
Original Paper

A Privacy-Preserving Log-Rank Test for the Kaplan-Meier
Estimator With Secure Multiparty Computation: Algorithm
Development and Validation

Marcel von Maltitz1, Dr rer nat; Hendrik Ballhausen2,3, Dr rer nat; David Kaul4,5, Dr med; Daniel F Fleischmann2,3,6,

Dr med; Maximilian Niyazi2,3, Prof Dr med; Claus Belka2,3, Prof Dr med; Georg Carle1, Prof Dr-Ing
1Chair of Network Architectures and Services, Department of Informatics, Technical University of Munich, TUM, Garching, Germany
2Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, LMU, Munich, Germany
3German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
4Department of Radiation Oncology, Charité - University Medicine, Berlin, Germany
5German Cancer Consortium (DKTK), partner site Berlin, Berlin, Germany
6German Cancer Research Center (DKFZ), Heidelberg, Germany

Corresponding Author:
Marcel von Maltitz, Dr rer nat
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich, TUM
Boltzmannstraße 3
Garching, 85748
Germany
Phone: 49 (89) 289 ext 18032
Email: vonmaltitz@net.in.tum.de

Abstract

Background: Patient data is considered particularly sensitive personal data. Privacy regulations strictly govern the use of patient
data and restrict their exchange. However, medical research can benefit from multicentric studies in which patient data from
different institutions are pooled and evaluated together. Thus, the goals of data utilization and data protection are in conflict.
Secure multiparty computation (SMPC) solves this conflict because it allows direct computation on distributed proprietary
data—held by different data owners—in a secure way without exchanging private data.

Objective: The objective of this work was to provide a proof-of-principle of secure and privacy-preserving multicentric
computation by SMPC with real-patient data over the free internet. A privacy-preserving log-rank test for the Kaplan-Meier
estimator was implemented and tested in both an experimental setting and a real-world setting between two university hospitals.

Methods: The domain of survival analysis is particularly relevant in clinical research. For the Kaplan-Meier estimator, we
provided a secure version of the log-rank test. It was based on the SMPC realization SPDZ and implemented via the FRESCO
framework in Java. The complexity of the algorithm was explored both for synthetic data and for real-patient data in a
proof-of-principle over the internet between two clinical institutions located in Munich and Berlin, Germany.

Results: We obtained a functional realization of an SMPC-based log-rank evaluation. This implementation was assessed with
respect to performance and scaling behavior. We showed that network latency strongly influences execution time of our solution.
Furthermore, we identified a lower bound of 2 Mbit/s for the transmission rate that has to be fulfilled for unimpeded communication.
In contrast, performance of the participating parties have comparatively low influence on execution speed, since the peer-side
processing is parallelized and the computational time only constitutes 30% to 50% even with optimal network settings. In the
real-world setting, our computation between three parties over the internet, processing 100 items each, took approximately 20
minutes.

Conclusions: We showed that SMPC is applicable in the medical domain. A secure version of commonly used evaluation
methods for clinical studies is possible with current implementations of SMPC. Furthermore, we infer that its application is
practically feasible in terms of execution time.

JMIR Med Inform 2021 | vol. 9 | iss. 1 | e22158 | p. 1http://medinform.jmir.org/2021/1/e22158/
(page number not for citation purposes)

von Maltitz et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:vonmaltitz@net.in.tum.de
http://www.w3.org/Style/XSL
http://www.renderx.com/

(JMIR Med Inform 2021;9(1):e22158) doi: 10.2196/22158

KEYWORDS

privacy; data protection; privacy preservation; multicentric studies; secure multiparty computation; cryptography

Introduction

Medical research is in large part based on clinical patient data.
In this domain, particularly strict data protection regulations
apply, which increase the effort required to utilize these data
and leverage their full potential. In fact, it is a common
regulatory requirement that patient data must not leave the
custody of the hospital. However, great scientific value and
substantial patient benefit could be achieved if institutions were
permitted to pool their data to reach more accurate and more
reliable conclusions across the entirety of their patient
populations. In the dawning era of multiomics, eHealth and
wearables, individual big data, and nonlinear evaluation such
as machine learning, the problem is exponentially exacerbated.

Institutions are typically faced with collecting consent from
patients to use their data for research purposes. This incurs a
great amount of additional organizational overhead. Also, future
collaborations are often not foreseen and in hindsight are not
covered by restrictive consent.

Secure multiparty computation (SMPC) is a novel technical
approach to this challenge. It allows processing and evaluation
of sensitive data and merging of different data pools without
the necessity to share the actual patient data with any other
institution or party. It therefore solves the conflict between data
protection and utilization. SMPC has been applied in various
domains in the recent past [1-6]. Moreover, in the medical
domain, SMPC has mostly been applied to genomic challenges
such as analysis [7], querying [8,9], and computation [10-12].
Furthermore, classification [13] and record-linking problems
[14,15] with medical use cases have been addressed. A similar
work to ours was performed by Vogelsang et al [16], although
it addressed another use case. Their case was the processing of
vertically distributed data, where diagnosis data were linked
with event records given a common identifier. Our approach
focused on the combination of horizontally distributed data,
which is needed when performing multicentric studies.
Furthermore, in the study by Vogelsang et al [16], they did not
perform an in-depth analysis of the influencing factors except
for the number of processed items.

In our study, we considered nontrivial algorithms that have
widespread use in clinical research and digital health care and
aimed to find SMPC versions of them. Survival analysis is
particularly prevalent throughout a substantial part of medical
literature. On the one hand, survival analysis is essential, for
example, to judge the effect of a novel therapy against the
current standard or a placebo. On the other hand, individual
survival times of patients and their clinical characterizations or
traits are highly sensitive data. Here, we turn our attention to a
particularly relevant task—the so-called log-rank test [17,18].
It is the most commonly used test to decide if two survival
curves (eg, plots of Kaplan-Meier estimators) are significantly
different (ie, if there is a significant positive or negative effect

of one treatment or trait over another). The realization of a
privacy-preserving way of computation is nontrivial because
the algorithm requires knowledge of the sorted set of all
individual survival times.

Many of today’s practical SMPC realizations are based on circuit
representations. The nodes of the circuit represent basic
operations, such as addition and multiplication. The circuit itself
is then a graph of basic nodes that allow the creation of arbitrary
complex functions [19].

Our first objective was to create an SMPC protocol that was
able to pool the data from different stakeholders and to process
it using the Kaplan-Meier estimator in combination with the
log-rank test. We achieved this by first providing a merging
algorithm for time-to-event data, which was then used as the
basis for the computation of the log-rank test. This meant that
any stakeholder’s data did not have to be shared with any other
party while enabling the parties to evaluate a common but
distributed data set. The implementation was realized with the
secret-sharing–based general SMPC framework FRESCO [20],
which is written in Java.

Furthermore, as a second objective, we assessed the performance
and scaling behavior of the gained realization. In a test setup,
we varied the parameters of the participating hosts and the
network in between. In a real-world setup, which featured a
connection between two research institutions over the internet,
we showed practical feasibility of the approach.

Methods

Secure Implementation of the Log-Rank Test for the
Kaplan-Meier Estimator
Our method for creating secure and privacy-preserving
realizations of statistical evaluations of medical data was to
rewrite the original algorithms as a protocol for general SMPC.
Exemplarily, in this paper, we present a secure implementation
of the log-rank test for the Kaplan-Meier estimator.

When applying the Kaplan-Meier estimator to a single data set,
the computation can be performed by the data owner while
fulfilling the security goal of data confidentiality and keeping
individuals’ information private by not sharing it with any third
parties. If data are initially distributed among several different
stakeholders, the setting becomes more complex: before the
log-rank test or other measures can be derived, the data of all
sources has to be combined. Merging in itself is an additional
step that must be done by some entity and normally requires
access to all sets of original data. The data sets consist of
nonaggregated survival times of individual patients. This
disclosure then constitutes a data protection violation, which
normally makes disclosure agreements or other organizational
measures necessary.

JMIR Med Inform 2021 | vol. 9 | iss. 1 | e22158 | p. 2http://medinform.jmir.org/2021/1/e22158/
(page number not for citation purposes)

von Maltitz et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.2196/22158
http://www.w3.org/Style/XSL
http://www.renderx.com/

With SMPC, merging can be realized as a secure protocol
between all data owners aiming for confidentiality and data
privacy: third-party access to all data becomes superfluous and
merging can be performed without the need of sharing original
data.

A second privacy problem is that the merged data table can still
leak information about individual contributions. This is easily
visible in the two-party case: if the merged data are publicly
known, both parties can derive the other party’s contributions
by simply inverting the merge procedure.

It is therefore necessary to keep the merged data protected from
any entity and continue the calculation of the log-rank test
without making intermediate results available. We achieved
this by not making the result of the merge publicly accessible
but directly performing subsequent calculations on the
still-protected merged data set.

Input Data
Each stakeholder examined several groups of study participants.
Without loss of generalization, we assume them to be treatment
group A and control group B. For each point in time, t ∈ T of
the study, the overall sizes of the study groups and the number
of events (eg, deaths) during that time in both groups were
recorded. We denote them as risk setA,t and risk setB,t, as well
as failuresA,t and failuresB,t, respectively.

Let P be the set of participating stakeholders, each p∈ P then
has a map entriesp of input data, where keys(entriesp) = Tp (ie,
all times recorded in the study of p) and ∀t ∈ Tp:value(entriesp,
t) = (risk setA,t,p, risk setB,t,p, failuresA,t,p, failuresB,t,p).
Furthermore, values(entriesp) ≡ ∪t∈keys(entriesp) value(entriesp,

t).

Merging Initially Distributed Data
As outlined above, the first step was to derive a merged data
set from the separate data of all stakeholders.

Simply generating entries:∪p∈P entriesp was not expedient,
since it could not handle duplicate keys in the entries. Instead,

a single combined virtual data set had to be created out of the
distributed studies by summing up corresponding values of
matching keys.

Since the different studies of all stakeholders can contain
different points of time, the union set of all times t had to be
built: keys(entries) ≡∪p∈P keys(entriesp). We obtained this by
applying the secure union set algorithm of Blanton and Aguiar
[21]. Afterwards, the resulting set was made available in plain
for all stakeholders.

Every stakeholder p then completed their own entriesp by adding
fallback values for all locally missing keys: value(entriesp, t) ≡
(risk setA,tprev ,p, risk setB, tprev ,p, 0, 0)∀t∈ keys(entries) \

keys(entriesp), where tprev = max({t' ∈ keys(entries):t' < t}), the
latest available time. Afterwards, values(entriesp) was turned
into a list that was locally sorted by keys(entriesp). This list was
provided as input into a simple SMPC protocol, summing up
all entries row by row. Since the list features all t ∈ ∪p∈P Tp in
the same order, the corresponding entries were summed up
correctly. As an intermediate result, we obtained a merged data
table as depicted in Table 1. This table was not made available
in plain but stayed in a secret shared manner for immediate
further processing.

Performing this merge step did not leak any unnecessary
information. No values(entriesp) of any party p were shared
with any other party. Additionally, the mapping p →
keys(entriesp) for any p∈ P remained private in the general case
(special cases like n=2 allow the derivation of further
information). The only intermediate information that was made
available for all parties was the set keys(entries). The gained
knowledge of party p by this intermediate result about the
presence of a key t only encompassed the following:

Since the merged table entries themselves are only available in
a secret-shared manner, no further information becomes
accessible.

Table 1. Merged data table containing all times t from all participating stakeholders. If multiple stakeholders provided data for the same t, they were
merged by summation.

FailuresRisk setTime

ControlTreatmentControlTreatment

∑p∈P failuresB,t,p∑p∈P failuresA,t,p∑p∈P risk setB,t,p∑p∈P risk setA,t,pt

Computation of the Log-Rank Test
The merged data table could then be used to compute the
Kaplan-Meier estimator and to perform the log-rank test on it.
The secure realization of the computation was structurally
identical to its equivalent in plain. The main difference was that
the computation was carried out on secret shares of the input
data. Consequently, no intermediate values were accessible in
plain by the computing parties. It was only the final result (ie,
the log-rank value) that was made available in plain to all
stakeholders.

Performance Measurements
Having implemented a secure version of the Kaplan-Meier
estimator, we challenged it in both an experimental setting and
a real-world setting. In the experimental setting, a range of
parameters was varied to investigate the overall performance
and scaling of the algorithm. In the real-world setting, distributed
computation was performed on actual patient data by the
university hospitals of Ludwig-Maximilians-Universität
München (Munich) and Charité (Berlin) [22]. Across 500 km
of glass fiber cable, we looked for significant variables

JMIR Med Inform 2021 | vol. 9 | iss. 1 | e22158 | p. 3http://medinform.jmir.org/2021/1/e22158/
(page number not for citation purposes)

von Maltitz et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

predetermining the survival time of patients with glioblastoma
multiforme, a highly aggressive type of brain tumor.

Experimental Setting
We analyzed our protocols in two different settings: a testbed
and a real-world setup.

Testbed
In a controlled testbed setting, we assessed the influence of
individual parameters such as the host characteristics or the

properties of the network between the cooperating hosts. For
the testbed measurement, synthetic data were used.

We used homogeneous nonvirtualized bare metal hosts. These
were each equipped with an Intel Xeon E3-1265L V2 central
processing unit (CPU), having 8 cores at 2.50 GHz and a cache
size of 8192 KB. Each host possessed 15,780 MB of RAM and
a 1 Gbit networking interface. Six hosts each were connected
to a single switch (Figure 1). The operating system was Debian
Stretch 9.5 using a kernel of version 4.9.11. We used Java
version 11.0.1 2018-10-16 LTS.

Figure 1. Topology of the testbed setup.

Real-World Setting
We complemented these evaluations with real-world
measurements. In our real-world setup, we cooperated with the
University Hospital of Ludwig-Maximilians-Universität
München (LMU) and Charité Berlin (CB).

Within the data umbrella of Deutsches Konsortium für
Translationale Krebsforschung (DKTK)—of which the
Technical University of Munich, University Hospital of
Ludwig-Maximilians-Universität München (LMU) and Charité
Berlin (CB) are members—the radiation oncology departments
of LMU and CB were able to provide glioblastoma survival
data [22]. The patient data of LMU and CB contained 96 input
entries each.

LMU and CB each provided a server for executing our secure
protocols. The server of LMU is equipped with an Intel Xeon
Silver 4112 CPU, having 8 cores at 2.60 GHz and a cache size
of 8448 KB. It possesses 128,476 MB of RAM and a 1 Gbit
networking interface. It provides Debian 9.6 as the operating
system using a 4.9 Linux kernel. We used Java version 11.0.2
2018-10-16.

The server of CB uses has an Intel Xeon CPU E5-2695 v3 CPU,
with 2 cores at 2.30GHz and a cache size of 35,840 KB. It
possesses 3945 MB of RAM and a 10 Gbit networking interface.
The host is a VM based on VMWare. It provides Ubuntu 18.04.2

LTS as the operating system using a 4.15 Linux kernel. We
used Java 11.0.2 2018-10-16, perf 4.15.18 and tshark 2.6.6. The
distance between both servers is approximately 500 km and the
protocol was conducted via the open internet.

Software
The software under test was the FRESCO framework [20]
(version 1.1.2) developed by the nonprofit organization
Alexandra Institute. It is a Java framework for SMPC that aims
for general application of SMPC on the basis of different
mathematical foundations. Each foundation is realized as a
protocol suite that comprises basic operations such as addition,
multiplication, or Boolean NOT, AND, OR. The FRESCO
framework enables users to create protocols for individual
computations by combining these protocol primitives into larger
sequences.

We employed the protocol suite SPDZ [23,24] in order to
develop a secure realization of the Kaplan-Meier estimator and
its assessment via the log-rank test. The source code is compiled
to a Java application, which is in turn executed by the Java
Virtual Machine. At the time of our measurements, only a stable
realization of the online phase of SPDZ was available in
FRESCO. The offline phase is simulated by a dummy
preprocessing. The performance characteristics of the online
phase are notwithstanding realistic as if real preprocessing had
been performed, and this was confirmed by the authors of

JMIR Med Inform 2021 | vol. 9 | iss. 1 | e22158 | p. 4http://medinform.jmir.org/2021/1/e22158/
(page number not for citation purposes)

von Maltitz et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

FRESCO upon our request [25]. The performance of the offline
phase was not considered by our tests.

The source code is available from the authors upon request.

Results

Secure Implementation of the Log-Rank Test for the
Kaplan-Meier Estimator
The algorithm developed for the secure implementation of the
Kaplan-Meier log-rank test is presented in the Multimedia
Appendix 1. We made two technical observations: the
computation of the mean and the variance of all entries are
independent of each other. Their calculation can hence be
parallelized to improve execution speed of the algorithm. We
denote the regions of possible parallelization in the algorithm
with the keyword in parallel. Furthermore, the numerical
computation of the variance is prone to overflows. We hence
alternated the necessary divisions and multiplications in order
to stay within the range of valid values.

In terms of security, our solution was based on the SPDZ
implementation of FRESCO and hence inherits its security
properties. In particular, this implies computational security
against malicious adversaries, which can corrupt up to n-1 out
of n parties. At the time of our experiments, FRESCO did not
provide a secure implementation of the offline phase SPDZ but
only insecure dummy preprocessing. While this does not have
any implications for performance, for real application it is vital
to replace this with a securely realized preprocessing phase.

To merge data entries from different parties, they have to work
on a common set of keys(entries). Due to this reason, this
intermediate result was made available in plain to all
participants. Strictly speaking, this represents an information
leakage beyond the final result of the computation.

Under certain circumstances, this can be mitigated: if the keys
are discrete integer values and the limits are known in advance,
all sets can be prepared to contain all possible keys. As a
consequence, consolidation of the key set becomes obsolete
and the algorithm can start directly with the summation step of
the sorted lists.

Performance Measurements
In order to assess the following results, we provided two
measures of comparison. First, we also implemented the
log-rank algorithm insecurely to be carried out on a central
server, acting as a trusted third party (TTP); for the
measurements, we used the LMU server. Here, a standard Java
implementation of the computation has been used. In this case,
we only considered the computation itself without network
interaction for providing the input data to the server or for
sending the result to any recipient.

Second, FRESCO also provides a dummy protocol suite that
performs the computation in plain text without execution of
secure protocols. The algorithm in question was translated into
a circuit representation, but computation was then carried out
locally without protocol interaction and corresponding
communication. This allowed us to discern the influence of the
circuit representation from the actual execution of interactive,
synchronized multiparty protocols. We refer to these baselines
where appropriate, but do not interpret their performance
behavior in greater detail.

Correctness of the Computation
The computation was performed as an evaluation of an
arithmetic circuit based on the operations of addition and
multiplication. All higher-level operations, including division
and exponentiation, were also realized upon the aforementioned
basic operations. Furthermore, all real values were encoded in
fixed-point representation.

This introduced numerical errors into the computation; Table
2 shows the deviation. We could reproduce this behavior with
the dummy computation of FRESCO. This led to the conclusion
that the deviation was caused by the abovementioned factors
and not to the secure computation itself.

Since this effect can in certain cases cause a misleading result,
this obstacle has to be further investigated. A possible mitigation
is analytical transformation of the corresponding equation in
order to yield less division operations. This, however, poses the
risk of arithmetic overflows during the computation. They can
in turn be addressed on the level of SMPC by increasing the
modulus of the secret-sharing scheme. This is a valuable goal
for future work.

Table 2. Comparison of the results obtained by insecure computation on a trusted third party (TTP) and by secure multiparty computation (SMPC).

P value (SMPC)Chi-square (SMPC)P value (TTP)Chi-square (TTP)Test set

.025.148.025.242Set A

<.00120.523<.00123.250Set B

Variation of Input Parameters
Comparing all three realizations of the algorithms with respect
to execution time, we found that their orders of magnitude
differed notably: the TTP variant cost milliseconds, the dummy
protocol suite was in the order of seconds, and the secure variant
was in the order of minutes (Figure 2). In comparison with
Figure 3, we found that the CPU time only constituted between
30% and 50% of the overall execution duration.

Inspection of the log-rank algorithm provided further insights:
it showed that the division operation had a much greater impact
than any other basic arithmetic operation. The source code of
FRESCO states that the Goldschmidt division [26] is used, an
approach which iteratively applies multiplications until
convergence of the result is reached. For further considerations
of the division operation in SMPC and FRESCO in particular,
see reference [27]; for further explanation on the application of
the Goldschmidt division for SMPC, see reference [28]). When

JMIR Med Inform 2021 | vol. 9 | iss. 1 | e22158 | p. 5http://medinform.jmir.org/2021/1/e22158/
(page number not for citation purposes)

von Maltitz et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

all division operations were replaced by multiplication
operations for comparison, the execution time shrank by two
orders of magnitude.

Furthermore, it was interesting to see whether the sole number
of peers also had an impact on execution duration. For that, we
analyzed the dependency of the algorithms on the overall
number of input lines. A linear regression on the data yielded
a number of insights. For the union algorithm, the following
formula held:

For the log-rank algorithm, we identified a slope of
approximately 0. This was in line with our observations in
Figure 2: the spread between the different configurations in the
latency diagram for the SMPC implementation of the log-rank
algorithm can be exclusively explained by the fact that additional
peers also add further input entries.

In other words, the time of the union algorithm was mainly
influenced by the overall number of input lines (number of peers
[n] × number of input lines [m]), notwithstanding whether many
peers input few lines or few peers input many lines.

In Figure 3, we can also see that the CPU time proportionally
corresponds to the overall execution time. The explanation for
different peer configurations was given earlier. The merge step

was performed in O(n log n); hence, the lines in Figure 3 initially
spread more and converge against the same slope. We can also
see that the CPU is moderately more utilized when having more
participating peers. The reason are the steps necessary to manage
and perform communication with other peers (notwithstanding
the communication delay itself).

In Figure 4, we depict the transmitted data between a single pair
of hosts. Compared with the dummy protocol, the SMPC
implementation again differs by orders of magnitude. The reason
is that computation in plain (as given in the dummy
implementation) is able to do some computations (especially
the basic multiplication) without any communication, while for
SMPC exchange, communication is necessary every time such
an operation takes place. We stress that the data shown in the
graphs reflect the communication of a single pair. There were

n2 such pairs during each computation, and thus the overall
amount of transmitted data over the network increased
accordingly. We could verify by inspection that the amount of
transmitted data was equally sized for every pair. Furthermore,
the majority of packets had a size of approximately 200 bytes,
independent of the number of peers or input lines.

We already elaborated that the log-rank algorithm was made
independent of the number of peers by the initial data merging
step. This was also confirmed by these measurements, which
show that the amount of transmitted data did not depend on the
number of participating peers.

Figure 2. Measurements show that computation times of the corresponding algorithms on a trusted third party (TTP), a dummy implementation, and
a real secure multiparty computation (SMPC) vary by orders of magnitudes, depending mainly on the overall number of input lines, with only a
subordinate influence of the number of peers, since communication between peers can be parallelized. LR: log-rank.

JMIR Med Inform 2021 | vol. 9 | iss. 1 | e22158 | p. 6http://medinform.jmir.org/2021/1/e22158/
(page number not for citation purposes)

von Maltitz et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 3. Central processing unit (CPU) time depending on the number of input lines and peers. LR: log-rank.

JMIR Med Inform 2021 | vol. 9 | iss. 1 | e22158 | p. 7http://medinform.jmir.org/2021/1/e22158/
(page number not for citation purposes)

von Maltitz et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 4. Transmitted data depending on the number of input lines and peers. The graph depicts the number of megabytes transferred between a single
pair of hosts in the network. In the secure multiparty computation (SMPC) case, they nearly perfectly correlate with the amount of protocol invocations.
LR: log-rank.

Variation of Resource Parameters
After we analyzed the basic behavior when scaling environment
parameters such as the number of input lines and the number
of peers, we then addressed the technical parameters of the
setup. This encompassed the network latency, the transmission
rate, and the cores and frequency of the CPUs used.

Network Latency
Figure 5 demonstrates the influence of increased packet delay
on the computation. We already showed in Figure 4 that more
data were transmitted during the union algorithm than during
the log-rank algorithm. Furthermore, we found that for the
majority the packet size stayed roughly the same

notwithstanding the variations of the parameters. Hence, with
a rather constant number of packets, it was expected that packet
delay influenced the union algorithm correspondingly stronger
than the log-rank computation. The slight variations in the
amount of transmitted data over the different network latencies
can be explained by variation in the average packet size. With
a latency of 10 ms, the packet size was roughly 80 to 100 bytes
smaller. To transport the same amount of payload, more packets
were needed. This yielded an increase of transferred headers,
which in turn caused an increase in the total amount of data
transmitted.

The CPU time was not influenced by the packet delay; it stayed
completely constant for the union algorithm and only varied
slightly for the log-rank computation.

JMIR Med Inform 2021 | vol. 9 | iss. 1 | e22158 | p. 8http://medinform.jmir.org/2021/1/e22158/
(page number not for citation purposes)

von Maltitz et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 5. Influences of network latency manipulation. The upper row shows the union algorithm, the lower row shows the log-rank (LR) algorithm.
It is clear that the network latency influenced the overall execution time while changing neither the central processing unit (CPU) time nor the number
of packets transmitted. SMPC: secure multiparty computation.

Transmission Rate
Transmission rate only inhibited the computation if it was under
10 Mbit/s. More specific inspection of the network traces
showed that our use case continuously used approximately 2
Mbit/s with short but high peaks during the log-rank
computation. The union algorithm was characterized by a rather
consistent stream of packets of the named rate.

CPU Frequency and Number of Cores
We varied the number of cores between 1 and 8, and the
frequency could be adjusted from 100% (ie, 2.5 GHz) down to
50% (ie, 1.25 GHz). A lower value was not possible with our
test machines. Notwithstanding a varying number of peers, the
changes did not yield any significant influence on the execution
duration of the algorithms. We conclude that the CPU did not
constitute the bottleneck in our test setting.

Real-World Experiments
In the real-world experiments, we executed our protocol between
two servers from different research institutions. The round-trip
time is approximately 9 ms from LMU and 21 ms from CB.
The transmission speed (approximated using netcat) is
approximately 800 Mbps from LMU to CB and 100 Mbps from
CB to LMU.

Due to the predetermined setup, we did not vary most of the
parameters as we did in the testbed. We only changed the
number of input entries per peer from 10 to 96, which produced
computation durations between 80 s and 577 s for the union
algorithm and 182 s to 652 s for the log-rank algorithm. These
numbers were highly influenced by the network latency between
both hosts. This outweighed the small number of participants.
This interpretation was also supported by the small percentage

of CPU time. For the union algorithm, the CPU time ranged
from 3% to 9%; for the log-rank algorithm, it was even smaller,
ranging from approximately 2% to 5%. The overall execution
time for both algorithms lay approximately in the same range.
Although this result was in line with our previous observations,
the effect became more clear in this setting. The reason can be
found in the different type of data used. With our synthetic data,
each of the n peers had m input lines. The set of keys was
identical for each peer. Therefore, the merge step (which
occurred at the beginning of our log-rank implementation)
reduced the overall number of lines by factor n, and the
remaining steps of the log-rank algorithm always had to compute
with m lines only. In contrast, the real data used here had only
a negligible amount of identical keys. This meant that the
log-rank algorithm always had to process roughly n×m lines.
This increased the time taken by the log-rank algorithm. On the
other hand, only having two peers reduced the interval in which
we tested the union algorithm. For these two reasons, the
execution times of both algorithms moved into the same range.

The question arose of whether the measurement results were in
line with our testbed results in terms of absolute numbers. For
that, we did not use the dimension of wall-clock time since we
already knew that it would not match because of the differences
in the network latency of the used connections. Instead, the
number of protocol invocations and the amount of transferred
megabytes were expedient characteristics for comparison
because of their independence from time.

In order to obtain a valid comparison, we had to rescale the
results. For the union algorithm, we always considered the
overall number of input lines by multiplying the input per peer
with the number of peers. For the log-rank algorithm, we made
a case differentiation. From the testbed measurements, we chose

JMIR Med Inform 2021 | vol. 9 | iss. 1 | e22158 | p. 9http://medinform.jmir.org/2021/1/e22158/
(page number not for citation purposes)

von Maltitz et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

the results by the number m of inputs per peer (since the merge
step reduced all n×m inputs to effectively m lines), and from
the real-world measurements, we directly considered the product
n×m since the merge step did not reduce the input here.

Tables 3 and 4 list the chosen results from the testbed and the
real-world setting. They represent the median values of the

corresponding measurements. We can see that the real-world
results fall between the results from the testbed within an
expected range of precision. This is true for both the union
algorithm and the log-rank algorithm. An overview of the most
important results from the real-world measurements is given in
Multimedia Appendix 2.

Table 3. Comparison of the testbed and real-world measurement results for the union algorithm (median values).

MegabytesProtocol invocationsInput linesaSetting

12.279469495420775Testbed

16.6818437382400100Real-world

30.6403413121941150Testbed

29.26229813121996150Real-world

37.80826816236258175Testbed

39.41062518163340200Real-world

50.78693822505986225Testbed

aInput lines refer to the overall number from the whole set of participants.

Table 4. Comparison of the testbed and real-world measurement results for the log-rank algorithm (median values).

MegabytesProtocol invocationsInput linesaSetting

16.929702265944350Testbed

14.860479249718250Real-world

31.79012855302094100Testbed

28.2129295033945100Real-world

aInput lines refer to the number of lines the log-rank algorithm had to process after the merge step.

Discussion

Principal Findings
We have presented a secure implementation of the log-rank test
for the Kaplan-Meier estimator. Our measurements showed that
the most influential inherent factor was the number of certain
mathematical operations, such as division. The most influential
environmental factor was network latency. In a real-word
experiment, we successfully demonstrated distributed computing
between two university hospitals on actual patient data of
glioblastoma survival.

Influential Inherent Factors
In general, the time heavily depends on the complexity of the
algorithm and the selection of operations used. If the set of
operations is well supported, the execution time can be in the
realm of milliseconds. If real numbers, division, or comparison
operations are used, execution time quickly exceeds seconds to
become minutes. Also, depending on the complexity of the
computation, each pair of peers exchanges at least some
megabytes of traffic. This can also quickly increment to
hundreds of megabytes (eg, when sorting).

We identified that the division operation is orders of magnitude
more costly than any other basic arithmetic operation. This is

the single most influential internal performance factor in the
log-rank algorithm.

Influential Environmental Factors
Regarding influential environmental factors, we found that
network latency has the strongest impact and produces the
typical bottleneck. The reason is that the network
communication consists of a large number of small-sized
packets. The transmission rate does not constitute a bottleneck
if at least 2 Mbit/s are guaranteed. We could estimate this lower
bound by inspection. Manipulation of the CPU did not yield
any changes. We assume that the CPU would have to be
constrained to a small fraction of its normal power to achieve
any effects. This was not possible in our setups.

As a consequence of the high influence of the network, it is
difficult to improve performance characteristics by hardware
changes. The most obvious approach of improving the
participating hosts did not address the bottleneck. We found
that CPU time constituted approximately 30% to 50% of the
computation. Here, only moderate improvements by an increased
CPU frequency can be expected. On the contrary, every
reduction of network latency would be worthwhile.

Conclusions
Medical studies provide an essential benefit for society. Having
a large basis of test subjects improves the validity and robustness

JMIR Med Inform 2021 | vol. 9 | iss. 1 | e22158 | p. 10http://medinform.jmir.org/2021/1/e22158/
(page number not for citation purposes)

von Maltitz et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

of the obtained results. In so-called multicentric studies, this is
exploited by letting several institutions carry out the same study
with different participants. The gathered data are then merged.
However, data protection regulations make the combination of
data from different sources more difficult in certain cases and
require a notable organizational overhead to fulfill the protection
requirements.

SMPC is a promising solution that allows aggregation of study
data without actually sharing it between participating centers.
In this paper, we investigated how SMPC can be applied in this
domain.

The specific contribution of the presented implementation to
the field is the ability to derive a relevant quantity, the log-rank
P value, directly from data sets distributed between several
medical institutions without the need to pool the data at a central
location. For example, in the recent work by Vogelsang et al
[16], the Kaplan-Meier estimator itself was aggregated from
distributed input data. Of course, this is a perfectly valid
approach if the estimator itself is considered the desired output
of the calculation. The log-rank test could then be classically
performed on this aggregated estimator. However, if one is only
interested in the P value (and probably a whole set of P values
from different cross sections), then our implementation leaks a
lot less information as the implicit Kaplan-Meier estimator
remains secret. Given general SMPC frameworks like FRESCO,
realizations of computations for medical analysis are achievable
with acceptable effort.

Having obtained a secure implementation, we conducted
thorough performance measurements of this solution. We
investigated the impact of peers and input data on the duration,
CPU time, and data transmission. Furthermore, we evaluated
the impact of selected network and host parameters on the
computation time and resources.

We conducted the aforementioned measurements in a synthetic
testbed with homogeneous hosts that were connected via an
intranet. To complement our insights and gain further knowledge
about SMPC performance in real settings, we also performed
measurements in a real-world setting with heterogeneous
hardware over the internet. For that, two medical institutions
provided locally distributed servers where our solution was
carried out, and we were able to confirm our results from the
testbed.

Our results show that realization of secure computation for
medical research is possible with the current state of SMPC.
Furthermore, performance measurements indicate that practical
application is also already possible.

In the future, more advanced methods such as the Cox
proportional hazard model should also be written as SMPC
algorithms. Furthermore, the identified obstacles should be
addressed: the loss of accuracy compared with plain text
calculations should be further reduced or eliminated. Similarly,
ways should be found to avoid the intermediate results between
the merging step and the arithmetic calculation of the log-rank
test result.

However, the main challenges to be addressed going forward
may be those of a less technical nature. Over time, many more
practically relevant algorithms will be translated into secure
variants. After all, the universality of SMPC guarantees solutions
for any problem, at least in principle. What will be more relevant
to the practical application, however, will be the standardization
of protocols, interfaces, and libraries. Just as important will be
the inclusion of data protection officers and other stakeholders
in the design of an overarching ecosystem for secure distributed
computing, including organizational, operational, and conceptual
designs. We hope that our real-life demonstration of technical
feasibility contributes to the motivation for further research and
activities in this relevant and developing field.

Acknowledgments
The authors thank Nikolaus von Bomhard and Mirko Weihrauch for their invaluable support in providing the experimental
hardware and systems for the real-world setup.

This work was supported by the German Federal Ministry of Education and Research, project DecADe, grant 16KIS0538, and
the German-French Academy for the Industry of the Future.

Authors' Contributions
HB conceived the study. MM, HB, GC, MN, and CB designed the study. HB, DK, DFF, and MN acquired, analyzed, and processed
patient data. MM developed the implementation, designed and performed the experiments, and analyzed and interpreted performance
data. MM, HB, and GC discussed the conception on all stages and drafted the article. All authors have read and approved the
final manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Secure Kaplan-Meier estimation with log-rank test.
[DOCX File , 14 KB-Multimedia Appendix 1]

JMIR Med Inform 2021 | vol. 9 | iss. 1 | e22158 | p. 11http://medinform.jmir.org/2021/1/e22158/
(page number not for citation purposes)

von Maltitz et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=medinform_v9i1e22158_app1.docx&filename=461c2191d9609951f2138933dfe19088.docx
https://jmir.org/api/download?alt_name=medinform_v9i1e22158_app1.docx&filename=461c2191d9609951f2138933dfe19088.docx
http://www.w3.org/Style/XSL
http://www.renderx.com/

Multimedia Appendix 2
The results of the real-world measurement of the Kaplan-Meier estimator and its log-rank test evaluation.
[DOCX File , 16 KB-Multimedia Appendix 2]

References

1. Bogetoft P, Christensen DL, Damgård I. Secure Multiparty Computation Goes Live. Financial Cryptography and Data
Security 2009. [doi: 10.1007/978-3-642-03549-4_20]

2. Zanin M, Delibasi TT, Triana JC, Mirchandani V, Álvarez Pereira E, Enrich A, et al. Towards a secure trading of aviation
CO2 allowance. Journal of Air Transport Management 2016 Sep;56:3-11. [doi: 10.1016/j.jairtraman.2016.02.005]

3. Bogdanov D, Talviste R, Willemson J. Deploying Secure Multi-Party Computation for Financial Data Analysis. International
Conference on Financial Cryptography and Data Security 2012. [doi: 10.1007/978-3-642-32946-3_5]

4. Burkhart M, Strasser M, Many D, Dimitropoulos X. SEPIA: Privacy-preserving Aggregation of Multi-domain Network
Events and Statistics. 2010 Presented at: Proceedings of the 19th USENIX Conference on Security; 2010; Berkeley, CA,
USA.

5. Djatmiko M, Schatzmann D, Dimitropoulos X, Friedman A, Boreli R. Collaborative network outage troubleshooting with
secure multiparty computation. IEEE Communications Magazin 2013 Nov;51(11):78-84. [doi: 10.1109/mcom.2013.6658656]

6. Bonawitz K, Ivanov V, Kreuter B, et al. Practical Secure Aggregation for Privacy Preserving Machine Learning. 2017
Presented at: ACM SIGSAC Conference on Computer and Communications Security; 2017; Dallas, Texas, USA p.
1175-1191. [doi: 10.1145/3133956.3133982]

7. Cho H, Wu DJ, Berger B. Secure genome-wide association analysis using multiparty computation. Nat Biotechnol 2018
May 7;36(6):547-551. [doi: 10.1038/nbt.4108]

8. Demmler D, Hamacher K, Schneider T, Stammler S. Privacy-Preserving Whole-Genome Variant Queries. Cryptology and
Network Security. CANS 2017 2017. [doi: 10.1007/978-3-030-02641-7_4]

9. Hasan MZ, Mahdi MSR, Mohammed N. Secure Count Query on Encrypted Genomic Data. Journal of Biomedical Informatics
2018;81:41-52 [FREE Full text] [doi: 10.1016/j.jbi.2018.03.003]

10. Jha S, Kruger L, Shmatikov V. Towards Practical Privacy for Genomic Computation. 2008 Presented at: IEEE Symposium
on Security and Privacy; 2008; Oakland, California. [doi: 10.1109/sp.2008.34]

11. Karvelas N, Peter A, Katzenbeisser S, Tews E, Hamacher K. Privacy-Preserving Whole Genome Sequence Processing
Through Proxy-Aided ORAM. In: Proceedings of the 13th Workshop on Privacy in the Electronic Society. 2014 Presented
at: 13th Workshop on Privacy in the Electronic Society; 2014; New York, NY, USA. [doi: 10.1145/2665943.2665962]

12. Tkachenko O, Weinert C, Schneider T, Hamacher K. Large-Scale Privacy-Preserving Statistical Computations for Distributed
Genome-Wide Association Studies. 2018 Presented at: 13. ACM Asia Conference on Information, Computer and
Communications Security (ASIACCS'18); 2018; Songdo, South Korea. [doi: 10.1145/3196494.3196541]

13. Barni M, Failla P, Kelsnikov V, Lazzeretti R, Sadeghi AR, Schneider T. Secure evaluation of private linear branching
programs with medical applications. 2009 Presented at: European symposium on research in computer security; 2009;
Saint-Malo, France. [doi: 10.1007/978-3-642-04444-1_26]

14. Laud P, Pankova A. Privacy-preserving record linkage in large databases using secure multiparty computation. BMC Med
Genomics 2018 Oct 11;11(S4). [doi: 10.1186/s12920-018-0400-8]

15. Lazrig I, Ong TC, Ray I, Jiang X, Vaidya J. Privacy Preserving Probabilistic Record Linkage Without Trusted Third Party.
2018 Presented at: 16th Annual Conference on Privacy, Security and Trust (PST); 2018; Belfast, Northern Ireland, United
Kingdom. [doi: 10.1109/pst.2018.8514192]

16. Vogelsang L, Lehne M, Schoppmann P, Prasser F, Thun S, Scheuermann B, et al. Secure Multi-Party Computation Protocol
for Time-To-Event Analyses. Stud Health Technol Inform 2020 Jun;270:8-12. [doi: 10.3233/SHTI200112]

17. Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother
Reports 1966:163-170.

18. Peto R, Peto J. Asymptotically Efficient Rank Invariant Test Procedures. Journal of the Royal Statistical Society
1972;135(2):185-207. [doi: 10.2307/2344317]

19. Cramer R, Damgard IB, Nielsen JB. Secure Multiparty Computation and Secret Sharing. New York, New York, USA:
Cambridge University Press; 2015.

20. FRESCO: A FRamework for Efficient Secure COmputation. 2018. URL: https://github.com/aicis/fresco [accessed 2021-01-03]
21. Blanton M, Aguiar E. Private and Oblivious Set and Multiset Operations. 2012 Presented at: Proceedings of the 7th ACM

Symposium on Information, Computer and Communications Security; 2012; Seoul, Korea. [doi: 10.1145/2414456.2414479]
22. Niyazi M, Adeberg S, Kaul D, Boulesteix A, Bougatf N, Fleischmann DF, et al. Independent validation of a new reirradiation

risk score (RRRS) for glioma patients predicting post-recurrence survival: A multicenter DKTK/ROG analysis. Radiotherapy
and Oncology 2018 Apr;127(1):121-127. [doi: 10.1016/j.radonc.2018.01.011]

23. Damgård I, Pastro V, Smart N, Zakarias S. Multiparty Computation from Somewhat Homomorphic Encryption in Advances
in Cryptology. Advances in Cryptology - CRYPTO 2012 2012. [doi: 10.1007/978-3-642-32009-5_38]

JMIR Med Inform 2021 | vol. 9 | iss. 1 | e22158 | p. 12http://medinform.jmir.org/2021/1/e22158/
(page number not for citation purposes)

von Maltitz et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=medinform_v9i1e22158_app2.docx&filename=fed02bd296c3cc5a07f11fe879b1e4ac.docx
https://jmir.org/api/download?alt_name=medinform_v9i1e22158_app2.docx&filename=fed02bd296c3cc5a07f11fe879b1e4ac.docx
http://dx.doi.org/10.1007/978-3-642-03549-4_20
http://dx.doi.org/10.1016/j.jairtraman.2016.02.005
http://dx.doi.org/10.1007/978-3-642-32946-3_5
http://dx.doi.org/10.1109/mcom.2013.6658656
http://dx.doi.org/10.1145/3133956.3133982
http://dx.doi.org/10.1038/nbt.4108
http://dx.doi.org/10.1007/978-3-030-02641-7_4
http://arxiv.org/abs/1703.01534
http://dx.doi.org/10.1016/j.jbi.2018.03.003
http://dx.doi.org/10.1109/sp.2008.34
http://dx.doi.org/10.1145/2665943.2665962
http://dx.doi.org/10.1145/3196494.3196541
http://dx.doi.org/10.1007/978-3-642-04444-1_26
http://dx.doi.org/10.1186/s12920-018-0400-8
http://dx.doi.org/10.1109/pst.2018.8514192
http://dx.doi.org/10.3233/SHTI200112
http://dx.doi.org/10.2307/2344317
https://github.com/aicis/fresco
http://dx.doi.org/10.1145/2414456.2414479
http://dx.doi.org/10.1016/j.radonc.2018.01.011
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://www.w3.org/Style/XSL
http://www.renderx.com/

24. Damgård I, Keller M, Larraia E, Pastro V, Scholl P, Smart NP. Practical covertly secure MPC for dishonest majority ? Or:
Breaking the SPDZ limits. 2013 Presented at: 13th European Symposium on Research in Computer Security?; 2013; Málaga,
Spain p. 1-18. [doi: 10.1007/978-3-642-40203-6_1]

25. How to use SPDZ: Alternative to DUMMY preprocessing?. URL: https://github.com/aicis/fresco/issues/312 [accessed
2021-01-04]

26. Goldschmidt RE. Applications of Division by Convergence. Massachusetts: Massachusetts Institute of Technology; May
1964.

27. Damgård I, Damgård K, Nielsen K, Nordholt PS, Toft T. Confidential Benchmarking based on Multiparty Computation.
Financial Cryptography and Data Security 2017:169-187. [doi: 10.1007/978-3-662-54970-4_10]

28. Bogdanov D, Niitsoo M, Toft T, Willemson J. High-performance secure multi-party computation for data mining applications.
International Journal of Information Security 2012 Sep 9;11(6):403-418. [doi: 10.1007/s10207-012-0177-2]

Abbreviations
CPU: central processing unit
SMPC: secure multiparty computation
TTP: trusted third party

Edited by C Lovis; submitted 18.07.20; peer-reviewed by T Kussel, T Dehling; comments to author 20.09.20; revised version received
24.10.20; accepted 07.11.20; published 18.01.21

Please cite as:
von Maltitz M, Ballhausen H, Kaul D, Fleischmann DF, Niyazi M, Belka C, Carle G
A Privacy-Preserving Log-Rank Test for the Kaplan-Meier Estimator With Secure Multiparty Computation: Algorithm Development
and Validation
JMIR Med Inform 2021;9(1):e22158
URL: http://medinform.jmir.org/2021/1/e22158/
doi: 10.2196/22158
PMID: 33459602

©Marcel von Maltitz, Hendrik Ballhausen, David Kaul, Daniel F Fleischmann, Maximilian Niyazi, Claus Belka, Georg Carle.
Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 18.01.2021. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR
Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on
http://medinform.jmir.org/, as well as this copyright and license information must be included.

JMIR Med Inform 2021 | vol. 9 | iss. 1 | e22158 | p. 13http://medinform.jmir.org/2021/1/e22158/
(page number not for citation purposes)

von Maltitz et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.1007/978-3-642-40203-6_1
https://github.com/aicis/fresco/issues/312
http://dx.doi.org/10.1007/978-3-662-54970-4_10
http://dx.doi.org/10.1007/s10207-012-0177-2
http://medinform.jmir.org/2021/1/e22158/
http://dx.doi.org/10.2196/22158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33459602&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

