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Over the last few years, new high-throughput biotechnologies and bioinformatic methods

are revolutionizing our way of deep profiling tissue specimens at the molecular levels.

These recent innovations provide opportunities to advance our understanding of

atherosclerosis using human lesions aborted during autopsies and cardiac surgeries.

Studies on human lesions have been focusing on understanding the relationship between

molecules in the lesions with tissue morphology, genetic risk of atherosclerosis, and

future adverse cardiovascular events. This review will highlight ways to utilize human

atherosclerotic lesions in translational research by work from large cardiovascular

biobanks to tissue registries. We will also discuss the opportunities and challenges of

working with human atherosclerotic lesions in the era of next-generation sequencing.

Keywords: atherosclerosis, biobanked human biospecimens, next-generation sequencing, bioinformatic

analyses, spatial biology

INTRODUCTION

Ischemic cardiovascular events, including heart attack and strokes, is the leading cause of mortality
and morbidity worldwide (1). Atherosclerosis, the build-up of lesion cells on the wall of the
blood vessels, is a chronic process underlying most ischemic cardiovascular events. Studies of
human biospecimens have played an indispensable part in understanding the pathophysiology
of atherosclerosis because neither cell culture nor animal models can recapitulate the complex
components and structure of advanced human atherosclerotic lesions (2, 3). Before next-generation
sequencing was invented, human biospecimen studies focused on the morphology and a few lesion
components such as collagen, foam cells, and smooth muscle cells. Even with limited dimension,
the classic histology methods have set the widely-accepted lesion classification standards and found
the association between lesion morphology and ischemic events (4). The era of next-generation
sequencing brought opportunities to explore the molecular features of atherosclerotic lesions
in depth and in situ. Hence, researchers have multiple options to apply the classic and new
technologies to human biospecimens. The question is how to match the research scope and
approach with the human biospecimens available in large biobanks or small-scale tissue registries.
This review will provide a few examples to showcase current advances in utilizing human
atherosclerotic lesions, share our views of challenges in knowledge translation and vision of future
needs to advance research on human biospecimens in the area of atherosclerosis.
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CURRENT ADVANCES IN HUMAN
BIOSPECIMEN STUDIES

Morphological Insights
Histology assessment is a routine in most tissue biobanks.
Traditional hematoxylin-eosin and Movat’s Pentachrome
stainings visualize the structure and basic components of the
lesions. These widely adopted methods revealed not only the
association between morphology and cardiovascular events,
but also risk factors that contribute to disease progression.
Biopsy studies found that the morphological features of lesions
underneath cardiac thrombosis fall into three categories: rupture,
erosion, and calcified nodule (5), indicating the connection
between morphology and risk of ischemic cardiovascular events.
Following this notion, Virmani et al. developed a comprehensive
assessment criteria using morphology to define the trajectory
of lesion progression (5). Correlation studies can further infer
the pathogenic drive of lesion progression by connecting the
traditional risk factors of atherosclerosis with morphology.
Burke et al. found that patients having plaque rupture also
had higher cholesterol levels as recorded in their postmortem
toxicological tests (6). It suggests that the traditional risk factor,
cholesterol levels, drives lesion progression toward a rupture-
prone structure and lipid-lowering drugs will benefit patients
having this type of lesions. In addition to studying lesions at late
stages, Nakashima et al. observed that vascular beds that develop
diffuse intimal thickening in early childhood are also the “hot
spots” for atherogenesis in later life (7). Large biobanks have a
statistically powerful amount of samples to explore how lesion
morphology is affected by genetic risk factors in patients of
different ethnicities. CVPath Institute has the world’s largest and
most comprehensive collection of heart samples from more than
8,500 sudden coronary death cases. Their studies have shown a
higher risk of sudden coronary death in the African American
population compared to the Caucasian population (8). Guo
et al. explored the genetic reasons behind this phenomenon and
found that more African Americans carry a single nucleotide
polymorphism rs7136716 than the Caucasian population and
this genetic variant is correlated with increased expression
of CD163 macrophages in ruptured lesions (9). Then they
determined that CD163+ macrophages contribute to intraplaque
microvessels and inflammation, remodeling lesion structure to
be rupture-prone. This data suggests that rs7136716 is a genetic
risk variant particularly enriched in patients of an African
ancestry. Hence, the integration of pathology and genetics from
large biobank studies can provide new insights into the discovery
of biomarkers and personalized medicine.

Molecular Phenotyping
There has been an explosive increase in atherosclerosis research
using single-cell RNA sequencing (scRNA-seq). These studies
have revealed the vast heterogeneity in the cell components of
atherosclerotic lesions, including more than six phenotypes of
SMCs (10–12) and at least three macrophage subsets (13, 14)
among eleven distinct leukocyte populations (15). Most previous
studies applied next-generation sequencing to animal models,
in which disease stages can be controlled, and cell lineage

tracing is available. These advantages made them better tools for
understanding the trajectory of phenotypic changes and trans-
differentiation of lesion cells in the early disease stage (10, 16).
Applying next-generation sequencing to human lesions has its
own technical challenges and limitations, discussed in several
recent reviews (17–19). Nevertheless, single-cell sequencing of
human lesions will distinguish cell phenotypes and signaling
pathways in categorized patient cohorts, the differences in
which can be used to predict therapeutic targets and treatment
outcomes. Slenders et al. projected GWAS loci into scRNA-seq
data of human carotid lesions and defined cell-specific risk genes
that can be translated to therapeutic targets (20). Fernandez
et al. applied several single-cell sequencing technologies to
human carotid lesions. They found that differences in the
interleukin-1β (IL-1β) signaling pathway between symptomatic
and asymptomatic patients may lead to diverse treatment
outcomes in the CANTOS trial, which aims to block IL-
1β to reduce the risks of cardiovascular events (21). One
limitation of using scRNA-seq to predict cellular function
is that it ignores all the post-transcriptional regulation of
gene expression. Quantitative proteomics uses technologies
such as mass spectrometry to characterize proteins, molecules
that eventually execute gene function. Since traditional mass
spectrometry usually requires a few milligrams of input material,
most previous studies focus on cultured cells instead of digested
lesions to obtain the protein atlas of a single cell type. Okui
et al. applied mass spectrometry to cultured human coronary
artery SMCs and found that carnitine O-octanoyltransferase
increases during osteogenic transition of SMCs, which will
lead to calcification during atherogenesis (22). The Athero-
Express study used proteomics to analyze the protein features of
human carotid lesions and found that osteopontin was strongly
associated with cardiovascular events during the follow-up post
endarterectomy surgery. suggesting that pathologists can use
osteopontin as a biomarker to predict patients’ future risk of
cardiovascular events (23). The Athero-Express study collects
carotid lesions from endarterectomy surgeries and follows up
with the clinical records of donors to determine the relationship
between lesion composition and future adverse cardiovascular
events (23). It embraces the idea that atherosclerosis is a
systemic disease and biopsy tests of surgically aborted lesions
will inform the progression of lesions in other vascular beds
(24). The Athero-Express study has recently applied state-of-
the-art scRNA-seq technology to their biobank to advance
our understanding of the transcriptome landscape of human
lesions (25), and more specific biomarkers are expected with
accumulated data of clinical follow-up. Hence, when the
molecular features of human lesions are linked to clinical
follow-up of the specimen donors, it will support the discovery
of biomarkers.

Proof of Concept
Compared to large biobanks, sample availability in small-scale
tissue registries is often too low to support genetic studies such
as investigating the polygenic risk factors. Without follow-up
of clinical outcomes, the archived tissue samples are not ideal
for biomarker studies. However, these tissues can be readily

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 July 2022 | Volume 9 | Article 948492

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Elishaev et al. Biospecimen Studies in Atherosclerosis Research

used to prove the concepts of basic sciences: “reality check”
that observations in animal studies or cultured cells will apply
to human atherogenesis. It is now well-known that vascular
smooth muscle cells (SMCs) undergo phenotypic changes during
atherogenesis and most of them do not express lineage markers
such as myosin heavy chain 11 and smooth muscle alpha-
actin, but it was not till the invention of SMC-lineage tracing
mice when researchers realized about this (26). To prove the
presence of de-differentiated SMCs in human atherogenesis,
Gomez et al. developed a staining method to visualize cells of
SMC origin using SMC-lineage tracing mice and then applied
the technique to human carotid lesions (n = 5) (27). Clinical
information can be completely detached from the biospecimen
studies in such proof of concept research and small sample size
is acceptable. Working with archived samples shortens the time
of ethical approval for researchers. Proof of concept studies allow
archived specimens to be repurposed andmaximized in the tissue
registries. For example, the Cardiovascular Tissue Registry at the
Centre for Heart Lung Innovation at the University of British
Columbia collects hearts donated by heart transplant patients,
and the myocardium has been utilized to support studies of
cardiac allograft vasculopathy (28). In parallel, Allahverdian et al.
characterized the atherosclerotic coronary arteries from these
hearts and discovered that an underestimated amount of foam
cells are derived from SMCs instead of macrophages (29). This
study, along with growing evidence from GWAS of coronary
artery disease (30–32), has changed the traditional dogma that
atherosclerosis is mainly a macrophage-driven disease.

CURRENT GAPS IN KNOWLEDGE
TRANSLATION

Despite the current advances in new technologies, guidelines of
research design (19) and customized protocols (33) to maximize
the utilization of human biospecimen, translation of biobank
research to biomarkers and therapeutic targets is still limited.
Current gaps in knowledge translation include the lack of tailored
bioinformatics tools to interpret “Omics” data, “Omics” in the
tissue context, and connections of traits in the lesions with blood-
borne biomarkers, which is more applicable for clinical testing.

Bioinformatic Tools
As more human biospecimen studies have embraced scRNA-
seq technology, bioinformatics tools that are primarily R- and
python-based have been developed, including Seurat (34), Signac
(35), archR (36), singleR (37), scCATH (38), and Garnett
(39). Additionally, the less robust single-cell sequencing data
can intersect with large bulk sequencing datasets, such as the
Human Cell Atlas (40) through Cibersort (41) and MuSiC
(42), to estimate the portion of specific cell types in the bulk-
seq data. However, only a few tools incorporate established
pipelines into webapps or standalone applications to allow
scientists without programming experience to analyse their
data. Most bioinformatics tools are also incompatible with
integrating datasets published in various formats. This problem
is accompanied by bioethical considerations of what clinical

information affiliated with the human biospecimen can be shared
and how to oversee the appropriate use of shared datasets
(43–46). Furthermore, myriad analysis options are available:
over 1,000 tools are developed for scRNA-seq alone (47), with
limited benchmarking for atherosclerotic lesions. The nature of
cells in the atherosclerotic lesion: cell plasticity and dynamic
phenotypic changes during atherogenesis (10, 48), is especially
challenging for bioinformatics tools that rely on: (1) reference
datasets to define a cell type, and (2) the persistent presence of
a phenotype in transition to trace the trajectory of atherogenic
changes (49–52).

Lack of Spatial “Omics” Data
Gene ontology analyses of scRNA-seq data predict the function
of each cell subset based on signaling pathways and biological
processes involving genes specific to that subset. However, cells
are unevenly distributed among the atherosclerotic lesions. In
the traditional diagram of a fibroatheroma, endothelial cells
are located at the luminal side with SMCs underneath and
macrophages form foam cells in the intima and shoulder region.
After the discovery of cell subsets and phenotypic transition of
lesion cells, now we know that the fibrous cap is derived from
SMCs and endothelial cells that have undergone endothelial-
to-mesenchymal transition (16). CD68+ “macrophages” in the
deep intima are made of leukocytes and SMCs (29). The
stability of lesion structure is affected by the distribution of
these cell subsets and their interactions with the others. Within
the several types of SMCs in atherosclerotic lesions, some
are fibroblast-like, potentially forming a protective fibrous cap
(53), whereas pro-inflammatory macrophages and SMCs may
enlarge the necrotic core by altering the function of each other
(54). These assumptions can be validated only when we see
fibroblast-like SMCs on the fibrous cap of stable lesions and
more impaired macrophages are close to the pro-inflammatory
SMCs near the necrotic core. In the absence of lesion context,
it can be misleading to predict lesion progression purely based
on signaling pathways and biological processes represented by
gene expression. The same mitogenic signaling pathway turned
on by IL-1β in SMCs may cause pathogenic expansion of the
atherosclerotic lesions (55) when these SMCs are located in the
intima, but it may be athero-protective when these cells are
in the fibrous cap. Blocking IL-1β in animals with established
fibroatheroma resulted in lesion destabilization, suggesting that
at least a subset of SMCs executed IL-1β’s mitogenic effects
in an athero-protective manner by investing into the fibrous
cap (56). Hence, it is critical to consider spatial “Omics” data
when translating single-cell “Omics” data to therapeutic targets
and biomarkers.

Connection to Traits in the Blood
Tissue biopsy examinations are well-accepted for phenotyping
tumors but are not practical in the clinical practice of
atherosclerotic disease where not all patients require surgical
treatment. Connecting the traits of atherosclerotic lesions
to those in the blood will help the discovery of blood-
borne biomarkers that can be easily implemented in clinical
laboratories. Phenotyping blood cells has the potential to

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 July 2022 | Volume 9 | Article 948492

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Elishaev et al. Biospecimen Studies in Atherosclerosis Research

TABLE 1 | Spatial gene expression technologies.

Technology Resolution Applications Time Common features/differences

Visium

Tissue sections are mounted on top of

capture spots. Each spot has a unique

spatial barcode to retrieve its location. For

frozen tissues, mRNA is directly released

to bind to spatially barcoded

oligonucleotides on the capture spots. For

FFPE tissues, mRNA is first hybridized

with pairs of specific probes for each

targeted gene. Probe pairs are then ligated

and released to bind to the spatial

barcode on the capture spot (73)

Capture spot of 55µm

diameter; 100µm

distance between the

centers of two capture

spots (73)

Maximum capture area:

6.5 × 6.5 mm² and
4,992 spots per

capture area (73)

Frozen: Heart (74–76),

Liver (77), Spinal cord

(78), Skin (79), and

Breast cancer (80)

FFPE: Brain, ovarian

cancer, lung, and

kidney (81)

Hours to days (82) - Fixed positions of capture spots

include 0 to 10 cells.

- RNA capture utilizes pre-

existing lab equipment.

- Gene expression data is layered

over a morphological image

of the same tissue section.

- 4–5 protein markers can be combined

by immunofluorescence staining with

gene expression.

GeoMx DSP

Tissue sections are stained with a mix of

RNA or antibody probes, each contains a

unique UV-cleavable oligonucleotide

barcode. These barcodes are released by

UV light illuminated at defined regions of

interest (ROIs) and then counted. Reads

are mapped back to each ROI, generating

a map of genes or/and proteins expression

within the tissue architecture (83)

As low as 10µm (73)

Minimum ROI: 5 ×

5µm² Maximum ROI:

660 × 785 µm² (84)

FFPE: Transcriptome:

Lymphoid and

colorectal (83), Kidney

(85), Brain tumor (86),

Heart, lung, and liver

(87)

Proteins: Breast cancer

70-plex (88)

10–20 tissue sections

in 1.5–2.5 days

(depends on the

number of ROI) (83)

- Flexible choice of regions respects

boundaries of cells and tissue

components.

- RNA/protein capture require a

specific instrument.

- Use fluorescent morphology markers to

guide selection of ROIs.

- Up to 96 protein markers can be

counted by nCounter, or more than 100

proteins using next-generation

sequencing

reveal cellular biomarkers in the circulation (57). Hamers
et al. explored protein expression of circulating monocytes
using a 39-plex CyTOF panel and found a positive correlation
between Slan+CXCR6+ monocyte population in the blood and
the severity of atherosclerotic disease estimated by medical
imaging, suggesting that this monocyte population could be
a biomarker for disease progression (57). More importantly,
studying biopsy and blood samples from the same donor will
determine whether molecules in the blood mirror biological
activities in the lesion. The interleukin-6 (IL-6) signaling pathway
is a crucial mediator of inflammation in the lesions (58), and
elevated plasma IL-6 in patients with acute coronary syndrome
is currently the most powerful predictor of increased mortality
in both short and long terms (59, 60). To explore its utilization
as a biomarker for risk of cardiovascular events, the Biobank
of Karolinska Endarterectomies study found that plasma IL-
6 is positively correlated with those in the carotid lesions
(61), but no significant differences were observed between
symptomatic and asymptomatic patients (62). Hence, plasma
IL-6 does not precisely reflect lesion progression and risk of
adverse cardiovascular events. Until now, we have not found
clinically applicable biomarkers to mirror biological activities in
atherosclerotic lesions. Clonal hematopoiesis of indeterminate
potential (CHIP), a phenomenon by which blood precursor cells
in bone marrow obtain mutations during aging, is associated
with a higher risk of atherosclerosis (63). In this original study,
the authors found more than one hundred CHIP mutations in
peripheral blood cells but did not have access to any molecular
information about the atherosclerotic lesions. This study left the
knowledge gap on how specific CHIPmutations will reflect lesion
progression and can be promising biomarkers for risk prediction.

OPPORTUNITIES AND CHALLENGES IN
FUTURE STUDIES

Collaborations are the key to advancing knowledge translation
of human biospecimen studies. Publicly available “Omics” data
from multiple studies can be pooled together to enhance the
diversity of the studied population given that most data are
based on European descendants. For researchers who already
have the datasets, meta-analysis will combine different studies,
as applied in the Coronary Artery Disease Genome-wide
Replication and Meta-analysis plus The Coronary Artery Disease
Genetics consortium. It is critical for researchers working on
human atherosclerotic lesions to assess the potential pitfalls
of applying a bioinformatic pipeline tested on other tissues to
work on atherosclerotic lesions, which requires communication
between the dry and wet labs to reflect on the principles of the
pipelines and biological features of the tissues. For example, a
spectrum of early to late staged atherosclerotic lesions need to
be incorporated into the research design to answer questions
about cell trajectories. For bioinformaticians, a consortium that
integrates RNA-seq datasets has not been established yet, but
initiatives have been made for sharing datasets in a user-friendly
way. PlaqView is the first platform that empowers researchers
who do not have access to human atherosclerotic lesions or who
do not have bioinformatics expertise to re-analyze published
scRNA-seq data (64). More biobanks have started to investigate
blood and lesion samples from the same donor side-by-side
to develop blood-borne biomarkers. The recently established
Munich Cardiovascular Studies Biobank at the German Heart
Center Munich has collected more than 800 pairs of blood and
lesion samples to connect molecular traits in atherosclerotic
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TABLE 2 | Spatial protein expression technologies.

Technology Resolution Applications Time Common features/differences

PhenoCycler (CODEX)

Tissue sections are stained with a cocktail

of antibodies conjugated with unique

oligonucleotide barcodes. For each

imaging cycle, reporters that carry

fluorescence dyes and oligonucleotides

complementary to the barcodes will bind

to the antibodies to visualize the locations

of 3 targeted proteins. These reporters are

then removed and the cycle will repeat

until all proteins are imaged.

200 nm (89, 90)

Single cell level

Maximum addressable

sample size depends

on the microscope and

objective lens

FFPE: Colorectal

cancer 56-plex (91)

and Bladder cancer

35-plex (92)

Frozen: Muscle 9-plex

(93)and Spleen

30-plex (94)

Depends on the

number of probes.

30-plex in 3.5 h (93)

- Autofluorescence from tissue exists.

- Signals from three antibodies are

captured per cycle.

- Number of antibodies is

theoretically unlimited.

- Capable of imaging large tissue

section.

- Tissue section reusable

Hyperion (IMC)

Tissue sections are stained with a cocktail

of antibodies conjugated with metal tags.

Stained tissue sections are ablated by a

laser beam focused at 1µm and then

nebulized. The ionized metal tags are

distinguished by the differences in the time

of flight in the mass spectrometry.

1 µm2 (73, 89)

Single cell level

Maximum size: 15 ×

55 mm²; Maximum

ROI: 2.25 mm² (95)

FFPE: Oropharyngeal

cancer 33-plex (96),

Lung cancer 14-plex

(97), Bladder cancer

34-plex (98), and Brain

11-plex (99)

2 h to scan 1.5 mm²
using 200 spots/sec

speed (90)

- Not affected by tissue

autofluorescence.

- Signals from all the antibodies are

captured simultaneously.

- Number of antibodies limited by

available metal isotopes (∼40).

- Tissue section not reusable

MIBIscope

Tissue sections are stained with a cocktail

of antibodies coupled to metal tags. The

primary ion beam strikes the samples to

liberate the lanthanide adducts of the

bound antibodies. This generates the

second ions that are analyzed by the mass

spectrometer. MIBI utilizes adjustable ion

beams to accommodate sample

acquisition at varying depth and spot size.

200 nm to 1µm

(89, 100) 5–30 nm (101)

Single cell and

subcellular levels

Range of ROI: 400 ×

400–800 × 800

µm² (100)

FFPE: Breast cancer

37-plex (102),

Tuberculosis lung

37-plex (103),

Lymphoid, bladder, and

placenta 16-plex (104)

25min for two fields of

80µm diameter (105)

90 ROIs (800 × 800

µm² each) per day
(100) 1 mm/5 h with

500 nm resolution (90)

- Similar to Hyperion but resolution

can reach subcellular level

lesions to those in blood. Small-scale tissue registries have the
opportunity to collaborate with biobanks that have access to
blood samples and patients’ clinical follow-up records to validate
molecular targets or biomarkers found in tissue studies. Spatial
gene expression (Table 1) and multiplex imaging technologies
(Table 2) have been commercialized to optimize the use of
archived tissue blocks by measuring gene and protein expression
in a high-throughput fashion. Roadblocks to applying them to
human atherosclerotic lesions are mainly technical. Regarding
histology integrity, lesion sections can easily fold and tear during
sample preparation due to the natural curvature of the lumen and
the presence of calcification and large necrotic cores. Regarding
quality control of the RNA, atherosclerotic lesions, especially
the highly necrotic ones, have low cellularity compared to
the more frequently reported tumor, brain, and myocardium
tissues. Based on our experience and previous research (65), a
large part of one lesion (at least 100µm long) is required to
extract an adequate amount of RNA for quality assessment: 5
ng for the 2100 Agilent bioanalyzer (RNA 6000 Nano kit) or
RT-PCR to amplify housekeeping genes. Moreover, Formalin-
Fixed Paraffin-Embedded is the standard archiving format in
biobanks to preserve lesion morphology. RNA stability remains
unchanged for up to 10 years in this format (65). Previous
research found that RNA is unevenly degraded within the same
lesion section (66). Hence, we think that in situ assessment of
RNA quality (67) is more suitable than extracting RNA from

the whole section to select samples for spatial gene expression.
Such a method can advise which lesion region has high quality
input material to generate sequencing reads of high fidelity.
Regarding the interpretation of data, cell segmentation has been
the most problematic step for all the spatial biology tools. So
far, most software and analysis pipelines assign the signals to a
cell nucleus nearby based on algorithms trained in cancer tissues
(68–70), assuming that cells in other tissues have similar size and
shape. This may lead to inaccurate cell segmentation in lesion
sections when the spindle-shaped 200µm long SMCs, spherical
lymphocytes of 7–10µm in diameter, and foam cells with various
sizes are all in close proximity. For spatial gene expression,
transcriptomes from multiple cells can be mixed in one captured
region and devolution of cell types requires reference scRNA-
seq data (71, 72). Unlike working with dissociated cells, multiple
sections are required to assess the entire lesion using spatial
biology technologies, significantly increasing the cost. Removing
these roadblocks requires efforts from both the academic and the
technology industries.

CONCLUSION

Human atherosclerotic lesions carry valuable morphological
and molecular information to decipher the mechanism of
atherogenesis and reveal therapeutic targets and biomarkers for
patients. While large biobanks with adequate sample numbers
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and clinical data can perform genetic and biomarker studies, a
smaller sample pool in the tissue registry also plays a vital role
in translating basic sciences to a human disease scenario. New
biotechnologies, along with bioinformatic tools to process the
data, are modernizing biobank-based research in atherosclerosis,
providing opportunities to maximize the utilization of human
biospecimen. However, these new tools validated in other tissues
are not one-size-fits-all, given the complex cell components in
human atherosclerotic lesions. Collaborations from researchers
in cardiovascular disease, bioinformaticians, and technology
developers are essential for benchmarking and customization of
available tools to address the unique challenges in future studies
of human atherosclerotic lesions.
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