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Abstract
The paper deals with the study of rate-induced tipping in asymptotically
autonomous scalar ordinary differential equations. We prove that, in such a
tipping scenario, a solution which limits at a hyperbolic stable equilibrium of
the past limit-problem loses uniform asymptotic stability and coincides with a
solution which limits at a hyperbolic unstable equilibrium of the future limit-
problem. We use asymptotic series to approximate such pairs of solutions and
characterize the occurrence of a rate-induced tipping by using only solutions
calculable on finite time intervals. Moreover, we show that a Melnikov-inspired
method employing the asymptotic series allows to asymptotically approximate
the tipping point.

Keywords: rate-induced tipping, non-autonomous bifurcation, asymptotic
series, invariant manifold

∗CK was partly supported by a Lichtenberg Professorship of the VolkswagenStiftung. CK also acknowledges par-
tial support of the EU within the TiPES project funded the European Unions Horizon 2020 research and inno-
vation programme under Grant Agreement No. 820970. IPL was partly supported by MICIIN/FEDER project
RTI2018-096523-B-100 and by European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska–Curie Grant Agreement No. 754462. CK and IPL also want to thank Hildeberto Jardon-Kojakhmetov
for interesting discussions regarding asymptotic analysis in the early phase of this project.
∗∗Author to whom any correspondence should be addressed.
Recommended by Dr Tere M Seara.

Original content from this work may be used under the terms of the Creative Commons
Attribution 3.0 licence. Any further distribution of this work must maintain attribution
to the author(s) and the title of the work, journal citation and DOI.

1361-6544/22/052559+29$33.00 © 2022 IOP Publishing Ltd & London Mathematical Society Printed in the UK 2559

https://doi.org/10.1088/1361-6544/ac62dc
https://orcid.org/0000-0002-7063-6173
https://orcid.org/0000-0003-1820-4274
mailto:longoi@ma.tum.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6544/ac62dc&domain=pdf&date_stamp=2022-5-25
https://creativecommons.org/licenses/by/3.0/


Nonlinearity 35 (2022) 2559 C Kuehn and I P Longo

Mathematics Subject Classification numbers: 34A34, 37B25, 34C23, 34D05,
34D45.

(Some figures may appear in colour only in the online journal)

1. Introduction

The study of critical transitions in complex systems has been object of a considerable sci-
entific attention and effort. The reason lies in the need of more reliable mathematical tools
to describe a variety of tipping phenomena in climate systems [23, 37], financial markets
[26, 41], neuroscience [14, 27], ecological and natural systems [28, 33, 34] among others
[21, 33]. In recent years [37], the phenomenon of rate-induced tipping has been proposed to be
an alternative mechanism for a critical transition, with respect to the more classical autonomous
bifurcations and noise-induced tipping [5]. Rate-induced tipping can be seen as a special type
of a non-autonomous bifurcation, which manifests itself on a finite time interval, on which
the parameters change significantly and non-adiabatically. This encompasses various real sce-
narios for example in ecology [28, 34, 36], climate [2, 6, 24, 37], biology [14] and quantum
mechanics [16]. Although a considerable number of applied examples for rate-induced tipping
have been documented, the theoretical foundations are currently still lagging a bit behind this
development. In this work, we contribute to build better theoretical methods based upon non-
autonomous nonlinear dynamics and bifurcation theory to advance the study of transitions with
critical variation rates of a parameter.

In the original formulation of rate-induced tipping, Ashwin et al [5] consider a family of
topologically equivalent autonomous differential problems parametrized in λ ∈ [λ−,λ+] ⊂ R.

dx
dt

= ẋ = f (x,λ), x = x(t) ∈ R
N ,

where f is a sufficiently regular function from R
N × R onto R

N and for any fixed value of λ,
the qualitative behavior of the solutions of any of such systems is supposed to be completely
determined by its critical points which are assumed to be hyperbolic. Then, a smooth func-
tion Λ : R→ [λ−,λ+] is considered such that Λ is asymptotically constant and in particular it
converges to λ− as t →−∞ and to λ+ as t →∞. Therefore, one obtains a non-autonomous
dynamical system of the form

ẋ = f (x,Λ(rt)) , x ∈ R
N , t ∈ R. (1.1)

which is asymptotically autonomous in the past and in the future. The parameter r > 0 rep-
resents the rate at which the time-dependent sweep between λ− and λ+ takes place. System
(1.1) is associated to a set of continuous functions which play an important role in the study of
rate-induced tipping. On the one hand, we have the continuous families of quasi-static equi-
libria that map any t ∈ R to the hyperbolic equilibria of the autonomous problem obtained for
λ = Λ(rt). The graphs of these functions represent the adiabatic displacement of the equilibria
upon the variation of λ ∈ [λ−,λ+]. On the other hand, it has been shown that for each stable
hyperbolic equilibrium Xs

− of the past limit-problem, (1.1) has a solution xr
− : (−∞, β) → R

N

limiting to Xs
− as t →−∞ which is also locally pullback attracting [5].

Pullback attractivity is an inherent concept of non-autonomous dynamical systems and
entails a property of attraction in the past. Depending on r, the qualitative behaviour of any
of such locally pullback attracting solutions may change considerably. If these locally pull-
back attractive trajectories are all defined on the whole real line and limit at the ‘respective
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equilibria’ of the autonomous future limit-problem as t →+∞, the system is said to end-point
track the curves of quasi-static equilibria. When this is not true, a rate-induced tipping is said
to happen. In this case, a local pullback attracting solution can become unbounded in finite
time or it may converge to an equilibrium of the future limit-problem which does not represent
the expected landing equilibrium determined by an adiabatic change of the parameter.

The phenomenon of rate-induced tipping has been identified and studied analytically and
numerically in several formulations. For example, in one-dimensional systems (as in [5]),
higher-dimensional systems (as in [1, 18, 38, 40]), discrete systems (in [17]), multiscale sys-
tems (as in [6, 29]), deterministic non-autonomous systems (in [25]), set-valued dynamical
systems (as in [7]), and random dynamical systems (as in [13]).

In this paper, we study the occurrence of rate-induced tipping in scalar nonlinear ordi-
nary differential equations, i.e. systems like (1.1) where N = 1, both from an analytical and a
geometrical point of view. In particular, we highlight the following achievements.

• We show that for scalar asymptotically autonomous differential problems, the occurrence
of a rate-induced tipping coincides with the loss of uniform asymptotic stability by one
of the locally pullback attracting solutions limiting at the stable equilibria of the past
limit-problem. We like to point out that a loss of hyperbolicity—a stronger form of uni-
form asymptotic stability which involves an exponential rate of convergence—has been
proved for a certain class of scalar quadratic differential equations with possibly nonau-
tonomous asymptotic dynamics [25]. Although such a stronger result seems still hard to
prove for general scalar problems, we believe that the achievement in our work contributes
to reinforce the relation between rate-induced tipping and nonautonomous bifurcation
theory.

• The locally pullback solutions can be approximated by asymptotic series expansions
whose terms can be calculated using only values of f , Λ and their derivatives, and the
families of quasi-static equilibria, which are all a priori-known quantities of the given
problem. By the term asymptotic, we mean that the approximations are reliable for r > 0
small enough. Nevertheless, we show that for every r > 0 the approximations are always
reliable on suitable half-lines of the real line.

• The estimate on the errors obtained via the asymptotic series expansions permits to iden-
tify a sufficient condition for end-point tracking of a locally pullback attractive solution
associated to a curve of quasi-static equilibria.

• The asymptotic approximations can be used to characterize the occurrence of rate-induced
tipping via the change of relative order between pairs of solutions suitably chosen in a
neighborhood of the locally pullback solutions.

In fact, the rate-induced tipping mechanism studied here is reminiscent of global
autonomous bifurcation problems, where the relative order of certain invariant manifolds is
tracked via Melnikov/Lin-type methods. In summary, our combination of analytical and geo-
metric methods shows that rate-induced tipping in the scalar context can be viewed via non-
autonomous bifurcations due to its coincidence with the loss of uniform asymptotic stability,
and it can hence be analyzed using a combination of classical tools from invariant manifold
theory and asymptotic analysis. Furthermore, our results show that asymptotic series expan-
sions provide an interesting additional tool for rate-induced tipping problems to connect the
very slow (quasi-static or adiabatic) regime to the rate-induced tipping regime.

The paper is organized as follows. In section 2, we set the notation and recall some notions
on non-autonomousordinary differential equations flows and attractivity. Section 3 contains the
assumptions, definitions and preliminary results on rate-induced tipping for scalar differential
equations. In particular, we recall that every curve of quasi-static stable equilibria is associated
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to a locally pullback attracting solution and show that, similarly, every branch of quasi-static
unstable equilibria containing an unstable hyperbolic equilibrium of the future limit-problem
is associated to a locally pullback repelling solution. The main result of this section is theorem
3.6 where we prove that a rate-induced tipping coincides with a loss of uniform asymptotic
stability by a locally pullback attracting solution limiting at a stable equilibrium of the past
limit-problem through a collision with a locally pullback repelling solution limiting at an unsta-
ble equilibrium of the future limit-problem. Section 4 deals with the asymptotic approximation
of the locally pullback solutions of (1.1). In proposition 4.2, we show that every locally pullback
solution (either attracting or repelling) can be approximated via an asymptotic series expan-
sion when r is sufficiently small. In particular, the zero-order approximation coincides with the
respective curve of quasi-static equilibria and the coefficients of higher order can be calculated
using only values of f , Λ and their derivatives. Notably, all the coefficients of order higher or
equal than one tend to zero as |t| →∞. This guarantees that for every r > 0 the asymptotic
series approximation is always effective on a suitable half-line of the real line. This deduction
allows us to give information on the occurrence or the absence of a rate-induced tipping. Par-
ticularly, proposition 3.3 contains a sufficient condition for end-point tracking upon assuming
that the asymptotic series expansion holds on the whole real line with a suitably bounded (but
not necessarily small) error. On the other hand, in theorem 4.7 we characterize the occurrence
of rate-induced tipping by choosing suitable pairs of solutions such that one is close to the
pullback attracting solution in the sufficiently far but finite past, and the other is close to the
pullback repelling solution in the sufficiently far but finite future. We show that a change of
relative order between such pairs of solution characterizes the occurrence of a rate-induced
tipping for the system.

2. Background: non-autonomous ODEs, flows and attractivity

In this section, we introduce the general notation used in the work and recall some basic notions
and definitions about dynamical systems induced by non-autonomous ordinary differential
equations. We will restrict the presentation to the definitions and results which are relevant
for this work. We refer the reader to [35] for an in-depth presentation.

For any N ∈ N natural number, we shall denote by R
N the N-dimensional Euclidean space

with its norm | · |. The symbols R
+ and R

− will denote the intervals [0,∞) and (−∞, 0],
respectively. For every V ⊂ R

N , W ⊂ R
M , and n ∈ N, we denote by Cn(V , W) the set of func-

tions f : V → W whose partial derivatives up to order n exist and are continuous. In particular,
the set of continuous functions from R× R into R, denoted by C = C(R× R,R) is endowed
with the compact-open topology. This means that a sequence ( fn)n∈N in C converges to a func-
tion f ∈ C if and only if for every set K × I, where K and I are compact subsets of R, the
sequence ( fn)n∈N converges uniformly to f on K × I. It is well-known that one can define a
(global) continuous flow π : C × R→C (that is π satisfies the identity and group properties)
on C via the shift map ( f , τ ) �→ π( f , t) = fτ where fτ is defined by fτ (x, t) = f (x, t + τ ) (see
[35] for example). For any f ∈ C, we denote by ω( f ) the omega limit-set of f , i.e. the set of
functions g ∈ C such that there is a sequence (tn)n∈N in R, tn →∞, for which g = limn→∞ f tn .
In particular, f is called positively precompact if for all sequences (tn)n∈N in R, tn →∞ there
is a subsequence (tn j) j∈N and a g ∈ C such that lim j→∞ f tn j

= g. The alpha limit set α( f ) of
f is defined analogously by considering the limit functions for sequences (tn)n∈N in R with
tn →−∞. Now, fix f ∈ C and consider the non-autonomous differential equation

ẋ = f (x, t). (2.1)
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We say that (2.1) is forward asymptotically autonomous (resp. backward asymptotically
autonomous) if there is g ∈ C such that ω( f ) = {g} (resp. α( f ) = {g}). We say that (2.1)
is asymptotically autonomous if it is both forward and backward asymptotically autonomous.

We call f admissible if (2.1) has a unique solution for all initial data (t0, x0) ∈ R
2 and

denote by x(t, t0, x0) its unique solution satisfying x(t0, t0, x0) = x0, where t belongs to the
maximal interval of definition It0,x0 . A special notation will be used for the solutions with
initial data (0, x0), x0 ∈ R: x(t, 0, x0) = x(t, f , x0) and their maximal interval of definitionIx0, f .
Notice, in particular, that given any initial data (t0, x0) ∈ R

2, the solution x(·, t0, x0) of (2.1),
with x(t0) = x0, and the solution x(·, f t0 , x0), of ẋ = f t0(x, t), x(0) = x0, are the same up to a
time translation. Specifically, one has that

x(t, t0, x0) = x(t − t0, f t0 , x0), for all t ∈ It0,x0 .

We recall the following fundamental result of continuity.

Lemma 2.1 (Kamke). Let A denote the collection of all admissible functions f in C(RN ×
R,RN). Then, the solution function x(t, f, x0) is continuous on the subsetR×A× R

N for which
it is defined. That is, if ( fn)n∈N is a sequence of admissible functions in C(RN × R,RN) with
limit f in C(RN × R,RN), where f is admissible, if (xn)n∈N is a sequence in R

N with limit x0

and if (tn)n∈N is a sequence in Ixn , fn with limit t, then t ∈ Ix0, f and

lim
n→∞

x(tn, fn, xn) = x(t, f , x0).

We also recall some standard definitions of stability.

Definition 2.2. A solution x̃ : [t0,∞) → R of ẋ = f (x, t) with f : R× R→ R, is called uni-
formly stable if for any ε > 0 there is δ = δ(ε) > 0 such that |x̃(s) − x0| < δ for some s > t0

implies |x̃(t) − x(t, s, x0)| < ε for all t > s.
A solution x̃ : [t0,∞) → R of ẋ = f (x, t) with f : R× R→ R is called uniformly asymptoti-

cally stable if it is uniformly stable and there is b > 0 such that for every ε > 0 a T(ε) > 0 exists
such that if |x̃(s) − x0| < b, for some s > t0, then |x̃(t) − x(t, s, x0)| < ε for all t > s + T(ε).

The following classical result (see [4, theorem F]) relates the uniform asymptotic stability
of the solutions of ẋ = f (x, t) to the dynamic behavior of the asymptotic equations.

Proposition 2.3. Let f ∈ C be positively precompact and such that all the elements of ω(f)
are admissible. Moreover, assume that f(0, t) = 0 for all t ∈ R and x̃(t) = 0, t ∈ R is the unique
solution of ẋ = f (x, t) with x(0) = 0. Then, x̃(t) is uniformly asymptotically stable if and only
if there is a neighborhood W of 0 which is a region of uniform attraction collectively with
respect to the family of limiting equations of ẋ = f (x, t). That is, for any compact set K ∈ W
and any ε > 0 there is a T > 0 such that whenever any solution x(t) of ẋ = g(x, t), g ∈ ω( f ),
satisfies x(t0) ∈ K, then |x(t)| < ε for all t � t0 + T.

Remark 2.4. The results of the previous proposition apply to any arbitrary solution x̃ of
ẋ = f (x, t) by considering the system

ẋ = F(x, t) = f
(
x + x̃(t), t

)
− f

(
x̃(t), t

)
.

Besides attraction in the future, non-autonomous systems admit a form of attraction in the
past which takes the name of pullback attractivity. This notion plays an important role in the
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study of rate-induced tipping. The following definition of local pullback attractivity and repul-
sivity is taken from [25] and it was in turn adapted from [31, section 2.3]. It is worth noting
that it is weaker than the definition provided in [5].

Definition 2.5. A solution x : (−∞, β) → R (with β � ∞) of (2.1) is called locally pullback
attracting if there exist s0 < β and δ > 0 such that if s � s0 and |x0 − x(s)| < δ then x(t, s, x0)
is defined for t ∈ [s, s0], and in addition

lim
s→−∞

|x(t) − x(t, s, x0)| = 0 for all t � s0.

A solution x : (α,∞) → R (with α � ∞) of (2.1) is called locally pullback repelling if
there exist s0 > α and δ > 0 such that if s � s0 and |x0 − x(s)| < δ then x(t, s, x0) is defined
for t ∈ [s0, s], and in addition

lim
s→∞

|x(t) − x(t, s, x0)| = 0 for all t � s0.

3. General setting, assumptions and preliminary results on rate-induced
tipping

In this section, we introduce the notation regarding rate-induced tipping and clarify the overall
setting of the work. Moreover, we recall a few key results from [5] and complete them (where
necessary) in accordance with our framework. The section contains two new main results:
proposition 3.3 and theorem 3.6.

Proposition 3.3 provides a sufficient condition for the absence of a rate-induced tipping.
Unlike ε-close tracking or forward basin stability [5], it does not require knowledge on the
whole history of the pullback attractor or of the basins of attraction for the quasi-static equi-
libria. It is shown that proximity to Xs

+ at only one value of time beyond a certain threshold
is sufficient. This is not surprising, given the persistence of hyperbolic solutions, but it seems
to be absent from the literature on rate-induced tipping—for this reason we declare it as a
proposition rather than a theorem.

Theorem 3.6 characterizes a rate-induced tipping with the loss of uniform asymptotic stabil-
ity of an attractive orbit which collides with a repelling solution at the tipping point. A stronger
result has been proved for a certain class of scalar quadratic differential equations—possibly
with nonautonomous asymptotic dynamics—showing that such collision entails a loss of
hyperbolicity [25]. In this context, hyperbolicity means the existence of an exponential
dichotomy for the associated variational equation [19], generalizing the notion of exponential
rate of asymptotic convergence for solutions which are not stationary or periodic.

We will work under the following fundamental assumptions.
(H0) Consider f ∈ C2(R× R,R) bounded and so that the parametric differential problems

ẋ = f (x,λ), λ ∈ [λ−,λ+], (3.1)

are well-defined, admit existence and uniqueness of the solutions and their continuous depen-
dence with respect to parameter and initial data. Moreover, assume that for everyλ ∈ [λ−,λ+],
except at most a finite number of points in (λ−,λ+) the autonomous dynamical system induced
by (3.1) has only hyperbolic fixed points. In particular, we shall assume that there is at least
one stable hyperbolic fixed point Xs

− of the problem ẋ = f (x,λ−) such that, upon the variation
on λ, Xs

− is continuously perturbed into a stable hyperbolic fixed point Xs
λ of ẋ = f (x,λ), with
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λ ∈ [λ−,λ+]. In particular, we simplify the notation at λ = λ+ by writing Xs
+ :=Xs

λ+
. We shall

call the continuous function Xs : [λ−,λ+] → R defined by

λ �→ Xs(λ) = Xs
λ,

the family of quasi-static stable equilibria associated to Xs
−.

Now, let Λ ∈ C2(R, [λ−,λ+]), be any bounded and strictly increasing function such that

lim
t→±∞

Λ(t) = λ± and lim
t→±∞

Λ′(t) = 0,

and for any r > 0 consider the non-autonomous differential problem

ẋ = f (x,Λ(rt)) , x ∈ R, t ∈ R. (3.2)

Under the considered assumptions, the solution function x : U ⊂ R
3 → R, (t, s, x0) �→

x(t, s, x0) is continuous. Notice also that

lim
t→−∞

f (x,Λ(rt)) = f (x,λ−) = : f−(x) and

lim
t→∞

f (x,Λ(rt)) = f (x,λ+) = : f +(x),

uniformly for x in a compact subset of RN . Therefore, (3.2) is asymptotically autonomous. We
will call the autonomous differential problem ẋ = f−(x) the past limit-problem, and ẋ = f+(x)
the future limit-problem of (3.2), and denote by x(·, f−, x0) and x(·, f+, x0) the unique solution
of ẋ = f−(x) and ẋ = f+(x), respectively, with initial data (0, x0).

In particular, we will also have the time-parametrized curve of quasi-static equilibria, which
(with a little abuse of notation) we keep denoting with the same symbol, defined by

R
+ × R 	 (r, t) �→ Xs (Λ(rt)) =: Xs(rt) ∈ R.

Due to construction, Xs is continuous and bounded. We shall also assume that there is p > 0
such that ∂x f (Xs(t),Λ(t)) < −p < 0, for all t ∈ R, where ∂x f is the first derivative of f with
respect to the variable x.

The assumptions considered so far are inherited from [5]. As we will see in the very next
results, they allow us to construct (and extend) the same framework of [5] and analyze rate-
induced tipping in terms of the behaviour of a locally pullback attracting solution. Importantly,
the existence of this solution and the persistence of the connection between the attractor in
the past and the one in the future for ‘small’ rates, are obtained through arguments of sin-
gular perturbation theory which require these assumptions (see propositions 3.1 and 3.3). It
is therefore natural that such set of assumptions appears in other works on the subject (e.g.
[18]). We also like to point out that milder assumptions on regularity and a different argument
using persistence of hyperbolic solutions are used in [25] to obtain similar results for a class
of nonautonomous quadratic differential problems—in that context the geometric argument
is not applicable. In this work, however, regularity will not be considered as an issue. In fact,
in section 4 we will always require that our function f admits partial derivatives of any order
with respect to the variable x and that they are continuous. It is also worth noting that, in other
contexts, for example where rate-induced tipping is treated in terms of geometric thresholds
[40] or investigated numerically [15], the assumption on regularity for f and Λ is generally
reduced to C1(R× R,R).

The following proposition recalls a crucial result in [5] where the solution stemming from
the hyperbolic equilibrium Xs

− of the past limit-problem is recognized as locally pullback
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attractive. We include a similar statement for a locally pullback repelling solution stemming
from a hyperbolic equilibrium Xu

+ of the future limit-problem.

Proposition 3.1. Consider the assumption (H0). Then, the following statements hold true.

• For every r > 0 there is a solution xr
−(·) = x−(r, ·) ∈ C((−∞, βr

−),RN) of (3.2) such that

lim
t→−∞

xr
−(t) = Xs

−,

and xr
− is the only solution satisfying such limit. Moreover, xr

−(·) is locally pullback attrac-
tive and there exist T > 0 and a neighbourhood U ⊂ R of Xs

− such that xr
−(·) is the only

trajectory remaining in U for all t < −T.
• If the problem ẋ = f (x,λ+) has also an unstable hyperbolic equilibrium Xu

+, then for
every r > 0 there is a solution xr

+(·) = x+(r, ·) ∈ C((βr
+,∞),RN) of (3.2) such that

lim
t→∞

xr
+(t) = Xu

+,

and xr
+ is the only solution satisfying such limit. Moreover, xr

+(·) is locally pullback
repelling and there exist T > 0 and a neighbourhood V ⊂ R of Xu

+ such that xr
+(·) is

the only trajectory remaining in V for all t > T.

Proof. The proof of the statement for xr
− is given in theorem 2.2 of [5]. In order to prove the

statement for xr
+ firstly notice that since ẋ = f (x,λ+) has an unstable hyperbolic equilibrium

Xu
+, then there is λ̃ ∈ [λ−,λ+) such that Xu

+ is (continuously) perturbed into an unstable hyper-

bolic equilibrium Xu(λ) for all λ ∈ [λ̃,λ+]. Denote by τ̃ the real number such that Λ(τ̃ ) = λ̃

and consider the function Λ̃ : R→ [λ̃,λ+] defined by

Λ̃(τ ) =

⎧⎨⎩λ̃, if τ < τ̃ ,

Λ(τ ), if τ � τ̃ .

Notice that Λ̃ is continuous but not differentiable for τ = τ̃ in general. However, given ε > 0,
one can always construct a function Λ ∈ C2(R, [λ̃,λ+]) which coincides with Λ̃ outside a ball
of radius ε centered at τ̃ as a convolution with a mollifier (see [3]), i.e.

Λ(τ ) =
∫
R

Λ̃(s)ρε(τ − s) ds,

where for example ρε(τ ) = exp
(
1/(|ετ |2 − 1)

)
if |τ | < ε and ρε(τ ) = 0 otherwise. Then, we

obtain the non-autonomous problem

ẋ = f
(
x,Λ(rt)

)
, (3.3)

and notice that, for any t > (τ̃ + ε)/r, a solution of (3.3) is also a solution of (3.2).
Next, using the change of variable t = −s, system (3.3) becomes the time-reversed problem

ẋ = − f
(
x,Λ(−rs)

)
which limits at the autonomous systems ẋ = − f+(x) as s →−∞ and to ẋ = − f (x, λ̃) as s →
∞, respectively. It is easy to show that the unstable equilibrium Xu

+ for the future limit-problem
ẋ = f+(x) of (3.2), is now a stable equilibrium for the past limit-problem of this time-reversed
problem, i.e. ẋ = − f+(x). Therefore, by applying [5, theorem 2.2] again, one obtains that
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Figure 1. A numerical simulation showing the end-point tracking and rate-induced tip-
ping for the scalar differential problem ẋ = −(x − (2/π) arctan(rt))2 + 0.1 upon the
variation of the parameter r. The solid lines represent the locally pullback attracting
and locally pullback repelling solutions of the ODE, namely xr

−(t) (in red) and xr
+(t) (in

blue), respectively. The dashed lines represent the curves of quasi-static equilibria Xs(rt)
(in red) and Xu(rt) (in blue) of the associated family of autonomous problems.

there is a unique solution x of the time-reversed problem which is locally pullback attracting
and limits at Xu

+ as t →−∞. Therefore x(−t) is a locally pullback repelling solution for (3.3)
which means that the solution xr

+ of (3.2) such that xr
+(t) = x(−t) for all t > (τ̃ + ε)/r is

locally pullback repelling for (3.2) (see definition 2.5), which concludes the proof. �
Now, we can rigorously recall the notion of end-point tracking and of rate-induced tip-

ping [5, 25]. Figure 1 shows a graphic representation of the two notions for a scalar quadratic
differential problem.

Definition 3.2. Under the introduced notation and assumptions and fixed r > 0:

• We say that xr
−(t) end-point tracks the curve of quasi-static equilibria Xs(rt) if xr

−(·) is
defined on the whole real line and

lim
t→+∞

xr
−(t) = Xs

+.

• We say that the system (3.2) undergoes a rate-induced tipping at r = r∗ ∈ (0,∞) if for
all r ∈ (0, r∗), all locally pullback attracting solutions constructed as in proposition 3.1
end-point track their respective curves of quasi-static equilibria, and there is at least one
locally pullback attracting solution xr∗

− that does not end-point track the respective curve
of quasi-static equilibria Xs.

Next, we present a sufficient condition for the end-point tracking of the locally pullback
attracting solution xr

− associated to the curve of quasi-static equilibria Xs. Although, the result
can be easily generalized to differential problems in R

N , for coherence with this work set-up,
we present it in the scalar case.

Proposition 3.3. Consider assumption (H0) and assume that xr
− is globally defined and

bounded for some r > 0. Let K ⊂ R be any compact interval such that Xs
+ ∈ K and xr

−(t) ∈ K
for all t ∈ R. Then, a Tr,K > 0 exists such that if for every ε > 0 there is tε > Tr,K for which
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|xr
−(tε) − Xs

+| < ε then xr
− end point tracks the curve of quasi-static equilibria Xs, i.e. xr

−(t) →
Xs
+ as t →∞.

Proof. The first step is to use a fundamental result of persistence for hyperbolic solutions of
non-autonomous dynamical systems. Consider α > 0 and h0 ∈ C(R× R,R), (y, t) �→ h0(y, t)
differentiable in y for every t ∈ R such that the differential problem

ẏ = −αy + h0(y, t), (3.4)

has an attractive hyperbolic solution ỹ0 : R→ R in the sense that the corresponding variational
equation has an exponential dichotomy on R, i.e. there are k � 1 and β > 0 such that

exp
∫ t

s
[−α+ ∂yh0

(
ỹ(u), u

)
] du � k e−β(t−s), whenever t � s.

Then, thanks to proposition 2.1 in [9] (see also [8] or [30] for a even more general formulation)
there is 0 < η0 � 1 such that for every 0 < η � η0 andK′ ⊂ R compact, there is δη,K′ > 0 such
that, if h ∈ C(R× R,R), (y, t) �→ h(y, t) differentiable in y for every t ∈ R satisfies

sup
y∈K′, t∈R

|h(y, t) − h0(y, t)|+ |∂yh(y, t) − ∂yh0(y, t)| < δη,K′ , (3.5)

then also the equation

ẏ = −αy + h(y, t) (3.6)

has an attractive hyperbolic solution ỹ : R→ R and ‖ỹ(·) − ỹ0(·)‖C(R,R) < η. In particular, there
is a common dichotomy constant pair (k, β) valid for all the hyperbolic solutions obtained
for (3.6) whenever h satisfies (3.5). Moreover, the first approximation theorem [12, theorem
III.2.4] guarantees that there is μ = μ(η0) > 0, such that if |y0 − ỹ(τ )| < μ for some τ ∈ R,
then |y(t, h, (τ , y0)) − ỹ(t)| → 0 as t →∞, where y(·, h, (τ , y0)) denotes the solution of (3.6)
satisfying y(τ , h, (τ , y0)) = y0.

Now fix r > 0 and let K0 ⊂ R be a compact interval containing Xs
+ and xr

−(t) for all t ∈
R. Notice that if K0 = {Xs

+} the statement is obvious; therefore, we will assume that K0 is
strictly larger than {Xs

+}. Additionally, let K be any compact interval strictly containing K0,
and consider a function f0 : R× [λ−,λ+] → R, continuously differentiable in x for every λ ∈
[λ−,λ+] such that f0(x,λ) = f (x,λ) if x ∈ K0 and f0(x,λ) = 0 if R\K. Notice that such a
function can always be constructed for example by considering a function which is equal to
f in an open neighborhood of K0, decays linearly to 0 towards the border of K and realizing
its convolution with a suitable mollifier [3]. Notably, xr

− is still a solution of ẋ = f0 (x,Λ(rt))
and Xs

+ is a stable hyperbolic equilibrium for ẋ = f0(x,λ+) that can be equivalently written
as the equation of perturbed motion (3.4) with −α = ∂x f (Xs

+,λ+), y = x − Xs
+ and h0(y, t) =

f0(y + Xs
+,λ+) + αy. At this point, notice that for every 0 < η � η = min{η0,μ/3}, there is

Tη,r,K > 0 such that for all t � Tη,r,K ,

sup
x∈R

| f0 (x,Λ(rt)) − f0(x,λ+)|+ |∂x f0 (x,Λ(rt)) − ∂x f0(x,λ+)| < δη,K.

Therefore, denoted by hη(y, t) the function from R× R into R defined by

hη(y, t) =

{
f0
(
y + Xs

+,Λ(rTη,r,K)
)
+ αy if t < Tη,r,K ,

f0
(
y + Xs

+,Λ(rt)
)
+ αy if t � Tη,r,K ,
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we have that hη satisfies (3.5), and thus (3.6) (with h = hη) has an attractive hyperbolic solution
ỹη : R→ R such that ‖ỹη(·)‖C(R,R) < η. Notice also that ỹη is a solution of ẏ = f (y + Xs

+,Λ(rt))
for t > Tη,r,K . Furthermore, if 0 < η1 < η2 � η, then

Tη2,r,K � Tη1,r,K , and lim
t→∞

|̃yη1 (t) − ỹη2 (t)| = 0, (3.7)

because ỹη2 is also a solution of (3.6) with h = hη1 for t > Tη1,r,K and thanks also to the
hyperbolicity of ỹη1 and the fact that |̃yη2 (Tη1,r,K) − ỹη1 (Tη1,r,K)| � η1 + η2 < μ. Hence, for all
0 < η � η, ỹη(t) → 0 as t →∞. Let Tr,K = Tη,r,K and assume that for every ε > 0 there is
tε > Tr,K for which |yr

−(tε)| = |xr
−(tε) − Xs

+| < ε. Therefore, we have that for any 0 < η � η,
|yr

−(tη) − ỹη(tη)| < μ. Consequently,

lim
t→∞

yr
−(t) = lim

t→∞
ỹη(t) = 0,

which concludes the proof. �
Lemma 2.3 in [5] proves that there is r > 0 such that the locally pullback attracting solution

xr
− proceeding from the stable hyperbolic equilibrium Xs

− of the past limit-problem is globally
defined and end-point tracks the curve of quasi-static equilibria Xs(rt) for all 0 < r < r. As
follows, we recall the basic ideas for the global existence of xr

− (see [5] for more details)
which make use of the theory of persistence for normally hyperbolic invariant non-compact
manifolds (see [10]). We also include an alternative argument to prove the end-point tracking
condition motivated by the fact that it will be useful in the rest of the paper. Most importantly,
we show that for all 0 < r < r, xr

− is uniformly asymptotically stable.

Proposition 3.4. Under assumption (H0), there is r > 0 such that if 0 < r < r then the
solutions xr

− provided by proposition 3.1 is globally defined, end-point tracks the curve of
quasi-static equilibria Xs(rt) and it is uniformly asymptotically stable.

Proof. We only sketch the proof of the global existence of xr
− (as given in [5, lemma 2.3])

in order to set some notation. Set τ = rt and increase the dimension of (3.2) by adding the
equation dτ/dt = r, that is,⎧⎪⎨⎪⎩

dx
dt

= f (x,Λ(τ )) ,

dτ
dt

= r.
(3.8)

When r = 0, the flow induced by (3.8) on R
2 is the union over τ ∈ R of the flows onR induced

by the autonomous scalar problems dx
dt = f (x,Λ(τ )) in each fiber. Then, it is possible to prove

that (Xs(t), t) (which is a smooth connected and complete submanifold of R
N+1) is a non-

compact normally hyperbolic invariant manifold (see [10, definition 1.8]) for the flow induced
by (3.8) at r = 0. Furthermore, (Xs(t), t) trivially has empty unstable bundle. Then, theorem 3.1
in [10] (with additional details in section 1.6.1 for the non-autonomous perturbation) guar-
antees that for each ε > 0 there is a rε > 0 such that for every 0 < r < rε there is a unique
submanifold (x̃r(t), rt) in the ε-neighborhood of (Xs(rt), rt) that is diffeomorphic to (Xs(rt), rt)
and invariant under the flow induced by (3.8) for the given value of r (see also section 4.1 in
[10]). From proposition 3.1 we immediately have that it must be x̃r = xr

−, and therefore xr
− is

globally defined and bounded.
We shall now prove that for ε > 0 sufficiently small, xr

− end point tracks Xs for all 0 < r <
rε. Fix ε > 0, from the first part of the proof we have that

Xs(rt) − ε < xr
−(t) < Xs(rt) + ε, for all 0 < r < rε, t ∈ R.
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Denoted by X := lim inft→∞ xr
−(t) and X := lim supt→∞ xr

−(t), there are sequences
(tn)n∈N, (tm)m∈N of real numbers so that tn →∞, tm →∞ and for all 0 < r < rε,

Xs
+ − ε � X := lim

m→∞
xr
−(tm) � X := lim

n→∞
xr
−(tn) � Xs

+ + ε.

Since ε can be taken as small as desired and Xs
+ is hyperbolic stable, there is s > 0 such that

max
{∣∣x (s, f+, X

)
− Xs

+

∣∣ ,
∣∣x (s, f+, X

)
− Xs

+

∣∣} <
ε

2
.

On the other hand, recall that f tn , f tm → f+ as n →∞. Therefore, from lemma 2.1, for the fixed
s > 0 we have that there is nε ∈ N such that for all n, m ∈ N with n, m > nε,

|x(s, f tn , xr
−(tn)) − x(s, f +, X̄)| < ε

2
, and

|x(s, f tm , xr
−(tm)) − x(s, f +, X)|} <

ε

2
.

Then, using the cocycle property and the triangular inequality, one has that

|xr
−(tn + s) − Xs

+| � |x(s, f tn , xr
−(tn)) − x(s, f +, X̄)|+ |x(s, f +, X̄) − Xs

+| < ε (3.9)

and analogously, |xr
−(tm + s) − Xs

+| < ε. From the arbitrariness of ε > 0 we deduce that
limt→∞ xr

−(t) = Xs
+. In other words, xr

− end-point tracks the curve of quasi-static equilibria
Xs(rt).

In order to prove the uniform asymptotic stability, let us recall that by assumption
∂x f (Xs(rt),Λ(rt)) < −p < 0 for all t ∈ R. Hence, from the first part of this proof and the
continuity of ∂x f , we can consider

0 < r := sup
{

r > 0
∣∣ ∂x f

(
xr
−(t),Λ(rt)

)
< 0 for all t ∈ R

}
.

For any fixed 0 < r < r and ε > 0, consider the two continuous functions αr
ε, β

r
ε : R→ R

defined by

t �→ αr
ε(t) = xr

−(t) − ε, and t �→ βr
ε(t) = xr

−(t) + ε.

Notice that

f
(
βr
ε(t),Λ(rt)

)
< β̇r

ε(t) ⇔ f
(
xr
−(t) + ε,Λ(rt)

)
< ẋr

−(t)

⇔ ε∂x f
(
xr
−(t),Λ(rt)

)
+ O(ε2) < 0,

and analogously,

f
(
αr
ε(t),Λ(rt)

)
> α̇r

ε(t) ⇔ −ε∂x f
(
xr
−(t),Λ(rt)

)
+ O(ε2) > 0.

Both the inequalities at the right-hand side of the previous chain of implications are always true
if ε > 0 is sufficiently small. Therefore, xr

−(t) is uniformly asymptotically stable if 0 < r < r.
�

Next we study a bit more in depth the region of the phase space which asymptotically
converges to xr

− if it is uniformly asymptotically stable. In particular, we show that, under
assumption (H0), if there is an unstable hyperbolic equilibrium Xu

+ for the future limit-problem
which belongs to the boundary of the basin of attraction of the considered stable hyperbolic
equilibrium Xs

+ and the locally pullback attracting solution xr
− converges to Xs

+, then the locally

2570



Nonlinearity 35 (2022) 2559 C Kuehn and I P Longo

pullback repelling solution associated to Xu
+ (provided by proposition 3.1) determines a region

of the phase space which converges to xr
− as t →∞.

Proposition 3.5. Under assumption (H0), let xr
− be the locally pullback attracting solu-

tion provided by proposition 3.1 and assume that xr
− end-point tracks the associated curve

of quasi-static equilibria and it is uniformly asymptotically stable for some r > 0. Assume
ẋ = f (x,λ+) has also an unstable hyperbolic equilibrium Xu

+ < Xs
+ (resp. Xs

+ < Xu
+) such

that there are no other equilibria between Xu
+ and Xs

+. Considering the pullback repelling
solution xr

+(·) ∈ C((βr
+,∞),RN) of (3.2) provided by proposition 3.1, we have that for every

t0 > βr
+, if xr

+(t0) < x0 < xr
−(t0) (resp. xr

−(t0) < x0 < xr
+(t0)), then

|x(t, t0, x0) − xr
−(t)| → 0 as t →∞.

Proof. We shall complete the proof for the case Xu
+ < Xs

+, the other case being similar. Let
us fix ε > 0 and consider tε > 0 such that

|Xs
+ − xr

−(t)| < ε

2
, for all t � tε.

Notice also that, chosen (x0, t0) ∈ R
2 as in the assumptions, the solution x(t, t0, x0) of (3.2) is

defined for all t > t0 since

xr
+(t) < x(t, t0, x0) < xr

−(t), for all t > t0.

Denote by x = lim inft→∞ x(t, t0, x0) and consider a sequence (tn)n→∞, realizing x =
limn→∞ x(tn, t0, x0). Due to proposition 3.1 we have that Xu

+ < x � Xs
+. Therefore, for the fixed

ε > 0, we have that there is s > tε such that∣∣x (s, f+, x
)
− Xs

+

∣∣ < ε

4
.

On the other hand, recall that f tn → f+ as n →∞. Therefore, from lemma 2.1, for the fixed
s > tε we have that there is nε ∈ N such that for all n ∈ N with n > nε,∣∣x (s, f tn , x(tn, t0, x0)

)
− x

(
s, f+, x

)∣∣ < ε

4
.

Then, using the cocycle property and the triangular inequality, one has that

|x(tn + s, t0, x0) − xr
−(tn + s)|

� |x(tn + s, t0, x0) − Xs
+|+ |Xs

+ − xr
−(tn + s)|

�
∣∣x (s, f tn , x(tn, t0, x0)

)
− x

(
s, f+, x

)∣∣+ ∣∣x (s, f+, x
)
− Xs

+

∣∣+ ε

2
< ε.

Finally, since xr
− is assumed to be uniformly asymptotically stable and from the arbitrariness

on ε > 0, we obtain the desired conclusion. �

The following result characterizes the occurrence of a rate-induced tipping with the loss of
uniform asymptotic stability of a locally pullback attracting solution limiting at a stable hyper-
bolic equilibrium of the past limit-problem (see proposition 3.4). Many works have shown
that a rate-induced tipping coincides with a collision with an orbit which is defined up to
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+∞ and limits at a repelling solution of the future limit-problem [7, 25, 38]. This result con-
tains also this fact in the context of scalar differential problems using standard techniques for
non-autonomous dynamical systems.

Theorem 3.6. Consider assumption (H0) and denote

r∗ := sup {r > 0|xρ−(·) is uniformly asymptotically stable for all 0 < ρ � r}.

Then, xr
− end point tracks the respective curve of quasi-static equilibria Xs for all 0 < r <

r∗. Moreover, the following statements are equivalent.

(a) r∗ < ∞;
(b) xr∗

− is globally defined but not uniformly asymptotically stable and it does not end-point
track Xs. In particular, the system (3.2) undergoes a rate-induced tipping at r = r∗;

(c) There is an unstable hyperbolic equilibrium Xu
+ of ẋ = f (x,λ+) and a value r∗ > 0 such

that the pullback repelling solution xr∗
+ of (3.2) associated to Xu

+ (see proposition 3.1)
satisfies xr∗

− (t) = xr∗
+(t) for all t ∈ R.

Proof. From proposition 3.4, we already know that limt→∞xr
−(t) = Xs

+ for all 0 < r < r. If
r∗ = r we already have the first assertion proved. Otherwise, consider r ∈ [r, r∗) and let

Xr := lim inf
t→∞

xr
−(t) � Xr := lim sup

t→∞
xr
−(t). (3.10)

If we prove that both Xr and Xr must belong to the basin of attraction of Xs
+ for all 0 < r < r∗,

then reasoning as for (3.9), we immediately obtain that Xr = Xr = Xs
+ which is the claimed

assertion. By contradiction, assume that this is not true and there is r0 ∈ [r, r∗) and a sequence
(tn)n∈N, tn

n→∞−−−→∞ such that Xr0 = limn→∞xr0
− (tn) does not belong to the basin of attraction

of Xs
+. Then, due to (H0), there must be an unstable hyperbolic equilibrium Xu

+ in between
Xr0 and Xs

+ for the future limit-problem ẋ = f+(x). For the sake of notation, let us assume that
Xr0 � Xu

+ < Xs
+ (the other case being similar), and denote by xr0

+ the locally pullback repelling
solution of (3.2) provided by proposition 3.1. Then, one has that, up to considering n ∈ N suf-
ficiently big, xr

+(tn) < xr
−(tn) for all 0 < r < r, and xr0

+(tn) � xr0
− (tn). Due to the continuous

variation of the solution there must be r1 ∈ [r, r0] such that xr1
+(tn) = xr1

− (tn). But this is in con-
tradiction with the fact that xr

− is uniformly asymptotically stable for all 0 < r < r∗ because,
by proposition 3.1, xr

+ is locally pullback repelling for all r > 0. An analogous reasoning holds
true for Xr. Hence, both Xr and Xr belong to the basin of attraction of Xs

+ for all 0 < r < r∗,
and, in particular, coincide with Xs

+ (see (3.9)), which ends the proof of the first assertion.
(a) ⇒ (b). First of all, notice that due to lemma 2.1, xr∗

− must be globally defined. Moreover,
due to assumption (H0), f (x,Λ(rt)) is locally Lipschitz-continuous in x uniformly in t ∈ R.
Therefore, xr∗

− cannot be uniformly asymptotically stable or else xr∗+δ
− would be so for δ > 0

sufficiently small (see [12, theorem X.5.2]), and this is in contradiction with the definition of
r∗. On the other hand, this implies that xr∗

− does not end-point track Xs, otherwise this would
contradict proposition 2.3.

(b)⇒ (c). Using the notation of (3.10), we have that either Xr∗ , Xr∗ , or both must not belong
to the basin of attraction of Xs

+. Otherwise reasoning as for (3.9), we obtain that Xr∗ = Xr∗ = Xs
+

which is in contradiction with the assumptions in (b). Therefore, in agreement with (H0), there
must be an unstable hyperbolic equilibrium Xu

+ for ẋ = f+(x) such that the only one of the
following two cases is possible

Xr∗ � Xu
+ > Xs

+, or Xs
+ > Xu

+ � Xr∗ . (3.11)

2572



Nonlinearity 35 (2022) 2559 C Kuehn and I P Longo

Let us assume the latter (the other case being similar) and denote by xr∗
+ the locally pullback

repelling solution of (3.2) associated to Xu
+ at r = r∗ (see proposition 3.1). Thanks to lemma

2.1, it is easy to deduce that it must be xr∗
− (t) � xr∗

+(t) for all t ∈ R where they are both defined.
Consequently, and due also to (3.11), it must be Xr∗ = Xu

+. We shall now prove that also
Xr∗ = Xu

+ <. Let us assume that this were not true. Then, two cases are possible: either Xr∗

belongs to the basin of attraction of Xs
+ (and therefore reasoning as in (3.9), we would have that

Xr∗ = Xs
+) or there is a second unstable equilibrium Yu

+ for ẋ = f+(x) such that Xr∗ � Yu
+ >

Xs
+. Either way, for every ε > 0, there is a sequence (tn)n∈N, tn →∞ such that |xr∗

− (tn) − Xs
+| <

ε. Then, by proposition 3.3 one would have that xr∗
− (t) → Xs

+ as t →∞which is in contradiction
with (3.11). Therefore, it must be Xr∗ = Xu

+ and thus xr∗
− (t) → Xu

+ as t →∞. However, in this
case, due to proposition 3.1, we have that xr∗

− = xr∗
+ as claimed.

(c) ⇒ (a) is trivial. �

4. Asymptotic series expansions and rate-induced tipping

The role played by the (locally) pullback attractive and repelling solutions xr
− and xr

+ in the
phenomenology of a rate-induced tipping has been stressed in several works (see [5, 25, 38]
and references therein). In this section, we provide a method of approximation of xr

− and xr
+ via

asymptotic series expansions (in the sense of definition 4.1 below), which, to our knowledge,
has not been used in the context of rate-induced tipping. Nevertheless, we show that such
approximations, which are always numerically calculable, also provide valuable information
on the occurrence or absence of rate-induced tipping for scalar differential problems. On the
one hand, we immediately obtain a sufficient condition for end-point tracking in proposition 3.3
if the series approximation holds on the whole real line and the relative error is suitably bounded
although possibly not small. Theorem 4.7, on the other hand, provides a characterization of the
occurrence of a rate-induced tipping as well as a asymptotic approximation of the tipping value
if the asymptotic series expansions are reliable only on half-lines (in the sense of proposition
4.2) but the solutions xr

− and xr
+ are, respectively, locally pullback attractive and repelling at

least up to t = 0. At the end of the section, we sum up the advantages and limitations offered
by our results.

Definition 4.1. Consider I ⊆ R, ε0 > 0 and a function v : I × [0, ε0) → R. If for all n ∈ N

there is δn : R+ → R
+ continuous and vanishing at zero, a constant Cn > 0 and a function

an : I → R, such that∥∥∥∥∥v(t, ε) −
n∑

i=0

ai(t)δi(ε)

∥∥∥∥∥
C(I,R)

< Cnδn(ε), then v(t, ε) ∼
∞∑

i=0

ai(t)δi(ε),

is called an asymptotic series of v.

It is important to keep in mind that an asymptotic series is in general not convergent in the
classical sense. The term asymptotic suggests that the approximation provided by a finite sum
of its elements becomes accurate as ε→ 0.

Besides the assumptions (H0) considered in section 3, in the following we shall assume also
that:

(H1) The future limit-problem ẋ = f (x,λ+) has an unstable hyperbolic fixed point Xu
+ such

that, upon the variation on λ, Xu
+ is (continuously) perturbed into a hyperbolic fixed point

Xu
λ of ẋ = f (x,λ), with λ ∈ [λ−,λ+]. Again, we simplify the notation at λ = λ− by writing
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Xu
− :=Xu

λ− . We shall call the function Xu : [λ−,λ+] → R defined by

λ �→ Xu(λ) = Xu
λ,

the family of quasi-static unstable equilibria associated to Xu
+. Moreover, assume that, for all

λ ∈ [λ−,λ+], there are no further fixed points in the open interval of end-points Xu(λ) and
Xs(λ). In particular, we will assume that there exists d0 > 0 such that given any pair of curves
of quasi-static equilibria X, Y : [λ−,λ+] → R, if X �= Y, then

min
λ∈[λ− ,λ+]

|X(λ) − Y(λ)| > d0.

From the previous assumptions one immediately has that for all λ ∈ [λ−,λ+], either Xs(λ) <
Xu(λ) or Xs(λ) > Xu(λ). We will assume the latter (the other case being similar).

We advice the reader that for the upcoming results, anytime (H1) is in force, so is (H0). This
justifies the absence of assumptions on the regularity of f in (H1). We shall see, however, that
the results in this section will require that the considered vector field admits partial derivatives
of any order with respect to x.

The following result shows that, under appropriate assumptions, the locally pullback
solutions of (3.2) provided by proposition 3.1 can be written as asymptotic series.

Proposition 4.2. Consider the problem (3.2), with its relative assumptions (H0). Assume
also that f admits partial derivatives of any order with respect to x and they are bounded along
(Xs(τ ),Λ(τ )), τ ∈ R. The following statements are true.

(a) There exists a sequence (as
m)n∈N of bounded continuous functions from R into itself, and

sequences (Cs
n)n∈N and (rs

n)n∈N of positive real numbers, such that for every fixed n ∈ N,
if 0 < r < rs

n, ∥∥∥∥∥
n∑

i=0

as
i (r · )ri − xr

−(·)
∥∥∥∥∥
C(R)

< Cs
nrn+1, (4.1)

that is, the solution xr
− of (4.4) provided by proposition 3.1 can be written as asymptotic

series. In particular, one has that

xr
−(t) ∼ Xs(rt) +

∞∑
i=1

as
i (rt)ri,

where all the coefficients as
i (·) can be calculated using function values and derivatives of

f and Λ. Moreover, for any fixed ε > 0, n ∈ N and r > 0 there exists β = β(ε, n, r) ∈
R ∪ {∞} so that∥∥∥∥∥

n∑
i=0

as
i (r · )ri − xr

−(·)
∥∥∥∥∥
C((−∞,β))

< ε. (4.2)

In particular for all n ∈ N, β(ε, n, r) = ∞ whenever r < min
{

rs
n, n+1

√
ε/Cs

n

}
.

(b) If additionally (3.2) satisfies also (H1) and all the partial derivatives of f with respect to
x are bounded along (Xu(τ ),Λ(τ )), τ ∈ R, then an analogous result is valid for xr

+. That
is, there is a sequence (au

n)n∈N of bounded continuous functions from R into itself, and
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sequences (Cu
n)n∈N and (ru

n)n∈N of positive real numbers such that for every fixed n ∈ N,
if 0 < r < ru

n, ∥∥∥∥∥
n∑

i=0

au
i (r · )ri − xr

+(·)
∥∥∥∥∥
C(R)

< Cu
nrn+1 and xr

+(t) ∼ Xu(rt) +
∞∑

i=0

au
i (rt)ri,

where all the coefficients au
i (·) can be calculated using function values and derivatives of

f and Λ. Moreover, for any fixed ε > 0, n ∈ N and r > 0 there exists α = α(ε, n, r) ∈
R ∪ {−∞} such that∥∥∥∥∥

n∑
i=0

au
i (r ·)ri − xr

+(·)
∥∥∥∥∥
C((α,∞))

< ε. (4.3)

In particular, for all n ∈ N, α(ε, n, r) = −∞ whenever r < min
{

ru
n, n+1

√
ε/Cu

n

}
.

Proof. The proof uses several ideas presented in [20, chapter 5]. We shall prove (a) and omit
the proof of (b) because it is analogous. Before proceeding, let us highlight the multi-scale
structure of the considered differential problem. Set τ = rt and increase the dimension of (3.2)
by adding the equation dτ/dt = r as in (3.8). Then, on the slow time-scale, obtained via the
change of variable s = rt, one has that (3.2) can be rewritten as

r
dx
ds

= f (x,Λ(τ )) ,

dτ
ds

= 1. (4.4)

Now, consider a formal series solution of (4.4), of the form,

∞∑
i=0

ai(τ )ri,

and plug it in (4.4). On the left-hand side, differentiate term-by-term, while on the right-hand
side use the multidimensional Taylor formula

F

(
z0 +

∞∑
i=1

zir
i

)
= F(z0) +

∞∑
i=1

ri
i∑

j=1

F( j)(z0)
j!

∑
k1+···+k j=i, kl�1

zk1 . . . zk j . (4.5)

Assuming that everything is well-defined and gathering together the terms on each side which
are multiplied by the same power of r, one obtains a family of algebraic equations. Specifically,
comparing the coefficient of the powers of r0 = 1 on both sides we obtain

0 = f (a0(τ ),Λ(τ )) ,

which trivially holds true when a0(·) = Xs(·) Note that if (H1) is satisfied then also a0(·) = Xu(·)
would satisfy the previous equality). We proceed by considering a0(·) = Xs(·) not as a variable
but as a known term and therefore we rename it as as

0(·). Then, regarding the coefficient of the
term r one has to solve the algebraic equation

ȧs
0(τ ) = ∂x f

(
as

0(τ ),Λ(τ )
)

a1(τ ), where as
0(·) = Xs(·).
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Notice that, since for any fixed τ ∈ R, Xs(τ ) is an hyperbolic fixed point, then
∂x f (Xs(τ ),Λ(τ )) �= 0 for all τ ∈ R. We shall call as

1(·) the obtained coefficient, recalling that
it depends on the fact that as

0(·) = Xs(·). This reasoning can be iterated so that one obtains a
sequence of coefficients (as

i )i∈N such that for all i � 2 one has

as
i (τ ) = ∂x f −1

⎡⎢⎢⎣ȧs
i−1(τ ) −

i∑
j=2

1
j!
∂ j f
∂x j

∑
k1+···+k j=i,

kl�1

as
k1

(τ ) . . . as
k j

(τ )

⎤⎥⎥⎦ ,

where all the derivatives of f are evaluated at (as
0(τ ),Λ(τ )), and as

0(·) = Xs(·). The notation
as

i is used to remind the reader that the obtained coefficients depend upon the initial choice
as

0(·) = Xs(·) (for example, if (H1) holds and one sets a0(·) = Xu(·) then a different sequence
of coefficients (au

i )i∈N can be constructed using the same method). Reasoning by induction, it
is easy to prove that for every n ∈ N there is Mn > 0 such that ‖as

n‖C(R,R) < Mn and also that
if n � 1, limτ→±∞ȧn−1(τ ) = limτ→±∞an(τ ) = 0.

We now prove that the above-constructed coefficients (as
n)n∈N allow us to obtain an asymp-

totic series expansion of xr
−. In order to compare the so-constructed series with xr

−, a new
change of variable to the fast time-scale is necessary. There is no problem in doing so, since
the coefficients as

i are defined on the whole real line. Moreover, in order to simplify the notation,
the symbol Ss

n(r, t) will represent the partial sum

Ss
n(r, t) =

n∑
i=0

as
i (rt)ri.

Let us fix any n ∈ N. Since ∂x f (Xs (Λ(rt)) ,Λ(rt)) < 0 for all t ∈ R, all the coefficients (as
n)n∈N

are continuous and bounded, and since ∂x f is continuous, there exists rs
n > 0 such that,

rs
n = sup

{
r > 0

∣∣ ∂x f
(
Ss

n(r, t),Λ(rt)
)
< 0 for all t ∈ R

}
. (4.6)

For any fixed 0 < r < rs
n and C > 0, consider the two continuous functions γr

1, γr
2 : R→ R

defined by

t �→ γr
1(t) = Ss

n(r, t) − Crn+1, and t �→ γr
2(t) = Ss

n(r, t) + Crn+1.

Notice that, since by construction

lim
t→±∞

Ss
n(r, t) = lim

t→±∞
Xs(rt) = Xs

±, (4.7)

then there is T(n, r, C) ∈ R such that xr
− is defined at least until t = T(n, r, C) and γr

1(t) �
xr
−(t) � γr

2(t) for all t < T(n, r, C). In fact, we aim at finding a constant Cs
n > 0 so that for all

s ∈ R if γr
1(s) � x0 � γr

2(s) then γr
1(t) � x(t, s, x0) � γr

2(t) for all t � s and 0 < r < rs
n which

would end the proof of the first statement.
To the aim, notice that f (γr

1(t),Λ(rt)) > γ̇r
1(t) if and only if

f
(
Ss

n,Λ
)
− Crn+1∂x f

(
Ss

n,Λ
)
+ O(rn+2) >

d
dt

Ss
n =

n∑
i=0

das
i

dt
ri+1,

where Ss
n is always evaluated at (r, t) and the remaining functions at rt. On the other hand, from

the fact that
∑∞

i=0as
i (rt)ri is assumed to be a formal solution of (4.4) and using (4.5), we can
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write
n∑

i=0

das
i

dt
ri+1 + O(rn+2) = f

(
Ss

n,Λ
)
+ as

n+1rn+1∂x f
(
Ss

n,Λ
)
+ O(rn+2),

where, once again, Ss
n is evaluated at (r, t) and all the other functions at rt.

Then, gathering the previous information one has that f (γr
1(t),Λ(rt)) > γ̇r

1(t) if

−(C + as
n+1)rn+1∂x f

(
Ss

n,Λ
)
+ O(rn+2) > 0. (4.8)

The first term in this expression determines its sign as r → 0. Reasoning analogously for the
curve γr

2 we have that f (γr
2(t),Λ(rt)) < γ̇r

2(t) if

(C + as
n+1)rn+1∂x f

(
Ss

n,Λ
)
+ O(rn+2) < 0

From (4.6) and ‖as
n‖C(R) < Mn, it is sufficient to consider Cs

n big enough so that the previous
inequalities hold true for all 0 < r < rs

n. Therefore, for any fixed 0 < r < rs
n, the set of initial

conditions {(s, x0)|γr
1(s) � x0 � γr

2(s), s ∈ R} is positively invariant. Moreover, since γr
1(t) �

xr
−(t) � γr

2(t) at least for t < T(n, r, Cs
n), then, for all 0 < r < rs

n, xr
− must be globally defined

and the previous relation of order must hold for all t ∈ R, which concludes the proof of the
first part of (a).

Concerning the last part of (a), let us fix ε > 0. From (4.7) and proposition 3.1 we have that
there is β = β(ε, n, r) < 0 so that

|Ss
n(r, t) − Xs

−| <
ε

2
and |xr

−(t) − Xs
−| <

ε

2
for all t < β(ε, n, r),

which leads to (4.2). On the other hand, note that if r < min
{

rs
n, n+1

√
ε/Cs

n

}
, then (4.1) implies

that β(ε, n, r) = ∞, which ends the proof. �
Remark 4.3. (i) Let us notice that, in the previous result, the assumption (H1) can be weak-
ened by considering that the family of quasi-static unstable equilibria Xu is defined only in an
interval [λ,λ+] with λ− < λ < λ+ and the equilibrium Xu(λ) is hyperbolic for all λ ∈ (λ,λ+]
but possibly not hyperbolic at λ. In such a case, however, for every r > 0 there is t(r) ∈ R such
that Xu(rt) and consequently all the coefficients au

i are defined only for t � t(r). Moreover,
instead of the inequality on the right-hand side of (4.1), one only attains the inequality on the
right-hand side of (4.3) where α(ε, n, r) > t(r).

(ii) The value of r > 0 up to which the approximations provided in (4.2) are reliable is
problem-dependent. For example, in figure 2 it is possible to appreciate how the approxima-
tions of order n = 1, 2, 3 behave with respect to the pullback solutions of a scalar quadratic
differential equation with a time-dependent variation of a parameter.

Next we aim to use the previous results to provide further information on the occurrence of
a rate-induced tipping point. Thanks to theorem 3.6 we know that, for r > 0 sufficiently small,
xr
− and xr

+ respect the same mutual order as their associated curves of quasi-static equilibria Xs

and Xu (wherever they are both defined and comparable), and that xr
− and xr

+ ‘collide’ in a rate-
induced tipping point if and only if there is r∗ > 0 such that xr∗

− = xr∗
+ and xr

− loses uniform
stability at r∗.

As before, we will simplify the notation by setting

Ss
n(r, t) =

n∑
i=0

as
i (rt)ri and Su

n(r, t) =
n∑

i=0

au
i (rt)ri.
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Figure 2. A numerical simulation showing the approximations of order up to three for
the pullback attracting and repelling solutions of ẋ = −(x − (2/π) arctan(rt))2 + 1.1 for
t ∈ [−8, 8] and r = 0.5 on the left and r = 2 on the right. The solid lines represent the
locally pullback attracting solution xr

−(t) (in red) and locally pullback repelling solution
xr
+(t) (in blue). The dashed lines represent the curves of quasi-static equilibria Xs(rt)

(in red) and Xu(rt) (in blue) of the associated family of autonomous problems. The dot-
dashed lines are the approximations Ss

n(r, t) and Su
n(r, t) calculated using proposition 4.2;

n = 1 in black, n = 2 in green and n = 3 in magenta. The picture on the right-hand side
shows how the approximations behave always correctly on suitable half-lines but cease
to be reliable over the whole real line as r increases.

Proposition 4.2 immediately allows to obtain a simple sufficient condition for end-point
tracking.

Proposition 4.4. Under the assumptions and notation of proposition 4.2, and fixed n ∈ N

and 0 < r < rn, if there are ε > 0 and T > 0 such that, for all t > T,

Xu
+ + ε < Ss

n(r, t) − Cs
nrn+1, or Su

n(r,−t) + Cu
nrn+1 < Xs

− − ε, (4.9)

then xr
− and xr

+ are distinct. In particular, if the future limit-problem ẋ = f (x) does not have
any other unstable equilibria, or for any other hyperbolic unstable equilibrium Yu

+ > Xs
+ one

has that

Ss
n(r, t) − Cs

nrn+1 < Yu
+ − ε, (4.10)

then xr
− end-point tracks the associated curve of quasi-static equilibria.

Proof. Assume that the first inequality in (4.9) holds true. Since by proposition 3.1 we have
that for the given ε > 0 there is T1 = T1(n, ε) > 0 such that xr

+(t) < Xu
+ + ε for all t > T1,

and by proposition 4.2 we have that Ss
n(r, t) − Cs

nrn+1 < xr
−(t) for all t ∈ R, then using the

inequality in the hypothesis we immediately obtain that xr
+(t) < xr

−(t) for all t > max{T, T1}
which completes the proof of the first statement. Moreover, if the future limit-problem ẋ = f (x)
does not have any other unstable equilibria, this means that xr

− (which is globally defined and
bounded thanks to proposition 4.2) has superior and inferior limits in the basin of attraction of
Xs
+. Therefore, reasoning as for (3.9), we immediately obtain that xr

−(t) → Xs
+ as t →∞. The

same conclusion holds true if any hyperbolic unstable equilibrium Yu
+ of Yu

+ satisfies (4.10).
Indeed, by reasoning as at the beginning of this proof, one easily obtains that, for t sufficiently
big, xr

−(t) < yr
+(t), where yr

+ is the locally pullback repelling solution associated to Yu
+ by
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proposition 3.1. Which again implies that xr
− end-point tracks the associated curve of quasi-

static equilibria. �

Remark 4.5. The assumptions of proposition 4.4 can be weakened as described in remark
4.3. Notice that in this case only the first inequality of the two in (4.9) guarantees the result.

Calculating explicitly xr
− and xr

+ is generally unfeasible and their numerical integration
is also a far-from-trivial task. However, the asymptotic series approximations obtained in
proposition 4.2 are easily calculable and allow us to characterize the occurrence of rate-induced
tipping point via the change of relative order of solutions lying in a ‘close neighborhood’ of
xr
− and xr

+. This idea is inspired, in some sense, by Melnikov’s method applied to the non-
autonomous perturbation of a homoclinic orbit in a planar system, where the possible crossing
between the stable and unstable manifolds is identified by checking the change in relative
position between suitable approximations of such manifolds (see Guckenheimer and Holmes
[11, section 4.5]).

Before proceeding, let us introduce the definition of visible rate-induced tipping as opposed
to what Alkhayoun and Ashwin call invisible tipping [1].

Definition 4.6. Let xr
− be the locally pullback attracting solution and xr

+ be the locally
pullback repelling solution for (3.2) respectively associated to the families of quasi-static equi-
libria Xs : [λ−,λ+] → R and Xu : [λ−,λ+] →R (see proposition 3.1). We say that xr

− and
xr
+ collide in a visible rate-induced tipping at r = r∗ if there is δ > 0 such that if Xs(λ) >

Xu(λ) (resp.Xs(λ) < Xu(λ)) for all λ ∈ [λ−,λ+], then

• For all r ∈ (r∗ − δ, r∗), xr
− end-point tracks Xs and

xr
−(t) > xr

+(t),
(
resp. xr

−(t) < xr
+(t)

)
, for all t ∈ R;

• xr∗
− (t) = xr∗

+(t) for all t ∈ R;
• For all r ∈ (r∗, r∗ + δ), and t ∈ R where xr

− and xr
+ are both defined,

xr
−(t) < xr

+(t),
(
resp. xr

−(t) > xr
+(t)

)
.

The main result below offers a necessary and sufficient condition for the occurrence of rate-
induced tipping, as well as an upper and lower bound on the tipping value r∗ of the parameter,
using only solutions calculated on finite time. This fact has a direct application on the numerical
simulation of a tipping phenomenon where the properties of pullback attractivity and pullback
repulsivity cannot guarantee a reliable finite-time approximation of xr

− and xr
+ (which are by

definition solutions determined by their asymptotic behaviour) after the tipping point.
Despite the relatively technical statement, the idea is simple: theorem 3.6 guarantees that

the occurrence of a first tipping point coincides with a collision between the locally pullback
solutions xr

− and xr
+; at the tipping point xr∗

− is, by definition, locally pullback attracting and
locally pullback repelling; hence, it is possible to find 0 < r∗ < r0 such that, for all 0 < r < r0,
xr
− is locally pullback attracting on R

− and xr
+ is locally pullback repelling on R

+, and one can
use the asymptotic series approximation obtained in proposition 4.2 to choose suitable pairs of
solutions (starting at finite time) whose change of relative order at t = 0 signals the proximity
of a rate-induced tipping point. For example, consider figure 3. The local pullback attractor and
repeller are depicted in solid lines (in red the attractor and in blue the repeller) and their first
order approximations in dotted lines. Knowing the error of the approximation we can select
initial conditions which lie respectively below the attractor and above the repeller (they are
depicted in dot-dashed lines). It is possible to appreciate that as r increases and a tipping point
approaches, the selected solutions switch relative order at t = 0—in fact this always happens
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Figure 3. Numerical simulation of solutions of the scalar differential problem
ẋ = −(x − (2/π) arctan(rt))2 + 0.1 depicting the equivalence (a) ⇔ (b) in theorem 4.7.
Solid lines represents the locally pullback solutions xr

− (in red) and xr
+ (in blue). Dotted

lines represent the first order approximations of xr
− (in red) and xr

+ (in blue) as attained
from proposition 4.2. Dot-dashed lines represent the solutions zr

−(·,−30) (in red) and
zr
+(·, 30) (in blue) for ε = 0.2. The top-right panel highlights that the solutions zr

−(·,−30)
and zr

+(·, 30) blow-up in finite time before the actual rate-induced tipping.

before the tipping point. Analogously in figure 4, the chosen solutions are selected so that one
always lies above the attractor and the other below the repeller. A change of relative order at
t = 0 between these two solutions can be related to a change of order at t = 0 between the
pullback solutions. In particular, we may think of the transition at r = r∗ in a similar spirit as
the occurrence of a heteroclinic connection in a planar vector field [22, 38–40].

Theorem 4.7. Consider f : R× R→ R satisfying assumptions (H0) and (H1), and assume
that f is smooth and all its partial derivatives of any order with respect to x are bounded
on (Xs(τ ),Λ(τ )) and (Xu(τ ),Λ(τ )), for all τ ∈ R. Moreover, fix r̃ > 0 such that for all 0 <
r � r̃, xr

− is defined and locally pullback attracting in R
−, and xr

+ is defined and locally
pullback repelling in R

+. Let d0 > 0 be the constant given in (H1), and consider the functions
Dout : R+ × R

+ → R and Din : R+ × R
+ → R defined by

Dout(τ , r) = yr
−(0,−τ ) − yr

+(0, τ ) and Din(τ , r) = zr
−(0,−τ ) − zr

+(0, τ ),
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Figure 4. Numerical simulation of solutions of the scalar differential problem
ẋ = −(x − (2/π) arctan(rt))2 + 0.1 depicting the equivalence (c) ⇔ (d) in theorem 4.7.
Solid lines represents the locally pullback solutions xr

− (in red) and xr
+ (in blue). Dotted

lines represent the first order approximations of xr
− (in red) and xr

+ (in blue) as attained
from proposition 4.2. Dot-dashed lines represent the solutions yr

−(·,−30) (in red) and
yr
+(·, 30) (in blue) for ε = 0.2. The comparison between the bottom panels highlights

that the solutions yr
−(·,−30) and yr

+(·, 30) blow-up in finite time only after the actual
rate-induced tipping.

where, yr
−, yr

+, zr
−, zr

+ denote the solutions of (3.2),

yr
−(t, t0) = x

(
t, t0, Ss

n(r, t0) + ε
)

, yr
+(t, t0) = x

(
t, t0, Su

n(r, t0) − ε
)

and

zr
−(t, t0) = x

(
t, t0, Ss

n(r, t0) − ε
)

, zr
+(t, t0) = x

(
t, t0, Su

n(r, t0) + ε
)

,

with ε ∈ (0, d0/2), chosen so that yr
−(·,−τ ), zr

−(·,−τ ) are defined in [−τ , 0] and
yr
+(·, τ ), zr

+(·, τ ) are defined in [0, τ] for all τ � 0 and 0 < r < r̃ (see definition 2.5).
There is 0 < r < r̃ such that Dout(τ , r) > 0 and Din(τ , r) > 0 for all 0 < r < r and τ � 0.

Moreover, we have that,

(a) There is r∗ ∈ (0, r̃) such that xr
− and xr

+ collide in a rate-induced tipping at r = r∗ if and
only if,
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(b) There are constants r∗ ∈ (r, r̃) and τ in = τ in(ε, n) � 0, such that if τ > τ in, then a δ =
δ(n, τ ) > 0 exists such that

Din (τ , r) < 0 for all r ∈ (r∗ − δ, r∗].

Moreover, δ(n, τ ) is decreasing in τ and limτ→∞ δ(n, τ ) = 0.
Moreover, we have that,

(c) There are constants r∗ ∈ (0, r̃) and δ > 0 such that xr
−(0) � xr

+(0) for all r ∈ (r∗ − δ, r∗),
xr∗
− = xr∗

+, and xr
−(0) < xr

+(0) for all r ∈ (r∗, r∗ + δ), if and only if
(d) There are constants r∗ ∈ (r, r̃) and δ > 0 such that Dout (τ , r) > 0 for all r ∈ (r∗ − δ, r∗]

and τ > 0, whereas for every r ∈ (r∗, r∗ + δ) there is a τ out = τ out(ε, n, r) > 0 so that

Dout (τ , r) < 0 for all τ > τout.

If additionally any point r∗ > 0 for which xr∗
− = xr∗

+ is isolated, then (d) implies that r∗ is
a visible rate-induced tipping point.

Proof. First of all notice that, the solutions yr
−, yr

+, zr
−, zr

+ are well-defined thanks to
proposition 4.2 and definition 2.5. Moreover, due to propositions 3.4 and 4.2, and since
ε ∈ (0, d0/2), there is r > 0 such that if 0 < r < r, then Dout(τ , r) and Din(τ , r) are strictly
greater than zero for all τ � 0. Next we prove that (a) ⇔ (b).

(a) ⇒ (b). Firstly, let us consider r = r∗. Due to theorem 3.6(c), we have that xr∗
− = xr∗

+ and
limt→∞ xr∗

− (t) = Xu
+. Therefore, and thanks also to proposition 4.2, there is τ in = τ in(ε, n) � 0,

such that for all τ > τ in

Ss
n(r∗,−τ ) − ε < xr∗

− (−τ ), and xr∗
− (τ ) < Su

n(r∗, τ ) + ε,

which implies

zr∗
− (0,−τ ) < xr∗

− (0) < zr∗
+(0, τ ) for all τ > τin. (4.11)

Hence, Din (τ , r∗) < 0 for all τ > τ in.
Now, from the continuity of Su

n and Ss
n, for every fixed μ > 0 and τ > 0 a δ = δ(n, μ, τ ) > 0

exists such that for all r ∈ (r∗ − δ, r∗),

|Su
n(r∗, τ ) − Su

n(r, τ )| < μ and |Ss
n(r∗,−τ ) − Ss

n(r,−τ )| < μ.

Therefore, from lemma 2.1, for every τ > 0 there is δ = δ(n, τ ) > 0 such that if r ∈ (r∗ −
δ, r∗), then

‖zr∗
− (·,−τ ) − zr

−(·,−τ )‖C([−τ ,0],R) <
|Din (τ , r∗)|

2
and

‖zr∗
+(·, τ ) − zr

+(·, τ )‖C([0,τ ],R) <
|Din (τ , r∗)|

2
.

(4.12)

Hence, gathering together (4.11) and (4.12), we obtain that for every τ > τ in there is δ(n, τ ) >
0 such that for all r ∈ (r∗ − δ, r∗),

Din (τ , r) = zr
−(0,−τ ) − zr

+(0, τ ) < 0,

which is the aimed inequality. Finally, considered τ in < τ 1 < τ 2, from (4.12) we easily have
that 0 < δ(n, τ 2) � δ(n, τ 1) < r∗. Therefore, the function δn : (0,∞) → R

+, τ �→ δ(n, τ ) has
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limit δ � 0. We shall prove that δ = 0. Assume by contradiction that δ > 0 and consider r ∈
(r∗ − δ, r∗). Then we would have that

Din (τ , r) < 0, for all τ > τin. (4.13)

Now, by assumption, xr
−(t) → Xs

+ and xr
+(−t) → Xu

+ as t →∞. However, this implies that there
is τ 1 � τin such that, for all τ > τ 1, xr

+(−τ ) < Ss
n(r,−τ ) − ε. Therefore, from proposition 3.5

we have that, for all τ > τ 1, zr
−(t,−τ ) is defined for all t > −τ and zr

−(t,−τ ) → Xs
+ as t →∞.

In particular, due to the uniform asymptotic stability of xr
− and proposition 3.5, there is τ 2 > 0

such that for all t > τ 2 one has that

0 < xr
−(t) − zr

−(t,−τ ) < xr
−(t) − Su

n(r, t) + ε.

Thus, for all τ > max{τ 1, τ 2} we have that

Din (τ , r) = zr
−(0,−τ ) − zr

+(0, τ ) > 0,

which contradicts (4.13). Hence it must be

lim
τ→∞

δn(τ ) = 0,

as claimed.
(b) ⇒ (a). Consider a sequence (τk)k∈N such that

Din
(
τk, r∗

)
= zr∗

− (0,−τk) − zr∗
+(0, τk) < 0, for all k ∈ N.

Such a sequence exists due to (b). Note also that since by assumptions xr∗
− is locally pullback

attracting on R
−, and xr∗

+ is locally pullback repelling on R
+, when we take the limit as k →∞

in the previous formula, we obtain that,

xr∗
− (0) − xr∗

+(0) � 0.

In order to prove that the previous inequality is, in fact, an equality, let us assume by con-
tradiction that xr∗

− (0) − xr∗
+(0) < 0. Then, by continuous variation of the solutions, there is

0 < ρ∗ < r∗ such that xρ
∗

− (0) = xρ
∗

+ (0), i.e. ρ∗ is a tipping point. From (a) ⇒ (b) proved above,
we have that Din (τ , ρ∗) < 0 for all τ > τ in. However, note also that, since ρ∗ < r∗, from
(b), there is τρ∗ > 0 such that Din

(
τρ∗ , ρ∗

)
> 0, but this is clearly a contradiction. Therefore,

xr∗
− (0) = xr∗

+(0) which concludes the proof of this implication.
(c) ⇒ (d). Consider r∗ ∈ (0, r̃) δ > 0 as in (c). Then, xr

−(0) � xr
+(0) for all r ∈ (r∗ − δ, r∗)

and t ∈ R. By construction, we immediately have that yr
−(0,−τ ) > yr

+(0, τ ), for all r ∈ (r∗ −
δ, r∗) and τ > 0, which gives us the first property in (d).

Now, consider r ∈ (r∗, r∗ + δ). From the assumption in (c), we have that 0 < xr
+(0) −

xr
−(0) =: d1(r). In particular, thanks to proposition 4.2, the local pullback attractivity of xr

−
and the local pullback repulsivity of xr

+ (see definition 2.5), there is a τ out = τ out(ε, n, r) > 0
such that for all τ > τ out,

0 < yr
−(0,−τ ) − xr

−(0) <
d1(r)

2
and 0 < xr

+(0) − yr
+(0, τ ) <

d1(r)
2

.

Consequently, Dout(τ , r) < 0 for all τ > τ out.
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(d)⇒ (c) Consider sequences (rk)k∈N and (τk)k∈N such that rk ↘ r∗ and for all k ∈ N, τ k+1 >
max{τ k, τ out(ε, n, rk+1)}. Then, we have that for all k ∈ N,

Dout(τk, rk) = yrk
−(0,−τk) − yrk

+(0, τk) < 0.

In particular, since by definition xr
−(0) < yr

−(0,−τ ) and yr
+(0, τ ) < xr

+(0) for all r > 0 and
τ > 0, then

xrk
− (0) − xrk

+(0) < 0, for all k ∈ N.

Taking the limit as k →∞ we have that xr∗
− (0) − xr∗

+(0) � 0. Let us assume that xr∗
− (0) −

xr∗
+(0) < 0 and prove by contradiction that, in fact, the equality must hold. If the previous

inequality is strict, there is 0 < ρ∗ < r∗ such that xρ
∗

− (0) = xρ
∗

+ (0) and there are no further
tipping points in the interval (ρ∗, r∗). In particular, for all r ∈ (ρ∗, r∗], xr

−(0) < xr
+(0). There-

fore, from the second part of the proof of the implication (c) ⇒ (d), now applied to ρ∗, for
every r ∈ (r∗ − δ, r∗) there is τ > 0 such that Dout (τ , r) < 0. However, this is in contradic-
tion with the assumption in (c). Hence, it must be xr∗

− = xr∗
+. Note also that, since by definition

xr
−(0) < yr

−(0,−τ ) and yr
+(0, τ ) < xr

+(0) for all r > 0 and τ > 0 and, by assumption, for every
r ∈ (r∗, r∗ + δ) there is a τ out = τ out(ε, n, r) > 0 so that Dout (τ , r) < 0 for all τ > τ out, then it
must be that xr

−(0) < xr
+(0) for all r ∈ (r∗, r∗ + δ). Finally, for all r ∈ (r∗ − δ, r∗) it must be

xr
−(0) � xr

+(0). Otherwise, for each r ∈ (r∗ − δ, r∗) where this is not true there would be τ > 0
such that Dout (τ , r) < 0 and this would contradict (d). In particular, note that if we assume
that xr

− �= xr
+ for all r ∈ (r∗ − δ, r∗) ∪ (r∗, r∗ + δ) then the same reasoning would give us that

xr
−(0) > xr

+(0) for all r ∈ (r∗ − δ, r∗), which, together the previous part, implies that r∗ is a
visible rate-induced tipping point. �

For an illustration of the loss of uniform asymptotic stability as well as the approximation
results by asymptotic series for the occurrence of a rate-induced tipping point, we refer to
figures 2–5, where we consider the example

ẋ = −(x − (2/π) arctan(rt))2 + ζ

for constants ζ = 1.1 and ζ = 0.1.
Advantages and limitations. Hereby, we wish to briefly comment on the applicability,

reliability and limitations of the methods and results contained in this section. As we have
noted, the occurrence of rate-induced tipping is strictly connected to the asymptotic behaviour
of locally pullback attracting and repelling solutions. The very nature of pullback solutions
make them (in general) hard to be calculated explicitly and also integrated numerically. Con-
sequently, the reliability of numerical simulations must be proved example by example—a
finite time integration does not necessarily guarantee a trustworthy approximation. On the other
hand, the construction of asymptotic series expansions—as in proposition 4.2—is generic and
can be carried out algorithmically using only values of the vector field and its derivatives pro-
vided that the appropriate assumptions are satisfied. Therefore, proposition 4.4 and theorem
4.7 provide rigorous characterizations of end-point tracking and rate-induced tipping that rely
only on calculable quantities. Particularly, theorem 4.7 shows a constructive rigorous way of
running reliable numerical simulations of a rate-induced tipping event for scalar differential
equations with a time-dependent drift of a parameter. Figure 5 highlights how the convergence
towards the expected tipping point is obtained for values of τ relatively small, especially if
compared to the initial conditions that might be required to reliably approximate the pullback
solutions. We are not aware of any other technique in the literature that is at the same time
generic, rigorously proved and constructive not even for scalar problems.
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Figure 5. Numerical simulation of r∗ − δ(1, τ ) as a function of τ ∈ [0, 30] on the left-
hand side and magnification on the right-hand side, for the scalar differential problem
ẋ = −(x − (2/π) arctan(rt))2 + 0.1. The convergence of δ to zero as proved in (a) ⇒
(b) of theorem 4.7 becomes apparent as τ increases.

A natural question attains the applicability of these methods to higher-dimensional prob-
lems. A thorough look at the proof of proposition 4.2 shows that, when curves of quasi-static
equilibria are involved and the required assumptions of regularity are satisfied, the construc-
tion of the asymptotic series approximations of the locally pullback solutions is possible also
when N � 1. It is clear, however, that both proposition 4.4 and theorem 4.7 require a well-
defined relation of order on the phase space. This fact restricts the applicability of the obtained
result to those cases where higher-dimensional system can be brought back to the analysis of a
scalar problem—for example through a center manifold reduction method—or where a certain
property of monotonicity of the flow is in force. Yet, since we have proven that rate-induced
tipping points can be related to a merging of global solutions, the dynamical situation is sim-
ilar to global homoclinic/heteroclinic bifurcations [22, 38–40]. For these global bifurcations,
center manifold results are already available [32], so we expect that suitable, yet non-trivial,
modifications of our methodology do apply in higher dimensions. We leave these and other
possible extensions open for future work.
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