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Abstract: MicroRNA-143-3p (miR-143-3p) is one of the miRNAs involved in the growth of goat
mammary epithelial cells (GMECs). In this study, Illumina/Solexa sequencing was performed to
establish the lncRNA database in Laoshan dairy goats. Using the lncRNA database, long noncoding
RNAs (lncRNAs) regulated by miR-143-3p were screened. In total, 4899 lncRNAs were identified,
with 173 lncRNAs being differentially expressed in all three replicates. The target genes of the
differentially expressed lncRNAs were annotated in GO terms and KEGG pathways. Among the
differentially expressed lncRNAs, lncRNA LOC102188416 was predicted to sponge miR-143-3p and
share MAPK1 as a common target gene with miR-143-3p, which was validated by dual luciferase
reporter assay system and qRT-PCR. The miR-143-3p mimic significantly lowered the relative lu-
ciferase activity of psiCHECK2-LOC102188416 wildtype vector but not mutated vector, suggesting
that lncRNA LOC102188416 might be a sponge of miR-143-3p, which was verified by the promo-
tion role of lncRNA LOC102188416 siRNA (siR-LOC102188416) in the expression of miR-143-3p.
It was shown that the expression of MAPK1 was downregulated by either miR-143-3p mimic or
siR-LOC102188416, indicating that miR-143-3p and lncRNA LOC102188416 had a coregulatory effect
on MAPK1 expression. The co-transfection of miR-143-3p inhibitor with siR-LOC102188416 reversed
the decrease of MAPK1 expression regulated by siR-LOC102188416 alone, strengthening the existence
of lncRNA LOC102188416/miR-143-3p/MAPK1 axis in GMECs of Laoshan dairy goats.
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1. Introduction

MicroRNAs (miRNAs) are a group of endogenous noncoding RNA at a length of
18–25 nucleotides, which can lead to translational repression or mRNA degradation by
binding to the 3′UTR of their target genes [1,2]. Studies have shown that miRNAs play
significant roles in mammary gland development and lactation through the proliferation,
apoptosis, and activity of mammary epithelial cells [3–7]. In our previous studies, miR-143-
3p was found to be involved in the growth of goat mammary epithelial cells (GMECs) [8,9],
and it has been reported that miR-143-3p promotes lipid synthesis in milk [10].

Long noncoding RNAs (lncRNAs) are noncoding transcripts longer than
200 nucleotides [11]. By competitively occupying the binding sites of miRNAs, lncRNAs
can alter the expression of the target genes of miRNAs [12–14]. To explore the regulation
of gene expression that relevant to GMEC growth, the interactions between miRNA and
lncRNA need to be investigated. Mitogen-activated protein kinase 1 (MAPK1) is one of
the members of MAPK family involved in proliferation, development, and differentia-
tion [15,16]. Lu et al. revealed that MAPK1 facilitates the synthesis of milk protein through
STAT5 and mTOR pathways [17], and MAPK1 can be targeted by miR-143-3p [18].
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Previous studies have shown that MAPK1 plays an important role in milk synthesis [17].
Investigating how MAPK1 can be regulated would be helpful to understand the mechanism
of milk synthesis and lactation, as well as the management of the genetic improvement
and breeding of dairy goats. In this study, the lncRNAs regulated by miR-143-3p in
GMEC were screened by Illumina/Solexa sequencing to explore the regulation between
lncRNAs and miR-143-3p. Using the database, the potential miRNA sponges of miR-
143-3p in differentially expressed lncRNAs (DE-lncRNAs) were screened, and the target
genes of DE-lncRNAs were predicted. The lncRNA LOC102188416 sharing the same
target gene, MAPK1, with miR-143-3p was selected. The regulation of MAPK1 by lncRNA
LOC102188416 and miR-143-3p, as well as the mutual regulation between LOC102188416
and miR-143-3p, was investigated.

2. Materials and Methods
2.1. Animals and Ethical Statement

Five Laoshan dairy goats from the Qingdao Aote original breeding farm were used.
The goats were 4 years old, healthy, and under the same feeding and management. The
mammary gland tissue around 30 g was cut with a scalpel from the five Laoshan dairy
goats after general anesthesia, washed with phosphate-buffered saline, and stored in
cold phosphate-buffered saline with penicillin/streptomycin for cell culture. The wound
was sewn, and a regular sterilization was applied until the goats were recovered. All
procedures conformed to the Institutional Animal Care and Use Committee of the Shandong
Agricultural University (No. 2013005).

2.2. Cell Culture

The fresh mammary gland tissue was cut into pieces of approximately 1 mm3 and
washed with PBS again before seeding into the plate. The goat mammary epithelial cells
(GMECs) started to grow around the tissue pieces, and GMECs were purified via differ-
ential digestion. GMECs were cultured in DMEM/F12 medium (Gibco, Melbourne, VIC,
Australia) with 10% fetal bovine serum (Gibco, Melbourne, VIC, Australia) and incubated
in a humid environment with 5% CO2 at 37 ◦C. The transfection was performed by Lipo-
fectamine 3000 (Invitrogen, Carlsbad, CA, USA) when GMECs reached 80% confluence.
The synthesized small RNAs of SiR-LOC102188416, negative control for siRNA (siR-NC),
miR-143-3p mimic, miR-143-3p inhibitor, and negative control (miR-NC) were purchased
from RiboBio (Guangzhou, China).

2.3. RNA Isolation, Library Construction, Sequencing, and Data Analysis

Total RNA of GMECs was isolated using a MicroElute Total RNA kit (Omega Bio-tek,
Norcross, GA, USA) according to the manufacturer’s instruction; the concentration of
the RNA was measured using a nucleic acid spectrophotometer (DeNovix, Wilmington,
DE, USA), while the quality and integrity of total RNA were detected by agarose gel elec-
trophoresis and an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA), respectively.
The NEB Next Ultra Directional RNA LibraryPrep Kit for Illumina (NEB, Ipswich, MA,
USA) was applied to construct the library of lncRNA. Specifically, rRNA was removed from
3 µg of total RNA by Ribo-Zero GoldKits (Epicentre, Charlotte, NC, USA), and then frag-
mentation buffer was added to make RNA to short segments. The first strand of cDNA was
synthesized by random hexamers, and the second strand of cDNA was acquired by dNTPs,
RNase H, and DNA Polymerase I. The product of cDNA was purified with a QiaQuick PCR
Purification Kit (Qiagen, Hilden, NRW, Germany), and, after end repair, base A addition,
and sequencing adaptor addition, agarose gel electrophoresis was applied to collect the
target size fragments. The cDNA strands were digested with Uracil-N-glycosylase, PCR
amplification was performed, and the target size fragments were collected by agarose gel
electrophoresis for library sequencing (Illumina/Solexa, San Diego, CA, USA).

The reads with low quality, adaptor contamination, rRNA mapping, or N proportion
greater than 5% were removed from the raw sequencing data to obtain high-quality data.
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The high-quality data were mapped to the reference genome (https://www.ncbi.nlm.nih.
gov/genome/?term=goat, accessed on 17 November 2017), and the expression abundance
of lncRNAs was analyzed. The GO enrichment (http://geneontology.org/, accessed on 17
November 2017) and KEGG enrichment (https://www.genome.jp/kegg/, accessed on 17
November 2017) were performed for the predicted target genes of lncRNAs.

2.4. Real-Time Fluorescence Quantitative PCR

The cDNA for mRNA qPCR was synthesized using the PrimeScript RT reagent Kit
with a gDNA Eraser (Takara, Japan) and the cDNA for miRNA qPCR was prepared using
the Mir-X miRNA First-Strand Synthesis Kit (Takara, Japan). TB Green Premi Ex Taq II (Tli
RNAseH Plus) (Takara, Japan) was applied to perform qPCR. The sequences of the primers
are listed in Table 1.

Table 1. The sequence of primers in qPCR.

Primer Sequences (5′-3′)

lncRNA LOC102188416 forward TGGGTTGAGGCACACTGGTCACC
lncRNA LOC102188416 reverse CTCGCTTCGGCAGCACA

MAPK1 forward ACTGCCAGAGGACGCTGAGAG
MAPK1 reverse ATGTGGTCGTTGCTGAGGTGTTG

GAPDH forward CACCCTCAAGATTGTCAGC
GAPDH reverse CAGTGGTCATAAGTCCCTCC

miR-143-3p forward TGAGATGAAGCACTGTAGCTCG
U6 forward CTCGCTTCGGCAGCACA
U6 reverse AACGCTTCACGAATTTGCGT

2.5. Vector Construction and Dual Luciferase Reporter Assay

The sequence of lncRNA LOC102188416 containing the targeting site of miR-143-3p
was amplified using goat DNA as template with primers 5′–agctttgtttaaacTTGTCCCAGCTC
TACCCT–3′ (forward 1) and 5′–ataagaatgcggccgCCAAAGCAGCAAAGTTCCA–3′ (reverse
1), before inserting into the psiCHECK2 vector between Not I and Pme I restriction sites as
the wildtype lncRNA LOC102188416 vector, named wt-LOC. Using the plasmid of the WT
lncRNA LOC102188416 vector as the template, the targeting site was mutated by overlap
PCR with primers 5′–CTGTCTCTAAAAGTGCAGCGTCATTGTGCT–3′ (forward 2) and 5′–
CGCTGCACTTTTAGAGACAGCAGCTTCAGA–3′ (reverse 2). The mutated sequence was
inserted into psiCHECK2 vector as the mutated LOC102188416 vector, named mut-LOC.

The wt-LOC and mut-LOC were co-transfected with miR-143-3p mimic or miR-NC,
respectively, into GMECs in 24-well plates. The GMECs were lysed by a passive lysis buffer
48 h post transfection, and 20 µL of lysate was mixed into 100 µL of LAR II to measure
firefly luciferase activity; then, 100 µL of Stop & Glo was added to measure Renilla luciferase
activity. The ratio of Renilla luciferase activity to firefly luciferase activity was calculated to
evaluate the relative luciferase activity.

2.6. Statistics

The experiments were performed three times independently. The data are shown as
the average ± standard error (M ± SE). Student’s t-test and one-way ANOVA (SPSS 22.0;
SPSS Inc., Chicago, IL, USA) were applied to evaluate the significance level (* p < 0.05,
** p < 0.01).

3. Results
3.1. Screening of Differentially Expressed LncRNAs Induced by miR-143-3p

To investigate the regulation between miR-143-3p and lncRNAs, miR-143-3p mimic
and miR-NC were transfected into goat mammary epithelial cells (GMECs). The total
RNA was extracted 48 h post transfection, and the expression abundance of lncRNAs
was detected by Illumina/Solexa sequencing in three independent replicate experiments;

https://www.ncbi.nlm.nih.gov/genome/?term=goat
https://www.ncbi.nlm.nih.gov/genome/?term=goat
http://geneontology.org/
https://www.genome.jp/kegg/
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79,150,248 and 83,667,943 raw reads were obtained for the miR-143-3p and miR-NC groups,
respectively. The raw reads were filtered, and 97.45% clean reads were acquired for further
analysis. The coding ability of the transcripts was evaluated by CNCI (coding–noncoding
index) [19], CPC (coding potential calculator) [20], Pfam (protein family) [21], and CPAT
(coding potential assessment tool) [22], while the noncoding transcripts recognized by all
four tools were identified as lncRNAs. In total, 4899 noncoding transcripts were identified
by one of the four tools, of which 3828 lncRNAs were predicted by all four tools (Figure 1A;
Tables S1–S5). According to the database, 349 differentially expressed lncRNAs (DE-
lncRNAs) were found between the miR-143-3p group and miR-NC group, including 75
upregulated lncRNAs and 274 downregulated lncRNAs (Figure 1B,C; Table S6).
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Figure 1. The identification of lncRNAs in different libraries of GMECs. (A) Number of identified
lncRNAs by four tools. (B) The number of DE-lncRNAs between different groups. (C) Venn diagram
of DE-lncRNAs between different groups. M1_C1, M2_C2, and M3_C3 represent the three indepen-
dent replicates of miR-143-3p mimic vs. miR-NC. M_C represents the integrated analysis of M1_C1,
M2_C2, and M3_C3.

3.2. GO and KEGG Function Analysis of DE-LncRNAs

To estimate the function of the 349 DE-lncRNAs, the cis- and trans-target genes of
DE-lncRNAs were predicted, and 9526 presumed target genes were obtained, includ-
ing 767 cis-genes and 8759 trans-genes. In the GO enrichment analysis, 3156 genes were
annotated in 2823 GO terms, and 174 GO terms were significantly enriched, including
72 biological processes, 63 cellular components, and 39 molecular functions, with the
highest annotations for cellular process (GO:0009987), cell (GO:0005623), and binding
(GO:0005488) (Figure 2A–C), while the most significantly enriched GO terms were metabolic
process (GO:0008152), cell (GO:0005623), and binding (GO:0005488) (Figure 2D–F; Table S7).

The KEGG enrichments showed that the predicted target genes of DE-lncRNAs were
involved in 271 KEGG pathways, including PI3K/Akt signaling pathway (ko04151), MAPK
signaling pathway (ko04010), mTOR signaling pathway (ko04150), and fatty-acid biosynthe-
sis (ko00061)., while the significantly enriched pathways were peroxisome (ko04146), DNA
replication (ko03030), cell cycle (ko04110), and aminoacyl-tRNA biosynthesis (ko00970)
(Figure 3; Table S8).

3.3. The Prediction of Target Genes of LncRNA LOC102188416/miR-143-3p

To find the DE-lncRNAs that were most likely to interact with miR-143-3p, DE-
lncRNAs in three independent replicates were screened separately, and the 173 DE-lncRNAs
in the intersection were selected (Figure 1C), where 70 of the 83 known lncRNAs were
downregulated. Six of these downregulated lncRNAs were found to have binding sites
to miR-143-3p: lncRNA LOC108633922, lncRNA LOC102185144, lncRNA LOC106503175,
lncRNA LOC108637969, lncRNA LOC102188416, and lncRNA LOC108636992. The pre-
dicted target genes of the six lncRNAs were compared to predicted target genes of miR-143-
3p, and it was found that lncRNA LOC102188416 and miR-143-3p shared a critical target
gene, MAPK1. Therefore, lncRNA LOC102188416 was selected to explore its interaction
with miR-143-3p.
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Figure 3. The KEGG enrichment results of predicted target genes of DE-lncRNAs. (A–C) The
significantly enriched KEGG pathways in M1_C1 group (A), M2_C2 group (B), and M3_C3 group
(C). (D) The heatmap of significantly enriched KEGG pathways in all groups.

3.4. The Construction of LncRNA LOC102188416/miR-143-3p/MAPK1 Axis

The sequence of lncRNA LOC102188416 containing the binding site of miR-143-3p
was inserted into psiCHECK2 vector between the Not I and Pme I restriction sites, and the
binding site was mutated as a control for the dual luciferase reporter assay (Figure 4A).
The wildtype vector or the mutated vector was co-transfected into GMECs in vitro with
miR-143-3p mimic or miR-NC, respectively, and the luciferase activities were measured
using the lysate of GMECs harvested 48 h post transfection. The results showed that the
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miR-143-3p mimic significantly lowered the relative luciferase activity of the psiCHECK2-
LOC102188416 wildtype vector but not the mutated vector (Figure 4B).
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Figure 4. Sponge between miR-143-3p and lncRNA LOC102188416. (A) The construction of dual
luciferase reporter vectors of lncRNA LOC102188416. (B) The luciferase activities of psiCHECK2-
LOC102188416 vectors regulated by miR-143-3p. ** p < 0.01.

LncRNA LOC102188416 siRNA (siR-LOC102188416) and siR-NC were transfected into
GMECs to detect the knockdown efficiency of siR-LOC102188416 (Figure 5A). Figure 5B
shows that the expression of miR-143-3p was increased when lncRNA LOC102188416 was
knocked down.
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Figure 5. The regulation of miR-143-3p by lncRNA LOC102188416. (A) The efficiency validation of
siR-LOC102188416. (B) The expression of miR-143-3p regulated by siR-LOC102188416. * p < 0.05;
** p < 0.01.

Figure 6 shows that the expression of MAPK1 was decreased by siR-LOC102188416
(Figure 6A) and miR-143-3p (Figure 6B). The expression of MAPK1 was decreased by siR-
LOC102188416, while miR-143-3p inhibitor co-transfection with siR-LOC102188416 could
eliminate the decrease in MAPK1 expression induced by siR-LOC102188416 (Figure 6C).
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Figure 6. The regulation of MAPK1 by lncRNA LOC102188416 and miR-143-3p. (A–C) MAPK1
expression regulated by siR-LOC102188416 (A), miR-143-3p (B), and miR-143-3p inhibitor (C).
** p < 0.01.

4. Discussion

In the present study, miR-143-3p or miR-NC was transfected into GMECs of Laoshan
dairy goat, and the lncRNA libraries were constructed to screen the differentially expressed
lncRNAs (DE-lncRNAs) induced by miR-143-3p. LncRNA LOC102188416 was one of the
DE-lncRNAs predicted to interact with miR-143-3p, both having MAPK1 as a target. The
interaction between lncRNA LOC102188416 and miR-143-3p, as well as their regulation of
the expression of MAPK1, was explored.

It was revealed that the target sites of miRNAs can be competitively combined by
endogenous competitive RNAs, such as circular RNAs [23], lncRNAs [24,25], and pseudo-
genes [26]; therefore, the activity of miRNAs can be modulated. LncRNA LOC102188416
was one of the lncRNAs downregulated by miR-143-3p, and it shared the same target
gene, MAPK1, with miR-143-3p. It has been reported that MAPK1 can upregulate milk
protein synthesis [17], which is essential for milk production. Interestingly, MAPK1 was
also identified as a target gene of miR-940 [27], miR-362 [28], miR-585-3p [29], miR-378 [30],
and miR-145 [31], and these miRNAs inhibit the proliferation of tumor or cancer cells
through targeting MAPK1, which indicates that MAPK1 could be targeted by multiple
miRNAs to regulate cell proliferation.

Many previous studies have shown that miR-143-3p inhibits the progression of differ-
ent kinds of cancers, such as breast cancer [32–34], ovarian cancer [35], cervical cancer [36],
lung cancer [37], gastric cancer [38], and colorectal cancer [39]. In our previous study, it
was shown that miR-143-3p suppresses the proliferation and facilitates the apoptosis of
GMECs in vitro, which is consistent with the research in cancer cells [9]. However, the
specific regulatory mechanism is not clear. LncRNAs, as an miRNA sponge, can adsorb
miRNAs to regulate the expression of target genes and play a vital role in a variety of
biological processes [36–38]. LncRNA LOC102188416 was identified as one of the lncRNAs
downregulated by miR-143-3p, and it shared the same target gene, MAPK1, with miR-143-
3p. MAPK1 plays an important role in milk synthesis [17]. Investigating how MAPK1 is
regulated would be helpful to understand the mechanism of milk synthesis and lactation,
as well as the management of the genetic improvement and breeding of dairy goats.

To investigate the regulatory mechanism of miR-143-3p, lncRNAs, which can absorb
miRNAs to regulate the expression of target genes [36–38], regulated by miR-143-3p were
studied. In this study, the lncRNA profiles were analyzed in GMECs cultured in vitro after
transfection with miR-143-3p and its negative control, which could provide a reference
for the study of lncRNAs in GMECs and their interaction with miR-143-3p. The lncRNA
LOC102188416/miR-143-3p/MAPK1 axis revealed that miR-143-3p is likely to be involved
in mammary gland development and lactation by regulating lncRNAs and mRNAs, which
may lay a theoretical foundation for the genetic breeding of dairy goats. The role of miR-
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143-3p and MAPK1 in both healthy mammary epithelial cells and tumor or cancer cells
could also be a consideration in further studies.

5. Conclusions

LncRNA profiles of Laoshan dairy goat mammary epithelial cells (GMECs) were
analyzed between miR-143-3p and miR-NC groups. Among the lncRNAs identified,
LncRNA LOC102188416 was significantly downregulated by miR-143-3p, and it could be
a potential sponge of miR-143-3p. MAPK1, the target gene of miR-143-3p [18], was also
predicted as a target gene of lncRNA LOC102188416. This research studied the interaction
among lncRNA LOC102188416, miR-143-3p, and MAPK1, and the results revealed that
lncRNA LOC102188416 acted as a sponge of miR-143-3p to regulate the expression of their
mutual target gene MAPK1 in GMECs.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/genes13061013/s1: Table S1–S4: Identification of lncRNAs using
CNCI (Table S1), CPC (Table S2), Pfam (Table S3), and CPAT (Table S4); Table S5: The list of identified
lncRNAs with annotation; Table S6: Differentially expressed lncRNAs between miR-143-3p and
miR-NC groups; Table S7: GO annotation of predicted target genes of differentially expressed
lncRNAs regulated by miR-143-3p; Table S8: KEGG pathway enrichment of predicted target genes of
differentially expressed lncRNAs regulated by miR-143-3p.
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