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Abstract: A mathematical model of cerebral blood flow in the form of a dynamical system is studied.
The cerebral blood flow autoregulation modeling problem is treated as a nonlinear control problem
and the potential and applicability of the nonlinear control theory techniques are analyzed in this
respect. It is shown that the cerebral hemodynamics model in question is differentially flat. Then,
the integrator backstepping approach combined with barrier Lyapunov functions is applied to
construct the control laws that recover the cerebral autoregulation performance of a healthy human.
Simulation results confirm the good performance and flexibility of the suggested cerebral blood flow
autoregulation design. The conducted research should enrich our understanding of the mathematics
behind the cerebral blood flow autoregulation mechanisms and medical treatments to compensate
for impaired cerebral autoregulation, e.g., in preterm infants.
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1. Introduction

Understanding the mathematics behind the cerebral autoregulation process is of pri-
mary importance in the mathematical modeling of cerebral blood circulation and regulation.
Impaired cerebral blood flow autoregulation is one of the crucial factors that can cause
cerebral hemorrhage in preterm infants. An impaired cerebral autoregulation mechanism
is unable to maintain constant cerebral blood flow despite the changes in systemic arterial
pressure. As a result, an increase in cerebral blood flow caused by an acute systemic arterial
pressure increase can lead to bleeding in the germinal matrix of a preterm newborn [1],
which is a specific region in the immature brain between the thalamus and caudate nucleus,
with high vascularity and a fragile capillary network [2]. Among a variety of cerebral
blood flow models (see, e.g., [3–11]), one can highlight lumped parameter models based
on the analogy to electric circuits [4–10]. In [9,10], the influence of the germinal matrix on
blood flow is taken into account by modeling the capillary level as two parallel connected
lumped objects describing the germinal matrix and the remaining part of the brain. In [4],
a cerebral blood flow model is presented in the form of nonlinear ordinary differential
equations, which can be seen as a starting point to the automatic control theory oriented
cerebral autoregulation modeling, because of its simplicity and, at the same time, ability to
reproduce various clinical results [4].

The first steps towards considering the cerebral blood flow autoregulation modeling
problem as a feedback control problem were undertaken in [7,8]. In [7], maintenance of the
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cerebral autoregulatory function was studied as an optimal conflict control problem. In [8],
a mathematical model of cerebral autoregulation was proposed in the form of a heuristic
feedback controller, verified using the techniques of the viability theory [12].

In the current work, we continue to develop the automatic control theory-based au-
toregulation considerations in a systemic way. Based on the cerebral blood flow dynamical
model of [4], the nonlinear control theory tools are applied to construct the feedback control
laws that describe the mathematics behind the cerebral autoregulation mechanisms. The
main results of this paper originate from the suggested idea to interpret the cerebral blood
flow autoregulation modeling challenge as an automatic control problem. This is the first
time, at least to our knowledge, that the cerebral blood flow model introduced in [4] is
studied as a dynamical system with control input and its controllability properties are
analyzed. Because of the model’s intrinsic nonlinearity, such a well-known and effec-
tive nonlinear control tool as integrator backstepping combined with barrier Lyapunov
functions is used to construct the control laws that recover the cerebral autoregulation
performance of healthy humans.

The remaining part of the paper is organized as follows. In Section 2, the cerebral
hemodynamics model equations presented in [4] are revisited and written in the form
of a nonlinear dynamical system with control input. The cerebral blood flow autoregu-
lation modeling problem is formulated as a nonlinear output tracking control problem.
In Section 3, we show the differential flatness property of the cerebral hemodynamics in
question, which is used further in Section 4 to construct the state feedback control laws that
model the cerebral autoregulation performance. Numerical simulation results of the sug-
gested cerebral blood flow autoregulation scheme are given in Section 4. Finally, Section 5
concludes with some remarks.

2. Problem Formalization

In this paper, we consider the cerebral hemodynamics model introduced in [4]. For
convenience’s sake, let us first summarize the model equations. The model accounts
for the hemodynamics of the arterial–arteriolar cerebrovascular bed and large cerebral
veins, cerebrospinal fluid circulation and intracranial pressure dynamics; see Figure 1. The
arterial–arteriolar cerebrovascular bed is modeled as a windkessel and is described by
means of the hydraulic compliance (storage capacity) Ca and the hydraulic resistance Ra
variables [4]. The arterial–arteriolar blood volume Va is calculated as below

Va = Ca(Pa − Pic), (1)

where Pa and Pic stand for the systemic arterial and intracranial pressure variables, respec-
tively. The difference Pa − Pic represents transmural pressure in the arterioles. The rate q
of blood flow through the arterial–arteriolar cerebrovascular bed that enters the skull is
written as

q =
Pa − Pc

Ra
, (2)

where Pc denotes the capillary pressure variable, and the difference Pa − Pc is the perfu-
sion pressure of the arterioles. Here, by the Hagen–Poiseuille law, the arterial–arteriolar
resistance Ra is inversely proportional to the second power of the blood volume Va with a
coefficient k′R [4], i.e.,

Ra =
k′R
V2

a
. (3)

For the large intracranial veins, autoregulatory mechanisms and venous elasticity are
neglected. The transmural pressure in the cerebral veins and the venous blood volume
are supposed to remain constant. Then, the rate qv of the blood flow through the venous
cerebrovascular bed is described using a hydraulic resistance Rpv as

qv =
Pc − Pic

Rpv
, (4)
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with the venous hydraulic compliance being ignored and Rpv treated as a constant [4].
Here, in (4), the difference Pc − Pic represents the perfusion pressure of the cerebral veins.
Similarly, cerebrospinal fluid production at the cerebral capillaries and reabsorption at
the dural sinuses are modeled as static processes. The cerebrospinal fluid production and
reabsorption rates q f and qo are characterized by constant hydraulic resistances R f and Ro,
respectively, as below

q f =
Pc − Pic

R f
, qo =

Pic − Pvs

Ro
, (5)

where Pvs is the venous sinus pressure, which is taken as a constant [4]. The quantities q, qv
and q f given by the Formulae (2), (4) and (5) are linked through the algebraic equation

q = qv + q f . (6)

Craniospinal compartment

         

Arterial-arteriolar 

cerebrovascular bed Cerebral veins
Dural 

sinuses

Cerebral

capillaries

q(t)

Ca(t)
Ra(t)

Cic(t)

Rf
Ro

PvsRpvPa(t)

Pic(t)

Pic(t)

Ii

qf(t)
qo(t)

qv(t)

Figure 1. The cerebral hemodynamics model components and quantities.

The intracranial pressure Pic dynamics by Monro–Kellie doctrine are written as fol-
lows [4]:

Cic Ṗic = V̇a + q f − qo + Ii, (7)

where Cic is the intracranial compliance (craniospinal storage capacity), and Ii stands for
the constant rate of possible mock cerebrospinal fluid injection in surgery. In (7), the
intracranial storage capacity Cic is inversely proportional to the intracranial pressure Pic
with a craniospinal compartment elastance coefficient kE, i.e.,

Cic =
1

kEPic
. (8)

Moreover, one should note that the following condition Pa > Pc > Pic > Pvs on the
pressure values is required to hold for all the above considerations to be valid [4].

Finally, within the cerebral hemodynamics model in question, cerebral blood flow
autoregulation is supposed to function only at the level of arterioles and is described
in terms of the arterial–arteriolar compliance Ca. Vasodilation or vasoconstriction of
the arterioles is modeled through positive or negative values of the compliance rate Ċa,
respectively. In [4], the following heuristic cerebral autoregulation model is suggested:

Ċa =
1
τ

(
−Ca + σ

(
q− qn

qn

))
, (9)

where σ(·) is a sigmoidal function with saturation, τ is a time constant, and qn denotes a
basal value of the arterial–arteriolar blood flow rate q required for tissue metabolism.

Notice that the cerebral autoregulation model (9) is intuitively clear but the authors
do not provide any mathematical proof or strict mathematical considerations of its validity
in [4]. In this paper, as is done in [7], the arterial–arteriolar compliance rate Ċa is consid-
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ered as a control input. Then, the control purpose is to force the nonzero values of the
difference q(t)− qn to zero using nonlinear control theory tools and, thus, provide rigorous
mathematical insights into the cerebral blood flow autoregulation mechanism of a healthy
human.

In the current work, we adopt the arterial–arteriolar blood volume Va and the intracra-
nial pressure Pic as system state variables, instead of considering the Ca and Pic dynamics,
as is done in [4]. This choice of the state variables is more suitable for a thorough analysis
of the cerebral hemodynamics in question and control design since Va is a crucial quantity
defining the behavior of the overall system. In view of (1), the blood volume Va dynamics
are governed by the formula

V̇a = Ċa(Pa − Pic) + Ca(Ṗa − Ṗic) (10)

and are determined by the cerebral autoregulation mechanism Ċa, the intracranial pressure
dynamics Ṗic and the systemic arterial pressure alterations rate Ṗa.

After rearranging the terms in the differential-algebraic Equations (7) and (10) and
taking into account the relations (5) and (8), one can avoid algebraic loops and obtain the
following dynamical system:

V̇a =
1

1 + kEPicCa

(
−kEPicCa

(
Pc − Pic

R f
− Pic − Pvs

R0
+ Ii

)
+ (Pa − Pic)Ċa + Ca Ṗa

)
,

Ṗic =
kEPic

1 + kEPicCa

(
Pc − Pic

R f
− Pic − Pvs

R0
+ Ii + (Pa − Pic)Ċa + Ca Ṗa

) (11)

which describes time behavior of the cerebral blood volume Va and the intracranial pres-
sure Pic. Using the Formulae (1)–(6), the capillary pressure Pc and the arterial–arteriolar
compliance Ca quantities in the right-hand side of the system (11) can be represented as
functions of the system state variables Va and Pic in the following way:

Pc = Pc(Va, Pic) =
R f RpvPaV2

a + k′R(Rpv + R f )Pic

k′R(Rpv + R f ) + R f RpvV2
a

, (12)

Ca = Ca(Va, Pic) =
Pa − Pic

Va
.

Notice that the functions in the right-hand side of the system (11) depend on the
systemic arterial pressure Pa time behavior. In this paper, we suppose that the arterial
blood pressure dynamics are in a steady state, i.e., Ṗa ≡ 0, and the arterial pressure Pa
has a constant value, which is possibly different from the basal one. Then, the choice
of the arterial–arteriolar compliance rate Ċa as a control input u results in the cerebral
hemodynamics model

V̇a =
1

1 + kEPicCa

(
−kEPicCa

(
Pc − Pic

R f
− Pic − Pvs

R0
+ Ii

)
+ (Pa − Pic)u

)
,

Ṗic =
kEPic

1 + kEPicCa

(
Pc − Pic

R f
− Pic − Pvs

R0
+ Ii + (Pa − Pic)u

)
,

(13)

with the arterial-,arteriolar blood flow rate q being considered as a system output function
and in view of (2), (3) and (12), written as

q = q(Va, Pic) =
(Rpv + R f )(Pa − Pic)V2

a

k′R(Rpv + R f ) + R f RpvV2
a

. (14)
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Thus, in summary, the cerebrovascular autoregulation modeling problem in question
can be formulated as a constrained (e.g., asymptotic) output regulation control problem
for the nonlinear dynamical system (13), i.e., we find a feedback control law u = u(Va, Pic)
such that

|q(Va(t), Pic(t))− qn| → 0 as t→ +∞ (15)

for all reasonable initial values Va(0) = Va0, Pic(0) = Pic0 of the system state variables. In
addition, for a proper range of the systemic arterial pressure values Pa ∈ [Pamin, Pamax], the
quantities Va(t) and Pic(t) are required to remain positive during transients and within
reasonable bounds

Va(t) ∈ [Vamin, Vamax], Pic(t) ∈ [Picmin, Picmax], t ≥ 0. (16)

3. Differential Flatness of Cerebral Hemodynamics

First, let us check the controllability properties of the nonlinear dynamical system (13)
by showing that it is differentially flat [13]. Recall that a dynamical system of the form (13)
is differentially flat if and only if there exists a scalar function z1 of the system state variables
Va, Pic and, in a general case, of the control input u with its time derivatives u̇, ü, . . . , u(α)

for some finite natural number α such that Va, Pic and u can be represented as functions
of z1 and its time derivatives of up to some finite order [13]. Then, it is well known that
differentially flat systems possess good controllability properties (see, e.g., [13,14]). To find
such a function z1, called the flat output, one can exploit the linearity of the functions on
the right-hand side of the system (13) with respect to the control variable u. The coefficients
of u in (13) form the vector field

B(Va, Pic) =
Pa − Pic

(1 + kEPicCa)

(
1

kEPic

)
. (17)

As a flat output candidate for the system (13), one can take a first integral of the vector
field (17) (see, e.g., [15]). To find the first integrals of B(Va, Pic) given by (17), consider an
auxiliary system of ordinary differential equations written in the symmetric form

dVa

1
=

dPic
kEPic

= dt. (18)

Integration of (18) results in the following function:

z1 = ϕ1(Va, Pic) = kEVa − ln Pic (19)

which has constant values on solutions of the auxiliary system (18), with its Lie derivative
LB ϕ1 [15] along the vector field B(Va, Pic) being identically zero. Then, the first- and second-
order time derivatives of (19) along solutions of the dynamical system (13) can be written,
respectively, as

ż1 = kEV̇a −
Ṗic
Pic

= ϕ2(Va, Pic) =
−kERpv

Rpv + R f
q +

kE
Ro

Pic − kE

(
Pvs

Ro
+ Ii

)
, (20)

z̈1 =
−kERpv

Rpv + R f
q̇ +

kE
R0

Ṗic =
−kERpv

Rpv + R f

(
∂q

∂Va
V̇a +

∂q
∂Pic

Ṗic

)
+

kE
R0

Ṗic

= f (Va, Pic) + g(Va, Pic)u,
(21)

where f (·) and g(·) are corresponding functions of their arguments.
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Let z2 = ż1, z = (z1, z2)
T and Φ(Va, Pic) = (ϕ1(Va, Pic), ϕ2(Va, Pic))

T. One can show
that the Jacobian matrix of the mapping z = Φ(Va, Pic) defined by the relations (19) and (20)
is nonsingular at a point Va = Va0, Pic = Pic0 if and only if the following condition holds:

q(Va0, Pic0) 6=
kE(RpvRo + R f Rpv)Pic0Va

3
0 + k′RkE(Rpv + R f )Pic0Va0

2k′RRpvRo
. (22)

Hence, the map z = Φ(Va, Pic) is a diffeomorphism defined for all values Va = Va0,
Pic = Pic0 such that the inequality (22) is satisfied. The relationships (19) and (20) qualify as
a change of coordinates in the state space of the system (13), with its inversion being written
as (Va, Pic)

T = Φ−1(z). Thus, the system state variables Va, Pic are expressed as functions
of the flat output z1 given by (19) and its time derivative ż1 defined as (20). Finally, from
(21), we deduce that the control variable u can be represented for the nonzero values of
g(Va, Pic) 6= 0 as below

u = u(z1, ż1, z̈1) =
1

g̃(z)
(z̈1 − f̃ (z)), (23)

where
g̃(z) =

[
g(Va, Pic)

]
(Va ,Pic)T=Φ−1(z)

, f̃ (z) =
[

f (Va, Pic)
]
(Va ,Pic)T=Φ−1(z)

. (24)

Note that one can check that the inequality g(Va, Pic) 6= 0 at a point Va = Va0, Pic = Pic0
is equivalent to the condition (22). This fact is an outcome of a more general theory of non-
linear dynamical systems presented in [15]. As a consequence of the above considerations,
we conclude that the system (13) is differentially flat.

4. Nonlinear Output Regulation Control Design

To guarantee the cerebral blood flow regulation (15), one can first try to find the
constant reference values Va = Var = const and Pic = Picr = const such that the condition
q(Var, Picr) = qn holds. Then, a reasonable control strategy would be to force the differences
Va(t)−Var and Pic(t)− Picr to zero as t→ +∞ in a controllable way to meet the constraints
(16) by the choice of a state feedback u = u(Va, Pic).

In this paper, the reference value Picr of the intracranial pressure variable Pic let us
select to nullify the z1 rate given by (20) under the basal value q = qn of the arterial-arteriolar
blood flow rate, i.e.,

Picr =
RoRpvqn

Rpv + R f
+ Pvs + Ro Ii. (25)

One can easily check that the right-hand side of the expression (25) under the basal
values of model parameters given in [4] and revised for convenience’s sake in Table 1
coincides with a basal value of the intracranial pressure Pic in a healthy human [16]. Note
that, in case some of the model parameter values in (25) differ from the basal ones of a
healthy human, still, one could use, for instance, the constant rate of mock cerebrospinal
fluid injection Ii to obtain a reference value Picr of the intracranial pressure that stays within
medically reasonable bounds [16].
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Table 1. Model parameters in basal conditions.

Model Parameter Basal Value

qn 12.5 mL·s−1

Rpv 1.24 mmHg·s·mL−1

R f 2.38× 103 mmHg·s·mL−1

Ro 526.3 mmHg·s·mL−1

Pvs 6.0 mmHg
kE 0.11 mL−1

k′R 0.11× 104 mmHg·s·mL
Ii 0 mL·s−1

Then, from the relations (14) and q(Var, Picr) = qn, it is deduced that

Var =

√
k′R(Rpv + R f )qn

(Rpv + R f )(Pa − Picr)− RpvR f qn
. (26)

Note that, for the reference blood volume value (26) to be correctly defined, the
following conditions on the model parameters and the intracranial pressure reference value
have to be satisfied:

Pa >
RpvR f qn

Rpv + R f
+ Picr, Var ∈ [Vamin, Vamax]. (27)

It is worthwhile to indicate that the validity of the relationships (27) is inherently
related to the model parameters’ consistency and can be easily verified for the parameter
values given in Table 1 within the systemic arterial pressure Pa autoregulatory lower and
upper limits Pamin = 60 mmHg and Pamax = 160 mmHg, respectively [4].

In what follows, we exploit the differential flatness property of the cerebral hemody-
namics model (13) conceived in the above section. In the new coordinates z = (z1, z2)

T

defined by the Formulae (19) and (20), the dynamical system (13) takes the form

ż1 = z2,

ż2 = f̃ (z1, z2) + g̃(z1, z2)u,
(28)

with the functions on its right-hand side being introduced in (24). Further, in view of (19)
for the z1 variable, we take the reference value z1r = kEVar − ln Picr, where Picr and Var are
given by (25) and (26), respectively. Moreover, by combining the relations (20) and (25), one
obtains z2r = 0 as the reference value of the z2 variable.

To achieve the regulation z1(t)− z1r → 0 and z2(t)→ 0 as t→ +∞, a straightforward
control selection would be the state feedback linearization-based design

u =
1

g̃(z1, z2)

(
− f̃ (z1, z2)− c1(z1 − z1r)− c2z2

)
(29)

which results in the following regulation error dynamics:

˙︷ ︸︸ ︷
z1 − z1r = z2,

ż2 = −c1(z1 − z1r)− c2z2.
(30)

Then, for any positive gain coefficients c1 > 0 and c2 > 0, the equilibrium point
z1 = z1r, z2 = 0 of the system (30) is (globally) asymptotically stable.

Notice that the control law (29) and, hence, the resultant closed-loop dynamics (30) are
defined whenever the control coefficient g̃(z1, z2) in (28) is not zero. It can be shown that
the inequality g̃(z1, z2) 6= 0 holds for the reference values Va = Var, Pic = Picr of the arterial–
arteriolar blood volume and intracranial pressure variables defined as (25) and (26), respec-
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tively, under the autoregulatory range of the systemic arterial pressure values Pa ∈ [60, 160]
mmHg and model parameter basal values given in Table 1. Hence, due to the continu-
ity property of the function g̃(·), the condition g̃(z1, z2) 6= 0 is satisfied at least in some
neighborhood of the point z1 = z1r, z2 = 0 of the system (28) state space.

It is well known that the control law (29) cannot explicitly guarantee that the nontrivial
trajectories z1 = z1(t) 6≡ z1r, z2 = z2(t) 6≡ 0 of the closed-loop dynamics (30) (and,
hence, the variables Va(t) and Pic(t) during the cerebral autoregulation transients) remain
bounded within the prescribed bounds for all t ≥ 0 or do not approach and become stuck
in the set g̃(z1, z2) = 0 (g(Va, Pic) = 0).

To avoid the control singularity, i.e., obtaining g(Va(t), Pic(t)) = 0 at some t = t∗, let
us redesign the control law (29) to provide the conditions

|Va(t)−Var| ≤ L1, |Pic(t)− Picr| ≤ L2, t ≥ 0 (31)

with proper positive bounds L1, L2 consistent with the constraints (16). Notice that, since
g(Var, Picr) 6= 0, which, by virtue of the relations (24), is equivalent to the inequality
g̃(z1r, 0) 6= 0, there always exist positive constants L1, L2 such that, from (31), it can be
deduced that g(Va(t), Pic(t)) 6= 0 for all t ≥ 0. Then, since the change of coordinates
z = Φ(Va, Pic) given by (19) and (20) defines a diffeomorphism whenever g(Va, Pic) 6= 0,
the inequalities (31) can be rewritten in the variables z1, z2 as

|z1(t)− z1r| ≤ M1, |z2(t)| ≤ M2, t ≥ 0 (32)

with some relevant bounds M1 = M1(L1, L2) and M2 = M2(L1, L2).
To provide the regulation z1(t) − z1r → 0, z2(t) → 0 as t → +∞ and satisfy the

conditions (32) on the transients simultaneously, we suggest to redesign the control law (29)
by using the integrator backstepping approach [17] based on barrier Lyapunov functions;
see, e.g., [18].

To this end, consider first a (barrier) function

V1(ξ1) =
1
2

k1 ln

(
N2

1
N2

1 − ξ2
1

)
,

where ξ1 = z1 − z1r, N1 = M1, k1 is a positive design constant. Introduce the error variable
ξ2 = z2 − α1(ξ1). Here, α1(·) is a continuously differentiable function to be defined later,
which accounts for the desired reference behavior of the z2 variable.

The time derivative of V1(ξ1) along solutions of the system (28) is written as

V̇1(ξ1) =
k1ξ1ξ̇1

N2
1 − ξ2

1
=

k1ξ1z2

N2
1 − ξ2

1
=

k1ξ1α1(ξ1)

N2
1 − ξ2

1
+

k1ξ1ξ2

N2
1 − ξ2

1
.

The choice α1(ξ1) = −κ1ξ1, where κ1 > 0 is a positive gain coefficient, results in

V̇1(ξ1) = −
k1κ1ξ2

1
N2

1 − ξ2
1
+

k1ξ1ξ2

N2
1 − ξ2

1
.

Hence, V̇1(ξ1) is negative definite if ξ2(t) ≡ 0.
Then, as a Lyapunov function candidate for the whole system, employ the barrier

function

V2(ξ1, ξ2) = V1(ξ1) +
1
2

k2 ln

(
N2

2
N2

2 − ξ2
2

)
,

where N2 = M2 − κ1M1, k2 > 0 is some positive design constant. Let the values κ1 > 0 and
M1 > 0, M2 > 0 be such that N2 > 0. Note that the function V2(ξ1, ξ2) is positive definite in
the domain {(ξ1, ξ2) ∈ R2 : |ξ1| < N1, |ξ2| < N2} and grows unbounded V2(ξ1, ξ2)→ +∞
as ξ1 → N1 − 0 or/and ξ2 → N2 − 0.
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The time derivative of V2(ξ1, ξ2) along solutions of the system (28) is calculated as
below

V̇2(ξ1, ξ2) = −
k1κ1ξ2

1
N2

1 − ξ2
1
+

k1ξ1ξ2

N2
1 − ξ2

1
+

k2ξ2ξ̇2

N2
2 − ξ2

2

= −
k1κ1ξ2

1
N2

1 − ξ2
1
+

k1ξ1ξ2

N2
1 − ξ2

1
+

k2ξ2
(

f̃ (z1, z2) + g̃(z1, z2)u + κ1z2
)

N2
2 − ξ2

2
.

The control selection

u =
1

g̃(z1, z2)

(
− f̃ (z1, z2)− κ1z2 − κ2ξ2 − ξ2(N2

2 − ξ2
2)
)

, (33)

where κ2 > 0 is a positive gain coefficient, yields

V̇2(ξ1, ξ2) = −
k1κ1ξ2

1
N2

1 − ξ2
1
+

k1ξ1ξ2

N2
1 − ξ2

1
−

k2κ2ξ2
2

N2
2 − ξ2

2
− k2ξ2

2.

By completing the squares, one obtains

V̇2(ξ1, ξ2) = −
k1κ1ξ2

1
2(N2

1 − ξ2
1)
−
(

k1κ1ξ2
1

2(N2
1 − ξ2

1)
− k1ξ1ξ2

N2
1 − ξ2

1
+

k1ξ2
2

2κ1(N2
1 − ξ2

1)

)
−

k2κ2ξ2
2

N2
2 − ξ2

2

− ξ2
2

(
k2 −

k1

2κ1(N2
1 − ξ2

1)

)
= −

k1κ1ξ2
1

2(N2
1 − ξ2

1)
−

k2κ2ξ2
2

N2
2 − ξ2

2

−
(

ξ1

√
k1κ1

2(N2
1 − ξ2

1)
− ξ2

√
k1

2κ1(N2
1 − ξ2

1)

)2

− ξ2
2

(
k2 −

k1

2κ1(N2
1 − ξ2

1)

)

≤ −
k1κ1ξ2

1
2(N2

1 − ξ2
1)
−

k2κ2ξ2
2

N2
2 − ξ2

2
− ξ2

2

(
k2 −

k1

2κ1(N2
1 − ξ2

1)

)
.

Hence, the time derivative V̇2(ξ1, ξ2) is negative definite in the domain {(ξ1, ξ2) ∈
R2 : |ξ1| <

√
N2

1 − k1/(2k2κ1), |ξ2| < N2}. Moreover, for any positive gain coefficients
κ1, κ2 in the control law (33), by taking the ratio of the positive design parameters k1,
k2 within the Lyapunov function V2(ξ1, ξ2) small enough, one can obtain the values of√

N2
1 − k1/(2k2κ1), which are arbitrary close to N1.
Thus, the equilibrium point z1 = z1r, z2 = 0 of the system (28) under the control (33) is

asymptotically stable with the domain of attraction {z ∈ R2 : |z1 − z1r| < M1, |z2| < M2},
which is positively invariant (see, e.g., [19]).

Notice that the difference between the integrator backstepping control law (33) and the
basic feedback linearization-based design (29) under c1 = κ1κ2 and c2 = κ1 + κ2 is in the
presence of the extra term ξ2(N2

2 − ξ2
2) in (33), which resulted in the desired boundedness

with the required bounds property of the transients.
Finally, in summary, in view of the relationships Ċa = u and (33), one obtains the

following cerebral blood flow autoregulation mathematics:

Ċa =
1

g̃(z1, z2)

(
− f̃ (z1, z2)− κ1z2 − κ2

(
z2 + κ1(z1 − z1r)

)
−
(
z2 + κ1(z1 − z1r)

)(
(M2 − κ1M1)

2 − (z2 + κ1(z1 − z1r))
2)).

(34)

The numerical simulation results of the cerebral blood flow autoregulation design (34)
performance under the model parameter values indicated in Table 1 are shown in Figures 2–7.
First, the arterial pressure steady state value Pa(t) ≡ 120 mmHg, which is deviated from
the basal quantity Pa = 100 mmHg of a healthy adult [4], was considered. Figures 2–5
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demonstrate the autoregulation response to high arterial pressure for various control gain
coefficients κ1, κ2 and the selected bounds M1, M2 based on initial values of the system
state variables.

Figures 6 and 7 illustrate the sensitivity of the arterial–arteriolar blood flow rate q
autoregulation response to changes in systemic arterial pressure steady state values. All
arterial pressure changes started from the basal steady state value Pa(t) ≡ 100 mmHg.

Notice that the simulation results show the good performance and flexibility of the
cerebral blood flow autoregulation scheme (34). By adjusting parameters κ1, κ2 and M1,
M2 of the control law (33), one can provide medically reasonable transients within required
regulation times and bounds. Even if one control parameter set fails to yield satisfactory
autoregulation responses for the whole range of arterial blood pressure values Pa ∈ [60, 160]
mmHg, as shown in Figure 6, one can readily adjust, e.g., the gain coefficient κ2, as
demonstrated in Figure 7, to obtain reasonable cerebral blood flow autoregulation time
behavior.

Figure 2. Arterial–arteriolar blood flow rate q time behavior (solid red line for κ1 = 0.002, κ2 = 0.01,
M1 = 0.1738, M2 = 3.46 × 10−4; solid blue line for κ1 = 0.002, κ2 = 0.005, M1 = 0.1738,
M2 = 3.46× 10−4; solid green line for κ1 = 0.003, κ2 = 0.01, M1 = 0.1738, M2 = 5.19 × 10−4)
and its reference value qn (dashed line).
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Figure 3. Arterial–arteriolar blood volume Va time behavior (solid red line for κ1 = 0.002, κ2 = 0.01,
M1 = 0.1738, M2 = 3.46 × 10−4; solid blue line for κ1 = 0.002, κ2 = 0.005, M1 = 0.1738,
M2 = 3.46× 10−4; solid green line for κ1 = 0.003, κ2 = 0.01, M1 = 0.1738, M2 = 5.19 × 10−4)
and its reference value Var (dashed line).

Figure 4. Intracranial pressure Pic time behavior (solid red line for κ1 = 0.002, κ2 = 0.01, M1 = 0.1738,
M2 = 3.46× 10−4; solid blue line for κ1 = 0.002, κ2 = 0.005, M1 = 0.1738, M2 = 3.46× 10−4; solid
green line for κ1 = 0.003, κ2 = 0.01, M1 = 0.1738, M2 = 5.19× 10−4) and its reference value Picr
(dashed line).
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Figure 5. Control input (arterial–arteriolar compliance rate) versus time (solid red line for κ1 = 0.002,
κ2 = 0.01, M1 = 0.1738, M2 = 3.46× 10−4; solid blue line for κ1 = 0.002, κ2 = 0.005, M1 = 0.1738,
M2 = 3.46× 10−4; solid green line for κ1 = 0.003, κ2 = 0.01, M1 = 0.1738, M2 = 5.19× 10−4).

Figure 6. Sensitivity of arterial–arteriolar blood flow rate q autoregulation response to changes in
systemic arterial pressure steady state values (solid red line for a step decrease to Pa(t) ≡ 60 mmHg,
κ1 = 6.5358× 10−4, κ2 = 0.01, M1 = 0.6568, M2 = 4.2969× 10−4; solid blue line for a step decrease
to Pa(t) ≡ 80 mmHg, κ1 = 0.0012, κ2 = 0.01, M1 = 0.2490, M2 = 3.0474× 10−4; solid green line
for a step increase to Pa(t) ≡ 120 mmHg, κ1 = 0.0019, κ2 = 0.01, M1 = 0.1643, M2 = 3.0938× 10−4;
solid magenta line for a step increase to Pa(t) ≡ 140 mmHg, κ1 = 0.0023, κ2 = 0.01, M1 = 0.2942,
M2 = 6.7020× 10−4; solid black line for a step increase to Pa(t) ≡ 160 mmHg, κ1 = 0.0026, κ2 = 0.01,
M1 = 0.3984, M2 = 0.001; dashed line for the reference value q = qn).
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Figure 7. Arterial–arteriolar blood flow rate q autoregulation response (solid black line) to a step
systemic arterial pressure increase to Pa(t) ≡ 160 mmHg under κ1 = 0.0026, κ2 = 0.002, M1 = 0.3984,
M2 = 0.001 (dashed line for the reference value q = qn).

5. Discussion

In this paper, we proposed to treat the cerebral blood flow autoregulation modeling
problem as an output tracking automatic control problem. This is the first time, at least to
our knowledge, that the cerebral blood flow lumped parameter model introduced in [4]
was studied as a dynamical system with control input and its controllability properties were
analyzed. It was shown that the cerebral hemodynamics model in question is differentially
flat. This fact reveals good potential for applying a variety of automatic control tools to de-
sign the impaired cerebral autoregulation compensation mathematical algorithms. Within
the current research, due to the model’s nonlinearity, such a well-known and effective
nonlinear control approach as integrator backstepping combined with barrier Lyapunov
functions was used to construct the control laws that recover the cerebral autoregulation
performance of a healthy human. Additionally, the backstepping-based design in question
can be further strengthened to account not only for the model nonlinearities but also for
various model uncertainties; see, e.g., [17].

The cerebral autoregulation model was developed in terms of arterial–arteriolar com-
pliance time behavior in the form of a feedback control law that utilizes information on the
intracranial pressure and arterial–arteriolar blood volume time profiles. It is worthwhile
to notice that the intracranial pressure and arterial–arteriolar blood volume values are
not available for direct measurements during clinical maneuvers. Hence, future research
can be focused on the estimation of the unmeasured quantities using, e.g., state observer
construction techniques [20] based on measurements of the arterial–arteriolar blood flow
rate values.
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