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Abstract. Future wind energy control applications require surrogate flow models that can
capture processes on short time scales. Dynamic extensions of wake models might be a useful
low cost solution. So far, studies have tested the proposals mostly in LES or LIDAR campaigns.
At the same time, readily obtainable turbine SCADA measurements are increasingly being used
directly for model input or validation. Newly available high resolution recordings allow for the
study of processes on shorter time scales. The present study examines the modelling capabilities
of a dynamic wake model by utilizing high frequency SCADA data. Therefore, the data is first
analyzed for cross-correlation and time delays. Secondly, the dynamic wake model, initialized
with SCADA measurements, is used to predict a two turbine wake interaction. An offline tuning
algorithm is used to adapt the model for the shorter time scales.

1. Introduction
Modern wind energy control applications aim to overcome the conventional, greedy power
generation [17, 32]. These new regulation strategies propose to unlock untapped potential in
wind farm operation. One of the mature techniques, wake steering, has already shown in field
tests to be a viable strategy for increasing the farm yield [10]. Aside from that purpose, the
turbines could also provide grid ancillary services. Ref. [26] and Ref. [4] showed how to enable
a wind farm to serve for secondary frequency regulation. Other authors have investigated how
wind turbines could be enabled to closely follow a production set point, called power tracking
[9, 33]. Finally, Refs. [30, 31, 14] show how online control algorithms can be used to reduce
structural loads on turbines to ultimately reduce the LCOE.

One commonality for these (non comprehensive) examples of promising applications is that
they all require ever more accurate predictions of the local turbine inflow conditions. Flow
quantities at the rotor need to be estimated in real time, but also forecast in the short and
medium term, as input for the control algorithms. For the effective design of a wake steering
controller, it is e.g. important to consider the inherent wind direction variability [6]. Surrogate
models, that describe the wind farm flow field, are therefore an integral part of any application.
Often low computational cost is crucial which is why low fidelity engineering wake models are
very popular [15, 2]. However, they fail at adequately capturing shorter time scales, as they
describe by design a steady-state, long term average situation. In reality, changes in the flow
propagate through the wind farm with a finite speed and do not affect all turbines simultaneously.
Furthermore, wakes experience meandering movements. Consequently, the use of static wake
models is becoming problematic when farm sizes increase and the time windows of interest
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decrease. As both trends continue, this poses a limiting factor to the effectiveness of wind
energy control applications.

To address this issue, a range of low to medium fidelity dynamic models, applicable to shorter
time scales, have already been proposed. Most prominent is the dynamic wake meandering
(DWM) model. It established the conjecture of the wake as a passive tracer, that is displaced
by large scale eddies [18]. Recently, it has been further extended for atmospheric stability effects
[16] and connected to load models in its FAST.Farm implementation [25]. In LIDAR campaigns
the predicted wake center position matched well with the measurements [3, 29]. Further studies
additionally tuned the wake advection and expansion rate [23, 20].

With lower fidelity, but still incorporating a time dimension, Ref. [11] proposed a dynamic
extension of a static wake model. In the state-space FLORIDYN model, which is reimplemented
in this paper, flow conditions propagate through wake observation points. The step-wise
advancement in time models the wake movements and delay in ambient changes. A conventional
wake model is used to calculate the velocity deficit at the discretized positions. The idea was
extended with flow sensing turbine observers [19]. However, apart from that, the concept has
not been widely tested. It is still to be investigated what niche the model can fill and for which
time scales it can deliver useful predictions.

Despite the ongoing development, low- and mid-fidelity surrogate models will probably not
be able to capture all relevant flow processes with sufficient accuracy in the near future. It
makes therefore sense to use them in a closed-loop framework. E.g. in Ref. [8], the parameters
of a dynamic surrogate model were adapted to changing ambient conditions with an online
tuning algorithm. FLORIDYN was also already tested in combination with a Kalman filter [12].
However, the above mentioned studies were conducted in conjunction with LES simulation data
or nacelle mounted LIDAR systems. Turbine SCADA data has not been used yet, however is
often readily available. One reason for the lack of studies is that the data is usually averaged
to 10 min intervals where most propagation effects are invisible. Recently, sites with higher
resolution SCADA data sets became available. This opens the possibility to examine dynamic
processes of the wind farm flow on shorter time scales. 1 Hz sampled data was for example used
to calculate time delays in the power signal between turbine pairs in an offshore and onshore
farm, respectively [24, 21].

This paper aims at the lack of studies with high frequency SCADA data and low-fidelity
dynamic wake models. The focus is on a turbine pair interaction in an onshore wind farm. The
first descriptive part investigates the time delay and level of coherence in the power signals of
the two turbines. The second part describes the application of a FLORIDYN-like dynamic wake
model for power prediction of the downstream turbine. As no LIDAR or mast measurements are
available, the model input needs to be generated by the upstream turbine SCADA measurements.
This requires adequate filter windows. To reveal possible design issues, the model is used in open
loop configuration and the parameters are tuned offline. This approach is important before
obscuring possible bad design decisions by a corrective online algorithm.

2. Methodology
2.1. Power signal cross-correlation
This section presents the methodology used to analyze propagation effects and time delays in
the high frequency SCADA measurements. Throughout the paper, the analysis is performed
on a selected turbine pair, denoted WTA and WTB. WTA represents the unwaked upstream
and WTB the downstream turbine. The situation is shown for two subsequent points in time in
Fig. 1. Power fluctuations will occur on both machines, raising the question if and how strongly
they are correlated. The level and delay of the cross-correlation then allows to draw conclusions
about propagation effects.

The produced power of WTA, although subject to free stream, will fluctuate on the scale
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Figure 1. a) Idealized depiction of the propagation of a large eddy structure at two time
instances. b) Power signal during the passage. The power of WTA fluctuates when the eddy
passes through the rotor, the fluctuation at turbine WTB occurs later and is amplified by the
wake of WTA.

of seconds [28]. This is caused by variability in the inflow wind speed as well as direction
changes. The responsible flow structures need to have a certain size, as the rotor area filters out
small scale turbulence. Fig. 1 shows WTB in a waked condition, i.e. both turbines are aligned
with the mean flow (WTA → WTB). According to Taylors frozen turbulence hypothesis, the
downstream turbine will experience a similar ambient flow field after a time delay [27]. As
depicted, a propagating turbulent structure caused a small power drop at turbine WTA and is
assumed constant over the transit distance. However, the situation is complicated by WTA’s
generated wake, disturbing the ambient flow field. Following the conjecture of the DWM model,
wake cross sections are displaced rigidly by large eddies. While these will propagate with the
mean flow, the wake itself probably travels at a slower rate due to its velocity deficit. LIDAR
experiments [3, 20] found indeed, that a slower advection speed better predicts the wake center
position in the scans. Depending on the overlap upon impingement, the wake causes additional
power drops and an increase of turbulence at WTB. The mentioned effects will superimpose
each other and it can be expected that the presence of the wake will influence the delay time
and level of cross-correlation. If the downstream turbine WTB is not in a waked condition, e.g.
southern wind direction in the figure, the turbulent structures are probably not large enough to
encompass both turbines. In that case, the cross-correlation of the two power signals is expected
to be lower [24].

The evaluation of the cross-correlation in the available SCADA power signals (PA, PB) is
similar to Ref. [24] as described in the following. The 1 Hz time series is first partitioned in
intervals, with length TI of continuous operation. The intervals need to be long enough to allow
enough turbulent structures to propagate through both turbines. Yet short enough so that only
small trends in wind speed or wind direction occur. Intervals, during which the turbines are
yawing, are consequently omitted. All obtained intervals are then analyzed for cross-correlation
of the two power signals. The first half of the interval of PA is compared to an equal length, but
time shifted, sub-interval of PB. This ensures that the same amount of data is used for every



The Science of Making Torque from Wind (TORQUE 2022)
Journal of Physics: Conference Series 2265 (2022) 022031

IOP Publishing
doi:10.1088/1742-6596/2265/2/022031

4

time shift. The covariance of the power signal of one sub-interval starting at time t0 is

cov(PA, PB(τ)) =
2

TI

∫ t0+TI/2

t0

(PA(t)− P̄A)(PB(t+ τ)− P̄B)dt , (1)

with τ [s] as the time delay. P̄A, P̄B are the average power in the respective sub-interval. The
correlation coefficient is obtained through normalization

r(τ) =
cov(PA, PB(τ))√

var(PA) var(PB(τ))
(2)

with the variances of the power signals in the respective sub-interval. Eq. 2 is evaluated for a
range of increasing time delays τ ∈ [0, TI/2] s. If the described processes retain a part of the
signal, the correlation will be maximum after a certain time has passed. This delay of maximum
correlation is however dependent on the ambient wind speed. Therefore, as suggested by [24], τ
is normalized

τ̃ = τ
ŪB(τ)

xAB
(3)

by the distance between the turbines xAB and the average velocity measured at the downstream
turbine ŪB. This allows for the aggregation of results from Eq. 2 from many data intervals.

2.2. Implementation of the dynamic wake model
The implementation of the dynamic wake model is for the most part analogous to the
FLORIDYN proposal presented in Ref. [11]. The reader is referred to this original paper for
a more detailed derivation. A short description that discusses the model for a single turbine
and its wake is given in the following. The main idea is to propagate flow quantities through
observation points (OPs) in a state space description. Figure 2 depicts the model for two
consecutive states k → k + 1. Differently to Ref. [11], wake and ambient flow quantities are in
the present implementation represented by two separate sets of OPs, represented in the figure
with white and black markers.

Their positions in X-Y space (a horizontal plane at hub height) are

xk
w =


xw,1

xw,2
...

xw,Nw


k

and xk
a =


xa,1
xa,2

...
xa,Na


k

(4)

for a number of Nw wake and Na ambient OPs respectively. The latter explicitly represent
the undisturbed background flow. The i-th ambient OP contains the ambient flow quantities
wind speed Ua,i, wind direction Γi and turbulence intensity Ia,i. All currently present ambient
quantities are contained in

Uk
a,Γ

k, Ika ∈ RNa×1 . (5)

Wake OPs on the other hand represent the bulk wake flow and define the wake center line. For
that, each point contains firstly the delayed control inputs yaw misalignment γi and induction
factor ai, summarized as

γk,ak ∈ RNw×1 . (6)

Secondly, each wake OP represents a wake velocity deficit ∆Ui. Its magnitude and profile are
calculated with a suitable wake model. In a LIDAR wake tracking experiment [29] was able
to fit a bi-variate Gaussian profile on quasi-instantaneous snapshots. The wake deficit at each
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Figure 2. Dynamic wake model for a single turbine for two consecutive states k → k + 1. The
arrows in subplot a) show the update direction for the ambient points at state k. Subplot b)
shows the update direction for the wake OPs at state k. Subplot c) shows the new state after
the locations have been updated at k+1. The ambient wind direction Γ2 at xka,2 causes a change
in wake trajectory. One velocity deficit profile is shown at xw,6.

wake OP is therefore calculated with the Gaussian wake model [2], as depicted in Fig 2c. The
readily available FLORIS framework [22] was used for this task. For the calculation, the ambient
conditions from the ambient OPs need to be first mapped to the wake OPs. This is done by
linear interpolation Fk

a → Fk
w, where F represents any of the ambient quantitites. The velocity

deficit at the i-th wake OP can then be calculated with the delayed ambient conditions and
control inputs

∆Uk
i (r) = fw(r|xw,i, Uw,i, Iw,i, γi, ai)

k , (7)

dependent on the radial coordinate from wake center r. The wake added turbulence Iadd,i is
calculated in a similar manner with the model presented in reference [7].

The reason for two separate sets of OPs is to allow for a different propagation speed of wake
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and ambient flow quantities. While changes in Ua or Γ propagate with mean undisturbed wind
speed, the wake can move at slower rate. This is depicted by the two plots in Fig. 2ab that
show the motion for the next update step. It can be seen that the environmental points are
going to propagate a larger distance than the wake OPs. The advection speed of the wake, uw,
is obtained by subtracting the average velocity deficit from the ambient flow

ukw,i = Uk
w,i −∆Ūk

i = Uk
w,i −

1

Aw

∫
Aw

∆Uk
i (r)dA . (8)

The wake area Aw is defined to extend until 99% of the ambient wind speed is reached. For the
next time step, both kind of OP positions can now be updated according to

xk+1
w = Axk

w + Bxw,1 + Auk
w∆t (9)

xk+1
a = Axk

a + Bxa,1 + AUk
a∆t . (10)

The state and system matrices A, B are defined as in Ref. [11]. Subsequently, the ambient
quantities and control inputs are propagating to the next OP with

Fk+1
a = AFk

a + BF k
a,1 , (11)

similarly for the control inputs. The new model state is depicted in Fig. 2c.
New ambient conditions and control inputs enter the state space at the first OP located at

the turbine rotor. If in free stream, the ambient conditions and control inputs can be provided
as a feed e.g. from SCADA measurements. A waked condition is detected if external OPs are in
the proximity of the rotor. In that case, firstly, ambient conditions are transferred to the waked
turbine by inverse distance weighting Fa,ext → Fa,1. Secondly, the effective impinging velocity
deficit is mapped to the rotor through spatial interpolation ∆Uext → ∆U1. The reduced inflow
speed is then calculated through

Uinfl = Ua,1 −∆U1. (12)

3. Site description
The site with the available data set consists of 12 × 2 MW machines. The rotor diameter is
D = 82 m and the hub height 80 m. The terrain is characterized by gently rolling hills. Altitudes
in a 3 km radius differ from ca. 150 m to 370 m above sea level. The turbine base heights vary
from approximately 300 m to 360 m. The ground roughness is characterised by grassland with
patches of low-lying bushes. Fig. 3 shows a close-up of the western part of the site. For highest
wind direction frequency, the chosen turbine pair is located on the western edge. Both turbines
are embedded in a north-south slope. The figure additionally shows a snapshot of wakes and
the observation points, that make up the wake of WTA.

24 month of 1 Hz data were available from 2019 to 2021. The channels included power, nacelle
anemometer and wind vane measurements. To allow filtering and correcting, the data was first
downsampled to 10 and 1 min. Then, the nacelle position signal was corrected. This was done
firstly, by identifying sudden jumps and drifts through comparing individual yaw signals to the
farm average. Secondly, by manually controlling the geometric wake impact directions. The
rotor equivalent wind speed (REWS) was calculated using the manufacturer power curve in
region II and binned pitch curve in region III. The density was calculated with temperature
recordings and an air pressure time series from reanalysis data. The obtained corrections to the
wind direction were reapplied to the high-frequency data and periods of outliers were removed.
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Figure 3. Close-up of the terrain of the western part of the wind farm. The investigated turbine
pair is marked with WTA and WTB. A snapshot of emitted wakes is overlaid onto the terrain
contour. Additionally depicted are the observation points that make up the wake of WTA. The
wind rose shows the wind direction frequency distribution.

4. Results
4.1. Cross-correlation analysis
Section 2.1 described the methodology for analysing the power signal cross-correlation for a
turbine pair. This section presents the results for the selected two turbines in Fig. 3. The wind
direction Γ was determined with the nacelle vane of WTA. Geometrically, WTA and WTB are
fully aligned for Γ = 277◦. The analysis was therefore restricted to a sector of Γ ∈ [265, 290]◦.

For partitioning the time series, the studies [21, 24] use an interval length of TI = 10 min.
This was followed in the present study which led to 961 usable intervals in the chosen
sector, corresponding to 6.7 days of data. The behaviour of the correlation coefficient r with
increasing delay was then calculated with Eq. 2 for all intervals. The turbines are separated by
xAB = 434 m. Undisturbed flow would need τ = 72 and 43 s to reach WTB at ambient speeds of
6 and 10 ms−1 respectively. This shows that the tested delay range of τ ∈ [0, 300] s is sufficient.
Secondly, it highlights the necessity to normalize the time delay according to Eq. 3.

The main plot in Figure 4 shows the averaged r(τ̃)-lines binned in 5◦ sub sectors. The right
subplots give an impression of the wake overlap situation of each sub sector. These plots were
generated with a steady state wake model FLORIS [22]. Note that the investigated dynamic
situations are not captured by this long-term average. The distribution of the cross-correlation
lines firstly shows that the power signals are almost independent for r(0) ≈ 0.1. With increasing
time delay, the level of correlation peaks. This suggests that parts of the inflow signal are
retained over the propagation to the downstream turbine. The maximum levels of 0.3-0.5 show
however also, that a degree of randomness changes the inflow. The correlation levels are still
higher than in Ref. [24]. This could be due to the much closer spacing compared to an offshore
wind farm.

The peak of maximum correlation should occur at τ̃ > 1 if the most important fluctuations
travel at the reduced speed of the wake. This is because, due to wake recovery, the normalization
factor ŪB(τ) is probably an overestimation for a mean advection speed. For most of its path,
the wake travels at a slower rate. The sub sectors with Γ > 275◦ agree with this assumption.
The peaks are however not very sharp, which could be due to the mentioned superposition with
faster propagating ambient quantities. For the sub sectors Γ < 275◦, the maximum correlation
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Figure 4. Averaged cross-correlation binned in 5◦ sub sectors with N number of intervals in
bin. The time delay τ̃ is normalized. The wake model plots on the right visualize the long-term
average situation for the sub sectors.

occurs when τ̃ < 1 and there are even two peaks in the case of Γ ∈ [270, 275]. It is not clear
what the ground reason for the unexpected early peak in these two sectors is. The downslope
of the terrain could induce additional turbulent effects. Another reason could be the reduced
amount of data, that is available from these directions. It can however be concluded that a time
delay is present in all power signals. This motivates the use of a dynamic wake model.

4.2. Simulation with the dynamic wake model
The same set of intervals is now simulated with the dynamic wake model. For every 10 min
interval, the model is set up as follows. A step of ∆t = 5 s is used for advancing in time.
The number of ambient and wake OPs is Na = Nw = 20. Measurements from WTA provide
the model input for ambient wind speed and direction. The ambient turbulence and density
were assumed constant as Ia = 0.15 and ρ = 1.225 kgm−3 respectively. The model predicts
the effective inflow wind speed Uinfl (Eq. 12) at WTB to obtain the power production PB. The
first 100 s of every simulation are discarded in the post processing as the initial conditions need
time to propagate to the downstream turbine. The model performance is assessed through the
normalized error

ε =
PB − PB,model

Prated
, (13)

and, additionally, through a correlation coefficient of the two signals

ρ =
cov(PB, PB,model)√

var(PB) var(PB,model)
. (14)

The latter indicates if the modelled fluctuations agree with the measurements in time.



The Science of Making Torque from Wind (TORQUE 2022)
Journal of Physics: Conference Series 2265 (2022) 022031

IOP Publishing
doi:10.1088/1742-6596/2265/2/022031

9

0.07
0.08
0.09
0.10
0.11

ε r
m
s

(a)

Dynamic wake model
Static wake model

(265.
0, 27

0.0]°

(270.
0, 27

5.0]°

(275.
0, 28

0.0]°

(280.
0, 28

5.0]°

(285.
0, 29

0.0]°
0.0

0.2

0.4

0.6

̄ ρ

(b)

Figure 5. Directional model error (a) and average correlation (b) for the dynamic and static
wake models.

An important question is, whether the nacelle wind vane of WTA can be used to induce the
correct meandering motions. As a point measurement, the vane is affected by smaller scale
atmospheric fluctuations as well as turbulence generated by the rotor. According to the DWM
conjecture, displacing eddies should have at least twice the diameter of the wake itself [18].
The suggested filter time window is therefore Tf = 2D/Ua. The application of this time scale
to sonic anemometer measurements from a met mast for the same purpose showed convincing
results [29]. With the present turbine, a 20 s moving average window for an ambient wind speed
of 8 ms−1 would be required. The used nacelle instrumentation seems however too volatile so
that the induced wake movements did not match the observed PB. This is probably a result of
the non-clean inflow of the wind vane. By increasing the averaging window to 4 D, the match
improved considerably. For the given example, this results in a Tf = 40 s filter. As now only
larger scale structures can be captured, the power and REWS signals were averaged as well.
Since the rotor already acts as a spatial filter, these were filtered with with a shorter window of
Tf/2.

The standard calibration of the utilized wake model (Eq. 7) describes a long-term average
situation. It includes meandering movements, like shown in Fig. 1 and the velocity deficit is
smeared out [5]. Likely, this is not an adequate tuning for the present purpose. The model is
consequently recalibrated with a data subset of 40 intervals. An SLSQP algorithm was used
to minimize the r.m.s. of Eq. 13 with respect to the wake expansion parameter, starting from
ka = 0.38. The tuning resulted in a value of k∗a = 0.05, which is considerably smaller than the
original. As expected, the wake becomes more focused.

Figure 5 shows the overall error εrms and the average correlation coefficient ρ̄ for the
tuned dynamic model for all intervals. The results are binned in the same sub-sectors as in
Figure 4. A static Gaussian wake model, with similar tuning, is reported in the same figure
for comparison. Contrary to the dynamic model, changes at WTA take here immediate effect
at WTB. Throughout all sectors, the dynamic model provides an improvement of error and
signal correlation. Interestingly, at full alignment, the difference in error is low. Likely, because
the downstream turbine is fully waked most of the time, a prediction of the exact overlap
is less critical here. In the slightly misaligned sectors, a delayed wake position seems to be
more important. The improvements are better for Γ > 280◦. This agrees with the findings in
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dynamic predictions of ambient wind speed Ua and wake loss.

section 4.1 where the data cross-correlation level was higher for these sectors.
Finally, Figure 6 shows the measured as well as predicted inflow wind speed Uinfl at WTB for

two example intervals. The static model is again reported for comparison. The dynamic model
shows a reasonable agreement to drops and surges. The static model, on the other hand, predicts
fluctuations prematurely. The plot additionally shows the estimation of ambient wind speed Ua

at WTB from the dynamic model. It is visible that the undisturbed wind speed changes on a
slower scale than the wake losses.

5. Conclusion and outlook
The present study aimed to highlight the capabilities and limits of initializing an open-loop
dynamic wake model purely with high frequency SCADA data. Results indicate, that delay
effects must be accounted for when modelling shorter time scales. The presented low-fidelity
dynamic wake model can capture filtered fluctuations. The error is reduced as well as correlation
increased. Similar results were obtained by investigating other turbine pairs in the cluster.
Reasons for deviations and possible improvements could be:

• The nacelle wind vane does not provide information on vertical fluctuations. Consequently,
wake movements in vertical direction are missing in the model. Meandering in vertical
direction is restricted by the ground, but can still have a considerable magnitude [13].

• Unmodelled terrain effects. As seen in section 2.1, the terrain probably has an affect on the
wake propagation. This connects to the first point via possible ground reflections.

• The nacelle wind vane is affected by the rotor. More robust filter algorithms could improve
the signal. Possibly using the wind direction information from surrounding turbines [1].

• Unmodelled influence of ambient conditions. This requires their estimation from the
SCADA measurements.
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The presented model provides a robust basis for an extension to multiple turbine interactions.
The study suggests model limitations, which can be corrected by an online algorithm.
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