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Abstract: A microfluidic device, or a Lab-on-a-Chip (LoC), performs lab operations on the microscale
through the manipulation of fluids. The design and fabrication of such devices usually is a tedious
process, and auxiliary tools, such as simulators, can alleviate the necessary effort for the design
process. Simulations of fluids exist in various forms and can be categorized according to how well
they represent the underlying physics, into so-called abstraction levels. In this work, we consider
simulation approaches in 1D, which are based on analytical solutions of simplified problems, and
approaches in 2D and 3D, for which we use two different Computational Fluid Dynamics (CFD)
methods—namely, the Finite Volume Method (FVM) and the Lattice-Boltzmann Method (LBM). All these
methods come with their pros and cons with respect to accuracy and required compute time, but
unfortunately, most designers and researchers are not aware of the trade-off that can be made within
the broad spectrum of available simulation approaches for microfluidics and end up choosing a
simulation approach arbitrarily. We provide an overview of different simulation approaches as well
as a case study of their performance to aid designers and researchers in their choice. To this end, we
consider three representative use cases of pressure-driven and channel-based microfluidic devices
(namely the non-Newtonian flow in a channel, the mixing of two fluids in a channel, and the behavior
of droplets in channels). The considerations and evaluations raise the awareness and provide several
insights for what simulation approaches can be utilized today when designing corresponding devices
(and for what they cannot be utilized yet).

Keywords: microfluidic; Labs-on-a-Chip; 1D simulations; finite volume method; Lattice-Boltzmann
Method

1. Introduction

A microfluidic chip, or a Lab-on-a-Chip (LoC), is a device that performs lab operations
on a microscale through a set of fluid manipulations. A prominent and established kind of
LoCs are pressure-driven and channel-based devices [1] in which fluids are flowing through
a configuration of channels with a scale in the order of micrometers or, in some cases, even
nanometers (note that alternative LoCs, e.g., based on paper-based microfluidics [2] or
electrowetting on dielectric (EWOD, [3]) exist but are not considered in this work). The advan-
tage of working on this scale is that less chemical components are required and chemical
reactions usually take less time [4]. However, the design and fabrication of corresponding
devices is still a time-consuming and tedious process: channels must be appropriately
dimensioned, pressure and flow rates must be accordingly adjusted, and even the slightest
changes may completely change the behavior.

Simulations are an essential tool in this process as they can offer an early evaluation of
the behavior of a design—even in the absence of a fabricated prototype. To this end, a huge
variety of complementary simulation approaches have been introduced in the past [5–7].
They operate on different abstraction levels, i.e., simplifications of the real-world physics to
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model the respectively needed physical phenomena. Figure 1 provides a rough overview
of simulation approaches on the abstraction-cost scale. Examples of approaches on a high
abstraction level are 1D approaches as introduced and used, e.g., in [5,8]. These approaches
are usually based on analytical solutions of simplified problems and the computational
effort scales linearly with the mesh refinement (i.e., the computational complexity of these
approaches is O(n), where n is the amount of data points along one dimension of the
problem geometry). Approaches on a lower abstraction level rely on Computational Fluid
Dynamics(CFD, [9]) and, more precisely, on methods such as the Finite Volume Method
(FVM, [9,10]), and the Lattice-Boltzmann Method (LBM, [11,12]). These can be further di-
vided into 2D and 3D approaches, i.e., into methods considering a 2-dimensional and a
3-dimensional space, and, hence, scale in a quadratic (O(n2)) and cubic (O(n3)) fashion,
respectively. Evaluations and case studies such as conducted in [8] illustrate the potential
and showcased how the use of simulations can reduce the design time of an LoC substan-
tially (in some of those studies, design time reductions from an entire month to a single
day have been observed).

Figure 1. Abstraction levels for simulating microfluidic flow.

However, simulations are not perfect and, although helpful, do not necessarily reflect
the real-world behavior (i.e., the ground truth). In fact, depending on the considered case,
the used simulation approach, the made assumptions and configurations, etc., different
behavior of a given design may be concluded from a simulation run. The FVM approach
alone can give different simulation results, depending on, e.g., the spatial and temporal
discretization, the quality of the mesh, or even the obtained order of spatial accuracy for
higher-order schemes [10]. A review done in [13] provides a broad overview of possible
methods within the FVM approach to model the interface of a multiphase flow only; and
a case study done in [14] showcases that, for a single simulation approach (FVM), even
the chosen tool can significantly influence the required computational time and simu-
lated results. The same can be said for other CFD methods, such as the LBM. Despite
this broad spectrum of available simulation approaches for microfluidics, most design-
ers and researchers often only adopt a single simulation approach for their microfluidic
simulations [15–20]. Moreover, conducting these simulations may be computationally
expensive—with simulations on lower abstraction levels easily taking days or even weeks
to complete [14] while, in contrast, simulations on higher abstraction levels might be faster
but may not provide the desired accuracy. Not knowing the spectrum and capabilities
of the single simulation methods at the different abstractions levels makes it hard, if not
impossible, to properly trade-off the desired quality of the possible results against the
computational effort needed to generate them.

In this work, we aim at shedding light into this by providing (1) an overview of differ-
ent and complementary simulation methods as well as (2) a case study of their performance
for microfluidic designs (note that the scope of this work is to raise the awareness and
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discuss the potential of simulation and, hence, does not include experimental data obtained
from physically produced microfluidic devices). To this end, we consider three typical
and representative use cases of pressure-driven and channel-based microfluidic devices
(namely the non-Newtonian flow in a channel, the mixing of two fluids in a channel, and the
behavior of droplets in channels; covered in more detail in Section 2). For each of those use
cases, its corresponding representation according to the 1D, 2D, and 3D abstraction level
is considered. Based on that, we review representative simulation methods (covered in
Section 3) and describe how the considered use cases can be properly simulated with them
(covered in Section 4). Results of those simulations (covered in Section 5) are discussed and
showcase the benefits, but also the pitfalls, of simulations at different abstraction levels.

By this, this case study certainly does not claim to comprehensively cover the problem
or to allow for generic conclusions about what simulation method and abstraction level
performs best for what use case. However, the reviews, results, and discussions provided
in this paper certainly raise awareness of the spectrum of available solutions and its
applicability with respect to computational efforts vs. quality. More precisely, this work
provides (besides others) the following main insights:

• Simulations at high abstraction levels come with less computational costs than sim-
ulations at lower abstraction levels. While not surprising at all, this is, to the best
of our knowledge, the first case study that investigates the performance of simu-
lations and quantifies the computational cost for microfluidic devices at different
abstraction levels.

• Applying more computational efforts does not always yield a better simulation qual-
ity. In fact, we show that for certain use cases, applying a (computationally more
expensive) lower abstraction does not significantly improve the accuracy of the results.
Insights like those enable the designers or researcher to properly trade-off the available
approaches and to save a lot of simulation time without a severe less of quality.

• The choice of the applied simulator should reflect the need of the designer or researcher.
If, e.g., droplets are considered and the end-user is only interested in the position of
them, the 1D abstraction level might be sufficient (providing a very fast solution). If,
instead, also the integrity or the deformation of the droplet is of interest, the more
accurate but also much slower 2D/3D approach might be needed. Again, insights
which equip the designers or researcher to choose the right solution for the task.

• For some use cases, simulations provide inconclusive results. This shows that, al-
though simulations really can help in many use cases, they might not always be the
“ground-truth”. After all, they do not reflect the real world in a perfect fashion but
heavily rely on the underlying models and assumptions. Being aware of that and
the complementary approaches helps designers and researchers to constantly reflect
when a certain simulation can be trusted and, in case of contradicting results, which
simulation approach most likely covered the real world best.

Overall, this case study certainly does not aim to establish a ground truth for simula-
tion of microfluidic devices (after all, the fabrication and evaluation of actual prototypes
are still needed for that). However, it offers an overview and several insights for what
simulation approaches can be utilized today when designing corresponding devices (and
for what they cannot be utilized yet).

2. Considered Use Cases

The goal of this work is to provide an overview and evaluation of the performance
of different and complementary approaches for the simulation of fluidic behavior in
pressure-driven channel-based microfluidic devices. To this end, a representative set of use
cases (covering different phenomena in fluid physics) is key. In this section, we introduce
the use cases that have been considered in our case study, namely non-Newtonian fluid
flow, fluid mixing, and droplet microfluidics, as well as motivate their importance in the
field of microfluidics. All of them rely on the flow of a fluid through a rectangular channel
which is reviewed first. Afterwards, each use case is described.
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2.1. Fluid Flow through a Channel

The flow of a fluid through a channel is obviously the basis for any simulation of a
channel-based microfluidic device. The corresponding physics can be analytically described
through the Hagen–Poiseuille law defined by

Q =
πr4

8µl
∆p, (1)

where r is the radius and l is the length of the channel, ∆p is the applied pressure difference,
µ is the viscosity of the fluid, and Q describes the mass flow rate. However, this law can only
be applied if cylindrical channels are considered; while, in microfluidics, channels usually
have a rectangular shape. Accordingly, the Hagen–Poiseuille law needs to be modified.
More precisely, for a rectangular channel with width w and height h, the mass flow rate is
given by [21]

Q =
wh3∆p

12µl

[
1− h

w

(
192
π5

∞

∑
n=1,3,5

1
n5 tanh

(nπw
2h

))]
. (2)

Here, the summation can be truncated after the second term, with a truncation error of
O(10−4). The mass flow rate can be used to get the average flow velocity of the fluid.
However, inside a channel, the flow velocity is not equal everywhere. The fluid is stagnant
at the walls, and the largest fluid velocity is found furthest away from the channel walls,
in the middle of the channel. This is due to the shear stress, which occurs because molecules
stick to each other and pull each other; creating horizontal layers of fluid flowing at different
speeds, in a laminar fashion. The viscosity of a fluid describes the resistance to the rate
of deformation. The distribution of flow velocity along the cross-section of a channel is
described by the flow profile.

Example 1. For a Newtonian fluid (a fluid in which the viscosity of the fluid depends linearly on
the shear strain rate, e.g., rate of deformation) such as water, the flow profile is parabolic. In Figure 2,
this is shown by the solid line. More precisely, Figure 2 shows the flow in a channel flowing from
the left to the right, with a channel length l and a channel width w, as well as walls on the top and
bottom. The arrows on the left indicate the inflow velocity at the inlet, following the Newtonian flow
profile.

Based on the considerations so far, we can analyze flows for channel-based microfluidic
devices. However, this only covers the main basic case. As soon as further issues beyond
a simple channel flow are considered (such as the use cases considered in this work),
purely relying on Equation (2) is insufficient. An additional analysis is required which is
covered next.

Figure 2. A set of flow profiles through a channel of length l with width w, where the walls on the
top and bottom are assumed to be rigid. The flow profile of a Newtonian fluid is shown by the solid
line and the flow profiles for the shear thinning and thickening fluids are given by the dashed lines.
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2.2. Non-Newtonian Fluid Flow

Thus far, we assumed a fluid flow behaving in a Newtonian fashion, i.e., the fluid
viscosity linearly depends on the shear strain rate. The shear strain rate of a fluid describes
its shear deformation, resulting from external forces, with respect to time. A fluid’s viscosity
can thus be said to be a measure of its resistance against deformation. For real world
problems, the corresponding fluids cannot always be assumed to behave in a Newtonian
fashion. In particular in applications, e.g., from the food industry, material science, and in
the medical field, fluids frequently show a nonlinear relation between the viscosity and the
rate of deformation and, hence, show non-Newtonian properties [22]. Accordingly, this
constitutes a good representative case for the evaluations conducted in this work.

Example 2. Examples of non-Newtonian fluids are shear-thinning or shear-thickening fluids,
i.e., the fluid viscosity decreases or increases with increased shear strain rate, respectively. The dashed
lines in Figure 2 indicate the corresponding flow profiles for shear-thinning and shear-thickening
fluids. Here, it is obvious how for, e.g., shear-thinning fluids, the rate of deformation of the fluid
near the wall is significantly high; causing the flow to have a more uniform flow speed in the center
region of the flow channel. Shear-thickening fluids will get a sharper flow profile, due to the higher
resistance against deformation of the fluid.

The flow profile for non-Newtonian fluids can be described by using rheological
models, such as the power-law [23], the Casson model [24], and the Carreau–Yasuda
model [25,26]. In this case study, we will model the shear-thinning behavior of blood in
a rectangular channel, using the Carreau–Yasuda model. This model gives the effective
viscosity µeff as a function of shear strain rate γ̇ as

µeff(γ̇) = µ∞ + (µ0 − µ∞)(1 + (λγ̇)a)
n−1

a . (3)

Here, µ0 and µ∞ are the viscosity at zero and infinite strain rate, respectively, λ is the
relaxation time, and n and a are power indices. These parameters are fluid-dependent and
we will use the following values for blood (which are in line with experimental data [27]):

µ0 = 22e−3Pa · s

µ∞ = 2.2e−3Pa · s

a = 0.644

n = 0.392

λ = 0.110 s

Because microfluidic devices only need a very small amount of specimen to perform
tests, compared to regular labs, it is attractive to apply them in the medical field, where
specimen fluid is often limited. This use case was chosen due to its relevance for the
application of LoCs in the medical field, but it can easily be adapted to other non-Newtonian
fluid problems by changing the fluid parameters or the problem domain accordingly.

2.3. Fluid Mixing

In this use case, we address the mixing properties of two miscible fluids. Mixing of two
or more miscible fluids is a common operation in (bio-)chemistry, and in microfluidics it
can be used to, e.g., generate a stream of liquid with predefined concentrations [28]. Mixing
is usually induced through stirring, and fluids predominantly mix through convection.
For LoCs, however, this is not the case. Due to the laminar nature of flow in microfluidic
channels, the mixing operation of two or more fluids depends on the diffusive properties
of the fluids, rather than convective transport properties.
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The diffusion distance d of molecules depends on the diffusion coefficient DD and
flow time t, and is given by [29]

d ≈
√

2DDt. (4)

Diffusion is a very slow transport mechanism, and even in microchannels, it can take up to
several minutes to achieve full mixing, which requires relatively long flow channels [29].
Mixing can be induced through active mixing methods, such as using actuators [30],
peristaltic pumps [31], or electro-kinetics [32]. In this case study, however, we will focus on
the passive mixing properties of two fluids in a meandering channel. Meandering channels
provide enough mixing time for fluids flowing at a certain speed, whilst not taking up too
much area on a microfluidic chip.

Example 3. Figure 3 shows an example of passive mixing in a meandering channel (this Figure
was authorized for reprinting). On the left, we have two inlets containing fluids of different colors.
The mixing mechanism within the meandering channel is illustrated here. It can be seen that the
laminarity of the flow causes very little mixing between the two colored streams, and a lot of LoC
area is required to accommodate, e.g., meandering channels. The dimensioning of such channels
highly depends on the mixing properties of the fluids.

The mixing of fluids with different concentrations or content is a fundamental (bio-)chemical
lab operation. Therefore, reliable and fast predictions of mixing properties are of utmost
importance for LoC design, making this use case relevant for our case study.

Figure 3. Flow mixing in a meandering channel [28].

2.4. Droplet Microfluidics

Finally, we consider the droplet microfluidics use case in which the fluid flowing
through the channel acts as a carrier fluid for another injected (immiscible) fluid; leading
to the formation of droplets which are transported by the carrier fluid. This leads to a
two-phase microfluidic system. A network of channels allows the droplet to take different
paths. This system can be used to transport bio-chemical assays to the desired location on
the chip.

Example 4. An example of how microfluidic droplets can take different paths is illustrated using
Figure 4. Here, a colored droplet is shown, flowing in from the left, heading towards a bifurcation
(T-junction). At the bifurcation, the droplet can either flow to the top or to the bottom. Provided
that the droplet does not split, it will choose the path which constitutes the highest total pressure
difference, i.e., the path with the lowest hydraulic resistance.

Combined with the flow speed, the pressure difference of a channel can be expressed
as a resistance. The hydraulic resistance of a channel is given by

RH =
∆p
Q

. (5)
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Droplet paths can be predicted relatively easily using the laws described in Section 2.1,
the hydraulic resistance of channels, and analogous methods from electrical engineering
such as Kirchoff’s law [5].

However, droplet deformations depend on the surface tension, which can be described
for droplets using

pc − pd =
2γcd

r
, (6)

where pc and pd are the pressures of the carrier fluid and droplet, respectively, r is the radius
of the droplet, and γcd is the surface tension coefficient of the two liquids and depends on
the temperature. The prediction of whether a droplet splits or not needs the analysis of the
surface tension of the droplet. In this use case, we consider a droplet flowing through a
bifurcation, as in Figure 4, by which stresses are applied to the droplet surface to observe
whether splitting occurs.

Droplet microfluidics provides the basics for several microfluidics applications such as
single cell analysis [22], high throughput PCR [33], and material science [22], and is, hence,
a relevant use case.

Figure 4. Microfluidic channel junction with droplet immersed in carrier fluid.

3. Applied Simulation Methods

The use cases given in Section 2 can be simulated on different abstraction levels and
with different simulation approaches. In this case study, we considered representative
approaches of the so-called 1D analysis model and two representatives of established CFD
methods, namely the Finite Volume Method (FVM) and the Lattice-Boltzmann Method (LBM),
for the 2D and 3D approaches. For all these approaches, the basic ideas and how we used
them to simulate the use cases introduced above are discussed in this section. The dis-
cussions of the methods are kept brief, but references for a more detailed treatment are
provided throughout the section.

3.1. 1D Models

To simulate the behavior of the three use cases, 1D models based on the Hagen–Poiseuille
law for rectangular channels (as reviewed in Section 2) can be used. However, for each use
case, additional physics need to be accounted for. More precisely:

3.1.1. Non-Newtonian Fluid Flow

For non-Newtonian fluids, models can be used to describe the behavior of the fluid
viscosity with respect to the shear strain rate. For the simulation of blood flow, we have
chosen the Carreau–Yasuda model (cf. Equation (3)). The shear strain rate γ̇ and viscosity µ
are local properties and cannot be solved analytically [34]. Therefore, a semi-analytical
approach needs to be employed.
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Such a semi-analytical approach is provided by [35] for a flow between parallel plates,
which is virtually the same as a rectangular channel in the 2D domain. The flow profile
between parallel plates is given by

u(z) =
∫ z

0
γ̇(z)dz, (7)

where z is the perpendicular distance measured from the closest wall, and umax is at half
the channel width. The shear strain rate can be numerically approximated through a root
finding method, and is obtained from

γ̇
(

µ∞ +
(

µ0 − µ∞(1 + λaγ̇a)
n−1

a
))

=
z∆p

l
. (8)

An approximate solution to Equation (7) can be obtained using a quadrature rule.

3.1.2. Fluid Mixing

The 1D approach for the fluid mixing focuses on predicting the mixing behavior within
a rectangular channel of length l, and is based on Fick’s law for diffusion in the y-direction
across the channel, and advection in the x-direction along the channel [36], i.e.,

∂2c
∂y2 = Pe

∂c
∂x

. (9)

Here, c is the concentration of a species, x is the location along the channel length, y is the
location across the channel width, and Pe is the Péclet number, which is a non-dimensional
number that defines the ratio of advection and diffusion of a fluid flow. The exact solution
of Equation (9) is given by [37] as

c(x, y) = 0.5 +
1
π

∞

∑
n=1

e
−π2(2n−1)2x

Pe sin(π(2n− 1)y)
1− cos(π(2n− 1))

2n− 1
(10)

for a rectangular channel flow, where the top half of the inlet flow has a concentration of 1,
and the bottom half of the inlet flow has a concentration of 0. This infinite sum can be
truncated after a desired accuracy is reached, and the problem can be solved explicitly.

3.1.3. Droplet Microfluidics

For the last use case, the dynamics of the droplet in an immersed fluid is simulated.
The droplet position is calculated based on the droplet speed ud, i.e.,

s = |ud|t, (11)

where the distance traveled over time t by the droplet is given by s and the droplet speed is
determined according to

ud = α
Q
A

. (12)

Here, Q is the volumetric flow rate of the channel, A is the area of the channel cross-section,
and α is the slip factor [38]. The path s will be taken through the middle of the channel and,
in case of a corner, the droplet will be assumed to go around the corner with a constant
velocity magnitude. Using this, the location of the droplet can be properly determined,
but not the deformation of the droplet. A heuristic approach can be adopted to predict
droplet stability, however, this is outside the scope of this case study.

3.2. Finite Volume Method

The first CFD method that will be discussed is the Finite Volume Method (FVM [10]).
Together with the other conventional CFD methods (the Finite Difference and Finite
Element Method), the FVM puts the focus on solving the Navier–Stokes equations [9].
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The Navier–Stokes equations are the governing equations for fluid dynamics and are given
by the mass equation

∂ρ

∂t
+∇ · (ρu) = 0 (13)

and the momentum equation

∂

∂t
(ρu) +∇ · (ρuuT) = −∇p +∇ · σ, (14)

where the effect of gravity is neglected. Here, ρ is the density, u is the velocity vector, p is
the pressure field, and σ is the stress tensor. Together with an equation of state, the Navier–
Stokes equations create a system of equations that can be solved. The domain is discretized
into a set of cells, and each unknown is solved for and averaged in each cell. The flux
on the boundary between neighboring cells can be solved using Riemann solvers. This
scheme is conservative by construction, but is inherent to numerical diffusion for low-order
schemes [10,14]. The FVM approach was implemented in the tool OpenFOAM [39], an open-
source FVM solver. More information on the FVM can be found in dedicated works
by [9,10].

3.3. Lattice-Boltzmann Method

The Lattice-Boltzmann Method (LBM, [11]) was derived from the method of Lattice Gas
Automata (LGA, [40]). This method discretizes the Boltzmann equation, rather than the
Navier–Stokes equations, but it can be proven to solve the Navier–Stokes equations on
the macro-scale using the Chapman–Enskog theory [41,42]. The Boltzmann equation is
given by

∂ f
∂t

+ ξβ
∂ f
∂xβ

+ Fβ
∂ f
∂ξβ

= Ω( f ). (15)

Here, the Einstein notation for summation is used and f (x, ξ, t) is the particle distribution
function, which is a fundamental variable in kinetic theory that depends on particle location
x and velocity ξ. F is a force field acting on the particles and Ω( f ) is the collision operator
which describes the behavior of particles in the event of a collision, i.e., when particles
collide with each other.

In the LBM, the velocity space of the particle distribution function f is discretized.
This discretization happens in a certain dimensionality on so-called lattices. An example
of an LBM lattice is the D2Q9 lattice, which is a two-dimensional lattice on the square
[−1, 1]× [−1, 1] in the Cartesian plane with a set of nine discrete velocities. A graphical
representation of the D2Q9 lattice is given in Figure 5a, where the discrete velocities
are numbered 0 through 8 and the 0th velocity is called the rest velocity. Analogously,
an example of a three-dimensional lattice on the cube [−1, 1] × [−1, 1] × [−1, 1] in the
Cartesian coordinate system with 19 discrete velocities is given in Figure 5b. The lattices are
chosen in this way, because they are mathematically compatible to solve the Navier–Stokes
equations on the macroscopic level.

The operations performed on these lattices are the collision and streaming of particle
densities. In this case study, the Bhatnagar–Gross–Krook (BGK) collision operator was
considered, i.e.,

Ωi( f ) = −
fi − f eq

i
τ

∆t. (16)

Here, τ is the relaxation time, and f eq is the particle distribution function of the fluid when
it is in equilibrium. It is given as

f eq
i (x, t) = wiρ

(
1 +

u · ci
c2

s
+

(u · ci)
2

2c4
s
− u · u

2c2
s

)
. (17)
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The complete operation, i.e., the collision and streaming of particle densities, during each
timestep is defined as

fi(x + ci∆t, t + ∆t) = fi(x, t)
(

1− ∆t
τ

)
+ f eq

i (x, t)
∆t
τ

. (18)

After the collision operator, the particle densities are streamed to the neighboring lattices,
and the process starts over again. The LBM approach was implemented using the tool
Palabos [43], an open-source LBM solver. The numbering of the velocities in Figure 5 is
consistent with the velocity numbering in Palabos. For a more detailed explanation of the
LBM, the reader is referred to a more dedicated work by [12].

(a) (b)
Figure 5. The lattices that are used for the LBM simulations. (a) The D2Q9 lattice for 2D LBM simula-
tions; (b) The D3Q19 lattice for 3D LBM simulations.

4. Conducted Simulations

Using the approaches reviewed above, all use cases introduced in Section 2 have been
simulated. In this section, we describe the corresponding instances as applied in this case
study. More precisely, we summarize the precise setup of the use cases (e.g., the geometry
of the considered channels, the characteristics of the used fluids, boundary and initial
conditions, etc.) as well as the setup of the corresponding simulation approaches (e.g.,
the discretization of the geometry, steady-state or transient simulation, etc.). Based on
that, all simulations have been conducted using a single thread on an AMD Ryzen 9 3950X
16-Core processor with 128 GB DDR4 RAM. As solvers, we used in-house Python scripts
for the 1D approach, OpenFoam for the FVM, and Palabos for the LBM (the latter two for
both the 2D and 3D approaches). The respective source code has been published and can
be found in our GitHub repository Microfluidics-Abstraction-Levels [44]. All simulations
were run without any explicit parallelization to acquire a representative comparison. All
obtained results are eventually presented and discussed in Section 5.

4.1. Non-Newtonian Fluid Flow
4.1.1. Setup of the Use Case

For this use case, we considered a simple rectangular channel as shown in Figure 6a
with length l = 500 µm, width w = 100 µm and, if three dimensions are considered,
the height h = w. The initial condition is a stagnant flow with no-slip boundary condition
at the walls. At the inlet, a uniform flow velocity uin of 10 mm

s has been applied, and a zero-
gradient Neumann boundary condition was set for the pressure. At the outlet, a Dirichlet
pressure condition is applied, pout = 0, and a zero-gradient Neumann boundary condition
was set for the velocity. The flow profile is taken at the measurement line m, 400 µm
downstream. We used the parameters of blood for this use case, i.e., the density was set
to 1060 g

m3 [45] and the viscosity parameters for the Carreau–Yasuda models were set
according to the values provided in Section 2.2.
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4.1.2. Setup of the Simulation

For the 1D approach, a simple Python script was created to solve the local viscosity
from the Carreau–Yasuda model along the y-axis of the channel. The Newton–Rhapson
method was used as root-finding method to find the viscosity and the Simpson’s rule was
implemented as quadrature rule to determine the local velocity from Equation (7).

To realize the FVM, we used the steady state solver simpleFoam in OpenFOAM, with re-
laxation factors 0.3 and 0.7 for the pressure and velocity fields, respectively. The domain
has been discretized with a Cartesian grid of 500 by 100 cells for the 2D approach, and 500
by 100 by 100 cells for the 3D approach. Iterative solvers were used to solve the pressure
and velocity fields to a tolerance of 1× 10−8. To get the shear strain rate γ̇ in the FVM,
the gradient of the velocity field is solved for explicitly every iteration step.

For the LBM, the discretization has been done in the same fashion as for the FVM.
The D2Q9 and D3Q19 lattices were used for the 2D and 3D approaches, respectively.
The LBM is an intrinsic transient method, so in order to get the steady-state solution,
Palabos solved the flow field until a convergence was reached. The convergence tolerance
was set to 1× 10−5 for both solvers. In the LBM, the shear strain rate is available locally
and no finite difference scheme is necessary [46].

(a) Non-Newtonian fluid flow. (b) Fluid mixing. (c) Droplet microfluidics.
Figure 6. Geometries of the simulation domains.

4.2. Fluid Mixing
4.2.1. Setup of the Use Case

The geometry of the domain for the mixing simulation is a straight channel as shown
in Figure 6b with one input for the two different fluids, and one outflow. The length l of
the channel is set to 600 µm, the width w = 40 µm and, if three dimensions are considered,
the height h = w. A no-slip boundary condition is set at the walls. At the inlet, a Dirichlet
velocity uin = 10 mm

s and Dirichlet concentration Cin boundary condition is set. The con-
centration boundary condition is set to C1 = 1 for the left fluid, and C2 = 0 for the right
fluid. At the outlet, a Dirichlet pressure boundary condition pout = 0 Pa is set. At the initial
condition, the fluid is stagnant, and the concentration is set to C1 and C2 for the left half and
right half of the geometry, respectively. The resulting concentration distribution is taken at
measurement line m, 500 µm downstream. The density of both fluids A and B was set to

1 kg
m3 for simplicity, and the diffusivity parameter D12 of the two fluids was set to 90 µm2

s .

4.2.2. Setup of the Simulation

For the 1D approach, a Python script was written to implement Equation (10), which
could be solved explicitly. The sum can be truncated as every new sum becomes rapidly
negligible, and it was truncated with an error term of O(10−12).

For the FVM, the Volume-of-Fluids (VOF, [47]) method was used to solve the multi-
component system. The problem was solved using OpenFOAM’s transient solver twoLiq-
uidMixingFoam until the concentration field converged. The geometry was discretized
using a Cartesian grid of 600 by 40 cells for the 2D approach, and 600 by 40 by 40 cells for
the 3D approach.
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For the LBM, the Dirichlet boundary condition was set using Bounceback dynamics
at the walls, and Bounceback dynamics with adapted wall velocity were set at the inlet
and outlet to get the Dirichlet boundary conditions at the open boundaries. The domain
was discretized with the same Cartesian grid as for the FVM. Following the approach
from [48], the Shan–Chen method [49] was used to solve the multi-component problem.
This method adds an artificial force to the fluid elements that mimics the separation of
different components. The Shan–Chen force is controlled with a coefficient G, which
controls the strength of the interaction between different species [12]. The value depends
on the size of the cells in the grid. For the mixing problem, this value controls the diffusivity
and for this use case, it was carefully set to 0.8.

4.3. Droplet Microfluidics
4.3.1. Problem Setup

The geometry of the domain is the bifurcation given in Figure 6c with the length
l = 500 µm, the length k = 250 µm, the width w = 100 µm, and, if three dimensions are
considered, the height h = 100 µm. A no-slip boundary condition is set at the walls. At the
inlet, a Dirichlet velocity boundary condition of uin = 10 mm

s is set. At the two outlets,
Dirichlet pressure boundary conditions are set. These are p1

out = 10 Pa, and p1
out = 0 Pa to

ensure that the droplet will follow path s into the top channel. The initial velocity in the
domain is 0, and the droplet is sized such that it practically fills the entire cross-section of
the channel (a layer of cells filled with carrier fluid is present between the droplet and the
walls to assure stability). The droplet length dl is 200 µm. The density of the carrier fluid

and the droplet was set to 1 kg
m3 , the viscosity of both fluids to 1.004 µm2

s , and the surface
tension is set to γ = 0.005 N

m .

4.3.2. Implementation

For the 1D approach, the droplet is assumed to flow along path s from Figure 6c with
a speed of ud, which depends on the volumetric flow rate. The hydraulic resistances of the
channels were calculated through Equations (2) and (5), and the corresponding volumetric
flow velocities are 5.07 m

s and 4.93 m
s for the top and bottom channels, respectively, for a slip

factor α of 1.28 [50]. The position of the tailing edge of the droplet was used to determine
the location of the droplet. Assuming no droplet deformation, the remaining length dl of
the droplet was mapped in front of this point.

For the FVM, OpenFOAM’s transient solver interFoam was used. It takes only a few
timesteps to resolve the internal velocity field, which does not affect the shape of the droplet.
As with the mixing problem, the VOF method was used to solve the multi-component
problem. The geometry was discretized using a Cartesian grid, where each cell had sides
of 1 µm.

For the LBM on the other hand, the problem was first simulated without a droplet,
to acquire a converged velocity field, which was subsequently used as the initial condition
for the velocity field of the droplet deformation problem. This was done, because initializ-
ing the velocity at 0 causes a set of artificial pressure waves through the domain until the
pressure and velocity field are in equilibrium. This effect destroys the droplet and effec-
tively renders the simulation meaningless. The velocity boundary conditions on the walls,
inlet, and outlets were set using Bounceback dynamics. The pressure Dirichlet boundary
condition was set using Antibounceback dynamics. For the LBM, the same Cartesian grid
was used as for the FVM. The Shan–Chen method was used to solve this multi-component
problem. Here, the coefficient G controls the numerical surface tension of the droplet and it
depends on the size of the cells in the grid. It was carefully chosen at 1.1.

5. Obtained Results and Discussion

Eventually, this section summarizes all results obtained by the case study described
above and draws corresponding conclusions from them. Following the structure of all
sections above, each case is discussed separately in the following.
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5.1. Non-Newtonian Fluid Flow

The resulting flow profiles are probably the most relevant results generated by the
simulators for this use case. Correspondingly obtained results are given in Figure 7 for
all simulation approaches. The flow profile is taken along the width of the channel at
the measurement line m in Figure 6a. On the x-axis, the velocity of the stream is given
in mm

s and, on the y-axis, the position along the width of the channel is given in µm.
The correspondingly needed runtimes in CPU seconds and required memory in MB are
summarized in Table 1. For the 1D approach, no runtimes/memory requirements are
reported since all simulations can be completed in negligible time (i.e., less than a second).
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Figure 7. Results of the simulations for the non-Newtonian fluid flow use case.

Table 1. The CPU time and required memory in MB for the 2D and 3D simulations.

2D FVM 2D LBM 3D FVM 3D LBM

Time [hh:mm:ss] 00:02:34 00:05:31 07:02:27 06:31:32
Required Memory [MB] 132.8 14.6 5819.1 1410.1

The plots clearly show that the results from the 1D and the 2D approaches are rather
close to each other—indicating a similar quality for both of them. Considering that the 1D
approach requires almost no computational efforts (while the 2D approaches may take some
minutes), this provides a clear indication to choose the former over the latter for straight
channel use cases. If 3D is considered, different results are obtained, i.e., the maximum
velocity of the 3D simulations is significantly higher than that of the 2D simulations. This is
to be expected, as the inlet flow speed is set equal for all simulations, and the 3D simulations
have the wall effect of four walls instead of only two walls—resulting in a higher maximum
velocity, because the fluid is being “squeezed” through a tinier gap. However, this higher
precision comes at a larger computational cost: In case of FVM, the runtime even increases
by a factor of almost 165; in case of LBM by a factor of about 71.

Overall, this allows for the conclusions that, if a rough approximation is sufficient for
the end-user’s needs, the 1D simulation certainly delivers that at almost no computational
costs. If instead very precise results are needed, the end-user probably should take the extra
mile and use the 3D simulation (despite its computational costs). In this example, the 2D
simulations hardly provide any further benefits compared to the 1D approach, however,
one should keep in mind that the 2D approach can also be used for more complex two-



Sensors 2022, 22, 5392 14 of 19

dimensional flow problems. There is no significant difference in the computational cost,
between the FVM and LBM approaches, and both give adequate results for this use case.

5.2. Fluid Mixing

The mixing performances are probably the most relevant results generated by the
simulators for this use case. This is quantified using the Absolute Mixing Index (AMI) as
given by [51], i.e.,

AMI =

√
1
N ∑N

i=1(αi − 〈α〉)2

〈α〉 , (19)

where α represents the concentration of fluid A coming in on the left, normalized on a scale
from 0 to 1. The average value of α over all N data points is given by 〈α〉.

The results for the mixing use case taken at cross-section m in Figure 6b are summa-
rized in Figures 8 and 9. The results of the 1D and 2D approaches are shown in Figure 8,
where the x-axis denotes the position along the channel width and the y-axis denotes the
concentration of fluid A. The concentration of fluid A as obtained by the 3D FVM and
3D LBM approaches is given in Figure 9a,b, respectively. Here, completely red means a
100% concentration of fluid A and completely blue means a 100% concentration of fluid B.
The correspondingly acquired AMI values, needed runtimes, and memory requirements
are provided in Table 2. Again, for the 1D approach, no runtimes are reported since all
simulations can be completed in negligible time (i.e., less than a second).
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Figure 8. The concentration distribution of fluid A for the 1D approach, the 2D FVM approach,
and the 2D LBM approach. For the 2D approach, the concentration distribution was taken at the
measurement line m in Figure 6b.

(a) For the 3D FVM approach. (b) For the 3D LBM approach.
Figure 9. Cross-sectional concentration distribution of fluid A at measurement line m in Figure 6b.
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Table 2. Absolute Mixing Index (AMI) for all mixing simulations, the runtime in CPU time, and re-
quired memory in MB for the 2D and 3D simulations.

1D 2D FVM 2D LBM 3D FVM 3D LBM

AMI 0.654 0.665 0.680 0.654 0.519
Time [hh:mm:ss] - 00:06:38 00:08:18 11:44:36 13:52:23
Required Memory [MB] - 109.6 20.0 1530.0 515.1

For this use case, the simulation results are much more inconclusive. In fact, there
obviously is a huge difference between the results obtained by the FVM method and the
LBM method. Since we considered a straight channel during the mixing, the 1D simulation
(relying on an analytical solution that is exact in this case) does provide a ground truth—
verifying that the results obtained by FVM are correct, while the results obtained by LBM
are far off. This does not mean that the LBM approach cannot be used for miscible flow
simulation, but it does indicate that the Shan–Chen multiphase method is probably not the
best method for this use case.

As for runtime performance, the 1D solution obviously is the best option again. Con-
sidering that, for this scenario, this even provides a ground truth, it obviously is the best
choice in general. However, this only holds for straight channels. As soon as, e.g., a
meandering channel is considered, the 1D approach is not exact anymore, and designers
or researchers must rely on CFD methods (and need to accept the longer runtimes). Then,
the previously reported results can be seen as an indication that, having the option between
the described methods, FVM seems to lead to better results. However, a physical proto-
type might be needed to give a decisive answer to which approach indeed provides the
best quality. Overall, these differences clearly show that just trusting a single simulation
engine can easily be misleading and may serve the impression that simulations always
give the end-users accurate results. Using different schemes, leading to different results,
may increase awareness that simulations are not always perfect, and should be critically
reflected upon.

5.3. Droplet Microfluidics

Finally, the positions and possible deformations of the droplets are probably the most
relevant results generated by the simulators for this use case. Correspondingly obtained
results are summarized in Figure 10 for the 1D, 2D, and 3D approaches. More precisely,
for each case, the position and the shape of the droplet is shown (denoted as red entity) for
three timestamps. Note that, since the 1D approach is incapable of simulating the shape
of the droplet, its position is simply denoted in terms of a block-like entity in Figure 10a.
The correspondingly needed runtimes and memory requirements are provided in Table 3.
Here, no runtimes are reported for the 1D approach since all simulations can be completed
in negligible time (i.e., less than a second).

Table 3. Runtime in sec and required memory space for the 2D and 3D approaches.

2D FVM 2D LBM 3D FVM 3D LBM

Time [hh:mm:ss] 00:03:29 00:02:23 06:06:13 04:26:45
Required Memory [MB] 96.1 32.4 898.1 711.6

The results for this use case perfectly show the trade-off between quality and com-
putational effort. In fact, the results from the 1D approach (generated in almost no time),
provide rather accurate positions (in fact, the position of the droplet is almost identical in
1D, 2D, and 3D). Hence, if the end-user is just interested in the positions of droplets, 1D
certainly is the way to go. However, one still has to be careful for the slight difference that is
observable between the 1D and 3D approaches. In fact, these differences might accumulate
for more complex channel configurations.
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t = 4.5 ms t = 13.5 ms t = 22.5 ms
(a)

t = 4.5 ms t = 13.5 ms t = 22.5 ms
(b)

t = 4.5 ms t = 13.5 ms t = 22.5 ms
(c)

t = 4.5 ms t = 13.5 ms t = 22.5 ms
(d)

t = 4.5 ms t = 13.5 ms t = 22.5 ms
(e)
Figure 10. Results of the simulations for droplet microfluidics. (a) Droplet position at different
timestamps as simulated with the 1D approach; (b) Droplet position and deformation at different
timestamps as simulated with the 2D FVM approach; (c) Droplet position and deformation at different
timestamps as simulated with the 2D LBM approach; (d) Droplet position and deformation at different
timestamps as simulated with the 3D FVM approach. (e) Droplet position and deformation at different
timestamps as simulated with the 3D LBM approach.
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If also deformation (or stability) of the droplet is considered, then the 1D approach is
not suitable at all and the end-user has to opt for 2D, or even 3D, approaches. This obviously
comes at a substantially higher computational cost, but it seems that a 2D approach already
comes with an acceptable accuracy, i.e., it might not always be necessary to spend the
substantially larger runtime required for 3D approaches. In fact, although the droplet
seems to have a lower velocity in the 2D approaches, all 2D and 3D approaches agree
that the droplet does not break. If a designer or researcher wishes to have more detailed
information on the droplet deformation, care should again be taken, as it is clear that none
of the approaches really agree on how the droplet deforms.

6. Conclusions

In this work, we considered the simulation of pressure-driven and channel-based
microfluidic devices at different levels of abstraction. To this end, we considered three
representative use cases, namely the non-Newtonian flow in a channel, the mixing of two
fluids in a channel, and the behavior of droplets in channels. The case study and the ob-
tained results clearly show that simulations are certainly not perfect but frequently provide
insights that can aid and improve the design process. At the same time, the case study
shows that the broad spectrum of simulation approaches leads to different performances
with respect to accuracy and required compute time.

Table 4 provides a color-coded overview of the correspondingly obtained “take-home
messages” for each use case (columns) and abstraction level (rows). Here, green denotes the
best possible option (e.g., simulating a non-Newtonian fluid flow in a rectangular channel is
best conducted using the 1D abstraction as it provides precise results in negligible runtime),
while red denotes an option which should be avoided (e.g., simulating a fluid mixing
process within a straight channel in 2D or 3D takes too much time, and does not yield
much extra information in return) or which is not applicable at all (e.g., splitting and
deformations in droplet microfluidics cannot be simulated at all in 1D). Orange denotes
options which could be useful, but usually involve a trade-off (e.g., simulating deformations
in droplet microfluidics in 2D may not provide perfect accuracy but, considering the much
less runtime compared to 3D, may provide an acceptable compromise).

Overall, this clearly shows that designers and researchers should be aware of the
available solutions and accordingly trade-off these performances with their respective
needs. With this, we believe that this work provides a contribution towards increasing the
awareness and the understanding of the potential of simulation for microfluidic devices.

Future work certainly should focus on improving the accuracy and reliability of the
simulation results—particularly towards avoiding contradictory or inconclusive results.
This could be accounted for through the introduction of an error margin that allows for
a bigger solution space—increasing the chance that the ground-truth is considered. This
error margin could lead designers towards more robust designs of microfluidic devices.
Additionally, a better understanding about computational efforts vs. quality of simulations
at the different abstraction levels (as fostered through this work) may pave the way towards
hybrid solutions, i.e., a combination of simulation approaches where the overall design
is simulated at high abstractions (fast, but less accurate) and corner case components are
simulated at lower abstractions (slower, but for smaller parts and with better accuracy).
For all these endeavors, the insights gained through this case study provide a good basis.

Table 4. A color-coded overview of the performance of all approaches for all use cases.

Level

Non-Newtonian
Fluid Flow Fluid Mixing Droplet Microfluidics

Rectangular
Channel Other Straight

Channel Meander Position Split Deformation

1D
2D * *
3D * *

* The Shan–Chen approach is probably not the best fit for LBM.
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