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NK cells play a pivotal role in viral immunity, utilizing a large array of activating and inhibitory
receptors to identify and eliminate virus-infected cells. Killer-cell immunoglobulin-like
receptors (KIRs) represent a highly polymorphic receptor family, regulating NK cell
activity and determining the ability to recognize target cells. Human leukocyte antigen
(HLA) class I molecules serve as the primary ligand for KIRs. Herein, HLA-C stands out as
being the dominant ligand for the majority of KIRs. Accumulating evidence indicated that
interactions between HLA-C and its inhibitory KIR2DL receptors (KIR2DL1/L2/L3) can
drive HIV-1-mediated immune evasion and thus may contribute to the intrinsic control of
HIV-1 infection. Of particular interest in this context is the recent observation that HIV-1 is
able to adapt to host HLA-C genotypes through Vpu-mediated downmodulation of HLA-
C. However, our understanding of the complex interplay between KIR/HLA
org July 2022 | Volume 13 | Article 9222521
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immunogenetics, NK cell-mediated immune pressure and HIV-1 immune escape is still
limited. Therefore, we investigated the impact of specific KIR/HLA-C combinations on the
NK cell receptor repertoire and HIV-1 Vpu protein sequence variations of 122 viremic,
untreated HIV-1+ individuals. Compared to 60 HIV-1- controls, HIV-1 infection was
associated with significant changes within the NK cell receptor repertoire, including
reduced percentages of NK cells expressing NKG2A, CD8, and KIR2DS4. In contrast,
the NKG2C+ and KIR3DL2+ NK cell sub-populations from HIV-1+ individuals was enlarged
compared to HIV-1- controls. Stratification along KIR/HLA-C genotypes revealed a
genotype-dependent expansion of KIR2DL1+ NK cells that was ultimately associated
with increased binding affinities between KIR2DL1 and HLA-C allotypes. Lastly, our data
hinted to a preferential selection of Vpu sequence variants that were associated with HLA-
C downmodulation in individuals with high KIR2DL/HLA-C binding affinities. Altogether,
our study provides evidence that HIV-1-associated changes in the KIR repertoire of NK
cells are to some extent predetermined by host KIR2DL/HLA-C genotypes. Furthermore,
analysis of Vpu sequence polymorphisms indicates that differential KIR2DL/HLA-C
binding affinities may serve as an additional mechanism how host genetics impact
immune evasion by HIV-1.
Keywords: NK cell, KIR, HLA-C, HIV-1, Vpu
INTRODUCTION

Natural killer (NK) cells are innate lymphocytes crucially
involved in antiviral immunity and tumor surveillance (1, 2).
Their main effector functions comprise production of pro-
inflammatory cytokines and elimination of virus-infected and
transformed cells through direct cytotoxicity (3, 4). NK cells
utilize a large number of activating and inhibitory receptors to
distinguish between healthy (“self”) and aberrant cells (“non-
self”) (5). Inhibitory receptors mainly interact with various
human leukocyte antigen (HLA) class I molecules, maintaining
self-tolerance, whereas receptors with activating properties are
able to recognize stress ligands on potential target cells. An
important group of NK cell receptors are killer-cell
immunoglobulin-like receptors (KIRs) that predominantly
recognize HLA class I molecules. The most recently evolved
HLA class I molecule is HLA-C, which is only present in humans
and great apes (6). Contrary to HLA-A and HLA-B, virtually all
HLA-C allotypes are recognized by KIRs, making HLA-C a
dominant ligand for the regulation of NK cell activity (7, 8).
Co-evolution of HLA class I and KIRs resulted in a remarkable
diversity with distinct binding specificities between their
members (8, 9). The inhibitory receptor KIR3DL2 binds only
to HLA-A3/11 (10, 11), while KIR3DL1 recognition is limited to
a subset of HLA-A and -B molecules that contain the serological
motif Bw4 (12). In contrast, HLA-C is recognized by a number of
inhibitory and activating KIRs. HLA-C molecules can be
distinguished into two groups, defined by a dimorphism at
position 80 in the a1 domain (7). HLA-C group 1 (HLA-C1)
allotypes are characterized by an asparagine at position 80 and
are predominantly recognized by the inhibitory receptors
KIR2DL2 and KIR2DL3 as well as some allotypes of the
org 2
activating receptor KIR2DS2 (13). HLA-C alleles encoding for
group 2 (HLA-C2) molecules contain a lysine at position 80 and
interact with the inhibitory KIR2DL1, the activating KIR2DS1
and a few KIR2DS5 allotypes (14–16). Additionally, certain
KIR2DL2 and KIR2DL3 allotypes are cross-reactive with HLA-
C2 molecules. Finally, KIR2DS4 is able to bind HLA-C1 and -C2
molecules with variegated affinities (17, 18).

Both, HLA-C and KIRs, are highly polymorphic, resulting in
a large number of allotype combinations within a population that
are further characterized by variegating binding affinities (8, 19).
Accumulating evidence strongly indicates that interactions
between KIRs and HLA-C impact the course of pathologic
conditions and infectious diseases, such as preeclampsia (20),
arthritis (21) and HCV infection (22). Most prominently, several
studies have demonstrated a major impact of HLA class I genes
in the outcome of HIV-1 infection, alone or in combination with
certain KIRs (23–27). In recent years accumulating evidence
suggests a role for HLA-C in immune control as well as HIV-1-
associated immune escape. For one, increased HLA-C expression
levels were associated with protection against HIV-1 progression
(28). The ability of the accessory HIV-1 protein Vpu to
downregulate HLA-C expression level on infected cells (29)
and its adaption to HLA-C genotypes through sequence
variations in Vpu was indicative of a novel HLA-C-associated
immune evasion strategy (30). Further epidemiological and
experimental evidence demonstrated that KIR+ NK cells can
recognize HIV-1-mediated alterations of HLA-C expression (31)
or changes in the HLA-C/peptide complex (32–37). However,
the complex interplay between host genetics, NK cell-mediated
immune pressure and HIV-1 immune escape is still only partially
understood. In particular, the high allelic diversity of HLA-C and
KIR2DL molecules and previous limitations in the resolution of
July 2022 | Volume 13 | Article 922252
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KIR alleles have complicated the generation of models that would
allow a clearer view of the mechanisms underlying the intrinsic
control of HIV-1 and the contribution of KIR2DL and their
HLA-C ligands.

In this study, we investigated the impact of KIR/HLA-C
interactions on the NK cell repertoire and HIV-1 sequence
polymorphisms in the context of HIV-1 infection. For this, we
determined the binding affinities of various KIR2DL/HLA-C
allotype combinations and conducted a comprehensive
phenotypical characterization of NK cells from a cohort of
viremic, untreated HIV-1+ individuals compared to HIV-1-

controls. Finally, we performed next-generation sequencing
(NGS) of Vpu from matched plasma and PBMC samples from
HIV-1+ individuals. Herein, our results indicated that the
underlying host genetics influences the NK cell receptor
repertoire in HIV-1+ individuals as well as the selection of Vpu
sequence variants.
MATERIALS AND METHODS

Human Subjects
Peripheral blood samples were obtained from healthy blood
donors (n = 45) recruited at the University Medical Center
Hamburg-Eppendorf, Hamburg, Germany. In addition,
peripheral blood was obtained from anonymized healthy
human donors (n = 15) at the Institute for Transfusion
Medicine, University Medical Center Hamburg-Eppendorf,
Hamburg, Germany. Information on age and sex was not
available for all subjects, however was not relevant for the
purpose of the study. Cryopreserved peripheral blood
mononuclear cells (PBMC) and plasma samples from
untreated HIV-1-infected individuals (n = 122) were obtained
from the Translational Platform HIV (TP-HIV) Cohort by the
German Center for Infection Research (DZIF).

Sample Processing
Peripheral blood mononuclear cells (PBMCs) were isolated from
peripheral blood from healthy human donors by density gradient
centrifugation. Isolated PBMCs were cryopreserved for
upcoming experiments in liquid nitrogen tanks in heat-
inactivated fetal bovine serum (Sigma-Aldrich) supplemented
with 10% (v/v) DMSO (Sigma-Aldrich). Cryopreserved PBMCs
were thawed by adding PBMCs dropwise to complete RPMI-
1640 medium (Life Technologies) supplemented with 10% (v/v)
heat-inactivated FBS (Sigma-Aldrich), 100 U/ml penicillin, 100
mg/ml streptomycin (Sigma-Aldrich) and 25 U/ml Benzonase
Nuclease (Merck Milipore Novagen). Thawed PBMCs were
incubated for 30 min at 37°C and washed with PBS (Sigma-
Aldrich) and then used for antibody staining and genomic
DNA isolation.

Cell Lines
HEK293T/17 cell line (ATCC, Cat#CRL-11268) was cultured in
Dulbecco’s Modified Eagle Medium (DMEM, Life Technologies)
supplemented with 10% (v/v) heat-inactivated FBS (Sigma-
Frontiers in Immunology | www.frontiersin.org 3
Aldrich), 100 U/ml penicillin and 100 mg/ml streptomycin
(Sigma-Aldrich) and used for the generation of lentivirus. Sf9
insect cell line (CVCL_0549) was used to produce high titer of
baculovirus stocks cultured in Sf-900 II medium (Life
Technologies) supplemented with 10% (v/v) heat-inactivated
FBS, (fetal bovine serum Sigma-Aldrich), 100 U/ml penicillin,
100 mg/ml streptomycin (Sigma-Aldrich) and 1% (v/v) L-
glutamine (Life Technologies) . Hi5 insect cel l l ine
(CVCL_C190) was used for KIR2DL-Fc fusion protein
production and cultured in Express Five serum free medium
(Life Technologies) supplemented with 1% (v/v) L-glutamine
(Life Technologies). The HLA class I deficient B cell line 721.221
(RRID: CVCL_6263) (38) was used for expressing HLA-C1 and
-C2 allotypes (Table 1). For this, the extracellular domains of
HLA-C allotypes were obtained from GeneSynthesis (Thermo
Fisher) and cloned into a lentiviral transfer vector (pSIP-
ZsGreen) with a puromycin resistance. For the production of
lentivirus, Lipofectamine 3000 (Life Technology) was used to
transfect HEK293T/17 cells with the lentiviral transfer vector
with the gene of interest, a VSV-G envelope vector (pHEF-VSVF;
NIH HIV Reagent Program) and a HIV-1 Gag-Pol packaging
vector (psPAX2; NIH HIV Reagent Program). After 48 h, the
supernatant containing the lentivirus was harvested and used for
the transduction of the 721.221 cells. 3 days post-transduction,
HLA-C+ 721.221 cells were selected with 1 mg/ml puromycin
(Sigma-Aldrich) and later sorted for high HLA-C expression by
fluorescence-activated cell sorting. HLA-C-721.221 cell lines
were cultured in complete RPMI-1640 medium (Life
Technology) supplemented with 10% (v/v) heat-inactivated
FBS (Sigma-Aldrich), 100 U/ml penicillin, 100 mg/ml
streptomycin (Sigma-Aldrich) and 1 mg/ml puromcyin at 37°C
and 5% CO2.

Generation of KIR2DL-Fc Fusion Proteins
KIR2DL1*001-Fc, KIR2DL2*003-Fc and KIR2DL3*001-Fc
fusion constructs were produced as described in Hilton et al.
(39). Further KIR2DL-Fc fusion constructs (Table 2) were
generated by site-directed mutagenesis (Agilent Technologies).
KIR2DL-Fc fusion constructs were co-transfected with linearized
baculovirus (Expression Systems) into Sf9 insect cells with
Cellfectin II (Invitrogen). Sf9 cells were cultured for 7 days in
Sf-900 II medium (Life Technologies) at 115 rpm, 27°C and 5%
CO2. To produce high titer of baculovirus, 3 more rounds of
amplification were performed by culturing Sf9 cells in Sf-900 II
medium supplemented with 10% (v/v) heat-inactivated FBS
(Sigma-Aldrich), 100 U/ml penicillin, 100 mg/ml streptomycin
(Sigma-Aldrich) and 1% (v/v) L-glutamine (Life Technologies)
for 4-5 days with the respective virus stock. Hi5 insect cells were
TABLE 1 | Overview of generated HLA-C expressing 721.221 cell lines.

Cell line Allotypes

HLA-C1-721.221 cell
lines

*01:02, *03:03, *03:04, *07:01, *07:02, *12:03,
*14:02, *16:01

HLA-C2-721.221 cell
lines

*02:02, *04:01, *05:01, *06:02
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cultured in Express Five serum free medium (Life Technologies)
supplemented with 1% (v/v) L-glutamine (Life Technologies).
KIR2DL-Fc fusion proteins were produced by infecting Hi5
insect cells with P3 viral stock for 72 h at 115 rpm, 27°C and
5% CO2. The supernatant was collected by centrifugation and
filtration. To isolate the KIR2DL-Fc fusion proteins, the
supernatant was neutralized with HEPES buffer (Thermo
Fisher Scientific) and incubated with protein A Sepharose
beads (Thermo Fisher Scientific) rotating overnight. The
KIR2DL-Fc fusion proteins were washed with PBS and eluted
with 100 mM glycine (pH 2.7) and immediately neutralized with
1 M Tris (pH 9). The eluted proteins were desalted by using a
Sephadex G-25 desalting column (GE Healthycare). Protein
concentration was measured with a BCA protein assay
(Thermo Fisher Scientific).

KIR2DL-Fc Binding Assay
HLA-C-721.221 cell lines and untransduced 721.221 were
incubated with 25 mg/ml KIR2DL-Fc fusion protein for 15 min
at 4°C and then washed and stained with a LIVE/DEAD fixable
Near-IR Dead Cell staining kit (Invitrogen) and with a secondary
F(ab)2 goat anti-human IgG-PE antibody (Invitrogen). After
additional washing steps, the cells were fixed in 1x CellFIX (BD
Bioscience) and the binding of the KIR2DL-Fc fusion protein
was analyzed via flow cytometry. As a negative control, cells were
only stained with anti-human IgG-PE without any KIR2DL-Fc
fusion protein. HLA-C expression of all transfected and
untransfected 721.221 cell lines was assessed by flow cytometry
using the HLA-ABC antibody W6/32 (Supplementary
Figure 1). Binding of KIR2DL-Fc fusion proteins was
normalized to the negative control and adjusted for the HLA-
ABC expression of the respective 721.221 cell lines.

Phenotypical Characterization of PBMCs
From Healthy and HIV-1-Infected
Individuals
PBMCs from healthy and untreated HIV-1-infected individuals
were gently thawed by adding dropwise complete medium
supplemented with 25 U/ml Benzonase Nuclease (Merck
Milipore Novagen) followed by a 30 min incubation at 37°C
and 5% CO2. After counting and washing with PBS, cells were
incubated with LIVE/DEAD fixable Near-IR Dead Cell staining
kit (Invitrogen) and the following antibodies at 4°C: anti-CD3-
PerCP-Cy5.5 (clone UCHT1, BioLegend), anti-CD4-BV650
(clone RPA-T4, BioLegend), anti-CD8-AF700 (clone EB6B,
BioLegend), anti-CD14-APC-Cy7 (clone HCD14, BioLegend),
anti-CD19-APC-Cy7 (clone HIB19, BioLegend), anti-CD56-
BUV395 (clone NCAM16.2, BD Optibuild), anti-CD16-BV785
Frontiers in Immunology | www.frontiersin.org 4
(clone 3G8, BioLegend), anti-CD57-BV510 (clone QA17A04,
BioLegend), anti-NKG2A-PE-Vio615 (clone REA110, Miltenyi),
anti-NKG2C-BUV563 (clone 134591, BD Optibuild), anti-
KIR2DL1/S1-APC (clone EB6B, Beckman Coulter), anti-
KIR2DL1/S5-PE (clone 134211, R&D Systems), anti-KIR2DL2/
L3/S2-BV711 (clone DX27, BD Optibuild), anti-KIR2DL3-
AF488 (clone 180701, R&D Systems), anti-KIR3DL1-AF700
(clone DX9, BioLegend), anti-KIR3DL1/L2-PE-Vio770 (clone
5.133, Miltenyi) and anti-KIR2DS4-Biotin (clone JJC11.6,
Miltenyi) with secondary Strepdavidin-BV421 (BioLegend).
Cells were washed and then fixed with FluoroFix Buffer
(BioLegend). Cells were analyzed by flow cytometry.

Viral RNA Isolation, cDNA Synthesis and
Genomic DNA Isolation
Viral RNA from plasma samples of HIV-1-infected individuals
was isolated using the High Pure Viral RNA Kit (Roche) and
then used for a reverse transcription reaction (SuperScript III
One-Step RT-PCR, Invitrogen) with specific Vpu outer-revers
primer (sense primer: 5’-CCT AGA CTA GAG CCC TGG AAG
CAT-3’, anti-sense primer: 5’-TTC TTG TGG GTT GGG GTC
TGT-3’) described by Pickering et al., 2014 (38). Genomic DNA
from PBMCs was isolated using the DNeasy Blood & Tissue
Kit (QIAGEN).

Vpu Sequencing
cDNA generated from viral RNA and genomic DNA isolated
from PBMC of HIV-1-infected individuals was amplified and
prepared for Vpu sequencing via PCR (Platinum SuperFi DNA
Polymerase, Invitrogen) using gene specific Vpu inner-primers
(38) and overhangs of Illumina-sequencing compatible adapter
sequences (highlighted in bold) (sense primer: 5’-TCG TCG
GCA GCG TCA GAT GTG TAT AAG AGA CAG TAA TAC
GAC TCA CTA TAG GCA GGA AGA AGC GGA GAC A-3’,
anti-sense primer: 5´-GTC TCG TGG GCT CGG AGA TGT
GTA TAA GAG ACA GCA GGA AAC AGC TAT GAC CCC
ATA ATA GAC TGT GAC-3´). In a second PCR using the
KAPA HiFi HotStart ReadyMix PCR Kit (Roche) the Illumina-
sequencing compatible adapter overhangs served as a template to
add dual indices (Nextera XT Index Kit, Illumina) for
multiplexing and to complete the Illumina sequencing
adapters. Prior to sequencing samples were pooled according
to their concentration measured via Qubit dsDNA High
Sensitivity (Invitrogen). The amplicon size of each pool was
assessed on a TapeStation 4200 High Sensitivity D1000 Screen
Tape (Agilent Technologies) to dilute the samples to a
concentration of 2 nM. Paired-end sequencing of the generated
libraries was performed on an Illumina MiSeq platform (2x250
bp) aiming for 0.1 - 0.2 million reads per sample.

Vpu Sequence Analysis
Raw paired-end reads were aligned to indexed reference
sequence AF324493.2 from NCBI GenBank using bwa mem
command (40). Resulting SAM alignment files were converted to
BAM files, sorted and indexed using samtools (41). Variants
were detected using GATK HaplotypeCaller (42) using “–dont-
use-soft-clipped-bases true” option, and to identify variant with
TABLE 2 | Overview of generated KIR2DL-Fc fusion proteins.

Allotypes

KIR2DL1-Fc fusion proteins *001, *003, *004, *020, *022
KIR2DL2-Fc fusion proteins *001, *003, *009
KIR2DL3-Fc fusion proteins *001, *002, *009, *016
The symbol "*" represents a separator between the gene and the allele group. In this
instance the allele group of the respective KIR2DL1, L2 and L3 proteins.
July 2022 | Volume 13 | Article 922252
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maximum frequency “–max-alternate-alleles 1” option was used.
In downstream process low quality variants were filtered out
using following parameters from GATK Best Practices
recommendations: “DP < 25 || QD < 2.0 || MQ < 30.0 || FS >
60.0 || MQRankSum < -12.5 || ReadPosRankSum < -8.0” (43).
Filtered high quality variants meeting the criteria were then
taken as input to create mutation VPU nucleotide sequence
taken 6061:6306 as reference coordinates using GATK
FastaAlternateReferenceMaker command (44).

HLA Class I and KIR Genotyping
Genomic DNA was isolated from cryopreserved PBMCs with the
DNeasy Blood and Tissue Kit (QIAGEN). HLA class I and KIR
genotyping was performed by the DKMS Life Science Lab,
Dresden, Germany as described in (45, 46).

Data Analysis and Statistics
The acquisition offlow cytometric data was performed with a BD
LSRFortessa (BD Bioscience) in the core facility Fluorescence
Cytometry at the Leibniz Institute of Virology and analyzed
using FlowJo software 10.7.1 (BD Life Sciences). Graphical and
statistical analyses were performed using GraphPad Prism 9.0.1
software (GraphPad Software, La Jolla, CA, USA). Multiple
linear regression analysis was performed to assess the impact
of HIV-1 status, age and sex on the expression of NK cell
receptors (Figure 2C). One-way ANOVA, test for linear trend
was used to test for gene-dose effects (Figure 2A, B, D, E). A non-
parametric statistical test (Mann-Whitney) was applied to test
for differences between two groups. Adjustment for multiplicity
was applied to comparisons of interest using false discovery rate
(FDR) with Q = 5% (Benjamini/Krieger/Yekutieli). Bonferroni
correction was used in one instance (Figures 3A, B). Variation in
the frequency of amino acid residues between individuals of
different HLA-C genotypes was analyzed by chi square tests.
Statistical parameters are stated in the results section as well as in
the figure legends.
RESULTS

KIR2DL/HLA-C Allotype Combinations
Display Differential Binding Affinities
Previous assessments of KIR binding affinities to HLA class I
have repeatedly confirmed the overall specificities of KIRs to
different groups of HLA class I molecules (7, 10, 12). Further
stratification of HLA class I and KIR molecules into specific
allotypes revealed that binding affinities are exhibited as a
continuum, ranging from strong affinities to no binding at all
(8, 47, 48). In order to assess the specificity and affinity of the
receptors KIR2DL1, KIR2DL2, and KIR2DL3 (henceforth
KIR2DL) to various HLA-C allotypes in a cellular system, we
assessed binding of various KIR2DL-Fc fusion proteins to HLA-
C expressing cell lines using flow cytometry (Figure 1A).
Representative and cumulative data in Figure 1B display the
overall binding specificities of the three KIR2DL types. All
generated KIR2DL-Fc constructs did not bind to untransduced
Frontiers in Immunology | www.frontiersin.org 5
721.221, while KIR2DL1-Fc allotypes were predominantly
associated with binding of HLA-C group 2 (HLA-C2), but did
not recognize HLA-C group 1 (HLA-C1) on 721.221s with the
exception of KIR2DL1*022. KIR2DL1*022 is characterized by an
amino acid substitution at position 44 which leads to a switch in
its binding specificity towards HLA-C1 ligands (49). Conversely,
KIR2DL2-Fc and KIR2DL3-Fc displayed binding affinities to
both HLA-C1 and -C2. For comparison of the binding affinities
of all tested KIR2DL/HLA-C allotype combinations, the highest
value for KIR2DL-Fc binding was set to 100% and all other
values were calculated accordingly (Figure 1C). The displayed
affinity matrix indicated hierarchies that applied to KIR2DL1 as
well as HLA-C2 allotypes. E.g. 2DL1*003 showed the highest
affinities to HLA-C2 cell lines of all tested KIR2DL1 allotypes
independent of the HLA-C allotype follwes by 2DL1*004,
2DL1*020 and 2DL1*001. In turn, highest KIR2DL1 binding
was observed for the HLA-C2 cell line expressing C*05:01
irrespective of the KIR2DL1 allotype. This was followed by
C*02:02, C*04:01 and C*06:02. Overall KIR2DL2-Fc and
KIR2DL3-Fc constructs displayed a lower binding affinity to
HLA-C expressing cell lines in general and showed a more
ambiguous affinity pattern. E.g. the KIR2DL3*016/C*07:01
combination showed the strongest binding of all KIR2DL2/L3
allotypes to HLA-C1 cell lines. But for HLA-C2 cell lines
KIR2DL2*009 showed the highest affinity, i.e. C*05:01. Of
note, the HLA-C1 cell lines C*01:02, C*03:03, C*12:03 and
C*14:02 did not allow for any KIR2DL-Fc binding in our
experimental setting, whereas C*03:04, C*07:02 and C*16:01
demonstrated only low binding affinities to the KIR2DL2/L3-
Fc fusion proteins. C*07:01 allowed for stronger binding of
KIR2DL2/L3 allotypes than any other tested C1 cell line.
Altogether, the performed KIR2DL-Fc fusion protein assays
showed high binding affinities of KIR2DL1/HLA-C2
combinations but no binding of KIR2DL1 to HLA-C1.
Furthermore, KIR2DL2/L3-Fc fusion proteins had only low
binding affinities for both, HLA-C1 and -C2 expressing
721.221 cell lines.

HIV-1 Infection Is Associated With an
Altered NK Cell Receptor Repertoire
Next, we investigated the impact of HIV-1 infection on the
expression patterns of NK cell receptors. For this, we assessed the
expression of eleven NK cell receptors within 60 HIV-1- and 122
untreated HIV-1+ individuals (Table 3; Figure 2A). Exemplary
expression patterns for all analyzed NK cell receptors and the
applied gating are shown in Figure 2B. Initial comparative
analyses of bulk NK cells, including adjustment for age and
sex, suggested significant changes in the receptor repertoire
between HIV-1+ individuals and the HIV-1- control group
(Figure 2C and Supplementary Table 1). We observed a
lower percentage of NK cells expressing the inhibitory receptor
NKG2A in HIV-1+ individuals (median: 42.5%) compared to our
control group (54.4%, p < 0.0001 vs. HIV-1-), whereas the
percentage of NK cells expressing the activating counterpart
NKG2C was considerably increased (23.5% vs. 3.5%, p < 0.0001
vs. HIV-1-). The relative frequency of NK cells expressing CD57,
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FIGURE 1 | KIR2DL-Fc fusion proteins display differential binding affinities to HLA-C expressing 721.221 cell lines. (A) Overview of the assessment of binding
affinities between HLA-C expressing 721.221 cell lines and KIR2DL-Fc fusion proteins using flow cytometry. Created with BioRender.com. (B) Upper panel:
Representative histograms depicting binding of KIR2DL1*001-Fc (orange), KIR2DL3*001-Fc (purple) and the respective secondary antibody (Ab) control (black,
dotted) to 721.221 (.221),.221-C*07:01 (C1) and .221-C*02:02 (C2) cell lines. Expression was quantified as fluorescence intensity (x-axis). Lower panel: Cumulative
data showing binding of KIR2DL-Fc fusion proteins to .221, .221-C*07:01 (C1) and .221-C*02:02 (C2) cell lines. Binding of KIR2DL1-Fc (orange), KIR2DL2-Fc (light
purple) and KIR2DL3-Fc (dark purple) allotypes is displayed as relative fluorescence intensity (RFI) normalized to the secondary antibody only control and adjusted for
HLA-ABC expression of the respective 721.221 cell lines. Box plots show median and 25%/75% percentile. Data points represent at least five technical replicates (n
≤ 6). (C) Summarizing results of binding assays between 12 KIR2DL-Fc allotypes and .221s expressing 12 different HLA-C allotypes. Highest binding value was set
to 100% and all other values were calculated in relation to the 100% value.
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FIGURE 2 | Cell surface expression of NK cell receptors of HIV-1- and untreated HIV-1+ individuals. (A) Overview of the flow cytometric assessment of NK cell receptor
expression on NK cells from HIV-1- (n = 60) and untreated HIV-1+ (n = 122) individuals. Created with BioRender.com (B) Respective expression patterns of the NK cell
receptors NKG2A, NKG2C, CD8, CD57, KIR2DL1, KIR2DS1, KIR2DL2, KIR2DL3, KIR2DL2/L3, KIR2DS4, KIR3DL1 and KIR3DL2 on bulk NK cells as well as the
respective gating. (C) Scatter plots displaying the percentage of NKG2A+, NKG2C+, CD8+, CD57+, KIR2DL1+, KIR2DS1+, KIR2DL2/L3+, KIR2DL2+, KIR2DL3+,
KIR2DS4+, KIR3DL1+ and KIR3DL2+ cells within bulk NK cells in HIV-1- (blue) and HIV-1+ (red) individuals. Each data point represents one donor. Donors lacking the
respective gene, containing a gene deletion (KIR2DS4-del) or a null allele (KIR3DL1*004) were excluded (NKG2A/NKG2C/CD8/CD57/KIR2DL2/L3: HIV-1-: n = 60, HIV-1+:
n = 122; KIR2DL1: n = 59, n = 118; KIR2DS1: n = 26, n = 47; KIR2DL2: n = 28, n = 64; KIR2DL3: n = 55, n = 111; KIR2DS4: n = 19, n = 25; KIR3DL1: n = 55, n =
108). (D) Correlation analyses between the frequencies of all tested receptor+ NK cell subsets from HIV-1+ individuals. Left panel: rs values; right panel: p values. Data
information: (C) Bars indicate the median for each group. Multiple linear regression analysis was used to determine differences between HIV-1- and HIV-1+ individuals.
(D) Spearman rank analysis. (C, D) p values were adjusted for multiple comparisons (Benjamini/Krieger/Yekutieli).
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FIGURE 3 | Impact of HLA-C and KIR genotypes on the frequency of NK cells expressing HLA-C-binding KIRs. (A) Percentage of KIR2DL1+ cells within bulk NK
cells in HIV-1- and HIV-1+ individuals (left panel). Absolute numbers of KIR2DL1+ NK cells in HIV-1+ individuals (right panel). (B) Percentage of KIR2DL2/L3+ cells
within bulk NK cells in HIV-1- and HIV-1+ individuals (left panel). Absolute numbers of KIR2DL2/L3+ NK cells in HIV-1+ individuals (right panel). (A/B) Donors were
stratified by HLA-C group genotypes. Genotypes were defined by the presence of HLA-C allotypes carrying either a C1 or C2 epitope (C1/C1 = C1homozygous, C1/C1
= C1/C2heterozygous, C2/C2 = C2homozygous). (C) Percentage and absolute cell numbers of KIR2DL2+ NK cells and KIR2DL3+ NK cells in HIV-1+ individuals stratified
by the presence of KIR2DL2 or KIR2DL3 alleles. (D) Percentage of KIR2DL2+ and KIR2DL3+ NK cells in KIR2DL2/L3heterozygous HIV-1+ individuals stratified by HLA-C
group genotypes. (E) Percentage of KIR2DL1+, KIR2DL2+ and KIR2DL3+ NK cells in HIV-1+ individuals stratified by HLA-C group genotypes and KIR2DL alleles. (F)
Correlation between percentage of KIR2DL1+ NK cells and HLA-C2/KIR2DL1-Fc binding, KIR2DL2/L3+ NK cells and HLA-C1/KIR2DL2/L3-Fc binding in HIV-1+

individuals (red) stratified by KIR/HLA binding affinities determined in Figure 1. (G) Correlation between percentage of KIR2DL1+ NK cells and HLA-C2/KIR2DL1-Fc
binding, KIR2DL2/L3+ NK cells and HLA-C1/KIR2DL2/L3-Fc binding in HIV-1- individuals (blue) stratified by KIR/HLA binding affinities determined in Figure 1. Data
information: Black bars display the median. (A, B, D, E) One-way ANOVA, test for linear trend. (C) Mann-Whitney test. P values were adjusted for multiple
comparisons (A, B, D: Bonferroni; E: Benjamini/Krieger/Yekutieli). (F, G) Spearman rank correlation.
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a marker for terminal differentiation, was slightly higher in HIV-
1+ individuals (36.7%) compared to the HIV-1- control group
(31.5%) but did not reach statistical significance after adjustment
for age and sex (p = 0.2). Percentage of CD57+ NK cells was
positively associated with the percentage of NKG2C+ NK cells
(rs = 0.5, p < 0.0001) and negatively with the percentage of
NKG2A+ NK cells (rs = -0.57, p < 0.0001; Figure 2D). The
relative frequency of CD8+ NK cells was reduced in HIV-1+

individuals (18.9%) in comparison to HIV-1- donors (32.3%, p <
0.0001) but did not correlate with any other investigated NK cell
receptor. For most KIRs expression patterns seemed to be
unaffected by HIV-1 infection. No differences in the relative
frequency of KIR2DL1+ cells (p = 0.12) and KIR2DL2/L3+ cells
(p = 0.41) were observed, even after stratification into KIR2DL2
(p = 0.2) and KIR2DL3 (p = 0.12). The activating KIRs, KIR2DS1
(p = 0.2) remained unaltered as well but KIR2DS4 showed lower
relative frequencies in HIV-1+ individuals (26.5% vs. 41.9%, p =
0.049). The proportion of KIR3DL1+ NK cells was not
significantly altered (p = 0.20), even when adjusted for its
ligand Bw4 or stratified by KIR3DL1 allotype groups
(Supplementary Figure 2) in contrast to KIR3DL2, which
exhibited increased relative frequencies in HIV-1+ individuals
(19.7% vs. 13.4%, p = 0.07). Analysis of relative frequencies and
absolute cell numbers of the respective receptor+ NK cells
revealed a significant positive correlation for all receptors
(Supplementary Figure 3), indicating that the observed
changes represent an actual expansion or contraction of NK
cell subsets.

Subsequently, we investigated whether the altered NK cell
receptor repertoire was attributed to changes of the distribution
of the three major CD56 NK cell subsets. Based on the expression
levels of CD56, NK cells can be distinguished into CD56Bright

(CD16-/dim), CD56Dim (CD16+) and CD56Negative sub-
populations (CD16+), each displaying specific receptor profiles
on their own (50). Compared to the HIV-1- control group, the
Frontiers in Immunology | www.frontiersin.org 9
frequency of CD56Bright NK cells was significantly decreased
within the NK cell compartment of HIV-1- infected individuals
(p < 0.0001) (Supplementary Figure 4). Conversely, the
proportion of CD56Negative NK cells was increased (p <
0.0001). Subsequently, the three CD56 NK cell subsets were
analyzed for the expression of the eleven NK cell receptors
(Table 4). Changes of NK cell receptor profiles were observed
in all CD56 NK cell subsets. In the CD56Bright NK cell subset,
eight of the investigated NK cell receptors, namely KIR2DL1,
KIR2DL2, KIR2DL3, KIR2DS4, KIR2DS1, KIR3DL1, CD57 and
NKG2C exhibited an increased frequency in HIV-1+ individuals,
although it should be noted that percentage point differences
were rather marginal for all tested KIRS. In contrast, NKG2A
and CD8 were significantly decreased. In the CD56Dim subset,
CD8+ NK cells showed decreased frequencies, while the
KIR3DL2+ NK cell subset was enlarged. CD56Negative NK cells
showed similar changes in the expression patterns as the
CD56Dim subset in both HIV-1- and HIV-1+ groups, although
CD56Negative NK cells displayed an overall lower percentage of
receptor+ cells compared to CD56Dim NK cells. Taken together,
we observed reduced percentages of CD8+ NK cells in all CD56
NK cell subsets of HIV-1+ individuals compared to HIV-1-

individuals, whereas the NKG2C+ subset was enlarged. In
contrast, changes in the KIR profiles between HIV-1+ and
HIV-1- individuals were rather marginal in the CD56Dim

subset in which KIRs are predominantly expressed, with the
exception of KIR3DL2.

HLA-C and KIR2DL Genotypes Impact
Frequency of KIR2DL+ NK Cells
To investigate the influence of KIR2DL/HLA-C genotype
combinations on KIR2DL expression on NK cells, HIV-1+ and
HIV-1- individuals were stratified according to their HLA-C
allotypes. HIV-1+ individuals showed significant differences in
the frequency of KIR2DL1+ NK cells between the generated
TABLE 3 | Demographic and clinical profile of HIV-1- and HIV-1+ individuals.

HIV-1- individuals HIV-1+ individuals
Number total 60 122

Demographic
data

Age in years
Median (Min; Max)

N = 43
30 (22; 64)

N = 122
36.5 (20; 73)

Sex
Male, number (%)
Female, number (%)

N = 44
21 (47.7)
23 (52.3)

N = 122
114 (93.4)
8 (6.6)

Clinical data Viral load in copies/ml
Median
(Min; Max)

n.d N = 121
516,000

(40; 170,000,000)
CD4 T cells in cells/mL
Median (Min; Max)

n.d n=118
438 (22; 2,601)

CD4 T cells in %
Median (Min; Max)

n.d n=116
24.6 (3; 54)

CD8 T cells in cells/mL
Median (Min; Max)

n.d N = 84
936 (177; 6,636)

CD8 T cells in %
Median (Min; Max)

n.d N = 79
50 (29; 85.9)

CD4/CD8 ratio
Median (Min; Max)

n.d N = 84
0.49 (0.1; 1.86)

NK acells in cells/mL
Median (Min; Max)

n.d N = 118
164 (14; 2,004)
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groups, while no differences were detected in the HIV-1- control
group (Figure 3A). HIV-1+ individuals carrying the cognate
HLA-C2 ligand (C1/C2, C2/C2) showed an increased frequency
of KIR2DL1+ NK cells, whereas individuals without HLA-C2
alleles (C1/C1) exhibited a generally lower percentage of
KIR2DL1+ NK cells (left panel, linear trend: p < 0.0001). This
effect was not due to a skewed distribution of KIR2DL1-C245 and
KIR2DL1-R245 allotypes between HIV-1+ and HIV-1-

individuals or between HLA-C2+ or HLA-C2- donors (data not
shown), which was previously shown to affect KIR2DL1
expression (51). The observed gene-dose dependent effect of
HLA-C2 alleles within the HIV-1+ group was also observed when
using absolute cell numbers as a readout (right panel, p = 0.006).
In contrast, presence of the HLA-C1 ligand did not affect the
proportion or cell number of NK cells expressing the respective
receptors KIR2DL2/L3 in either HIV-1+ or HIV-1- individuals
(Figure 3B, percentage HIV-1-: p > 0. 99, HIV-1+: p = 0.97, cell
number: p = 0.69).

Given that potential changes of KIR2DL2/L3 frequencies
between HIV-1+ and HIV-1- groups were masked by the
previously observed opposing directions of KIR2DL2+ and
KIR2DL3+ NK cell frequencies, we stratified KIR2DL2/3
frequencies based on their KIR2DL2/L3 genotype (Figure 3C).
NK cells from homozygous KIR2DL2 individuals (KIR2DL2/L2)
showed a significantly increased frequency of KIR2DL2+ NK
cells compared to heterozygous (KIR2DL2/L3) individuals
independent of the underlying HLA-C genotype (p = 0.002).
This effect was also present in KIR2DL3+ NK cells when
Frontiers in Immunology | www.frontiersin.org 10
comparing KIR2DL3 homozygous (KIR2DL3/L3) and
heterozygous (KIR2DL2/L3) individuals (p < 0.0001). To
exclude the skewing effect of KIR2DL2 and KIR2DL3
homozygosity, stratification of HLA-C allotypes was performed
only for KIR2DL2/L3 heterozygous HIV-1+ individuals
(Figure 3D). Increased frequencies of KIR2DL2+ and
KIR2DL3+ NK cells in donors with two HLA-C1 alleles (C1/
C1) were observed compared to individuals lacking HLA-C1
alleles (C2/C2), however the overall trend did not reach statistical
significance (KIR2DL2+: p = 0.68, KIR2DL3+: p = 0.22).

Based on the observed effects of homo- or heterozygosity of
the KIR2DL/L3 gene, we sought to further stratify donors based
on the specific KIR2DL alleles (Figure 3E). In line with the
results for KIR2DL1+ NK cells from all HIV-1+ individuals
stratified by their HLA-C allotypes, HIV-1+ individuals with
KIR2DL1*001/002, *003/*034, *004/*035 or *006/010 alleles
showed the same distribution of KIR2DL1+ NK cells with the
highest frequency of KIR2DL1+ NK cells in HLA-C2
homozygous individuals and the lowest frequency in HLA-C1
homozygous donors. Moreover, individuals positive for
KIR2DL2*001 and with at least one HLA-C2 allele (C1/C2, C2/
C2) showed an increased frequency of NK cells expressing
KIR2DL2 compared to individuals without HLA-C2. In
contrast, individuals carrying a KIR2DL2*003 allele showed
reverse KIR2DL2 frequencies with the highest percentages for
HLA-C1/C1 homozygous and the lowest percentages for HLA-
C2/C2 homozygous individuals. Although, it should be noted
that the sample size for this particular allele was rather low.
TABLE 4 | NK cell receptor expression in NK cell subsets.

CD56Bright CD56Dim CD56Negative

HIV- HIV+ HIV- HIV+ HIV- HIV+ HIV- HIV+
receptor n n median(25%/

75% percentile)
median(25%/

75% percentile)
p

value*
median(25%/

75% percentile)
median(25%/

75% percentile)
p

value*
median(25%/

75% percentile)
median(25%/

75% percentile)
p

value*

NKG2A 60 122 95.9
(94.1/97.1)

93.7
(89.7/96.9)

0.0003 52.5
(41.3/63.2)

41.4
(29.6/54.7)

0.002 32.9
(23.4/45.3)

29.9
(20.6/42.7)

0.1

NKG2C 60 122 10.2
(7.1/15.9)

14.0
(8.0/20.1)

0.04 2.6
(1.7/5.4)

24.9
(11.0/42.0)

<0.0001 1.8
(1.0/3.4)

17.1
(6.9/33.9)

<0.0001

CD8 60 122 23.8
(18.7/31.1)

17.2
(11.0/23.3)

0.003 37.1
(29.4/45.8)

19.5
(13.3/28.0)

<0.0001 28.6
(20.7/33.1)

14.3
(8.4/19.2)

<0.0001

CD57 60 122 0.5
(0.2/1.0)

0.8
(0.4/2.2)

0.0001 34.2
(23.4/46.2)

40.2
(26.0/52.9)

0.13 9.5
(6.4/13.8)

14.0
(7.5/27.1)

0.052

KIR2DL1 59 118 1.4
(0.8/1.9)

2.2
(1.2/4.0)

0.0003 17.9
(14.2/23.6)

18.9
(9.9/36.8)

0.36 10.4
(7.7/13.1)

9.3
(4.4/17.7)

0.45

KIR2DS1 26 47 0.9
(0.6/1.4)

1.5
(0.8/2.4)

0.006 16.5
(11.2/20.5)

9.8
(6.8/18.5)

0.052 11.6
(7.7/17.5)

8.2
(4.7/12.6)

0.056

KIR2DL2/
L3

60 122 1.9
(1.5/2.9)

3.2
(1.8/6.1)

0.0001 29.7
(21.2/33.8)

27.2
(20.0/39.0)

0.49 18.6
(12.6/24.0)

19.6
(12.3/28.1)

0.13

KIR2DL2 28 64 1.1
(0.6/1.9)

2.0
(1.1/3.4)

0.035 12.3
(8.3/19.6)

17.2
(10.8/29.8)

0.77 10.8
(5.8/15.8)

13.2
(7.6/22.3)

0.45

KIR2DL3 55 111 1.4
(0.8/1.9)

2.0
(1.1/3.5)

0.04 21.7
(14.4/25.5)

16.4
(10.1/26.3)

0.074 12.6
(8.8/17.6)

10.1
(6.1/18.9)

0.40

KIR2DS4 19 25 3.4
(2.1/4.3)

4.2
(1.9/8.8)

0.042 45.4
(30.5/49.7)

27.3
(10.3/40.3)

0.27 30.4
(20.1/37.9)

23.1
(8.2/29.8)

0.71

KIR3DL1 55 108 1.2
(0.6/2.0)

2.8
(1.5/4.3)

0.003 15.5
(9.0/24.0)

12.8
(8.0/20.4)

0.23 8.0
(4.7/12.6)

8.6
(5.1/14.1)

0.42

KIR3DL2 60 122 11.3
(7.3/15.0)

10.5
(6.9/13.8)

0.21 14.9
(9.0/22.9)

20.4
(13.2/29.2)

0.048 10.4
(6.4/16.6)

17.6
(10.5/27.1)

0.0003
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Stratification of HLA-C allotypes for different KIR2DL3 alleles
showed a slightly increased frequency of KIR2DL3+ NK cells in
HLA-C2/C2 individuals positive for KIR2DL3*001, whereas
individuals carrying a KIR2DL3*002 allele had an increased
frequency of KIR2DL3 in the group of HLA-C1/C1 genotypes.
In addition, the observed distribution of KIR2DL1 alleles in
HLA-C genotypes was also present but less pronounced when
using absolute cell numbers, whereas KIR2DL2 and KIR2DL3
alleles showed no differences in HLA-C genotypes when using
absolute cell numbers a s readout (Supplementary Figure 5). To
examine a possible relationship between KIR/HLA-C genotype
combinations and the frequency of KIR2DL+ NK cells,
correlation analyses between the frequencies of KIR2DL+ NK
cells and HLA-C/KIR2DL-Fc binding affinities were performed
for HIV-1- and HIV-1+ individuals (Figures 3F, G). For this, we
included individuals heterozygous for C1/C2 and carrying HLA-
C/KIR combinations with corresponding binding data.
Frequency of KIR2DL1+ NK cells showed a significant positive
correlation with the assessed binding affinities for HLA-C2/
KIR2DL1 combinations (rs = 0.3, p = 0.004) in HIV-1+

individuals. On the other hand, KIR2DL1+ NK cell frequency
and HLA-C2/KIR2DL1 binding affinities for HIV-1- individuals,
as well as KIR2DL2/L3+ NK cell frequency and HLA-C1/
KIR2DL2/L3 binding affinities for HIV-1+ and HIV-1-

individuals showed no significant correlation. Overall, these
results suggest that both, the underlying HLA-C and KIR
genotype of an individual has a direct impact on the
expression levels of the corresponding KIR in the respective
NK cell pool.

Host Genetics Impact Vpu Sequence
Polymorphisms in Plasma and
PBMC Samples
Lab-adapted HIV-1 strains and primary isolates display
differential abilities to modulate HLA-C expression on the
surface of infected CD4+ T cells mediated by the accessory HIV-
1 protein Vpu (29, 31). Previously, five amino acid (AA) positions
have been identified at which specific residues were independently
associated with HLA-C downregulation (30): Proline (P) at
position 3, glutamic acid (E) at position 5, glycine (G) or
threonine (T) at position 16 and serine (S) at position 24.
Conversely, alanine (A) at position 15 negatively affected the
ability to downregulate HLA-C. To investigate the impact of
HLA-C/KIR2DL allotype combinations on Vpu sequence
variations, genomic DNA and viral RNA from matching PBMC
and plasma samples from 122 HIV-1+ individuals were isolated
and sequenced with next-generation sequencing (NGS) for Vpu
(Figure 4A). Sequences of Vpu from 93 plasma and 67 PBMC
samples passed quality control, were translated to amino acid
sequences and then aligned to the Vpu protein from the lab-
adapted HIV-1 strains NL4-3 and JR-CSF (Figure 4B).
Comparison of sequence similarity for the five analyzed AA
positions between matching PBMC and plasma samples showed
a frequency of matching AA residues between 0.64 and 0.92, with
the lowest frequency for position 16 and the highest frequency for
position 5. In addition, the frequency of all observed residues for
Frontiers in Immunology | www.frontiersin.org 11
the AA position was determined for PBMC and plasma samples.
For position 3, the most common AA was proline (PBMC: 0.69,
plasma: 0.61) followed by serine and leucine. Position 5 showed
the highest variations in AA residues with the highest frequency
for isoleucine (PBMC: 0.63, plasma: 0.45). The most common AA
at position 15 was alanine (PBMC: 0.92, plasma: 0.73) followed by
valine. Moreover, position 16 had comparable frequencies for
alanine (PBMC: 0.29, plasma: 0.36), isoleucine (PBMC: 0.28,
plasma: 0.14) and glycine (PBMC: 0.33, plasma: 0.36). Position
24 showed the lowest variations in AA residues with a serine as the
most common AA (PBMC: 0.61, plasma: 0.63) followed by
a threonine.

Stratification of HLA-C allotypes was performed for Vpu
sequences for PBMC and plasma samples and analyzed for the
five respective AA previously identified to influence HLA-C
expression levels (Figure 4C). Vpu sequences isolated from
PBMC samples from HLA-C1+ individuals contained a median
of three of the five AA residues, whereas HLA-C2 homozygous
individuals had a median of two AA residues that were associated
with HLA-C downregulation (linear trend, p = 0.593). In
comparison, Vpu sequenced from viral RNA from plasma
samples had three of the five AA residues in individuals with
at least one HLA-C2 allele and HLA-C1 homozygous individuals
had two (p = 0.205). However, there were no differences
detectable in the frequency of AA residues associated with
HLA-C downregulation when individuals were stratified by
their HLA-C genotype.

HLA-C surface expression levels vary and correlate with the
HLA-C allotype (28). To identify a potential influence of HLA-C
surface expression levels on Vpu sequence variations, Vpu
sequences from PBMC and plasma samples were analyzed for
the five AA positions that are involved in HLA-C
downregulation based on the average MFI HLA-C allele
expression (Figure 4D). Our analysis showed no significant
influence of HLA-C allele expression on individual AA residuces.

Finally, differences in AA residues for the five positions were
analyzed based on the assessed binding affinities of HLA-C1/
KIR2DL2/3 and HLA-C2/KIR2DL1 allotype combinations
(Figure 4E). HLA-C/KIR2DL combinations with stronger
binding affinities were more common in Vpu sequences from
plasma samples with AA other than an alanine at position 15
(15other) (p = 0.005) or a glycine or threonine at position 16
(16GT) (p = 0.016) whereas HLA-C/KIR2DL binding affinities
were not associated with specific amino acid residues in Vpu
sequences from PBMC samples. Overall, these results indicated
that HLA-C expression level and HLA-C/KIR2DL binding may
have an influence on Vpu sequence polymorphisms.
DISCUSSION

In recent years multiple studies have drawn attention to the
potential role of HLA-C and its cognate inhibitory receptors,
KIR2DL1, KIR2DL2, and KIR2DL3, in the intrinsic control of
HIV-1 infection. Most notably were two studies showing the
protective effect of high HLA-C expression levels on HIV-1
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FIGURE 4 | Impact of HLA-C/KIR2DL genotypes on Vpu sequence polymorphisms. (A) Overview of the work flow for Vpu sequencing from matched PBMC (n =
122) and plasma samples (n = 122) of untreated HIV-1+ individuals. Created with BioRender.com (B) Upper panel: Representative alignment of amino acid (AA)
sequences of HIV-1 Vpu passing quality control. Lower panels: Frequency of matching AA residues at position 3, 5, 15, 16 and 24 between matched PBMC and
plasma samples (n = 53). Frequency of individual AA residues at 3, 5, 15, 16 and 24 in PBMC (n = 67) and plasma (n = 93) samples. (C) Left: Dot plots displaying
the cumulative number of AA residues associated with Vpu-mediated HLA-C downregulation per sequence. Right: Frequency of AA residues at position 3, 5, 15,
16 and 24. Individuals were stratified by HLA-C group genotypes (x-axis). Upper panel: PBMC, lower panel: Plasma. (D) Expression levels of HLA-C alleles of HIV-
1+ donors. Data points are displayed for each position (3, 5, 15, 16 and 24) and AA residues. AA residues associated with HLA-C downregulation are displayed in
red (PBMC, left panel) or dark orange (plasma, right panel). Summary table displaying descriptive and comparative statistics. (E) Binding affinities of KIR/HLA-C
combinations of HIV-1+ donors. Data points are displayed in red (PBMC, left panel) or dark orange (plasma, right panel). Summary table displaying descriptive and
comparative statistics. Data information: Black bars display the median. (C) Left panel: One-way ANOVA, test for linear trend. Right panels: Chi square test.
(D, E) Mann-Whitney test.
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progression (28) and the differential ability of HIV-1 to modulate
HLA-C expression through the accessory protein Vpu (29). In
contrast to Nef-mediated downregulation of HLA-A/B, the
magnitude of HLA-C modulation by Vpu varies extensively
across viral strains. Further investigations revealed that HIV-1
adapts its ability for downmodulation to the HLA-C genotype of
the host (30). However, the majority of the investigated viral
strains exhibited only a marginal ability to reduce HLA-C
expression on infected cells (30) indicating that other factors
than escape from CTL recognition through HLA-C
downmodulat ion may contribute to Vpu sequence
polymorphisms. Previous reports by our group demonstrated
that KIR2DL+ NK cells are able to sense HIV-1-mediated
alterations of HLA-C (31). Based on these studies, we
hypothesized that differential binding affinities across KIR and
HLA-C allotypes in part pre-determine KIR2DL+ NK cell
induced immune pressure and Vpu-associated viral escape.

Our results demonstrated a hierarchy of affinities along the
various combinations and confirmed the binding specificities of
KIR2DL1 (HLA-C2), KIR2DL3 (HLA-C1) and KIR2DL2 (HLA-
C1/-C2) (52). These results are largely consistent with those from
the cell-free system of Hilton et al. who used KIR-Fc fusion
constructs and microbeads, each coated with a different HLA
class I allotype (39). While specificities between KIR2DL and
HLA-C are defined by position 44 of the KIR protein (15) and
position 80 of the a1 domain of HLA-C (7), other amino acid
positions within both molecules fine-tune avidity (19, 53). Data
on the functional consequences of the variegated affinities in the
context of HIV-1 infection have been limited to KIR3DL1 (54,
55). However, multiple studies have shown that changes in the
HLA class I presented peptidome can modulate binding to KIRs
and subsequently impact NK cell functions (33, 56, 57).
Moreover, HIV-1 sequence polymorphisms have been
associated with KIR2DL genes alone and in combination with
HLA-C indicating NK cell-mediated immune pressure involving
KIR2DL+ NK cells (36, 37). It is therefore conceivable that
binding affinities predetermined by KIR2DL/HLA-C genotypes
may have a similar impact.

In this context, expansion of KIR+ NK cell subsets can be an
indicator for the involvement of specific KIR+ NK cell subsets in
the antiviral immune response against HIV-1 (58–60). HIV-1
infection has been associated with significant changes in the NK
cell receptor repertoire (61–63). In our phenotypical
characterization we investigated the expression of NK cell
receptors interacting with various HLA class I molecules in a
cohort of untreated, viremic HIV-1+ individuals. Noteworthy,
decreased numbers of CD8+ NK cells in HIV-1-infected
individuals have been observed in a previous study, where it
correlated positively with HIV loads and inversely with CD4+ T
cell counts (64). We also observed an overall contraction of the
NKG2A+ NK cell subset which was closely tied to an expansion
of NKG2C+ and CD57+ NK cells in the same donors. The
inhibitory NKG2A receptor interacts with the non-classical
HLA class I molecule HLA-E on target cells, preventing
healthy cells from NK cell-mediated lysis. Additionally, HLA-E
is recognized by NKG2C, which delivers an activating signal to
Frontiers in Immunology | www.frontiersin.org 13
the NK cell (65). NKG2A+ NK cells have been implicated to
possess superior anti-HIV activity compared to other subsets,
whereas KIR2DL+ NK cells had a diminished ability to
degranulate in response to HIV-1-infected CD4+ T cells even
in the absence of NKG2A (66). In line with our results, Mavilio et
al., showed a decreased expression of NKG2A in HIV-1-infected
viremic individuals, which was associated with reduced
inhibitory function in a redirected killing assay (61). Loss of
NKG2A+ NK cells corresponded with a high expansion of NK
cells expressing NKG2C (67). In contrast, higher NKG2A
expression levels in cytotoxic NK cell subsets have been
reported in individuals with late stage HIV-1 infection (68).
Expansion of NKG2C+ and CD57+ NK cells is not unique to
HIV-1 infection (69). Similar changes have been observed for
CMV and Hantavirus infection (70–72). It is still under
investigation if these CD57+NKG2C+ NK cells have memory-
like features specific for viral infections (73). Data on CMV
seropositivity was not available for this cohort and therefore we
cannot rule out a CMV-associated expansion in the HIV-1+

cohort. However, an earlier study of our group indicated a CMV-
independent, HIV-1-driven expansion of KIR2DL+ NK
cells (32).

Analysis of KIR+ NK cells recognizing HLA-C initially
showed a decrease of cells expressing the activating receptor
KIR2DS4, while percentage of most inhibitory receptors
remained unchanged. KIR2DS4 binds a subset of HLA-C1 and
-C2 allotypes and HLA-A*11 (18) however its role in disease
progression and NK cells regulation is not fully understood.
KIR2DS4 has been associated with high viral loads and
promotion of HIV-1 pathogenesis in chronic HIV-1 infection,
probably through excessive NK cell activation (74, 75). HIV-1+

individuals showed a higher frequency of the inhibitory
KIR3DL2 receptor, which recognizes only HLA-A3 and -A11
in a peptide specific manner (11) and HLA-B27 (76). So far, not
much is known about the role of KIR3DL2 in HIV-1 infection
but other studies showed also an increased expression of
KIR3DL2 in chronic HCV patients (77) and on activated NK
cells from patients with spondylarthritis (78). Further
stratification of our data based on HLA-C and KIR2DL
genotypes indicated that the HIV-1-associated changes in the
proportion of KIR2DL+ NK cells within the NK cell pool were
predetermined by host genetics. The frequency of KIR2DL1+ NK
cells was linked to the number of the cognate HLA-C2 alleles,
which we showed previously for individuals with primary HIV-1
infection (32). The increased frequency is potentially related to
an increased surface expression of the respective HLA-C2 ligand.
In addition, differentiation of KIR2DL1 alleles displayed a similar
“gene-dose” effect for the analyzed KIR2DL1 alleles with the
exception of KIR2DL1*001/002. Further analysis showed a
positive correlation between KIR2DL/HLA-C binding affinities
and the frequency of the respective KIR2DL+ NK cell subset, thus
further corroborating our hypothesis. However, we cannot rule
out that the differences in the relative frequency of NK cells
expressing various KIR2DL allotypes is due to changes in non-
coding regions that may impact expression on an individual cell
and within an individual NK cell pool (79–81).
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Lastly, we investigated the impact of KIR/HLA-C genotypes
on Vpu sequence polymorphisms. Molecular characterization of
Vpu sequences of primary viruses identified five amino acid
positions (3, 5, 15, 16 and 24) in the transmembrane and
extracellular domain of Vpu that are associated with HLA-C
downregulation (30). Grouping the amino acid position and
residues based on their HLA-C genotype showed no differences
in the frequency of amino acid positions/residues that
downregulate HLA-C. We further tested whether differential
HLA-C allele expression or HLA-C/KIR2DL binding were
associated with AA residues that are involved in HLA-C
downmodulation (28, 30). We observed an increased frequency
of glycine or threonine at AA position 16 in individuals with
stronger HLA-C/KIR2DL binding combinations compared to
other amino acid residues at position 16, hinting that the binding
affinities between KIR2DL and HLA-C molecules might be an
additional factor impacting Vpu sequence polymorphisms. It
should be noted that the observed signals contain a certain level
of uncertainty that are attributed to the numerous allotype
combinations in the cohort and the ambiguity of KIR allele
typing. In general, the enormous diversity in HLA-C/KIR2DL
binding combinations and different affinities, influencing the
activation of NK cells and immune evasion mechanisms of HIV-
1, make it challenging to develop a prediction model for specific
Vpu sequence polymorphisms and consequences for NK cell
activation based on HLA-C/KIR2DL genotypes.

Altogether, this study demonstrates the significant effects of
HIV-1 infection on the NK cell pool in viremic, untreated HIV-
1+ individuals and provides evidence that the specific changes in
the KIR2DL repertoire are predetermined by the underlying
KIR2DL/HLA-C genotypes. The results also make a case that
high resolution KIR typing and the generation of KIR/HLA
binding models may be warranted to improve disease models
and to potentially predict NK cell-associated immune responses
and disease progression in various pathological settings and
subsequently NK cell-based immune therapies.
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