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Abstract
In this paper we propose an approach for performing fault detection and identification in clock
ensembles based on the generalized likelihood ratio test. We show that by applying a set of
purposefully-designed statistical tests, one can successfully detect faults occurring in a clock
of the ensemble, and identify which measurement in the ensemble is most likely to have
triggered the detection. We first develop the theoretical framework for the characterization of
the detectors and their performance, and validate the derivations via Monte Carlo simulations.
Then, we apply the statistical tests to an ensemble of cesium clocks, aiming at detecting and
identifying three types of non-nominal behaviors. The faulty conditions are obtained by
injecting a pattern of phase steps, a phase and frequency drift, and an oscillatory phase
component.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Clock ensembles play a fundamental role in providing a sta-
ble and robust time scale for high-integrity applications. Com-
pared to single clock approaches, clock ensembles are charac-
terized by improved stability and robustness. However, clock
faults can still impact the stability and availability of the gen-
erated time scale. Thus a clock ensemble must be equipped
with a dedicated fault monitoring system performing three
steps: fault detection, fault identification, and fault adaptation.
Detecting a fault means raising an alarm when a fault occur-
rence is observed, while the identification step aims at locat-
ing where in the system the fault is occurring. Finally, fault
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adaptation consists in taking corrective actions to reduce the
impact of the fault on the system, for instance by repairing or
temporarily removing the faulty unit. Since in this paper we
only tackle the first two steps, we will talk of fault detection
and identification (FDI).

A FDI algorithm is implemented in a detector. The detec-
tor observes a particular quantity (the observable) and scans
for deviations from the expected nominal behavior, which are
caused by the occurrence of a fault. Different faults act dif-
ferently on the system, thus we must choose the right observ-
able (or a set thereof) to properly identify different types of
expected errors. In this work we use three observables, namely
Kalman filter residuals, phase measurements, and dynamic
Allan variance (DAVAR) of differential clock measurements.
For each of these we devise a dedicated detector based on
the generalized likelihood ratio test (GLRT), which accounts
for the statistical distribution of the observable in both nomi-
nal and faulty conditions. We derive a model-based test and a
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Table 1. Selected literature on integrity for clocks and clock ensembles.

Method Single clock Clock ensemble

Kalman filter residuals [4–6, 29] [3, 23–25]
GLRT on clock measurements [7–11] This work
Dynamic Allan variance [12–16] This work
Trend analysis—smoothing—recursive filters [18–20] [27, 28]
Optimal stopping method [21] —
Average, least-squares, standard deviation on sliding windows [17] [26]
Interferometry [22] —

self-consistency test. In the model-based test the detector com-
pares the current observation to the value predicted by a clock
model: any deviation between the two can originate from a
fault, but also from a mismodelling of the expected behavior.
We apply the model-based test on the entire set of clock mea-
surements (overall model test) to perform fault detection, and
then singularly on each measurement to perform fault iden-
tification (w-test) [1, 2]. In the case of homogeneous ensem-
bles, which only contain clocks of the same type, we construct
the self -consistency test. This test does not require to define
clock noise parameters. The availability of multiple clocks
of the same type allows the estimation of the nominal clock
behavior directly from the observations. Instead of detecting
deviations between observed and modelled behaviors, we now
detect deviations between one measurement and the average
observed behavior of all measurements.

After deriving the different types of statistical tests, we
describe the expected performance of each in terms of prob-
ability of false alarm and probability of missed detection.
Monte Carlo simulations are then used to validate the theo-
retical derivation. Finally, we perform an experimental assess-
ment of all the tests devised by injecting different types of
fault patterns in a laboratory clock ensemble, and we verify
whether the tests can successfully detect and identify the faulty
signal.

1.1. State of the art

Table 1 shows a selection of literature on fault detection in
clocks and clock ensembles. While most of the studies focus
on detecting faults on single clock signals, some works specif-
ically target clock ensembles. In [3] the authors propose the
usage of a Kalman filter for fault detection in a clock ensem-
ble: by tracking the evolution of the Kalman filter residuals it
is possible to detect discrepancies between model and obser-
vations. This method is further investigated in [4] and applied
in [5, 6]. The use of the GLRT for detecting clock failures is
described in [7], and further developed in [8–10]. In [11] the
method is applied to the detection of anomalies on a GPS satel-
lite clock. The DAVAR method, detailed in [12–14], makes
use of the overlapping Allan variance (OAVAR) computed on
sliding windows of given length, and compares the temporal
changes in the data to predefined DAVAR values. The detector
is triggered if the deviations exceed a statistically significant
threshold. The application of this method to clocks onboard
satellites of global navigation satellite systems (GNSSs) is

shown in [15, 16]. In [17] the author describes three algo-
rithms for detection of jumps in frequency measurements: the
BLKAVG algorithm computes the average of frequency points
on non-overlapping moving windows, detecting a jump when
the difference in averages among two windows is larger than a
given threshold; the SEQAVG algorithm employs an averaging
window only once a potential jump is detected, to confirm or
reject the detection; finally, the CUSUM algorithm computes
the cumulative sum of the differences between each frequency
data point and the average value on the entire data set. The
slope of the cumulative sum reflects the average behavior of
the measurement and can be used to detect frequency jumps.
Other techniques for fault detection in clock signals include
trend analysis and filtering of the frequency signal [18–20],
the optimal stopping method [21], and interferometric anal-
ysis [22]. Fault detection in clock ensembles is further dis-
cussed in [23–25] using Kalman filters. Instead, the methods in
[26–28] use least-squares fitting, standard deviation computed
on sliding windows, and infinite impulse response filters.

In this work we integrate and extend some of these
approaches for FDI. Expanding from our previous works
[30, 31] we provide a theoretical framework for the design of
fault detectors in clock ensembles. The techniques shown here
can be directly applied to real-time dependable timing sys-
tem, greatly improving the robustness of the generated time
scale. The paper shows how to take advantage of the GLRT
for the observation of different quantities, so that the integrity
layer of a system can be easily expanded with further detec-
tors using the same approach. Furthermore, the GLRT allows
us to predict the performance of the detectors in terms of prob-
ability of false alarm (Pfa), probability of missed detection
(Pmd), and minimum detectable bias (MDB). This enables tun-
ing the detectors to fulfill the desired integrity requirements,
namely which magnitude of fault is detectable and with which
probability. By taking as example a precise timing facility run-
ning a clock ensemble to provide timing services, these meth-
ods would benefit both the provider and its users. Firstly, the
provider can guarantee a given integrity level, since the detec-
tion performances can be determined beforehand; then, in case
of a faulty clock, warnings can be promptly provided to the
users, while the fault is located in the system and corrective
actions are put in place. An additional advantage of these meth-
ods is represented by the self-consistency test, which detects
whether one of the clocks diverges from the ensemble’s aver-
age behavior. Since no a priori clock noise model is assumed,
this test is not triggered by any influence affecting all clocks
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in the same way. The evaluation of clocks on board GNSS
satellites is an example of such a benefit: the estimation of the
clocks’ states is affected by the residuals of the orbit determi-
nation process, which determine an increase of the observed
OAVAR for sampling intervals around half of the orbital period
[32]. A model-based test would in this case trigger a detection
since the observed behavior differs from the clock model, even
if the misbehavior is not due to the clock itself. Instead, the
self-consistency test would not trigger, since the additive bias
is present on all clocks.

2. Clock ensemble

The system under study consists of a set of clocks, a measure-
ment device, a Kalman filter and a number of detectors. While
we keep the theoretical development as general as possible
concerning number and type of clocks, the experimental veri-
fication is performed with an ensemble of 5 cesium frequency
references. Figure 1 shows a schematic of the ensemble.
The measurement device generates differential clock measure-
ments, which are phase and/or frequency differences between
two clocks. In our setup the first clock acts as reference against
which we measure the remaining units, but different measure-
ment topologies can be used. The clock measurements are fed
to the Kalman filter, which first predicts the states of the clocks
according to a specified clock model, and then updates the pre-
dicted states with the available observations. The Kalman filter
is executed on a laboratory computer connected to the mea-
surement device. This computer also runs the FDI algorithm.
Furthermore, a dedicated device can inject a desired fault pat-
tern into the signal of a clock, so that we can run experiments
for assessing the performance of the detectors. The injected
fault is indicated by ∇(t) in figure 1.

2.1. Clock model and ensemble model

We use a two-state clock model with constant frequency drift
and Markov processes, as described in [33–35]. The state vec-
tor of each clock contains one state representing the phase
deviation and one state for the frequency deviation. When
required for more accurate modelling, the state vector of the
single clock is extended with one or more additional states,
related to additive Markov processes [34]. We combine the
states of each clock to obtain the state vector x of the entire
ensemble. In time discrete notation we describe the dynamics
of the system and its observation with

xk = Φ (τ0)xk−1 + d (τ0) + nk−1, (1)

zk = Hxk + vk, (2)

where the subscript •k indicates the quantities at time tk,
τ 0 = tk − tk−1 is the constant time discretization, Φ the state
propagation matrix, d the drift vector, z the vector of clock
measurements, and H the measurement matrix. The process
noise nk and the measurement noise vk are assumed Gaussian:

nk ∼ N (0,Q(τ0)) , (3)

vk ∼ N (0,R) , (4)

Figure 1. Functional representation of the clock ensemble under
study, with measurement topology and processing units: the clocks,
whose state vector is x(t), are measured by a device generating clock
measurements z(t). A Kalman filter computes the estimates x̂(t) of
the clock states. The FDI algorithm uses the clock measurements
z(t), the states estimate x̂(t), and the dynamic Allan variance
(DAVAR) σ̂2

y (t, τ ) of the clock measurements to observe and
evaluate the state of the system. For assessing the FDI algorithm, we
inject a fault ∇(t) to the signal of the second clock. The computer
executing the algorithm is not depicted.

where Q is the process noise covariance matrix and R is the
covariance matrix of the measurement noise. The matrices
Φ and Q are block diagonal, where each block is the cor-
responding matrix for the single clock i, iΦ (τ0) and iQ (τ0),
computed with the model parameters of the respective clock
iσ1 and iσ2:

iΦ (τ0) =

[
1 τ0

0 1

]
, (5)

iQ (τ0) =

⎡⎢⎣iσ
2
1τ0 + iσ

2
2
τ 3

0

3 iσ
2
2
τ 2

0

2

iσ
2
2
τ 2

0

2 iσ
2
2τ0

⎤⎥⎦ . (6)

If Markov processes need to be added to model specific behav-
iors, we expand the matrices accordingly [34]. Denoting the
constant frequency drift of the i-th clock as id, we generate
the drift vector by stacking the vectors id (τ0) of the single
clocks:

id (τ0) = id

⎡⎣τ 2
0

2
τ0

⎤⎦ . (7)

The measurement matrix H describes how the clocks are mea-
sured with respect to each other. It depends on the measure-
ment topology of the ensemble and on whether differential
phase or frequency measurements are available. In our case we
measure the phase of each clock with respect to the first clock.
Thus we obtain M = N − 1 measurements, where N is the
number of clocks in the ensemble. Without Markov processes
the measurement matrix is

H =

⎡⎢⎢⎢⎣
−1 0 1 0 0 0 . . . 0 0
−1 0 0 0 1 0 . . . 0 0

...
−1 0 0 0 0 0 . . . 1 0

⎤⎥⎥⎥⎦ . (8)
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Additionally, we define a second measurement matrix H,
which maps the clock units to the measurements. It can be
obtained from H by eliminating the null columns. For instance,
the matrix corresponding to the aforementioned topology with
four clocks and three differential measurements is

H =

⎡⎣−1 1 0 0
−1 0 1 0
−1 0 0 1

⎤⎦ . (9)

This matrix represents the measurement topology without
dependence on the number of states used to model the system.

2.2. Kalman filter

We run a clock ensembling algorithm based on a Kalman filter,
as described in [34, 36]. At each time step, the filter provides an
estimate of the clock states by executing the following steps:

x̂−
k = Φ (τ0) x̂k−1 + d (τ0) , (10)

P−
k = Φ (τ0)P′

k−1Φ
�(τ0) +Q (τ0) , (11)

Kk = P−
k H

�(HP−
k H

� +R
)−1

, (12)

x̂k = x̂−
k +Kk(zk −Hx̂−

k ), (13)

Pk = (I−KkH)P−
k , (14)

Pr,k = SPkS
�, (15)

P′
k =

Pr,k +P�
r,k

2
. (16)

x̂− is the predicted estimate of the state vector x, with associ-
ated error covariance matrix P−, K is the Kalman gain, used
to generate the updated state estimate x̂, with associated error
covariance P. To avoid the unbounded growth of the com-
ponents in P, we employ the covariance x-reduction method
(15) described in [36]. The reduced covariance matrix Pr is
obtained via the diagonal matrix S, an identity matrix whose
entries corresponding to the phase components in the state
vector are set to zero. Finally, (16) ensures that the resulting
reduced covariance matrix is diagonal. In (14), I denotes an
identity matrix, whose size is the number of states in x.

3. Faults, observables and hypotheses

In this paper we consider two different classes of faults. The
first kind consists of abrupt changes in the observed phase or
frequency signals, such as jumps and steps, which present a
very fast dynamics. The second type of faults shows a slower
behavior and includes phase or frequency drifts as well as
oscillatory components in the signals. A drift can arise due
to the aging of the clocks, while the oscillation can generate
from periodic effects, such as daily temperature fluctuations
or orbital-related dynamics. While abrupt faults are promptly
reflected into the Kalman filter residuals, drifts cause a step-to-
step phase and frequency deviation which might be too small
to be detected by testing the filter residuals. Thus, to detect this

type of faults we need a quantity which ‘accumulates’ the error,
such as the phase measurements and their DAVAR. Clearly,
the required accumulation of a sufficient number of samples
introduces a delay between the fault onset and the time of first
detection.

In the following sections we introduce the theoretical
descriptions of the three observables: Kalman filter residu-
als, phase measurements, and DAVAR. For each observable
we define a null hypothesis H0, which describes its statisti-
cal distribution when the system operates under nominal con-
ditions. An alternative hypothesis HA describes instead the
observable’s distribution when a fault is occurring in the sys-
tem. With these hypotheses we then derive a statistical test
decision based on the GLRT.

3.1. Kalman filter residuals

The Kalman filter residuals track the deviations between the
observed clock measurements z and the measurements pre-
dicted by the model. Recalling (13) and (14), we express the
residuals and their covariance as:

ρ(kf)
k = zk −Hx̂−

k (17)

Ω(kf)
k = R +HP−

k H
�. (18)

In nominal conditions we expect the residuals to remain small,
while their magnitude increases if the observed measurements
differ from the modelled behavior. We therefore define the two
hypotheses:⎧⎪⎨⎪⎩

H(kf)
0 : ρ(kf)

k ∼ N
(

0,Ω(kf)
k

)
H(kf)

A : ρ(kf)
k ∼ N

(
C∇k,Ω(kf)

k

) . (19)

Here we introduce the vector of faults ∇ affecting the sys-
tem, and the matrix C describing how the faults act on the
observables. The size of vector ∇ depends on the shape of
matrix C, whose free design allows the selection of a given
fault mode to be tested. For example, setting C = IM, an iden-
tity matrix of size M, enables us to perform fault detection by
assuming a potential fault on all elements of the observable
vector, with ∇ becoming a vector of M entries. When assign-
ing C = ci instead, with ci a M-elements vector with 1 at the
i-th entry and zero elsewhere, we can scan all single measure-
ments i = 1 . . .M to locate the faulty one. In this case ∇ is a
scalar.

3.2. Phase measurements

We describe the time-varying distribution of the phase mea-
surements of the clocks with the model equation (1):

xk∼N [Φ (tk−t0)x(t0) + d (tk−t0) ,Q (tk−t0)] , (20)

where x(t0) contains the initial phase and frequency states of
the ensemble. Then, from (2) we have

zk ∼ N
(
ζk,Ω(z)

k

)
, (21)
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where

ζk = H [Φ (tk − t0)x(t0) + d (tk − t0)] , (22)

Ω(z)
k = HQ (tk − t0)H� +R. (23)

We define the phase residuals as the difference between
observed and expected phase measurements,

ρ(z)
k = zk − ζk, (24)

so that the corresponding hypotheses can be defined:⎧⎪⎨⎪⎩
H(z)

0 : ρ(z)
k ∼ N

(
0,Ω(z)

k

)
H(z)

A : ρ(z)
k ∼ N

(
C∇k,Ω(z)

k

) . (25)

These hypotheses have the same form of those derived for the
Kalman filter residuals (19). While the latter track the evo-
lution of the phase measurements with respect to the previ-
ous time step, the phase measurements residuals describe the
overall phase evolution from the initial time instant.

3.3. Dynamic Allan variance

The third observable is the DAVAR of differential phase mea-
surements computed on a sliding window of given length. In
[12] the DAVAR value is centered in the middle of the sliding
window, whereas in this paper the evaluation time corresponds
to the right limit of the window. In this way the DAVAR can
be used in a real-time scenario employing the latest available
data samples. Thus, the DAVAR at time tk uses the measure-
ments in the window [tk − W, tk], where W is the length of the
sliding window. We use the notation

i j
σ̂2

k,τ ,W for the DAVAR of
the measurement between clocks i and j, at time instant k, for
sampling interval τ and window length W. The expected value

i jσ̄
2
τ and the variance Var

(
i jσ̂

2
τ ,W

)
of the DAVAR are assumed

constant in time and can be expressed using the clock noise
parameters:

i jσ̄
2
τ = 3 i j R

τ 2
+ i jσ

2
1

τ
+ i jσ

2
2τ

3
+ i jd

τ 2

2
, (26)

Var
(

i jσ̂
2
τ ,W

)
= f

(
τ , W, i jR, i jσ

2
1, i jσ

2
2, i j d

)
. (27)

Here, the noise parameters refer to the combined contribution
of the two clocks included in each measurement. The func-
tion in (27) is explicitly derived in [37] for different noise
components. Since an expression of the variance also consider-
ing Markov processes is not available yet, we use a simplified
clock model without additional processes, whose parameters
are reported in section 4.4, expression (73).

The DAVAR at time tk distributes according to a
χ2-distribution [38], namely (in the following we drop the i j
subscript):

pτ ,W
σ̂2

k,τ ,W

σ̄2
τ

∼ χ2
(

pτ ,W
)

, (28)

where

pτ ,W = 2
σ̄4
τ

Var
(
σ̂2
τ ,W

) (29)

are the degrees of freedom. By combining (28) and (29) we
define the normalized DAVAR

ξk,τ ,W =
2σ̂2

k,τ ,W σ̄2
τ

Var
(
σ̂2
τ ,W

) . (30)

We express the distribution of ξ using the gamma distribution

ξk,τ ,W ∼ χ2
(

pτ ,W

)
≡ Γ

( pτ ,W

2
, 2
)

, (31)

since it allows us to also express the faulty case. If a fault
occurs in the system, we expect a change of the measured
DAVAR, therefore we modify the theoretical value by the
quantity ∇k,τ ,W:

ξk,τ ,W =
2σ̂2

k,τ ,W

(
σ̄2
τ +∇k,τ ,W

)
Var
(
σ̂2
τ ,W

)
=

2σ̂2
k,τ ,W σ̄2

τ

Var
(
σ̂2
τ ,W

) σ̄2
τ +∇k,τ ,W

σ̄2
τ

(32)

∼ Γ

(
pτ ,W

2
, 2

σ̄2
τ +∇k,τ ,W

σ̄2
τ

)
. (33)

The quantity ξ refers to a single measurement. To design an
overall model test, we need to express the distribution of a
vector of observables ξ containing the observation of all mea-
surements. However, expanding expression (33) to a multivari-
ate gamma distribution is not trivial. In this work we focus
on the scalar case, leaving the extension to the multivariate
case for future work. It is worth noting that we can derive
an overall model test by approximating the gamma distribu-
tion (33) to a Gaussian distribution. This holds for a number
of degrees of freedom pτ ,W sufficiently large, which occurs
when the sampling interval τ is small compared to the win-
dow length W. Under this approximation we can follow the
same procedure previously derived for tests on the phase mea-
surements: compute the DAVAR residuals as the difference
between observed and expected behaviors, and derive the null
and alternative hypotheses, which would be in the same form
of (19) and (25). However, in this paper we only focus on the
w-test derived from the exact distribution (33) of ξ, which is
valid for any sampling interval. The corresponding hypotheses
read ⎧⎪⎪⎨⎪⎪⎩

H(ξ)
0 : ξk,τ ,W ∼ Γ

( pτ ,W

2
, 2
)

H(ξ)
A : ξk,τ ,W ∼ Γ

(
pτ ,W

2
, 2

σ̄2
τ +∇k,τ ,W

σ̄2
τ

) . (34)

4. Fault detection and identification with the GLRT

In this section we derive the statistical tests based on the
observables’ distributions. In the GLRT framework we devise
a model-based test, which can be in the form of an overall
model test or a w-test, and a self-consistency test. The deriva-
tion of the detectors starts from the definition of the hypotheses
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Table 2. Overview of the observables used and of the tests derived in this work.

Notation Model-based test Self-consistency test

Quantity Observable Residual Distribution Overall model test w-test

Kalman filter residuals — ρ(kf)
k N � � a

Phase measurements zk ρ(z)
k N � � �

Normalized DAVAR ξk,τ ,W — Γ b � b

aSelf-consistency test is not applicable, since Kalman filter residuals already include model information.
bNot derived in this work.

on the observed distributions. In section 3 we showed that
the hypotheses are of the same form for normally distributed
observables (Kalman filter residuals and phase measure-
ments), thus we need only one derivation of a test expression
which can then be applied to all of them. Additionally, we
need a separate derivation of the w-test for gamma distributed
observables (normalized DAVAR). Table 2 gives an overview
of the observables and the tests derived in this work.

Assume we have a vector of observables with given distri-
bution y ∼ f (y|α), where the parameter α takes values in the
set G. If we consider the hypotheses

{H0 : α ∈ G0

HA : α ∈ G
, (35)

where G0 ⊂ G, the GLRT for this problem is then defined as

Reject H0 if
max
α∈G0

f (y|α)

max
α∈G

f (y|α)
< a. (36)

The threshold a defines the critical region K, i.e. the set of
values of y leading to a rejection of H0.

Since the measurements are affected by noise, the test can
deliver a wrong result. We talk of false alarm (or type I error) if
H0 is rejected when in fact H0 is true. The probability of false
alarm Pfa of the test (or size of the test) is

Pfa =

∫
K

f (y|H0)dy. (37)

A missed detection (type II error) occurs instead when H0 is
wrongly accepted, when in fact HA is true. The probability of
missed detection Pmd is

Pmd = 1 −
∫
K

f (y|HA)dy. (38)

4.1. Model-based GLRT for normally distributed
observables

The Kalman filter residuals and the phase measurements resid-
uals follow a normal distribution. Thus, we generalize the
hypotheses (19) and (25) by removing all observable-specific
annotations:

{H0 : ρ ∼ N (0,Ω)

HA : ρ ∼ N (C∇,Ω)
. (39)

This allows us to derive a general expression of the test, which
is then used for the different observables by using the respec-
tive matrices. By following the derivation shown in appendix
A, we obtain the test

Reject H0 if T = ∇̂�Q−1
̂∇̂∇∇̂ > k, (40)

with
∇̂ = (C�Ω−1C)−1C�Ω−1ρ, (41)

Q
̂∇̂∇ = (C�Ω−1C)−1. (42)

If q is the number of entries in ∇̂, the test T is χ2-distributed
with q degrees of freedom. The distribution is central under
the null hypothesis and non-central under the alternative
hypothesis: {H0 : T ∼ χ2 (q, 0)

HA : T ∼ χ2 (q,λ)
, (43)

with non-centrality parameter

λ = ∇�Q−1
̂∇̂∇∇. (44)

We design two versions of this test by varying the shape of
matrix C. In the limit case of q = M we obtain the overall
model test, while setting q = 1 yields the w-test.

4.1.1. Overall model test. In the overall model test we have
q = M and C = I, leading to ∇̂ = ρ. The estimate of fault
vector ∇̂ completely absorbs the residuals ρ, and the test
reduces to

Reject H0 if T = ρ�Ω−1ρ > kM. (45)

The test is χ2-distributed with M degrees of freedom, and we
compute the threshold kM from the expression

Pfa =

∫ +∞

kM

χ2(η|q = M,λ = 0)dη. (46)

The probability of missed detection for a given value of non-
centrality parameter λ is

6
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Pmd =

∫ kM

0
χ2(η|q = M,λ)dη. (47)

We employ the overall model test for the detection step, in
which all the entries of the observation vector are tested as a
whole.

4.1.2. w-test. The w-test is derived by setting q = 1. The
matrix C becomes a column vector ci, where the ith entry is
equal to one, and zero elsewhere. By iteratively applying the
test to all measurements in the ensemble (varying i from 1 to
M), we can sweep all the measurements and locate the one
which is most probably faulty. This process is also known as
data-snooping. The test becomes

Reject H0 if T =
∇̂2

σ2
̂∇
> k1, (48)

where ∇̂ =
c�i Ω−1ρ

c�i Ω−1ci
and σ−2

̂∇ = c�i Ω
−1ci are now scalar. The

test is χ2-distributed with 1 degree of freedom, central under
the null hypothesis, non-central under the alternative hypothe-
sis. We compute the threshold k1 from the expression

Pfa =

∫ +∞

k1

χ2(η|q = 1,λ = 0)dη, (49)

while the non-centrality parameter λ = ∇2c�i Ω
−1ci is related

to the Pmd:

Pmd =

∫ k1

0
χ2(η|q = 1,λ)dη. (50)

The MDB represents the minimum magnitude of fault that can
be detected by the w-test with a given value of Pmd:

|∇MDB| =
√

λ

c�i Ω
−1ci

. (51)

4.2. Self-consistency test for normally distributed
observables

The model-based test requires to know a priori how the clocks
behave in their environment to determine the parameters of
the clock model. This is problematic if the clocks cannot
be directly controlled or accessed, for instance for clocks
onboard satellites: in this case the application of a clock model
not reproducing the actual nominal conditions of the system
can lead to mismodelling, missed detection, and in general
poor performance of the integrity monitoring techniques. This
motivates the self-consistency test, in which we only set the
structure of the ensemble and the distribution function of the
measurements, but the model parameters are left free and are
estimated from the observations [1]. In the case of homoge-
neous ensembles, where the clocks are of the same type, the
test estimates the expected value and variance of the mea-
surements, as well as assessing the occurrence of a fault in
a measurement. While the model-based tests are computed
from the residuals, defined as the difference between the obser-

vation and the modelled behavior, the self-consistency test is
computed directly from the observations. We develop the self-
consistency test for the phase measurements (21), while the
derivation for gamma distributed observables is left for future
work.

In an homogeneous ensemble, we expect all clock measure-
ments to exhibit the same mean value and variance, thus we
rewrite expression (21) as

zk ∼ N
(
ζku, v2

kΨ
)

, (52)

where u is a M-sized vector of ones, ζk the magnitude of the
expected value, Ψ dictates the shape of the covariance matrix,
and v2

k controls the magnitude of the covariance matrix. The
test directly estimates the scalars ζk and v2

k from the observa-
tions zk. We set the matrix Ψ according to the measurement
topology of the ensemble:

Ψ =
HH�∣∣HH�

∣∣ = 1
M
HH�. (53)

By dropping the subscript for time dependence, the hypotheses
read ⎧⎨⎩H(s)

0 : z ∼ N
(
ζu, v2Ψ

)
H(s)

A : z ∼ N
(
ζu+C∇, v2Ψ

) . (54)

The derivation in appendix B leads to the self-consistency test

Reject H(s)
0 if T =

∇̂�R−1
̂∇̂∇∇̂

qv̂2
A

> ks, (55)

with

R
̂∇̂∇ = (C�Ψ−1P⊥

uC)−1, (56)

∇̂ = R
̂∇̂∇C

�Ψ−1P⊥
uz, (57)

v̂2
A = (M − q − 1)−1z�Ψ−1P⊥

CP
⊥
uz, (58)

where q is the number of columns in C, and we use the
following idempotent matrices:

P⊥
u = I− u

(
u�Ψ−1u

)
u�Ψ−1, (59)

P⊥
C = I−C

(
C�Ψ−1C

)
C�Ψ−1, (60)

P⊥
u = I− u

(
u�Ψ−1P⊥

Cu
)
u�Ψ−1P⊥

C. (61)

The test (55) is F-distributed⎧⎨⎩H(s)
0 : T ∼ F (q, M − 1 − q, 0)

H(s)
A : T ∼ F (q, M − 1 − q,λ)

, (62)

with non-centrality parameter

λ = ∇�R−
̂∇̂∇∇v−2. (63)

7
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Figure 2. Distribution at tk = 100 s of the overall model test and of the w-test applied to the Kalman filter residuals in the nominal case H(kf)
0

and in the faulty case H(kf)
A (∇ = 10−11 s added on the first residual at every time step). The histograms show the distributions of the test

from Monte Carlo simulations, while the lines show the theoretical distributions.

Figure 3. Left: distribution of the overall model test applied to the phase residuals. Center: distribution of the w-test applied to the phase
residuals. Right: distribution of the self-consistency test applied to the phase measurements (threshold out of scale). All distributions are
provided in the nominal and in the faulty case for tk = 500 s, where a drift ∇ with slope d∇

dt = 2.5 × 10−12 s/s is added on the first
measurement. The histograms show the distributions of the test from Monte Carlo simulations, while the lines show the theoretical
distributions.

Figure 4. Evolution of the MDB for the w-test (|∇MDB|) and self-consistency test (|∇(s)
MDB|) on the phase measurements, as function of time.

The MDB grows in time since the magnitude of the observables’ covariance matrix increases. The dashed lines represent the magnitude of
the injected fault ∇. In this particular case, the self-consistency test (right plot) would not detect the slowly increasing drift.

The test threshold ks can be found by inverting the expression
for the Pfa:

Pfa =

∫ +∞

ks

F(η|q, M − 1 − q,λ)dη. (64)

In the following we apply the self-consistency test in a man-
ner similar to the w-test, thus we set C = ci, q = 1, and we
sweep the different measurements by changing the position

i of the non-zero entry in the vector ci. The MDB for the
self-consistency test is

∣∣∣∇(s)
MDB

∣∣∣ =√ λ

R−1
̂∇̂∇

v2, (65)

where in this case R
̂∇̂∇ is a scalar.
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Figure 5. Expected (Pmd) and observed (P̂md) probability of missed detection for the tests applied to phase measurements. The theoretical
values are found using the corresponding integrals defining the Pmd, while we compute the observed values by counting the number of
triggerings of the given test during the Monte Carlo simulation. As the injected fault increases faster than then the MDB (see figure 4), the
Pmd decreases over time.

Figure 6. The upper plots show the distribution of the normalized DAVAR ξ for different sampling intervals, for a sliding window set to
W = 103 s. The lower plots show the distributions of the corresponding w-test and the test thresholds. The histograms show the distributions
resulting from Monte Carlo simulations, while the lines show the theoretical distributions. Please note the different scaling of the axes.

4.3. w-test for gamma-distributed observables

As previously shown, the normalized DAVAR ξk,τ ,W follows
a gamma distribution, for which a dedicated test is here
developed. In this work we focus on the scalar version, leading
to the w-test. Dropping all subscripts, the hypotheses are⎧⎪⎪⎨⎪⎪⎩

H(Γ)
0 : ξ ∼ Γ

( p
2

, 2
)

H(Γ)
A : ξ ∼ Γ

(
p
2

, 2
σ̄2 +∇

σ̄2

) . (66)

The derivation in appendix C leads to

T =
σ̂2

σ̄2
, (67)

which distributes according to a gamma distribution

⎧⎪⎪⎨⎪⎪⎩
H(Γ)

0 : T ∼ Γ

(
p
2

,
2
p

)
H(Γ)

A : T ∼ Γ

(
p
2

,
2
p
σ̄2 +∇

σ̄2

) . (68)

Thus, the w-test on the DAVAR becomes

Reject H(Γ)
0 if T < kl or T > ku, (69)

where kl is the lower threshold and ku is the upper threshold,
which can be computed from the expression of the Pfa:

Pfa = 1 −
∫ ku

kl

Γ

(
η

∣∣∣∣ p
2

,
2
p

)
dη. (70)
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Figure 7. Expected (Pmd) and observed (P̂md) probability of missed
detection for the w-test on the DAVAR, for different sampling
intervals and fixed length of the sliding window W = 103 s.

The Pmd can be found from:

Pmd =

∫ ku

kl

Γ

(
η

∣∣∣∣ p
2

,
2
p

σ̄2

σ̄2 +∇MDB

)
dη. (71)

The test (69) is double-sided. One can argue that a fault in the
system can only cause a degradation of the observed stabil-
ity and thus an increase in DAVAR, making the lower side
of the test pointless. However, this test detects differences
between observation and model, therefore we can use the lower
side to detect mismodelling. If we select a model predict-
ing an DAVAR higher than the real value, the test will fall
below the lower threshold, and the triggering of the test can
be accordingly marked.

4.4. Monte Carlo analysis

We run a set of Monte Carlo simulations of an ensemble com-
prising 5 cesium references to verify the theoretical distribu-
tions of the devised tests, and to compare the observed values
of Pfa and Pmd to the expected ones. This is only possible in
simulation, since we need a large number of runs to evalu-
ate the statistical behavior. Two simulations are carried out:
one for the nominal case, and one for the faulty case, where a
fault is injected in the first measurement. The selected model
parameters of the cesium standards are

iσ
2
1 = 9 × 10−24 s, iσ

2
2 = 0, id = 0,

iUM = 10−23 s, iRM = 0.57 s−1, (72)

where iUM and iRM parametrize the Markov process. As dis-
cussed in section 3.3, we also need a model without Markov
processes to obtain a prediction model for the DAVAR, thus
we choose

iσ
2
1 = 4.5 × 10−23 s, iσ

2
2 = 0, id = 0, iUM = 0. (73)

In both cases we assume a value for the measurement noise
variance of R = IM× 10−25 s2. These values are obtained by
a laboratory characterization of the cesium frequency refer-
ences used in this work. Long term measurements of the clocks
are taken and their DAVAR computed, which is then fitted to

Figure 8. The solid gray line represents the nominal OAVAR σ̄2(τ ),
the dotted line shows the faulty OAVAR, which is shifted from the
nominal by the injected fault ∇, and the solid black lines represent
the MDB ∇MDB for the DAVAR test, using W = 103 s.

Figure 9. Phase measurements z(t) in the first scenario. The shaded
area shows the injected pattern of phase steps ∇(t).

derive the model parameters. We set the probability of false
alarm to

Pfa = 10−3, (74)

leading to the threshold value for the overall model test
kM = 18.5, for the w-test k1 = 10.8, and for the self-
consistency test ks = 998.5. The thresholds kl and ku for the
DAVAR test depend on the length of sliding window W and on
the sampling interval. A representation is given in the follow-
ing experimental results. In the different simulations, the Pmd

can be computed using the threshold value and the magnitude
of the injected drift.

4.4.1. Kalman filter residuals test. We run the Kalman filter in
the nominal case and in the faulty case, where we inject a fault
of magnitude∇ = 10−11 s on the first residual, at all time steps.
Thus we have ∇ = ∇c1, where c1 = [1 0 . . . 0]� is a column
vector of M entries. We then check the distributions of the
overall model test and of the w-test under the two hypotheses.
In the faulty case we expect a time dependent non-centrality
parameter

λk = ∇2c�1

(
Ω(kf)

k

)−1
c1. (75)

The matrix Ω(kf)
k depends on time, but it converges after some

iterations of the Kalman filter, as long as the measurements do
not show abrupt changes. For tk = 100 s we obtain λ100 = 5.2.
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Figure 10. Scenario I: tests on the Kalman filter residuals in the presence of phase steps. The dotted line is the test threshold, the shaded
curve shows the injected steps. (a) shows the overall model test, (b) the w-test selecting the single measurements c1 to c4, (c) shows which
measurement is most probably deemed as faulty (the symbol ∅ is used for unsuccessful identification, when a fault is detected but not
identified), while (d) shows the reduced test, when the faulty measurement is excluded from the observation vector. Removing an entry from
the vector requires a recomputation of the threshold using a smaller value of degrees of freedom q, leading to the dips seen in the plot.

Figure 11. Scenario I: phase measurement residuals overall model
test in the presence of phase steps. The dotted line is the test
threshold, the shaded curve shows the injected steps.

From expressions (47) and (50) we expect a Pmd for the over-
all model test of P(om)

md (λ100) = 0.94, while for the w-test of
P(wt)

md (λ100) = 0.84.
Figure 2 shows the distributions of the overall model test

and of the w-test in the nominal caseH(kf)
0 and faulty caseH(kf)

A ,
as well as the theoretical expected distributions. By counting
the number of triggerings in the nominal case based on 105

simulations, we compute P̂fa = 9.6 × 10−4, which is in good

Figure 12. Scenario II: injected fault in terms of phase and
fractional frequency differences. Three parts can be identified:
initially no fault is added, then the injected phase grows
quadratically, finally reaching a linear behavior.

agreement with the expected value of Pfa = 10−3. If instead
we count the times the test was not triggered in the faulty case,
we obtain P̂(om)

md = 0.94 and P̂(wt)
md = 0.84 for the w-test. These

values are in agreement with the theoretical derivation of the
tests on the Kalman filter residuals.
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Figure 13. Measured OAVAR σ̂2 of the four channels computed on
the entire batch of experimental data, and theoretical expected
OAVAR σ2 for the two clock models, with and without Markov
processes. The drift injected to the first measurement z1 is visible at
long sampling intervals.

4.4.2. Phase measurements test. In this case we inject a
fault with linearly increasing magnitude with slope d∇

dt = 2.5
× 10−12 s/s in the first entry of the clock measurements
vector z. While the distribution of test in the null hypothesis
is constant in time, in the faulty case the distribution is time
dependent, since the injected fault is growing. Thus we verify
the distribution for tk = 500 s, leading to λ500 = 57.2 for the
overall model test and w-test, and λ(s)

500 = 53.6 for the self-
consistency test. Figure 3 shows the theoretical and observed
distributions of the three tests in the nominal and faulty
cases for tk = 500 s, while in figure 4 the magnitude of the
injected fault is compared to the MDB for the w-test and self-
consistency test. Since the entries of the matrix Ω(z)

k used to
compute the non-centrality parameter are increasing, the MDB
grows in time. A slowly increasing drift can be detected only
when its magnitude becomes larger than the MDB. In figure 5
we plot a comparison of the expected and observed probabil-
ities of missed detection for the overall model test, w-test and
self-consistency test as function of time. The theoretical val-
ues are computed with (47) for the overall model test, (50) for
the w-test and (71) for the self-consistency test. At the begin-
ning, the injected fault is smaller than the MDB and remains
undetected. The detection occurs later when the fault mag-
nitude exceeds the MDB, which is reflected in the decrease
in Pmd.

4.4.3. DAVAR test. To verify the distributions of the tests on
the DAVAR, we simulated an ensemble in the nominal case
using the clock parameters (73), while in the faulty case we
increased the first parameter of the second clock by a factor 3,
so that 2σ

2
1 = 1.35 × 10−22 s. In this way the first entry in the

measurement vector shows a fault, whose magnitude ∇(τ ) is
computed by subtracting the theoretical DAVAR values of the
first and second clocks. We employ a sliding window of 1000 s,
and we compute the test for different values of sampling inter-
val τ . The upper plots in figure 6 show the distribution of the
normalized DAVAR (66) for an increasing sampling interval
τ , while the lower plots show the distribution of the corre-
sponding w-test developed using the gamma distribution (68).

Figure 7 shows the observed and expected Pmd for the DAVAR
w-test at increasing values of τ , while figure 8 compares the
magnitude of the injected fault ∇(τ ) to the value of the MDB
(∇MDB). The error can be captured at shorter sampling inter-
vals, while in the long term the statistical uncertainty in the
determination of the DAVAR increases, thus weakening the
power of detection.

5. Hardware setup and measurements

In our laboratory we run an ensemble of 5 cesium frequency
references (Symmetricon 5071A), structured as in figure 1.
With a SpectraDynamics high resolution offset generator we
inject a fault of desired magnitude in the signal of the second
cesium. Finally, a computer collects the measurements gener-
ated by a K+K FXE80 counter, and runs the ensembling and
FDI algorithms in Matlab. We run three scenarios with dif-
ferent faults: in the first we inject a series of phase steps; the
second scenario involves a phase and frequency drift; finally,
a periodic phase component is injected in the third case. Here
we set the integrity requirements as Pfa = 10−3, Pmd = 10−6.

5.1. Scenario I: injection of phase steps

Figure 9 shows the phase measurements in the first scenario
along with the injected phase steps. The phase pattern includes
steps of different size and sign. For this scenario we only com-
pute the tests on the Kalman filter residuals and on the phase
measurements, but not on the DAVAR.

5.1.1. Tests on the Kalman filter residuals. Applying the over-
all model test on the Kalman filter residuals generates the
results shown in figure 10. All the injected steps cause a spike
in the test value, whose level depends on the size of the respec-
tive step. Only the smallest steps around tk = 270 s do not
trigger the test, but this is expected as their size is compara-
ble with the MDB |∇(kf)

MDB| = 52.1 ps. For locating the faulty
measurement once the overall model test is triggered, we per-
form the w-test shown in figure 10(b). Although the test on
the first channel (using c1) shows the highest values, the tests
on the other channels trigger as well. This is due to the corre-
lation between the differential measurements using a common
clock, also encoded in the non-diagonal structure of the matrix
Ωk. Thus, we cannot unambiguously identify the faulty mea-
surement yet. To perform identification we apply the following
strategy:

(a) Find which vector c j generates the highest test value;
(b) Create a reduced observables vector ρR by removing the

entry j corresponding to c j;
(c) Perform the overall model test on the reduced observables

ρR:

1. If the test is triggered, ρR still contains the faulty
measurement. Restart from step (a) to remove one
more entry from the reduced vector ρR;

2. If the test is not triggered, the faulty measurement
was correctly removed: measurement j is considered
as faulty;
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Figure 14. Scenario II: tests on the phase measurements in the presence of phase drift. The dotted line is the test threshold, the shaded curve
shows the injected drift. (a) shows the overall model test, (b) the w-test on single measurements (all inset plots show the range 1.03 × 105 s to
1.05 × 105 s), (c) shows which measurement is most probably deemed as faulty (the symbol ∅ is used for unsuccessful identification), while
(d) shows the reduced test, when the faulty measurement is removed. Finally, (e) shows the self-consistency test on the phase measurements.
Note the different scales of the y-axes in (e): the test threshold ks = 998 is out of scale in all plot except that for c1.
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Figure 15. Scenario II: measured DAVAR σ̂2
k,τ of the faulty channel

and corresponding test, computed on three data segments (A, B, and
C) starting at different times. The upper plot shows the alignment of
the data segments with the injected drift (shaded area): the first
window is computed before the drift onset, the second during the
part with quadratic drift, while the third in the part with linear drift.
The central plot shows the DAVAR computed in the three segments.
As expected, only the quadratic drift causes an increase in the
observed values. The lower plot shows the test computed on the
three data segments. The shaded area represents the interval between
the lower and upper test thresholds, i.e. the region where H(Γ)

0 is
accepted.

(d) Repeat the process until a faulty measurement is identified.
If all entries are removed from the observables vector ρ,
the algorithm cannot identify a faulty measurement, and
the identification process fails.

The result of this process represents the measurement which
is most probably faulty, shown in figure 10(c). Here, we use the
symbol ∅ when the fault identification process is unsuccessful.
As expected, the first measurement is identified as faulty in all
the detected steps. Figure 10(d) shows the overall model test
computed on the reduced vector of observables. The reduced
test is never triggered, meaning that the algorithm success-
fully identifies the faulty measurement. Removing entries in
the vector of observables requires recomputing the test thresh-
old with a smaller number of degrees of freedom, leading to
the dips shown in the threshold value.

5.1.2. Tests on the phase measurements. Although this sce-
nario is not designed to assess the phase measurements tests,
we show in figure 11 the performance of the overall model
test. As expected, only the largest steps trigger the test, since

Figure 16. Result of applying the DAVAR test to the first channel in
the second scenario, for a sliding window of length W = 105 s. The
black shading represents the points in time and sampling interval
where the test is triggered, while the hatched area covers missing
data. The upper and right plots show the projections at a selected
time instant and at a selected sampling interval. The dotted lines
show the test thresholds.

the magnitude of the covariance matrix (and therefore the
magnitude of the MDB) increases over time.

5.2. Scenario II: injection of a drift

In the second experiment we inject a phase and frequency drift,
shown in figure 12. It consists of three parts: until tk = 105 s
no drift is added, while the frequency drift increases lin-
early for 105 s < tk < 2 × 105 s, reaching a maximum value
of 1 mHz, which is then kept constant until the end of the
experiment. Correspondingly, the phase drift shows first a
quadratic increase and finally a linear growth. Figure 13 shows
the OAVAR computed on the entire measurement length and
the OAVAR of the clock models: the dotted points describe
the model without Markov process, while the crossed points
correspond to the model with Markov process.

5.2.1. Tests on the phase measurements. Figure 14 shows
the results of the test applied to the phase measurement
residuals. The injected drift is successfully detected about
4320 s after its onset at tk = 105 s. The overall model test
in figure 14(a) shows a small increase at the beginning of the
experiment. This is due to the nature of this test, which is more
sensitive to small phase deviations during the initialization
of the detection process. The w-test (figure 14(b)) cor-
rectly locates the drift on the first measurement, as seen in
figure 14(c). The inset plots show that the w-tests computed
using c2, c3, and c4 grow more slowly than with c1, and are trig-
gered on average 5000 s later. Figure 14(d) shows the overall
model test on the reduced vector of phase residuals. The self-
consistency test results in the values in figure 14(e). This test
identifies the drift with a delay of 21 945 s using c1. Although
the detection with this test occurs with a significant delay,
one should consider that the injected drift is relatively small
(100 ps/s), thus a longer time is needed for the fault to exceed
the detection threshold.

5.2.2. Test on the DAVAR. We expect the test on the DAVAR
to detect the fault at long sampling intervals, since the drift
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Figure 17. Scenario II: analysis of the detection delay for the DAVAR w-test. We define the detection delay as the difference between the
start of drift injection at tk = 105 s and the time of first detection. (a) shows the DAVAR w-test for W = 104 s on the first measurement as
function of time. The different lines show the test for different sampling intervals. (b) shows the detection delay on the first measurement as
function of the sampling interval, for different lengths of the sliding window W.

Figure 18. Scenario II: DAVAR w-test based on the gamma distribution, for different lengths of sliding window W, for the measurement
channels 1 to 4. The black areas indicate fault detection, white means no detection. The hatched areas cover missing data: shorter windows
provide values only at shorter sampling times, but longer windows can be evaluated only at later times. The area ‘D’ shows drift detection,
while the area ‘M’ corresponds to triggering due to mismodelling.

Figure 19. Scenario III: injected fault phase difference ∇(t). We can
see three parts: initially no fault is added, then the amplitude grows
linearly, finally reaching an oscillation of constant amplitude.

increases the measured DAVAR in the region above τ = 102 s
(see figure 13). However, the successful detection of the drift
depends on the length of the sliding window and on the cur-
rent time step. The drift can be seen in the DAVAR only if the
sliding window is long enough, in this case at least W > 103 s.

Figure 15 shows the DAVAR and the w-test (67) for three win-
dows of length W = 105 s starting at different time instants:
before the drift onset, during the quadratic phase increase, and
during the linear phase drift. The shaded area in the lower test
plot represents the area where the null-hypothesis is accepted,
delimited by the lower threshold kl and the upper threshold ku.
The DAVAR computed on the window during the quadratic
drift clearly shows that the fault can be detected in the region
above τ = 200 s. However, the fault remains undetected in the
last data segment, since the DAVAR is invariant to linear phase
drifts. In the lower plot of figure 15 we note that the test is trig-
gered also for short sampling intervals. This triggering is due
to mismodelling: in figure 13 a mismatch can be noted between
the measured DAVAR and the values predicted by both clock
models. In summary, we expect the DAVAR test to trigger
due to the drift for τ > 200 s, W > 103 s, and 105 s < tk <
2 × 105 s. The rejections due to mismodelling should occur
for all window lengths, all times, and τ < 10 s.

The value of the DAVAR test is function of time step tk,
sampling interval τ , length of the sliding window W, and mea-
surement channel. To show these dependencies, we introduce
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Figure 20. Scenario III: tests on the phase measurements in the
presence of an oscillation in phase. The dotted line is the test
threshold, the shaded curve shows the injected oscillation. (a) shows
the overall model test, and (b) shows the self-consistency test on the
phase measurements. As expected, neither test can successfully
detect the injected oscillation.

the compact visualization shown in figure 16. Here we plot
the results of the w-test on the DAVAR for the first chan-
nel, for one value of sliding window length W. This plot is
obtained by reworking the three-dimensional surface of the
DAVAR as function of time and sampling interval, correspond-
ing to the waterfall plots in [13]. Since we are mainly interested
in knowing whether the test value lies within the thresholds
(accept H(Γ)

0 ) or outside (reject H(Γ)
0 ), we can forgo plotting

the test value on the z-axis, and we use instead a color code
for showing test acceptance or rejection. Thus, we reduce the
3D surface to a plot on the (tk–τ ) plane: the black pixels show
the pairs (tk, τ ) where the test is triggered, while we leave a
white pixel when accepting H(Γ)

0 . More information can be
added to the visualization: for example, by cutting the three-
dimensional DAVAR curve at a given time and draw a pro-
jection onto the (T–τ ) plane, we can visualize the test value as
function of the sampling interval, along with the test thresholds
(upper plot). Conversely, if we cut the surface at a given sam-
pling interval, we project onto the (T–tk) plane on the right side
the evolution of the test value as function of time (the shaded
area represents the injected drift). The hatched area covers
points where the test value is not available. The first value
is available at tk = W, since we must wait to collect enough
points for computing the DAVAR on the window [0, W]. In

Figure 21. Scenario III: measured DAVAR σ̂2 of the faulty
channel and corresponding test, computed on three data segments
(A, B, and C) starting at different times. The upper plot shows the
alignment of the segments with the injected drift (shaded area): the
first window is computed before the drift onset, the second during
the part with increasing amplitude, while the third in the part with
constant amplitude. The central plot shows the DAVAR in the three
batches, and the expected effects of the injected oscillation. The
lower plot shows the test computed on the three data segments. The
shaded area represents the interval between the lower and upper test
thresholds.

this example we see that the test detects the mismodelling at
short values of τ , and the drift at longer sampling intervals.
The detection delay depends on the window length and on the
sampling interval. In figure 17(a) the w-test on the first mea-
surement computed for W = 104 s is plotted as function of
time: the different lines show the test computed for different
sampling intervals. Higher values of τ result in higher test val-
ues and the detection tends to occur earlier. This is visualized
also in figure 17(b), where we plot the detection delay as func-
tion of the sampling interval for the first measurement. The
minima occur for both window lengths at τ = 2 × 103 s, with
detection delays of about 3000 s.

Figure 18 shows the result of the w-test on the DAVAR
(68) based on the gamma distribution, for the 4 measure-
ment channels zi, and for different lengths of sliding win-
dow. We note how shorter sliding windows provide results at
earlier time instants, but only for shorter sampling intervals.
Conversely, longer windows yield values of DAVAR at longer
sampling intervals, but only at later times. As expected, the
test detects the drift only on the first measurement z1, when
using sufficiently long sliding windows (area ‘D’). The drift
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Figure 22. Scenario III: DAVAR w-test based on the gamma distribution, for different lengths of sliding window W, for the measurement
channels 1 to 4. The black areas indicate fault detection, white means no detection. The hatched areas cover missing data. The area ‘D’
shows detection of the injected oscillation, while the area ‘M’ corresponds to triggering due to mismodelling.

is detected only during the quadratic part, while the mismod-
elling is detected at short τ at any time, for any window length,
and on all the measurements (area ‘M’).

5.3. Scenario III: injection of a periodic component

In the third scenario we inject an oscillating phase compo-
nent with a period of 90 minutes and an increasing ampli-
tude. The amplitude increases similarly to the second scenario:
for tk < 105 s the amplitude is zero, for 105 s < tk < 2 ×
105 s it increases linearly to reach a final amplitude of 1.38 ns
(corresponding to 5◦ at a nominal frequency of 10 MHz).
Figure 19 shows the injected fault.

5.3.1. Tests on the phase measurements. Figure 20 collects
the results for the tests on the phase measurements. This test
does not detect any fault, since the injected phase oscillation
is relatively small compared to the process and measurement
noises, and it lies within the bounds of the expected statistical
variance. The self-consistency test on the phase measurements
of figure 20(b) shows some triggerings, which are not related
to the fault injection. The number of activations falls within
the expected probability of false alarm.

5.3.2. Test on the DAVAR. In figure 21 we plot the DAVAR
computed on data segments starting at three different time
instants. The injection of the oscillation produces two ‘bumps’
in the DAVAR for sampling intervals around the period length,
seen in both the second and third part of the experiment.
Figure 22 shows the w-test based on the gamma distribution
applied to the four measurements, for increasing lengths of the
sliding window. The test successfully detects the oscillation
(area ‘D’), but only for longer windows, since for W = 103 s
we cannot use sampling intervals long enough to detect the
bumps. Again, we can see the detection of the mismodelling
at short values of τ (area ‘M’).

6. Conclusions

In this paper we devised and tested FDI in clock ensembles
based on the GLRT. The detectors observe three quantities:
Kalman filter residuals, phase measurements, and DAVAR of
phase measurements. We designed a model-based test, which
performs fault detection with the overall model test and iden-
tification with the w-test. Furthermore, we introduced a self-
consistency test to identify the faulty unit by observing the
phase measurements without a priori assuming a clock model.

The framework of the GLRT offers us a structured way
to develop new detectors, and adapt them to the observa-
tion of further quantities, provided that they show similar
statistics. Since in the GLRT we not only define a nominal
hypothesis, but also a model for the faulty case, we can eval-
uate the probability of missed detection as function of the
size of the fault. This is an advantage of these tests com-
pared to other methods where only the nominal behavior is
defined. Thanks to this, we can estimate the performance of
a detector beforehand, given the integrity requirements of the
application.

We performed three experiments to test the capability of
the detectors in different scenarios. Considering the results in
section 5.1, the test on the Kalman filter residuals is the first
choice for detecting faults such as phase steps, since this test
detects without delay the occurrence of abrupt faults. Phase
jumps can also be detected using the tests on the phase mea-
surements, however the main disadvantage of this detector
lies in the fact that the MDB increases in time with a square
root law. Thus, the detection performance decreases in time,
until the phase measurements are zeroed and the process is
restarted. Nevertheless, as shown in section 5.2, the test on
the phase measurements successfully detects and identifies the
drift affecting the clock. Obviously, the detection occurs with
a certain delay after the error onset: this requires further anal-
yses to understand how the delay changes as function of the
drift magnitude.
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Both in the second and third scenarios we evaluate the test
on the DAVAR, which successfully detects the injected drift
and oscillation. However, the χ2-distribution of the DAVAR
complicates the derivation of the GLRT. In this paper we
derived a scalar version in section 4.3: although this test per-
forms well in detecting drifts, it is applied to the single mea-
surements and thus it does not take advantage of the struc-
ture of the clock ensemble. In future work we want to extend
the statistical description of the DAVAR of the clock ensem-
ble using a multivariate gamma distribution, and thus develop
an exact overall model test on the DAVAR. The approxima-
tion to a Gaussian distribution allows us to develop an overall
model test and a self-consistency test on the DAVAR. Although
the approximation works well for short sampling intervals,
this assumption degrades the test results at long term, which
is exactly the region of interest when detecting drifts. Thus,
longer sliding windows must be employed, which in turn
delays the detection.

The detection of the mismodelling in the DAVAR test at
short sampling intervals leads us to an interesting discussion
point. On the one hand, the model-based tests clearly require a
precise clock model to provide efficient fault detection without
triggering too many false alarms. On the other hand, we can
consider this as an opportunity to warn the user that wrong
clock models may be in use. Our examples showed exactly
this case: since the DAVAR tests trigger for short sampling
intervals at all the times, on all the channels, and in differ-
ent scenarios, we conclude that our clock model is imprecise
in that region, which is confirmed by observing the differ-
ence between modelled and observed DAVAR in figure 13.
Clearly, the detector cannot autonomously discern between
faulty behavior or wrong model, but an experienced user shall
be able to determine which one is the case.

An help in this direction comes from the self-consistency
test. Since the test compares different measurements between
each other, this method is not influenced by mismodelling.
Therefore, by comparing the results of w-test and self-
consistency test, we are able to determine which triggerings
are due to faulty clock behaviors and which ones are due
to mismodelling or other unmodelled effects. These effects
include for instance daily temperature fluctuations, orbital
effects, and in general everything equally affecting all the mea-
surements and not predicted by the clock model. However,
the self-consistency test works only on homogeneous clock
ensembles, containing only clocks of the same type. Further-
more, the estimation of the expected value and of the magni-
tude of the covariance matrix requires at least three measure-
ments. Finally, the derivation of the self-consistency test for
χ2-distributed observables is not straightforward and requires
further analyses.

The different tests developed in this work complement each
other, and could be bundled together in an operational scenario
to form an ensemble of powerful fault detectors.
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Appendix A. Derivation of the GLRT for normally
distributed observables

The ratio in (36) becomes

Reject H0 if
max
∇=0

f (ρ|∇)

max
∇ �=0

f (ρ|∇)
=

f (ρ|0)

f (ρ|∇̂)
< a, (A.1)

where the probability density function (PDF) is

f (ρ|∇) = (2π)−
M
2 |Ω|− 1

2 e−
1
2 (ρ−C∇)�Ω−1(ρ−C∇), (A.2)

and
∇̂ = arg max

∇ �=0
f (ρ|∇). (A.3)

To find ∇̂ we take the derivative of the logarithm of (A.2) and
set it to zero. This operation does not influence the position of
the maximum. Thus, since Ω−1 is symmetric, it results

0 = −1
2

∂

∂∇ [(ρ−C∇)�Ω−1(ρ−C∇)]|̂∇

= C�Ω−1(ρ−C∇̂), (A.4)

from which

∇̂ = (C�Ω−1C)−1C�Ω−1ρ

= Q
̂∇̂∇C

�Ω−1ρ, (A.5)

where we defined the matrix Q
̂∇̂∇ = (C�Ω−1C)−1. By sub-

stituting (A.5) in (A.1), the ratio becomes

exp

(
1
2
∇̂�Q−

̂∇̂∇∇̂ − ρ�Ω−1C∇̂
)
. (A.6)

From (A.5) we have

Q−1
̂∇̂∇∇̂ = C�Ω−1ρ = (ρ�Ω−1C)�, (A.7)

which we can substitute in the second term of (A.6):

ρ�Ω−1C∇̂ = ∇̂�Q−1
̂∇̂∇∇̂. (A.8)

Thus, the test (A.1) becomes

Reject H0 if exp

(
−1

2
∇̂�Q−

̂∇̂∇∇̂
)

< a, (A.9)

which can be equivalently rewritten by taking the logarithm of
both sides, leading to

Reject H0 if T = ∇̂�Q−1
̂∇̂∇∇̂ > 2 log(a) = k. (A.10)
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Appendix B. Derivation of the self-consistency
test for normally distributed observables

The hypotheses (54) can be joined as

z ∼ N
(
Aη, v2Ψ

)
, (B.1)

with ⎧⎪⎨⎪⎩
H(s)

0 : A = u, η = ζ

H(s)
A : A =

[
u C

]
, η =

[
ζ
∇

], (B.2)

and PDF

f
(
z|η, v2

)
=

(
2πv2

)− M
2√

|Ψ|
e−

1
2v2 (z−Aη)�Ψ−1(z−Aη)

. (B.3)

The maximum likelihood estimates are obtained by finding the
maxima of the PDF:

η̂ = arg max
η

f
(
z|η, v2

)
=
(
A�Ψ−1A

)−1
A�Ψ−1z, (B.4)

and

v̂2 = arg max
v2

f (z|η, v2)

= M−1(z−Aη̂)�Ψ−1(z−Aη̂)

= M−1ê�Ψ−1ê, (B.5)

where we introduced the estimation error vector

ê = z−Aη̂

=
[
IM −A

(
A�Ψ−1A

)−1
A�Ψ−1

]
z

= (IM −PA) z, (B.6)

and PA = A
(
A�Ψ−1A

)−1
A�Ψ−1 is the idempotent projec-

tion matrix associated with A. Under the two hypotheses we
have

ê0 = z− uζ̂0, (B.7)

êA = z− uζ̂A −C∇̂. (B.8)

The estimate (B.4) is unbiased

E(η) = (A�Ψ−1A)−1A�Ψ−1E(z) = η, (B.9)

since E (z) = Aη, where E (•) is the expectation operator.
However, (B.5) is biased:

E(v2) = M−1E(ê�Ψ−1ê)

= M−1 tr[E(êê�)Ψ−1]. (B.10)

We observe that the covariance of ê is

Qêê = E(êê�) − E(ê)E(ê) = E(êê�), (B.11)

since

E
(
ê
)
= E (z) −AE (η) = 0. (B.12)

By introducing (B.6) and exploiting the properties of idempo-
tent matrices we obtain

Qêê = (IM −PA)E(zz�)(IM −PA)�

= v2(IM −PA)Ψ. (B.13)

Substitution of (B.11) and (B.13) in (B.10) yields

E
(
v2
)
= v2M−1 tr (IM −PA)

= v2M−1 (M − n) , (B.14)

where n is the number of column in A: n = 1 under the
null hypothesis and n = q + 1 under the alternative hypoth-
esis. The estimate (B.14) is biased, so we can use a corrected
estimator:

v̂2 = v̂2 M
M − n

. (B.15)

The estimates (B.4) and (B.5) can be now rewritten for the null
hypothesis H0

ζ̂0 = (u�Ψ−1u)−1u�Ψ−1z

v̂2
0 = (M − 1)−1ê�0 Ψ

−1ê0,
(B.16)

and for the alternative hypothesis HA[̂
ζA

∇̂

]
=

[
u�Ψ−1u u�Ψ−1C

C�Ψ−1u C�Ψ−1C

]−1[
u�Ψ−1

C�Ψ−1

]
z

v̂2
A = (M − q − 1)−1ê�AΨ

−1êA. (B.17)

Now that the maximum likelihood estimates are available, we
can build the test. The GLRT becomes

f
(
z|ζ̂0, v̂2

0

)
f
(
z|ζ̂A, ∇̂, v̂2

A

) =
v̂M

A exp
(
− 1

2v̂2
0
ê�0 Ψ

−1ê0

)
v̂M

0 exp
(
− 1

2v̂2
A
ê�AΨ

−1êA

)

=

(
v̂2

A

v̂2
0

)M
2

e−
q
2 . (B.18)

The test becomes

Reject H(s)
0 if

v̂2
0

v̂2
A

>
(
α e

q
2

)− 2
M
= ᾱ, (B.19)

or equivalently:

Reject H(s)
0 if

M − q − 1
M − 1

ê�0 Ψ
−1ê0

ê�AΨ
−1êA

> ᾱ. (B.20)

Please note that the term M − q − 1 is always positive since
the maximum value of q is M − 2. We want now to rewrite the
test as function of ∇̂. By multiplying (B.17) by a matrix B

B

[
u�Ψ−1u u�Ψ−1C

C�Ψ−1u C�Ψ−1C

] [̂
ζA

∇̂

]
= B

[
u�Ψ−1

C�Ψ−1

]
z, (B.21)
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with

B =

[
I 0

−C�Ψ−1u
(
u�Ψ−1u

)−1
I

]
, (B.22)

we obtain[
u�Ψ−1u u�Ψ−1C

0 C�Ψ−1P⊥
uC

][̂
ζA

∇̂

]
=

[
u�Ψ−1

C�Ψ−1P⊥
u

]
z, (B.23)

where

P⊥
u = I−Pu = I− u

(
u�Ψ−1u

)−1
u�Ψ−1. (B.24)

From the second equation in (B.23) we obtain an estimate of
the fault magnitude

∇̂ = (C�Ψ−1P⊥
uC)−1C�Ψ−1P⊥

uz

= R
̂∇̂∇C

�Ψ−1P⊥
uz, (B.25)

where we defined the matrix

R
̂∇̂∇ = (C�Ψ−1P⊥

uC)−1. (B.26)

We can rewrite the estimation error vectors under the two
hypotheses ⎧⎨⎩H(s)

0 : ê0 = P⊥
uz

H(s)
A : êA = P⊥

CP
⊥
uz

, (B.27)

where we used following idempotent matrices

P⊥
C = I−C

(
C�Ψ−1C

)
C�Ψ−1, (B.28)

P⊥
u = I− u

(
u�Ψ−1P⊥

Cu
)
u�Ψ−1P⊥

C. (B.29)

From (B.16) we have(
u�Ψ−1u

)
ζ̂0 = u�Ψ−1z, (B.30)

which can be inserted in the first equation of (B.23):

ζ̂A − ζ̂0 = −(u�Ψ−1u)−1u�Ψ−1C∇̂. (B.31)

With this, we can express the difference of the residuals:

ê0 − êA = u(ζ̂A − ζ̂0) +C∇̂

= [I− u(u�Ψ−1u)−1u�Ψ−1]C∇̂

= P⊥
uC∇̂. (B.32)

The ratio in (B.20) can be reworked as

ê�0 Ψ
−1ê0

ê�AΨ
−1êA

=
ê�0 Ψ

−1ê0 − ê�AΨ
−1êA

ê�AΨ
−1êA

+ 1. (B.33)

The numerator is equal to

(
ê0 − êA

)�
Ψ−1

(
ê0 − êA

)
+ 2
(
ê0 − êA

)�Ψ−1êA, (B.34)

but the term
(
ê0 − êA

)�
Ψ−1êA is zero. In fact, by using

the property of symmetry and idempotence of P⊥
u and P⊥

CP
⊥
u

we have(
ê0 − êA

)�
Ψ−1êA = z�

(
P⊥

u −P⊥
CP

⊥
u

)
Ψ−1P⊥

CP
⊥
uz

= z�
(
P⊥

u − I
)
P⊥

CP
⊥
uΨ

−1z

= z�P⊥
CP

⊥
uPuΨ

−1z. (B.35)

We can show that the product P⊥
uPu is zero

P⊥
uPu =

(
I−u

(
u�Ψ−1P⊥

Cu
)
u�Ψ−1P⊥

C

)
u·

·
(
u�Ψ−1u

)
u�Ψ−1

=
(
u−u

(
u�Ψ−1P⊥

Cu
)
u�Ψ−1P⊥

Cu
)
·

·
(
u�Ψ−1u

)
u�Ψ−1

= (u−u)
(
u�Ψ−1u

)
u�Ψ−1

= 0. (B.36)

Thus, the ratio becomes

ê�0 Ψ
−1ê0

ê�AΨ
−1êA

=

(
ê0 − êA

)�
Ψ−1

(
ê0 − êA

)
ê�AΨ

−1êA
+ 1. (B.37)

By inserting (B.32) we obtain

ê�0 Ψ
−1ê0

ê�AΨ
−1êA

=
∇̂�C�Ψ−1P⊥

uC∇̂
ê�AΨ

−1êA
+ 1

=
∇̂�R−1

̂∇̂∇∇̂
ê�AΨ

−1êA
+ 1. (B.38)

Thus the test (B.20) can be rewritten as

Reject H(s)
0 if

∇̂�R−1
̂∇̂∇∇̂

ê�AΨ
−1êA

> β, (B.39)

with

β =
M − 1

M − q − 1
ᾱ− 1. (B.40)

The numerator in (B.39) distributes according to a
χ2-distribution with q degrees of freedom, central under
H(s)

0 and non-central under H(s)
A . The non-centrality parameter

is λ = ∇�R−1
̂∇̂∇∇. The denominator is also χ2-distributed,

central under both hypotheses and with M − q − 1 degrees of
freedom.

If (B.39) is rewritten as

Reject H(s)
0 if

q−1∇̂�R−1
̂∇̂∇∇̂

(M − q − 1)−1ê�AΨ
−1êA

> ks, (B.41)

with

ks =
M − q − 1

q
β, (B.42)
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we can express the distribution of the ratio (B.41) with a
F-distribution, which corresponds to the ratio of two
independent χ2-distributed variables:

F (n1, n2,λ) =
n−1

1 · χ2 (n1,λ)
n−1

2 · χ2 (n2, 0)
. (B.43)

From (B.17) we note that the denominator in (B.41) equals to
v̂2

A, so that the self-consistency test finally becomes

Reject H(s)
0 if T =

∇̂�R−1
̂∇̂∇∇̂

q · v̂2
A

> ks, (B.44)

which distributes according to

T ∼ F (q, M − q − 1,λ) . (B.45)

The terms in (B.44) can be computed with (B.25) and

v̂2
A = (M − q − 1)−1ê�AΨ

−1êA

= (M − q − 1)−1z�Ψ−1P⊥
CP

⊥
uz. (B.46)

Appendix C. Derivation of the w-test
for gamma-distributed observables

To obtain an expression for the w-test for gamma-distributed
observables in section 4.3, we need to find the maxima in the
GLRT:

Reject H(Γ)
0 if T̄ =

max
∇=0

f (ξ|∇)

max
∇�=0

f (ξ|∇)
< a, (C.1)

where

f (ξ|∇) =
1
2

(
σ̂2σ̄2

Var
(
σ̂2
)) p

2 −1 1
Γ
( p

2

)( σ̄2

σ̄2 +∇

) p
2

·

· exp

(
− σ̂2σ̄2

Var
(
σ̂2
) σ̄2

σ̄2 +∇

)
. (C.2)

The numerator is trivial:

max
∇=0

f (ξ|∇) = f (ξ|0)

=
1
2

(
σ̂2σ̄2

Var
(
σ̂2
)) p

2 −1
1

Γ
( p

2

) exp

(
− σ̂2σ̄2

Var
(
σ̂2
)) .

(C.3)

For the denominator we have

max
∇�=0

f (ξ|∇) = f (ξ|∇̂), (C.4)

with
∇̂ = arg max

∇
f (ξ|∇). (C.5)

To find ∇̂ we take the logarithm of the PDF (C.2), since this
does not influence the location of the maximum:

LΓ(ξ|∇) = log
[

f (ξ|∇)
]

=
( p

2
− 1
)

log

(
σ̂2σ̄2

Var
(
σ̂2
))− log

[
Γ
( p

2

)]
+ log

(
σ̄2

σ̄2 +∇

)
p
2
− σ̂2σ̄2

Var
(
σ̂2
) σ̄2

σ̄2 +∇ .

(C.6)

By taking the derivative we obtain

∂

∂∇LΓ = − p
2

1
σ̄2 +∇ +

σ̂2σ̄2

Var
(
σ̂2
) 1(

σ̄2 +∇
)2 . (C.7)

If we impose ∂
∂∇LΓ|̂∇ = 0, we can compute ∇̂:

∇̂ =
2
p

σ̂2σ̄4

Var
(
σ̂2
) = σ̂2 − σ̄2, (C.8)

where we substituted the expression for the degrees of freedom

p =
2σ̄4

Var
(
σ̂2
) . (C.9)

This point is indeed a maximum, since the second derivative
computed for ∇ = ∇̂ is negative:

∂2

∂∇2
LΓ|̂∇ = − σ̄4

σ̂4 Var
(
σ̂2
) < 0. (C.10)

Thus, the second maximum becomes

f (ξ|∇̂) =
1

2Γ
( p

2

)( σ̂2σ̄2

Var
(
σ̂2
)) p

2 −1

· exp

(
− σ̄4

Var
(
σ̂2
)) ,

(C.11)

so that the ratio (C.1) yields

T̄ =

(
σ̂2

σ̄2

) p
2

exp

[
− σ̄2

Var
(
σ̂2
) (σ̂2 − σ̄2

)]

=

(
σ̂2

σ̄2

) p
2

exp

[
− p

2

(
σ̂2

σ̄2
− 1

)]
. (C.12)

The test T̄ is a bell shaped function of the ratio σ̂2

σ̄2 , as shown in
figure C1, where we plot the function (C.12) for some arbitrary
values of degrees of freedom p and threshold a.

We observe that

T̄ < a ⇔ σ̂2

σ̄2
< kl ∨

σ̂2

σ̄2
> ku, (C.13)

thus the test (C.1) can be equivalently rewritten as

Reject H(Γ)
0 if T < kl or T > ku, (C.14)

where now the test value is T = σ̂2

σ̄2 .

The distribution of the test (C.14) can be derived from (31):

ξ = p
σ̂2

σ̄2
∼ Γ

(
p
2

, 2
σ̄2 +∇

σ̄2

)
. (C.15)
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Figure C1. Qualitative example of the function T̄
(

σ̂2

σ̄2

)
, for some

arbitrary values of degrees of freedom p and threshold a. Setting
T̄ < a is equivalent to σ̂2

σ̄2 < kl ∨ σ̂2

σ̄2 > ku.

Thus by applying the scaling property of the gamma distribu-
tion we finally obtain

T =
1
p

(
p
σ̂2

σ̄2

)
∼ Γ

(
p
2

,
2
p
σ̄2 +∇

σ̄2

)
. (C.16)
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