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Abstract: Based on the canonical correlation analysis, we derive series representations of the probabil-
ity density function (PDF) and the cumulative distribution function (CDF) of the information density
of arbitrary Gaussian random vectors as well as a general formula to calculate the central moments.
Using the general results, we give closed-form expressions of the PDF and CDF and explicit formulas
of the central moments for important special cases. Furthermore, we derive recurrence formulas
and tight approximations of the general series representations, which allow efficient numerical cal-
culations with an arbitrarily high accuracy as demonstrated with an implementation in PYTHON

publicly available on GITLAB. Finally, we discuss the (in)validity of Gaussian approximations of the
information density.

Keywords: information density; information spectrum; probability density function; cumulative
distribution function; central moments; Gaussian random vector; canonical correlation analysis

1. Introduction and Main Theorems

Let ξ and η be arbitrary random variables on an abstract probability space (Ω,F , P)
such that the joint distribution Pξη is absolutely continuous w. r. t. the product Pξ ⊗ Pη of

the marginal distributions Pξ and Pη . If
dPξη

dPξ⊗Pη
denotes the Radon–Nikodym derivative of

Pξη w. r. t. Pξ ⊗ Pη , then

i(ξ; η) = log
(

dPξη

dPξ ⊗ Pη
(ξ, η)

)
is called the information density of ξ and η. The expectation E(i(ξ; η)) = I(ξ; η) of the
information density, called mutual information, plays a key role in characterizing the
asymptotic channel coding performance in terms of channel capacity. The non-asymptotic
performance, however, is determined by the higher-order moments of the information
density and its probability distribution. Achievability and converse bounds that allow
a finite blocklength analysis of the optimum channel coding rate are closely related to
the distribution function of the information density, also called information spectrum
by Han and Verdú [1,2]. Moreover, based on the variance of the information density
tight second-order finite blocklength approximations of the optimum code rate can be
derived for various important channel models. First work on a non-asymptotic informa-
tion theoretic analysis was already published in the early years of information theory by
Shannon [3], Dobrushin [4], and Strassen [5], among others. Due to the seminal work of
Polyanskiy et al. [6], considerable progress has been made in this area. The results of [6]
on the one hand and the requirements of current and future wireless networks regarding
latency and reliability on the other hand stimulated a significant new interest in this type
of analysis (Durisi et al. [7]).
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The information density i(ξ; η) in the case when ξ and η are jointly Gaussian is of spe-
cial interest due to the prominent role of the Gaussian distribution. Let ξ = (ξ1, ξ2, . . . , ξp)
and η = (η1, η2, . . . , ηq) be real-valued random vectors with nonsingular covariance matri-
ces Rξ and Rη and cross-covariance matrix Rξη with rank r = rank(Rξη). (For notational
convenience, we write vectors as row vectors. However, in expressions where matrix or
vector multiplications occur, we consider all vectors as column vectors.) Without loss of gen-
erality for the subsequent results, we assume the expectation of all random variables to be
zero. If (ξ1, ξ2, . . . , ξp, η1, η2, . . . , ηq) is a Gaussian random vector, then Pinsker [8], Ch. 9.6
has shown that the distribution of the information density i(ξ; η) coincides with the distri-
bution of the random variable

ν =
1
2

r

∑
i=1

$i
(
ξ̃2

i − η̃2
i
)
+ I(ξ; η). (1)

In this representation ξ̃1, ξ̃2, . . . , ξ̃r, η̃1, η̃2,. . . , η̃r are independent and identically distributed
(i.i.d.) Gaussian random variables with zero mean and unit variance and the mutual
information I(ξ; η) in (1) has the form

I(ξ; η) =
1
2

r

∑
i=1

log
(

1
1− $2

i

)
. (2)

Moreover, $1 ≥ $2 ≥ . . . ≥ $r > 0 denote the positive canonical correlations of ξ and η
in descending order, which are obtained by a linear method called canonical correlation
analysis that yields the maximum correlations between two sets of random variables (see
Section 3). The rank r of the cross-covariance matrix Rξη satisfies 0 ≤ r ≤ min{p, q},
and for r = 0 we have i(ξ; η) ≡ 0 almost surely and I(ξ; η) = 0. This corresponds to
Pξη = Pξ ⊗ Pη and the independence of ξ and η such that the resulting information density
is deterministic. Throughout the rest of the paper, we exclude this degenerated case when
the information density is considered and assume subsequently the setting and notation
introduced above with r ≥ 1. As customary notation, we further write R, N0, and N to
denote the set of real numbers, non-negative integers, and positive integers.

Main contributions. Based on (1), we derive in Section 4 series representations of
the probability density function (PDF) and the cumulative distribution function (CDF)
as well as explicit general formulas for the central moments of the information density
i(ξ; η) given subsequently in Theorems 1 to 3. The series representations are useful as
they allow tight approximations with errors as low as desired by finite sums as shown in
Section 5.2. Moreover, we derive recurrence formulas in Section 5.1 that allow efficient
numerical calculations of the series representations in Theorems 1 and 2.

Theorem 1 (PDF of information density). The PDF fi(ξ;η) of the information density i(ξ; η) is
given by

fi(ξ;η)(x) =
1

$r
√

π

∞

∑
k1=0

∞

∑
k2=0
· · ·

∞

∑
kr−1=0

r−1

∏
i=1

$r

$i

(2ki)!
(ki!)24ki

(
1− $2

r

$2
i

)ki
×

K r−1
2 +k1+k2+···+kr−1

( |x−I(ξ;η)|
$r

)
Γ
( r

2 + k1 + k2 + · · ·+ kr−1
) ( |x− I(ξ; η)|

2$r

)( r−1
2 +k1+k2+···+kr−1)

, x ∈ R\{I(ξ; η)}, (3)

where Γ(·) denotes the gamma function [9], Sec. 5.2.1 and Kα(·) denotes the modified Bessel
function of second kind and order α [9], Sec. 10.25(ii). If r ≥ 2, then fi(ξ;η)(x) is also well defined
for x = I(ξ; η).
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Theorem 2 (CDF of information density). The CDF Fi(ξ;η) of the information density i(ξ; η) is
given by

Fi(ξ;η)(x) =


1
2
−V(I(ξ; η)− x) if x ≤ I(ξ; η)

1
2
+ V(x− I(ξ; η)) if x > I(ξ; η)

,

with V(z) defined by

V(z) =
∞

∑
k1=0

∞

∑
k2=0
· · ·

∞

∑
kr−1=0

r−1

∏
i=1

$r

$i

(2ki)!
(ki!)24ki

(
1− $2

r

$2
i

)ki
 z

2$r
×

[
K r−1

2 +k1+k2+···+kr−1

(
z
$r

)
L r−3

2 +k1+k2+···+kr−1

(
z
$r

)
+ K r−3

2 +k1+k2+···+kr−1

(
z
$r

)
L r−1

2 +k1+k2+···+kr−1

(
z
$r

)]
, z ≥ 0, (4)

where Lα(·) denotes the modified Struve L function of order α [9], Sec. 11.2.

The method to obtain the result in Theorem 1 is adopted from Mathai [10], where a
series representation of the PDF of the sum of independent gamma distributed random
variables is derived. Previous work of Grad and Solomon [11] and Kotz et al. [12] goes
in a similar direction as Mathai [10]; however, it is not directly applicable since only the
restriction to positive series coefficients is considered there. Using Theorem 1, the series
representation of the CDF of the information density in Theorem 2 is obtained. The details
of the derivations of Theorems 1 and 2 are provided in Section 4.

Theorem 3 (Central moments of information density). The m-th central moment E
(
[i(ξ; η)−

I(ξ; η)]m
)

of the information density i(ξ; η) is given by

E
(
[i(ξ; η)− I(ξ; η)]m

)
=


∑

(m1,m2,··· ,mr)∈K[2]
m,r

m!
r

∏
i=1

(2mi)!
4mi (mi!)2 $

2mi
i if m = 2m̃

0 if m = 2m̃− 1

, (5)

for all m̃ ∈ N, where K[2]
m,r =

{
(m1, m2, . . . , mr) ∈ Nr

0 : 2m1 + 2m2 + · · ·+ 2mr = m
}

.

Pinsker [8], Eq. (9.6.17) provided a formula for ∑r
i=1 E

([ $i
2 (ξ̃

2
i − η̃2

i )
]m), which he

called “derived m-th central moment” of the information density, where ξ̃i and η̃i are
given as in (1). These special moments coincide for m = 2 with the usual central moments
considered in Theorem 3.

The rest of the paper is organized as follows: In Section 2, we discuss important
special cases which allow simplified and explicit formulas. In Section 3, we provide some
background on the canonical correlation analysis and its application to the calculation
of the information density and mutual information for Gaussian random vectors. The
proofs of the main Theorems 1 to 3 are given in Section 4. Recurrence formulas, finite sum
approximations, and uniform bounds of the approximation error are derived in Section 5,
which allow efficient and accurate numerical calculations of the PDF and CDF of the
information density. Some examples and illustrations are provided in Section 6, where also
the (in)validity of Gaussian approximations is discussed. Finally, Section 7 summarizes the
paper. Note that a first version of this paper was published on ARXIV as preprint [13].
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2. Special Cases
2.1. Equal Canonical Correlations

A simple but important special case for which the series representations in Theorems 1 and 2
simplify to a single summand and the sum of products in Theorem 3 simplifies to a single
product is considered in the following corollary.

Corollary 1 (PDF, CDF, and central moments of information density for equal canonical
correlations). If all canonical correlations are equal, i.e.,

$1 = $2 = . . . = $r,

then we have the following simplifications.
(i) The PDF fi(ξ;η) of the information density i(ξ; η) simplifies to

fi(ξ;η)(x) =
1

$r
√

πΓ
( r

2
)K r−1

2

( |x− I(ξ; η)|
$r

)( |x− I(ξ; η)|
2$r

) r−1
2

, x ∈ R\{I(ξ; η)}, (6)

where I(ξ; η) is given by
I(ξ; η) = − r

2
log
(

1− $2
r

)
.

If r ≥ 2, then fi(ξ;η)(x) is also well defined for x = I(ξ; η).
(ii) The CDF Fi(ξ;η) of the information density i(ξ; η) is given by

Fi(ξ;η)(x) =


1
2
−V(I(ξ; η)− x) if x ≤ I(ξ; η)

1
2
+ V(x− I(ξ; η)) if x > I(ξ; η)

, (7)

with V(z) defined by

V(z) =
z

2$r

[
K r−1

2

(
z
$r

)
L r−3

2

(
z
$r

)
+ K r−3

2

(
z
$r

)
L r−1

2

(
z
$r

)]
, z ≥ 0. (8)

(iii) The m-th central moment E
(
[i(ξ; η)− I(ξ; η)]m

)
of the information density i(ξ; η) has

the form

E
(
[i(ξ; η)− I(ξ; η)]m

)
=


m!(

m/2
)
!

(
m/2

∏
j=1

(
r
2
+ j− 1

))
$m

r if m = 2m̃

0 if m = 2m̃− 1

, (9)

for all m̃ ∈ N.

Clearly, if all canonical correlations are equal, then the only nonzero term in the
series (3) and (4) occur for k1 = k2 = . . . = kr−1 = 0. For this single summand, the product
in squared brackets in (3) and (4) is equal to 1 by applying 00 = 1, which yields the results
of part (i) and (ii) in Corollary 1. Details of the derivation of part (iii) of the corollary are
provided in Section 4.

Note, if all canonical correlations are equal, then we can rewrite (1) as follows:

ν =
$r

2

(
r

∑
i=1

ξ̃2
i −

r

∑
i=1

η̃2
i

)
+ I(ξ; η).
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This implies that ν coincides with the distribution of the random variable

ν∗ =
$r

2
(
ζ1 − ζ2

)
+ I(ξ; η),

where ζ1 and ζ2 are i.i.d. χ2-distributed random variables with r degrees of freedom.
With this representation, we can obtain the expression of the PDF given in (6) also
from [14], Sec. 4.A.4.

Special cases of Corollary 1. The case when all canonical correlations are equal is
important because it occurs in various situations. The subsequent cases follow from the
properties of canonical correlations given in Section 3.

(i) Assume that the random variables ξ1, ξ2, . . . , ξp, η1, η2, . . . , ηq are pairwise uncorre-
lated with the exception of the pairs (ξi, ηi), i = 1, 2, . . . , k ≤ min{p, q} for which we have
cor(ξi, ηi) = ρ 6= 0, where cor(·, ·) denotes the Pearson correlation coefficient. Then, r = k
and $i = |ρ| for all i = 1, 2, . . . , r. Note, if p = q = k, then for the previous conditions to
hold, it is sufficient that the two-dimensional random vectors (ξi, ηi) are i.i.d. However,
the identical distribution of the (ξi, ηi)’s is not necessary. In Laneman [15], the distribution
of the information density for an additive white Gaussian noise channel with i.i.d. Gaussian
input is determined. This is a special case of the case with i.i.d. random vectors (ξi, ηi) just
mentioned. In Wu and Jindal [16] and in Buckingham and Valenti [17], an approximation
of the information density by a Gaussian random variable is considered for the setting
in [15]. A special case very similar to that in [15] is also considered in Polyanskiy et al. [6],
Sec. III.J. To the best of the authors’ knowledge, explicit formulas for the general case as
considered in this paper are not available yet in the literature.

(ii) Assume that the conditions of part (i) are satisfied. Furthermore, assume that Â is a
real nonsingular matrix of dimension p× p and B̂ is a real nonsingular matrix of dimension
q× q. Then, the random vectors

ξ̂ = Â ξ and η̂ = B̂ η

have the same canonical correlations as the random vectors ξ and η, i.e., $i = |ρ| for all
i = 1, 2, . . . , k ≤ min{p, q}.

(iii) If r = 1, i.e., if the cross-covariance matrix Rξ,η has rank 1, then Corollary 1
obviously applies. Clearly, the most simple special case with r = 1 occurs for p = q = 1,
where $1 = |cor(ξ1, η1)|.

As a simple multivariate example, let the covariance matrix of the random vector
(ξ1, ξ2, . . . , ξp, η1, η2, . . . , ηq) be given by the Kac-Murdock–Szegö matrix(

Rξ Rξη

Rξη Rη

)
=
(

ρ|i−j|
)p+q

i,j=1

which is related to the covariance function of a first-order autoregressive process, where
0 < |ρ| < 1. Then, r = rank(Rξη) = 1 and $1 = |ρ|.

(iv) As yet another example, assume p = q and Rξη = ρR1/2
ξ R1/2

η for some 0 < |ρ| < 1.

Then, $i = |ρ| for i = 1, 2, . . . , r = q. Here, A1/2 denotes the square root of the real-valued
positive semidefinite matrix A, i.e., the unique positive semidefinite matrix B such that
BB = A.

2.2. More on Special Cases with Simplified Formulas

Let us further evaluate the formulas given in Corollary 1 and Theorem 3 for some
relevant parameter values.

(i) Single canonical correlation coefficient. In the most simple case, there is only a single
non-zero canonical correlation coefficient, i.e., r = 1. (Recall, in the beginning of the paper,
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we have excluded the degenerated case when all canonical correlations are zero.) Then, the
formulas of the PDF and the m-th central moment in Corollary 1 simplify to the form

fi(ξ;η)(x) =
1

$1π
K0

( |x− I(ξ; η|)
$1

)
, x ∈ R\{I(ξ; η)},

and

E
(
[i(ξ; η)− I(ξ; η)]m

)
=


(

m!(
m/2
)
!

)2($1

2

)m
if m = 2m̃

0 if m = 2m̃− 1

, (10)

for all m̃ ∈ N. A formula equivalent to (10) is also provided by Pinsker [8], Lemma 9.6.1
who considered the special case p = q = 1, which implies r = 1.

(ii) Second and fourth central moment. To demonstrate how the general formula given
in Theorem 3 is used, we first consider m = 2. In this case, the summation indices
m1, m2, . . . , mr have to satisfy mi = 1 for a single i ∈ {1, 2, . . . , r}, whereas the remaining
mi’s have to be zero. Thus, (5) evaluates for m = 2 to

E
(
[i(ξ; η)− I(ξ; η)]2

)
= var

(
i(ξ; η)

)
=

r

∑
i=1

$2
i . (11)

As a slightly more complex example, let m = 4. In this case, either we have mi = 2 for
a single i ∈ {1, 2, . . . , r}, whereas the remaining mi’s are zero or we have mi1 = mi2 = 1 for
two i1 6= i2 ∈ {1, 2, . . . , r}, whereas the remaining mi’s have to be zero. Thus, (5) evaluates
for m = 4 to

E
(
[i(ξ; η)− I(ξ; η)]4

)
= 9

r

∑
i=1

$4
i + 6

r

∑
i=2

i−1

∑
j=1

$2
i $2

j .

(iii) Even number of equal canonical correlations. As in Corollary 1, assume that all
canonical correlations are equal and additionally assume that the number r of canonical
correlations is even, i.e., r = 2r̃ for some r̃ ∈ N. Then, we can use [9], Secs. 10.47.9, 10.49.1,
and 10.49.12 to obtain the following relation for the modified Bessel function Kα(·) of a
second kind and order α

K r−1
2
(y) =

√
π

2
exp(−y)

r/2−1

∑
i=0

(
r/2− 1 + i

)
!(

r/2− 1− i
)
! i! 2i

y−(i+
1
2 ), y ∈ (0, ∞). (12)

Plugging (12) into (6) and rearranging terms yields the following expression for the PDF of
the information density:

fi(ξ;η)(x) =
1

$r2r−1
(

r/2− 1
)
!

exp
(
−|x− I(ξ; η)|

$r

)
×

r/2−1

∑
i=0

(
2(r/2− 1)− i

)
! 2i(

r/2− 1− i
)
! i!

( |x− I(ξ; η)|
$r

)i
, x ∈ R.

By integration, we obtain for the function V(·) in (8) the expression

V(z) =
1
2
− 1

2r−1
(

r/2− 1
)
!

exp
(
− z

$r

)
×

r/2−1

∑
i=0

(
2(r/2− 1)− i

)
! 2i(

r/2− 1− i
)
!

i

∑
j=0

1
(i− j)!

(
z
$r

)i−j
, z ≥ 0.
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Note that these special formulas can also be obtained directly from the results given
in [14], Sec. 4.A.3.

To illustrate the principal behavior of the PDF and CDF of the information density
for equal canonical correlations, it is instructive to consider the specific value r = 2 in the
above formulas, which yields

fi(ξ;η)(x) =
1

2$r
exp

(
−|x− I(ξ; η)|

$r

)
, x ∈ R,

V(z) =
1
2

(
1− exp

(
− z

$r

))
, z ≥ 0

and r = 4, for which we obtain

fi(ξ;η)(x) =
1

4$r
exp

(
−|x− I(ξ; η)|

$r

)(
1 +
|x− I(ξ; η)|

$r

)
, x ∈ R,

V(z) =
1
2

(
1− exp

(
− z

$r

)(
1 +

z
2$r

))
, z ≥ 0.

3. Mutual Information and Information Density in Terms of Canonical Correlations

First introduced by Hotelling [18], the canonical correlation analysis is a widely used
linear method in multivariate statistics to determine the maximum correlations between
two sets of random variables. It allows a particularly simple and useful representation of
the mutual information and the information density of Gaussian random vectors in terms
of the so-called canonical correlations. This representation was first obtained by Gelfand
and Yaglom [19] and further extended by Pinsker [8], Ch. 9. For the convenience of the
reader, we summarize in this section the essence of the canonical correlation analysis and
demonstrate how it is applied to derive the representations in (1) and (2).

The formulation of the canonical correlation analysis given below is particularly
suitable for implementations. The corresponding results are given without proof. Details
and thorough discussions can be found, e.g., in Härdle and Simar [20], Koch [21], or
Timm [22].

Based on the nonsingular covariance matrices Rξ and Rη of the random vectors
ξ = (ξ1, ξ2, . . . , ξp) and η = (η1, η2, . . . , ηq), and the cross-covariance matrix Rξη with rank
r = rank(Rξη) satisfying 0 ≤ r ≤ min{p, q}, define the matrix

M = R−
1
2

ξ Rξη R−
1
2

η ,

where the inverse matrices R−1/2
ξ =

(
R1/2

ξ

)−1 and R−1/2
η =

(
R1/2

η

)−1 can be obtained from
diagonalizing Rξ and Rη . Then, the matrix M has a singular value decomposition

M = UDVT,

where VT denotes the transpose of V. The only non-zero entries d1,1, d2,2, . . . , dr,r > 0 of the
matrix D =

(
di,j
)p,q

i,j=1 are called canonical correlations of ξ and η, denoted by $i = di,i, i =
1, 2, . . . , r. The singular value decomposition can be chosen such that $1 ≥ $2 ≥ . . . ≥ $r
holds, which is assumed throughout the paper.

Define the random vectors

ξ̂ = (ξ̂1, ξ̂2, . . . , ξ̂p) = A ξ and η̂ = (η̂1, η̂2, . . . , η̂q) = B η,

where the nonsingular matrices A and B are given by

A = UTR−
1
2

ξ and B = VTR−
1
2

η .
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Then, the random variables ξ̂1, ξ̂2, . . . , ξ̂p, η̂1, η̂2, . . . , η̂q have unit variance and they are
pairwise uncorrelated with the exception of the pairs (ξ̂i, η̂i), i = 1, 2, . . . , r for which we
have cor(ξ̂i, η̂i) = $i.

Using these results, we obtain for the mutual information and the information density

I(ξ; η) = I(Aξ; Bη) = I(ξ̂; η̂) =
r

∑
i=1

I(ξ̂i; η̂i) (13)

i(ξ; η) = i(Aξ; Bη) = i(ξ̂; η̂) =
r

∑
i=1

i(ξ̂i; η̂i) (P-almost surely). (14)

The first equality in (13) and (14) holds because A and B are nonsingular matrices, which
follows, e.g., from Pinsker [8], Th. 3.7.1. Since we consider the case where ξ and η
are jointly Gaussian, ξ̂ and η̂ are jointly Gaussian as well. Therefore, the correlation
properties of ξ̂ and η̂ imply that all random variables ξ̂i, η̂j are independent except for
the pairs (ξ̂i, η̂i), i = 1, 2, . . . , r. This implies the last equality in (13) and (14), where
i(ξ̂1; η̂1), i(ξ̂2; η̂2), . . . , i(ξ̂r; η̂r) are independent. The sum representations follow from the
chain rules of mutual information and information density and the equivalence between
independence and vanishing mutual information and information density.

Since ξ̂i and η̂i are jointly Gaussian with correlation cor(ξ̂i, η̂i) = $i, we obtain from (13)
and the formula of mutual information for the bivariate Gaussian case the identity (2).
Additionally, with ξ̂i and η̂i having zero mean and unit variance, the information density
i(ξ̂i; η̂i) is further given by

i(ξ̂i; η̂i) = −
1
2

log(1− $2
i )−

$2
i

2(1− $2
i )

(
ξ̂2

i −
2 ξ̂iη̂i

$i
+ η̂2

i

)
, i = 1, 2, . . . , r. (15)

Now assume ξ̃1, ξ̃2, . . . , ξ̃r, η̃1, η̃2,. . . , η̃r are i.i.d. Gaussian random variables with zero mean
and unit variance. Then, the distribution of the random vector

1√
2

(√
1 + $i ξ̃i +

√
1− $i η̃i,

√
1 + $i ξ̃i −

√
1− $i η̃i

)
coincides with the distribution of the random vector (ξ̂i, η̂i) for all i = 1, 2, . . . , r. Plugging
this into (15), we obtain together with (14) that the distribution of the information density
i(ξ; η) coincides with the distribution of (1).

4. Proof of Main Results
4.1. Auxiliary Results

To prove Theorem 1, the following lemma regarding the characteristic function of the
information density is utilized. The results of the lemma are also used in Ibragimov and
Rozanov [23] but without proof. Therefore, the proof is given below for completeness.

Lemma 1 (Characteristic function of (shifted) information density). The characteristic func-
tion of the shifted information density i(ξ; η)− I(ξ; η) is equal to the characteristic function of the
random variable

ν̃ =
1
2

r

∑
i=1

$i
(
ξ̃2

i − η̃2
i
)
, (16)

where ξ̃1, ξ̃2, . . . , ξ̃r, η̃1, η̃2,. . . , η̃r are i.i.d. Gaussian random variables with zero mean and unit
variance, and $1, $2, . . . , $r are the canonical correlations of ξ and η. The characteristic function of
ν̃ is given by

ϕν̃(t) =
r

∏
i=1

1√
1 + $2

i t2
, t ∈ R. (17)
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Proof. Due to (1), the distribution of the shifted information density i(ξ; η)− I(ξ; η) co-
incides with the distribution of the random variable ν̃ in (16) such that the characteristic
functions of i(ξ; η)− I(ξ; η) and ν̃ are equal.

It is a well known fact that ξ̃2
i and η̃2

i in (16) are chi-squared distributed random
variables with one degree of freedom from which we obtain that the weighted random
variables $i ξ̃

2
i /2 and $iη̃

2
i /2 are gamma distributed with a scale parameter of 1/$i and

shape parameter of 1/2. The characteristic function of these random variables therefore
admits the form

ϕ $i
2 ξ̃2

i
(t) = (1− $i jt)

− 1
2 .

Further, from the identity ϕ−$i ξ̃
2
i /2(t) = ϕ$i ξ̃

2
i /2(−t) for the characteristic function and from

the independence of ξ̃i and η̃i, we obtain the characteristic function of ν̃i = $i(ξ̃
2
i − η̃2

i )/2
to be given by

ϕν̃i (t) = (1− $i jt)
− 1

2 (1 + $i jt)
− 1

2 =
(

1 + $2
i t2
)− 1

2 .

Finally, because ν̃ in (16) is given by the sum of the independent random variables ν̃i, the
characteristic function of ν̃ results from multiplying the individual characteristic functions
of the random variables ν̃i. By doing so, we obtain (17).

As further auxiliary result, the subsequent proposition providing properties of the
modified Bessel function Kα of second kind and order α will be used to prove the
main results.

Proposition 1 (Properties related to the function Kα). For all α ∈ R, the function

y 7→ yαKα(y), y ∈ (0, ∞),

where Kα(·) denotes the modified Bessel function of second kind and order α [9], Sec. 10.25(ii), is
strictly positive and strictly monotonically decreasing. Furthermore, if α > 0, then we have

lim
y→+0

yαKα(y) = sup
y∈(0,∞)

yαKα(y) = Γ(α)2α−1. (18)

Proof. If α ∈ R is fixed, then Kα(y) is strictly positive and strictly monotonically decreasing
w. r. t. y ∈ (0, ∞) due to [9], Secs. 10.27.3 and 10.37. Furthermore, we obtain

dyαKα(y)
dy

= −yαKα−1(y), y ∈ (0, ∞)

by applying the rules to calculate derivatives of Bessel functions given in [9], Sec. 10.29(ii).
It follows that yαKα(y) is strictly positive and strictly monotonically decreasing w. r. t.
y ∈ (0, ∞) for all fixed α ∈ R.

Consider now the Basset integral formula as given in [9], Sec. 10.32.11

Kα(yz) =
Γ
(

α + 1
2

)
(2z)α

yα
√

π

∞∫
u=0

cos(uy)

(u2 + z2)
α+ 1

2
du (19)

for | arg(z)| < π/2, y > 0, α > − 1
2 and the integral

∞∫
u=0

1

(u2 + 1)α+ 1
2

du =

√
π Γ(α)

2 Γ
(

α + 1
2

) (20)
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for α > 0, where the equality holds due to [24], Secs. 3.251.2 and 8.384.1. Using (19) and (20),
we obtain

lim
y→+0

yαKα(y) = lim
y→+0

Γ
(

α + 1
2

)
2α

√
π

∞∫
u=0

cos(uy)

(u2 + 1)α+ 1
2

du

=
Γ
(

α + 1
2

)
2α

√
π

∞∫
u=0

1

(u2 + 1)α+ 1
2

du = Γ(α)2α−1,

for all α > 0, where we also applied the dominated convergence theorem, which is possible
due to cos(uy)/

(
u2 + 1

)α+1/2 ≤ 1/
(
u2 + 1

)α+1/2. Using the previously derived monotonic-
ity, we obtain (18).

4.2. Proof of Theorem 1

To prove Theorem 1, we calculate the PDF fν̃ of the random variable ν̃ introduced in
Lemma 1 by inverting the characteristic function ϕν̃ given in (17) via the integral

fν̃(v) =
1

2π

∫ ∞

−∞
ϕν̃(t) exp

(
− tv

)
dt, v ∈ R. (21)

Shifting the PDF of ν̃ by I(ξ; η), we obtain the PDF fi(ξ;η) = fν̃(x− I(ξ; η)), x ∈ R, of the
information density i(ξ; η).

The method used subsequently is based on the work of Mathai [10]. To invert the
characteristic function ϕν̃, we expand the factors in (17) as

(
1 + $2

i t2
)− 1

2
=
(

1 + $2
r t2
)− 1

2 $r

$i

(
1 +

(
$2

r

$2
i
− 1

)(
1 + $2

r t2
)−1

)− 1
2

(22)

=
(

1 + $2
r t2
)− 1

2
∞

∑
k=0

(−1)k
(−1/2

k

)
$r

$i

(
1− $2

r

$2
i

)k(
1 + $2

r t2
)−k

. (23)

In (23), we have used the binomial series

(1 + y)a =
∞

∑
k=0

(
a
k

)
yk (24)

where a ∈ R. The series is absolutely convergent for |y| < 1 and(
a
k

)
=

k

∏
`=1

a− `+ 1
`

, k ∈ N, (25)

denotes the generalized binomial coefficient with (a
0) = 1. Since∣∣∣∣∣

(
1− $2

r

$2
i

)(
1 + $2

r t2
)−1

∣∣∣∣∣ < 1 (26)

holds for all t ∈ R, the series in (23) is absolutely convergent for all t ∈ R. Using the
expansion in (23) and the absolute convergence together with the identity(−1/2

k

)
=

(−1)k(2k)!
(k!)24k (27)
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we can rewrite the characteristic function ϕν̃ as

ϕν̃(t) =
∞

∑
k1=0

∞

∑
k2=0
· · ·

∞

∑
kr−1=0

r−1

∏
i=1

$r

$i

(2ki)!
(ki!)24ki

(
1− $2

r

$2
i

)ki
×

(
1 + $2

r t2
)−( r

2+k1+k2+···+kr−1)
, t ∈ R. (28)

To obtain the PDF fν̃, we evaluate the inversion integral (21) based on the series representa-
tion in (28). Since every series in (28) is absolutely convergent, we can exchange summation
and integration. Let β = r

2 + k1 + k2 + · · ·+ kr−1. Then, by symmetry, we have for the
integral of a summand

∞∫
t=−∞

exp(−tv)
(1 + $2

r t2)β
dt = 2

∞∫
t=0

cos(tv)
(1 + $2

r t2)β
dt =

2
$r

∞∫
u=0

cos(uv/$r)

(1 + u2)β
du, (29)

where the second equality is a result of the substitution t = u/$r. By setting z = 1,
α = β − 1

2 ≥ 0 and y = v/$r in the Basset integral formula given in (19) in the proof
of Proposition 1 and using the symmetry with respect to v, we can evaluate (29) to the
following form:

∞∫
t=−∞

exp(−tv)
(1 + $2

r t2)β
dt =

√
π

Γ(β)2β− 3
2 $

β+ 1
2

r

Kβ− 1
2

( |v|
$r

)
|v|β− 1

2 , v ∈ R\{0}. (30)

Combining (21), (28), and (30) yields

fν̃(v) =
1

2
√

π

∞

∑
k1=0

∞

∑
k2=0
· · ·

∞

∑
kr−1=0

r−1

∏
i=1

$r

$i

(2ki)!
(ki!)24ki

(
1− $2

r

$2
i

)ki
×

K r−1
2 +k1+k2+···+kr−1

( |v|
$r

)
|v|( r−1

2 +k1+k2+···+kr−1)

Γ
( r

2 + k1 + k2 + · · ·+ kr−1
)
2(

r−3
2 +k1+k2+···+kr−1)$

( r+1
2 +k1+k2+···+kr−1)

r

, v ∈ R\{0}. (31)

Slightly rearranging terms and shifting fν̃(·) by I(ξ; η) yields (3).
It remains to show that fi(ξ;η)(x) is also well defined for x = I(ξ; η) if r ≥ 2. Indeed,

if r ≥ 2, then we can use Proposition 1 to obtain

lim
x→I(ξ;η)

fi(ξ;η)(x) =
1

2$r
√

π

∞

∑
k1=0

∞

∑
k2=0
· · ·

∞

∑
kr−1=0

r−1

∏
i=1

$r

$i

(2ki)!
(ki!)24ki

(
1− $2

r

$2
i

)ki
×

Γ
(

r−1
2 + k1 + k2 + · · ·+ kr−1

)
Γ
(

r−1
2 + k1 + k2 + · · ·+ kr−1 +

1
2

)
where we used the exchangeability of the limit and the summation due to the absolute
convergence of the series. Since Γ(α)/Γ(α + 1

2 ) is decreasing w. r. t. α ≥ 1
2 , we have

Γ
(

r−1
2 + k1 + k2 + · · ·+ kr−1

)
Γ
(

r−1
2 + k1 + k2 + · · ·+ kr−1 +

1
2

) ≤ Γ
(

r−1
2

)
Γ
(

r−1
2 + 1

2

) ≤ √π.

Then, with (69) in the proof of Theorem 4, it follows that limx→I(ξ;η) fi(ξ;η)(x) exists and is
finite. �
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4.3. Proof of Theorem 2

To prove Theorem 2, we calculate the CDF Fν̃ of the random variable ν̃ introduced
in Lemma 1 by integrating the PDF fν̃ given in (31). Shifting the CDF of ν̃ by I(ξ; η), we
obtain the CDF Fi(ξ;η)(x) = Fν̃(x− I(ξ; η)), x ∈ R, of the information density i(ξ; η). Using
the symmetry of fν̃, we can write

Fν̃(z) = P(ν̃ ≤ z) =


1
2
−
∫ −z

v=0
fν̃(v)dv for z ≤ 0

1
2
+
∫ z

v=0
fν̃(v)dv for z > 0

.

It is therefore sufficient to evaluate the integral

V(z) :=
∫ z

v=0
fν̃(v)dv (32)

for z ≥ 0. To calculate the integral (32), we plug (31) into (32) and exchange integration
and summation, which is justified by the monotone convergence theorem. To evaluate the
integral of a summand, consider the following identity

∫ z

x=0
xαKα(x)dx = 2α−1√πΓ

(
α +

1
2

)
z
[

Kα(z)Lα−1(z) + Kα−1(z)Lα(z)
]

(33)

for α > −1/2 given in [25], Sec. 1.12.1.3, where Lα(·) denotes the modified Struve L function
of order α [9], Sec. 11.2. Using (33) with α = r−1

2 + k1 + k2 + · · ·+ kr−1 ≥ 0, we obtain (4). �

4.4. Proof of Theorem 3

Using the random variable

ν̃ =
r

∑
i=1

ν̃i with ν̃i =
$i
2
(ξ̃i − η̃i)

introduced in Lemma 1 and the well-known multinomial theorem [9], Sec. 26.4.9

(
y1 + y2 + . . . yr

)m
= ∑

(`1,`2,...,`r)∈Km,r

m!
r

∏
i=1

y`i
i
`i!

,

whereKm,r =
{
(`1, `2, . . . , `r) ∈ Nr

0 : `1 + `2 + · · ·+ `r = m
}

, we can write the m-th central
moment of the information density i(ξ; η) as

E
(
[i(ξ; η)− I(ξ; η)]m

)
= E

([ r

∑
i=1

ν̃i

]m
)

= ∑
(`1,`2,...,`r)∈Km,r

m!
r

∏
i=1

E
(
ν̃
`i
i
)

`i!
. (34)

To obtain the second equality in (34), we have exchanged expectation and summation
and additionally used the identity E

(
∏r

i=1 ν̃
`i
i
)
= ∏r

i=1 E
(
ν̃
`i
i
)
, which holds due to the

independence of the random variables ν̃1, ν̃2, . . . , ν̃r.
Based on the relation between the `-th central moment of a random variable and the

`-th derivative of its characteristic function at 0, we further have

E
(
ν̃
`i
i
)
= (−)`i

d`i

dt`i
ϕν̃i (t)

∣∣∣∣
t=0

, (35)
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where ϕν̃i (t) =
(
1 + $2

i t2)−1/2, t ∈ R, is the characteristic function of the random variable ν̃i
derived in the proof of Lemma 1. As in the proof of Theorem 1, consider now the binomial
series expansion using (24)

ϕν̃i (t) =
(

1 + $2
i t2
)− 1

2
=

∞

∑
mi=0

(−1/2

mi

)
($it)

2mi .

The series is absolutely convergent for all t < $−1
i . Furthermore, consider the Taylor series

expansion of the characteristic function ϕν̃i at the point 0

ϕν̃i (t) =
∞

∑
`i=0

(
d`i

dt`i
ϕν̃i (t)

∣∣∣∣
t=0

)
t`i

`i!
.

Both series expansions must be identical in an open interval around 0 such that we obtain
by comparing the series coefficients

d`i

dt`i
ϕν̃i (t)

∣∣∣∣
t=0

=

`i!
(−1/2

`i/2

)
$
`i
i if `i = 2mi

0 if `i = 2mi − 1

for all mi ∈ N. With this result, (35) evaluates to

E
(
ν̃
`i
i
)
=


(
`i!
)2(

(`i/2)!
)2 4

`i
2

$
`i
i if `i = 2mi

0 if `i = 2mi − 1

(36)

for all mi ∈ N, where we have additionally used the identity (27).

From (34) and (36) we now obtain E
(
[i(ξ; η)− I(ξ; η)]m

)
= 0 for all m = 2m̃− 1 with

m̃ ∈ N because, if m is odd, then for all (`1, `2, . . . , `r) ∈ Km,r at least one of the `i’s has to
be odd. If m = 2m̃ with m̃ ∈ N, we obtain from (34) and (36)

E
(
[i(ξ; η)− I(ξ; η)]m

)
= ∑

(`1,`2,...,`r)∈Km,r

m!
r

∏
i=1

1
`i!

(
`i!
)2(

(`i/2)!
)2 4

`i
2

$
`i
i

= ∑
(m1,m2,...,mr)∈K[2]

m,r

m!
r

∏
i=1

(2mi)!(
mi!
)2 4mi

$
2mi
i . �

4.5. Proof of Part (iii) of Corollary 1

Using the random variable ν̃ as in the proof of Theorem 3, we can write the m-th
central moment of the information density i(ξ; η) as

E
(
[i(ξ; η)− I(ξ; η)]m

)
= E

(
ν̃m) = (−)m dm

dtm ϕν̃(t)
∣∣∣∣
t=0

,

where the characteristic function ϕν̃ of ν̃ is given by ϕν̃(t) =
(
1 + $2

r t2)−r/2, t ∈ R, due to
Lemma 1 and the equality of all canonical correlations. Using the binomial series and the
Taylor series expansion as in the proof of Theorem 3, we obtain

dm

dtm ϕν̃(t)
∣∣∣∣
t=0

=

m!
(−r/2

m/2

)
$m

r if m = 2m̃

0 if m = 2m̃− 1
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for all m̃ ∈ N. Collecting terms and additionally using the definition of the generalized
binomial coefficient given in (25) in the proof of Theorem 1 yields (9). �

5. Recurrence Formulas and Finite Sum Approximations

If there are at least two distinct canonical correlations, then the PDF fi(ξ;η) and CDF
Fi(ξ;η) of the information density i(ξ; η) are given by the infinite series in Theorems 1 and 2.
If we consider only a finite number of summands in these representations, then we obtain
approximations amenable in particular for numerical calculations. However, a direct finite
sum approximation of the series in (3) and (4) is rather inefficient since modified Bessel
and Struve L functions have to be evaluated for every summand. Therefore, we derive in
this section recursive representations, which allow efficient numerical calculations. Fur-
thermore, we derive uniform bounds of the approximation error. Based on the recurrence
relations and the error bounds, an implementation in the programming language PYTHON

has been developed, which provides an efficient tool to numerically calculate the PDF and
CDF of the information density with a predefined accuracy as high as desired. The devel-
oped source code as well as illustrating examples are made publicly available in an open
access repository on GITLAB [26].

Subsequently, we adopt all the previous notation and assume r ≥ 2 and at least two
distinct canonical correlations (since otherwise we have the case of Corollary 1, where the
series reduce to a single summand).

5.1. Recurrence Formulas

The recursive approach developed below is based on the work of Moschopoulos [27],
which extended the work of Mathai [10]. First, we rewrite the series representations of
the PDF and CDF of the information density given in Theorem 1 and Theorem 2 in a
form, which is suitable for recursive calculations. To begin with, we define two functions
appearing in the series representations (3) and (4), which involve the modified Bessel
function Kα of second kind and order α and the modified Struve L function Lα of order α.
Let us define for all k ∈ N0 the functions Uk and Dk by

Uk(z) =
K r−1

2 +k(z)

Γ
( r

2 + k
) ( z

2

) r−1
2 +k

, z ≥ 0 (37)

and

Dk(z) =
z

2$r

[
K r−1

2 +k

(
z
$r

)
L r−3

2 +k

(
z
$r

)
+ K r−3

2 +k

(
z
$r

)
L r−1

2 +k

(
z
$r

)]
, z ≥ 0. (38)

Furthermore, we define for all k ∈ N0 the coefficient δk by

δk = ∑
(k1,k2,...,kr−1)∈Kk,r−1

r−1

∏
i=1

(2ki)!
(ki!)24ki

(
1− $2

r

$2
i

)ki
, (39)

where Kk,r−1 =
{
(k1, k2, . . . , kr−1) ∈ Nr−1

0 : k1 + k2 + · · ·+ kr−1 = k
}

. With these defini-
tions, we obtain the following alternative series representations of (3) and (4) by observing
that the multiple summations over the indices k1, k2, . . . , kr−1 can be shortened to one
summation over the index k = k1 + k2 + . . . + kr−1.

Proposition 2 (Alternative representation of PDF and CDF of the information density). The
PDF fi(ξ;η) of the information density i(ξ; η) given in Theorem 1 has the alternative series representation

fi(ξ;η)(x) =
1

$r
√

π

(
r−1

∏
i=1

$r

$i

)
∞

∑
k=0

δkUk

( |x− I(ξ; η)|
$r

)
, x ∈ R. (40)
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The function V(·) specifying the CDF Fi(ξ;η) of the information density i(ξ; η) as given in Theorem 2
has the alternative series representation

V(z) =

(
r−1

∏
i=1

$r

$i

)
∞

∑
k=0

δkDk(z), z ≥ 0. (41)

Based on the representations in Proposition 2 and with recursive formulas for Uk(·),
Dk(·) and δk, we are in the position to calculate the PDF and CDF of the information
density by a single summation over completely recursively defined terms. In the follow-
ing, we will derive recurrence relations for Uk(·), Dk(·) and δk, which allow the desired
efficient calculations.

Lemma 2 (Recurrence formula of the function Uk). If for all k ∈ N0 the function Uk is defined
by (37), then Uk(z) satisfies for all k ≥ 2 and z ≥ 0 the recurrence formula

Uk(z) =
z2

(r + 2k− 2)(r + 2k− 4)
Uk−2(z) +

r + 2k− 3
r + 2k− 2

Uk−1(z). (42)

Proof. First, assume z = 0. Based on Proposition 1, we obtain for all k ∈ N0

lim
z→+0

Uk(z) =
Γ
(

r−1
2 + k

)
2 Γ
( r

2 + k
) , (43)

such that Uk(0) is well defined and finite. Using the recurrence relation Γ(y + 1) = yΓ(y)
for the Gamma function [24], Sec. 8.331.1 we have

Γ
(

r−1
2 + k

)
2 Γ
( r

2 + k
) =

(
r−1

2 + k− 1
)

( r
2 + k− 1

) · Γ
(

r−1
2 + k− 1

)
2 Γ
( r

2 + k− 1
) .

This shows together with (43) that the recurrence formula (42) holds for Uk(0) and k ≥ 2.
Now, assume z > 0 and consider the recurrence formula

zKα(z) = zKα−2(z) + 2(α− 1)Kα−1(z) (44)

for the modified Bessel function of the second kind and order α [24], Sec. 8.486.10. Plugging (44)
into (37) for α = r−1

2 + k yields for k ≥ 2

Uk(z) =
K r−1

2 +k−2(z)

Γ
( r

2 + k
) ( z

2

) r−1
2 +k−2( z

2

)2

+

(
r−1

2 + k− 1
)

K r−1
2 +k−1(z)

Γ
( r

2 + k
) ( z

2

) r−1
2 +k−1

. (45)

Using again the relation Γ(y + 1) = yΓ(y), we obtain

Γ
( r

2 + k
)
=
( r

2 + k− 1
)
Γ
( r

2 + k− 1
)
=
( r

2 + k− 1
)( r

2 + k− 2
)
Γ
( r

2 + k− 2
)
,

which yields together with (45) and (37) the recurrence formula (42) for Uk(z) if z > 0 and
k ≥ 2.
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Lemma 3 (Recurrence formula of the function Dk). If, for all k ∈ N0, the function Dk is defined
by (38), then Dk(z) satisfies for all k ≥ 1 and z ≥ 0 the recurrence formula

Dk(z) = Dk−1(z)−
1

2
√

π
( r

2 + k− 1
) ( z

$r

)
Uk−1

(
z
$r

)
, (46)

with Uk(·) as defined in (37).

Proof. First, assume z = 0. We have Dk(0) = 0 for all k ∈ N0 and from the proof of
Lemma 2 we have Uk(0) = Γ

(
r−1

2 + k
)

/2 Γ
( r

2 + k
)

for all k ∈ N0. Thus, the left-hand side
and the right-hand side of (46) are both zero, which shows that (46) holds for z = 0 and
k ≥ 1.

Now, assume z > 0 and consider the recurrence formula

zLα(z) = zLα−2(z)− 2(α− 1)Lα−1(z)−
21−αzα

√
πΓ
(

α + 1
2

)
for the modified Struve L function of order α [9], Sec. 11.4.25. Together with the recurrence
formula (44) for the modified Bessel function of the second kind and order α, we obtain

zLα(z)Kα−1(z) = zLα−2(z)Kα−1(z)− 2(α− 1)Lα−1(z)Kα−1(z)

− 21−αzα

√
πΓ
(

α + 1
2

)Kα−1(z), (47)

zKα(z)Lα−1(z) = zKα−2(z)Lα−1(z) + 2(α− 1)Kα−1(z)Lα−1(z). (48)

Plugging (47) and (48) into (38) for α = r−1
2 + k yields for k ≥ 1

Dk(z) =
z

2$r

[
K r−1

2 +k−1

(
z
$r

)
L r−3

2 +k−1

(
z
$r

)
+ K r−3

2 +k−1

(
z
$r

)
L r−1

2 +k−1

(
z
$r

)]

− 1√
π Γ
( r

2 + k
)( z

2$r

) r−1
2 +k

K r−1
2 +k−1

(
z
$r

)
.

Together with (38), the identity Γ
( r

2 + k
)
=
( r

2 + k− 1
)
Γ
( r

2 + k− 1
)
, and the definition of

the function Uk(·) in (37), we obtain the recurrence formula (46) for Dk(z) if z > 0 and
k ≥ 1.

Lemma 4 (Recursive formula of the coefficient δk). The coefficient δk defined by (39) satisfies
for all k ∈ N0 the recurrence formula

δk+1 =
1

k + 1

k+1

∑
j=1

j γj δk+1−j, (49)

where δ0 = 1 and

γj =
r−1

∑
i=1

1
2j

(
1− $2

r

$2
i

)j

. (50)

For the derivation of Lemma 4, we use an adapted version of the method of Moschopou-
los [27] and the following auxiliary result.
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Lemma 5. For k ∈ N0, let g be a real univariate (k + 1)-times differentiable function. Then,
we have the following recurrence relation for the (k + 1)-th derivative of the composite function
h = exp(g)

h(k+1) =
k+1

∑
j=1

(
k

j− 1

)
g(j)h(k−j+1), (51)

where f (i) denotes the i-th derivative of the function f with f (0) = f .

Proof. We prove the assertion of Lemma 5 by induction over k. First, consider the base
case for k = 0. In this case, formula (51) gives

h(1) = g(1)h,

which is easily seen to be true.
Assuming formula (51) holds for h(k), we continue with the case k + 1. Application of

the product rule leads to

h(k+1) =
(

h(k)
)(1)

=

(
k

∑
j=1

(
k− 1
j− 1

)
g(j)h(k−j)

)(1)

=
k

∑
j=1

(
k− 1
j− 1

)
g(j+1)h(k−j) +

k

∑
j=1

(
k− 1
j− 1

)
g(j)h(k−j+1).

Substitution of j′ = j + 1 in the first term gives

h(k+1) =
k+1

∑
j′=2

(
k− 1
j′ − 2

)
g(j′)h(k−j′+1) +

k

∑
j=1

(
k− 1
j− 1

)
g(j)h(k−j+1).

With this representation and the identity,(
k− 1
j− 2

)
+

(
k− 1
j− 1

)
=

(
k

j− 1

)
We finally have

h(k+1) =g(1)h(k) +
k

∑
j=2

[(
k− 1
j− 1

)
+

(
k− 1
j− 2

)]
g(j)h(k−j+1) + g(k+1)h

=

(
k
0

)
g(1)h(k) +

k

∑
j=2

(
k

j− 1

)
g(j)h(k−j+1) +

(
k
k

)
g(k+1)h

=
k+1

∑
j=1

(
k

j− 1

)
g(j)h(k−j+1).

This completes the proof of Lemma 5.

Proof of Lemma 4. To prove the recurrence formula (49), we consider the characteristic
function

ϕν̃(t) =
r

∏
i=1

(
1 + $2

i t2
)− 1

2 , t ∈ R (52)
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of the random variable ν̃ introduced in Lemma 1. On the one hand, the series representation
of ϕν̃ given in (28) in the proof of Theorem 1 can be rewritten as follows using the coefficient
δk defined in (39):

ϕν̃(t) =
(

1 + $2
r t2
)− r

2

(
r−1

∏
i=1

$r

$i

)
∞

∑
`=0

δ`

(
1 + $2

r t2
)−`

, t ∈ R. (53)

On the other hand, recall the expansion of
(
1 + $2

i t2)− 1
2 given in (22), which yields together

with (52) and the application of the natural logarithm the identity

log(ϕν̃(t)) = log

((
1 + $2

r t2
)− r

2

(
r−1

∏
i=1

$r

$i

))

+
r−1

∑
i=1

log

(1 +

(
$2

r

$2
i
− 1

)(
1 + $2

r t2
)−1

)− 1
2
. (54)

Now consider the power series

log(1 + y) =
∞

∑
`=1

(−1)`+1

`
y`, (55)

which is absolutely convergent for |y| < 1. With the same arguments as in the proof of
Theorem 1, in particular due to (26), we can apply the series expansion (55) to the second
term on the right-hand side of (54) to obtain the absolutely convergent series representation

log(ϕν̃(t)) = log

((
1 + $2

r t2
)− r

2

(
r−1

∏
i=1

$r

$i

))
+

∞

∑
`=1

γ`

(
1 + $2

r t2
)−`

, (56)

where we have further used the definition of γ` given in (50). Applying the exponential
function to both sides of (56) then yields the following expression for the characteristic
function ϕν̃.

ϕν̃(t) =
(

1 + $2
r t2
)− r

2

(
r−1

∏
i=1

$r

$i

)
exp

(
∞

∑
`=1

γ`

(
1 + $2

r t2
)−`)

(57)

Comparing (53) and (57) yields the identity

∞

∑
`=0

δ`

(
1 + $2

r t2
)−`

= exp

(
∞

∑
`=1

γ`

(
1 + $2

r t2
)−`)

. (58)

We now define x =
(
1 + $2

r t2)−1 and take the (k + 1)-th derivative w. r. t. x on both sides of
(58) using the identity

dm

dxm

(
∞

∑
`=0

a`x`
)

=
dm

dxm

(
∞

∑
`=1

a`x`
)

=
∞

∑
`=m

`!
(`−m)!

a`x`−m (59)

for the m-th derivative of a power series ∑∞
`=0 a`x`. For the left-hand side of (58), we obtain

dk+1

dxk+1

(
∞

∑
`=0

δ`x`
)

=
∞

∑
`=k+1

`!
(`− k− 1)!

δ`x`−k−1. (60)
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For the right-hand side of (58), we obtain

dk+1

dxk+1

(
exp

(
∞

∑
`=1

γ`x`
))

=
k+1

∑
j=1

(
k

j− 1

)
dj

dxj

(
∞

∑
`=1

γ`x`
)

dk−j+1

dxk−j+1

(
exp

(
∞

∑
`=1

γ`x`
))

=
k+1

∑
j=1

(
k

j− 1

)
dj

dxj

(
∞

∑
`=1

γ`x`
)

dk−j+1

dxk−j+1

(
∞

∑
`=0

δ`x`
)

=
k+1

∑
j=1

(
k

j− 1

)( ∞

∑
`=j

`!γ`

(`− j)!
x`−j

)
×(

∞

∑
`=k+1−j

`!δ`
(`− k + j− 1)!

x`−k+j−1

)
, (61)

where we used Lemma 5 and the identities (58) and (59). From the equality

dk+1

dxk+1

(
∞

∑
`=0

δ`x`
)

=
dk+1

dxk+1

(
exp

(
∞

∑
`=1

γ`x`
))

and the evaluation of the right-hand side of (60) and (61), we obtain

(k + 1)!δk+1 x0 +
(

. . .
)

x1 +
(

. . .
)

x2 . . .

=

(
k+1

∑
j=1

(
k

j− 1

)
j!γj(k + 1− j)!δk+1−j

)
x0 +

(
. . .
)

x1 +
(

. . .
)

x2 . . .

Comparing the coefficients for x0 finally yields

δk+1 =
1

(k + 1)!

k+1

∑
j=1

(
k

j− 1

)
j! γj(k + 1− j)! δk+1−j

=
1

(k + 1)!

k+1

∑
j=1

k!
(j− 1)!(k + 1− j)!

j! γj(k + 1− j)! δk+1−j

=
1

(k + 1)

k+1

∑
j=1

j γj δk+1−j.

This completes the proof of Lemma 4.

5.2. Finite Sum Approximations

The results in the previous Section 5.1 can be used in the following way for efficient
numerical calculations. Consider

f̂i(ξ;η)(x, n) =
1

$r
√

π

(
r−1

∏
i=1

$r

$i

)
n

∑
k=0

δkUk

( |x− I(ξ; η)|
$r

)
, x ∈ R (62)

for n ∈ N0, i.e., the finite sum approximation of the PDF given in (40). To calculate
f̂i(ξ;η)(x, n), first calculate U0

(
|x− I(ξ; η)|/$r

)
and U1

(
|x− I(ξ; η)|/$r

)
using (37). Then,

use the recurrence formulas (42) and (49) to calculate the remaining summands in (62).
The great advantage of this approach is that only two evaluations of the modified Bessel
function are required and for the rest of the calculations efficient recursive formulas are
employed making the numerical computations efficient.
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Similarly, consider

F̂i(ξ;η)(x, n) =


1
2
− V̂(I(ξ; η)− x, n) if x ≤ I(ξ; η)

1
2
+ V̂(x− I(ξ; η), n) if x > I(ξ; η)

, (63)

with V̂(z, n) =

(
r−1

∏
i=1

$r

$i

)
n

∑
k=0

δkDk(z), z ≥ 0, (64)

for n ∈ N0, i.e., the finite sum approximation of the alternative representation of the CDF
of the information density, where V̂(z, n) is the finite sum approximation of the function
V(·) given in (41). To calculate F̂i(ξ;η)(x, n), first calculate D0(z), U0(z/$r), and U1(z/$r) for
z = I(ξ; η)− x or z = x− I(ξ; η) using (37) and (38). Then, use the recurrence formulas (42),
(46), and (49) to calculate the remaining summands in (64). This approach requires only
three evaluations of the modified Bessel and Struve L function resulting in efficient numeri-
cal calculations also for the CDF of the information density.

The following theorem provides suitable bounds to evaluate and control the error
related to the introduced finite sum approximations.

Theorem 4 (Bounds of the approximation error for the alternative representation of PDF
and CDF). For the finite sum approximations in (62)–(64) of the alternative representation of the
PDF and CDF of the information density as given in Proposition 2, we have for n ∈ N summands
the error bounds

∣∣ fi(ξ;η)(x)− f̂i(ξ;η)(x, n)
∣∣ ≤ Γ

(
r−1

2 + n
)

2$r
√

π Γ
( r

2 + n
)(1−

(
r−1

∏
i=1

$r

$i

)
n

∑
k=0

δk

)
, x ∈ R (65)

and

∣∣V(z)− V̂(z, n)
∣∣ ≤ 1

2

(
1−

(
r−1

∏
i=1

$r

$i

)
n

∑
k=0

δk

)
, z ≥ 0. (66)

Proof. From the special case where all canonical correlations are equal, we can conclude
from the CDF given in Corollary 1 that the function

z 7→ z
[
Kα(z)Lα−1(z) + Kα−1(z)Lα(z)

]
, z ≥ 0, (67)

is monotonically increasing for all α = (j− 1)/2, j ∈ N and that further

lim
z→∞

z
[
Kα(z)Lα−1(z) + Kα−1(z)Lα(z)

]
= 1 (68)

holds. Using (68), we obtain from (4)

lim
z→∞

2V(z) =
∞

∑
k1=0

∞

∑
k2=0
· · ·

∞

∑
kr−1=0

r−1

∏
i=1

$r

$i

(2ki)!
(ki!)24ki

(
1− $2

r

$2
i

)ki


by exchanging the limit and the summation, which is justified by the monotone convergence
theorem. Due to the properties of the CDF, we have limz→∞ 2V(z) = 1, which implies(

r−1

∏
i=1

$r

$i

)
∞

∑
k=0

δk =
∞

∑
k2=0
· · ·

∞

∑
kr−1=0

r−1

∏
i=1

$r

$i

(2ki)!
(ki!)24ki

(
1− $2

r

$2
i

)ki
 = 1, (69)
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where the first equality follows from the definition of the coefficient δk in (39).
We now obtain with (41) and (64)

∣∣V(z)− V̂(z, n)
∣∣ = (

r−1

∏
i=1

$r

$i

)
∞

∑
k=n+1

δkDk(z) ≤
(

r−1

∏
i=1

$r

$i

)
∞

∑
k=n+1

1
2

δk.

The inequality follows from the definition of the function Dk(·) in (38), the monotonicity of
the function in (67), and from (68). Then, (66) follows from (69).

Similarly, we obtain with (40) and (62)

∣∣ fi(ξ;η)(x)− f̂i(ξ;η)(x, n)
∣∣ = 1

$r
√

π

(
r−1

∏
i=1

$r

$i

)
∞

∑
k=n+1

δkUk

( |x− I(ξ; η)|
$r

)

≤ 1
$r
√

π

(
r−1

∏
i=1

$r

$i

)
∞

∑
k=n+1

δk

Γ
(

r−1
2 + n

)
2 Γ
( r

2 + n
) .

The inequality follows from the definition of the function Uk(·), Proposition 1, and the de-
creasing monotonicity of Γ( r−1

2 + k)/Γ( r
2 + k) w. r. t. k ∈ N0. Then, (65) follows

from (69).

Remark 1. Note that the bound in (65) can be further simplified using the inequality
Γ(α)/Γ(α + 1/2) ≤ √π. Further note that the derived error bounds are uniform in the sense
that they only depend on the parameters of the given Gaussian distribution and the number of
summands considered. As can be seen from (69), the bounds converge to zero as the number of
summands jointly increase.

Remark 2 (Relation to Bell polynomials). Interestingly, the coefficient δk can be expressed for
all k ∈ N in the following form

δk =
Bk
(
γ1, 2γ2, 6γ3, . . . , k!γk

)
k!

,

where γj is defined in (50), and Bk denotes the complete Bell polynomial of order k [28], Sec. 3.3.
Even though this is an interesting connection to the Bell polynomials, which provides an explicit
formula of δk, the recursive formula given in Lemma 4 is more efficient for numerical calculations.

6. Numerical Examples and Illustrations

We illustrate the results of this paper with some examples, which all can be verified
with the Python implementation publicly available on GITLAB [26].

Equal canonical correlations. First, we consider the special case of Corollary 1 when
all canonical correlations are equal. The PDF and CDF given by (6) and (7) are illustrated in
Figures 1 and 2 in centered form, i.e., shifted by I(ξ; η), for r ∈ {1, 2, 3, 4, 5} and equal canon-
ical correlations $i = 0.9, i = 1, . . . , r. In Figures 3 and 4, a fixed number of r = 5 equal
canonical correlations $i ∈ {0.1, 0.2, 0.5, 0.7, 0.9}, i = 1, . . . , r is considered. When all canon-
ical correlations are equal, then, due to the central limit theorem, the distribution of the
information density i(ξ; η) converges to a Gaussian distribution as r → ∞. Figures 5 and 6
show for r ∈ {5, 10, 20, 40} and equal canonical correlations $i = 0.2, i = 1, 2, . . . , r the PDF
and CDF of the information density together with corresponding Gaussian approximations.
The approximations are obtained by considering Gaussian distributions, which have the
same variance as the information density i(ξ; η). Recall that the variance of the information
density is given by (11), i.e., by the sum of the squared canonical correlations. The illustra-
tions show that only for a high number of equal canonical correlations the distribution of
the information density becomes approximately Gaussian.
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Figure 1. PDF fi(ξ;η)−I(ξ;η) for r ∈ {1, 2, 3, 4, 5} equal canonical correlations $i = 0.9.
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Figure 2. CDF Fi(ξ;η)−I(ξ;η) for r ∈ {1, 2, 3, 4, 5} equal canonical correlations $i = 0.9.
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Figure 3. PDF fi(ξ;η)−I(ξ;η) for r = 5 equal canonical correlations $i ∈ {0.1, 0.2, 0.5, 0.7, 0.9}.
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Figure 4. CDF Fi(ξ;η)−I(ξ;η) for r = 5 equal canonical correlations $i ∈ {0.1, 0.2, 0.5, 0.7, 0.9}.
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%i=0.2, r=40 Gaussian

Figure 5. PDF fi(ξ;η)−I(ξ;η) for r ∈ {5, 10, 20, 40} equal canonical correlations $i = 0.2 vs. Gaussian
approximation.
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%i=0.2, r=20 Gaussian
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Figure 6. CDF Fi(ξ;η)−I(ξ;η) for r ∈ {5, 10, 20, 40} equal canonical correlations $i = 0.2 vs. Gaussian
approximation.
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Different canonical correlations. To illustrate the case with different canonical corre-
lations, let us consider two more examples.

(i) First, assume that the random vectors ξ = (ξ1, ξ2, . . . , ξp) and η = (η1, η2, . . . , ηq)
have equal dimensions, i.e., p = q, and are related by

(η1, η2, . . . , ηp) = (ξ1 + ζ1, ξ2 + ζ2, . . . , ξp + ζp),

where ξ = (ξ1, ξ2, . . . , ξp) and ζ = (ζ1, ζ2, . . . , ζp) are zero mean Gaussian random vectors,
independent of each other and with covariance matrices

Rξ =
(

ρ|i−j|
)p

i,j=1
and Rζ = σ2

z Ip,

for parameters 0 < |ρ| < 1 and σ2
z > 0, where Ip denotes the identity matrix of dimension

p× p. The covariance matrix of the Gaussian random vector (ξ1, ξ2, . . . , ξp, η1, η2, . . . , ηp)
is the basis of the canonical correlation analysis and is given by(

Rξ Rξη

Rξη Rη

)
=

(
Rξ Rξ

Rξ Rξ + Rζ

)
.

The specified situation corresponds to a discrete-time additive noise channel, where a
stationary first-order Markov-Gaussian input process is corrupted by a stationary additive
white Gaussian noise process. In this setting, a block of p consecutive input and output
symbols is considered.

For given parameter values ρ and σ2
z , the canonical correlations can be calculated

numerically with the method described in Section 3. However, the example at hand even
allows the derivation of explicit formulas for the canonical correlations. Evaluating the
approach in Section 3 analytically yields

$i(ρ, σ2
z ) =

√
λi

λi + σ2
z

with λi =
1− ρ2

1− 2ρ cos(θi) + ρ2 , i = 1, 2, . . . , r = p, (70)

where θ1, θ2, . . . , θr are the zeros of the function

g(θ) = sin
(
(r + 1)θ

)
− 2ρ sin

(
rθ
)
+ ρ2 sin

(
(r− 1)θ

)
, θ ∈ (0, π).

In this representation, λ1, λ2, . . . , λr denote the eigenvalues of the covariance matrix Rξ =

(ρ|i−j|)p
i,j=1 derived in [29], Sec. 5.3.

As numerical examples Figure 7 and 8 show, the approximated PDF f̂i(ξ;η)−I(ξ;η)(·, n)
and CDF F̂i(ξ;η)−I(ξ;η)(·, n) for p = r ∈ {5, 10, 20, 40} and the parameter values ρ = 0.9
and σ2

z = 10 using the finite sums (62) and (64). The bounds of the approximation error
given in Theorem 4 are chosen < 1×10−3 to obtain a high precision of the plotted curves.
The number n of summands required in (62) and (64) to achieve these error bounds for
r ∈ {5, 10, 20, 40} is equal to n ∈ {217, 333, 462, 649} for the PDF and n ∈ {282, 444, 618, 847}
for the CDF. For this example, the distribution of the information density i(ξ; η) converges
to a Gaussian distribution as r → ∞. However, Figures 7 and 8 show that, even for
r = 40, there is still a significant gap between the exact distribution and the corresponding
Gaussian approximation.
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r = 40 (Gaussian)

Figure 7. Approximated PDF f̂i(ξ;η)−I(ξ;η)(·, n) for r ∈ {5, 10, 20, 40} canonical correlations $i(ρ, σ2
z )

given in (70) for ρ = 0.9 and σ2
z = 10 (approximation error < 1×10−3) vs. Gaussian approximation

(r ∈ {20, 40}).
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r = 5 (finite sum, n = 282)

r = 10 (finite sum, n = 444)

r = 20 (finite sum, n = 618)

r = 20 (Gaussian)

r = 40 (finite sum, n = 847)

r = 40 (Gaussian)

Figure 8. Approximated CDF F̂i(ξ;η)−I(ξ;η)(·, n) for r ∈ {5, 10, 20, 40} canonical correlations $i(ρ, σ2
z )

given in (70) for ρ = 0.9 and σ2
z = 10 (approximation error < 1×10−3) vs. Gaussian approximation

(r ∈ {20, 40}).
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(ii) As a second example with different canonical correlations, let us consider the
sequence {$1(T), $2(T), . . . , $r(T)} with

$i(T) =

√√√√ T2

T2 + π
(

i− 1
2

)2 , i = 1, 2, . . . , r. (71)

These canonical correlations are related to the information density of a continuous-time
additive white Gaussian noise channel confined to a finite time interval [0, T] with a
Brownian motion as input signal (see, e.g., Huffmann [30], Sec. 8.1 for more details). Fig-
ures 9 and 10 show the approximated PDF f̂i(ξ;η)−I(ξ;η)(·, n) and CDF F̂i(ξ;η)−I(ξ;η)(·, n) for
r ∈ {2, 5, 10, 15} and T = 1 using the finite sums (62) and (64). The bounds of the approxi-
mation error given in Theorem 4 are chosen <1×10−2 such that there are no differences
visible in the plotted curves by further lowering the approximation error. The number n
of summands required in (62) and (64) to achieve these error bounds for r ∈ {2, 5, 10, 15}
is equal to n ∈ {15, 141, 638, 1688} for the PDF and n ∈ {20, 196, 886, 2071} for the CDF.
Choosing r larger than 15 for the canonical correlations (71) with T = 1 does not result
in visible changes of the PDF and CDF compared to r = 15. This demonstrates, together
with Figures 9 and 10, that a Gaussian approximation is not valid for this example, even if
r → ∞.

Indeed, from [8], Th. 9.6.1 and the comment above Eq. (9.6.45) in [8], one can conclude
that, whenever the canonical correlations satisfy

lim
r→∞

r

∑
i=1

$2
i < ∞,

then the distribution of the information density is not Gaussian.
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;η
)−
I
(ξ

;η
)(
x
,n

)

r = 2 (finite sum, n = 15)

r = 5 (finite sum, n = 141)

r = 10 (finite sum, n = 638)

r = 15 (finite sum, n = 1688)

r = 15 (Gaussian)

Figure 9. Approximated PDF f̂i(ξ;η)−I(ξ;η)(·, n) for r ∈ {2, 5, 10, 15} canonical correlations $i(T) given
in (71) for T = 1 (approximation error < 1×10−2) vs. Gaussian approximation (r = 15).



Entropy 2022, 24, 924 28 of 29

−2 −1 0 1 2

x

0.0

0.2

0.4

0.6

0.8

1.0
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ξ
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I
(ξ

;η
)(
x
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)

r = 2 (finite sum, n = 20)

r = 5 (finite sum, n = 196)

r = 10 (finite sum, n = 886)

r = 15 (finite sum, n = 2071)

r = 15 (Gaussian)

Figure 10. Approximated CDF F̂i(ξ;η)−I(ξ;η)(·, n) for r ∈ {2, 5, 10, 15} canonical correlations $i(T)
given in (71) for T = 1 (approximation error <1×10−2) vs. Gaussian approximation (r = 15).

7. Summary of Contributions

We derived series representations of the PDF and CDF of the information density for
arbitrary Gaussian random vectors as well as a general formula for the central moments
using canonical correlation analysis. We provided simplified and closed-form expressions
for important special cases, in particular when all canonical correlations are equal, and
derived recurrence formulas and uniform error bounds for finite sum approximations of the
general series representations. These approximations and recurrence formulas are suitable
for efficient and arbitrarily accurate numerical calculations, where the approximation error
can be easily controlled with the derived error bounds. Moreover, we provided exam-
ples showing the (in)validity of approximating the information density with a Gaussian
random variable.
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