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Zusammenfassung

Schwere Quarks und ihre gebundenen Zustände gehören zu den am besten zugänglichen
theoretischen und experimentellen Sonden des in Schwerionenkollisionen geformten Medi-
ums. In dieser Doktorarbeit nutzen wir den Formalismus der offenen Quantensysteme,
Methoden der effektiven Feldtheorie und thermische Quantenfeldtheorie, um die medi-
uminterne nicht Gleichgewichtsevolution solcher Zustände zu beschreiben. Wir begin-
nen mit einer Einleitung in Schwerionenkollisionen, nichtrelativistische und potential-
nichtrelativistische effektive Feldtheorien der starken Wechselwirkung, offene Quanten-
systeme und thermische Feldtheorie. Mittels dieser Methoden stellen wir eine Mastergle-
ichung auf, die die mediuminterne Evolution schwerer Coulomb-Quarkonia beschreibt,
und fernerhin analysieren wir sie in einer Vielzahl von Parameterräumen. Wir unter-
suchen die Bedingungen, unter denen die mediuminterne Evolution durch Langevin- und
Lindbladgleichungen beschrieben wird, und dazu die ausschlaggebenden Transportkoef-
fizienten der beiden Fälle. Wir stellen den QTraj Code vor, der die Monte Carlo Meth-
ode der Quantenpfade nutzt, um die Lindbladgleichung zu lösen. Mit dem QTraj Code
rechnen wir den Kernmodifikationskoeffizient RAA und den elliptischen Fluss v2 der
Υ(1S), Υ(2S) und Υ(3S) Zustände aus und vergleichen sie mit experimentellen Ergeb-
nissen der ALICE-, ATLAS- und CMS-Kollaborationen. Wir finden in allen Fällen
eine zufriedenstellende Übereinstimmung zwischen unseren Ergebnissen und den exper-
imentellen Daten.

Abstract

Heavy quarks and their bound states are among the best available theoretical and exper-
imental probes of the medium formed in heavy ion collision experiments. In this thesis,
we utilize the formalism of open quantum systems, effective field theory methods and
quantum field theory at finite temperature to describe the in-medium, out of equilibrium
evolution of these states. We begin with an introduction to heavy ion collisions, nonrela-
tivistic and potential nonrelativistic effective field theories of the strong interaction, open
quantum systems and quantum field theory at finite temperature. Using these methods,
we present a master equation describing the in-medium evolution of heavy, Coulombic
quarkonium and analyze it in a number of limits. We investigate the conditions under
which the in-medium evolution is described by Langevin and Lindblad equations and
the transport coefficients characterizing the evolution in both regimes. We present the
QTraj code which utilizes the Monte Carlo quantum trajectories method to solve the
Lindblad equation. Using the QTraj code, we calculate the nuclear modification factor
RAA and the elliptic flow v2 of the Υ(1S), Υ(2S) and Υ(3S) states and compare against
experimental measurements by the ALICE, ATLAS and CMS collaborations. We find,
in general, good agreement between our results and the experimental data.
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Chapter 1

Heavy quarkonium and heavy ion
collisions

In the first instants after the big bang, the universe was immensely hotter and denser
than in its current state. Theoretical and experimental investigation of hot, dense media
is thus a matter of great importance to trace the history of the universe back to its earliest
moments. Current heavy ion collision (HIC) experiments including the ALICE, ATLAS
and CMS experiments at the European Organization for Nuclear Research’s (CERN)
Large Hadron Collider (LHC) and the PHENIX and STAR experiments at Brookhaven
National Laboratory’s (BNL) Relativistic Heavy Ion Collider (RHIC) have succeeded
in creating an environment of extraordinarily high temperature and density and thus
provide an unparalleled window into the earliest times of the universe. The data from
these experiments have spurred theorists to push forward with analyses of such hot,
dense environments and to formulate and calculate observable quantities signaling the
nature of the medium formed in and the dynamics which govern heavy ion collisions for
comparison against these experimental data.

The dynamics of HICs are governed by the strong nuclear interaction. The strong
force is confining such that at large distances and low energies the quarks and gluons
which carry and mediate the color charge responsible for the strong interaction exist
only as constituent particles of neutral bound states. Conversely, at high energies, the
strong force becomes weaker, and the constituent particles carrying color charge can
be liberated from bound states and propagate freely. Such a deconfined medium is
denoted a quark gluon plasma (QGP) as the colored particles, i.e., quarks and gluons,
propagate freely within it. It is conceivable that at temperatures achieved in current HIC
experiments a deconfined QGP is created. From the beginning of the HIC experimental
program, it has thus been a matter of great importance to identify observables signaling
the formation and existence of this deconfined medium.

Among the best available probes of the medium formed in HIC experiments are heavy
quarks and their bound states. Their presence from the earliest stages of and persistence
through to the end of the collision allow for the probing of the medium formed during
the entirety of its existence. An observable of particular interest in the theoretical and
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experimental HIC program is heavy quarkonium suppression. Heavy quarkonium is
a meson consisting of a heavy quark and the corresponding heavy antiquark, i.e., cc̄
or bb̄. As discussed above, at low energies, due to the confining nature of the strong
interaction, such states cannot dissociate into constituent quarks and are, with respect
to the strong interaction, stable. In a deconfined medium, decay of heavy quarkonium
into a deconfined quark and antiquark is not forbidden. In a seminal work [1], Matsui
and Satz proposed reduced yield of heavy quarkonium states in HIC experiments due to
dissociation in the deconfined medium with respect to yield in proton-proton collisions,
in which no medium is formed, as a signal of the formation of a QGP.

In Ref. [1], the proposed mechanism of the in-medium dissociation was Debye screen-
ing. In this scenario, the potential binding the quark and the antiquark is screened over
length scales greater than the inverse of the Debye mass m−1

D due to interactions with
the medium. If the Debye mass becomes sufficiently large such that its inverse is be-
low the radius of the state, the constituent quarks are no longer held together by the
potential, and the state dissociates. Our understanding of the mechanism of heavy
quarkonium suppression underwent a paradigmatic shift with the findings of Laine, et.
al., of a nonzero imaginary part of the heavy quark potential [2]. This imaginary part
leads to in-medium decay of the state and in the screening regime was found to be large,
a result confirmed by subsequent calculations performed using nonrelativistic effective
field theories of the strong interaction [3–8] and perturbative QCD resummation [9].
Furthermore, recombination effects in the charm sector have been found to play a signif-
icant role in the in-medium dynamics of charmonium such that the J/ψ does not provide
as clear a signal of heavy quarkonium suppression or, therefore, of the formation of a
QGP [10–13] as in the bottom sector. Due to the lower mass of the charm quark with
respect to temperatures achieved in current HIC experiments, cc̄ states are sufficiently
copiously produced such that the interaction and recombination of open charm after dis-
sociation cannot be discounted thus complicating the simple dissociation picture [14–17].
Nevertheless, heavy quarkonium suppression, specifically in the bottom sector, remains
a subject of great experimental and theoretical interest as a clear signal of the formation
of a deconfined QGP.

To accurately describe heavy quarkonium suppression, one needs an accurate descrip-
tion of in-medium heavy quarkonium dynamics which should, ideally, take into account:
the quantum and non-Abelian nature of the system and the strongly coupled nature
of the medium. In this thesis, we make use of a number of theoretical tools to allow
us to provide such a description with the goal of calculating experimental observables,
foremost among them heavy quarkonium suppression, for comparison against experi-
mental data in order to characterize the medium formed in HICs. Our main theoretical
tools in this effort are effective field theory (EFT) methods, the formalism of open quan-
tum systems (OQS) and quantum field theory (QFT) at finite temperature and out of
equilibrium.

Effective field theories are QFTs which exploit hierarchies of scale present in physical
systems to provide an effective description valid in a specific energy regime up to a
specific order in expansions in a small parameter. In a physical system with widely

8



separated energy scales, one can perform an expansion in the ratio of the small to the
large scale. At the Lagrangian level, this produces an effective Lagrangian defining a
resulting EFT. The effective Lagrangian contains an infinite number of operators allowed
by the symmetries of the underlying theory of which only a finite number are necessary
to accurately reproduce the results of the fundamental theory up to a given order in
the expansion parameter. The coefficients of the effective operators are denoted Wilson
coefficients and encode the information of the fundamental theory in the higher energy
region. In the energy region in which the expansion is valid, observables can be calculated
using the EFT and reproduce the results of the full theory up to a given order in the
expansion.

In this thesis, we make extensive use of nonrelativistic EFTs which take advantage
of the nonrelativistic nature of particles of large mass. Specifically, working at an energy
scale µ much less than the mass M of the heavy particle, the system is nonrelativistic,
and its dynamics are well described by the nonrelativistic dispersion relation E = 1

2Mv2,
where v � 1 is the velocity of the particle. Nonrelativistic quantum chromodynamics
(NRQCD) [18,19] is the EFT describing the dynamics of the strong interaction below the
scale M . At the Lagrangian level, it consists of Pauli two component spinors separately
creating and annihilating nonrelativistic heavy quarks and antiquarks and is organized as
an expansion in the velocity v. In bound states consisting of a heavy quark and a heavy
antiquark, there remain two dynamical scales below the scale M : the momentum transfer
Mv and the binding energy Mv2. Restricting oneself to the energy scale Mv2, one has
the EFT potential NRQCD (pNRQCD) [20–22]. At the Lagrangian level, pNRQCD
describes color singlet and octet bound states interacting via electric dipole interactions
and is organized as an expansion in the bound state radius and the inverse of the heavy
quark mass. It is thus ideally suited to describe the lowest lying bottomonium states
which are both heavy and small.

The inherent hierarchy of scales of heavy quarkonium due to the large quark mass and
nonrelativistic velocities make it an ideal system to describe with EFTs. To describe
heavy quarkonium suppression, one must additionally consider scales induced by the
medium, namely the temperature T . Studies of heavy quarkonium in medium have
made extensive use of NRQCD and pNRQCD in different temperature regimes compared
to the inherent scales of the quarkonium [5–8]. Heavy quarkonium in medium is a
fully quantum system coupled to a highly complex environment. The combined system
possesses multiple separate energy scales, and treating it accurately is a daunting task.
The formalism of open quantum systems (OQS) [23] allows for the rigorous treatment of
a quantum system of interest coupled to and evolving out of equilibrium with a bath or
reservoir and thus provides a natural framework in which to treat a heavy quark or heavy
quarkonium state propagating in the QGP. This approach has proven especially fruitful
in the past decade with a large number of groups utilizing OQS methods to investigate in-
medium dynamics of heavy quarkonium [24–38]; for reviews, see Refs. [39,40]. Within the
OQS formalism, the inherent energy scales of the system and the medium characterize
time scales of the system, the medium and their interaction. Hierarchies among these
time scales characterize different evolution paradigms; two ubiquitous regimes are the

9



quantum optic and quantum Brownian motion regimes. As we explain and justify in
more detail in the body of this thesis, heavy quarkonium in the medium formed in current
HIC experiments realizes quantum Brownian motion which allows for the use of a number
of simplifying assumptions in treating the system and deriving evolution equations. In
this regime, the evolution of the system and the medium factorize in such a way that
an evolution equation describing the time evolution of the density matrix of the system
can be derived with medium interactions described by medium correlators. We find,
furthermore, that in certain regimes these correlators reduce to transport coefficients
characterizing the medium and governing the interaction of the system with it.

As the QGP is at finite temperature and the heavy particle is out of equilibrium
with the medium, standard QFT methods do not provide an accurate description of the
combined system. We must make use of finite temperature [41–43] and out of equilibrium
QFT [44, 45]. As we explain in more detail in the body of this thesis, the fundamental
idea of finite temperature QFT consists in taking the operator form of the Boltzmann
factor e−H/T of quantum statistical mechanics as an evolution operator in imaginary
time. Evolution at finite temperature thus represents evolution by time t = −i/T .
There exist two approaches to this imaginary time evolution: the imaginary and real
time formalisms. In the former, the periodicity of the imaginary time propagator is used
to relate it to a Fourier sum over discrete Matsubara frequencies given by ωn = 2πnT
for bosons and ωn = (2n + 1)πT for fermions; observables can be calculated as sums
over these Matsubara frequencies. In the latter, one evolves to time t = −i/T along an
indirect path proceeding along the real time axis to gain access to real time correlator
information. In this thesis, we make use of the real time formalism.

EFT methods, the OQS formalism and QFT at finite temperature allow us to sys-
tematically take into account all relevant physical aspects of the in-medium propagation
of heavy quarkonium. The results presented in this thesis represent an important con-
tribution to the body of theoretical and experimental work investigating the in-medium
evolution of heavy quarkonium in order to characterize the medium formed in current
HIC experiments. In the last decade, numerous works by the experimental collabora-
tions at the LHC and RHIC have studied and reported on bottomonium suppression; for
a representative selection of such works, see Refs. [46–55]. On the theory side, groups
have utilized approaches including kinetic rate equations [56] and coupled transport
equations [36] to describe the in-medium evolution of heavy quarkonium to compare
against these experimental data. Other theory groups have additionally investigated
the in-medium properties of heavy quarkonium by studying complex 1D potentials [57],
Schrödinger-Langevin [27] and Langevin equations [29] and stochastic potentials [24],
while the comovers approach has additionally been utilized in the charm sector [58].

This thesis is organized into three parts: I an introduction, II a presentation of the-
oretical results and III a presentation of phenomenological results. In the remainder of
part I, we present more quantitatively and in greater detail the theory of the strong in-
teraction and effective field theories thereof, the formalism of open quantum systems and
quantum field theory at finite temperature in chapters 2, 3 and 4, respectively. In chap-
ters 3 and 4, we rederive the master equation governing the in-medium evolution of heavy
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quarkonium previously derived in Refs. [28, 30]. In part II, we present novel theoreti-
cal results. The transport coefficients describing the interactions of the heavy particles
with the medium are objects of key importance, and fixing their values is necessary
to solve the evolution equations and extract the phenomenological results of part III.
In chapter 5, we detail our current understanding of the nature of these coefficients
and give state of the art results fixing their values. In chapter 6, we derive Langevin
equations describing the in-medium Brownian motion of heavy quarkonium and heavy
quarks. In chapter 7, we present an evolution equation derived without making use of
the dilute approximation which may be of use to describe in-medium charmonium where
recombination effects are significant. In part III, we present various phenomenological
results describing heavy quarkonium suppression and provide comparison against cur-
rent experimental data. These results were obtained by solving the master equation first
derived in Refs. [28] and [30] at orders 0 and 1 in an expansion in the binding energy
E of the quarkonium state over the temperature T of the medium. The resulting evo-
lution equations were solved using the QTraj code presented in Ref. [59] and reviewed
in appendix A. In chapter 8, we present results from Refs. [60] and [61] in which the
master equation is solved at leading order in the binding energy of the quarkonium state
over the temperature of the medium and in chapter 9 results from Ref. [62] in which the
master equation is solved at next-to-leading order in the same expansion. We conclude
in chapter 10 and collect assorted information in various appendices.

11



Chapter 2

Effective field theories of the
strong interaction

As stated in chapter 1, in order to rigorously describe heavy quarkonium suppression
in heavy ion collision experiments, we must take into account the quantum and non-
Abelian nature of the system. In this chapter, we present the non-Abelian quantum field
theory quantum chromodynamics (QCD) which governs the strong nuclear interaction.
In sec. 2.1, we present the QCD Lagrangian and discuss the transformation properties
of the quark and gluon fields it describes. We emphasize the non-Abelian nature of the
theory which gives rise to a richer structure than other sectors of the Standard Model; we
present the QCD beta function describing the running of the strong coupling and discuss
its implications at high and low energies. Furthermore, as we aim to describe heavy
quarkonium which contains a hierarchically ordered set of well separated energy scales,
we introduce effective field theories of the strong interaction which naturally describe
the relevant physics at each of these energy scales. In sec. 2.2, we present nonrelativistic
QCD (NRQCD) [18, 19] which describes the physics of the strong interaction in heavy-
heavy bound states below the scale of the heavy quark mass M . In sec. 2.3, we present
potential NRQCD (pNRQCD) [21,22] which describes heavy-heavy bound states below
the scale of the momentum transfer Mv, where v is the relative velocity in the bound
state. We represent this hierarchy schematically in fig. 2.1.

2.1 Quantum chromodyanmics

The strong nuclear force governs the interactions of the quarks and gluons. At low en-
ergies, they form bound states of protons and neutrons of which (along with electrons)
macroscopic matter consists, whereas at high energies, e.g., in the QGP formed in HIC
experiments, they propagate freely. The strong interaction is rigorously described by
quantum chromodynamics (QCD) which is an SU(3) gauge theory describing the inter-
action of 3 colored quarks with 8 gluons which carry color charge and mediate the strong
force. The QCD Lagrangian describing a quark ψi of mass m interacting with a gluon
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pNRQCD

NRQCD

QCD

Mv2

Mv

M

µ

Figure 2.1: Schematic representation of the hierarchy of scales and effective field theories
relevant to describe the strong sector dynamics of heavy-heavy bound states. In heavy
quarkonium physics, the relative velocity v and the heavy quark mass M define three
hierarchically ordered scales denoted the hard, soft and ultrasoft scales: M � Mv �
Mv2, respectively. Integrating out the hard scale µ = M from the fundamental theory
QCD gives rise to the EFT nonrelativstic QCD (NRQCD); further integrating out the
soft scale µ = Mv gives rise to the EFT potential NRQCD (pNRQCD).

field Aµ is given by

L = ψ̄i
(
i/∂δij − gγµT aij /A

a − δijm
)
ψj −

1

4
F aµνF

aµν , (2.1)

where the Feynman slash indicates contraction with a gamma matrix, i.e., /∂ = γµ∂µ;
Fµν is the gluon field strength tensor; and ψ̄ = ψ†γ0. The quark is a spin-1

2 particle
represented by the four component spinor ψi; the gluon is a spin-1 vector field represented
by Aaµ. The T aij are traceless, Hermitian 3×3 matrices and are elements of the Lie algebra
Ŋu(3) generating the Lie group SU(3). The lower indices {i, j, · · · } are fundamental and
run from 1 to 3; the upper indices {a, · · · } are adjoint and run from 1 to 8. At a
mathematical level, the presence of the gluon field serves to ensure the invariance of the
QCD Lagrangian under local SU(3) gauge transformations, i.e.,

ψi(x)→ Uij(x)ψj(x), (2.2)

where Uij(x) is an element of SU(3) in the fundamental representation. The gauge field
transforms under local SU(3) transformations in the adjoint representation as

T aijA
a
µ(x)→ Uki(x)T aijA

a
µ(x)U−1

jl (x) + U−1
ki (x) (∂µUil(x)) . (2.3)
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We define the covariant derivative

(Dµ)ij = ∂µδij + igAaµT
a
ij , (2.4)

with gauge transformation properties

(Dµ)ij → Uij(x) (Dµ)jk U
−1
kl (x), (2.5)

such that the gauged kinetic term ψ̄ /Dψ is gauge invariant. The gluon field strength
tensor F aµν is given in terms of the covariant derivative as

(Fµν)ij = T aijF
a
µν =

1

ig
[Dµ, Dν ]ij = T aij

(
∂µA

a
ν − ∂νAaµ − gfabcAbµAcν

)
, (2.6)

where fabc is a totally antisymmetric structure constant arising from the commutation
relation of the generators

[T a, T b]ij = ifabcT cij . (2.7)

Making use of the relation

T aijT
b
ji =

1

2
δab, (2.8)

giving the trace of the product of the generators in the fundamental representation, we
write the field strength term of Eq. (2.1) as a trace over the fundamental indices of the
generators

− 1

4
F aµνF

aµν = −1

2
Tr [FµνF

µν ] . (2.9)

The QCD Lagrangian is thus manifestly invariant under local SU(3) gauge transforma-
tions.

In contrast to the Abelian U(1) gauge theory quantum electrodynamics (QED) gov-
erning the electromagnetic interaction, the non-Abelian nature of QCD, i.e., that the
group generators are noncommutative [T a, T b] 6= 0, gives rise to nontrivial structure and
an interacting theory also in the pure gauge sector. The gluons mediating the strong
force are themselves charged under SU(3) and are, therefore, selfinteracting. The field
strength tensor term of Eq. (2.1) gives rise to three- and four-point gluon vertices. The
rich structure of QCD is further manifest in its behavior at high and low energies. Its
beta function is given by

µ2dαs(µ
2)

dµ2
= β(αs) = −

(
b0α

2
s + b1α

3
s + b2α

4
s + · · ·

)
, (2.10)

where αs = g2/(4π) is the strong coupling constant, µ is the unphysical renormalization
scale and bn represents the (n+ 1)-loop coefficient of the beta function [63]. The 1−loop
coefficient is given by b0 = (11Nc − 2Nf ) /(12π) where (in the Standard Model) Nc = 3
is the number of colors and Nf ≤ 6 is the number of fermions (here quarks) contributing
to the running of the coupling. We thus observe that in the Standard Model b0 is positive
and the strong coupling goes to 0 as the energy scale is increased, a phenomenon denoted
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asymptotic freedom [64, 65]; it is this property which leads to deconfinement and the
creation of a QGP in HIC experiments. Conversely, the coupling increases as the energy
scale decreases and, in fact, diverges at a finite, positive energy scale denoted ΛQCD.
On the calculational level, the energy scale ΛQCD and the diverging of the coupling
represent the breakdown of weakly coupled perturbation theory; on a physical level, this
sets the scale of confinement, i.e., at length scales r & Λ−1

QCD only color neutral states
are observed.

2.2 Nonrelativistic quantum chromodynamics

In parts II and III of this thesis, we consider heavy quarkonium of mass M propagating
in a thermal medium of temperature T . For M � T , we take the state to propagate
nonrelativistically within the medium. The QCD Lagrangian given in Eq. (2.1) describes
the fully Lorentz covariant, relativistic propagation of a quark. As we consider the
nonrelativistic propagation of a bound state, we make use of EFT methods to describe
the physics relevant at the scales at which we work.

Let us consider the propagation of a heavy quark of mass M inside a heavy-heavy
bound state. We designate the momentum of the quark p, the velocity of the hadron vh
and the residual momentum of the quark k; these are related by

p = Mvh + k. (2.11)

The quark is heavy, i.e., M is much, much greater than any component of k, and
nonrelativistic, i.e., its energy k0 and momentum |k| scale as Mv2 and Mv, respectively,
(where v is the velocity of the heavy quark). Working in the rest frame of the hadron,
i.e., vh = (1,0), and at leading order in k/M , we write the propagator of the heavy
quark as

i
/p+M

p2 −M2 + iε
→
(

12 0
0 0

)
i

k0 − k2

2M + iε
. (2.12)

The gauge invariant Lagrangian corresponding to the propagator of Eq. (2.12) is

L = ψ†
{
iD0 +

D2

2M

}
ψ − 1

4
F aµνF aµν , (2.13)

where ψ is a nonrelativistic 2 component spinor which annihilates a heavy quark.

The leading order NRQCD Lagrangian of Eq. (2.13) (and further corrections) can
be derived more rigorously from the QCD Lagrangian of Eq. (2.1) via a set of field
redefinition of the 4 component spinor ψ. We follow the derivation of Ref. [66] in which
the Lagrangian of heavy quark effective field theory (HQET) is derived. HQET is used
to treat heavy-light states in which the momentum transfer is k ∼ ΛQCD and thus
implements an expansion in ΛQCD/M . In the heavy-heavy states described by NRQCD,
the momentum transfer is k ∼ Mv such that the expansion is in the velocity v. For a
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discussion of the similarities and differences between these two theories, see Ref. [67].
We decompose the heavy quark 4 component spinor ψ into the fields hv and Hv

ψ(x) = e−iMv·x [hv(x) +Hv(x)] , (2.14)

with the inverse relations

hv(x) = eiMv·x 1 + /v

2
ψ(x), (2.15)

Hv(x) = eiMv·x 1− /v
2

ψ(x). (2.16)

Anticipating v ' (1,0), we recognize hv as annihilating a quark of velocity v and Hv as
creating a heavy antiquark of velocity v. The exponential factor serves to eliminate the
heavy quark mass M from the numerator of the Lagrangian. Substituting Eqs. (2.15)
and (2.16) into Eq. (2.1), the heavy quark portion of the QCD Lagrangian takes the
form

LQCD|HQ = h̄viv ·Dhv − H̄v (iv ·D + 2M)Hv + h̄vi /D⊥Hv + H̄vi /D⊥hv, (2.17)

where we define the covariant derivative perpendicular to the heavy quark velocity Dµ
⊥ =

Dµ − vµv ·D. We proceed to eliminate Hv using its equation of motion and write the
heavy quark portion of the QCD Lagrangian as

LQCD|HQ = h̄viv ·Dhv + h̄vi /D⊥
1

2M + iv ·D
i /D⊥hv. (2.18)

We rewrite the second term as an expansion in (v ·D)/M giving

LQCD|HQ = h̄viv ·Dhv +
1

2M

∞∑
n=0

h̄vi /D⊥

(
− iv ·D

2M

)n
i /D⊥hv. (2.19)

This expression can be simplified using appropriate field redefinitions. Working in the
rest frame of the heavy quark, i.e., v = (1,0), we have the standard form of the NRQCD
Lagrangian in the two heavy quark sector, which we denote Lψ; up to order 1/M2

Lψ = ψ†
(
iD0 +

ck
2M

D2 +
c4

8M3
D4 +

cf
2M

σ · gB +
cD

8M2
(D · gE− gE ·D)

i
cS

8M2
σ · (D× gE− gE×D) + · · ·

)
ψ,

(2.20)

where ψ is again the 2 component spinor which annihilates a heavy quark, σi are the Pauli
matrices and Ei = F0i and Bi = −1

2εijkF
jk are the chromoelectric and chromomagnetic

fields, respectively. We explicitly include the Wilson or matching coefficients ci which
encode the contributions of the full theory at the energy scale M . As the velocity used to
construct the NRQCD Lagrangian is arbitrary, the Lagrangian must be invariant under
reparametrizations of the form vµ → vµ+εµ/M where εµ ∼ ΛQCD; this reparametrization
invariance places constraints on the relations among the Wilson coefficients [67,68]. The
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unconstrained Wilson coefficients are fixed by matching Green’s functions in the effective
and fundamental theories; see Refs. [22, 67,69].

A similar procedure can be carried out to derive the NRQCD antiquark Lagrangian.
In its full generality, the NRQCD Lagrangian describes nonrelativistic heavy quarks
and antiquarks interacting with light quarks and gluons at the soft scale Mv, four
point interactions of heavy quarks and antiquarks and higher order gluonic interactions.
Schematically, this is written as

LNRQCD = Lg + Ll + Lψ + Lχ + Lψχ, (2.21)

where Lg represents the gluonic sector, Ll the leptonic sector, Lψ the heavy quark sector,
Lχ the heavy quark sector and Lψχ four-fermion operators. Lχ is the charge conjugate
of Lψ where ψc = −iσ2χ∗ where χ is a 2 component spinor which creates a heavy anti-
quark. Upon integrating out the hard scale M , the resulting nonrelativistic effective field
theory no longer dynamically describes pair creation and annihilation; this information
is, however, retained in the imaginary parts of the Wilson coefficients entering Lψχ. The
complete set of terms is given explicitly in Refs. [22,69]. The resulting EFT inherits in-
variance under local SU(3) gauge transformations from QCD, and implements Poincaré
and Lorentz invariance nonlinearly via relations among the Wilson coefficients [68,70,71].

NRQCD has been extensively utilized to derive a number of heavy quarkonium ob-
servables including, but not limited to, the heavy quarkonium spectrum and inclusive
decay width; we direct the reader to the reviews [22,69,72–74] and references therein for
detailed compendia. The expansion in the nonrelativistic velocity v in NRQCD provides
a powerful tool to treat nonrelativistic heavy-heavy bound states; however, a number of
computations are complicated by the fact that after integration out of the hard scale M ,
there remain two dynamical scales: the soft scale of the momentum transfer Mv and the
ultrasoft scale of the binding energy Mv2. This complication prevents assigning an un-
ambiguous power counting to the operators appearing in the NRQCD Lagrangian in the
absence of additional assumptions. A number of works of the mid to late 1990’s sought
to address this issue [75–78]. Brambilla, Pineda, Soto and Vairo rigorously integrated
out the soft scale Mv from NRQCD giving rise to potential NRQCD (pNRQCD) [20,21]
in which the degrees of freedom are singlet and octet heavy-heavy bound states inter-
acting via the exchange of ultrasoft gluons. The physics of the soft scale is encoded
in a nonlocal potential which, furthermore, makes contact with a purely quantum me-
chanical formulation. The resulting EFT implements a double expansion in the bound
state radius and the inverse of the heavy quark mass, possesses an unambiguous power
counting and is ideally suited to describe the physics of the lowest lying bottomonium
and charmonium states.

2.3 Potential nonrelativistic quantum chromodynamics

As discussed in the previous section, integrating out the hard scale M from full QCD
gives rise to NRQCD, and further integrating out the soft scaleMv gives rise to pNRQCD
(cf. fig. 2.1). The resulting EFT is tailor made to describe the lowest lying bottomonium
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states relevant in in-medium heavy quarkonium suppression, and the operators entering
its Lagrangian possess an unambiguous power counting. In this section, we present a
derivation of weakly coupled pNRQCD. The weakly and strongly coupled versions of
pNRQCD correspond to the hierarchy between the scale of the momentum transfer Mv
and the scale of gluonic excitations denoted ΛQCD. In strongly coupled pNRQCD, Mv '
ΛQCD. In this theory, all nonpotential effects are integrated out, and the quarkonium
dynamics are determined entirely by a nonperturbative potential. Furthermore, the only
remaining degree of freedom is the quarkonium singlet field corresponding to a hadron
state below the confinement scale ΛQCD. In weakly coupled pNRQCD, Mv � ΛQCD.
In this case, the degrees of freedom are singlet and octet heavy quarkonium states
interacting via the exchange of ultrasoft gluons. The noninteracting dynamics of the
quarkonium state are governed by potentials which can be calculated in perturbation
theory with nonperturbative corrections if ΛQCD � Mv2. For a presentation of both
versions of pNRQCD, see Refs. [21,22]. In this thesis, we utilize weakly coupled pNRQCD
and present its derivation below.

After integrating out the soft scale from NRQCD, the resulting degrees of freedom
in the pNRQCD Lagrangian are composite heavy-heavy fields; as such, we begin our
construction of the pNRQCD Lagrangian by projecting the NRQCD Hamiltonian onto
the quark-antiquark sector spanned by the operator

OΨ =

∫
d3x1x2Ψ(x1,x2)ψ†(x1)χ(x2)|ultrasoft gluons〉, (2.22)

where Ψ(x1,x2) is a composite field consisting of a heavy quark at position x1 and a
heavy antiquark at position x2 and the ket |ultrasoft gluons〉 is a Fock state containing
an arbitrary number of ultrasoft gluons and no heavy quarks or antiquarks. We perform
this projection and write the resulting pNRQCD Lagrangian in terms of the Ψ field as

LpNRQCD =

∫
d3x1d

3x2Tr

{
Ψ†(t,x1,x2)

[
iD0 +

D2
1 + D2

2

2M
+ · · ·

+ V (r,p1,p2,S1,S2)

]
Ψ(t,x1,x2)

}
−
∫
d3x

1

4
F aµν(x)F aµν(x),

(2.23)

where the covariant derivative acts on the composite field as

iD0Ψ(t,x1,x2) = i∂0Ψ(t,x1,x2)−gA0(t,x1)Ψ(t,x1,x2)+Ψ(t,x1,x2)gA0(t,x2). (2.24)

Here, D1,2 is the spatial covariant derivative acting on the quark, antiquark at position
x1,2 and the ellipsis represents higher order terms in the 1/M expansion. Furthermore,
V is the quark-antiquark potential which, in general, depends on the quark-antiquark
separation r, the momentum of the heavy quark and heavy anti-quark p1,2 and the
spin of the heavy quark and heavy antiquark S1,2. The potential is a Wilson coefficient
obtained by matching gluon exchange diagrams in pNRQCD to NRQCD and encodes
the information of the soft scale. The lowest order contribution comes from Coulomb
exchange; it is spin and momentum independent and is simply the Coulomb potential.
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To make explicit the ultrasoft nature of the gluons in the pNRQCD Lagrangian, we
multipole expand the gauge fields in Eq. (2.23) (cf. Ref. [75]). To do so, it is more
convenient to work in the coordinate system of the center of mass R and the radius r
of the bound state

R =
x1 + x2

2
, r = x1 − x2. (2.25)

The gauge fields become

Aµ(t,x1,2) = Aµ(R)± 1

2
r · ∇Aµ(t,R). (2.26)

Implementing this expansion in Eq. (2.23) makes explicit the power counting of the op-
erators but spoils manifest gauge invariance. To restore it, rather than working with the
quark-antiquark field Ψ(t,x1,x2), we work with fields of definite gauge transformation
properties S(t, r,R) and O(t, r,R) which transform under ultrasoft gauge transforma-
tions g(t,R) as a singlet and an octet, respectively, i.e.,

S(t, r,R)→ S(t, r,R), O(t, r,R)→ g(t,R)O(t, r,R)g−1(t,R). (2.27)

Ψ(t,x1,x2) is given in terms of the singlet and octet fields as

Ψ(t,x1,x2) =P exp

[
ig

∫ x2

x2

dx ·A(t,x)

]
S(t, r,R)

+P exp

[
ig

∫ x1

R
dx ·A(t,x)

]
O(t, r,R) P exp

[
ig

∫ R

x2

dx ·A(t,x)

]
,

(2.28)

where P represents path ordering in the Wilson line. We implement the multipole
expansion of Eq. (2.26) and work with the singlet and octet fields of Eq. (2.28) giving
the pNRQCD Lagrangian in the form

LpNRQCD =

∫
d3r Tr

[
S† (i∂0 − hs) S + O† (iD0 − ho) O + O†r · gES

+ S†r · gEO +
1

2
O† {r · gE,O}

]
− 1

4
F aµνF aµν ,

(2.29)

where S and O are normalized in color space as

S =
1Nc√
Nc
S, O =

T a√
Tf
Oa, (2.30)

where Nc is the number of colors and Tf is the trace of the fundamental representation
of SU(Nc), which we take to be 1

2 (cf. Eq. (2.8)). The covariant derivative acts on the
octet field as

iD0O = i∂0O − [gA0, O] . (2.31)

The singlet and octet fields (and the octet field with itself) interact via chromoelectric
dipole vertices which correspond to transitions between singlet and octet states and
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Figure 2.2: Feynman rules of the interaction vertices of pNRQCD. A single line represents
a singlet state; a double line, an octet state; a curly line, a gluoelectric field; and a dashed
line, a Coulombic gluon.

between octet and octet states. We present the Feynman rules corresponding to these
vertices in Fig. 2.2. hs,o is the singlet, octet Hamiltonian consisting of a kinetic and
potential term

hs,o =
p2

M
+ Vs,o, (2.32)

where p2 is the momentum squared of the bound state. Vs,o is the singlet, octet potential
which at lowest order in the power counting is the attractive singlet, repulsive octet
Coulomb potential

Vs = −
Cfαs(1/r)

r
, Vo =

αs(1/r)

2Ncr
, (2.33)

where Cf = (N2
c − 1)/(2Nc) is the quadratic Casimir of the fundamental representation

and Nc is the number of colors.
The Lagrangian of Eq. (2.29) possesses unambiguous power counting: derivatives

with respect to the center of mass coordinate scale as the momentum transfer ∇r ∼Mv
while derivatives with respect to time and the center of mass coordinate and ultrasoft
gluons scale as the binding energy ∂0,∇R, gE, gA0 ∼ Mv2. Due to the multipole ex-
pansion, the Coulombic and transverse gluons are ultrasoft and thus scale as Mv2. The
free equations of motion of the singlet and octet fields are simply Schrödinger equations
with the attractive and repulsive Coulombic potentials of Eq. (2.33) thus making contact
with the nonrelativistic quantum mechanical bound state formulation. Carrying out a
similar exercise in the QED sector leads to the pNRQED Lagrangian (cf. Ref. [79, 80]);
the equations of motion of the pNRQED bound state are the Schrödinger equation of
positronium in the equal mass case and the hydrogen atom in the unequal mass case.
Potential nonrelativistic theories thus make contact between the relativistic, manifestly
Lorentz covariant formulations standard in quantum field theory and nonrelativistic
quantum mechanical formulations which provide excellent descriptions of nonrelativistic
bound states. Furthermore, they provide a natural framework in which to calculate and
include relativistic corrections as necessary [80,81].
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Chapter 3

Open quantum systems

As discussed at length in chapter 1, heavy quarkonium provides among the best theo-
retical and experimental probes of the medium formed in heavy ion collisions. As heavy
quarkonium possesses a number of widely separated and hierarchically ordered scales,
it is naturally treated using effective field theory methods which exploit the inherent
hierarchy of scales to provide an effective description accurate in a particular energy
region up to a given order in the expansion. As discussed in chapter 2, in this thesis, we
make use of pRNQCD to describe in-medium heavy quarkonium. pNRQCD provides an
effective description of quarkonium taking into account the quantum and non-Abelian
nature of the system. The medium, however, remains an enormously complicated object
to be taken into account in order to eventually describe heavy quarkonium suppression.
The formalism of open quantum systems provides a framework within which to rigor-
ously, quantum mechanically treat a system of interest coupled to and evolving out of
equilibrium with a bath or reservoir. It is thus a natural tool to utilize to treat heavy
quarkonium coupled to a QGP. For a general introduction to the OQS framework, we di-
rect the reader to Ref. [23]. Within the OQS formalism, a number of scales characterize
the system, the medium and their interaction; hierarchical orderings among these scales
characterize different evolution paradigms and allow for the use of various simplifying
assumptions in the derivation of evolution equations.

In sec. 3.1, we introduce the physical scales of the problem and present the open
quantum systems formalism. Using the hierarchy of scales of our physical system, we
introduce a number of simplifying assumptions which we utilize in the derivation of
our evolution equations. In sec. 3.2, we present an OQS derivation of an evolution
equation in the regime of quantum Brownian motion. These OQS equations describe
the quantum mechanical evolution of a probe coupled to and evolving out of equilibrium
with a medium and reduce to the standard, closed quantum mechanical formulation in
the limit of no coupling to the medium. From this evolution equation one can rederive,
up to first order in perturbation theory, the coupled set of equations describing the in-
medium evolution of Coulombic quarkonium first derived in Refs. [28, 30] We postpone
a detailed derivation of the in-medium evolution equations of heavy quarkonium to
chapter 4 in which we introduce the real time formalism of quantum field theory at
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finite temperature to describe the thermal system with which the probe interacts. In so
doing, we provide a field theoretic definition of the quantum mechanical objects defined
in this chapter.

3.1 Scales of the problem

In the OQS framework, three time scales characterize the combined system: the system
intrinsic time scale τS , the environment correlation time scale τE and the relaxation
time scale τR. In a physical system, these time scales are set by the parameters present
in the combined system. In this thesis, we principally concern ourselves with bottomo-
nium propagating in the medium formed at current HIC experiments, namely lead-lead
collisions at center of mass energy

√
sNN = 5.02 TeV. In this subsection, we give ap-

proximate values of the parameters entering the evolution equations. In part III of this
thesis presenting phenomenological results, we fix these parameters to a higher degree
of accuracy; nevertheless, the approximate values we present here suffice to establish a
hierarchy and fix an evolution regime.

We take the heavy quark to be the bottom and its mass to be approximately 5 GeV.
The Bohr radius of the state is given by solving its defining relation with the strong
coupling set at the inverse of the Bohr radius

a0 =
2

Cfαs(1/a0)mb
, (3.1)

giving 1/a0 ∼ 1.5 GeV. We take the temperature of the medium to have a maximum of
approximately 500 MeV at the initial stages of central collisions. The Coulombic binding
energy of the quarkonium |E| = 1/(Ma2

0) is |E| ∼ 450 MeV. We collect this information
in table 3.1. The values of these parameters give the scale hierarchy

M � 1/a0 � (π)T � E. (3.2)

That the mass M of the heavy quark is the largest scale of the problem ensures that the
system is nonrelativistic and enables us to make use of the nonrelativistic EFTs presented
in chapter 2. The hierarchy 1/a0 � (π)T ensures that the bound state is Coulombic
also in medium up to thermal corrections to the potential which we assume to be small.
We note that there is some ambiguity in the precise value of the thermal scale with
factors of π arising naturally in momentum space; we thus take the thermal scale as
proportional to T up to a factor of π. We note further that although 1/a0 � πT is not
rigorously fulfilled at a temperature of 500 MeV, this high temperature is only reached in
the center of the most central collisions; furthermore, the medium rapidly expands and
cools to temperatures at which the hierarchy is more rigorously fulfilled. A Coulombic
description of the state is thus also valid in-medium in current HIC experiments. The
hierarchy (π)T � E enables the use of a number of simplifying assumptions discussed
below and in chapter 4.

The physical scales present in the combined system specify a system intrinsic time
scale τS , a medium intrinsic time scale τE and a relaxation time τR. τS characterizes
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scale setting quantity M 1/a0 (π)T E

approximate value 5 GeV 1.5 GeV < (π)0.5 GeV 0.45 GeV

Table 3.1: Scale setting quantities in our OQS treatment of in-medium heavy quarkonium
and their approximate values.

the system of interest and is related to the inverse of the spacing of the energy levels of
the system. For bottomonium, this is naturally the inverse of the binding energy

τS ∼
1

E
. (3.3)

The intrinsic time scale of the medium τE represents the time scale over which it equili-
brates from excitations caused by the presence of the probe; for a thermal medium, this
is the inverse of the thermal scale

τE ∼
1

(π)T
. (3.4)

The relaxation time scale τR represents the time scale of the interaction of the system and
the medium; for in-medium quarkonium, this is given by the inverse of the in-medium
self energy Σs

τR ∼
1

Σs
∼ 1

a2
0((π)T )3

. (3.5)

Based on the hierarchy of scales given in Eq. (3.2) and the definitions of the OQS time
scales given above, we find

τR, τS � τE , (3.6)

which characterizes the regime of quantum Brownian motion. In this regime, we make
use of the Born and Markov approximations. The hierarchy τS � τE implies that the
intrinsic time scale of the probe is much longer than that of the medium. This further
implies that the total density matrix describing the combined system factorizes into a
tensor product of a density matrix describing the system and a density matrix describing
the medium which is, furthermore, taken as constant in time, i.e.,

ρ(t) ∝ ρS(t)⊗ ρM . (3.7)

This is the Born approximation. Tracing over the medium degrees of freedom, we encode
the medium interactions in correlators defined by

〈OM 〉 = Tr[OMρM ], (3.8)

where OM is a medium operator, the angled brackets represent a medium correlator and
the trace is over the medium degrees of freedom. The hierarchy τR � τE implies that
the medium reequilibrates following any fluctuations due to the presence of the system
much more quickly than the time scale of the evolution of the reduced density matrix of
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the system. This in turn implies that the evolution of the system at time t is sensitive
only to its state at time t. This is the Markov approximation and at the calculational
level ensures the resulting evolution equations are local in time.

We note that the hierarchy τR � τS , τE characterizes the quantum optical limit
ubiquitous in the field of quantum optics. In this limit, the hierarchy τR � τS enables the
use of the rotating wave approximation in which rapidly oscillating terms are disregarded,
and the resulting evolution equations are of Lindblad type [82, 83]. In this thesis, we
work with a system realizing quantum Brownian motion.

3.2 Evolution equations from the Liouville-von Neumann
equation

In this section, we derive an evolution equation describing an open quantum system
undergoing quantum Brownian motion. Within the OQS framework, the combined
system of the heavy particle and the medium is described by a composite Hamiltonian

H = HS ⊗ 1M + 1S ⊗HM +HI , (3.9)

where HS is the Hamiltonian of the system, HM is the Hamiltonian of the medium, HI

is the interaction Hamiltonian and 1M,S represents an identity operator in the space of
the medium and system. We take the interaction Hamiltonian to factorize into a part
acting on the system and a part acting on the medium

HI(t) = HI,S(t)⊗HI,M (t) = Hα
S (t)Hα

M (t), (3.10)

where α represents an arbitrary index (or set of indices) over which summation is un-
derstood.

The time evolution of the density matrix in the interaction picture ρI(t) of the
combined system is given by the Liouville-von Neumann equation

dρI(t)

dt
= −i [HI(t), ρI(t)] , (3.11)

where HI(t) is the interaction Hamiltonian in the interaction picture and the density
matrix is defined as the sum over the outer product of the basis states of the system
weighted by their probability

ρ(t) =
∑
i

pi|ψi(t)〉〈ψi(t)|. (3.12)

Eq. (3.11) has solution

ρI(t) = UI(t, t0)ρI(t0)U †I (t, t0), (3.13)

where UI is the time evolution operator in the interaction picture

UI(t, t0) = T exp

[
−i
∫ t

t0

dt′HI(t
′)

]
, (3.14)
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where T indicates time ordering. We expand the exponentials of Eq. (3.13) and collect
terms up to second order in HI giving

ρI(t) =ρI(t0)− i
∫ t

t0

dt′
[
HI(t

′), ρI(t0)
]

+

∫ t

t0

dt′
∫ t′

t0

dt′′
(
HI(t

′)ρI(t0)HI(t
′′)−HI(t

′)HI(t
′′)ρI(t0) + h.c.

)
.

(3.15)

To arrive at an evolution equation for the density matrix of only the system, we trace
Eq. (3.15) over the medium. The trace over the medium of an operator O on the
combined system is defined as

Tr [O] =
∑
i

(1S ⊗ 〈ψM,i|)O (1S ⊗ |ψM,i〉) , (3.16)

where |ψM,i〉 is the ith basis state of the medium. By definition, the trace over the
medium degrees of freedom of the total density matrix yields the reduced density matrix
of the system

Tr [ρ(t)] = ρS(t). (3.17)

From the left-hand side of Eq. (3.15), we arrive at ρS(t) in the interaction picture.
Making use of the cyclicity of the trace in conjunction with the definition of the in-
medium correlators given in Eq. (3.8), we find from the right-hand side of Eq. (3.15)
an expression containing medium correlators. We move the system operators to the
Schrödinger picture giving an equation for the density matrix of the system in the
Schrödinger picture. We suppress further subscripts on the system density matrix and
write the density matrix of the system in the Schrödinger picture at time t as ρ(t). It is
given by

ρ(t) =e−ih(t−t0)ρ(t0)eih(t−t0) +

∫ t

t0

dt1

∫ t1

t0

dt2

(
− e−ih(t−t1)Hα

S e
−ih(t1−t2)Hβ

Se
ih(t0−t2)ρ(t0)eih(t−t0)

〈
Hα
M (t1)Hβ

M (t2)
〉

+ e−ih(t−t1)Hα
S e
−ih(t1−t0)ρ(t0)eih(t2−t0)Hβ

Se
ih(t−t2)

〈
Hβ
M (t2)Hα

M (t1)
〉

+ h.c.
)
,

(3.18)

where h is the system Hamiltonian. This can be written succinctly in the notation of
Ref. [30] as

ρ(t) =e−ih(t−t0)ρ(t0)eih(t−t0) −
∫ t

t0

dt1

(
e−ih(t−t1)Σ(t1)e−ih(t1−t0)ρ(t0)eih(t−t0)

+ e−ih(t−t0)ρ(t0)eih(t1−t0)Σ†(t1)eih(t−t1) − e−ih(t−t1)Ξ(ρ(t0); t1)eih(t−t1)
)
,

(3.19)
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where the operators Σ and Ξ contain the medium correlators and encode the interaction
of the system with the medium

Σ(t) =

∫ t

t0

dt2H
α
S e
−ih(t−t2)Hβ

Se
ih(t−t2)

〈
Hα
M (t)Hβ

M (t2)
〉
, (3.20)

Ξ(ρ(t0); t) =

∫ t

t0

dt2H
α
S e
−ih(t−t0)ρ(t0)eih(t2−t0)Hβ

Se
ih(t−t2)

〈
Hβ
M (t2)Hα

M (t)
〉

+ h.c..

(3.21)

Taking the derivative of Eq. (3.19), we have an equation for the time evolution of the
reduced density matrix of the system. We here make use of the Markov approximation
and promote e−ih(t−t0)ρ(t0)eih(t−t0) to ρ(t); we justify this assumption in more detail in
the case of in-medium heavy quarkonium in chapter 4 in which we derive the evolution
equations using finite temperature and out of equilibrium QFT. The time evolution of
ρ(t) is thus given by

dρ(t)

dt
= −i[h, ρ(t)]− Σ(t)ρ(t)− ρ(t)Σ†(t) + Ξ(ρ(t); t), (3.22)

where

Ξ(ρ(t); t) =

∫ t

t0

dt2H
α
Sρ(t)e−ih(t−t2)Hβ

Se
ih(t−t2)

〈
Hα
M (t2)Hβ

M (t)
〉

+ h.c.. (3.23)

As an amuse-bouche, we note that the medium correlator is peaked around times pro-
portional to the environment correlation time scale, i.e., t− t2 . τE , and the eigenvalues
of the system Hamiltonian h are of the order of the inverse of the system intrinsic time
scale τ−1

S . Observing the system over time scales longer than the environment correla-
tion time, i.e., t− t2 � τE , in the regime of quantum Brownian motion, where τS � τE ,
we may thus set the exponentials occurring in the definitions of Σ(t) and Ξ(ρ(t); t) to 1.
We suggestively define∫ t

t0

dt2

〈
Hα
M (t)Hβ

M (t2)
〉

=
δαβ

2
(Γ(t) + iδM(t)) , (3.24)

where Γ(t) and δM(t) are real scalars, such that

Σs(t) = Hα
SH

α
S

1

2
(Γ(t) + iδM(t)) , (3.25)

Ξ(ρ(t); t) = Hα
Sρ(t)Hα

SΓ(t), (3.26)

and the evolution equation of Eq. (3.22) can be written as a Lindblad equation

dρ(t)

dt
= −i[H, ρ(t)] + Cα(t)ρ(t)Cα†(t)− 1

2

{
Cα†(t)Cα†(t), ρ(t)

}
, (3.27)

where

H = h+ Im (Σ(t)) , (3.28)

Cα(t) =
√

Γ(t)Hα
S . (3.29)
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In chapter 4, we use pNRQCD at finite temperature and out of equilibrium to red-
erive the analogous set of coupled equations describing the in-medium evolution of the
singlet and octet quarkonium states first derived in Refs. [28, 30]. We, therefore, post-
pone a discussion on the interpretation of each of the terms of the evolution equation
to chapter 4. We note, however, that the set of coupled evolution equations at or-
der 0 in perturbation theory can be reproduced in a fully OQS setting by projecting
Eq. (3.22) onto the singlet and octet sector and substituting the appropriate pNRQCD
Hamiltonians into Eqs. (3.20) and (3.23).
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Chapter 4

Quantum field theory at finite
temperature

In order to describe the in-medium evolution of heavy quarkonium, we make use of
EFT methods and the OQS formalism. The EFT pNRQCD allows us to describe the
relevant physics of heavy quarkonium in-medium while explicitly accounting for the
quantum and non-Abelian nature of the system; the OQS formalism allows us to rigor-
ously and systematically take into account the interaction of the quarkonium state with
the enormously complex environment formed in HIC experiments. In order to accu-
rately describe this environment, we must take into account its thermal nature; in this
chapter, we introduce finite temperature QFT and using this formalism present the set
of coupled evolution equations describing the in-medium evolution of heavy quarkonium
in the regime of quantum Brownian motion first derived in Refs. [28, 30]. In sec. 4.1,
we present the basics of quantum field theory at finite temperature. In sec. 4.2, we use
the methods of finite temperature QFT to rederive the master equation governing the
in-medium, out of equilibrium evolution of Coulombic quarkonium.

4.1 QFT at finite temperature and out of equilibrium

In this section, we present a brief introduction to finite temperature QFT. For a more
thorough presentation, we direct the reader to a number of review papers [84, 85] and
textbooks [41–43]. As stated in chapter 1, the starting point of thermal field theory is
the analogy between the quantum mechanical probability amplitude F (q′,−iτ ′; q,−iτ)
of a transition from state q at time −iτ to state q′ at time −iτ ′ (where τ = it is the
Euclidean time) and the partition function Z(β) of quantum statistical mechanics (where
β = T−1 is the inverse temperature). The transition amplitude is given by

F (q′,−iτ ′; q,−iτ) = 〈q′|e−Ĥ(τ ′−τ)|q〉 =

q′(τ ′)∫
q(τ)

Dq exp

[
−
∫ τ ′

τ
dτ ′′LE(τ ′′)

]
, (4.1)
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Re t

Im t

ti C1 0 tf

C3

tf − iσC2

ti − iσ

C4

ti − iβ

Figure 4.1: The time contours of the real time thermal field theory formalism. Taking
σ as infinitesimally small gives the Schwinger-Keldysh contour. Adapted from Fig. 3.6
of Ref. [41].

where Ĥ is the Hamiltonian, LE is the Euclidean Lagrangian and Dq is the path integral
measure. The partition function is given by

Z(β) = Tr
[
e−βĤ

]
=
∑
n

e−βEn =

∫
dq〈q|e−βĤ |q〉. (4.2)

Combining Eqs. (4.1) and (4.2), we rewrite the partition function in terms of a transition
amplitude from state q at time 0 to state q at time −iβ

Z(β) =

∫
dq F (q,−iβ; q, 0) =

q(β)∫
q(0)

Dq exp

[
−
∫ β

0
dτLE(τ)

]
. (4.3)

We thus interpret the operator form of the Boltzmann factor e−H/T as a time evolution
operator by time t = −i/T . As mentioned in chapter 1, there exist an imaginary and a
real time formalism to treat this evolution. In this thesis, we make use of the real time
formalism; for an introduction to the imaginary time formalism, we direct the reader to
the thermal field theory literature given above.

In the real time formalism, temporal evolution is taken to proceed along a contour
starting from an initial time ti and ending at a final time ti− iβ. In order to gain access
to real time correlation functions, the contour follows an indirect path. Specifically, it
is taken to proceed from the initial time ti along the real axis up to time tf , proceed
parallel to the imaginary axis down to time tf − iσ (where 0 ≤ σ ≤ β is an arbitrary real
number), proceed parallel to the real axis to ti− iσ and finally parallel to the imaginary
axis down to the final time ti−iβ. These branches of the contour are denoted C1, C3, C2

and C4, respectively; we sketch this path in Fig. 4.1. It is standard practice in real time
calculations to take σ = 0 such that C1 and C2 lie along the real axis. C3 and C4 are
taken as not contributing to the evolution and are disregarded. We follow this standard
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procedure in this thesis, although we note it remains not without controversy [86–90].
The combined path forward in time along C1 and backwards along C2 with σ = 0 is
denoted the Schwinger-Keldysh contour [91,92].

The Schwinger-Keldysh contour of the real time formalism leads to a doubling of the
degrees of freedom as fields can live on the upper or the lower contour; we denote fields
living on the upper branch with a subscript 1 and those living on the lower branch with
subscript 2. Correlation functions consist of combinations of fields of type 1 and type 2
ordered along the contour. The four types of propagators are given by

D(x) =

(
D11(x) D12(x)
D21(x) D22(x)

)
=

(
DF (x) D<(x)
D>(x) DF̃ (x)

)
, (4.4)

where, for a scalar field φ

DF (t− t′) = 〈φ(t)φ(t′)〉θ(t− t′) + 〈φ(t′)φ(t)〉θ(t′ − t), (4.5)

DF̃ (t− t′) = 〈φ(t)φ(t′)〉θ(t′ − t) + 〈φ(t′)φ(t)〉θ(t− t′), (4.6)

D<(t− t′) = 〈φ(t′)φ(t)〉, (4.7)

D>(t− t′) = 〈φ(t)φ(t′)〉. (4.8)

DF (t) and DF̃ (t) are the Feynman time ordered and anti time ordered propagators,
respectively, and D>(t) and D<(t) are called Wightman functions. Similar definitions
apply for fermion fields with appropriate changes of sign due to the Grassmann nature of
the fields and the anticommutation relations. This contour ordering can be understood
as the generalization of time ordering to the nontrivial time contour used in real time
thermal field theory. Time proceeds in the usual direction along the upper contour
where contour ordering thus corresponds to standard time ordering; time proceeds in
the opposite direction along the lower contour where contour ordering thus corresponds
to anti-time ordering. The upper branch preceeds the lower branch of the contour; thus
times along the lower branch are considered later than those along the upper branch.
As correlation functions proceeding in the forward time direction are of interest, in a
diagramatic context, an amplitude is calculated by assigning all external fields to be of
type 1 and summing over all combinations of type 1 and type 2 assignments for internal
vertices. Vertices, which correspond to space-time points, are taken to be of type 1 or
type 2 and do not mix different branches of the contour. Type 1 vertices are equivalent
to standard vertices in zero-temperature QFT while type 2 vertices enter amplitudes
with an additional negative sign.

4.2 Evolution equations

In this section, we utilize the QFT at finite temperature methods presented in the
previous section to rederive the evolution equations of the reduced density matrix of
in-medium heavy quarkonium first derived in Refs. [28, 30]. Our theory is pNRQCD in
which the Coulombic gluons are resummed via the field redefinitions

O(t) = Ω(t)Õ(t)Ω†(t), Ei(t,0) = Ω(t)Ẽi(t,0)Ω†(t), (4.9)
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where Ω(t) is a Wilson line extending from time −∞ to time t

Ω(t) = P exp

[
−ig

∫ t

−∞
dt′A0(t′,0)

]
. (4.10)

This redefinition yields a Lagrangian of the form

LpNRQCD = Tr

[
S† (i∂0 − hs) S + Õ

†
(i∂0 − ho) Õ + Õ

†
r · gẼS + S†r · gẼÕ

+
1

2
Õ
† {

r · gẼ, Õ
}]

,

(4.11)

identical to the standard pNRQCD Lagrangian with the chromoelectric and octet fields
replaced by their tilded counterparts and the covariant derivative replaced by a standard
derivative. We use this theory to calculate the time evolution of the reduced density
matrix of the quarkonium state. Our starting point is the identification of the Wightman
function of the singlet state D<(x) =

〈
S†(0)S(x)

〉
(and similarly for the pNRQCD octet

state) with the density matrix ρ(x0), i.e., D<(x) = ρ(x0). In making this identification,
we take advantage of the ability of the real time formalism of finite temperature QFT
to describe fields both in and out of equilibrium and thus provide a field theoretical
definition of the quantum mechanical density matrix introduced in the previous chapter.
We make use of the bosonic equal time commutation relations to write all propagators
in terms of D<(x)

D11(x) = θ(x0)δ(3)(x) +D<(x), (4.12)

D12(x) = D<(x), (4.13)

D21(x) = D<(x) + δ(3)(x), (4.14)

D22(x) = θ(−x0)δ(3)(x) +D<(x). (4.15)

We calculate ρ(t) = D12(x), diagramatically; in the bottom sector, our task is simpler
as we are in the dilute limit. Only diagrams with a single insertion of the density matrix
need be considered. This implies we may approximate the correlators of Eqs. (4.12)-
(4.15) as

D11(x) ≈ θ(x0)δ(3)(x), (4.16)

D12(x) = D<(x), (4.17)

D21(x) ≈ δ(3)(x), (4.18)

D22(x) ≈ θ(−x0)δ(3)(x). (4.19)

Diagrams contributing to this evolution at order r2 in the multipole expansion are shown
in Fig. 4.2.
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2 1 1 1

Σsρs(t)

2 2 1 1

Ξso(ρo(t); t)

2 2 2 1

ρs(t)Σ
†
s

2 1 1 1

Σoρo(t)

2 2 1 1

Ξos(ρs(t); t)

2 2 2 1

ρo(t)Σ†o

2 1 1 1

Σoρo(t)

2 2 1 1

Ξoo(ρoo(t); t)

2 2 2 1

ρo(t)Σ†o

Figure 4.2: Diagrams contributing to the in-medium evolution of the singlet and octet
density matrices at order r2 in the pNRQCD multipole expansion. The labels indicate
the terms of the evolution equation to which each diagram contributes. A single line
represents a singlet propagator; a double line, an octet propagator; and a curly line, a
gluoelectric field. A crossed circle represents a pNRQCD dipole vertex. A filled circle
represents an insertion of the density matrix. The labels 1 and 2 represent the branches
of the Schwinger-Keldysh contour.

The Schrödinger picture singlet and octet density matrices are given as

ρs(t) =e−ihs(t−t0)ρs(t0)eihs(t−t0)

−
∫ t

t0

dt1

[
e−ihs(t−t1)Σs(t1)e−ihs(t1−t0)ρs(t0)eihs(t−t0)

+ e−ihs(t−t0)ρs(t0)e−ihs(t0−t1)Σ†s(t1)e−ihs(t1−t)

− e−ihs(t−t1)Ξso(ρo(t0); t1)eihs(t−t1)

]
,

(4.20)
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ρo(t) =e−iho(t−t0)ρo(t0)eiho(t−t0)

−
∫ t

t0

dt1

[
e−iho(t−t1)Σo(t1)e−iho(t1−t0)ρo(t0)eiho(t−t0)

+ e−iho(t−t0)ρo(t0)e−iho(t0−t1)Σ†o(t1)e−iho(t1−t)

− e−iho(t−t1)Ξos(ρs(t0); t1)eiho(t−t1)

− e−iho(t−t1)Ξoo(ρo(t0); t1)eiho(t−t1)

]
,

(4.21)

where

Σs(t1) =
g2

6Nc

∫ t1

t0

dt2 rie
−iho(t1−t2)rie

ihs(t1−t2)
〈
Ẽaj (t1)Ẽaj (t2)

〉
, (4.22)

Ξso(ρo(t0); t1) =
g2

6Nc(N2
c − 1)

∫ t1

t0

dt2 rie
−iho(t1−t0)ρo(t0)eiho(t2−t0)rie

ihs(t1−t2)

×
〈
Ẽaj (t2)Ẽaj (t1)

〉
+ h.c.,

(4.23)

Σo(t1) =
g2

6Nc(N2
c − 1)

∫ t1

t0

dt2 r
i

[
e−ihs(t1−t2) +

N2
c − 4

2
e−iho(t1−t2)

]
ri

× eiho(t1−t2)
〈
Ẽaj (t1)Ẽaj (t2)

〉
,

(4.24)

Ξos(ρo(t0); t1) =
g2

6Nc

∫ t1

t0

dt2 rie
−ihs(t1−t0)ρs(t0)eihs(t2−t0)rie

iho(t1−t2)

×
〈
Ẽaj (t2)Ẽaj (t1)

〉
+ h.c.,

(4.25)

Ξoo(ρo(t0); t1) =
g2(N2

c − 4)

12Nc(N2
c − 1)

∫ t1

t0

dt2 rie
−iho(t1−t0)ρo(t0)eiho(t2−t0)rie

iho(t1−t2)

×
〈
Ẽaj (t2)Ẽaj (t1)

〉
+ h.c.,

(4.26)

where we assume the plasma to be isotropic such that rirj = r2

3 δ
ij . Eqs. (4.20) and

(4.21) for the singlet and octet reduced density matrices enable us to easily arrive at a
coupled set of equations for their time evolution. We note, however, that the resulting set
of coupled equations gives the time evolution of the density matrices at time t in terms
of the density matrices at time t0, i.e., they are nonlocal in time. We improve upon this
by making use of the Markov approximation. We promote e−ihs,o(t−t0)ρs,o(t0)eihs,o(t−t0)

to ρs,o(t). We note that this relation is exact at tree level and that ρs,o(t0) and ρs,o(t)
differ first at order r2 in the multipole expansion such that this substitution introduces
corrections to the evolution equations first at order r4, i.e., beyond the accuracy of the
presented equations.

Taking the derivative of Eqs. (4.20) and (4.21) and making use of the Markov ap-
proximation, we arrive at the following set of coupled equations for the time evolution
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of the heavy quarkonium singlet and octet states

dρs(t)

dt
= −i[hs, ρs(t)]− Σs(t)ρs(t)− ρs(t)Σ†s(t) + Ξso(ρo(t); t), (4.27)

dρo(t)

dt
= −i[ho, ρo(t)]− Σo(t)ρo(t)− ρo(t)Σ†o(t) + Ξos(ρs(t); t),+Ξoo(ρo(t); t), (4.28)

where, after the Markov approximation, the Ξ are given by

Ξso(ρo(t); t) =
g2

6Nc(N2
c − 1)

∫ t

t0

dt2 riρo(t)e
−iho(t−t2)rie

ihs(t−t2)

×
〈
Ẽaj (t2)Ẽaj (t)

〉
+ h.c.,

(4.29)

Ξos(ρo(t); t) =
g2

6Nc

∫ t

t0

dt2 riρs(t)e
−ihs(t−t2)rie

iho(t−t2)
〈
Ẽaj (t2)Ẽaj (t)

〉
+ h.c., (4.30)

Ξoo(ρo(t); t) =
g2(N2

c − 4)

12Nc(N2
c − 1)

∫ t

t0

dt2 riρo(t)e
−iho(t−t2)rie

iho(t−t2)

×
〈
Ẽaj (t2)Ẽaj (t)

〉
+ h.c..

(4.31)

In Eqs. (4.27) and (4.28), the commutator terms represent the vacuum evolution of
the singlet and octet states. Interactions with the medium are encoded in the Σ and Ξ
operators. At the level of both the diagrams of Fig. 4.2 and the above equations, the Σ
terms are to be understood as a contribution to the in-medium density of the singlet and
octet states proportional to the density of those states; furthermore, the negative sign
leads to their naive interpretation as a width. Ξso(ρo(t); t) and Ξos(ρs(t); t) represent
contributions to the in-medium density of the singlet and octet states due to the octet
and singlet states, respectively. Due to the octet-octet transitions in pNRQCD, the
octet density matrix also receives (naively) positive contributions to its trace due to
transitions from other octet states; Ξoo represents these contributions. Σo, furthermore,
also naively encodes the octet to octet width.

We can further improve upon our set of equations by exploiting the fact that time
scales on the order of magnitude of the freeze out time are of interest such that the time
from initialization of the plasma at t0 up to t is the largest time scale of the problem.
As the thermal correlators decay rapidly at times t & 1/T , the time scale t− t0 can be
taken to be infinite. This combined with the time translation invariance of the thermal
correlators allows us to perform a change of variables and write finally

dρs(t)

dt
= −i[hs, ρs(t)]− Σsρs(t)− ρs(t)Σ†s + Ξso(ρo(t)), (4.32)

dρo(t)

dt
= −i[ho, ρo(t)]− Σoρo(t)− ρo(t)Σ†o + Ξos(ρs(t)),+Ξoo(ρo(t)), (4.33)
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where

Σs =
g2

6Nc

∫ ∞
0

ds rie
−ihosrie

ihss
〈
Ẽaj (s)Ẽaj (0)

〉
, (4.34)

Ξso(ρo(t)) =
g2

6Nc(N2
c − 1)

∫ ∞
0

ds ρo(t0)e−ihosrie
ihss

〈
Ẽaj (0)Ẽaj (s)

〉
+ h.c., (4.35)

Σo =
g2

6Nc(N2
c − 1)

∫ ∞
0

ds ri
[
e−ihss +

N2
c − 4

2
e−ihos

]
rie

ihos

×
〈
Ẽaj (s)Ẽaj (0)

〉
+ h.c.,

(4.36)

Ξos(ρo(t)) =
g2

6Nc

∫ ∞
0

ds riρs(t0)e−ihssrie
ihos

〈
Ẽaj (0)Ẽaj (s)

〉
+ h.c., (4.37)

Ξoo(ρo(t)) =
g2(N2

c − 4)

12Nc(N2
c − 1)

∫ t1

t0

ds riρo(t0)e−ihosrie
ihos

〈
Ẽaj (0)Ẽaj (s)

〉
+ h.c.. (4.38)

Eqs. (4.32)-(4.38) describe the in-medium evolution of heavy quarkonium realizing the
hierarchy of scales M � 1/a0 � (π)T � E. Exploiting the hierarchy (π)T � E we
make a final simplification. As stated above, the gluoelectric correlators decay rapidly at
times t & 1/T ; as the eigenvalues of the quarkonium Hamiltonian hs,o in the exponential
factors scale as the binding energy E, in the limit T � E, these exponential factors can
be set to 1. In this limit, the Σ and Ξ operators characterizing the interaction of the
quarkonium state with the medium simplify considerably and can, in fact, be written in
terms of the transport coefficients κ and γ

κ =
g2

6Nc

∫ ∞
0

ds
〈{
Ẽai (s,~0), Ẽai (0,~0)

}〉
, (4.39)

γ = −i g
2

6Nc

∫ ∞
0

ds
〈[
Ẽai (s,~0), Ẽai (0,~0)

]〉
., (4.40)

where κ is the heavy quarkonium momentum diffusion coefficient and γ is its dispersive
counterpart. In this limit, the Σ and Ξ operators take the form

Σs =
r2

2
(κ+ iγ) , (4.41)

Ξso(ρo(t)) =
1

N2
c − 1

riρo(t)riκ, (4.42)

Σo =
N2
c − 2

2(N2
c − 1)

r2

2
(κ+ iγ) , (4.43)

Ξos(ρs(t)) = riρs(t)riκ, (4.44)

Ξoo(ρo(t)) =
N2
c − 4

2(N2
c − 1)

riρo(t)riκ. (4.45)

These equations describe the in-medium evolution of heavy Coulombic quarkonium in
the strict (π)T � E limit. We note the derivation makes no assumption on the coupling
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strength of the medium and is thus valid also for strong coupling. In this limit, the
evolution equations can be written in Lindblad form [82, 83] and solved making use of
the extensive computational and algorithmic tools available to do so. In chapter 8, we
present results from Refs. [60, 61] in which these evolution equations are solved in the
strict (π)T � E limit and in chapter 9 results from Ref. [62] in which the evolution
equations are solved including the first corrections in E/T .
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Part II

Theoretical Results: Langevin
Equations, Transport Coefficients

and Nonlinear Evolution
Equations
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Chapter 5

Transport coefficients

In chapters 3 and 4, we utilize pNRQCD and OQS methods to derive a master equation
governing the out of equilibrium, in-medium evolution of heavy quarkonium in a strongly
coupled QGP. In the limit that the binding energy E of the quarkonium state is much
less than the temperature T of the plasma, the medium interactions are completely
encoded in the transport coefficients κ and γ

κ =
g2

6Nc

∫ ∞
0

dt
〈{
Ẽa,i(t,0), Ẽa,i(0,0)

}〉
, (5.1)

γ = −i g
2

6Nc

∫ ∞
0

dt
〈[
Ẽa,i(t,0), Ẽa,i(0,0)

]〉
, (5.2)

where the tilde represents a dressing of the electric fields with Wilson lines

Ẽai (t,0) = Ω†(t)Eai (t,0)Ω(t), (5.3)

where Ω(t) is a Wilson line in the fundamental representation

Ω(t) = P exp

[
−ig

∫ t

−∞
dt′Aa0(t′,0)T a

]
. (5.4)

κ is the momentum diffusion coefficient describing the in-medium diffusion of the heavy
probe, and γ is its dispersive counterpart. In this chapter, we discuss in greater detail
the role, origin and interpretation of these transport coefficients; we proceed by intro-
ducing Langevin dynamics which describes the in-medium diffusion of a heavy particle
characterized by the momentum diffusion coefficient κ

Due to the hierarchy of scales M � T realized by heavy quarks and heavy quarko-
nium in HIC experiments, Brownian motion provides a natural paradigm to model the
in-medium evolution of these heavy states. Brownian motion describes a particle un-
dergoing a random walk due to uncorrelated interactions with its environment. Such a
process is described by a Langevin equation governing the momentum evolution of the
heavy particle

dpi
dt

= −ηDpi + ξi(t), 〈ξi(t)ξj(t′)〉 = κδijδ(t− t′), (5.5)
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where pi is the momentum of the heavy particle, ηD is the drag coefficient and ξi repre-
sents random changes to the momentum of the particle due to uncorrelated interactions
with its environment. The momentum diffusion coefficient κ is defined as the force-force
correlator arising from these interactions with the medium. The drag and momentum
diffusion coefficients are related by the Einstein relation

ηD =
κ

2MT
. (5.6)

A large number of works have utilized such a framework to model the propagation of
heavy quarks in the QGP [93–102]; formulating field theoretic definitions of κ and fixing
its value have thus been active topics in the literature. Taking the trace and integrating
over the definition of κ, it is clear that 3κ gives the expectation value of the squared mo-
mentum transfer per time due to the random interactions with the medium. In Ref. [103],
Moore and Teaney calculate this momentum transfer due to in-medium scatterings of
the heavy quark and thus derive an expression for κ. In Ref. [104], Casalderrey-Solana
and Teaney derive an expression for the heavy quark momentum diffusion coefficient
κ as a dressed electric-electric correlator by integrating out the heavy quarks from the
in-medium force-force correlator along the Schwinger-Keldysh contour. The resulting
expression has been used to calculate κ in Minkowski field theory [105, 106] and de-
rive Euclidean expressions [107, 108] from which κ can be calculated directly on the
lattice [109–111].

The remainder of this chapter is structured as follows. In sec. 5.1, we discuss operator
ordering and group representation issues related to the Wilson lines dressing the electric
fields in Eqs. (5.1) and (5.2). In sec. 5.2, we discuss the fixing of values of κ and γ.
We present state of the art extractions including direct quenched lattice measurements,
indirect extractions from quenched lattice measurements and indirect estimates from
phenomenological models and experimental measurements. Our discussion and results
follow Ref. [33] with new extractions based on data first available following publication
of Ref. [33].

5.1 Adjoint and fundamental transport coefficients

In this section, we discuss in greater detail the operator ordering of the fields appearing in
the definitions of κ and γ. Equivalently to the commutator-anticommutator definitions
given in Eqs. (5.1) and (5.2), κ and γ can be written as the real and imaginary parts of
a time ordered chromoelectric correlator

κ =
g2

6Nc
Re

∫ ∞
−∞

dt
〈

TẼai (t,0)Ẽai (0,0)
〉
, (5.7)

γ =
g2

6Nc
Im

∫ ∞
−∞

dt
〈

TẼai (t,0)Ẽai (0,0)
〉
, (5.8)
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where T represents time ordering. In Ref. [112], working in the γ sector, Eller, Ghiglieri
and Moore identify two distinct objects

γadj =
g2

6Nc
Im

∫ ∞
−∞

dt
〈

TEai (t,0)Uab(t, 0)Ebi (0,0)
〉
, (5.9)

γfund =
g2

3Nc
Im

∫ ∞
−∞

dt 〈Tr [PU(−∞, t)Eai (t,0)U(t, 0)Eai (0,0)U(t,−∞)]〉 , (5.10)

where T and P represent time and path ordering, respectively, and the trace is over the
color matrices. The path ordering implies time ordering of the electric fields but not of
the Wilson lines. U(t1, t2) is a Wilson line in the fundamental representation

U(t1, t2) = P exp

[
−ig

∫ t1

t2

dt′Aa0(t′)T a
]
, (5.11)

and Uab(t1, t2) is a Wilson line in the adjoint representation

Uab(t1, t2) = P exp

[
−ig

∫ t1

t2

dt′Ac0(t′)
(
−ifabc

)]
. (5.12)

The authors of Ref. [112] interpret the adjoint and fundamental transport coefficients as
describing the in-medium evolution of heavy quarkonium and heavy quarks, respectively.

To examine the difference between these two objects, we define the electric correlators

Gadj(t) =
g2

6Nc

〈
TEai (t,0)Uab(t, 0)Ebi (0,0)

〉
, (5.13)

Gfund(t) =
g2

3Nc
〈Tr [PU(−∞, t)Eai (t,0)U(t, 0)Eai (0,0)U(t,−∞)]〉 , (5.14)

such that their Fourier transforms at 0 frequency give the adjoint and fundamental
transport coefficients, i.e.,∫ ∞

−∞
dtGadj,fund(t) = (κ+ iγ)adj,fund . (5.15)

The adjoint correlator was calculated up to next-to-leading order in Ref. [113]. To
help clarify the structure of the adjoint and fundamental correlators, we examine the
diagrams contributing to the in-medium diffusion and dispersion of heavy quarks and
heavy quarkonium. We begin by defining, analogously to the force ansatz of Ref. [104],
i.e.,

F =

∫
d3xψ†(t,x)E(t,x)ψ(t,x), (5.16)

where F is the force on an in-medium heavy quark represented by the NRQCD heavy
quark field ψ, an addition to the NRQCD Lagrangian of the form

δLint = ψ†(t,x)x ·E(t,0)ψ(t,x). (5.17)
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Figure 5.1: Diagrams of order g2 in which the heavy quark (left) and heavy quarkonium
(right) coefficients arise. In the left diagram, the single line represents a quark. In the
right diagram, the single line represents a singlet quarkonium state, and the double line
an octet quarkonium state. In both diagrams, crossed vertices represent electric field
insertions, and the curly lines represent the chromoelectric field.

The above term adds an electric vertex to the NRQCD Lagrangian analogous to the
dipole vertices of pNRQCD. With δLint added to the leading order NRQCD Lagrangian,
we consider the insertion of two electric vertices in both NRQCD and pNRQCD to
elucidate the structure of κ and γ.

At order g2 in perturbation theory, the only contribution to κ and γ, in both the mod-
ified version of NRQCD containing the vertex specified in Eq. (5.17) and in pNRQCD,
comes from the diagrams displayed in Fig. 5.1; this contribution is the electric-electric
correlator 〈Eai (t,0)Eai (0,0)〉. At order g4 in perturbation theory, κ and γ receive con-
tributions from the diagrams shown in Fig. 1 of Ref. [108] and reproduced in Fig. 1 of
Ref. [112]. These contributions represent combinations of the non-Abelian terms of the
electric field, higher order gluonic interactions including corrections to the gluonic prop-
agator and coupling to Coulombic gluons from the temporal covariant derivative D0. We
display a selection of such diagrams in Fig. 5.2; both diagrams correspond to diagram
j in the nomenclature of Refs. [108, 112]. They represent the insertion of an A0 field
and a 3-gluon vertex in addition to the two electric insertions. In the modified NRQCD
sector, this class of contribution includes three diagrams corresponding to insertion of
the A0 field between or outside the electric fields; in the left panel of Fig. 5.2, we display
only one of the latter diagrams. In the pNRQCD sector, the structure is simplified with
respect to the heavy quark case as only the octet state couples to Coulombic gluons; the
A0 insertion thus only occurs between the electric field insertions. This contribution to
the transport coefficients, corresponding to diagram j of Refs. [108,112], is shown in the
right panel of Fig. 5.2. Calculations of fundamental κ in Refs. [105,106] and adjoint κ in
Ref. [3] show they agree up to order g5T 3. The authors of Ref. [112] calculated adjoint
and fundamental γ and found a nonzero difference at order g4 stemming from the class
of diagrams shown in Fig. 5.2.

Intuitively, we understand these differences as originating from the gauge transfor-
mation properties of the state used to probe the medium. In pNRQCD, upon interaction
with the chromoelectric field, the singlet state transitions to an octet state which trans-
forms in the adjoint representation. As only the octet state couples to Coulombic gluons,
the quarkonium state interacts with the A0 field only between the electric field inser-
tions, i.e., at times between 0 and t. The structure of Gadj(t) reflects this. A single
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Figure 5.2: Diagrams of order g4 in which the heavy quark (left) and heavy quarkonium
(right) coefficients arise. Conventions are the same as in Fig. 5.1 with the dashed line
additionally representing a Coulombic gluon.

heavy quark propagating in the medium transforms in the fundamental representation
and couples to Coulombic gluons; it can, therefore, interact with a Coulombic gluon
from the medium at any time. The structure of Gfund(t) reflects this.

We note that as of the writing of this thesis, it remains a matter of active research
precisely how the adjoint and fundamental transport coefficients arise from a first prin-
ciples treatment of heavy probes of the QGP. We note that the adjoint versions of κ and
γ arise naturally in a pNRQCD and OQS treatment of the in-medium evolution of heavy
quarkonium; in this context, Gadj(t) is the lowest order contribution to the quarkonium
in-medium self energy in the pNRQCD finite temperature multipole expansion. How-
ever, in the heavy quark sector, the electric vertex of Eq. (5.17) remains an ad hoc
addition to the NRQCD Lagrangian, and the origin of the path ordering prescription of
Gfund(t) less apparent than the time ordering prescription of Gadj(t). We note that time
ordering the dressed electric field Ẽai (t) gives rise to an adjoint Wilson line, i.e.,

T
(
Uij(−∞, t)Eai (t)T ajkUkl(t,∞)

)
= Eai (t)Uab(t,−∞)T bil, (5.18)

and similarly for anti time ordering

T̃
(
Uij(−∞, t)Eai (t)T ajkUkl(t,∞)

)
= T bilU

ba(−∞, t)Eai (t). (5.19)

This, together with the group property of the Wilson lines under time ordering

T (Uij(t1, t2)Ujk(t2, t3)) = T (Uik(t1, t3)) , (5.20)

implies that replacing the path ordering prescription in Gfund(t) with a time ordering
prescription yields Gadj(t). This observation may be of use in the ongoing investigations
into the nature of the adjoint and fundamental transport coefficients. Furthermore,
we endeavor to place the NRQCD dipole vertex δLint of Eq. (5.17) on a more solid
theoretical basis in sec. 6.2 in which we perform a first principles treatment of a single
heavy quark in-medium and investigate the circumstances under which its momentum
evolution is described by a Langevin equation.

5.2 Fixing κ and γ

As shown in chapters 3 and 4, Refs. [28, 30] derived the in-medium evolution equations
of heavy Coulombic quarkonium. In a strongly coupled medium of temperature T � E,
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interactions with the medium are encoded in the transport coefficients κ and γ which
we here identify with their adjoint versions in the sense of the previous section. In this
limit, the in-medium heavy quarkonium self energy Σs (cf. Eq. (4.41)) is expressed in
terms of κ and γ as

Σs =
r2

2
(κ+ iγ) . (5.21)

The projection of Eq. (5.21) onto eigenstates of the vacuum Hamiltonian gives κ and γ
in terms of the in-medium width, mass shift and expectation value of the radius of the
vacuum eigenstate. Using the 1S state, one finds

Γ(1S) = 3a2
0κ, (5.22)

δM(1S) =
3

2
a2

0γ, (5.23)

where Γ(1S) and δM(1S) are the in-medium width and mass shift, respectively, of the
1S state and a0 is the Bohr radius. Via these relations, κ and γ are accessible from
unquenched lattice measurements of Γ(1S) and δM(1S). In Ref. [33], Eqs. (5.22) and
(5.23) were used to indirectly estimate κ and γ from unquenched lattice measurements
of Γ(1S) and δM(1S) in the charm and bottom sectors. In Fig. 5.3, we plot these
extractions and additional estimates using lattice data from measurements taken after
publication of Ref. [33]. In the κ sector, we additionally include comparisons to extrac-
tions from direct, quenched lattice measurements, experimental measurements of the
D-meson azimuthal anisotropy coefficient v2, phenomenological models and perturba-
tion theory calculations. In the γ sector, we include comparison to perturbation theory
calculations.

To make use of Eqs. (5.22) and (5.23), we calculate the Bohr radius by solving its
defining relation

a0 =
2

Cfαs(1/a0)M
, (5.24)

with the 1-loop, 3-flavor running of the strong coupling and ΛQCD = 332 MeV. Using
the pole masses of M = 1.67 GeV and M = 4.78 GeV of the charm and bottom
quarks, respectively, we have a Bohr radius of a0 = 1.19 GeV−1 in the charm sector
and a0 = 0.67 GeV−1 in the bottom sector. In the left panel of Fig. 5.3, we display
indirect estimates of κ obtained by inserting the measured in-medium widths of the
Υ(1S) from Refs. [114–116] into Eq. (5.22). As these extractions utilize various values of
the heavy quark mass, we normalize to the bottom and charm pole masses by rescaling
the measured widths by (mb/(4.78 GeV))2 and (mc/(1.67 GeV))2 where mb,c represents
the mass in GeV of the bottom, charm quark used in the respective lattice simulation. We
note that although the transport coefficients are in principle independent of the heavy
quark mass there be may a residual dependence due to truncations in the pNRQCD
expansions underlying Eq. (5.21). We use the rescaled lower bound [117] of 22.3 MeV .
Γ(Υ(1S)) measured in Ref. [114] at T = 407 MeV to place a lower bound on κ of
0.24 . κ/T 3. We use the rescaled upper bound bound of Γ(Υ(1S)) . 481 MeV measured
in Ref. [115] at T = 440 MeV to place an upper bound on κ of κ/T 3 . 4.2. This range is
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Figure 5.3: Estimates of the transport coefficients κ and γ. See the text for detailed
explanations of the extractions and references. Adapted from Ref. [33].

displayed in the top row of Fig. 5.3. In the second row of Fig. 5.3, we display the estimate
of κ extracted using the rescaled measurement of Γ(Υ(1S)) = (98 ± 6) MeV measured
in Ref. [116] at T = 334 MeV giving κ/T 3 = 1.95 ± 0.11. In the γ sector, we perform
a similar analysis using measurements of the in-medium mass shift of the Υ(1S) and
J/ψ; as in the κ sector, we normalize the lattice measurements to the pole masses of the
bottom and charm quark by rescaling the measured mass shifts by (mb/(4.78 GeV))2 and
(mc/(1.67 GeV))2 where mb,c represents the mass in GeV of the bottom, charm quark
used in the respective lattice simulation. We utilize the measurements of Ref. [114] of
the in-medium mass shifts of the Υ(1S) at T = 251 MeV, the Υ(1S) at T = 407 MeV
and the J/ψ at T = 251 MeV giving rescaled mass shifts of δM = (−30 ± 12) MeV,
δM = (−48 ± 16) MeV and δM = (−85 ± 29) MeV, respectively. We also utilize the
measurement of Ref. [116] of the in-medium mass shift of the Υ(1S) at T = 334 MeV
giving a rescaled mass shift of δM = (−3.21±6.42) MeV. The corresponding bounds on
γ/T 3 are displayed as the black bars in Fig. 5.3. The gray band represents the range of
the extractions from the measurements of Ref. [114].

In Fig. 5.3, we additionally include estimates of the transport coefficients κ and
γ from other sources. The third row in the left panel (brown bar), gives the range
1.8 . κ/T 3 . 3.4 obtained from the direct lattice measurement of Ref. [109] of the
Euclidean correlator, corresponding to fundamental κ, defined in Ref. [107] in a quenched
SU(3) lattice simulation at T ≈ 470 MeV. The fourth and fifth rows present estimates
of κ from measurements of the D meson azimuthal anisotropy coefficient v2 by the
ALICE [118] and STAR [119] collaborations. The ALICE collaboration compare their
measurement of v2 against a number of transport models [98, 99, 101, 120–126] and find
that those describing the data have a heavy quark spatial diffusion coefficient D in the
range 2πTD ≈ 1.5 − 7. The STAR collaboration compare their measurement of v2

against the transport models of Refs. [95,96,101,102,127–134] and extract 2πTD in the
range 2− 12. κ is estimated using the relation κ/T 3 = 2/(DT ) giving 1.8 . κ/T 3 . 8.4
from the ALICE data and 1.0 . κ/T 3 . 6.3 from the STAR data. The sixth row (blue
bar) presents κ as extracted in Ref. [135] from the fitting of experimental observables,
namely the nuclear modification factor RAA and the elliptic flow v2, in phenomenological
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models to experimental data. The seventh row (blue bar) displays the results of the
NLO perturbative calculation of Ref. [106]. This NLO result corresponds to Eq. (2.5)
of Ref. [106] with the constant C set to 21/(8π) as discussed in the text. Evaluating
this expression with the 1-loop, 3-flavor running of the strong coupling, ΛQCD = 332
MeV and the scale set at µ = π × 407 MeV yields a central value of κ/T 3 = 3.94; the
bands represent 50% uncertainty. In the γ sector, in the right panel of Fig. 5.3, we show
the leading order pertrubative expression for the thermal correction to the quarkonium
mass calculated in Ref. [3]

γ = −3ζ(3)Cf
αs(µT )

π
Tm2

D +
4

3
ζ(3)NcCfα

2
s(µT )T 3, (5.25)

where ζ is the Riemann zeta function, µT = πT , m2
D = 4παs(µT )T 2(Nc + Nf/2)/3)

and Nf = 3 is the number of massless flavors. This relation (with the 1-loop, 3-flavor
running of αs with ΛQCD = 332 MeV) gives γ/T 3 = −14.6 and γ = −6.0 at T = 251
MeV and T = 407 MeV, respectively; these estimates are shown as the blue bars with
50% uncertainty.

Further lattice extractions of κ since the publication of Ref. [33] include the quenched
SU(3) measurement of Ref. [110] in which the Euclidean discretization of κ given in
Ref. [107] was measured over the temperature range 1.1 < T/Tc < 104. We display the
findings of Ref. [110] in the temperature range 1.1 < T/Tc < 7 in Fig. 5.4. Additionally,
the quenched SU(3) lattice measurement of Ref. [136] gives 2.31 ≤ κ/T 3 ≤ 3.70 at
T ≈ 1.5Tc; the quenched SU(3) measurement of Ref. [111] gives a range of 1.70 ≤
κ/T 3 ≤ 3.12 at T = 1.5Tc; and the quenched SU(3) measurement of Ref. [137] gives
a range of 1.5 ≤ κ/T 3 ≤ 2.8 at T = 1.5Tc. We note that the Euclidean correlators
measured on the lattice correspond to fundamental κ. Refs. [111,136] utilize the gradient
flow algorithm [138, 139] for noise reduction which may eventually enable unquenched
lattice measurements of κ. Additionally, in Ref. [140], Bouttefeux and Laine identify
higher order mass suppressed magnetic contributions to κ and propose a Euclidean
discretization of the magnetic-magnetic correlator which was measured on the lattice in
Refs. [111,141].

In the T � E limit, the in-medium evolution of heavy quarkonium in a strongly
coupled QGP takes the form of a Lindblad equation. The interaction of the quarkonium
with the medium is completely governed by the two transport coefficients κ and γ. Fixing
their values is thus necessary to solve these equations and calculate observable quantities
for comparison against experiment. As discussed above, κ in this context must be taken
as the heavy quarkonium momentum diffusion coefficient and γ as its heavy quarkonium
dispersive counterpart; both are related to the electric-electric correlator Gadj(t) defined
in Eq. (5.13). In part III of this thesis, we present phenomenological results obtained
by solving the Lindblad equation and take our dominant systematic uncertainty to be
that inherited from from determinations of κ and γ. We quantify this uncertainty by
performing simulations with values of γ/T 3 over the range of the gray band of Fig. 5.3
and with κ/T 3 as parametrized by the upper, central and lower curves of Fig. 5.4. In
the γ sector, the explicit calculation of γfund and γadj performed in Ref. [112] shows a
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Figure 5.4: A pure SU(3) lattice measurement of the dimensionless quantity κ̂ = κ/T 3.
In Ref. [110], a measurement was performed over the temperature range 1.1 < T/Tc <
104. The band represents statistical uncertainties and systematic uncertainties estimated
by varying the scale of evaluation of the strong coupling by a factor of 2. Taken from
Ref. [60].

nonzero difference between the quantities at order g4. In the κ sector, κfund and κadj are
equal up to order g5T 3; it remains unclear if this equality continues to higher orders. We
note that the indirect lattice extractions of the heavy quarkonium momentum diffusion
coefficient from lattice measurements of the heavy quarkonium thermal width overlap
with the direct lattice measurements of the heavy quark momentum diffusion coefficient.
We return to this point in more detail in our discussion of our theoretical uncertainties
in chapter 9.
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Chapter 6

Langevin dynamics of in-medium
heavy particles

As discussed in chapter 5, the paradigm of Brownian motion described by Langevin
equations has been used extensively in the literature to model the in-medium evolution
of heavy quarks and heavy quarkonium. Due to the hierarchy of scales M � T realized
by heavy quarks and their bound states in current HIC experiments, the heavy probe is
taken to undergo a random walk in the medium due to uncorrelated interactions with
thermal medium particles. Such evolution is described by a Langevin equation

dpi
dt

= −ηDpi + ξi(t), 〈ξi(t)ξj(t′)〉 = κδijδ(t− t′), (6.1)

where pi is the momentum of the heavy particle, ηD is the drag coefficient, ξi encodes
the changes to pi due to interactions with the medium and κ is the momentum diffusion
coefficient. In the heavy quark sector, κ has been an object of great interest in the
literature [103–108,110,111]. In the seminal work of Ref. [104], Casalderrey-Solana and
Teaney derive a field theoretic expression for κ describing the in-medium diffusion of
heavy quarks in terms of a correlator of chromoelectric fields dressed with fundamental
Wilson lines. As discussed in sec. 5.1, in the intervening years, interest has arisen in the
heavy quarkonium momentum diffusion coefficient which takes the form of a correlator of
chromoelectric fields connected by an adjoint Wilson line [112,142]. In this chapter, we
perform a first principles treatment of heavy quarkonium and heavy quarks in-medium
and investigate the circumstances under which their dynamics are described by Langevin
equations characterized by κ. In sec. 6.1, we work in the heavy quarkonium sector and
in sec. 6.2 the single heavy quark sector.

6.1 Heavy quarkonium

In chapter 4 of this thesis, we derive the evolution equations of in-medium Coulombic
quarkonium. In the strict (π)T � E limit, the interactions with the medium are char-
acterized by κ and its dispersive counterpart γ. Our procedure in this section follows
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that of Blaizot and Escobedo who perform a similar calculation and analysis to that pre-
sented here using NRQCD, rather than pNRQCD, to describe the heavy quark-antiquark
state [29]. The general procedure involves the inclusion of subleading terms in the E/T
expansion which lead to diffusive dynamics. Working with the evolution equations at
linear order in E/T , we extract the evolution equation for the steady state solution in a
particular temperature regime. Wigner transforming this evolution equation leads to an
equation for the time evolution of the Wigner quasi-probability distribution, the Wigner
transform of the density matrix; this equation takes the form of a Fokker-Planck equa-
tion. We proceed to write the Langevin equations describing the momentum evolution
of the heavy quarkonium state which correspond to the Fokker-Planck. In subsec. 6.1.1,
we analyze the evolution equations in a lower temperature limit and show that they do
not take the form of a Fokker-Planck equation with corresponding Langevin equation.
In subsec. 6.1.2, we compare in greater detail our pNRQCD results to those of Blaizot
and Escobedo from Ref. [29].

We begin with the set of coupled evolution equations given in Eqs. (4.32)-(4.38) and
relax the strict E � T limit. Specifically, we expand the exponentials of the form e±ihs,os

and retain terms up to linear order (cf. the discussion under Eq. (4.38)). In this limit,
electric correlators with additional factors of the temporal variable arise; we make use
of the relation

i
g2

6Nc

∫ ∞
0

dt t
〈
Ẽai (t,0)Ẽai (0,0)

〉
=

κ

4T
, (6.2)

which we present here but the derivation of which we postpone to subsec. 9.1.1. Work-
ing with the evolution equations expanded to order E/T and the electric correlators
expressed in terms of κ and γ, we perform a Wigner transform to arrive at an evolution
equation for the Wigner quasi-probability distribution in the form of a Fokker-Planck
equation with corresponding Langevin equations. The Wigner quasi-probability distri-
bution is defined as

ρ̃(t, r+,p) =

∫
d3r−e

−ip·r− 〈r+ + r−
2

∣∣ ρ(t)
∣∣r+ − r−

2

〉
, (6.3)

where the bras and kets represent eigenstates of the radius of the quarkonium. We define
the coordinates r+ and r−

r+ =
r + r′

2
, r− = r− r′, (6.4)

such that

r = r+ +
r−
2
, r′ = r+ −

r−
2
. (6.5)

We interpret r and r′ as the radius of the quarkonium before and after interaction with
the medium and r+ and r− as the average and change of radius during the interaction,
respectively. The projection onto 〈r| and |r′〉 thus represents a projection onto the
off-diagonal elements of the density matrix. Under this projection, the terms of the
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evolution equations take the form

i〈r|[ρs,o(t), hs,o]|r′〉 =

[
2i

M
∇+∇− − ir− · ∇Vs,o

]
ρrr
′

s,o(t), (6.6)

〈r|
(

Σsρs(t) + ρs(t)Σ
†
s

)
|r′〉 =

{
κALO+

(
1 +

∆Vso
2T

)
+ iγ r+ · r−

+
κ

2MT
ANLO+

}
ρrr
′

s (t),

(6.7)

〈r|
(

Σoρo(t) + ρo(t)Σ
†
o

)
|r′〉 =

{
κALO+

(
N2
c − 2

2
− ∆Vso

2T

)
+ iγ r+ · r−

+
κ

2MT
ANLO+

N2
c − 2

2

}
ρrr
′

o (t)

N2
c − 1

,

(6.8)

〈r|Ξso(ρo(t))|r′〉 =

{
κALO−

(
1− ∆Vso

2T

)
+

κ

2MT
ANLO−

}
ρrr
′

o (t)

N2
c − 1

, (6.9)

〈r|Ξos(ρs(t))|r′〉 =

{
κALO−

(
1 +

∆Vso
2T

)
+

κ

2MT
ANLO−

}
ρrr
′

s (t), (6.10)

〈r|Ξoo(ρo(t))|r′〉 =

{
κALO− +

κ

2MT
ANLO−

}
N2
c − 4

2 (N2
c − 1)

ρrr
′

o (t), (6.11)

where

ALO± =

(
r2

+ ±
r2
−
4

)
, ANLO± = r+ · ∇+ ± r− · ∇−, (6.12)

ρrr
′

s,o(t) = 〈r|ρs,o(t)|r′〉 and ∆Vso = Vs − Vo. All potentials in the above equations are
expanded in r− and evaluated at |r+|. In the following, we discuss the power counting
of the terms appearing in the above equations thus justifying the expansion in r−.

Our underlying EFT description of the system allows us to assign a power count-
ing to the terms appearing in the above evolution equations. The state is Coulombic
constraining its radius to be of order 1/

√
EM . Therefore, r+ and ∇+ scale as:

r+ ∼ 1√
EM

, ∇+ ∼
√
EM. (6.13)

The singlet and octet potentials and, therefore, their difference scale as the binding
energy:

Vs,o, ∆Vso ∼ E. (6.14)

Derivatives acting on the potential scale as the heavy-quark momentum; in terms of the
binding energy and the heavy quark mass, this gives

∇Vs,o ∼ pE =
√
EM E. (6.15)

κ and γ are thermal quantities of dimension mass to the third; we, therefore, take them
to scale as the thermal scale to the third

κ, γ ∼ ((π)T )3 (6.16)
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quantity r+ r− ∇+ ∇− Vs,o(r
+), ∆V (r+) ∇Vs,o(r+) κ, γ

scaling 1√
EM

1√
πTM

√
EM

√
πTM E

√
EME (πT )3

Table 6.1: Scaling of quantities appearing in the evolution equations with respect to the
relevant scales in our effective field theory framework.

Consistent with the Langevin picture, we assume the interactions of the quarkonium
with the medium to drive the state to thermalization such that its energy is of order πT
and its momentum of order

√
πTM

r− ∼ 1√
πTM

, ∇− ∼
√
πTM. (6.17)

The information of Eqs. (6.13)–(6.17) is collected in Tab. 6.1.
We assume the state to be Coulombic such that the hierarchy

1

a0
� πT, ΛQCD, (6.18)

is realized. The Bohr radius a0 is given by solving its defining relation

a0 =
2

MCfαs(1/a0)
, (6.19)

with the strong coupling evaluated at the inverse of the Bohr radius. We use the 1-
loop, 3-flavor running of the strong coupling with the 3-flavor MS value of ΛQCD = 332
MeV [143]. In the bottom sector, we use the pole mass of Mb = 4.78 GeV [143] giving
1/a0 ≈ 1.5 GeV for the Υ(1S). The hierarchy of scales of Eq. (6.18) thus constrains
T . 473 MeV. Using these values of the heavy quark mass and the Bohr radius, we
compute a Coulombic binding energy of the Υ(1S) as

|E| = 1

Ma2
0

= 461 MeV. (6.20)

Following the same procedure in the charm sector using the pole mass of Mc = 1.67
GeV [143], we find an inverse Bohr radius of 1/a0 = 0.839 GeV and a binding of energy
of |E| = 421 MeV for the J/ψ. We collect this information in 6.2.

The hierarchy of scales
M � πT � E, (6.21)

provides two small dimensionless quantities in which we can expand, namely E/(πT ) and
(πT )/M . In order to proceed, we must establish a hierarchy between these quantities.
In the following analysis, we take E/(πT ) ∼ (πT )/M which is true to an excellent degree
of accuracy for bottomonium in the early stages of central collisions; at temperatures
T ≈ 475 MeV, this statement is nearly exact. In Fig. 6.1, we plot the quantities E/(πT )
and (πT )/M and in the bottom and charm sectors with Bjorken temperature evolution

T = T0

(
t0
t

)v2
s

, (6.22)
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quantity M 1/a0 πT |E|
bottomonium 4.80 GeV 1.49 GeV (π)0.473 GeV 0.461 GeV

charmonium 1.67 GeV 0.839 GeV (π)0.267 GeV 0.421 GeV

Table 6.2: Values of the relevant effective field theoretical quantities for bottomonium
and charmonium. πT is the temperature less than which the Coulombic assumption for
the in-medium bound state is valid (c.f. Eq. (6.18)). Furthermore, from the definition
of the Coulombic binding energy E given in Eq. (6.20), we note that this is also the
temperature at which E/(πT ) = (πT )/M .

(a) (b)

Figure 6.1: Evolution of the effective field theory hierarchies in the bottom (a) and
charm (b) sectors using Bjorken evolution: Eq. (6.22) with T0 = 475 MeV, t0 = 0.6 fm
and v2

s = 1/3.

where T0 = 475 MeV is the initial temperature of the medium, t0 = 0.6 fm is the initial
time and v2

s = 1/3 is the square of the velocity of sound in the medium. In the bottom
sector, we observe E/(πT ) = (πT )/M to be nearly exactly 1 at time t = 0.6 fm. We
denote the square root of the resulting small number ε, i.e., ε ∼

√
E/(πT ) ∼

√
(πT )/M .

This hierarchy is of interest in analyzing the projected evolution equations to derive a
Langevin equation, as we show below; we note, however, that this temperature regime is
precisely the region in which πT ∼ 1/a0 and the multipole expansion may break down.

With this power counting, the dominant terms of the evolution equations are propor-
tional to r2

+κ and are of order πT . In matrix form, the coupled set of evolution equations
reduces to

d

dt

(
ρrr
′

s

ρrr
′

o

)
=

{(
−r2

+κ
1

N2
c−1

r2
+κ

r2
+κ − 1

N2
c−1

r2
+κ

)
+O(πTε)

}(
ρrr
′

s

ρrr
′

o

)
. (6.23)

The above equations describe a quarkonium state transitioning between singlet and
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octet color configurations with decay widths Γs→o = r2
+κ and Γo→s = r2

+κ/(N
2
c − 1).

We examine the steady state solution of this evolution equation via diagonalization of
the evolution matrix. Its eigenvalues are

{λ0, λ8} =

{
0,−r2

+κ
N2
c

N2
c − 1

}
, (6.24)

where the negative eigenvalue λ8 describes the evolution of a state decaying with width
Γ = r2

+κN
2
c /(N

2
c − 1) and the 0 eigenvalue λ0 describes the evolution of the steady state

solution. We diagonalize the evolution equations and work in this new diagonal basis
which we denote ρ0 and ρ8 given in terms of ρs and ρo as

ρ0 =
ρs + ρo
N2
c

, ρ8 =
(N2

c − 1)ρs − ρo
N2
c

. (6.25)

Projecting ρ0 onto singlet and octet states, one observes that the steady state solution
is equally likely to be in a color singlet or any specific octet color configuration.

Following the procedure of Blaizot and Escobedo, we proceed by including corrections
in ε. The evolution equations now take the form

d

dt

(
ρrr
′

0

ρrr
′

8

)
=

{(
`
(1)
00 + `

(2)
00 `

(1)
08 + `

(2)
08

`
(1)
80 + `

(2)
80 λ8 + `

(1)
88 + `

(2)
88

)
+O(πTε3)

}(
ρrr
′

0

ρrr
′

8

)
, (6.26)

where the superscripts in parenthesis represent the degree of suppression in ε with respect
to λ8 and the subscripts represent the quadrant of the matrix. These terms are given
explicitly by

`
(1)
00 =

2i

M
∇+ · ∇− −

i

2
r+ · r−γ, (6.27)

`
(2)
00 = −κ

(
r− · ∇−
2MT

+
r2
−
4

)
, (6.28)

`
(1)
08 = − 1

N2
c − 1

i

2
r+ · r−γ, (6.29)

`
(1)
80 = − i

2
r+ · r−γ, (6.30)

`
(0)
88 = − N2

c

N2
c − 1

r2
+κ. (6.31)

We diagonalize Eq. (6.26) and denote its eigenvalues, which reduce to λ0,8 in the ε→ 0
limit, λ′0,8; λ′0 is given by

λ′0 = `
(1)
00 + `

(2)
00 −

`
(1)
08 `

(1)
80

`
(0)
88

+O
(
πTε3

)
. (6.32)

We complete the Wigner transform by Fourier transforming the evolution equation
specified by λ′0

d

dt
ρ′ rr

′
0 (t) = λ′0 ρ

′ rr′
0 (t). (6.33)
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where ρ′ rr
′

0 (t) is the state evolved by λ′0. This gives the Fokker-Planck equation(
∂

∂t
+ v · ∇+

)
ρ̃0(t) =

[
κ

4
∇2

p +
M

2
η∇p · v +

γ

2
r+ · ∇p +

(
γ√
κ

r+ · ∇p

2Nc|r+|

)2
]
ρ̃0(t),

(6.34)
where ρ̃0(t) is the Wigner quasi-probability distribution and the Fourier transform of
ρ
′rr′
0 (t), v = 2p/M is the velocity and the drag coefficient η is related to the momentum

diffusion coefficient κ via the Einstein relation

η =
κ

2MT
. (6.35)

Eq. (6.34) describes the evolution of the Wigner quasi-probability distribtuion; the cor-
responding Langevin equation for the momentum evolution is given by

dr+
i

dt
=

2pi
M

,
M

2

d2r+
i

dt2
= −Fi(r+)− ηijpj + ξi(t, r

+) + θi(t, r
+). (6.36)

where

Fi(r
+) = −γ

r+
i

2
, (6.37)

〈θi(t, r+)θj(t
′, r+)〉 = δ(t− t′)

r+
i r

+
j γ

2

4N2
c κ r

2
+

, (6.38)

〈ξi(t, r+)ξj(t
′, r+)〉 = δ(t− t′)δij κ, (6.39)

ηij(r
+) =

κ

2MT
δij . (6.40)

We observe a similar form to the Langevin equation presented in the introduction to
this chapter with a number of additional terms. As in the standard case, the momentum
evolution contains a drag term proportional to the drag coefficient ηij and a random
force term ξi related to the uncorrelated interactions with the medium. The force-force
correlator of Eq. (6.39) defines the momentum diffusion coefficient κ which is related
to the drag coefficient η by the Einstein relation of Eq. (6.40). The Langevin equation
of Eq. (6.36) contains the additional force terms θi and Fi not present in the standard
Langevin equation. θi represents a second random force due to the fluctuating of the
force between the quark and the antiquark originating from the difference in sign of
the singlet and octet potential. Fi represents an additional force proportional to the
transport coefficient γ. As discussed in chapter 5, γ is a correction to the quark-antiquark
potential due to the in-medium mass shift of the heavy quarkonium state. The exact
origin and interpretation of this term are under active investigation at the time of the
writing of this thesis.

6.1.1 The regime E/(πT ) > (πT )/M

The above analysis assumes a temperature T of the medium such that E/(πT ) ∼
(πT )/M is realized. This is true to an excellent degree of accuracy in the bottomo-
nium sector in the early stages of central lead-lead collisions (cf. Figs (6.1) and (B.1)).
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However, the medium rapidly expands and cools such that E/(πT ) > (πT )/M . In
Refs. [60, 61], the Lindblad equation derived in the strict E � (π)T limit was solved
terminating the medium evolution at Tf = 250 MeV in order to not evolve the evo-
lution equations outside their range of validity. At this temperature, E/(πT ) = 0.587
and (πT )/M = 0.164, and the power counting is more accurately (E/(πT ))3 ∼ (πT )/M
rather than (E/(πT )) ∼ (πT )/M . In this section, we analyze the projected evolution
equations specified in Eqs. (6.6)-(6.11) with this power counting. We denote the small
quantity ε′ ∼

√
E/(πT ).

In this regime, the kinetic and potential terms

2i

M
∇+∇− ∼

√
E(πT ), ir−∇Vs,o(r+) ∼

√
E(πT )ε′2, (6.41)

dominate rather than medium interaction terms as in Eq. (6.23). Relative to these
contributions, the leading order medium evolution is suppressed by an additional factor
of ε′

r2
+κ ∼

√
E(πT )ε′3. (6.42)

The evolution equations take the form

d

dt

(
ρs
ρo

)
=

{(
h′s − r2

+κ
1

N2
c−1

r2
+κ

r2
+κ ho − 1

N2
c−1

r2
+κ

)
+O

(√
E (πT )ε′4

)}(ρs
ρo

)
, (6.43)

where h′s,o = (2i/M)∇+ · ∇− − ir− · ∇Vs,o(r+).

The eigenvalues of the evolution matrix are

{λs, λo} =

{
h′s − r2

+κ, h
′
o −

1

N2
c − 1

r2
+κ

}
+O

(√
E (πT )ε′4

)
. (6.44)

In contrast to the higher temperature case E/(πT ) ∼ (πT )/M , in the lower temperature
regime considered in this subsection, the vacuum dynamics of the quarkonium dominate,
and medium interactions represent subleading corrections. The eigenstates of this evo-
lution are to leading order the singlet and octet states of vacuum pNRQCD, and the
system is no longer driven to the steady state solution ρ0 as in the higher temperature
regime. Furthermore, in this scale hierarchy, which we note is consistent with the mul-
tipole expansion and is fulfilled for the majority of the evolution time in a heavy ion
collision (cf. the left panel of Fig. 6.1), we do not find the evolution equations to be
related to a Fokker-Plank equation with corresponding Langevin equation.

6.1.2 NRQCD in the quark-antiquark sector

A similar calculation is carried out in Ref. [29] using an NRQCD rather than pNRQCD
description of the heavy-heavy bound state. We present here a derivation of the NRQCD
Lagrangian describing a heavy quark and a heavy antiquark which gives rise to their
Langevin equation.
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The evolution equations in Ref. [29] can be derived by projecting NRQCD onto the
subspace of a heavy quark and a heavy antiquark in the Coulomb gauge at order g in
the coupling and order Mv2 in the expansion in the heavy quark velocity

LQQ̄NRQCD =

∫
d3x1d3x2Tr

[
Ψ†(t,x1,x2)

(
iD0 +

∇2
x1

+∇2
x2

2m

)
Ψ(t,x1,x2)

]
, (6.45)

where Ψ(t,x1,x2) is a composite field describing a heavy quark at x1 and a heavy
antiquark at x2 and the covariant derivative acts as

iD0Ψ(t,x1,x2) = i∂0Ψ(t,x1,x2)−gA0(t,x1)Ψ(t,x1,x2)+Ψ(t,x1,x2)gA0(t,x2). (6.46)

Ψ can be uniquely decomposed into singlet and octet fields S and O as

Ψ(t,x1,x2) =P exp

[
ig

∫ x2

x2

dx ·A(t,x)

]
S(t, r,R)

+P exp

[
ig

∫ x1

R
dx ·A(t,x)

]
O(t, r,R) P exp

[
ig

∫ R

x2

dx ·A(t,x)

]
,

(6.47)

where R = (x1 +x2)/2 is the center of mass coordinate, r = x1−x1 is the heavy quarko-
nium radius and the octet field transforms under gauge transformations as O(t,x1,x2)→
g(t,R)O(t,x1,x2)g−1(t,R). Inserting Eq. (6.47) at order 0 in the coupling, i.e., Ψ(t,x1,x2)
= S(t,x1,x2) + O(t,x1,x2), into Eq. (6.45), we write the NRQCD Lagrangian density
as

LQQ̄NRQCD =

∫
d3x1d3x2Tr

[
S†
(
i∂0 +

∇2
x1

+∇2
x2

2m

)
S

+ O†
(
iD0 +

∇2
x1

+∇2
x2

2m

)
O− S†g

(
A0(t,x1)O−OA0(t,x2)

)
−O†g

(
A0(x1)−A0(x2)

)
S

]
,

(6.48)

where the singlet and octet fields are functions of the time t and the heavy quark and
antiquark positions x1 and x2 and the covariant derivative acts on the octet field as

iD0O(t,x1,x2) = i∂0O(t,x1,x2)− gA0(t,x1)O(t,x1,x2) +O(t,x1,x2)A0(t,x2). (6.49)

Eq. (6.48) represents NRQCD in the Coulomb gauge in the heavy quark-antiquark sector
in terms of the singlet and octet fields up to order g in the coupling and order Mv2 in
the velocity expansion.

Performing the analysis carried out above with the Lagrangian of Eq. (6.48) rather
than that of resummed pNRQCD gives rise to the Fokker-Planck equation

dρ̃0(t)

dt
=

(
− 2p · ∇r

M
+
Cf
4
∇p · H(0) · ∇p +

Cf (F(r) · ∇p)2

2N2
c Γ(r)

+
Cf

2MT
∇p · H(0) · p

)
ρ̃0(t),

(6.50)
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with corresponding Langevin equation

M

2
r̈i = −ηij

2T
vj + ξi(t) + Θi(t, r), (6.51)

where vi = 2pi/M is the velocity and〈
ξi(t)ξj(t

′)
〉

= δ(t− t′)ηij , (6.52)

ηij =
Cf
2
Hij(0), (6.53)〈

Θi(t, r)Θj(t
′, r)
〉

= δ(t− t′)
CfFi(r)Fj(r)

N2
c Γ(r)

, (6.54)

where in the notation of Ref. [29] r is equivalent to our r+. The integral of the correlator
of the Coulombic gluons is decomposed into real and imaginary parts∫ ∞

0
dt
〈
A0(t,x)A0(0,x′)

〉
=
i

2
V (x− x′)− 1

2
W (x− x′). (6.55)

Furthermore, the small r− = r− r′ expansion is implemented using the notation

Hij(r−) =
∂2W (r−)

∂r−i ∂r
−
j

, (6.56)

Γ(r) =W (r)−W (0), (6.57)

F(r) =∇V (r). (6.58)

We observe a number of features in common between the pNRQCD Langevin equa-
tion given in Eq. (6.36) and that of Blaizot and Escobedo, namely the presence of the
fluctuating force Θi due to singlet-octet transitions which change the sign of the quark-
antiquark potential and hence the direction of the force between the pair. We note the
absence of the additional force proportional to γ present in the pNRQCD case. Placing
this correspondence on a more quantitative footing is a subject of active research at the
time of the writing of this thesis.

6.2 Single heavy quark

In this section, we apply a similar analysis to that of the previous section in the case of
a single heavy quark. Our objective is the derivation of a Langevin equation describing
the in-medium diffusion of a single heavy quark characterized by the heavy quark mo-
mentum diffusion coefficient κ in its electric-electric correlator form. In Ref. [29], Blaizot
and Escobedo carry out a similar analysis using NRQCD; they derive a Langevin equa-
tion with the force-force correlator related to the correlator of Coulombic gluons (cf.
Eqs (6.52), (6.53), (6.55) and 6.56)).
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6.2.1 Ultrasoft NRQCD

We aim to describe a heavy quark of mass M in a thermal medium of temperature T
where M � T . As the quark is heavy, we treat its interaction with the medium using
non-relativistic QCD (NRQCD). Our starting point is the NRQCD Lagrangian:

LNRQCD = ψ†
(
iD0 +

D2

2M

)
ψ, (6.59)

where iD0 = i∂0 − gA0 and iD = i∇ + gA; we note that all fields are functions of the
spatial coordinate x and temporal coordinate t unless explicitly noted otherwise. The
Lagrangian of Eq. (6.59) is gauge invariant and contains the lowest order terms in the
velocity expansion: i∂0 and ∇2/(2M), both of order Mv2. In heavy-heavy bound states
described by pNRQCD, the system naturally possesses a momentum scale associated
with the center of mass ∇R ∼ Mv2 and with the radius ∇r ∼ Mv. As the system is
nonrelativistic, v and hence the radius r are small, and pNRQCD implements an ex-
pansion r at the Lagrangian level. Furthermore, the ultrasoft gauge fields of wavelength
∼ 1/Mv2 do not resolve the radius of the quarkonium ∼ 1/Mv.

In the case of a single heavy quark in medium, such a scale hierarchy is lacking
without additional assumptions. In order to perform a similar set of manipulations as in
the case of pNRQCD, we assume the quark to be propagating with a velocity v distinct
from the thermal velocity vT ∼

√
T/M . In order to assign a specific power counting

to the gauge fields in the NRQCD Lagrangian and isolate contributions from thermal
gluons at the scale T ∼ Mv2

T , we introduce the coordinate |r| ∼ 1/(MvT ) ∼ 1/
√
MT .

We decompose the coordinate x as x = R + r and interpret R as the initial position
of the quark; in this context, r represents displacement due to thermal fluctuations on
the order of |r| ∼ 1/MvT not resolved by thermal gluons of momentum transfer Mv2

T .
We multipole expand the gauge field to isolate contributions from thermal gluons at the
scale T ∼Mv2

T

LNRQCD = ψ†
(
i∂0 − gA0(t,R)− gr∇A0(t,R) (6.60)

+
1

2M

[
∇2 − ig∇A(t,R)− 2gA(t,R)∇+ g2A2(t,R)

]
+ · · ·

)
ψ,

(6.61)

where the ellipsis indicates higher order terms. The terms in the above Lagrangian now
have a definite power counting: ∂0 acting on ψ scales as Mv2, ∇ acting on ψ scales as
Mv, and gAµ and ∂0 and ∇ acting on Aµ scale as Mv2

T . Taking v > v2
T and retaining

terms up to order Mv2 and Mv3
T , we have

LNRQCD = ψ†
(
i∂0 − gA0(t,R)− gr∇A0(t,R) +

∇2

2M
+ · · ·

)
ψ. (6.62)

The multipole expansion provides an unambiguous power counting but spoils the man-
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ifest gauge invariance of Eq. (6.59); this can be restored via the field redefinition

ψ(t,x)→ P exp

[
ig

∫ x

R
dx′ ·A(t,x′)

]
ψ(t,x), (6.63)

where P indicates path ordering of the exponential. We note that under gauge trans-
formations the redefined ψ(t,x) on the right-hand side of Eq. (6.63) transforms at R,
i.e., ψ(t,x)→ g(t,R)ψ(t,x). Implementing the multipole expansion on the Wilson line,
Eq. (6.63) becomes

ψ(t,x) = [1 + igrA(t,R) + · · · ]ψ(t,x). (6.64)

The first nontrivial term in the expansion is of order vT , and the ellipsis represents terms
of order v2

T and higher. We note that as part of the field redefinition we endow ψ with
the color structure ψ ∼ ψi/

√
Nc. We implement the field redefinition of Eq. (6.64) on

the Lagrangian of Eq. (6.62) and retain terms up to order Mv2 and Mv3
T . We have

LNRQCD = ψ†
{
i∂0 − gA0 − gr∂0A− gr∇A0 − ig2r [A0,A] +

∇2

2M
+ · · ·

}
ψ. (6.65)

We note that this can be rewritten in terms of the chromoelectric field as

LNRQCD = ψ†
{
i∂0 − gA0 + r · gE +

∇2

2M
+ · · ·

}
ψ. (6.66)

where ψ is a function of the temporal coordinate t and position x and undergoes gauge
transformations at R, i.e., ψ(t,x)→ g(t,R)ψ(t,x) and A0 and E are evaluated at time
t and position R. Eq. (6.66) describes a heavy quark propagating with non-relativistic
velocity v � 1 inside and out of equilibrium with a medium of temperature T ; as the
quark and the medium are out of equilibrium, we take v . vT ∼

√
T/M . The quark is

at position x which we decompose as x = R + r where |r| ∼ 1/MvT . We interpret R as
the initial position of the quark and r as the change to this position due to kicks from
the medium which are not resolved by the thermal gluons. Eq. (6.66) contains all terms
contributing to the evolution up to order Mv2 and Mv3

T .
We proceed one step further and resum the Coulombic gluons via the field redefinition

ψ(t,x)→ exp

[
−ig

∫ t

−∞
dt′A0(t′,R)

]
ψ(t,x), (6.67)

arriving at a Lagrangian we designate Lus
NRQCD which serves as the starting point of our

further calculations

Lus
NRQCD = ψ†

{
i∂0 + r · gẼ(t,R) +

∇2

2M

}
ψ, (6.68)

where
Ẽi(t,0) = Ω†(t)Ei(t,0)Ω(t), (6.69)

and

Ω(t) = P exp

[
−ig

∫ t

−∞
dt′A0(t′,0)

]
. (6.70)
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6.2.2 Evolution equations

In this subsection, we carry out an analogous OQS and EFT derivation to those presented
in chapters 3 and 4. We derive a similar evolution equation for a single in-medium
heavy quark using the Lagrangian of Eq. (6.68) and derive a Fokker-Planck equation
with corresponding Langevin equations. Analogously to Eqs. (4.32)-(4.38) describing
heavy quarkonium, in the heavy quark case, we have the evolution equation

dρ(t)

dt
= −i [h, ρ(t)]− Σρ(t)− ρ(t)Σ† + Ξ(ρ(t)), (6.71)

where ρ(t) is the heavy quark density matrix, h = p2/(2M) is the heavy quark Hamil-
tonian and

Σ =
g2

6Nc

∫ ∞
0

ds e−ihsxieihs〈Ẽa,j(s,0)Ẽa,j(0,0)〉, (6.72)

Ξ(ρ(t)) =
g2

6Nc

∫ ∞
0

ds e−ihsxieihsρ(t)xi〈Ẽa,j(s,0)Ẽa,j(0,0)〉+ h.c.. (6.73)

Our procedure is the same as in the heavy quarkonium sector: namely, we begin by
expanding the exponentials in Eqs. (6.72) and (6.73) to linear order making use of
Eq. (6.2) to express the higher order correlators in terms terms of κ. In light of the
discussion of sec. 5.1, we note that κ and γ are here to be interpreted as their fundamental
versions. We proceed by Wigner transforming the resulting evolution equation to arrive
at an evolution equation for the Wigner quasi-probability distribution function with
corresponding Langevin equation.

Projecting Eq. (6.71) expanded to order E/T onto eigenstates of the position of the
heavy quark 〈x| and |x′〉, we have

i〈x| [h, ρ(t)] |x′〉 =
i

2M

(
∇2 −∇′2

)
ρxx′(t), (6.74)

〈x|
(

Σρ(t) + ρ(t)Σ†
)
|x〉 =

[
κ

2
(x2 + x′2) +

iγ

2
(x2 − x′2)

+
κ

4MT

(
x · ∇+ x′ · ∇′

) ]
ρxx′(t),

(6.75)

〈x|Ξ(ρ(t); t)|x′〉 =
[
κx · x′ + κ

4MT

(
x · ∇′ + x′ · ∇

)]
ρxx′(t), (6.76)

where ρxx′(t) = 〈x|ρ(t)|x′〉. We complete the Wigner transform by Fourier transforming
the coordinate x− where

x+ =
x + x′

2
, x− = x− x′. (6.77)

We denote the Fourier transform of the projected density matrix ρ̃(t), i.e.,

ρ̃(t) =

∫
d3r− e

−ip·x− 〈x+ + x−
2

∣∣ ρ(t)
∣∣x+ − x−

2

〉
. (6.78)
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The equation of motion of ρ̃(t) takes the form of a Fokker-Planck equation(
∂

∂t
+ v · ∇+

)
ρ̃(t) =

[κ
2
∇2

p +Mη∇pv + γ x+ · ∇p

]
ρ̃(t), (6.79)

where p is the momentum of the heavy quark, v = p/M is its velocity and η = κ/(2MT )
is the heavy quark drag coefficient. The Fokker-Planck equation of Eq. (6.79) has cor-
responding Langevin equation

dpi
dt

= −Fi − η pi + ξi(t), (6.80)

where
Fi = −γ x+

i , 〈ξi(t)ξj(t′)〉 = κ δijδ(t− t′), η =
κ

2MT
. (6.81)

The last equality of Eq. (6.81) is the Einstein relation between the drag and momentum
diffusion coefficients. We here observe a number of similarities to the general Langevin
equation presented in the introduction to this chapter. As in the heavy quarkonium
case, we observe an additional random force proportional to γ. We note that such a
term was not observed in Blaizot’s and Escobedo’s derivation of a Langevin equation
using standard NRQCD. As a correction to the heavy quark potential, γ arises naturally
in the heavy quarkonium case; its role in the single heavy quark Langevin equation is
less clear and a matter of active research.
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Chapter 7

Nonlinear evolution equations

In part I of this thesis, we present the pNRQCD master equation governing the in-
medium evolution of heavy quarkonium. This set of coupled equations is linear in the
density matrix and describes the dilute limit, i.e., the limit in which the number of
heavy quarks in the medium is low. In this chapter, we examine the evolution equations
beyond this limit by including terms nonlinear in the density matrix.

For simplicitly, we work initially in the Abelian sector with the singlet field S(x); the
analysis can be generalized to the nonabelian case with the inclusion of the octet field
O(x). We begin by defining the Wightman correlators

D>(x) = 〈S(x)S†(0)〉, (7.1)

D<(x) = 〈S†(0)S(x)〉. (7.2)

Within the real time formalism of finite temperature quantum field theory, time evolution
proceeds along a nontrivial contour from an initial time ti to final time ti − iβ (cf.
chapter 4 and Fig. 4.1). We utilize the standard Schwinger-Keldysh assignment of σ = 0
such that contours C1 and C2 lie along the real axis and disregard contours C3 and C4.
The real time propagator is given by the four combinations of type-1 and type-2 fields
living on the upper and lower branches of the contour, respectively,

D(x) =

(
D11(x) D12(x)
D21(x) D22(x)

)
=

(
DF (x) D<(x)
D>(x) DF̃ (x)

)
, (7.3)

where DF (x) and DF̃ (x) are the time ordered and anti time ordered propagators

DF (x) = θ(x0)D>(x) + θ(−x0)D<(x), (7.4)

DF̃ (x) = θ(−x0)D>(x) + θ(x0)D<(x). (7.5)

We identify the propagator D<(x) with the density matrix ρ(x0). We make use of
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the bosonic equal time commutation relations to write all propagators in terms of D<(x)

D11(x) = θ(x0)δ(3)(x) +D<(x), (7.6)

D12(x) = D<(x), (7.7)

D21(x) = D<(x) + δ(3)(x), (7.8)

D22(x) = θ(−x0)δ(3)(x) +D<(x), (7.9)

where the first term on the right-hand side of the above equations represents the dilute
limit (cf. Eq. (4.12)-(4.15)). We proceed to calculate the density matrix in perturbation
theory. For rT � 1, we write the following expression for D12(x) up to and including
order (rT )2 in the finite temperature multipole expansion

ρ(t) =e−ih(t−t0)ρ(t0)eih(t−t0) +
g2

6Nc

{
∫
X
D11(r − r1)(−ix1)D11(r1 − r2)(−ix2)D12(r2 − r1)DE

11(t1 − t2,0)

+

∫
X
D12(r − r1)(ix1)D21(r1 − r2)(−ix2)D12(r2 − r1)DE

21(t1 − t2,0)

+

∫
X
D11(r − r1)(−ix1)D12(r1 − r2)(ix2)D22(r2 − r1)DE

12(t1 − t2,0)

+

∫
X
D12(r − r1)(ix1)D22(r1 − r2)(ix2)D22(r2 − r1)DE

22(t1 − t2,0)

}
,

(7.10)

where r = (t,x), r1 = (t1,x1), r2 = (t2,x2),
∫
X =

∫
d4r1

∫
d4r2 and DE(t− t′,0) is the

chromoelectric correlator

D>
E(t− s,0) =

〈
Ea,i(t,0)Ea,i(s,0)

〉
. (7.11)

The nontrivial terms in the multipole expansion of Eq. (7.10) can be represented dia-
gramatically as in Fig. (7.1).

2 1 1 1

r r2 r1 r

2 1 2 1 2 2 1 1 2 2 2 1

Figure 7.1: Diagrams contributing to the evolution of ρ(t) at order (rT )2 in the finite
temperature multipole expansion. For ease of interpretation, we display the four coor-
dinates of the vertices only on the left-most diagram; an identical assignment is implicit
in the other diagrams.

We proceed line by line through the terms of Eq. (7.10) and substitute the definitions
of the propagators given in Eqs. (7.6)-(7.9). The term on the second line of Eq. (7.10)
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corresponding to the left-most diagram in Fig. 7.1 gives

∫
X
D11(r − r1)(−ix1)D11(r1 − r2)(−ix2)D12(r2 − r1)DE

11(t1 − t2,0)

=−
∫ t

t0

dt1

∫ t1

t0

dt2 e
−ih(t−t1)re−ih(t1−t2)re−ih(t2−t0)ρ(t0)eih(t−t0)DE

11(t1 − t2,0)

−
∫ t

t0

dt1

∫ ∞
t0

dt2

∫
d3x e−ih(t−t1)re−ih(t1−t0)ρ(t0)eih(t2−t0)x

× e−ih(t2−t0)ρ(t0)eih(t−t0)DE
11(t1 − t2,0)

−
∫ ∞
t0

dt1

∫ t1

t0

dt2

∫
d3x e−ih(t−t0)ρ(t0)eih(t1−t0)xe−ih(t1−t2)x

× e−ih(t2−t0)ρ(t0)eih(t−t0)DE
11(t1 − t2,0)

−
∫ ∞
t0

dt1

∫ ∞
t0

dt2

∫
d3x1

∫
d3x2 e

−ih(t−t0)ρ(t0)eih(t1−t0)x1

× eih(t1−t0)ρ(t0)eih(t2−t0)x2e
−ih(t2−t0)ρ(t0)eih(t−t0)DE

11(t1 − t2,0).

(7.12)

The term on the third line of Eq. (7.10) corresponding to the second diagram from the
left in Fig. 7.1 gives

∫
X
D12(r − r1)(ix1)D21(r1 − r2)(−ix2)D12(r2 − r)DE

21(t1 − t2,0)

=

∫ ∞
t0

dt1

∫ ∞
t0

dt2

∫
d3x e−ih(t−t0)ρ(t0)eih(t1−t0)xe−ih(t1−t2)x

× e−ih(t2−t0)ρ(t0)ei(t−t0)DE
11(t1 − t2,0)

+

∫ ∞
t0

dt1

∫ ∞
t0

dt2

∫
d3x1

∫
d3x1 e

−ih(t−t0)ρ(t0)eih(t1−t0)x1

× e−ih(t1−t0)ρ(t0)eih(t2−t0)x2e
−ih(t2−t0)ρ(t0)eih(t−t0)DE

11(t1 − t2,0).

(7.13)

The term on the fourth line of Eq. (7.10) corresponding to the second diagram from the
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right in Fig. 7.1 gives∫
X
D11(r − r1)(−ix1)D12(r1 − r2)(ix2)D22(r2 − r)DE

12(t1 − t2,0)

=

∫ t

t0

dt1

∫ t

t0

dt2 e
−ih(t−t1)re−ih(t1−t0)ρ(t0)eih(t2−t0)re−ih(t2−t)DE

12(t1 − t2,0)

+

∫ t

t0

dt1

∫ ∞
t0

dt2

∫
d3x e−ih(t−t1)re−ih(t1−t0)ρ(t0)eih(t2−t0)x

× e−ih(t2−t0)ρ(t0)eih(t−t0)DE
12(t1 − t2,0)

+

∫ ∞
t0

dt1

∫ t

t0

dt2

∫
d3x e−ih(t−t0)ρ(t0)eih(t1−t0)xe−ih(t1−t0)ρ(t0)

× eih(t2−t0)re−ih(t2−t)DE
12(t1 − t2,0)

+

∫ ∞
t0

dt1

∫ ∞
t0

dt2

∫
d3x1

∫
d3x2 e

−ih(t−t0)ρ(t0)eih(t1−t0)x1

× e−ih(t1−t0)ρ(t0)eih(t2−t0)x2e
−ih(t2−t0)ρ(t0)eih(t−t0)DE

22(t1 − t2,0).

(7.14)

Finally, the term on the fifth line of Eq. (7.10) corresponding to the right-most diagram
in Fig. 7.1 gives∫

X
D12(r − r1)(ix1)D22(r1 − r2)(ix2)D22(r2 − r)DE

22(t1 − t2,0)

=−
∫ t2

t0

dt1

∫ t

t0

dt2 e
−ih(t−t0)ρ(t0)eih(t1−t0)re−ih(t1−t2)re−ih(t2−t)DE

22(t1 − t2,0)

−
∫ t2

t0

dt1

∫ ∞
t0

dt2

∫
d3x e−ih(t−t0)ρ(t0)eih(t1−t0)xeih(t2−t0)x

× e−ih(t2−t0)ρ(t0)eih(t−t0)DE
22(t1 − t2,0)

−
∫ ∞
t0

dt1

∫ t

t0

dt2

∫
d3x e−ih(t−t0)ρ(t0)eih(t1−t0)xe−ih(t1−t0)ρ(t0)

× eih(t2−t0)re−ih(t2−t)DE
22(t1 − t2,0)

−
∫ ∞
t0

dt1

∫ ∞
t0

dt2

∫
d3x1

∫
d3x2 e

−ih(t−t0)ρ(t0)eih(t1−t0)x1

× e−ih(t1−t0)ρ(t0)eih(t2−t0)x2e
−ih(t2−t0)ρ(t0)eih(t−t0)DE

22(t1 − t2,0).

(7.15)

We note that the first terms on the right-hand sides of Eqs. (7.12), (7.14) and (7.15)
correspond to the dilute limit and are related to the medium interaction operators Σ,
Ξ and Σ† given in sec. 3.2. We note that terms not containing t as an upper integral
bound do not contribute to dρ(t)/dt thus substantially reducing the number of terms to
consider and the seeming complexity of the above set of equations. The general structure
of the evolution equation at leading order in the density matrix is thus preserved, and the
nonlinear terms in ρ(t) of Eqs. (7.12), (7.14) and (7.15) represent corrections to terms
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in the evolution equation of the form Σρ(t), ρ(t)Σ† and Ξ(ρ(t); t). Thorough analysis of
these new terms in the various phenomenological limits analyzed already in the dilute
limit is a matter of active research; it is our hope that in these limits these terms can be
written intuitively as corrections to the medium evolution operators with the eventual
goal of computational implementation and solution of these equations.
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Part III

Phenomenological Results: Heavy
Quarkonium Suppression
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Chapter 8

Heavy quarkonium suppression at
leading order in binding energy
over temperature

In this chapter, we solve the evolution equations presented in chapters 3 and 4 and
derived originally in Refs. [28, 30]. We work in the strict E � T limit in which the
evolution equations take the form of a Lindblad equation. We utilize the QTraj code [59]
to solve the Lindblad equation and extract the nuclear modification factor RAA and the
elliptic flow v2 for comparison against experimental data from the ALICE, ATLAS and
CMS collaborations. In sec. 8.1, we discuss in detail the Lindblad equation describing the
in-medium evolution of Coulombic quarkonium. In sec. 8.2, we introduce the quantum
trajectories algorithm used to solve the Lindblad equation, the QTraj code implementing
this algorithm and the code and simulation parameters utilized. For a more detailed
presentation of the QTraj code, we direct the reader to appendix A and Ref. [59]. In
sec. 8.3, we discuss our results and compare against experimental data. The results
presented in this chapter are taken from Ref. [61] and represent state of the art results
at order 0 in the E/T expansion. A number of tests of the general framework and the
QTraj code were carried out in Ref. [60]; the results of these tests and phenomenological
results are presented in appendix B. We note that due to improvements to the QTraj

implemented between the publication of Refs. [60] and [61], the phenomenological results
presented in this chapter supersede those presented in appendix B.

8.1 Heavy quarkonium evolution in the regime T � E

As presented in the introduction to this thesis, heavy quarkonium suppression in HIC
experiments serves as an observable of particular experimental and theoretical interest as
a signal the formation of a deconfined quark gluon plasma. In Refs. [28, 30], Brambilla,
Escobedo, Soto and Vairo utilized the OQS formalism and the EFT pNRQCD to derive
a Lindblad equation governing the in-medium evolution of Coulombic quarkonium in
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the limit E � T . Specifically, they resummed the Coulombic gluons of Eq. (2.29) via
the field redefinitions

O(t) = Ω(t)Õ(t)Ω†(t), Ei(t,~0) = Ω(t)Ẽi(t,~0)Ω†(t), (8.1)

where Ω(t) is a Wilson line in the fundamental representation extending from time −∞
to time t

Ω(t) = P exp

[
−ig

∫ t

−∞
dt′A0(t′)

]
. (8.2)

After this field redefinition, the pNRQCD Lagrangian takes the form

LpNRQCD = Tr

[
S† (i∂0 − hs) S + Õ

†
(i∂0 − ho) Õ + Õ

†
r · gẼS + S†r · gẼÕ

+
1

2
Õ
† {

r · gẼ, Õ
}]

,

(8.3)

where hs,o are the pNRQCD singlet and octet Hamiltonians. Using the above Lagrangian
and the OQS formalism, the authors of Refs. [28, 30] derived a set of coupled evolution
equations governing the in-medium, out of equilibrium evolution of heavy Coulombic
quarkonium

dρs(t)

dt
=− i [hs, ρs(t)]− Σsρs(t)− ρs(t)Σ†s + Ξso(ρo(t)), (8.4)

dρo(t)

dt
=− i [ho, ρo(t)]− Σoρo(t)− ρo(t)Σ†o + Ξos(ρs(t)) + Ξoo(ρo(t)), (8.5)

where ρs,o(t) is the density matrix of the quarkonium in the singlet, octet state and
medium interactions are encoded in the Σ and Ξ operators given explicitly as

Σs = riAso†i , (8.6)

Σo =
1

N2
c − 1

riAos†i +
N2
c − 4

2(N2
c − 1)

riAoo†i , (8.7)

Ξso(ρo(t)) =
1

N2
c − 1

(
Aos†i ρo(t)r

i + riρo(t)A
os
i

)
, (8.8)

Ξos(ρs(t)) = Aso†i ρs(t)r
i + riρs(t)A

so
i , (8.9)

Ξoo(ρo(t)) =
N2
c − 4

2(N2
c − 1)

(
Aoo†i ρo(t)r

i + riρo(t)A
oo
i

)
, (8.10)

where Auvi is the medium correlator

Auvi =
g2

6Nc

∫ ∞
0

ds e−ihusrieihvs〈Ẽa,j(0,0)Ẽa,j(s,0)〉, (8.11)

where

hs =
~p2

M
−
Cfαs(1/a0)

r
, ho =

~p2

M
+
αs(1/a0)

2Ncr
, (8.12)
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i.e., the strong coupling is evaluated at the scale of the inverse Bohr radius. The coupled
evolution equations can be rewritten as the master equation

dρ(t)

dt
= −i [H, ρ(t)] +

∑
nm

hnm

(
Lni ρ(t)Lm†i −

1

2

{
Lm†i Lni , ρ(t)

})
, (8.13)

where

ρ(t) =

(
ρs(t) 0

0 ρo(t)

)
, H =

(
hs + Im(Σs) 0

0 ho + Im(Σo)

)
, (8.14)

L0
i =

(
0 0
0 1

)
ri, L1

i =

(
0 0

0 N2
c−4

2(N2
c−1)

Aoo†i

)
, (8.15)

L2
i =

(
0 1√

N2
c−1

1 0

)
ri, L3

i =

(
0 1√

N2
c−1

Aos†i

Aso†i 0

)
, (8.16)

hnm =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (8.17)

Eq. (8.13) is manifestly trace preserving, but the set of coupled evolution equations
is not positive definite due to the negative eigenvalues of the matrix hnm. Therefore,
they cannot, in general, be written in Lindblad form and are thus more difficult to
solve. However, taking into account the physics of the problem, we find there exists a
phenomenological region in which Eq. (8.13) does in fact take the form of a Lindblad
equation.

We observe that the medium correlator defining Auvi in Eq. (8.11) decays rapidly for
times s & 1/T ; furthermore, the eigenvalues of hs,o are of order E. In the temperature
regime E � T , the exponentials in Eq. (8.11) can be set to 1, and Auvi can be expressed
in terms of the transport coefficients κ and γ

κ =
g2

6Nc

∫ ∞
0

dt
〈{
Ẽa,i(t,0), Ẽa,i(0,0)

}〉
, (8.18)

γ = −i g
2

6Nc

∫ ∞
0

dt
〈[
Ẽa,i(t,0), Ẽa,i(0,0)

]〉
, (8.19)

as

Auvi =
ri
2

(κ− iγ) . (8.20)

We here interpret the transport coefficients as the heavy quarkonium, i.e., adjoint, ver-
sions in the sense discussed in sec. 5.1. In this case, the Ln vectors of the master equation
are not linearly independent and, via a rotation prior to diagonalization of hnm, can be
made orthogonal to the eigenvectors associated to the negative eigenvalues of hnm. We
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discuss this procedure in greater detail in sec. 9.1.2. In this case, the master equation
can be written in Lindblad form

dρ(t)

dt
= −i[H, ρ(t)] +

∑
n

(
Cni ρ(t)Cn†i −

1

2

{
Cn†i C

n†
i , ρ(t)

})
, (8.21)

where Cni are the collapse operators

C0
i =

√
κ

N2
c − 1

ri
(

0 1√
N2
c − 1 0

)
, (8.22)

C1
i =

√
(N2

c − 4)κ

2(N2
c − 1)

ri
(

0 0
0 1

)
. (8.23)

The above 6 collapse operators can be reduced to 2 by utilizing the spherical sym-
metry of the problem to reduce the full 3 dimensional evolution to the 1 dimensional
evolution of a particle in a spherically symmetric potential. We project the Lindblad
equation onto spherical harmonics and sum over the magnetic quantum number m. We
define

ρlm =

∫
dΩ(θ, φ)dΩ(θ′, φ′)Ylm(θ, φ) ρ Y ∗lm(θ′, φ′), (8.24)

and, due to the spherical symmetry, encode all information in the object

ρl =
∑
m

ρlm. (8.25)

We perform this projection on the Lindblad equation and write

dρ(t)

dt
= −i[H, ρ(t)] +

∑
n

(
Cnρ(t)C†n −

1

2

{
C†nCn, ρ(t)

})
, (8.26)

where

C0 =

√
κ

N2
c − 1

r

(
0 1√

N2
c − 1 0

)
, (8.27)

C1 =

√
(N2

c − 4)κ

2(N2
c − 1)

r

(
0 0
0 1

)
. (8.28)

This Lindblad equation was solved in Refs. [28,30] using the open source QuTiP 2 Python
package [144, 145]. Eq. (8.26) governs the in-medium evolution of heavy Coulombic
quarkonium. The hermitian Hamiltonian consists of the vacuum pNRQCD Hamiltonian
and the in-medium mass shift. The collapse operators encode interactions with the
medium.

The relevant quantum numbers of our system are color and angular momentum.
The color transitions are manifest in the 2×2 matrix structure of the collapse operators
which implement singlet-octet and octet-octet transitions. In angular momentum space,
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the collapse operators implement transitions between states of angular momentum l and
l ± 1. The anticommutator term of Eq. (8.26) preserves the quantum numbers of the
state and decrease its trace; this corresponds to the decay width of the state into a state
of different angular momentum and color. The term Cnρ(t)C†n changes the quantum
numbers of the state, i.e., it implements the decays described by the width term, and
ensures the overall evolution is trace preserving. Refs. [60, 61], utilize the QTraj code
implementing the quantum trajectories algorithm to solve this Lindblad equation; we
present the algorithm in the following section and the QTraj code in appendix A.

8.2 Computation methods

In this section, we present the computational methods utilized to solve the Lindblad
equation introduced in the previous section. In subsec. 8.2.1, we present the quantum
trajectories algorithm as implemented in the QTraj code to solve the Lindblad equation.
In subsec. 8.2.2, we describe the implementation of the time evolution of the state. In
subsec. 8.2.3, we describe the implementation of the hydrodynamic medium evolution.
In subsec. 8.2.4, we present our implementation of a feed down procedure to place QTraj
output in a form enabling comparison against experimental data. In subsec. 8.2.5, we
discuss the fixing of the parameters entering the Lindblad equation. In subsec. 8.2.6, we
discuss the lattice parameters used in the QTraj simulations.

8.2.1 Quantum trajectories algorithm

In spite of the simplifications with respect to the master equation given in Eq. (8.13),
the Lindblad equation given in Eq. (8.26) remains difficult to solve directly. Refs. [60,61]
make use of a Monte Carlo method called the quantum trajectories algorithm to solve
the Lindblad equation via simulation; for a general introduction to this method, we
direct the reader to Ref. [146].

The quantum trajectories algorithm involves separating the evolution specified by the
quantum number preserving terms of the Lindblad equation from those which alter the
quantum numbers of the state. To this end, we collect the quantum number preserving
terms of the Lindblad equation into a non-Hermitian effective Hamiltonian

Heff = H − i

2
Γ, (8.29)

where

Γ =
∑
n

C†nCn. (8.30)

Evolution with the non-Hermitian effective Hamiltonian reduces the norm of the state
|ψ〉 (equivalently the trace of the density matrix ρ). We evolve the state |ψ(t)〉 forward
an infinitesimal time step δt with Heff

|ψ(t+ δt)〉 ≈ (1− iHeffδt)|ψ(t)〉. (8.31)
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Its norm is given by

〈ψ(t+ δt)|ψ(t+ δt)〉 ≈ 1− i〈ψ(t)|(Heff −H†eff)|ψ(t)〉δt (8.32)

= 1− δp, (8.33)

where

δp =
∑
n

〈ψ(t)|C†nCn|ψ(t)〉δt =
∑
n

δpn. (8.34)

The decrease in norm δp is related to the probability that the state has interacted with
the environment and a change of quantum numbers has occurred.

We consider evolving the state forward with Heff, preserving the quantum numbers
of the state, with probability 1− δp and changing the quantum numbers of the state by
acting on it with the collapse operator Cn with probability δp. This normalized evolution
is given by

|ψ̃(t+ δt)〉 =


|ψ(t+δt)〉√

1−δp with probability 1− δp,

Cn|ψ(t)〉√
δpn/δt

with probability δp.
(8.35)

We take the outer product of each line of Eq. (8.35) with itself and have the following
equation for the density matrix at time t+ δt

ρ(t+ δt) =(1− δp) |ψ(t+ δt)〉√
1− δp

〈ψ(t+ δt)|√
1− δp

+ δp
∑
n

δpn
δp

Cn|ψ(t)〉√
δpn/δt

〈ψ(t)|C†n√
δpn/δt

(8.36)

=ρ(t)− i[Heffρ(t)− ρ(t)H†eff]δt+
∑
n

Cnρ(t)C†nδt. (8.37)

In the limit δt→ 0, this reduces to the Lindblad equation.
We note that the above evolution is implemented on the wave function ψ(t) rather

than the density matrix ρ(t). This vastly reduces the required memory compared to
solving the Lindblad equation directly. Simulating the density matrix on n lattice sites
involves an (n×n)-dimensional matrix as opposed to an n-dimensional vector in the case
of the wave function. Furthermore, implementing the quantum number preserving and
quantum number changing modes of evolution separately allows for a further reduction
in the memory requirement. In Refs. [28,30] in which the Lindblad equation was solved
directly, the angular momentum structure of the evolution equations was implemented
as a tensor product with the color and position space structure, i.e., ρ ∝ ρc ⊗ ρl ⊗ ρ(r),
where ρc is the color space density matrix, ρl is the angular momentum space density
matrix and ρ(r) is the position space density matrix. This matrix implementation of
the angular momentum structure becomes prohibitively computationally expensive as
states of higher angular momentum are considered: to simulate the density matrix on n
spatial lattice sites with a cutoff at state l−1 in angular momentum requires initializing
a matrix of dimension (n ∗ 2 ∗ l)× (n ∗ 2 ∗ l). Refs. [28,30] implemented a cutoff at l = 1
in angular momentum. In the quantum trajectories algorithm, the state |ψ(t)〉 possesses
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definite quantum numbers and is represented by an n-dimensional vector; Refs. [60, 61]
solve the Lindblad equation with no cutoff in angular momentum.

In the QTraj code used in Refs [60, 61], the general procedure outlined above is
implemented according to the following algorithm:

1. Initialize the wave function |ψ(t0)〉 at time t0 where ρ(t0) = |ψ(t0)〉〈ψ(t0)| where
ρ(t0) is the initial state of the system.

2. Generate a random number 0 < p1 < 1 and evolve the wave function forward in
time with Heff until its norm squared is less than or equal to p1, i.e.,

|| e−i
∫ t
t0
dt′Heff(t′)|ψ(t0)〉 ||2 ≤ p1 . (8.38)

Denote the first time step fulfilling Eq. (8.38) the jump time tj and proceed to
step 3 if tj < tf where tf is the simulation run time; otherwise, end the simulation
at time tf .

3. At time tj , perform a quantum jump. Generate an additional random number
0 < p2 < 1 to determine which collapse operator Cn to apply to the wave function.
The probability pn of acting with collapse operator Cn is determined from its
partial width, i.e.,

pn =
Γn
Γ

=
〈ψ(tj)|C†nCn|ψ(tj)〉∑
m〈ψ(tj)|C†mCm|ψ(tj)〉

(8.39)

4. Continue from step 2.

Each realization of the above algorithm is a quantum trajectory, and the average of N
trajectories tends toward the solution of the Lindblad equation as N →∞. We note that
each quantum trajectory is fully independent and the algorithm thus embarrassingly par-
allelizable, i.e., many trajectories can be run simultaneously enabling faster convergence
to the solution of the Lindblad equation. We estimate the number of trajectories neces-
sary to converge to the solution of the in-medium heavy quarkonium Lindblad equation
in Figs. A.2c and A.2d.

We note that the specific procedure for calculating the jump time in the above
algorithm differs from the standard procedure in which Eq. (8.38) is evaluated with
a new p1 generated at each time step; it is denoted the waiting time approach (see
sec. IIID of Ref. [146]) and reduces the number of random numbers to be generated
compared to the standard algorithm. Furthermore, in step 3 we specify the generation
of a single additional random number to determine which collapse operator to act on
the wave function. If the color quantum number of the state is octet, the QTraj code
generates separate random numbers for the color and angular momentum transitions.
The transition probabilities for a state of angular momentum l are p↑ = l+1

2l+1 and p↓ =
l

2l+1 and for an octet state po→s = 2
N2

c−2
and po→o = N2

c−4
N2

c−2
. As the singlet to octet

transition probability is 1, i.e., ps→o = 1, no random number is generated for the color
transition if the state is in the singlet color configuration.
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8.2.2 Deterministic evolution of the wave function

In step 2 of the quantum trajectories algorithm, we evolve the wave function determinis-
tically using the non-Hermitian effective Hamiltonian Heff. We carry out this evolution
using a split-step pseudospectral method [147–149]. This method consists in evolving
the reduced radial wavefunction u(r, t) = rR(r, t), where R(r, t) is the radial wave func-
tion defined by ψ(r, θ, φ) = R(r)Ylm(θ, φ), forward in discrete time steps. The evolution
one step ∆t forward in time is given by

u(r, t+ ∆t) = exp [−iHl,c∆t]u(r, t), (8.40)

where Hl,c is the heavy quarkonium Hamiltonian projected onto the angular momentum
l and color c of u(r, t). To implement this evolution, we split the Hamiltonian into its
kinetic and potential pieces

Hl,c = Vl,c + T, (8.41)

where Vl,c is the heavy quarkonium potential including the medium induced width and
mass shift and T = ~p2/M is the kinetic term. We approximate the time evolution
operator of Eq. (8.40) as

exp [−iHl,c∆t] = exp [−iVl,c∆t/2] exp [−iT∆t] exp [−iVl,c∆t/2] +O((∆t)2), (8.42)

with higher order corrections computable via the Baker-Campbell-Hausdorff formula. A
temporal step is implemented according to the following algorithm:

1. Update the wave function in configuration space: u1 = exp [−iVl,c∆t/2]u(t).

2. Separately Fourier sine transform the real and imaginary parts of u1: ũ1 = Fs [Reu1]
+ Fs [Imu1].

3. Update the wave function in momentum space: ũ2 = exp [−iT∆t] ũ1.

4. Separately inverse Fourier sine transform the real and imaginary parts of ũ2: u2 =
F−1
s [Re ũ2] + F−1

s [Im ũ2].

5. Update the wave function in configuration space: u3 = exp [−iVl,c∆t/2]u2.

The discrete Fourier sine transformation in the update procedure ensures u(r) = 0
at the extremal points r = 0 and r = L. Performing step 3 in momentum space
implements an all points derivative more accurate than, for example, a three point
derivative. Furthermore, the Fourier transforms can be computed using the CUDA
Fast Fourier Transform (CUFFT) library [150] allowing for highly efficient computations
on massively parallel graphics processing units (GPU). In Ref. [60], the QTraj code
was calibrated against the results of Refs. [28, 30] which solved the Lindblad equation
using a code implementing a three point derivative. The QTraj code thus contains an
option implementing the three point finite difference derivative in momentum space as
Tdiscrete = 2[1− cos p∆r]/(m∆r)2; see table A.1 in appendix A and Ref. [59].
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8.2.3 Hydrodynamic medium evolution

The QTraj code implements the hydrodynamic evolution of the medium via coupling to
a realistic 3+1D dissipative relativistic hydrodynamics code which uses an equation of
state fit to lattice QCD measurements. In Refs. [60–62], physical trajectories through the
plasma were Monte Carlo sampled from the hydrodynamics code. A physical trajectory
is specified by its production point in the transverse plane, initial transverse momentum
pT and azimuthal angle φ; these quantities are sampled from a nuclear binary collision
overlap profile Nbin

AA(x, y, b), an E−4
T spectrum and uniformly in [0, 2π), respectively. In

Ref. [60], due to computational constraints, these trajectories were sampled and aver-
aged in each centrality bin to produce an average physical trajectory through the plasma
for that centrality bin; we display the temperature evolution of these average trajecto-
ries in Fig. B.1. The QTraj code was run using the average physical trajectory in each
centrality bin and the results presented as a function of the number of participating
nucleons Npart. In Ref. [61], increased computational resources allowed for the running
of quantum trajectories along the distinct physical trajectories allowing for the extrac-
tion of differential observables, specifically the elliptic flow v2, and the presentation of
observables as functions of pT . In Ref. [61], we sampled 7–9 × 105 physical trajectories
and ran approximately 50–100 quantum trajectories along each physical trajectory.

8.2.4 Feed down

The raw output of the quantum trajectories algorithm yields a survival probability, i.e.,
the probability that a quarkonium state traverses the medium without dissociating. In
order to compare to experimental results, however, we must account for the fact that in
experiments states decay after traversing the medium but prior to detection. To place
our results in a form comparable against experimental data, we implement a feed down
procedure on the survival probabilities. Specifically, the nuclear modification factor RAA
for a given centrality class c, transverse momentum pT and azimuthal angle φ is given
by

RiAA(c, pT , φ) =
(F · S(c, pT , φ) · ~σdirect)

i

~σiexp

, (8.43)

where ~σidirect is a vector containing the direct cross sections of the considered states,
S(c, pT , φ) is a vector containing the survival probabilities of the considered states
computed from the QTraj code and F is the feed down matrix related to the decay
widths of the considered states. We consider the {Υ(1S), Υ(2S), χb0(1P ), χb1(1P ),
χb2(1P ), Υ(3S), χb0(2P ), χb1(2P ), χb2(2P )} states and use experimental cross sections
of ~σexp = {57.6, 19, 3.72, 13.69, 16.1, 6.8, 3.27, 12.0, 14.15} nb.

The Υ(1S), Υ(2S) and Υ(3S) cross sections are taken from measurements of the
CMS collaboration at

√
sNN = 5.02 TeV in the rapidity range |y| ≤ 2.4 [48]. From the

left panel of Fig. 3 of Ref. [48], we average over the rapidity giving differential cross
sections weighted by the dimuon branching fractions of 1.44 nb, 0.37 nb and 0.15 nb,
respectively; dividing by the dimuon branching fractions of approximately 2.5%, 1.9%
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and 2.2%, respectively, gives

〈dσ[Υ(1S),Υ(2S),Υ(3S)]/dy〉y = {57.6, 19, 6.8} nb. (8.44)

The χb cross sections are computed from
√
s = 7 and 8 TeV measurements of the LHCb

collaboration [151]. Tables 5 and 6 of Ref. [151] present measurements at
√
s = 7 and 8

TeV, respectively, of the quantity

Rχb(mP )
Υ(nS) =

σ (pp→ χb1(mP )X)

σ (pp→ Υ(nS)X)
Br1 +

σ (pp→ χb2(mP )X)

σ (pp→ Υ(nS)X)
Br2, (8.45)

where Br1,2 represents the branching ratio of χb1,2(mP ) to Υ(nS)γ. We use the lowest
pT measurements and extrapolate to

√
s = 5 TeV. For both n = 1 and n = 2, we take

σ[χb2(nP )]/σ[χb1(nP )] = 1.176 [152] (which we note is consistent with available exper-
imental data [153]); this assumption and the Υ(1S) cross section allow us to calculate
the cross sections of the χb1(1P ), χb2(1P ), χb1(2P ) and χb2(1P ) from Eq. (8.45). Con-
sistent with theoretical expectations, we take the χb0(nP ) cross sections to be 1/4 of the
average of the χb1(nP ) and χb2(nP ) cross sections [152]. This gives

〈dσ[χb0(1P ), χb1(1P ), χb2(1P )]/dy〉y = {3.72, 13.69, 16.1} nb, (8.46)

〈dσ[χb0(2P ), χb1(2P ), χb2(2P )]/dy〉y = {3.27, 12.0, 14.15} nb. (8.47)

The feed down matrix F is given by

F =



1 0.2645 0.0194 0.352 0.18 0.0657 0.0038 0.1153 0.077
0 1 0 0 0 0.106 0.0138 0.181 0.089
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0.0091 0
0 0 0 0 1 0 0 0 0.0051
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


, (8.48)

where

Fij =


Br(σj → σi), for i < j,

1, for i = j,
0, for i > j,

(8.49)

where Br(σj → σi) represents the branching ratio of state σj to σi as taken from the
Particle Data Group [154]. The direct cross sections are related to the experimental
cross sections by the relation ~σiexp = F~σidirect.

8.2.5 Evolution parameters

Before running the QTraj code, we must establish the values of the quantities appearing
in the Lindblad equation. The state of the art results at order 0 in the E/T expansion
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presented in this chapter take the heavy quark mass M as the mass of the bottom quark
computed as half the mass of the Υ(1S) state, i.e., M = mb = mΥ(1S)/2 = 4.73 GeV,
where mΥ(1S) is taken from the PDG [154]. The coupling is calculated by solving the
defining relation of the Bohr radius with the strong coupling αs evaluated at the inverse
of the Bohr radius a−1

0

a0 =
2

CFαs(1/a0)mb
. (8.50)

We use the 1-loop running

αs(µ) =
4π

β0 ln µ2

Λ2
QCD

, (8.51)

where ΛQCD is 3-flavor, MS value of Λ
Nf=3

MS
= 332 MeV [154] and

β0 = 11− 2

3
Nf , (8.52)

where Nf = 3 is the number of flavors. This gives

a0 = 0.678 GeV−1 (8.53)

and
αs(1/a0) = 0.468. (8.54)

With the value of the strong coupling fixed, the only free parameters in the Lind-
blad equation are the transport coefficients κ and γ. Fundamental κ has been measured
directly on the lattice in quenched simulations [110]. The measurement covers the tem-
perature range 1.1 . T/Tc . 104, with Tc = 155 MeV, and uses pure gauge SU(3) lattice
data. In Fig. 5.4, we plot the dimensionless quantity κ̂(T ) as given by the “fit” curve
of Fig. 13 of Ref. [110]. We estimate our systematic uncertainty due to κ by perform-
ing QTraj simulations using κ̂(T ) = {κ̂L(T ), κ̂C(T ), κ̂U (T )} corresponding to the lower,
central and upper curves, respectively, of Fig. 5.4. As discussed in chapter 5, κ and γ are
related to the real and imaginary parts of the in-medium heavy quarkonium self energy
Σs and, therefore, to the in-medium width Γ and mass shift δM of the quarkonium state.
As no direct lattice measurements of γ have been performed at the time of the writing
of this thesis, we estimate our systematic uncertainty due to γ by varying γ̂(T ) = γ/T 3

over the values γ̂(T ) = {−3.5, −1.75, 0} corresponding approximately to the range of
the indirect lattice extractions given in the right panel of Fig. 5.3. Our general procedure
is to run a total of 5 simulations: 3 at fixed γ̂ = −1.75 with κ̂L(T ), κ̂C(T ) and κ̂U (T )
and 2 at fixed κ̂C(T ) with γ̂ = −3.5 and 0; for each extracted observable, we present 2
plots: κ̂ variation on the left and γ̂ variation on the right. We note that the lattice mea-
surement of Ref. [110] corresponds to the heavy quark momentum diffusion coefficient.
As noted in chapter 5, the exact nature of the difference between the heavy quark and
heavy quarkonium momentum diffusion coefficients remains an active area of research.
We note that the bounds placed on the heavy quark momentum diffusion coefficient by
the direct lattice measurement of Ref. [110] fall within the bounds placed on the heavy
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quarkonium momentum diffusion coefficient by lattice measurements of Γ(Υ(1S)) (see
Fig. 5.3). In the following chapter in which we solve the Lindblad equation at order 1
in the E/T expansion, we provide an additional estimate of our uncertainty due to κ by
performing simulations with fixed κ̂ = 0.24 and 4.2; we find the resulting uncertainty
due to κ to increase but remain less than the uncertainty due to γ.

8.2.6 Lattice parameters

In this subsection, we discuss the lattice parameters used in the QTraj simulations. In
order to fix our initial state |ψ(t0)〉, we consider the physics of quarkonium formation;
we note that the spatial extent of the region in which the quarkonium forms scales as the
inverse of the heavy quark mass M−1. As M is the largest scale of the combined system
and specifically due to the relation M � T , the quarkonium formation is point like with
respect to the medium. A Dirac delta function of the radius δ(3)(~r) is thus the natural
initial state. Unfortunately, there exists no unambiguous and stable discretization of
the delta function. Refs. [28, 30] made use of the discretization given in Eq. (4.12) of
Ref. [155]

rδ(3)(r)→
(

2

πas

)2 n

4n2 − 1
(−1)n+1, (8.55)

where as is the spatial lattice spacing and n is the nth lattice site such that r = nas.
This discretization was found, however, to lead to numerical instabilities with the QTraj

code. We, therefore, utilize a Gaussian initial condition

ψl(t0) ∝ rle−r2/(ca0)2
, (8.56)

where ψl has angular momentum l and c is a dimensionless parameter setting the width
of the Gaussian. The narrower the Gaussian, the more faithful the representation of
the delta function; this must, however, be counterbalanced with increasing numerical
instability and computational cost for narrower initial states. A width of c = 0.2 provides
a reasonable faithfulness to the delta function while remaining computationally tractable;
in Fig. A.1d, we show the convergence of the survival probabilities of the Υ(1S), Υ(2S)
and Υ(3S) as c = ∆/a0 is decreased. Furthermore, comparison with the discretized delta
function of Ref. [155] in Fig. 8.1 shows sub percent level relative difference of the survival
probability of the Υ(1S) using Bjorken temperature evolution as in Refs. [28, 30].

Production runs take place on a discretized lattice with NUM = 4096 spatial sites and
radial volume L = 80 GeV−1 corresponding to a lattice spacing of a ≈ 0.0195 GeV−1.
The wavefunction is evolved using discrete time steps of size dt = 0.001 GeV−1. The
wavefunction is initialized at time t = 0 fm and evolved in the vacuum until interaction
with the medium is initialized at time t = 0.6 fm. In order to ensure that the hierarchy
of scales, specifically T � E, in which the evolution equations are derived is valid at all
times during the simulation, we terminate medium evolution when the local temperature
falls below Tf = 250 MeV. At temperatures T > Tf , the evolution is accurate up to
and including terms of order (rT )2 in the EFT power counting while terms of order
(rT )2(E/T ) and higher in the E/T expansion are neglected. Evolving in the vacuum in
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Figure 8.1: The relative difference of the survival probabilities (here called RAA) of the
Υ(1S) state computed as in Refs. [28,30] with the lattice regularized delta function initial
condition of Eq. (8.55) from Ref. [155] and the Gaussian initial condition of Eq. (8.56).
We observe the production level width of c = 0.2 to provide sub-percent level accuracy
in this observable. Taken from Ref. [60].

the temperature regime T < Tf is accurate neglecting contributions of order (rT )2 in
the evolution. As the precise value of Tf = 250 MeV is arbitrary, we display in Fig. B.12
the effect on the Υ(1S), Υ(2S) and Υ(3S) survival probabilities of a ±10% variation in
Tf . The simulations use trajectory averaged medium evolution and Heff evolution of the
quarkonium state; for the Υ(1S), the resulting uncertainty is comparable the uncertainty
due to κ and less than that due to γ.

8.3 Results

In this section, we present state of the art results solving the Lindblad equation gov-
erning the in-medium evolution of heavy Coulombic quarkonium at order 0 in the E/T
expansion. These results were obtained using the QTraj code and distinct physical
trajectories. All results displayed in this section are taken from Ref. [61].

8.3.1 Nuclear modification factor RAA

We present results for the nuclear modification factor RAA of the Υ(1S), Υ(2S) and
Υ(3S) as functions of the number of participating nucleons Npart and the transverse
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Figure 8.2: The nuclear modification factor RAA of the Υ(1S), Υ(2S) and Υ(3S) plot-
ted against Npart. The left panel displays variation with respect to κ̂, and the right
panel variation with respect to γ̂. The dashed and dot-dashed lines show results for
the lower and upper values, respectively, of κ̂(T ) and γ̂ while the central curves show
results for κ̂C(T ) and γ̂ = −1.75. Our theory results are compared against experimental
measurements from the ALICE [46], ATLAS [47] and CMS [48] collaborations. Taken
from Ref. [61].

momentum pT . We, furthermore, present results for the double ratios RAA[Υ(2S)] to
RAA[Υ(1S)] and RAA[Υ(3S)] to RAA[Υ(1S)] as functions of both Npart and pT . We
compare our QTraj extractions to experimental measurements of the ALICE [46], AT-
LAS [47] and CMS [48,49] collaborations; in all cases, we observe good agreement with
the experimental data. In all figures, results displayed in the left panel correspond to
simulations conducted with γ̂ fixed varying κ̂(T ) and on the right to κ̂(T ) fixed varying
γ̂.

In Fig. 8.2, we display the nuclear modification factor RAA of the Υ(1S), Υ(2S) and
Υ(3S) as functions of the number of participating nucleons Npart. We compare our QTraj
results to measurements of the ALICE [46], ATLAS [47] and CMS [48] collaborations.
We observe good agreement with the experimental data across the range of centrality. In
the most peripheral collisions, we observe moderate discrepancy with the QTraj results
lying somewhat above the experimental measurements. We attribute this to the high
value of Tf = 250 MeV at which the hydrodynamic evolution is terminated. In the
most peripheral collisions, the initial temperature of the medium is low such that little
to no hydrodynamic evolution takes place (cf. Fig. B.1). This leads to artificially
higher yield in the QTraj results at lower Npart compared to the experimental data.
In the following chapter, we present results in which higher order corrections in the
E/T expansion are included enabling Tf to be taken to 190 MeV improving the results
in peripheral collisions. We observe uncertainty due to γ to be greater than that due
to κ. In Figs. 8.3 and 8.4, we plot the double ratios of RAA[Υ(2S)] and RAA[Υ(3S)]
to RAA[Υ(1S)], respectively, as functions of Npart and compare against experimental
measurements of the ALICE [46], ATLAS [47] and CMS [49] collaborations. As in the
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Figure 8.3: The double ratio of the nuclear modification factor RAA[Υ(2S)] to
RAA[Υ(1S)] plotted against Npart. The theoretical uncertainties are represented as in
Fig. 8.2. Our theory results are compared against experimental measurements from the
ALICE [46], ATLAS [47] and CMS [49] collaborations. The statistical and systematic
uncertainty of the experimental results are represented by black and red bands, respec-
tively. Taken from Ref. [61].

case of the single ratios, we observe good agreement between our QTraj results and the
experimental measurements across the range of centrality with moderate discrepancy at
low Npart. Furthermore, we observe a much smaller uncertainty due to κ than due to γ.

In Fig. 8.5, we display QTraj results for RAA[Υ(1S)], RAA[Υ(2S)] and RAA[Υ(3S)]
as functions of transverse momentum pT ; these results are compared against experimen-
tal measurements of the ALICE [46], ATLAS [47] and CMS [48] collaborations. Such
differential results were first available in Ref. [61] due to the sampling of distinct phys-
ical trajectories implemented in the QTraj code between the publication of Refs. [60]
and [61]. As in the case of the nuclear modification factor as a function of centrality,
we observe good agreement with the experimental data and in this case, furthermore,
across the whole range of pT . In Fig. 8.6, we display QTraj results for the double ratio
of RAA[Υ(2S)] to RAA[Υ(1S)] as a function of pT ; these results are compared against
experimental measurements of the ATLAS [47] and CMS [49] collaborations. As in the
case of the double ratio as a function of Npart, we observe a low uncertainty due to κ
variation and a considerably larger uncertainty due to γ. We observe that in a number
of points, the QTraj bounds due to κ variation do not overlap with the experimental
uncertainty bounds. We note that the experimental uncertainties are significantly larger
than the QTraj uncertainties due to κ and look forward to further experimental data
and reduced experimental uncertainties. For all data points, the QTraj uncertainties
due to γ overlap with the experimental uncertainties.
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Figure 8.4: The double ratio of the nuclear modification factor RAA[Υ(3S)] to
RAA[Υ(1S)] plotted against Npart. Our theory results are compared against experi-
mental measurements from the ATLAS [47] and CMS [49] collaborations. Theoretical
and experimental uncertainties are represented as in Fig. 8.3. Taken from Ref. [61].

8.3.2 Elliptic flow v2

In addition to presenting RAA results as a function of pT , the sampling of distinct physi-
cal trajectories allows for the calculation of differential observables including the elliptic
flow v2 which quantifies an azimuthal anisotropy in the observed particle yield [156]. In
this subsection, we present results from the QTraj code giving v2[Υ(1S)] as a function of
both centrality and transverse momentum pT and the elliptic flow of the excited states
v2[Υ(2S)] and v2[Υ(3S)] as a function of centrality. In Fig. 8.7, we plot v2[Υ(1S)] as a
function of centrality and compare against experimental measurements of the CMS [50]
collaboration. We observe the central values of the QTraj results to fall within the ex-
perimental uncertainty bounds. Furthermore, the central QTraj result for the 10− 90%
centrality bin coincides nearly exactly with the central value of the experimental mea-
surement. In Fig. 8.8, we plot v2[Υ(1S)] against transverse momentum and compare
against experimental measurements of the ALICE [51] and CMS [50] collaborations. We
again observe good agreement between the QTraj results and the experimental measure-
ments. In Fig. 8.9, we plot v2[Υ(2S)] and v2[Υ(3S)] against centrality. We compare
against an experimental measurement of the CMS [50] collaboration. We note that the
central value of the QTraj results in the 10−90% centrality region falls within the uncer-
tainty of the experimental measurement; we note the uncertainties of the experimental
measurement are many times greater than those of the QTraj result.

For all v2 results presented in this subsection, we observe the central values of the
QTraj results to sit within the error bars of the experimental results. We addition-
ally observe our QTraj predictions to be significantly more precise than those currently
available from the experimental data. We thus look forward to future experimental
measurements and decreased uncertainties.
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Figure 8.5: The nuclear modification factor RAA of the Υ(1S), Υ(2S) and Υ(3S) plot-
ted against pT . The theoretical uncertainties are represented as in Fig. 8.2. Our theory
results are compared against experimental measurements from the ALICE [46], AT-
LAS [47] and CMS [48] collaborations. Taken from Ref. [61].

8.3.3 Effect of quantum jumps

In this subsection, we compare QTraj results obtained implementing the full quantum
trajectories algorithm with quantum jumps and results obtained evolving only with Heff

without implementing quantum jumps. In Fig. 8.10, we display results for the nuclear
modification factor RAA of the Υ(2S) as a function of pT ; in Fig. 8.11, the double ratio
RAA[Υ(2S)] to RAA[Υ(1S)] as a function of pT and in Fig. 8.12, the elliptic flow v2 of
the Υ(1S) as a function of centrality. We compare these results against experimental
measurements of the ATLAS [47] and CMS [48–50] collaborations.

In Fig. 8.10, for all values of κ and γ, we observe the effect of the quantum jumps
to be small in absolute terms and significantly smaller than the current uncertainties in
the experimental results. We, however, observe variation in the magnitude of the effect
depending on the precise values of κ and γ. The combination κ̂U (T ) and γ̂ = −1.75
leads to a small but visible difference between the results with and without quantum
jumps similar in size to the statistical uncertainty due to averaging over quantum jumps.
The combination κ̂C(T ) and γ̂ = 0 leads to a difference between the results obtained
with and without jumps larger than the statistical uncertainty due to averaging over
quantum jumps. In all other cases, the results with and without jumps largely overlap.
In Fig. 8.11, we plot the double ratio RAA[Υ(2S)]/RAA[Υ(1S)] as a function of pT . As in
all double ratios, we observe the uncertainty due to κ to be much less than that due to γ.
Furthermore, under κ variation, the effect of the jumps is small while under γ variation,
we observe a visible effect. In Fig. 8.12, we plot the elliptic flow v2 of the Υ(1S) as a
function of centrality and observe a visible effect of the quantum jumps. The elliptic
flow may thus represent an observable in the computation of which quantum jumps play
a role.
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Figure 8.6: The double ratio of the nuclear modification factor RAA[Υ(2S)] to
RAA[Υ(1S)] plotted against pT . Our theory results are compared against experimen-
tal measurements from the ATLAS [47] and CMS [49] collaborations. Theoretical and
experimental uncertainties are represented as in Fig. 8.3. Taken from Ref. [61].
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Figure 8.12: The elliptic flow v2 of the Υ(1S) plotted against centrality. We compare the
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87



Chapter 9

Heavy quarkonium suppression at
next-to-leading order in binding
energy over temperature

In this chapter, we extend the analysis of the previous chapter by including terms of
order E/T in our in-medium, heavy quarkonium evolution equations. We again consider
the master equation derived in Refs. [28, 30] and presented in chapters 3 and 4. The
inclusion of these higher order terms allows for the extension of hydrodynamic evolution
down to temperatures of Tf = 190 MeV much closer to the pseudocritical temperature
of the QGP phase transition of Tpc ' 158 MeV [157,158] than the previous lower bound
of Tf = 250 MeV. In sec. 9.1, we derive the master equation at order 1 in the E/T
expansion and discuss the conditions under which the evolution equations can be written
as a Lindblad equation. In sec. 9.2, we discuss the implementation of the quantum
trajectories algorithm in the QTraj code beyond order 0 in the E/T expansion. In
sec. 9.3, we present phenomenological results and compare against experimental data.

9.1 Heavy quarkonium evolution at order E/T

As discussed in the preceding chapters of this thesis, the medium correlator

Auvi =
g2

6Nc

∫ ∞
0

dt e−ihutrie
ihvt〈Ẽaj (0,~0)Ẽaj (t,~0)〉, (9.1)

completely specifies the interaction of in-medium heavy Coulombic quarkonium with the
QGP. Furthermore, in the strict E � T limit, the exponentials can be set to unity, and
the medium interaction is characterized completely by Auvi |LO = ri

2 (κ − iγ) where κ is
the heavy quarkonium momentum diffusion coefficient and γ its dispersive counterpart.
This case was examined in detail in Refs. [28,30] and further in Refs. [60,61], the results
of which are presented in appendix B and chapter 8, respectively. The strict E � T
limit places a high lower bound on the temperature range over which our analysis is valid
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compared to the pseudocritical transition temperature of the QGP. In this section, we
extend the range of validity of our evolution equation to lower temperatures by including
terms of order 1 in the E/T expansion. Expanding the exponentials of Auvi to linear
order, we find the E/T contributions are given by

Auvi |NLO =
g2

6Nc

∫ ∞
0

dt t〈Ẽaj (0,~0)Ẽaj (t,~0)〉
(
−2pi
M

+ i∆Vuvri

)
, (9.2)

where ∆Vuv is the difference between the u and v (singlet and octet) potentials.
In the following subsections, we examine the implications of these terms on the pN-

RQCD master equation. In subsec. 9.1.1, we derive a relation allowing us to rewrite
the terms of order 1 in the E/T expansion in terms of κ and the temperature T . In
subsec. 9.1.2, we write the master equation at order 1 in the E/T expansion and deter-
mine the conditions under which the evolution equations can still be written in Lindblad
form. In subsec. 9.1.3, we expand our NLO Lindblad equation in spherical harmonics
and thereby utilize the spherical symmetry of the problem to reduce the number of
collapse operators by a factor of 3. This procedure is analogous to that carried out at
leading order below Eq. (8.23).

9.1.1 NLO correlator identity

In this section, we derive a relation between the electric-electric correlator at order E/T

Auvi |NLO ∼
g2

6Nc

∫ ∞
0

dt t〈Ẽaj (0,~0)Ẽaj (t,~0)〉, (9.3)

and the heavy quarkonium momentum diffusion coefficient κ and the temperature T .
We begin by defining the finite temperature correlators

D>(t, t′) =
〈
Ẽai (t,~0)Ẽai (t′,~0)

〉
=

1

Z(T )
Tr
(
Ẽai (t,~0)Ẽai (t′,~0)e−H/T

)
, (9.4)

D<(t, t′) =
〈
Ẽai (t′,~0)Ẽai (t,~0)

〉
=

1

Z(T )
Tr
(
Ẽai (t′,~0)Ẽai (t,~0)e−H/T

)
, (9.5)

where H is the Hamiltonian and Z(T ) is the partition function defined by

Z(T ) = Tr
(
e−H/T

)
. (9.6)

We approximate [29,159] the NLO chromoelectric correlator as

i

∫ ∞
0

dt t
〈
Ẽai (t,~0)Ẽai (0,~0)

〉
' 1

2

dD>(ω)

dω

∣∣∣∣
ω=0

, (9.7)

where D>(ω) is the Fourier transform of the electric correlator with respect to the time
t, i.e., ∫ ∞

−∞
dt eiωt

〈
Ẽai (t,~0)Ẽai (0,~0)

〉
= D>(ω). (9.8)
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The approximation of Eq. (9.7) corresponds to an expansion of the correlator around its
instantaneous limit.

The thermal field theory interpretation of e−H/T as the time evolution operator in
imaginary time, i.e., e−H/TEai (t,~0)eH/T = Eai (t + i/T,~0), implies the Kubo–Martin–
Schwinger relation

D>(t, t′) = D<(t+ i/T, t′), (9.9)

and, furthermore, D>(t, t′) = D>(t − t′) and D<(t, t′) = D<(t − t′). Setting t′ = 0, we
derive an expression for the right-hand side of Eq. (9.7) in terms of D(ω)

D>(t) = D<(−t) = D<(t+ i/T ) (9.10)

⇒
∫ ∞
−∞

dt eiωtD>(t) =

∫ ∞
−∞

dt eiωtD<(−t) =

∫ ∞
−∞

dt eiωtD<(t+ i/T ) (9.11)

⇒D>(ω) = D<(−ω) = eω/TD<(ω) (9.12)

⇒ dD>(ω)

dω

∣∣∣∣
ω=0

= −dD<(ω)

dω

∣∣∣∣
ω=0

=
1

T
D<(ω = 0) +

dD<(ω)

dω

∣∣∣∣
ω=0

(9.13)

⇒ dD>(ω)

dω

∣∣∣∣
ω=0

= −dD<(ω)

dω

∣∣∣∣
ω=0

=
1

2T
D<(ω = 0). (9.14)

We insert the last equality into Eq. (9.7) giving

i

∫ ∞
0

dt t
〈
Ẽai (t,~0)Ẽai (0,~0)

〉
=

1

4T
D<(ω = 0). (9.15)

Inserting the above equality into the anticommutator definition of κ given in, e.g.,
Eq. (8.18), we derive an expression for κ in terms of D<(ω = 0)

κ =
g2

6Nc

∫ +∞

0
dt
〈{

Ẽai (t,~0), Ẽai (0,~0)
}〉

=
g2

6Nc

∫ +∞

0
dt
(
D>(t) +D<(t)

)
(9.16)

=
g2

6Nc

∫ 0

−∞
dtD<(t) +

g2

6Nc

∫ +∞

0
dtD<(t) =

g2

6Nc

∫ ∞
−∞

dtD<(t) (9.17)

=
g2

6Nc
D<(ω = 0). (9.18)

Combining Eqs. (9.15) and (9.18), we have an expression for the NLO chromoelectric
correlator in terms of the transport coefficient κ and the temperature T

i
g2

6Nc

∫ ∞
0

dt t
〈
Ẽai (t,~0)Ẽai (0,~0)

〉
=

κ

4T
. (9.19)

9.1.2 NLO master equation

In this subsection, we write the master equation up to and including terms of order E/T
making use of the relation of Eq. (9.19). Up to order E/T , the medium correlator Auvi
is given by

Auvi =
ri
2

(κ− iγ) + κ

(
− ipi

2MT
+

∆Vuv
4T

ri

)
+ · · · , (9.20)
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where the ellipsis represents terms of order (E/T )2 and higher. The master equation is
given to all orders in E/T by

dρ(t)

dt
= −i [H, ρ(t)] +

∑
nm

hnm

(
Lni ρ(t)Lm†i −

1

2

{
Lm†i Lni , ρ(t)

})
, (9.21)

where

ρ(t) =

(
ρs(t) 0

0 ρo(t)

)
, H =

(
hs + Im(Σs) 0

0 ho + Im(Σo)

)
, (9.22)

L0
i =

(
0 0
0 1

)
ri, L1

i =

(
0 0

0 N2
c−4

2(N2
c−1)

Aoo†i

)
, (9.23)

L2
i =

(
0 1
1 0

)
ri, L3

i =

(
0 1

N2
c−1

Aos†i
Aso†i 0

)
, (9.24)

h =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (9.25)

At order 1 in the E/T expansion, the medium interaction operators L1
i and L3

i take the
form

L1
i =

N2
c − 4

2(N2
c − 1)

(
0 0
0 1

)[
ri
2

(κ+ iγ) + κ
ipi

2MT

]
, (9.26)

L3
i =

(
0 1

N2
c−1

0 0

)[
ri
2

(κ+ iγ) + κ

(
ipi

2MT
+

∆Vos
4T

ri

)]
+

(
0 0
1 0

)[
ri
2

(κ+ iγ) + κ

(
ipi

2MT
+

∆Vso
4T

ri

)]
,

(9.27)

and the corrections to the potential are given by

Im (Σs) =
r2

2
γ +

κ

4MT
{ri, pi}, (9.28)

Im (Σo) =
N2
c − 2

2(N2
c − 1)

(
r2

2
γ +

κ

4MT
{ri, pi}

)
. (9.29)

The above set of coupled equations describes the in-medium evolution of heavy Coulom-
bic quarkonium at order 1 in the E/T expansion. We note that the above equations
cannot in general be written in Lindblad form due to the negative eigenvalues of the
matrix hnm. Furthermore, in contrast to the case at leading order discussed in chap-
ter 8, as L1 and L3 are linearly independent of L0 and L2, no rotation of the vector
Ln enables us to write the above master equation in Lindblad form. In the remainder
of this subsection, we present an approximation which allows us to write a Lindblad
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equation containing terms up to order (E/T )2 equivalent to the above master equation
up to order E/T .

In the master equation, there are three distinct vector spaces corresponding to color,
spatial direction and transition operator. The color vector space is unlabeled and corre-
sponds to the entries of the transition operator matrices, i.e., (Lni )ab where a and b label
the entries of the matrix operator Lni and take the values 0 and 1. The spatial direction
is labeled by the index i and takes the values 1, 2 and 3. The transition operator is
labeled by the index m or n and takes the values 0 to 3. As the matrix hnm is block
diagonal, i.e., only combinations of n,m = 0 and 1 and separately 2 and 3 are nonzero,
we consider only a single block and note that the procedure is generalizable to the full
vector space. For simplicity, we take

hnm =

(
0 1
1 0

)
, Ln =

(
L0

L1

)
. (9.30)

Our aim is to find collapse operators Cn which enable us to write a Lindblad equation

dρ(t)

dt
= −i [H, ρ(t)] +

1∑
n=0

(
Cnρ(t)C†n −

1

2

{
C†nCn, ρ(t)

})
, (9.31)

equivalent to the master equation. Based on the structure of the scalar product in the
transition operator space, i.e.,

L†n · Ln = hnmL
†
mLn = L†0L1 + L†1L0, (9.32)

this is equivalent to solving the equation

C†C = L†0L1 + L†1L0, (9.33)

for C.
We consider first the case realized at order 0 in the E/T expansion in which L0 and

L1 are linearly dependent, i.e., L1 = (a+ bi)L0, where a and b are real scalars. Inserting
this into Eq. (9.33), we have

C†C = 2aL†0L0, (9.34)

with solution
C =

√
2aL0. (9.35)

From a linear algebra perspective, this result can be derived equivalently via a rotation
of the basis state Ln which leaves the matrix hnm unchanged(

L†0 (a− ib)L†0
)(0 1

1 0

)(
L0

(a+ ib)L0

)
= a

(
L†0 L†0

)(0 1
1 0

)(
L0

L0

)
. (9.36)

Diagonalization leads to the relation

a
(
L†0 L†0

)(0 1
1 0

)(
L0

L0

)
=
(

0
√

2aL†0

)(−1 0
0 1

)(
0√

2aL0

)
, (9.37)
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and the clear assignment C =
√

2aL0.
We examine this procedure in the case L0 and L1 are neither linearly dependent nor

orthogonal

L1 = (a+ ib)L0 + εL
(1)
1 . (9.38)

ε is here a complex scalar and L
(1)
1 is nonzero and linearly independent of L0, i.e.,

there exists no scalar c for which L0 = cL
(1)
1 . We follow the diagonalization procedure

implemented in the case L0 and L1 are linearly dependent. Rotating the basis vector
Ln as in Eq. (9.36), we have

(
L†0

[
aL†0 + ε∗L

(1)†
1

])(0 1
1 0

)(
L0[

aL0 + εL
(1)
1

]) = (9.39)

1
a

(
aL†0

[
aL†0 + ε∗L

(1)†
1

])(0 1
1 0

)(
aL0[

aL0 + εL
(1)
1

]) . (9.40)

We diagonalize the matrix hnm as in Eqs. (9.37) leading to the relation

1
a

(
aL†0

[
aL†0 + ε∗L

(1)†
1

])(0 1
1 0

)(
aL0[

aL0 + εL
(1)
1

]) = (9.41)

(
ε∗√
2a
L†0

[√
2aL†0 + ε∗√

2a
L

(1)†
1

])(−1 0
0 1

)( ε√
2a
L0[√

2aL0 + ε√
2a
L

(1)
1

]) . (9.42)

We note that the above equation is not of Lindblad form, and a term enters the master
equation with an overall negative sign relative to the sign convention of the Lindblad
equation. In this case, as the L0 and L1 are not linearly dependent, there exists no
rotation into a vector orthogonal to the eigenvector of the negative eigenvalue of hnm.
However, taking Eq. (9.38) as an expansion in small ε, i.e., |ε| � 1, we may remove
the term of order ε2 from the master equation, and the resulting evolution equation is
accurate up to order ε and can be written in Lindblad form. In this case, the collapse
operator is given by

C =
√

2aL0 +
ε√
2a
L

(1)
1 . (9.43)

This corresponds to completing the square in ε. Inserting Eq. (9.38) into Eq. (9.33), we
have the equation

C†C = 2aL†0L0 + εL†0L
(1)
1 + ε∗L

(1)†
1 L0, (9.44)

which we solve at order ε by completing the square, i.e.,

C†C = 2aL†0L0 + εL†0L
(1)
1 + ε∗L

(1)†
1 L0 +

|ε|2

2a
L

(1)†
1 L

(1)
1 , (9.45)

with the solution given in Eq. (9.43).
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Following the above procedure, we rewrite the master equation of Eqs. (9.21)-(9.25)
at order 1 in the E/T expansion as the Lindblad equation

dρ(t)

dt
= −i [H, ρ(t)] +

∑
n

(
Cni ρ(t)Cn†i −

1

2

{
Cn†i C

n
i , ρ(t)

})
, (9.46)

with Hamiltonian

H =

(
hs + Im(Σs) 0

0 ho + Im(Σo)

)
, (9.47)

where

Im (Σs) =
r2

2
γ +

κ

4MT
{ri, pi}, Im (Σo) =

N2
c − 2

2(N2
c − 1)

(
r2

2
γ +

κ

4MT
{ri, pi}

)
, (9.48)

and collapse operators

C0
i =

√
κ

N2
c − 1

(
0 1
0 0

)(
ri +

ipi
2MT

+
∆Vos
4T

ri

)
+
√
κ

(
0 0
1 0

)(
ri +

ipi
2MT

+
∆Vso
4T

ri

)
,

(9.49)

C1
i =

√
κ(N2

c − 4)

2(N2
c − 1)

(
0 0
0 1

)(
ri +

ipi
2MT

)
. (9.50)

The terms of Cni proportional to ri are of order (E/T )0 while those proportional to pi and
∆Vuv are of order E/T . The Lindblad equation thus contains terms up to and including
order (E/T )2; the terms up to and including order E/T are the master equation with
L1
i and L3

i as given in Eqs. (9.26) and (9.27). The Lindblad equation specified by the
collapse operators of Eqs. (9.49) and (9.50) is thus accurate up to and including terms
of order E/T . We have thus brought the master equation at order E/T into Lindblad
form at the price of introducing spurious terms at order (E/T )2. We note that the above
Lindblad equation is equivalent to that presented in sec. 4.2 of Ref. [39].

9.1.3 Angular momentum projection

In this subsection, we utilize the spherical symmetry of the quarkonium system to reduce
the 6 collapse operators given in Eqs. (9.49) and (9.50) to 2. Our procedure follows that
detailed below Eq. (8.23), i.e., we derive the form of the Lindblad equation for a state
ρl of definite angular momentum by projecting onto spherical harmonics

ρlm =

∫
dΩ(θ, φ)dΩ(θ′, φ′)Ylm(θ, φ) ρ Y ∗lm(θ′, φ′), (9.51)

and summing over the magnetic quantum number m

ρl =
∑
m

ρlm. (9.52)
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The projection of the NLO collapse operators is complicated with respect to the LO case
by the presence of the momentum operator pi. We present a detailed derivation of the
projection procedure in appendix C and quote the results below.

The precise form of the collapse operators and Hamiltonian acting on the density
matrix depend on the color and angular momentum quantum numbers of the state. The
density matrix can be decomposed as the tensor product of a color, angular momentum
and radial component

ρ = ρc ⊗ ρl ⊗ ρ(r), (9.53)

respectively. The entries of the density matrix take the form

ρ =



ρ0
s 0 . . . 0 0 · · ·

0 ρ1
s . . . 0 0 . . .

...
...

. . .
...

...
0 0 . . . ρ0

o 0 . . .
0 0 . . . 0 ρ1

o . . .
...

...
...

...
. . .


, (9.54)

where ρlu represents the radial density matrix with color u and angular momentum l.
The above matrix is diagonal and of infinite dimension. The free Hamiltonian is an
analogous diagonal, infinite dimensional matrix the elements of which are given by

hls,o = − 1

M

(
∂2

∂r2
+

2

r

∂

∂r

)
+ Vs,o +

l(l + 1)

Mr2
. (9.55)

As shown in appendix C, the collapse operators take the form

C0 =

√
κ

N2
c − 1

(
0 1
0 0

)
⊗

(
O−
√

l

2l + 1
C↓o→s +O+

√
l + 1

2l + 1
C↑o→s

)
(9.56)

+
√
κ

(
0 0
1 0

)
⊗

(
O−
√

l

2l + 1
C↓s→o +O+

√
l + 1

2l + 1
C↑s→o

)
, (9.57)

C1 =

√
κ(N2

c − 4)

2(N2
c − 1)

(
0 0
0 1

)
⊗

(
O−
√

l

2l + 1
C↓o→o +O+

√
l + 1

2l + 1
C↑o→o

)
, (9.58)

where the 2 × 2 matrices represent color transitions and O± are infinite dimensional
matrices implementing the angular momentum transitions the elements of which are
given by O±l′l = δl′,l±1. The operators acting on the spatial wave function take the form

C↑u→v =r

(
1 +

∆Vuv
4T

)
+

1

2MT

(
∂

∂r
− l

r

)
, (9.59)

C↓u→v =r

(
1 +

∆Vuv
4T

)
+

1

2MT

(
∂

∂r
+
l + 1

r

)
. (9.60)
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As at order 0 in E/T , the isotropy of the physical system allows us to reduce the number
of collapse opeartors from 6 to 2 and bring the Lindblad equation into a form amenable
to solution using the QTraj code.

We proceed to compute the branching fractions in the color and angular momentum
sectors. We first define the decay width Γ as the trace of the anticommutator term of
the Lindblad equation

Γ
[
ρlu(r)

]
≡

n=1∑
n=0

Tr
[
C†nCnρ

l
u(r)

]
, (9.61)

where the left-hand side of the equation is a functional of the state ρlu(r) and returns
its decay width Γ. We define branching ratios Br in the angular momentum sector and
widths Γ in the color sector

Br↑ =
l + 1

2l + 1
, (9.62)

Br↓ =
l

2l + 1
, (9.63)

Γs→o = κ

{
r2

(
1 +

∆Vso
4T

)2

− 3

2MT
− ∆Vso

4MT 2
+

D2

4M2T 2

}
, (9.64)

Γo→s =
κ

N2
c − 1

{
r2

(
1 +

∆Vos
4T

)2

− 3

2MT
− ∆Vos

4MT 2
+

D2

4M2T 2

}
, (9.65)

Γo→o =
κ(N2

c − 4)

2(N2
c − 1)

{
r2 − 3

2MT
+

D2

4M2T 2

}
, (9.66)

where

D2 = −
(
∂2

∂r2
+

2

r

∂

∂r

)
+
l(l + 1)

r2
. (9.67)

The branching ratios and width operators are defined such that the partial decay width
Γ↑,↓u→v of the state ρlu(r) is calculated as

Γ↑,↓u→v

[
ρlu(r)

]
= Trr

[
Br↑,↓Γu→vρ(r)

]
, (9.68)

where the left-hand side of the equation represents a functional of the state ρlu(r) which
returns the partial width to a state of angular momentum l ± 1 and color v and on
the right-hand side Trr represents a trace over the radial coordinate. We note that in
contrast to the LO Lindblad equation, in the NLO case, the octet to octet and octet to
singlet branching fractions can no longer be extracted trivially from the color factors in
the collapse operators; they must be computed in dependence on the wave function at
the time of the jump using the width operators Γo→s and Γo→o defined above.

9.2 The QTraj code at NLO in E/T

In this section, we discuss the implementation of the quantum trajectories algorithm
in the QTraj code used to solve the NLO Lindblad equation. The QTraj code utilizes
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the reduced wave function u(r, t) = rR(r, t) where R(r, t) is the radial wave function
defined by ψ(r, θ, φ) = R(r)Ylm(θ, φ). The jump and width operators given in the
previous section act on the radial wave function R(r, t). We denote operators acting
on the reduced radial wave function u(r, t) as being in the reduced spherical basis and
mark them with an overbar. In the reduced spherical basis, the collapse operators of
Eqs. (9.59) and (9.60) take the form

C
↑
s→o = r − Ncαs

8T
+

1

2MT

(
∂

∂r
− l + 1

r

)
, (9.69)

C
↓
s→o = r − Ncαs

8T
+

1

2MT

(
∂

∂r
+
l

r

)
, (9.70)

C
↑
o→s = r +

Ncαs

8T
+

1

2MT

(
∂

∂r
− l + 1

r

)
, (9.71)

C
↓
o→s = r +

Ncαs

8T
+

1

2MT

(
∂

∂r
+
l

r

)
, (9.72)

C
↑
o→o = r +

1

2MT

(
∂

∂r
− l + 1

r

)
, (9.73)

C
↓
o→o = r +

1

2MT

(
∂

∂r
+
l

r

)
, (9.74)

where we write ∆Vuv explicitly. The color width operators in the reduced spherical basis
weighted by the angular momentum branching fractions are given by

Γ
↑
o→s =

κ̂T 3

N2
c − 1

l + 1

2l + 1

[(
r +

Ncαs

8T

)2

− 3

2MT
+

D2

(2MT )2
− 1

2MT

(
Ncαs

4T

)
1

r

]
,

(9.75)

Γ
↓
o→s =

l

l + 1
Γ
↑
o→s , (9.76)

Γ
↑
o→o = κ̂T 3 N2

c − 4

2(N2
c − 1)

l + 1

2l + 1

[
r2 − 3

2MT
+

D2

(2MT )2

]
, (9.77)

Γ
↓
o→o =

l

l + 1
Γ
↑
o→o , (9.78)

where Γ
↑,↓
u→v = Br↑,↓Γu→v, κ̂ = κ/T 3 and

D2
= − ∂2

∂r2
+
l(l + 1)

r2
. (9.79)

At NLO in E/T , the quantum trajectories algorithm is implemented according to
the following algorithm:

1. Initialize the wave function |ψ(t0)〉 at time t0 where ρ(t0) = |ψ(t0)〉〈ψ(t0)| where
t0 is the initial time of the evolution.
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2. Generate a random number 0 < p1 < 1 and evolve the wave function forward in
time with Heff until its norm squared is less than or equal to p1, i.e.,

|| e−i
∫ t
t0
dt′Heff(t′)|ψ(t0)〉 ||2 ≤ p1 . (9.80)

Denote the first time step fulfilling Eq. (9.80) the jump time tj and proceed to
step 3 if tj < tf where tf is the simulation run time; otherwise, end the simulation
at time tf .

3. At time tj , perform a quantum jump.
If the color quantum number is singlet (c = 0):

(a) Change the color quantum number to octet (c→ 1).

(b) Generate an additional random number 0 < p2 < 1, and if p2 < l/(2l + 1),
take l→ l − 1; otherwise, take l→ l + 1.

Else, i.e., if the color quantum number is octet (c = 1):

(a) Compute the 4 branching fractions Br↑,↓o→s,o.

(b) Generate an additional random number 0 < p2 < 1, and if p2 < Br↓o→s +

Br↓o→o = l/(2l + 1), take l→ l − 1; otherwise, take l→ l + 1.

(c) Generate an additional random number 0 < p3 < 1, and if p3 < Br↓o→s +

Br↑o→s, set the color quantum number to singlet (c → 0); otherwise, remain
in the octet configuration (c = 1).

4. Continue from step 2.

A realization of the above algorithm is a quantum trajectory ; the average of N quantum
trajectories converges to the solution of the NLO Lindblad equation in the limit N →∞.

At NLO, the effective Hamiltonian contains a term proportional to the anticommu-
tator {ri, pi} (cf. Eqs.(9.47) and (9.48)). This term complicates the use of the Suzuki-
Trotter split-step pseudospectral method used at LO to evolve the wave function deter-
ministically between quantum jumps. To implement the NLO evolution, we use instead
the Crank-Nicolson method which approximates the time evolution operator as

exp [−iHl,c∆t] '
1− i∆tHl,c/2

1 + i∆tHl,c/2
, (9.81)

where Hl,c is the heavy quarkonium effective Hamiltonian projected onto the angular
momentum l and color c of the quarkonium state and contains the in-medium corrections
to the potential. In the reduced spherical basis, this allows us to write(

1 + i∆tH l,c/2
)
u(t+ ∆t) =

(
1− i∆tH l,c/2

)
u(t). (9.82)

The temporal update is performed by computing the right-hand side of the equation
and subsequently solving for u(t + ∆t). The NLO QTraj code uses the open-source
Armadillo [160] package’s optimized sparse matrix solver spsolve to solve for u(t+∆t).
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9.3 Results

In this section, we present the results of our QTraj simulation solving the NLO Lindblad
equation derived in the previous two sections. Due to the increased computational costs
associated with NLO evolution, the NLO QTraj code implements a number of changes
with respect to the LO version to decrease the computational cost of the simulations.
Specifically, the results presented in this section utilize a lattice of spatial extent L =
40 GeV−1 with NUM = 2048 spatial sites; both the spatial extent of the lattice and
number of lattice sites are halved with respect to values used to solve the LO Lindblad
equation in chapter 8 giving an identical lattice spacing of a ≈ 0.0195 GeV−1. As in
the LO case, the initial state is the Gaussian given in Eq. (8.56) with width c = 0.2.
The heavy quark mass M , strong coupling αs and Bohr radius a0 are as in the LO case
detailed in subsec. 8.2.5.

The remainder of this section is structured as follows. In subsec. 9.3.1, we examine
the phenomenological impact of the NLO evolution terms with the aim of fixing a lower
temperature bound Tf for the coupling to the medium. In subsec. 9.3.2, we quantify
the effect of the NLO terms on the singlet to octet width. In subsec. 9.3.3, we quantify
the effect of the NLO evolution on the survival probability of the Υ(1S) state. In
subsec. 9.3.4, we analyze the effect of quantum jumps on the NLO Lindblad equation.
In subsec. 9.3.5, we present our main phenomenological results: the nuclear modification
factor RAA of the Υ(1S), Υ(2S) and Υ(3S) as functions of Npart. In subsec. 9.3.6, we
present results obtained initializing the coupling of the quarkonium evolution to the
hydrodynamic evolution at τmed = 0.25 fm rather than τmed = 0.6 fm. In subsec. 9.3.7,
we estimate our uncertainty due to the use of the fundamental rather the adjoint κ by
running simulations with constant κ̂ = 0.24 and 4.2 corresponding to the indirect bounds
placed on the heavy quarkonium momentum diffusion coefficient by lattice measurements
of Γ[Υ(1S)] (cf. Fig. 5.3).

9.3.1 Phenomenological impact of NLO terms

The NLO Lindblad equation presented in this chapter allows for the coupling of the
quarkonium and the medium at temperatures lower than Tf = 250 MeV used in Refs. [60,
61]. In Fig. 9.1, we display the relative difference of the survival probabilities of the Υ(1S)
state calculated using the LO and NLO Lindblad equations; both simulations utilize
Bjorken medium evolution and an initial temperature of T0 = 425 MeV at time t0 = 0.6
fm with Heff evolution without quantum jumps and κ̂(T ) = κ̂C(T ) and γ̂ = −1.75.
Furthermore, the LO deterministic evolution between quantum jumps is implemented
using the Crank-Nicolson method. We observe the relative difference to reach ∼ 50% at
T ≈ 190 MeV. We interpret the 50% relative difference as signaling, from a phenomeno-
logical perspective, the breakdown of the expansion in E/T . In the phenomenological
results presented in the following subsections, we thus utilize a lower bound of Tf = 190
MeV for the NLO evolution.
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Figure 9.1: The relative difference of the survival probabilities of the Υ(1S) computed
using the LO and NLO Lindblad equations. The evolution is performed using only the
effective Hamiltonian Heff without quantum jumps; the medium evolution is Bjorken
with T0 = 425 MeV and t0 = 0.6 fm.

9.3.2 Widths

In this subsection, we analyze the effect of the inclusion of terms of order E/T and
(E/T )2 on the in-medium singlet to octet widths of the Υ(1S), Υ(2S) and Υ(3S). We
project the singlet to octet width Γs→o of Eq. (9.64) onto the 1S, 2S and 3S states
and organize the result in powers of E/T where E = 1/Ma2
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The dimensionful quantity outside the curly braces represents the width at order 0 in
the E/T expansion with respect to which the contributions inside the curly braces are
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Figure 9.2: Comparison of the singlet to octet widths of the 1S, 2S and 3S states
with terms of order (E/T )0, (E/T )1 and (E/T )2. Γm(nS) represents 〈nS|Γs→o|nS〉
including terms up to order (E/T )m. The gray shaded area represents temperatures
below Tf = 190 MeV below which coupling to the hydrodynamic medium evolution is
not implemented in the phenomenological results presented in this chapter. The black
line at 1 represents the limit of perfect convergence of the E/T expansion. Taken from
Ref. [62].

normalized. We plot these contributions over the temperature range T = 158 MeV to
T = 600 MeV in Fig. 9.2. We include a solid black line at 1 which indicates perfect
convergence of the E/T expansion. As anticipated due to the lower magnitude of their
Coulombic binding energies, the normalized widths of the states of higher principal quan-
tum number n show better convergence than those of states of lower n. Furthermore, for
all states considered, the expansion shows better convergence properties upon inclusion
of higher order terms as indicated by the solid curves lying above the dotted curves of
the same color. The expansion also converges as temperature is increased. The gray
shaded area in the left of the plot corresponds to temperatures T < Tf = 190 MeV not
included in the NLO phenomenological studies carried out in Ref. [62] and presented in
this chapter.

9.3.3 Survival probabilities

To analyze the effect of the NLO terms, in Fig. 9.3, we display the results of simulations
with Heff evolution without quantum jumps carried out at LO and NLO in the E/T
expansion using trajectory averaged temperature evolution in each centrality class. The
left column displays variation of κ̂(T ), and the right column of γ̂. In the top row, we
display the survival probabilities of the Υ(1S) state obtained using LO and NLO Heff

evolution both evolved to Tf = 190 MeV. We note that T = 190 MeV is well outside the
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Figure 9.3: Survival probabilities of the 1S state as a function of centrality. All simula-
tions are performed using Heff evolution without quantum jumps and trajectory averaged
temperature evolution. The upper row compares NLO results to LO results both with
Tf = 190. The lower row compares NLO results with Tf = 190 MeV to LO results with
Tf = 250 MeV. The bands in the right column display κ̂(T ) variation and in the left
column γ̂ variation. The lower, central and upper parametrizations of κ̂(T ) and values
of γ̂ are represented by dashed, solid and dot-dashed curves, respectively. Taken from
Ref. [62].

range of validity of the LO Lindblad equation; we include these plots to illustrate the
effect of the NLO terms, namely to increase the yield across the range of Npart. In the
second row of Fig. 9.3, we display the survival probability of the Υ(1S) obtained using
LO Heff evolution down to Tf = 250 MeV, as used in Refs. [60, 61], against NLO Heff

results obtained evolving to Tf = 190 MeV as in Ref. [62]. In more central collisions, we
observe less suppression in the NLO results consistent with the comparisons at equal Tf .
In the most peripheral collisions, we observe increased suppression in the NLO compared
to the LO results and a smoother approach of the NLO curves to 1 at Npart = 0 compared
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Figure 9.4: Survival probabilities of the Υ(1S), Υ(2S) and Υ(3S) states. In each panel,
results with and without quantum jumps are compared. The top row displays κ̂(T )
variation and the bottom row γ̂ variation; this variation is represented as in Fig. 9.3.
Taken from Ref. [62].

to the cusp in the LO results. In the most peripheral collisions, the initial temperature
of the medium is sufficiently close to Tf = 250 MeV (cf. Fig. B.1 and table B.1) such
that very little or no medium evolution takes place resulting in little to no suppression.
Inclusion of the NLO terms in the evolution equation allows us to lower Tf to 190 MeV
and thus more accurately treat peripheral collisions.

9.3.4 Effect of quantum jumps

In this subsection, we discuss the effect of quantum jumps at NLO. Fig. 9.4 shows the
nuclear modification factor RAA of the Υ(1S), Υ(2S) and Υ(3S) computed at NLO
with and without the effect of quantum jumps using trajectory averaged temperature
evolution. For the results including quantum jumps, the statistical uncertainties associ-
ated with averaging over the quantum jumps are subleading compared to the theoretical
uncertainty due to κ and γ, and only the latter uncertainties are displayed. In all combi-
nations of κ̂(T ) and γ̂, we observe the jumps to increase the yield of the state considered.
We note that the magnitude of the difference is small, and the relative difference greater
for the excited states than the ground state. With the present theoretical uncertainties
due to κ and γ, the uncertainty introduced evolving with only Heff neglecting the effect
of quantum jumps is thus subleading.
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Figure 9.5: The nuclear modification factor RAA of the Υ(1S), Υ(2S) and Υ(3S) plotted
against Npart. The left panel displays variation with respect to κ̂, and the right panel
variation with respect to γ̂. The dashed and dot-dashed lines show results for the lower
and upper values, respectively, of κ̂(T ) and γ̂ while the central curves show results for
κ̂C(T ) and γ̂ = −2.6. Our theory results are compared against experimental measure-
ments from the ALICE [46], ATLAS [47] and CMS [48, 52] collaborations. Taken from
Ref. [62].

9.3.5 Nuclear modification factor RAA

In this section, we present the main results of this chapter: the nuclear modification
factor RAA of the Υ(1S), Υ(2S) and Υ(3S) as functions of Npart and pT . The results
were obtained sampling over 80 000 physical trajectories for each combination of κ̂(T )
and γ̂. Due to the increased computational cost of sampling quantum trajectories along
each physical trajectory, only Heff evolution without quantum jumps is implemented.
Feed down is accounted for as in the LO case described in subsec. 8.2.4.

In Fig. 9.5, we display RAA as a function of Npart and compare against experimen-
tal measurements of the ALICE [46], ATLAS [47] and CMS [48, 52] collaborations. In
Fig. 9.6, we display RAA as a function of pT and compare against experimental measure-
ments of the ALICE [46], ATLAS [47] and CMS [48,52] collaborations. In both figures,
we display κ variation in the left panel and γ variation in the right panel. We note that
in these figures, we make use of a best fit value of γ̂ = −2.6 such that the best fit value
of γ̂ and κ̂C(T ) runs through the experimental data. Our systematic uncertainties with
respect to κ are thus estimated by performing 3 simulations at γ̂ = −2.6 with κ̂U (T ),
κ̂C(T ) and κ̂L(T ); uncertainties due to γ are estimated by running two additional sim-
ulations with κ̂C(T ) and with γ̂ = −3.5 and γ̂ = 0. We observe greater systematic
uncertainty due to κ than γ. With the best fit value of γ̂, we observe agreement between
our QTraj RAA[Υ(1S)] results and the experimental measurements. The central QTraj
RAA[Υ(2S)] and RAA[Υ(3S)] results show moderate discrepancy with the experimental
data which the γ variation lessens.
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Figure 9.6: The nuclear modification factor RAA of the Υ(1S), Υ(2S) and Υ(3S) plotted
against pT . The theoretical uncertainties are displayed as in Fig. 9.5. Our theory results
are compared against experimental measurements from the ALICE [46], ATLAS [47]
and CMS [48,52] collaborations. Taken from Ref. [62].

9.3.6 Earlier medium initialization

In this subsection, we display results obtained initializing the coupling between the
quarkonium and the medium at τmed = 0.25 fm rather than τmed = 0.6 fm as in previous
works. We display RAA[Υ(1S)], RAA[Υ(2S)] and RAA[Υ(3S)] as a function of Npart in
Fig. 9.7 and as a function of pT in Fig. 9.8. κ and γ variation are as in chapter 8, i.e.,
the central value of γ̂ = −1.75 rather than the best fit value of γ̂ = −2.6 is utilized. We
observe that this earlier initialization of the medium coupling leads the central QTraj
curve to match the data without tuning γ̂ to a best fit value. We note that at such early
times, the medium is far from isotropic thermal evolution [161,162]; the presence of large
momentum anisotropies introduces uncertainties which are, at present, unquantified.

9.3.7 Width extracted κ

In this subsection, we quantify our systematic uncertainty due to use of the heavy
quark momentum diffusion coefficient measured in Ref. [110]. As discussed in sec. 5.1,
in Ref. [112] adjoint and fundamental versions of the transport coefficients κ and γ
are identified with the adjoint coefficients related to the in-medium evolution of heavy
quarkonium and the fundamental coefficients to that of heavy quarks. The explicit,
perturbative calculation of Ref. [112] shows adjoint and fundamental γ to differ at order
g4 while explicit calculations show adjoint and fundamental κ to agree up to order g5T 3.

Adjoint κ is related to the in-medium width of, e.g., the Υ(1S) by the relation given
in Eq. (5.22). In the left panel of Fig. 5.3, we display estimates of adjoint κ derived from
lattice measurements of Γ[Υ(1S)] with a range given by 0.24 . κ̂ . 4.2. In Fig. 9.9,
we display RAA[Υ(1S)], RAA[Υ(2S)] and RAA[Υ(3S)] as functions of Npart (left panel)
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Figure 9.7: The nuclear modification factor RAA of the Υ(1S), Υ(2S) and Υ(3S) plotted
against Npart. In these simulations, coupling with the medium is initialized at τmed =
0.25 fm. The theoretical uncertainties are displayed as in Fig. 9.5. Our theory results
are compared against experimental measurements from the ALICE [46], ATLAS [47]
and CMS [48,52] collaborations. Taken from Ref. [62].

and pT (right panel). All simulations are run with γ̂ = −2.6; the upper, central and
lower curves represent simulations run with κ̂(T ) = 0.24, κ̂(T ) = κ̂C(T ) and κ̂(T ) = 4.2,
respectively. In comparison with Figs. 9.5 and 9.6, we observe the uncertainty due to κ
to increase but remain smaller than that due to γ.
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Figure 9.8: The nuclear modification factor RAA of the Υ(1S), Υ(2S) and Υ(3S) plotted
against pT . In these simulations, coupling with the medium is initialized at τmed = 0.25
fm. The theoretical uncertainties are displayed as in Fig. 9.5. Our theory results are
compared against experimental measurements from the ALICE [46], ATLAS [47] and
CMS [48,52] collaborations. Taken from Ref. [62].
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Figure 9.9: The nuclear modification factor RAA of the Υ(1S), Υ(2S) and Υ(3S) plotted
against Npart (left panel) and pT (right panel). The upper, central and lower curves show
results for γ̂ = −2.6 and κ̂(T ) = 0.24, κ̂C(T ) and 4.2, respectively. Our theory results
are compared against experimental measurements from the ALICE [46], ATLAS [47]
and CMS [48,52] collaborations. Taken from Ref. [62].
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Chapter 10

Summary and Outlook

At macroscopic scales and low energies, the strong interaction confines quarks and gluons
to color neutral bound states, and they are never observed as asymptotic states. Current
heavy ion collision experiments create an environment of immensely high energy density
within which color charged quarks and gluons may in fact propagate freely. Such a
medium is denoted a quark gluon plasma and is the subject of investigate of this thesis.
Our physical systems of interest in this investigation are heavy quarks and their bound
states. The large mass of the bottom and charm quarks with respect to the temperatures
of current HIC experiments make them ideal probes of this medium from its formation
through to freeze out. The nuclear modification factor RAA which quantifies the effect
of the medium on yields of heavy quarkonium states is an observable of particular the-
oretical and experimental interest as a reduction in yield of heavy quarkonium states in
HIC experiments with respect to proton-proton collisions may signal the creation of a
deconfined QGP.

In part I of this thesis, we introduce QCD and nonrelativistic [18, 19] and poten-
tial nonrelativistic theories thereof [20–22], the formalism of open quantum systems and
quantum field theory at finite temperature. Using pNRQCD, the OQS formalism and fi-
nite temperature QFT, we present a set of evolution equations describing the in-medium,
out of equilibrium evolution of heavy Coulombic quarkonium.

In part II of this thesis, we analyze these evolution equations in dependence on the
hierarchy between the temperature T of the medium and the binding energy E of the
quarkonium state. In the strict E � T limit, the evolution equations take the form
of a Lindblad equation [28, 30]. Relaxing this strict assumption and including terms of
order E/T , we derive a Langevin equation describing the time evolution of in-medium
heavy quarkonium undergoing a random walk due to uncorrelated interactions with the
medium. We perform a similar set of manipulations and field redefinitions in the single
heavy quark sector using NRQCD to derive an analogous Langevin equation for the
momentum evolution of a single heavy quark. The in-medium diffusion of the heavy
particles described by these Langevin equations is characterized by a momentum diffu-
sion coefficient κ. In a seminal work [104], a field theoretic definition of the heavy quark
momentum diffusion coefficient κ was formulated related to the correlator of chromo-
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electric fields dressed with fundamental Wilson lines. In the succeeding years, a corre-
sponding correlator with an adjoint Wilson line describing the in-medium evolution of
heavy quarkonium has become of interest. We detail the current state in the literature
of the investigation of the adjoint and fundamental correlators and the difference be-
tween them and present state of the art extractions of these transport coefficients. We
close part I of this thesis with a preliminary set of equations describing the in-medium
evolution of heavy quarkonium valid beyond the dilute limit.

In part III of this thesis, we solve the master equation derived in part I and compute
observables for comparison against experiment. At order 0 in the E/T expansion, the
heavy quarkonium master equation takes the form of a Lindblad equation. We utilize
the quantum trajectories algorithm to solve this Lindblad equation in a computation-
ally efficient manner. Medium evolution is implemented via coupling to a realistic 3+1D
dissipative relativistic hydrodynamics code, and the quantum trajectories algorithm re-
alized along distinct physical trajectories through the medium. The sampling of physical
trajectories allows for the calculation of the elliptic flow v2 of the lowest lying Υ states
and the presentation of v2 and the nuclear modification factor RAA of the Υ states as
a function of both transverse momentum pT and the number of participating nucleons
Npart. These results, published in Ref. [61], show good agreement with experimental
measurements by the ALICE, ATLAS and CMS collaborations. We, furthermore, inves-
tigate the effect of terms of order E/T on the in-medium evolution of heavy quarkonium.
We include such terms in the pNRQCD master equation and derive a Lindblad equa-
tion accurate at order E/T thus allowing for evolution to lower temperatures closer to
the pseudocritical temperature of the QGP phase transition. We utilize an NLO imple-
mentation of the quantum trajectories algorithm to solve the Lindblad equation at this
order. To counterbalance the increased computational cost of solving the NLO Lindblad
equation compared to its LO counterpart, we evolve the state with Heff without includ-
ing the effect of quantum jumps. We present RAA[Υ(1S)], RAA[Υ(2S)] and RAA[Υ(3S)]
as functions of Npart and pT as calculated and compared against experimental measure-
ments of the ALICE, ATLAS and CMS collaborations in Ref. [62] and observe good
agreement between our theoretical results and the experimental data.

The work presented in this thesis has proven to be of interest in the experimental
community. Recent measurements of the nuclear modification factor of the Υ(1S) and
Υ(2S) states and their double ratio by the ATLAS collaboration [163] include compar-
isons against the results presented in chapter 8. Additionally, preliminary measurements
by the CMS collaboration of RAA of the Υ(1S), Υ(2S) and Υ(3S) and the double ratio
RAA[Υ(3S)]/RAA[Υ(2S)] include comparisons to the QTraj results at NLO in the E/T
expansion presented in chapter 9. Finally, in Ref. [164], our results are compared against
experimental measurements of Υ(1S) and Υ(2S) suppression in gold-gold collisions at√
sNN = 200 GeV by the STAR collaboration.

A number of theoretical and phenomenological projects remain building on the work
presented in this thesis. On the theoretical side, in order to put the modified, in-
medium NRQCD Lagrangian of Eq. (6.68) on more sound theoretical footing, a thorough
investigation of the scale

√
MT remains necessary. Furthermore, we plan a detailed
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study of the nonlinear evolution equations of chapter 7 in different parameter regimes.
On the phenomenological side, the diffusive E/T terms added to the Lindblad equation
and analyzed in Ref. [62] present the opportunity to add to the literature studying
thermalization [34,165,166].
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Appendix A

QTraj code

In this appendix, we present an introduction to the QTraj code used in Refs. [60–
62] to solve the Lindblad equation describing the in-medium evolution of Coulombic
quarkonium. We aim to provide an abridged introduction to the QTraj code enabling
the reader to download and run the code and simulate quantum trajectories converging
to the solutions of the Lindblad equations given in chapters 8 and 9. We note that the
full functionality of the QTraj code extends beyond what is presented in this appendix
and direct the reader to Ref. [59] for a detailed description of the code in its entirety. The
QTraj code is released under the GNU general public license and is available for download
at Ref. [167]. The most up to date branch of the code at the time of the writing of this
thesis is “NLO” which allows the user to implement the quantum trajectories algorithm
at NLO and LO in the E/T expansion as in chapters 9 and 8, respectively. In sec. A.1,
we give an introduction to the QTraj code explaining its runtime parameters. In sec. A.2,
we present results showing convergence in the observables of interest (namely RAA of
the lowest lying Υ states) as the lattice and Monte Carlo parameters are taken to the
limits in which they converge, e.g., the continuum limit and the limit of infinite quantum
trajectories.

A.1 Running the QTraj code

In this section, we present the runtime parameters contained in the file input/params.txt
which the user sets to run the QTraj code. We present an exhaustive list of these param-
eters in table A.1. In the text, we detail only the parameters necessary to reproduce the
results shown in this thesis; the remaining parameters given in table A.1 are explained
in Ref. [59].

After downloading the source code from Ref. [167], the code is compiled by running

$ make

in the top level directory producing an executable called qtraj. The code is executed
by running

114



$ ./qtraj

on the executable. The physics, lattice, and simulation parameters can be set at runtime
or beforehand in the file params.txt in the directory input.

Physics parameters To implement the quantum trajectories algorithm as discussed
in chapters 8 and 9, the parameter potential must be set to 0. For doJumps= 1,
QTraj implements the full quantum trajectories algorithm including quantum jumps;
for doJumps= 0, QTraj evolves the quarkonium state deterministically with Heff without
implementing quantum jumps. The parameter m sets the reduced mass of the bound
state in units of GeV. The parameter alpha sets the value of the rescaled strong coupling
α = Cfαs where αs is the strong coupling in the pNRQCD potentials. The parameters
kappa and gam set the values of the dimensionless quantities κ̂ and γ̂, respectively.
kappa= −1,−2 and −3 specify the central, lower and upper fits of κ̂(T ) as discussed in
chapter 8; values of kappa ≥ 0 specify performing the simulation with a constant value
of κ̂(T ). Values of gam ≤ 0 specify performing the simulation with a fixed value of γ̂.

Hydrodynamic evolution parameters The parameter temperatureEvolution can
be set to 0, 1, 2 or 3 to specify ideal Bjorken temperature evolution, user specified temper-
ature evolution, temperature evolution along a specific physical trajectory or constant
medium temperature, respectively. For Bjorken evolution, the initial temperature in
units of GeV is set using T0. The final temperature in units of GeV is set using Tf.
The initialization times of the hydrodynamic background and vacuum evolution of the
bound state are set using tmed and t0, respectively.

Initial condition The Gaussian initial condition of Eq. (8.56) is specified by setting
initType = 1. The width of the Gaussian in units of a0 and its angular momentum are
set using initWidth and initL, respectively; its color state is specified using initC = 0
for singlet and initC = 1 for octet.

Simulation and lattice parameters To output overlaps with vacuum eigenstates,
ProjType must be set to 0. The number of quantum trajectories to simulate is specified
by nTrajectories. The random seed for the random number generator can be set to
a user defined value by specifying a positive integer value of randomseed; a random
number based on the current system time is used by specifying randomseed = 0. The
number of spatial lattice sites, lattice size in GeV−1 and temporal lattice spacing in
units of GeV−1 are specified by num, L and dt, respectively. The implementation of
the deterministic evolution of the wave function with Heff is specified using stepper.
The split-step pseudospectral method discussed in subsec. 8.2.2 is implemented at LO
in the E/T expansion by setting stepper = 0; the Crank-Nicolson method discussed in
subsec. 9.2 is implemented at LO and NLO in the E/T expansion by setting stepper = 1
and 2, respectively.
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We note that the results of chapters 8 and 9 required on the order of hundreds of
thousands of quantum trajectories. As individual quantum trajectories are independent,
the quantum trajectories algorithm is embarrassingly parallelizable. To take full advan-
tage of this, we include in the QTraj code repository a number of portable batch scripts
(PBS) enabling many trajectories to be run in parallel on computing infrastructure
supporting the PBS format. The file manyTrajectories.pbs in the scripts directory
allows the user to specify the number of physical trajectories to sample, the number of
quantum trajectories per physical trajectory and the number of requested nodes.
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Group Parameter Value/Type Description
Potential potential 0 Munich potential (Appendix E.1)
parameter 1 Isotropic KSU potential (Appendix E.2)

2 Anisotropic KSU potential (Appendix E.3)
Jump doJumps 1 Perform quantum jumps; only for potential=0

parameters 0 Do not perform quantum jumps
maxJumps integer ≥ 0 Maximum number of quantum jumps

Physics m real ≥ 0 Reduced mass in units of GeV
parameters alpha real ≥ 0 Coulomb coupling; α = CFαs

kappa -1 Central fit (Appendix E.1)
-2 Lower fit (Appendix E.1)
-3 Upper fit (Appendix E.1)

real ≥ 0 Coefficient κ̂ in Munich potential (Appendix E.1)
gam real ≤ 0 Coefficient γ̂ in Munich potential (Appendix E.1)

Temperature temperatureEvolution 0 Ideal Bjorken evolution; T (τ) = T0(τmed/τ)1/3

parameters 1 Read from temperature evolution file (Ap-
pendix C.1)

2 Read from “trajectory file” (Appendix C.2)
3 constant temperature of T0 for maxSteps

temperatureFile string Specifies temperature file path
T0 real > 0 Initial temperature in units of GeV (Bjorken)
Tf 0 < T0 < Tf Final temperature in units of GeV

tmed real ≥ 0 Time to turn on hydro background in units of GeV−1

t0 real ≥ 0 Time to begin vacuum evolution in units of GeV−1

Initial initType 0 Singlet Coulomb eigenstates
condition 1 Gaussian delta function

parameters 100 Computed eigenstates (Section 3.1)
200 Loads eigenstates from file (Section 3.1)

ProjType 0 Uses coulomb eigenstates
1 Uses computed eigenstates
2 Uses disk-based eigenstates (Section 3.1)

initWidth real ≥ 0 Initial width for Gaussian IC (initType=1)
initN 1 Principal quantum number n; only for initType=0
initL 0 Angular momentum quantum number l
initC 0 Singlet color configuration

1 Octet color configuration; only for potential=0
basisFunctionsFile string Specifies basis functions file path (Section 3.1)

Simulation nTrajectories integer ≥ 0 Number of quantum trajectories to simulate
parameters randomseed 0 Uses high-resolution system timer as a seed

integer > 0 Uses specified number as a seed
-1 Uses deterministic random numbers (for testing)

rMax 0 < real ≤ 1 Sets maximum initial random number (Section 4.4)
maxJumps integer ≥ 0 Sets maximum number of jumps (Section 4.4)

Grid num integer ≥ 2 Number of lattice sites; 2n for best performance
parameters L real > 0 Size of simulation box in units of GeV−1

dt real > 0 Time step in units of GeV−1

maxSteps integer ≥ 0 Maximum number of time steps
derivType 0 Full derivative (Section 3.2)

1 Second-order differences (Section 3.2)
stepper 0 Suzuki-Trotter - LO E/T

1 Crank-Nicholson - LO E/T
2 Crank-Nicholson - NLO E/T

Output snapFreq integer ≥ 0 Frequency for the summary output
parameters snapPts integer ≤ num For best performance num/snapPts=2n

dirnameWithSeed 0 Output directory “output”
1 Output directory “output-<seed>”

saveWavefunctions 0 Turns off saving of wavefunctions
1 Turns on saving of wavefunctions

outputSummaryFile 0 Turns off output of the summary file summary.tsv
1 Turns on output of the summary file summary.tsv

Table A.1: Runtime parameters of the QTraj code. Section numbers in parenthesis following descriptions denote
sections of Ref. [59] in which detailed explanations are found. Taken from Ref. [59] with the parameter stepper

added allowing the user to specify QTraj evolution at LO or NLO in E/T .
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A.2 Parameter tests

In this section, we detail a number of scaling tests performed on the QTraj code to esti-
mate systematic uncertainties associated with the lattice and Monte Carlo parameters.
Our procedure is to perform 100 000 quantum trajectories on a lattice of 1-dimensional
volume L = 80 GeV−1, NUM = 4096 lattice sites, lattice spacing a = 0.0195 GeV−1

and temporal spacing ∆t = 0.001 GeV−1. We utilize Gaussian, singlet, s-wave initial
conditions with width c = 0.2 and Bjorken temperature evolution with initial temper-
ature T0 = 425 MeV and medium coupling initialized at τmed = 0.6 fm. To estimate
our systematic uncertainty associated with the lattice discretization, finite size of the
lattice and the finite width of the Gaussian initial condition, we vary these quantities
while holding the others constant. We display these results in Fig. A.1 showing the
survival probabilities of the Υ(1S), Υ(2S) and Υ(3S). In Fig. A.1a, we display the
survival probabilities as the number of lattice points NUM is increased by factors of 2
from NUM = 512 to NUM = 8192; we observe good convergence at our production value
of NUM = 4096 corresponding to a lattice spacing of a = 0.0195 GeV−1. In Fig. A.1b,
we display the survival probabilities as the lattice volume L is increased by factors of 2
from L = 10 GeV−1 to L = 160 GeV−1; we observe good convergence at our production
volume of L = 80 GeV−1. In Fig. A.1c, we display the survival probabilities as the tem-
poral step size ∆t is decreased from ∆t = 0.01 GeV−1 to ∆t = 0.0005 GeV−1; we observe
good convergence at our production step size of ∆t = 0.001 GeV−1. In Fig. A.1d, we
display the survival probabilities as the width of the Gaussian initial condition c = ∆/a0

is decreased by factors of 2 from c = 0.8 to c = 0.1; we observe good convergence at our
production width of c = 0.2.

In Fig. A.2, we display the convergence properties of our results in dependence on
the parameters of the quantum trajectories algorithm: the maximum allowed number
of quantum jumps, the maximum allowed value of the initial random number and the
number of quantum trajectories. Our lattice, initial condition and hydrodynamics pa-
rameters are the same as those used to produce the data shown in Fig. A.1. In Fig. A.2a,
we display the survival probabilities of the Υ states as the maximum allowed number of
jumps is varied between 2 and 40. In Fig. A.2b, we display the survival probabilities of
the Υ states as the maximum value of the initial random number is increased by factors
of 2 from rMax = 0.125 to rMax = 1. In Figs. A.2c and A.2d we display the survival
probabilities of the S-, P- and D-wave bottomonium states as the number of quantum
trajectories is increased from Ntraj = 1000 to Ntraj = 250 000. Due to the structure of
the Lindblad equation governing the in-medium evolution of Coulombic quarkonium, we
can conceivably reduce these parameters to more efficiently arrive at a solution to the
Lindblad equation. Our relevant quantum numbers are angular momentum and color;
our observable of interest is the overlap with singlet, S-wave states. Considering a state
of angular momentum l, we observe that the probability p↑ of a quantum jump to a
state of angular momentum l+ 1 is greater than the probability p↓ to a state of angular
momentum l−1. Thus, the greater the number of jumps, the lower the probability of the
state having angular momentum l = 0 and nonzero overlap with the lowest lying S-wave
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states. Furthermore, the repulsive octet potential drives the state to larger radii leading
to less overlap with the lowest lying S-wave states peaked around the origin (cf. Fig. B.7
and accompanying discussion). As evident from the dedicated studies on the effect of
quantum jumps (cf. subsecs. 8.3.3 and 9.3.4), the greatest contribution to the survival
probability comes from states that never jumped at all, i.e., those whose evolution is
described entirely by Heff evolution. The results of Fig. A.2a show that the contribu-
tion to the survival probabilities of the lowest lying Υ states is relatively unaffected by
excluding trajectories with a large number of jumps which are highly unlikely to be
concentrated near the origin and have angular momentum l = 0. Setting a maximum
value rMax < 1 of the initially generated random number excludes trajectories which
jump early in their evolution and are thus unlikely to be concentrated near the origin
with angular momentum l = 0 at the simulation end time. Excluding these trajectories
allows the QTraj code to run faster with no strong effect on the observables of interest.
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Figure A.1: Scaling tests. We display the survival probabilities calculated while varying
lattice and evolution parameters. In all plots, the discretization becomes more faithful to
the continuum from left to right; the second to rightmost points correspond to production
parameters. The error bars represent statistical uncertainty due to averaging 100 000
quantum trajectories. In all cases, we observe good convergence at the production values
of the parameters. Taken from Ref. [59].
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Figure A.2: Variation of simulation parameters in the QTraj code. In the top row, we
vary the maximum allowed number of quantum jumps (left) and the maximum allowed
value of the initial random number (right). In the bottom row, we estimate the necessary
number of quantum trajectories for S-wave (left) and P- and D-wave (right) survival
probabilities to converge. Error bars in the top row represent statistical uncertainty
due to averaging 100 000 quantum trajectories. Error bars in the bottom row represent
statistical uncertainty to due to averaging over the number of quantum trajectories
shown on the horizontal axis. Taken from Ref. [59].
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Appendix B

Trajectory averaged results

In this appendix, we present results from Ref. [60] in which the hydrodynamic evolution
in the QTraj code is implemented as an average trajectory in each centrality bin. These
results represent the solution of the Lindblad equation at LO in the E/T expansion as
discussed in chapter 8. We note that these results are superseded by Ref. [61] in which
the LO Lindblad equation is solved sampling distinct physical trajectories through the
medium. The average physical trajectory is computed by Monte Carlo sampling approx-
imately 132 000 physical trajectories per centrality bin through the plasma. The produc-
tion point is sampled from the binary overlap profile of the colliding nuclei Nbin

AA(x, y),

the transverse momentum pT from a pT /
(
p2
T + 〈M〉2

)2
distribution where 〈M〉 is the

average mass of the considered states and the azimuthal angle φ uniformly from 0 to 2π
at y = 0. The temperature is recorded at each point along the physical trajectory and
averaged in each centrality bin to arrive at a path averaged temperature evolution for
each bin. We display the temperature profiles in Fig. B.1 and the corresponding number
of participating nucleons in table B.1. The hydrodynamic implementation utilizes the
tuning of Ref. [168].

In Fig. B.2, we plot a comparison of survival probabilities obtained using path av-
eraged temperature evolution as in Ref. [60] and distinct physical trajectories as in
chapters 8. The simulations were carried out at leading order in the E/T expansion
as in chapter 8 and use the lattice and scale setting parameters given in sec. 8.2. We
observe evolution along distinct physical trajectories to increase the survival probability
at high Npart and to decrease it at low Npart. This effect is noticeably stronger on the
excited states than the ground state most probably due to the larger dependence of the
in-medium widths of the excited states on the temperature. In the remainder of this
appendix, in sec. B.1, we present the results of Ref. [60], namely the nuclear modifica-
tion factor RAA of the Υ(1S), Υ(2S) and Υ(3S) states and double ratios thereof and in
sec. B.2 various tests performed. We note that the phenomenological results of Ref. [60]
presented below have been superseded by those presented in the chapters 8 and 9.
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Figure B.1: The path averaged temperature as a function of time for each centrality
class. Taken from Ref. [60].

B.1 Results

In this section, we present the phenomenological results Ref. [60]. As the Lindblad
equation solved in Ref. [60] is LO in the E/T expansion, the split-step pseudospectral
method of subsec. 8.2.2 is used for deterministic Heff evolution. For consistency with
values used in Refs. [28, 30], a bottom mass of mb = 4.881 GeV is utilized yielding an
inverse Bohr radius of 1/a0 = 0.742 GeV−1 and a strong coupling of αs(1/a0) = 0.414
computed by solving Eq. (8.50). Systematic uncertainties due to κ are estimated by
performing simulations with κ̂(T ) = κ̂U (T ), κ̂C(T ) and κ̂L(T ) and uncertainties due
to γ by simulating with γ̂ = −3.5,−1.75 and 0. The lattice parameters are identical
to those given in subsec. 8.2.6, namely NUM = 4096 spatial sites, a radial volume of
L = 80 GeV−1, a Gaussian initial condition of width c = 0.2 and a spatial time step
dt = 0.001 GeV−1.

In Fig. B.3, we display the nuclear modification factor RAA[Υ(1S)], RAA[Υ(2S)] and
RAA[Υ(3S)] plotted against centrality. The bands in the left panel represent uncer-
tainty due to κ and the bands in the right panel due to γ. We note good agreement
with the experimental data from the ALICE [46], ATLAS [47] and CMS [48] collabora-
tions. In Figs. B.4 and B.5, we plot the double ratios of RAA[Υ(2S)]/RAA[Υ(1S)] and
RAA[Υ(3S)]/RAA[Υ(1S)], respectively, against centrality. Again, κ variation is given on
the left and γ variation of the right. We note reasonable agreement with the experi-
mental data from the ALICE [46], ATLAS [47] and CMS [49] collaborations with some
tension at low Npart.
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Centrality 〈b〉 [fm] 〈Npart〉 T central
0 [GeV] T average

0 [GeV]

0% 0 406.1 0.630 0.565
0-5% 2.32 374.0 0.625 0.561
5-10% 4.25 315.9 0.614 0.550
10-20% 6.01 243.5 0.597 0.533
20-30% 7.78 168.5 0.571 0.504
30-40% 9.21 112.4 0.538 0.470
40-50% 10.45 70.8 0.497 0.430
50-60% 11.55 41.1 0.446 0.381
60-70% 12.56 21.3 0.386 0.325
70-80% 13.49 9.7 0.322 0.267
80-90% 14.38 3.8 0.258 0.214
90-100% 15.66 0.97 0.180 0.157

Table B.1: Relations among the centrality classes, impact parameters and number of
participating nucleons with the corresponding central and average temperatures in a√
sNN = 5.02 TeV PbPb collision. Taken from Ref. [60].

B.2 Tests

In this section, we display the results of a number of tests of the QTraj code performed
as part of the analysis of Ref. [60]. We note that all parameters are the same as those
used in the previous section.

In Fig. B.6, we display the survival probabilities of the Υ(1S), Υ(2S) and Υ(3S)
as functions of centrality comparing results obtained with full evolution with quantum
jumps against results obtained using only Heff evolution. Individual panels display the
results utilizing different combinations of κ̂(T ) and γ̂. Apart from κ̂C(T ) and γ̂ = 0, we
observe the effect of quantum jumps on the survival probability to be small. In Fig. B.7,
we display the survival probabilities of the Υ(1S), Υ(2S) and Υ(3S) comparing full
evolution with quantum jumps (solid curves) against evolution with only Heff; we note
that in the full evolution, the repulsive octet potential has been replaced by an attractive
singlet potential. All simulations are performed with κ̂C(T ) and γ̂ = −1.75. We note
the increased effect of the quantum jumps with respect to the central panel of Fig. B.6;
this provides insight into the small effect of the quantum jumps. A quantum jump
changes a singlet state evolved by an attractive potential to an octet state evolved by a
repulsive potential; the repulsive potential evolves the wave function to larger radii and
leads to low overlap with the lowest lying states concentrated at small radii. Replacing
the repulsive octet potential with an attractive singlet potential increases the likelihood
of overlap with the phenomenologically relevant lowest lying states after multiple jumps.
In Fig. B.8, we plot the survival probabilities of the χb(1P ) and χb(2P ). For the central
values of κ̂(T ) and γ̂, we observe almost total suppression in central collisions. In
Figs. B.9, B.10 and B.11, we plot off diagonal overlaps, i.e., the overlap of an initial
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Figure B.2: Survival probability of the Υ(1S), Υ(2S) and Υ(3S) plotted against Npart.
The simulations were carried out without including the effect of quantum jumps, i.e.,
evolving with only the effective Hamiltonian Heff. Dashed lines indicate path averaged
temperature evolution of the medium as in Ref. [60] while solid lines indicate sampling
of distinct physical trajectories through the medium as in Refs. [61,62]. The simulations
are performed using the central values of κ̂ and γ̂. Taken from Ref. [61].

state with a state of different quantum numbers. Fig. B.9 displays the overlaps of a
P-wave, singlet initial condition with the Υ(1S), Υ(2S) and Υ(3S) states. Fig. B.10
displays the overlaps of an S-wave, singlet intial condition with the χb(1P ) and χb(2P )
states. Fig. B.11, displays the overlaps of a P-wave, octet initial condition with the
Υ(1S), Υ(2S) and Υ(3S) states. In all cases, we observe the off diagonal overlaps to be
small and note that the particularly small values of the P-wave, octet to S-wave, singlet
overlap. Finally, in Fig. B.12, we display the effect on the Υ(1S), Υ(2S) and Υ(3S)
survival probabilities of a ±10% variation in Tf = 250 MeV. The simulations utilize Heff

evolution. For the 1S state, we note the effect of the variation is comparable to the
uncertainty due to κ and less than that due to γ.
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Figure B.3: The nuclear modification factor RAA of the Υ(1S), Υ(2S) and Υ(3S) plotted
against Npart. The left panel displays variation with respect to κ̂, and the right panel
variation with respect to γ̂. Our theory results are compared against experimental mea-
surements from the ALICE [46], ATLAS [47] and CMS [48] collaborations; experimental
uncertainties represent statistical and systematic uncertainties combined in quadrature.
Taken from Ref. [60].
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Figure B.4: The double ratio of the nuclear modification factor RAA[Υ(2S)] to
RAA[Υ(1S)] plotted against Npart. The theoretical uncertainties are represented as in
Fig. B.3. Our theory results are compared against experimental measurements from the
ALICE [46], ATLAS [47] and CMS [49] collaborations. Red and black error bars rep-
resent experimental systematic and statistical uncertainties, respectively. Taken from
Ref. [60].
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Figure B.5: The double ratio of the nuclear modification factor RAA[Υ(3S)] to
RAA[Υ(1S)] plotted against Npart. Uncertainties and experimental references are as
in Fig. B.4. Taken from Ref. [60].
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Figure B.6: The survival probabilities of the Υ(1S), Υ(2S) and Υ(3S) plotted against
Npart. We compare results obtained implementing the full quantum trajectories al-
gorithm including the effect of quantum jumps (solid curves) against results obtained
evolving only with Heff (dotted curves). Taken from Ref. [60].
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Figure B.7: The survival probabilities of the Υ(1S), Υ(2S) and Υ(3S) plotted against
Npart. We compare results obtained implementing the full quantum trajectories al-
gorithm including the effect of quantum jumps but with the repulsive octet potential
replaced by an attractive singlet potential (solid curves) against results obtained evolving
only with Heff (dotted curves). The band around the solid curves represent statistical er-
rors associated with the averaging over 98304 quantum trajectories per centrality point.
Taken from Ref. [60].
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Figure B.8: The survival probabilities of the χb(1P ) and χb(2P ) plotted against Npart.
The left panel displays variation with respect to κ̂, and the right panel variation with
respect to γ̂. Error bars around the central curve represent statistical uncertainties due
to the averaging over quantum trejectories. Taken from Ref. [60].
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Figure B.9: The overlaps of the P-wave, singlet Gaussian initial condition with the
Υ(1S), Υ(2S) and Υ(3S) states plotted against Npart. The left panel displays variation
with respect to κ̂, and the right panel variation with respect to γ̂. Taken from Ref. [60].
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Figure B.10: The overlaps of the S-wave, singlet, Gaussian initial condition with the
χb(1P ) and χb(2P ) states plotted against Npart. The left panel displays variation with
respect to κ̂, and the right panel variation with respect to γ̂. Taken from Ref. [60].
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Figure B.11: The overlaps of the P-wave, octet Gaussian initial condition with the
Υ(1S), Υ(2S) and Υ(3S) states plotted against Npart. The left panel displays variation
with respect to κ̂, and the right panel variation with respect to γ̂. Taken from Ref. [60].
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Figure B.12: 1S, 2S and 3S survival probabilities of an initial Gaussian state evolved
with Heff , i.e., without jumps. The central colored line in each panel represents the
evolution down to Tf = 250 MeV with κ̂C(T ) and γ̂ = −1.75. The colored bands
represent variations in κ̂ (upper row) and γ̂ (lower row) with Tf = 250 MeV. The black
dashed and dotted lines represent the evolution down to Tf = 275 MeV and 225 MeV,
respectively, with κ̂C(T ) and γ̂ = −1.75. Taken from Ref. [60].
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Appendix C

NLO Lindblad equation

In chapters 8 and 9 of this thesis, we present Lindblad equations describing the in-
medium evolution of heavy Coulombic quarkonium. These equations contain 6 collapse
operators corresponding to 2 color transitions and 3 spatial directions. As the heavy
quarkonium system is spherically symmetric, the 6 collapse operators can be reduced
to 2. In this appendix, we carry out this procedure by expanding the Lindblad equa-
tion in spherical harmonics and derive the form of the collapse operators and effective
Hamiltonian.

We begin by defining the density matrix projected onto the spherical spherical har-
monics

ρl
′m′;lm = 〈l′m′|ρ|lm〉 =

∫
dΩ(θ, φ)Y l′m′∗(θ, φ) ρ Y lm(θ, φ). (C.1)

As the system is rotationally symmetric, i.e., posses no preferred direction, the density
matrix is diagonal in l and m

ρl
′m′;lm = ρlm;lmδll′δmm′ . (C.2)

The rotational symmetry, furthermore, implies the equal probability of all polarizations
within an orbital; all information can, therefore, be encoded in

ρl =
∑
m

ρlm;lm. (C.3)

We proceed by performing this projection and summation at the level of the Lindblad
equation thus deriving an evolution equation for ρl.

We parametrize a general collapse operator as a linear combination of the position
and momentum operators in 3 dimensions

Ci = ari + bpi, (C.4)

where a and b are radially symmetric, complex matrix operators. We project the Lind-
blad equation onto eigenstates |lm〉; we, therefore, seek to calculate matrix elements of

the form 〈l′m′|C(†)
i |lm〉. We thus make use of the Wigner-Eckart theorem

〈l′m′|Cq|lm〉 = 〈lm; 1q|l′m′〉〈l′||C||l〉 , (C.5)
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where 〈l′||C||l〉 is a reduced matrix element independent of m, m′ and q, and 〈lm; 1q|l′m′〉
is a Clebsch-Gordan coefficient. Here, q is an index in the basis of spherical tensors taking
the values −1, 0 and 1; the components of the collapse operator Cq are defined in terms
of their Cartesian counterparts Ci as

C±1 = ∓ 1√
2

(Cx ± iCy) , C0 = Cz. (C.6)

Inner products of the form C†iCi are equivalent between the two bases∑
i

C†iCi =
∑
q

C†qCq. (C.7)

In sec. C.1, we derive the reduced matrix element given in Eq. (C.5) with the collapse
operator defined in Eq. (C.4). In sec. C.2, we use the Wigner-Eckart theorem and the
reduced matrix elements to derive the form of the Lindblad equation as an expansion in
spherical harmonics.

C.1 Reduced matrix elements

To evaluate the reduced matrix element 〈l′||C||l〉, we consider the case q = m = m′ = 0;
this brings Eq. (C.5) to the form

〈l′||C||l〉 =
〈l′0|C0|l0〉
〈l0; 10|l′0〉

. (C.8)

In spherical coordinates, we thus have

C0 = a r0 + ib p0 = ar cos θ − ib
[
cos θ

∂

∂r
− sin θ

r

∂

∂θ

]
. (C.9)

In subsecs. C.1.1, C.1.2 and C.1.3 we derive 〈l||r||l′〉, 〈l||p||l′〉 and 〈l||C||l′〉, respec-
tively.

C.1.1 〈l||r||l′〉

We begin by writing the angular dependent piece of r0 = ar cos θ in terms of spherical
harmonics as

cos θ =
√

(4π)/3Y10(θ, φ). (C.10)

We utilize the identity∫
d ΩYl1m1(θ, φ)Yl2m2(θ, φ)Y ∗l3m3

(θ, φ) =√
(2l1 + 1)(2l2 + 1)

4π(2l3 + 1)
〈l1m1; l2m2|l3m3〉〈l10; l20|l30〉,

(C.11)
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for the integral of three spherical harmonics and the Clebsch-Gordan coefficient

〈l0; 10|l′0〉 =

√
l + 1

2l + 1
δl′,l+1 −

√
l

2l + 1
δl′,l−1, (C.12)

to write

〈l′||r||l〉 =
〈l′0|r cos θ|l0〉
〈l0; 10|l′0〉

(C.13)

=r

√
l + 1

2l + 3
δl′,l+1 − r

√
l

2l − 1
δl′,l−1. (C.14)

C.1.2 〈l||p||l′〉

The angular dependent piece of p0 remaining to be calculated is sin θ(∂/∂θ). We thus
must calculate

〈l′0| sin θ ∂
∂θ
|l0〉 =

∫
dΩY ∗l′0(θ, φ) sin θ

∂

∂θ
Yl0(θ, φ). (C.15)

This integral is computed most easily by rewriting the spherical harmonics in terms of
the Legendre Polynomials

Yl0(θ, φ) =

√
2l + 1

4π
Pl(cos θ), (C.16)

and performing the coordinate transformation

x = cos θ. (C.17)

This gives∫
dΩY ∗l′0(θ, φ) sin θ

∂

∂θ
Yl0(θ, φ) =

1

2

√
(2l′ + 1)(2l + 1)

∫ −1

−1
dxPl′(x)(x2 − 1)P ′l (x),

(C.18)

where

P ′l (x) =
∂

∂x
Pl(x). (C.19)

Using the following orthogonality and recurrence relations of the Legendre polynomials,

(x2 − 1)P ′l = l [xPl(x)− Pl−1(x)] (C.20)

= l [P1(x)Pl(x)− Pl−1(x)] , (C.21)∫ 1

−1
dxPl1(x)Pl2(x)Pl3(x) =

2

l3 + 1
〈l10; l20|l30〉2, (C.22)∫ 1

−1
dxPl1(x)Pl2(x) =

2

l1 + 1
δl1l2 , (C.23)
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we rewrite Eq.(C.18) as

1

2

√
(2l′ + 1)(2l + 1)

∫ −1

−1
dxPl′(x)(x2 − 1)P ′l (x)

= l

√
2l + 1

2l′ + 1

(
〈l0; 10|l′0〉2 − δl′,l−1

)
.

(C.24)

Combing Eqs. (C.15), (C.18), and (C.24) with Eq. (C.12), we have

〈l′0| sin θ ∂
∂θ
|l0〉 = l

l + 1√
(2l + 3)(2l + 1)

δl′,l+1 − l
l + 1√

(2l − 1)(2l + 1)
δl′,l−1. (C.25)

This gives

〈l′||p||l′〉 =
〈l′0|(−i)

(
cos θ ∂∂r −

sin θ
r

∂
∂θ

)
|l0〉

〈l0; 10|l′0〉
(C.26)

=− i

{√
l + 1

2l + 3
δl′,l+1

∂

∂r
−
√

l

2l − 1
δl′,l−1

∂

∂r

−

(
l

√
l + 1

2l + 3
δl′,l+1

1

r
+ (l + 1)

√
l

2l − 1
δl′,l−1

1

r

)}
.

(C.27)

C.1.3 Collapse operators

Combining Eqs. (C.8), (C.9), (C.14) and (C.27), we have

〈l′||C||l〉 =
〈l′0|

[
ar cos θ − bi

(
cos θ ∂∂r −

sin θ
r

∂
∂θ

)]
|l0〉

〈l0; 10|l′0〉
(C.28)

=

√
l + 1

2l + 3

[
ar − bi

(
∂

∂r
− l

r

)]
δl′,l+1

−
√

l

2l − 1

[
ar − bi

(
∂

∂r
+
l + 1

r

)]
δl′,l−1.

(C.29)

To perform the appropriate projections and summations on the Lindblad equation, com-
plex conjugate reduced matrix elements of the form 〈l′||C||l〉† are also necessary. We
note that the derivative operator transforms nontrivially under complex conjugation:

〈r|
(
−i ∂
∂r

)
|r〉† =

∫ ∞
0

dr r2ψ∗(r)

(
−i ∂
∂r

)†
ψ(r) =

∫ ∞
0

dr r2

(
i
∂

∂r
ψ∗(r)

)
ψ(r),

(C.30)

implying (
−i ∂
∂r

)†
∼ −i

(
∂

∂r
+

2

r

)
, (C.31)
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after integrating by parts and solving for the Hermitian conjugate. We use this relation
to calculate the four nonzero transition elements specified by Eq. (C.29) and its complex
conjugate

〈l + 1||C||l〉 =

√
l + 1

2l + 3

[
ar − bi

(
∂

∂r
− l

r

)]
, (C.32)

〈l − 1||C||l〉 =−
√

l

2l − 1

[
ar − bi

(
∂

∂r
+
l + 1

r

)]
, (C.33)

〈l + 1||C||l〉† =

√
l + 1

2l + 3

[
a†r − b†i

(
∂

∂r
+
l + 2

r

)]
, (C.34)

〈l − 1||C||l〉† =−
√

l

2l − 1

[
a†r − b†i

(
∂

∂r
− l − 1

r

)]
. (C.35)

In the following section, we utilize the above matrix elements to derive the form of the
Lindblad equation acting on the state ρl.

C.2 Projected Lindblad equation

In this section, we utilize the relations derived in the previous section to write the
Lindblad equation as an expansion in spherical harmonics. We work term by term and
calculate the necessary matrix elements to describe the kinetic term of the Hamiltonian
∼ ~p2/M , the LO correction to the potential ∼ r2, the NLO correction to the potential

∼ {ri, pi}, the jump term ∼ CiρC†i and the width term ∼ {C†iCi, ρ}.

Kinetic term

Using the Wigner-Eckart theorem of Eq. (C.5) and the reduced matrix elements of
Eqs. (C.32-C.35), with a = 0 and b = 1, we have

∑
i,m

〈lm|pipi|lm〉 = −
(
∂2

∂r2
+

2

r

∂

∂r

)
+
l(l + 1)

r2
. (C.36)

LO correction to the potential

Using the Wigner-Eckart theorem of Eq. (C.5) and the reduced matrix elements of
Eqs. (C.32-C.35), with a = 1 and b = 0, we have

∑
i,m′

〈lm|riri|lm〉 = r2. (C.37)
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NLO correction to the potential

Using the Wigner-Eckart theorem of Eq. (C.5) and the reduced matrix elements of
Eqs. (C.32-C.35), with appropriate substitutions of a and b, we have

∑
i,m′

〈lm|{ri, pi}|lm〉 = −3i− 2ir
∂

∂r
. (C.38)

Jump term

We calculate in detail the form of the jump term from the Lindblad equation; the width
term can be calculated equivalently. We begin by projecting onto the eigenstate |l′m′〉

∑
i,m′,l′

〈l′m′|Ci ρC†i |l
′m′〉 =

∑
q,m′,l′,m

〈l′m′|Cq|lm〉ρlm;lm〈lm|C†q |l′m′〉 (C.39)

=
∑

q,m′,l′,m

〈l′m′|Cq|lm〉ρlm;lm〈l′m′|Cq|lm〉†. (C.40)

We rewrite this using the Wigner-Eckart theorem of Eq. (C.5)

∑
q,m′,l′,m

〈l′m′|Cq|lm〉ρlm;lm〈l′m′|Cq|lm〉†

=
∑

q,m′,l′,m

〈lm; 1q|l′m′〉〈l′||Cq||l〉ρlm;lm〈lm; 1q|l′m′〉〈l′||Cq||l〉†,
(C.41)

where we choose the Clebsch-Gordan coefficients to be real. We make use of the sym-
metry properties of the Clebsch-Gordan coefficients to rewrite them as

〈lm; 1q|l′m′〉 = (−1)1+q

√
2l′ + 1

2l + 1
〈l′(−m′); 1q|l(−m)〉; (C.42)

we, furthermore, make use of the completeness relation∑
m′,q

〈LM |l′m′; 1q〉〈l′m′; 1q|L′M ′〉 = δLL′δMM ′ , (C.43)

allowing us to perform the sums over m′ and q. The only remaining m dependence is in
ρlm;lm; we use Eq. (C.3) to perform this sum thus simplifying Eq. (C.41) to

∑
q,m′,l′,m

〈l′m′|Cq|lm〉ρlm;lm〈l′m′|Cq|lm〉† =
∑
l′

2l′ + 1

2l + 1
〈l′||Cq||l〉ρl〈l′||Cq||l〉†. (C.44)
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Using the reduced matrix elements given in Eqs. (C.32-C.35), we find

∑
i,m′,l′

〈l′m′|Ci ρC†i |l
′m′〉 =

{√
l + 1

2l + 1

[
ar − bi

(
∂

∂r
− l

r

)]
ρl

×
√

l + 1

2l + 1

[
a†r − b†i

(
∂

∂r
+
l + 2

r

)]}

+

{√
l

2l + 1

[
ar − bi

(
∂

∂r
+
l + 1

r

)]
ρl

×
√

l

2l + 1

[
a†r − b†i

(
∂

∂r
− l − 1

r

)]}
,

(C.45)

where the term in the first two lines of Eq. (C.45) contributes to the time evolution of
ρl+1 and the term in the second two lines contributions to the time evolution of ρl−1.

Width term

As mentioned above Eq. (C.39), an equivalent set of manipulations can be performed

on the {C†iCi, ρ} terms of the Lindblad equation. This gives

∑
i,m

〈lm|{C†iCi, ρ}|lm〉 =
∑
l′

{
2l′ + 1

2l + 1
〈l′||C||l〉†〈l′||C||l〉, ρl

}
(C.46)

=

{√
l + 1

2l + 1

[
a†r − b†i

(
∂

∂r
+
l + 2

r

)]
√

l + 1

2l + 1

[
ar − bi

(
∂

∂r
− l

r

)]
, ρl

}

+

{√
l

2l + 1

[
a†r − b†i

(
∂

∂r
− l − 1

r

)]
√

l

2l + 1

[
ar − bi

(
∂

∂r
+
l + 1

r

)]
, ρl

}
,

(C.47)

where the first term in Eq. (C.47) implements the reduction in norm of a state of angular
momentum l due to transitions to a state of angular momentum l + 1 and the second
term in Eq. (C.47) due to transitions to a state of angular momentum l − 1.
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