, unlike Figure 16, this evaluation does not distinguish
between different type-days. The results of the simulation and reference also fit very well.
As the graph shows, the relative frequency, a manipulation of the start of charging behavior
by the factor F (cf. Section 2.1.5), does not impact the comparability.
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In Table 5, key parameters from the simulation are evaluated. Additionally, to cal-
culated statistic values regarding the input data, values for Munich are included [30]. As
described in Section 2.1.5, the average number of charges per day can be specified by the
user in order to scale probabilities for the start of charging. In this example, the value is
set to 0.72 charges per day to fit the value of Munich. In comparison, the value from the
input data set of 0.20 only represents about a quarter of the daily public charges in Munich.
Without an adjustment factor, the average calculated number of charges per day would
be 0.57. The difference between these numbers clearly shows a large range of possible
deviations between the start of charging frequency, which justifies the adjustment of its
probability for this purpose. This table also contains the average plug-in duration with the
simulation results exactly matching the input data. In contrast, the value for the average
plug-in duration in Munich is almost twice as great. The deviation could hypothetically be
explained by the fact that users leave their vehicles plugged in for much longer in urban
areas like Munich because of overnight charging at public CPs. However, this behavior is
not reflected by the model, since it does not distinguish between rural and urban areas (cf.
evaluation in Section 2.1.2). A similar pattern is noticed for the average energy consumption
per charge. Model and input data show similar characteristics. At approximately 1.5 times
the energy of the input data set, the average transmitted energy per charge in Munich is
again significantly higher. Possible explanations for this are the model’s neglection of CPs
with higher charging power or the possible deviation between input data and the overall
increase of battery capacities over the past years, which also results in a higher average
charged energy. Scaling plug-in duration and charged energy would be a possible solution
to resolve the differences. However, the optimal solution would be a region-specific data
set to calculate the characteristics.

Table 5. Modeled results compared with input data and data for Munich.

Characteristic Values Simulation Input [25] Reference [30]

Average number of charges for all CPs and day 0.72 0.20 0.72
Average plug-in duration per charge in h 4.50 4.50 8.83

Average energy consumption per charge in kWh 9.8 9.49 14.00

As the literature review in Section 1.2 already illustrates, various methods of modelling
load profiles exist, but only a fraction of them address the modelling of public charging
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profiles. Comparison with literature sources highlights the strengths and weaknesses of the
implemented approach. In relation to [24], which represents a valid benchmark due to its
comparable methods, the approach applied in the paper represents a significant advance, as
it achieves a higher resolution and a greater level of detail with regard to various parameters.
Specifically, calculations of plug-in duration and charged energy can be referred to in this
context. In [24], plug-in duration is defined by the necessary charging time of individual
BEVs, whereby possible idle times after the end of charging processes are neglected. This
leads to a disproportionately high availability of CPs, which is more realistically modelled
by the stochastic approach from the perspective of CPs in this manuscript. Also, in terms
of charged energy, the method used in this study advances the reference source due to
a considerably higher temporal resolution. A disadvantage compared to this source is the
distinction made regarding charging power, which was not considered in this work and
the significance of which is also evident in [6]. Paper [6]’s main focus was not on modelling
charging load profiles, but rather on representing real conditions in Germany by analyzing
a multitude of charging processes. It clarifies the significance of the CPs’ location for their
charging characteristics, although the necessary subdivision is missing in the application of
both [24] and this paper, apart from the evaluation in Section 2.1.2. Compared to [6], the
method applied in this paper for calculating the charged energy represents a step forward.
Analyzing the probabilities for starting a charging process, the data recorded in [6] shows
a lower overall amplitude. This indicates that the values calculated in this paper show
a too high probability for the start of charging processes on a national average due to
the significantly smaller data basis compared to the 26,951 observed connectors in [6]. In
summary, the model developed in this paper contributes to the state of the art, especially
due to its analyses of the input data according to various criteria with a focus on public
charging. The applied methods for calculating the plug-in durations and the associated
charged energy also contribute to this.

3.2. Case Study—“Electric Avenue”

In the following section, the model is applied exemplarily in a case study to evaluate
the resulting grid load of an “electric avenue” consisting of public CPs. The application of
the model is demonstrated and discussed.

3.2.1. Configuration of the “Electric Avenue” Simulation

In the following simulation, load profiles resulting from the modeling process are
analyzed within GridSim to evaluate the impact of the load profiles of public charging
infrastructure. The investigated grid within this survey is an average distribution grid of
the city of Munich which has already been analyzed in previous simulations regarding
the status quo [7] and potential impacts due to uncontrolled charging processes of private
and commercial EVs [8]. The selected average distribution grid is calculated from all
distribution grids in a postcode area. The characteristics of the CPs and charging processes
are absolutely independent of the grid and the other connected components. The objective
of the simulation is to determine effects of an “electric avenue” on today’s grid operations
and to approximate a reasonable number of CPs for dimensioning an “electric avenue”
according to simulated utilization.

Based on the status quo configuration, the longest string of the distribution grid
topology is equipped with the theoretical maximum number of public CPs. The limiting
factor is the length of the string, which in this case is anticipated to run parallel to the road.
For the road, it is assumed that it is not interrupted by a cross-street along the parallel
section of the string and that parking is also possible on both sides of the road in this
section. According to this length, the maximum numbers of parallel (6.5 m width each)
or perpendicular (2.5 m width each) parking spaces on both sides of the road without
interruption are calculated. Each parking lot is provided with an individual 11 kW CP,
all of which are equally distributed to grid interconnection points along the string. This
results in a total number of 48 CPs in the parallel arrangement (PAA) and 128 CPs in the
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perpendicular arrangement (PEA) (cf. Table 6). In these configurations, the CPs are each
connected via individual connection lines.

Table 6. Scenario configuration.

Number of Strings Max. String Length Number of Interconnection Points Number of CPs at Each Interconnection Point

4 160 m 4 12 (PAA)
32 (PEA)

A Monte Carlo simulation is performed over one simulation year at a temporal
resolution of five minutes. For public CPs, the probabilities described in Section 2.1 are
selected for a corresponding temporal resolution. Probabilities for the start of a charging
process are scaled by the method described in Section 2.1.5. The fundamental method
of modeling and the basic procedure of simulation with GridSim are described in detail
in [10]. Evaluation includes the analysis of various grid characteristics of the averaged
distribution from the Monte Carlo simulation. Characteristic values are compared with
status quo simulations (excluding an “electric avenue”) according to [7]. The distributions
are further aggregated to identify the total load of the charging system. This serves as
an indicator for a reasonable number of CPs within an “electric avenue”.

3.2.2. Resulting Grid Load from an “Electric Avenue”

In this section, results of the case study for public charging in Munich are discussed.
In Figure 18 the arrangement’s maximum charging powers are plotted over the time of
one week. They vary significantly in the comparison of the arrangements due to the
increased number of CPs. This is due to the fact that the PEA corresponds to 1408 kW of
installed power compared to the installed power of 528 kW in the PAA.
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The characteristics of the type-days (cf. Section 2.1.2) also emerge in this evaluation,
e.g., the very similar characteristics of working days (Mon.–Thu.), as the model applies the
same probabilities for starts of charging at these days. Considering the maximum charging
power of 74.58 kW in the PAA, it appears that with an installed capacity of 48 CPs operating
at 11 kW, a maximum of 6.78 CPs are used simultaneously. With 148.90 kW maximum
power in the PEA, a maximum of 13.53 CPs in simultaneous use results. This clarifies that
an “electric avenue” on this scale would be significantly oversized considering the current
charging demand.
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From the perspective of the distribution grid, an “electric avenue” has significant
effects in terms of the resulting load. Figure 19 shows the annual load duration curve at the
low voltage side of transformer in the examined grid.

Energies 2022, 15, x FOR PEER REVIEW 23 of 30 
 

 

 
Figure 18. Maximum power of public CPs over the course of a week with an “electric avenue” in 
perpendicular and parallel arrangement. 

The characteristics of the type-days (cf. Section 2.1.2) also emerge in this evaluation, 
e.g., the very similar characteristics of working days (Mon.–Thu.), as the model applies 
the same probabilities for starts of charging at these days. Considering the maximum 
charging power of 74.58 kW in the PAA, it appears that with an installed capacity of 48 
CPs operating at 11 kW, a maximum of 6.78 CPs are used simultaneously. With 148.90 kW 
maximum power in the PEA, a maximum of 13.53 CPs in simultaneous use results. This 
clarifies that an “electric avenue” on this scale would be significantly oversized 
considering the current charging demand.  

From the perspective of the distribution grid, an “electric avenue” has significant 
effects in terms of the resulting load. Figure 19 shows the annual load duration curve at 
the low voltage side of transformer in the examined grid. 

 
Figure 19. Annual load duration curve at the transformer. 

The duration lines rapidly become much steeper, which indicates that the maximum 
power is only required within a few hours per year. The status quo curve represents the 
present load in this grid. The load is mainly dominated by private households, 
commercial units and electric storage heaters [7]. With an annual power peak of 200 kW 

Figure 19. Annual load duration curve at the transformer.

The duration lines rapidly become much steeper, which indicates that the maximum
power is only required within a few hours per year. The status quo curve represents the
present load in this grid. The load is mainly dominated by private households, commercial
units and electric storage heaters [7]. With an annual power peak of 200 kW and a utiliza-
tion of under 30%, no overloads occur at the 630 kVA transformer. The addition of CPs
significantly increases the maximum utilization to 260.7 kW (PAA) and 332.5 kW (PEA).
An overload at the transformer is therefore not to be expected in the examined setup. In
addition to the load on the transformer, the minimum voltages of the households’ grid
connection points and the maximum line utilization are also examined. The maximum line
utilization is approximately at an uncritical 45% in the status quo. Through the addition
of charging points, this value increases to 80% (PAA) and 130% (PEA), which exceeds
the critical limit. However, 100% line utilization is only exceeded at approximately 6 m
line length in the PEA. The minimum voltage at the grid connection points is 98% of the
nominal voltage in the status quo and drops to 97% (PAA) and 94% (PEA), which can be
classified as non-critical.

Overall, the simulation embedded in the GridSim model demonstrates a basic applica-
tion of the developed model. With regard to possible overloads in the grid, the results clarify
that a high number of public CPs in an average urban distribution grid in Munich tends
to cause congestion in the lines. The simulation shows that the theoretically maximum
configuration of the arrangement of public CPs corresponds to a distinctly overrepresented
system considering charging processes’ characterization by the model. Furthermore, it
is important to consider that a generally assumed charging characteristic can be affected
by significant deviations in the case of an “electric avenue” application due to possible
rebound effects. The calculation with the theoretical configurations should only be utilized
as an indicator for a possible configuration if the real charging characteristics of the region
are sufficiently known. In this specific case, a realistic “electric avenue” setup could be
approximated with the maximum load of the two configurations and could thus range
between 6.78 and 13.53 CPs. Considering this objective, the model and the methods applied
within it can certainly contribute in a pertinent manner.
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4. Excursus on the Influence of the COVID-19 Pandemic

Since the recorded data set contains both a period before the COVID-19 pandemic and
a period at the start of the COVID-19 pandemic, this excursus provides a brief insight into
the impact of the pandemic on the charging behavior at CPs recorded within this period.
The reference date for this assessment is 22 March 2020, the date the first lockdown was
imposed in Germany [31]. After this date, 85 CPs at various locations in Germany were
still recorded. In order to keep the influence of other factors, such as seasonality, as low as
possible, the analysis period was selected symmetrically around this reference date. For
each CP, the period from the reference date to the individual end of recording as well as the
identical time interval before the reference date were determined and evaluated. Table 7
highlights the resulting charging characteristics of the analyzed CPs. It shows a significant
decrease in absolute and average daily charging processes at recorded CPs. Due to the
symmetrical analysis period for each individual CP as well as the clearly different locations
of these, it is unlikely that the upcoming end of the measurement is responsible for this
decrease. However, its influence cannot be completely dismissed, nor can seasonal effects,
which, according to the analysis in Section 2.1.2, tend to play a subordinate role. It is
thus plausible that the imposed lockdown is responsible for the decline in public charging,
although a sample of 85 CPs and 4771 charging processes is of limited significance, so this
result should be handled cautiously.

Table 7. Characteristics of the CPs within the time period around the reference day.

Time Period Charging
Processes

Average Charging
Processes per Day

Average Plug-In
Duration in h

Average Charged
Energy in kWh

Before reference day 2725 0.60 2.83 6.68
After reference day 2046 0.45 2.76 5.88

5. Conclusions and Critical Review

In this final substantive section, key aspects of this publication, applied methods, and
analyses are summarized. Through a critical review, weaknesses of the publication in terms
of method, assessment, and results as well as potential improvements are concluded.

5.1. Conclusions

This publication encompasses the entire process chain from the fundamental anal-
ysis of different modelling types for the generation of load profiles of public charging
infrastructure, to the conception and implementation of a stochastic model, to its piloting
within the context of a case study. One key element is the conception of the probability
module based on various analyses of a comprehensive data set with over 100,000 public
charging processes.

From the literature, two basic modelling approaches can be classified for models to
generate load profiles of public charging infrastructure: agent-based and stochastic models.
Agent-based models are often coupled with comprehensive traffic simulations and offer
the advantage of representing charging at different destinations. Stochastic approaches
offer the advantage of a lower simulation effort but require a sufficiently comprehensive
database. Due to availability of an extensive data set, the model is conceptualized and
implemented according to a stochastic approach. Therefore, the model is divided into
two core modules and comprises, on the one hand, the calculation of probabilities and, on
the other hand, the subsequent generation of charging load profiles of public CPs.

At first, probabilities were derived for three parameters: the start of charging, the
plug-in duration, and the energy charged. Calculated probabilities were then analyzed and
checked for plausibility with regard to various criteria. When calculating the probabilities
for the start of charging, the day of the week, recording period, regionality of CPs, and
seasons were examined. In order to minimize errors and to depict probabilities that are as
universally valid as possible, the final calculation only differentiates between individual
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days. When calculating probabilities for the plug-in duration, dependence on individual
days is also examined, but only dependence on the time of day is considered in the finally
calculated probabilities. For the charged energy an alternative approach is applied, whereby
values are calculated by logarithmically normally distributed curves depending on the
plug-in duration. The evaluation of the calculated probabilities reveals some weaknesses of
the approach. In order to enable the model to approximate these results, a simple method
is applied to derive a scaling factor on the basis of the number of charging processes per
day as a target value, which adjusts the calculation of the start of charging probabilities.

Based on the module for generating the probabilities, load profiles were subsequently
determined in the superordinate module. This enabled us to individually generate charging
load profiles for different time resolutions and a defined number of charging points. The
logic is based on the application of equally distributed random numbers which are com-
pared with stacked probabilities for corresponding time steps whereby charging events are
triggered. This model can operate as a stand-alone configuration as well as an embedded
module in the context of the GridSim model. In the embedded configuration, charging
stations are assigned to specific nodes in the distribution grid, whereby the effects on the
distribution grid can be calculated and evaluated.

This configuration is exemplified within the case study conducted in this publication
to assess the impact of integrating an “electric avenue” into distribution grids. The case
study demonstrates a potential application of the implemented model. In an average
distribution grid in Munich, a string of the grid is fully equipped with the theoretically
maximum number of public CPs, and the impact on the distribution grid resulting from
the charging load profiles is analyzed. The case study illustrates that public CPs in this
configuration have significant effects on the local grid load and can especially lead to
line congestions. Since the modelled configuration is only hypothetical and of limited
practical value, the maximum simultaneous load should only be considered as indicator
for a feasible configuration.

The brief excursus on the impact of the COVID-19 pandemic in Section 4 reveals that
charging behavior can change significantly within a very short time. Since it cannot be
ruled out that the decline in charging processes at the CPs results from other contributing
factors, this can only be attributed to the pandemic with reservations. This change is
not reflected in the chosen stochastic approach and calculated probabilities. Potentially
abnormal situations, such as the change caused by the COVID-19 pandemic, can only be
represented to a limited extent via the selected stochastic approach. The changes in the
characteristics of charging behavior indicate the dynamics of this system and emphasize
the importance of a solid input data base as well as its analysis.

The implemented model represents a solid basic framework for the modelling of the
charging load profiles through public CPs, but still exhibits weaknesses in terms of the ap-
plication. Although the data set forming the basis of the probabilities is already sufficiently
large to derive and test general criteria, only a limited number of filtered probabilities
are calculated in order to ensure representativeness. Evaluation demonstrates that the
methods applied in the publication provide useful solutions and that their application
with an even more comprehensive data base could result in the calculation of more precise
load profiles with fewer constraints. In summary, analyses of the data set and the model
described in this paper provide a blueprint for the analysis public CPs’ charging data. The
detailed structure of the implemented model is especially directed towards the modelling
community and aims to create awareness for the modelling of public charging load profiles.
Analysis of charging data is relevant to this community as well, but the addressed target
group encompasses a larger audience. Within the FfE, the model will primarily serve in the
area of distribution grid analysis, as exemplified in the case study. However, this model
offers a much greater range of possibilities for energy system analysis, to which external
stakeholders should be enabled through the publication of the model and data.
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5.2. Critical Review

Different assumptions and simplifications are applied in the methodical context of
data preparation in order to generate generally valid load profiles. Regionality, which
is investigated and further neglected in Section 2.1.2, is a significant factor with regard
to the utilization of public CPs and severely influences the probabilities for the start of
charging. Thus, generated probabilities are only partially suitable for the representation of
real charging systems. Applying methods to a more comprehensive data set that allows
this classification with a sufficient amount of remaining charging profiles could overcome
this limitation. As analysis in Section 3.1 indicates, regionality could also impact plug-in
duration, which is the reason why a categorization should also be conducted with regard
to its probability.

Another criteria that is neglected in calculating probabilities is the categorization
according to different power categories. Subdivision into common installed power classes,
e.g., 3.7 kW, 11 kW, 22 kW and superchargers’ > 22 kW, as well as the actual charging
power accessed, which may be limited by the vehicle’s power electronics, are neglected.
Separation and categorization of the charging processes according to actual accessed power
is reasonable. The application of these probabilities in their initial specification for CPs in
power classes differing from 11 kW is biased.

A further critical assumption is the combination of all recorded charging processes
over the entire recording period from 2012 to 2020. Even though the majority of CPs
were measured in the most recent years of recording (cf. left graph in Figure 5), identified
acceleration of electromobility (cf. Figure 5b) is changing the utilization of public CPs (cf.
Figure 4b). Calculation of probabilities from past charging processes does not enable precise
conclusions about future utilization, which disregards the ramp-up of electromobility.

Continuing, the employment of the scaling factor according to Section 2.1.5 to adjust
the probabilities for the start of charging is another critical aspect. Even though the basic
objective of readjustment and thus the possibility of adapting to a required utilization of
CPs is achieved, the application is not sufficiently evaluated to quantify the error of this
approach. A change in the basic charging characteristics due to specific influences such
as regionality cannot be excluded, whereby simple scaling would cause a significant error
compared to the real conditions. This method might be suitable to a certain extent for
scaling to a future load in an average configuration, whereby it is also assumed here that
the charging behavior only changes slightly. Potential future influencing factors such as
an increase in battery capacities, parking time models for public charging infrastructure,
or external interventions such as regulation by the distribution grid operator, would
significantly change charging characteristics and thus invalidate the scaling method. In
addition to a different probability for the start of charging, this would also impact plug-in
durations and charged energy quantities, which are also not scaled within this publication.

Application of the model in the set-up of the case study confirms already discussed
issues that the usage of probabilities without further differentiation for such specific pur-
poses is only conditionally reasonable. In an “electric avenue”, various influences could
result in a significant change in charging characteristics. On the one hand, CPs in this
set-up are probably less utilized on average due to the high availability; on the other
hand, the potential rebound effects of an “electric avenue”, such as a higher utilization
due to a high probability of finding an unoccupied CP at the street location, cannot be
excluded. Configuration of the theoretical maximum of CPs only exemplifies the possibility
of applying the implemented model and serves as an indicator that line congestion tends to
occur first in the analyzed distribution grid at high CP density. Provided that the charging
characteristics of the model correspond approximately to reality, a realistically reasonable
number of CPs can be estimated from the theoretical configurations.

6. Data Preparation and Availability

The anonymized base data set provided by the ZDM for calculation purposes is not
publicly available. The calculated probability distributions for the start of the charging
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processes, the plug-in duration and the charged energy are published on http://opendata.
ffe.de/ (accessed on 2 June 2022). In addition, the module for generating load profiles
(MATLAB) is available on https://gitlab.com/ffe-munich (accessed on 2 June 2022) to
transparently present the methods for calculation in the case study and to make this kind of
tool available to the public in order to close the gap for modelling public load profiles. The
model for generating the load profiles is implemented in a modular way in order to enable
other users to easily import and generate load profiles using their individual input database.
All process steps of the analysis, processing and preparation of the data were carried out
with the software MATLAB (version 2019b) and can be reproduced on a computer system
that meets the requirements of this software. The case study was conducted with the non-
publicly available power grid and energy system model for distribution grids “GridSim”
(further information in [10]).
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Appendix A

According to the comments in the review, the calculation of the start of charging
probability distributions was carried out again, and charging operations on nationwide
public holidays in the period were assigned to the calculated probability distribution for
Sundays. This results in the reclassification of 1413 charging operations on 87 public
holidays during the assessment period. Only public holidays that were relevant for all
16 federal states were taken into account in the calculation. Table A1 and Figure A1 present
the recalculated parameters and probability distributions. Compared to the originally
calculated parameters (cf. Table 2 and Figure 3), there are only minor deviations, which is
why it was decided not to conduct the case study again.

http://opendata.ffe.de/
http://opendata.ffe.de/
https://gitlab.com/ffe-munich
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Table A1. Characteristics of the processed data classified by type-days including the calculation of
public holidays as Sundays.

Day of the Week Charging
Processes

Average Charging
Processes per Day

Average Plug-In
Duration in h

Average Charged
Energy in kWh

All 107,404 0.65 4.58 9.93

Sunday and public holidays 10.653 0.40 5.12 12.52
Weekday 67.405 0.71 4.68 9.46

Friday 16.372 0.69 4.27 9.87
Saturday 12.974 0.55 3.99 10.34Energies 2022, 15, x FOR PEER REVIEW 29 of 30 

 

 

 
Figure A1. Probabilities for the start of a charging process classified by type-days in 15 min 
resolution including the calculation of public holidays as Sundays. 
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