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Abstract: The increasing prevalence of large-scale data collection in modern society represents a
potential threat to individual privacy. Addressing this threat, for example through privacy-enhancing
technologies (PETs), requires a rigorous definition of what exactly is being protected, that is, of privacy
itself. In this work, we formulate an axiomatic definition of privacy based on quantifiable and
irreducible information flows. Our definition synthesizes prior work from the domain of social
science with a contemporary understanding of PETs such as differential privacy (DP). Our work
highlights the fact that the inevitable difficulties of protecting privacy in practice are fundamentally
information-theoretic. Moreover, it enables quantitative reasoning about PETs based on what they
are protecting, thus fostering objective policy discourse about their societal implementation.

Keywords: privacy; information flow; differential privacy; confidentiality; secrecy; privacy-enhancing
technologies

1. Introduction

Contemporary societies exhibit two disparate tendencies, which exist in fundamental
tension. On the one hand, the tendency to collect data about individuals, processes, and
phenomena on a massive scale allows robust scientific advances such as data-driven
medicine, the training of artificial intelligence (AI) models with near-human capabilities in
certain tasks, or the provision of a gamut of bespoke services. For fields such as medical
discovery, data collection for the advancement of science can be viewed as an ethical
mandate and is encouraged by regulations under the term data altruism [1]. On the other
hand, such data collection (especially for the sole purpose of economic gain, also termed
surveillance capitalism [2]) is critical from the perspectives of personal data protection
and informational self-determination, which are legal rights in most countries. Often,
the antagonism between data collection and data protection is viewed as a zero-sum
game. However, a suite of technologies, termed privacy-enhancing technologies (PETs),
encompassing techniques from the fields of cryptography, distributed computing, and
information theory, promises to reconcile this tension by permitting one to draw valuable
insights from data while protecting the individual. The broad implementation of PETs
can thus herald a massive increase in data availability in all domains by incentivizing
data altruism through the guarantee of equitable solutions to the data utilization/data
protection dilemma [3].

Central to the promise of PETs is the protection of privacy (by design) [4]. However,
the usage of this term, which is socially and historically charged and often used laxly,
entails considerable ambiguity, which can hamper a rigorous and formal societal, political
and legislative debate. After all, it is difficult to debate the implementation of a set of
technologies when it is unclear what exactly is being protected. We contend that this dilemma
can be resolved through a re-conceptualization of the term privacy. We formulated a number
of expectations towards such a novel definition: it must be (1) anchored in the rich history
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of sociological, legal, and philosophical privacy research yet be formal and rigorous to
be mathematically quantifiable; (2) easy to relate to by individuals; (3) actionable, that
is, able to be implemented technologically and (4) future-proof, that is, resilient to future
technological advancements, including those by malicious actors trying to undermine
privacy. The key contributions of our work towards this goal can be summarized as follows:

• We formulated an axiomatic definition of privacy using the language of informa-
tion theory;

• Our definition is naturally linked to differential privacy (DP), a PET which is widely
considered the gold standard of privacy protection in many settings such as statistical
machine learning;

• Lastly, our formalism exposes the fundamental challenges in actualizing privacy:
Determining the origin of information flows and objectively measuring and restrict-
ing information.

2. Prior Work

The most relevant prior works can be distinguished into the following categories:
Works by Jourard [5] or Westin [6] defined privacy as a right to restrict or control information
about oneself. These definitions are relatable, as they tend to mirror the individual’s natural
notion of how privacy can be realized in everyday life, such as putting curtains on one’s
windows. The foundational work of Nissenbaum on Contextual Integrity (CI) [7] instead
contends that information restriction alone is not conducive to the functioning of society.
Instead, information must flow appropriately within a normative frame. This definition is
more difficult to relate to, but it is very broad and thus suitable to capture a large number
of privacy-relevant societal phenomena. Its key weakness lies in the fact that it attempts no
formalization. Privacy cannot be quantified using the language of CI alone.

Our work synthesizes the aforementioned lines of thought by admitting the intuitive
and relatable notion of restricting the flow of sensitive information while respecting the
fact that information flow is an indispensable component of a well-functioning society.

The works of Solove [8–10] have followed an orthogonal approach, eschewing the
attempt to define privacy directly, instead (recursively) defining it as a solution to a privacy
problem, that is, a challenge arising during information collection, processing, or dissem-
ination. This approach represents a natural counterpart to PETs, which represent such
solutions and thus fulfill this notion of privacy. We note that, whereas our discussion
focuses on DP, which is rooted in the work of Dwork et al. [11], DP is not the only PET,
nor the only way to assure that our definition of privacy is fulfilled; however, the opposite
holds true: DP, and every guarantee that is stronger than DP, automatically fulfills our defi-
nition presented below (provided the sender and the receiver are mutually authenticated
and the channel is secure). Despite criticism regarding the guarantees and limitations of
DP [12], it has established itself as the gold standard for privacy protection in fields such as
statistics on large databases. We additionally discuss anonymization techniques such as
k-anonymity [13] as examples of technologies that do not fulfill the definition of privacy
we propose, as they are vulnerable to degradation in the presence of auxiliary information.
For an overview of PETs, we refer to Ziller et al. [14].

Our formal framework is strongly related to Shannon’s information theory [15]. How-
ever, we also discuss a semi-quantitative relaxation of our definition, which attempts to
measure qualitatively different information types (such as structural and metric informa-
tion), which goes back to the work by MacKay [16].

Our work has strong parallels to the theories by Dretske [17] and Benthall [18] in that
we adopt the view that the meaning and ultimately the information content of informational
representations is caused by a nomic association with their related data.

Lastly, we note that the field of quantitative information flow (QIF) [19] utilizes similar
abstractions as our formal framework; however, it focuses its purview more specifically to
the study of information leakage in secure systems. It would therefore be fair to state that our
framework is a generalization of QIF to a more general societal setting.



Entropy 2022, 24, 714 3 of 14

3. Formalism

In this section, we introduce an axiomatic framework that supports our privacy
definition. All sets of numbers in this study were assumed to be nonempty and finite. We
note that, while our theory has at its center abstract entities, one could build intuition by
considering the interactions between entities as representing human communication.

Definition 1 (Entity). An entity is a unique rational agent that is capable of perceiving its
environment based on some inputs, interacting with its environment through some outputs and
making decisions. We wrote ei for the ith entity in the set of entities E. Entities have a memory and
can thus hold and exercise actions on some data. We wrote dj for the jth datum (or item of data) in
the dataset De held by e. Examples of entities include: individuals, companies, governments and
their representatives, organizations, software systems and their administrators, etc.

Remark 1. The data held by entities can be owned (e.g., in a legal sense) by them or by some other
entity. In acting on the data (not including sharing it with third parties), we say the entity is
exercising governance over it. We differentiated the following forms of governance:

1. Conjunct governance: The entity is acting on its own data (i.e., data owner and governor are
conjunct).

2. Disjunct governance: One or more entities is/are acting on another entity’s data. We distin-
guished two forms of disjunct governance:

• Delegated governance, where one entity is holding and/or acting on another’s data and
• Distributed governance, where ą 1 entity is holding parts of a single entity’s data and

acting on it. Examples of distributed governance include (1) distinct entities holding
and acting on disjoint subsets (shards) of one entity’s data (e.g., birth-date or address),
(2) distinct entities holding and acting on shares of one entity’s data (e.g., using secret
sharing schemes), and (3) distinct entities holding and acting on copies of one entity’s
data (e.g., the IPFS protocol).

The processes inherent to governance are typically considered parts of the data life-cycle [20]. They
include safekeeping, access management, quality control, deletion, etc. Permanent deletion ends the
governance process.

Definition 2 (Factor). Factors are circumstances that influence an entity’s behavior. It is possible
to classify factors as extrinsic (e.g., laws, expectations of other entities, incentives, and threats) and
intrinsic (e.g., hopes, trust, expectations, and character), although this classification is imperfect
(as there is substantive overlap) and not required for this formalism. Factors also modulate and
influence each other (see the example of trust and incentives below). We wrote fi for the ith factor in
the set of factors F.

Definition 3 (Society). A set S is called a society if and only if it contains ą 1 entities and ě 1
factor(s) influencing their behaviors. Our definition was intended to parallel the natural perception
of a society; thus, we assumed common characteristics of societies, such as temporal and spatial
co-existence. The definition is flexible insofar as it admits the isolated observation of a useful
(in terms of modeling) subset of entities and relevant factors, such as religious or ethnic groups,
which—although possibly subsets of a society in the social science interpretation—have specific
and/or characteristic factors that warrant their consideration as a society. Societies undergo temporal
evolution through the interaction between entities and factors. We sometimes wrote St to designate
a “snapshot” of society at a discrete time point t; when omitting the subscript, it is implied that we
are observing a society at a single, discrete time point.

Definition 4 (Communication). Communication is the exchange of data between entities. It
includes any verbal and non-verbal form of inter-entity data exchange.

Axiom 1. Society cannot exist without communication. Hence, communication arises naturally
within society.
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Remark 2. For a detailed treatment, compare Axiom 1 of [21].

Our formalism is focused on a specific form of communication between entities called
an information flow.

Definition 5 (Information). Let e be an entity holding data De. We denote as information
I Ď De a structured subset of De with the following properties:

• It has a nomic association with the set of data De, that is, a causal relationship exists between
the data and its corresponding informational representation;

• The nomic association is unique, that is, each informational representation corresponds to
exactly one datum such that the state of one item of information Xn P I is determined solely by
the state of one datum dn P De;

• It is measurable in the sense that information content is a quantitative measure of the
complexity of assembling the representation of the data.

This definition interlinks two foundational lines of work. Dretske [17] postulates
that meaning is acquired through nomic association between the message’s content and
the data it portrays. This aspect has been expanded upon by Benthall et al. [18], who
frame nomic association in the language of Pearlian causality [22] to analyze select facets
of Contextual Integrity under the lens of Situated Information Flow Theory [23]. The no-
tion of information quantification as a correspondence between information content and
complexity of reassembling a representation is central to information theory. We note
that we utilized this term to refer to two distinct schools of thought. In the language of
Shannon’s information theory [15], information content is a measure of uncertainty reduction
about a random variable. Here, information content is measured in Shannons (typically
synonymously referred to as bit(s)). Shannon’s information theory is the language of choice
when discussing privacy-enhancing technologies such as DP. Our definition of information
embraces this interpretation, and we will assume that—for the purposes of quantifying
information—informational representations are indeed random variables. In the Shannon
information theory sense, we can therefore modify our definition as follows:

Definition 6 (Information (in the Shannon sense)). Let e, De, and I be defined as above. Then,
every element Xn P I is a random variable with mass function pXnpxq, which can be used to resolve
uncertainty about a single datum dn through its nomic association with this datum. Moreover, the
information content of Xn is given by:

IpXq “ ´ log2 pXnpxq. (1)

Moreover, our framework is also compatible with a structural/metrical information
theory viewpoint. This perspective, which was developed alongside Shannon’s information
theory and is rooted in the foundational work by MacKay [16] is a superset of the former.
Here, information content in the Shannon sense is termed selective information content (to
represent the fact each bit represents the uncertainty reduction by observing the answer to
a question with two possible outcomes, i.e., selecting from two equally probable states).
Moreover, information content can be structural (representing the number of distinguishable
groups in a representation measured in logons) and metrical (representing the number of
indistinguishable logical elements in a representation and measured in metrons). We note
that the difficulty of measuring real-world information is inherent to both schools of
information theory (compare also the discussion in [16]—Chapter 2).

Definition 7 (Information flow). An information flow (or just flow) F is a directed transit of
information between exactly two entities. We call the origin of F the sender S and the recipient of
F the receiver R. The subject of F is called a message M and contains a single informational
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representation. M flows over a channel C (a medium), which we assumed to be noiseless, sufficiently
capacious, and error-free. We sometimes represented a flow as:

F : S M
ÝÝÑ

C
R. (2)

Remark 3. Flows are the irreducible unit of analysis in our framework and are atomic and
pairwise. This means that they concern exactly one datum, and they take place between exactly
two entities. This fact distinguishes our formalism from CI (which uses a similar terminology),
where flows are defined more broadly and pertain to “communication” in a more general way, bearing
strong similarities to QIF [19], where information is also viewed as flowing through a channel. Our
naming for components of the flow follows standard information-theoretic literature [24].

Remark 4. We used the term information content of M to denote the largest possible quantity
of information that can be derived by observing M, including the information obtained by any
computation on M, irrespective of prior knowledge. This view is compatible with a worst-case
outlook on privacy where the receiver of the message is assumed to obtain M in its entirety and
make every effort available to reassemble the representation of the datum that M refers to.

Remark 5. A line of prior work, such as the work by McLuhan [25], has contended that the
medium of transmission (i.e., the channel) modulates (and sometimes is a quintessential part of)
the message. This point of view is not incompatible with ours, but we chose to incorporate the
characteristics of the channel into other parts of the flow as our framework is information-theoretic
but not communication-theoretic. For example, under our definition, an insecure (leaky) channel is
regarded as giving rise to a new flow towards one or more additional receivers (see implicit flows
below), while a corruption of the message by noise or encoding errors is deemed as directly reducing
its information content. Therefore, we implicitly assumed that the state of a message is determined
solely by the corresponding information that is being transmitted.

Although flows are atomic, human communication is not: very few acts of communica-
tion result in the transmission of information only about a single datum. We thus required
a tool to “bundle” all atomic flows that arise in a certain circumstance (e.g., in a certain
social situation, about a specific topic, etc.). We call these groupings of flows information
flow contexts. Moreover, communication also often happens between more than two entities
(one-to-many or many-to-one scenarios). Such scenarios are discussed below.

Definition 8 (Information flow context). Let St be a society at time t such that S ,R P St, and

F1, . . . ,Fn be flows S M1,...,Mn
ÝÝÝÝÝÝÑ

C
R. Then, we term the collection Ct “ pS ,R,F1, . . . ,Fnq an

information flow context (or just context).

Flows are stochastic processes. This means they can arise randomly. The probability
of their occurrence in a given society depends on numerous latent factors. Depending
on the causal relationship between the appearance of a flow and an entity’s decision, we
distinguished the following cases:

Definition 9 (Explicit flow). An explicit flow arises as a causal outcome of a decision by the entity
whose data is subject to the flow.

Definition 10 (Decision). Let e be an entity and f “ p f1, . . . , fnq a collection of factors influencing
its behavior. We modeled the decision process as a random variable o „ Berpp | f q conditioned on
the factors. Then, the decision χe takes the following values:

χe “

#

F o “ 1

K otherwise
(3)
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Note that Ber denotes the Bernoulli distribution, and K implies that no action is
undertaken. We hypothesized the probability of decisions resulting in explicit flows to
be heavily influenced by two factors. Of these, the most important is probably trust. In
interpersonal relationships characterized by high levels of trust, entities are more likely
to engage in information flows. Moreover, the reason for most societal information flows
can be ultimately distilled to trust between entities on the basis of some generally accepted
norm. For example, information flows from an individual acting as a witness in court
towards the judge are ultimately linked to the trust in the socially accepted public order.
Low levels of trust thus decrease the overall probability of an explicit flow arising. We also
contend that trust acts as a barrier imposing an upper bound on the amount of information
(described below) that an entity is willing to accept in a flow. The other main factor
influencing the probability of explicit flows arising are likely incentives. For instance, the
incentive of a larger social circle can entice individuals into engaging in explicit flows over
social networks. The incentive of a free service provided over the internet increases the
probability that the individual will share personal information (e.g., allow cookies). We
note that—like all societal factors—incentives and trust modulate each other. In some cases,
strong incentives can decrease the trust threshold required to engage in a flow, while, in
others, no incentives are sufficient to outweigh trust. In addition, society itself can impose
certain bounds on the incentives that are allowed to be offered or whether explicit flows are
permitted despite high trust (e.g., generally disallowing the sharing of patient information
between mutually trusting physicians who are nonetheless not immediately engaged in
the treatment of the same individual).

Definition 11 (Implicit flow). An implicit flow arises without a causal relationship between the
entity whose data is subject to the flow and the occurrence of the flow but rather due to a causal
relationship between another entity’s decision and the occurrence of the flow or by circumstance.
Thus, an implicit flow involving an entity e can be modeled as a random variable o „ Berppq, where
p is independent of the factors influencing e such that:

o “

#

F w.p. p

K w.p. 1´ p
(4)

An example of an implicit flow is the recording of an individual by a security camera
in a public space of which the individual was not aware. Implicit flows are sometimes
also called information leaks and can arise in a number of systems, even those typically
considered perfectly secure. For example, a secret ballot that results in an unanimous vote
implicitly reveals the preference of all voters. The quantification of information leakage is
central to the study of QIF.

As flows are—by definition—pairwise interactions, analyzing many-to-one and one-
to-many communication thus requires special consideration. While one-to-many commu-
nication can be “dismantled” into pairwise flows in a straightforward way, many-to-one
communication requires considering ownership and governance of the transmitted in-
formation. For instance, many-to-one communication where each sender has conjunct
governance and ownership of their data can be easily modeled as separate instances of
pairwise flows. However, when governance is disjunct or when correlations exist between
data, it is required to “marginalize” the contribution of the entities whose data is involved
in the flow, even if they themselves are not part of it. Thus, many-to-one-communication
can lead to implicit flows arising. This type of phenomenon is an emergent behavior in
systems exhibiting complex information flows such as societies and has been described
with the term information bundling problem by [26]. For example, the message “I am an
identical twin” flowing from a sender to a receiver reduces the receiver’s uncertainty about
the sender’s sibling’s biological gender and genetic characteristics. As data owned by the
sibling and governed by the sender is flowing, information can be considered as implicitly
flowing from the sibling to the receiver.
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Finally, equipped with the primitives above, we can define privacy:

Definition 12 (Privacy). Let F be a flow of a message M between a sender S and a receiver R over
a channel C embedded in a context C. Then, privacy is the ability of S to upper-bound the information
content of M and of any computation on M, independent of the receiver’s prior knowledge.

The following implications follow immediately from the aforementioned definition:

• It relates directly to an ability of the sender. We contend that this formulation mirrors
the widespread perception of privacy, e.g., as it is formulated in laws. Here, the right
to privacy stipulates a legal protection of the ability to restrict information about
certain data;

• Our definition, like our primitives, is atomic. It is possible to maintain privacy selec-
tively, i.e., about a single datum. This granularity is required as privacy cannot be
viewed “in bulk”;

• Privacy is contextual. The factors inherent to the specific context in which an informa-
tion flow occurs (such as trust or incentives above) and the setting of the flow itself
therefore largely determine the resulting expectations and entity behaviors, similar to
Contextual Integrity. As an example, a courtroom situation (in which the individual is
expected to tell the truth and disclose relevant information) is not a privacy violation,
as the ability of the individual to withhold information still exists, but the individual
may choose to not exercise it. On the flip side, tapping an individual’s telephone is
a privacy violation, independently of whether it is legally acceptable or illegal. Our
framework thus separates between privacy as a faculty and the circumstances under
which it is acceptable to maintain it. Edge cases also exist: for example, divulging
sensitive information under a threat of bodily harm or mass surveillance states where
every privacy violation is considered acceptable would have to be treated with special
care (and interdisciplinary discourse) to be able to define what constitutes (or not) a
socially acceptable and “appropriate” information flow.

4. Connections to PETs

PETs are technologies that aim to offer some quantifiable guarantee of privacy through
purely technical means. The fact that the term privacy is used loosely harbors consider-
able risks, as the subject of protection is very often not privacy in the sense above. Our
framework is naturally suited to analyzing the guarantees provided (or not) by various
techniques considered PETs. In the current section, we discuss how DP naturally fulfills
our definition, while anonymization techniques do not. Of note, we rely on Shannon’s
information theory to quantify the information content in this section.

4.1. Anonymization and Its Variants

Anonymization techniques have a long history in the field of private data protection
and can be considered the archetypal methods to protect privacy. Except anonymization
(i.e., the removal of identifiable names from sensitive datasets), a broad gamut of similar
techniques has been proposed, e.g., k-anonymity [13]. It is widely perceived among the
general population that this offers security against re-identification and hence preserves
privacy. However, prior work on de-anonymization has shown [27] that anonymization is not
resilient to auxiliary information and that the guarantees of techniques like k-anonymity
degrade unpredictably under post-processing of the message [28]. As described in the
definition of privacy above, the information content of the message should not be able to
be arbitrarily increased by any computation on it or by any prior knowledge (auxiliary
information) the receiver has. Therefore, none of these techniques offer privacy in the
sense described above but are solely means to hinder private information from being
immediately and plainly readable. This is mirrored by newer legal frameworks like the
European General Data Protection Regulation (GDPR), as discussed below.
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4.2. Differential Privacy

Differential privacy (DP) [11] is a formal framework and collection of techniques
aimed at allowing analysts to draw conclusions from datasets while protecting individual
privacy. The guarantees DP offers are exactly compatible with our definition of privacy,
rendering DP the gold-standard technique for privacy protection within a specific set of
requirements and settings. To elaborate this correspondence, we provide some additional
details on the DP guarantee. We constrain ourselves to the discussion of ε-DP and local DP
in the current work.

Consider an entity E holding data DE (we deviate from our usage of lowercase symbols
for entities to avoid confusion with Euler’s number in this section). Assume the entity
wants to transmit a message M concerning a datum X P DE. Let X be a random variable

taking values in X Ă R, where X has cardinality n ą 0. Consider a flow F : E M
ÝÝÑ R,

where R is a receiver. Then, preserving privacy regarding X under our definition is the
ability of E to upper-bound the information content of M about X.

Assume now that E applies a DP mechanism, that is, a randomized algorithm A : X Ñ Y
operating on X to produce a privatized output Y „ pA,Xpxq, which forms the content of the
message M. We omit the subscript on the probability mass function for readability in the
following. This procedure forms the following Markov chain:

X A
ÝÑ Y ÑM, (5)

where M is observed by R. The fact that A preserves (local) ε-DP offers the guarantee that
@ x, x1 P X | gpx, x1q ď 1, where g is the discrete metric, and @ y P Y such that the following
holds:

ppApxq “ yq ď eε ppApx1q “ yq. (6)

We note that the guarantee is given over the randomness of A. We show that this implies
an upper bound of log2 eε on the mutual information between X and Y and therefore on the
amount of information Y (and thus M) “reveals” about the true value of X. In this sense,
the application of a DP mechanism is a sufficient measure to upper-bound the information
of M.

Proposition 1. Let A, X, Y be defined as above. Then, if A satisfies ε-DP, the following holds:

IpY ‖ Xq “ IpApXq ‖ Xq ď log2 eεSh, (7)

where Ip¨ ‖ ¨q denotes the mutual information, and Sh is the Shannon unit of information.

Proof. We begin by re-writing Equation (6) for readability:

ppApxq “ yq ď eε ppApx1q “ yq ñ ppy|xq ď eε ppy|x1q. (8)

Multiplying both sides by ppx1q, we obtain:

ppy|xqppx1q ď eε ppy|x1qppx1q “ ppy, x1q. (9)

Marginalizing out x1, we have:
ÿ

x1

ppy|xqppx1q ď eε
ÿ

x1

ppy, x1q ñ ppy|xq ď eε ppyq. (10)

The above can be rewritten as:

ppy|xq
ppyq

“
ppy|xqppxq
ppyqppxq

“
ppx, yq

ppxqppyq
ď eε. (11)
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Taking the logarithm of both sides and applying the expectation operator, we obtain:

EpXY

„

log2

ˆ

ppx, yq
ppxqppyq

˙

ď EpXY

“

log2 eε
‰

“ log2 eε. (12)

The left hand side of Equation (12) is the mutual information IpY ‖ Xq, from which the
claim follows.

Remark 6. By the information processing inequality, this also bounds the mutual information
between X and M in Equation (5).

DP has additional beneficial properties, such as a predictable behavior under composi-
tion, whereby n applications of the DP mechanism will result in a cumulative information
content of at most log2 enε. Moreover, like our definition, (ε-)DP holds in the presence of
computationally unbounded adversaries and is closed under arbitrary post-processing.
This renders DP a powerful and general tool to satisfy our privacy definition in a variety of
scenarios. Its utilization is often aimed not at individual data records (such as the local DP
example above) but at statistical databases, where it gives guarantees of privacy to every
individual in the database. In fact, it is simple to generalize the proposition above to such
statistical databases to show that every individual in a database enjoys the same guarantee
of bounded information about their personal data.

Despite the strong and natural links between our privacy definition and DP, it cannot
be claimed that they are identical. For one, DP is a quantitative definition and is not
designed to handle semi-quantitative notions of information content such as structural
or metric information content. Nonetheless, the similarities between ensuring DP and
ensuring privacy in our sense are striking: Whereas DP is a notion of privacy that can be
implemented using statistical noise, one could think about semantic, metric, or structural
privacy as being implemented using communication noise [29]. A simple example of such
noise is transmitting false information, which—under our definition—can be used as a form
of privacy preservation. We expressly note that the inverse does not hold: Whereas a flow
satisfying DP also satisfies our definition of privacy, satisfying our privacy definition is not
a valid DP guarantee. This is also simple to mathematically verify by, e.g., showing that a
bound on mutual information does not represent a useful DP guarantee (as it translates to
a bound on total variation distance between the input and output distributions, thus not
bounding the magnitude of a worst-case event but only its probability of occurrence).

Another point of differentiation between our privacy definition and DP is context-
reliance. DP is—by and large—a guarantee that does not concern itself with context. This
is a “feature” of DP and not a shortcoming and what renders it powerful and flexible.
However, there exist situations in which a valid DP guarantee may not translate directly
into an acceptable and relatable result. Consider the example of publishing an image
under local DP. Even though the direct addition of noise to an image may satisfy a DP
guarantee, the amount of noise that is required to be added to satisfy a guarantee that
is considered acceptable by most individuals (that is, one which hides relevant features)
is likely to render the image entirely unrecognizable, also nullifying utility. However,
most individuals would consider an appropriately blurred image as preserving acceptable
privacy, even though such a blurring operation (especially if carried out on only parts of
the image) may be difficult to analyze under the DP lens. We nonetheless consider the
development of rigorous and quantifiable DP guarantees for such scenarios a promising
and important future research direction.
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5. Discussion
5.1. Why Is Privacy Difficult to Protect in Practice?

Our definitional framework sheds light on many of the challenges of protecting privacy
in the real world. These challenges arise from a discrepancy created by the assumptions
required to formally define what privacy is and the facets of human communication. We
highlight some of these challenges in this section.

The first fundamental challenge in preserving privacy is the difficulty in assigning
a flow to its origin. The complexity of this task is two-fold. As discussed under implicit
flows above, it means determining which entity the flow originated from, as communication
can often (possibly involuntarily) involve information of more than one entity. Consider
the following context C from the example with the identical twins above. The flow F1
involves sender S1 and receiver R. However, in revealing that they are an identical twin,
information starts flowing from S2, the sibling to R, thus inducing an additional (implicit)
information flow context C2.

C2 F2 : S2

R

C1 F1 : S1

causescauses (13)

The second facet of the challenge arises from attempting to resolve the nomic associa-
tion of an informational representation with its associated datum as well as its strength.
Mathematically, this problem is equivalent to exact inference on a causal Bayesian graph.
Consider the following causal graphical model:

A G

B D E X M

C F

(14)

Here, pA, . . . , Xq are random variables, and we assumed that all arrows indicate causal
relationships, that is, the state of the variable at the origin of the arrow causes the state of
the variable at its tip. Even in this relatively simple example, and given that the causal
relationships are known, X contains information about pA, . . . , Gq. Moreover, there is both
a fork phenomenon between A, D, and E and a collider phenomenon between G, E, and
X. The determination of how much information was revealed about each of the variables
by transmitting M therefore requires factoring the graph into its conditional probabilities,
which is, in general, NP-hard. However, such graphs, and even much more complicated
ones, are likely very typical for human communication, which is non-atomic and thus
contains information about many different items of the entity’s data. Moreover, determining
causality in such settings can be an impossible task. These findings underscore why it is
considerably easier to protect privacy in a quantitative sense in statistical databases (where
singular items of data are captured) than in general communication and why it is likely
impossible to reason quantitatively about privacy in the setting of human communication
“in the wild” without making a series of assumptions. The aforementioned difficulties
are not unique to the quantitative aspects of our definition but also inherent to DP. The
DP framework does not make assumptions about the data of individuals in a database
not being correlated with each other; however, the outcome of such a situation may be
surprising to individuals who believe their data to be protected when—against their
expectation—inferring an attribute the individual considers “private” becomes possible by
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observing the data of another individual. In general, much like DP, our privacy definition
does not consider statistical inference a privacy violation. As an example, consider an
individual that participates in a study for a novel obesity medication. Even if the study
is conducted DP, it is not a privacy violation to determine that the individual is probably
overweight. However, learning their exact weight can be considered a privacy violation.
These examples also highlight the minute, but important, difference between data that is
merely personal (in this case, the fact that the individual is overweight) and data that is truly
private (here, their concrete weight). It also motivates a view shared by both our definition
and the DP definition, namely, that preserving privacy can be thought of as imposing a
bound on the additional risk an individual incurs by committing to a transmission of their
data. For a formal discussion, we refer to [30].

Last but not least, we emphasize that the very attempt to measure and restrict informa-
tion is a challenging undertaking. In the case of statistical databases and with techniques
such as DP, such measurement is possible to an extent, even though certain assumptions
may be required. For example, encoding data as a series of yes/no answers may or may
not sufficiently represent the true information content of the data but may be required to
enable the utilization of a DP technique. In this setting, a choice has to be made between
a rigorous method of privacy protection based on Shannon’s information theory and an
unedited representation of the entity’s data. The former simplification is often required for
machine learning applications (where it is referred to as feature extraction). For cases where
a rigorous measurement of the message’s information content is not required for a context
to acceptably preserve privacy, one of the other aforementioned techniques of restricting
information content (e.g., metrically or structurally) may be implemented.

5.2. From Formal Privacy to Regulatory Implementation

In this section, we discuss our privacy definition through the lens of legal frameworks
by showing that our framework’s primitives exhibit strong connections to the terms stipu-
lated under the European General Data Protection Regulation (GDPR) (https://gdpr.eu/,
accessed on 12 May 2022). This (non-exhaustive) example is intended to sketch a possi-
ble path towards the adoption of a rigorous definition of privacy by regulators “in the
real world”. Moreover, it underscores the interplay of privacy and informational self-
determination. Similar parallels could be drawn to, e.g., the California Consumer Privacy
Act or related regulations. The GDPR regulates personal data, which we refer to as the data
owned by an entity. Such data relates to an individual (entity), also called a data subject,
and it is directly or indirectly identifiable. In our framework, this corresponds to the subset
of the entity’s data considered sensitive. The GDPR refers to the process we term governance
above as data processing, which is carried out by a data controller, corresponding to the entity
exercising governance in our framework. Our notion of delegated governance is mirrored in
the GDPR by the notion of a data processor, i.e., a third party processing personal data on
behalf of a data controller. We note that distributed governance has no explicit counterpart
in the regulation. Finally, we note that pseudonymised (or anonymised) data are still consid-
ered sensitive under the GDPR if it can be re-identified (i.e., de-pseudo-/anonymised) with
little effort. This precisely mirrors our notion that anonymisation and pseudonymisation
techniques do not satisfy our privacy definition, as they are partially or fully reversible by
the utilization of auxiliary data or other extraneous knowledge and/or post-processing of
the message.

We now discuss the relationship of our privacy definition with key parts of the GDPR.
We begin by noting that Article 25 of the regulation stipulates that data protection must be
implemented by design and by default. This means that existent and newly designed systems
must consider means to protect personal data a first priority. Our privacy definition’s focus
on technical implementation and formal information flow constraints enables system de-
signers to not only implement privacy-enhancing technologies that fulfill this requirement
but also quantify their effectiveness when used in practice. Furthermore, Article 6 of the
GDPR lists situations in which personal data processing is permissible, e.g., when consent

https://gdpr.eu/
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or a legal contract is present. In such cases, our privacy guarantee’s resistance to post facto
computations on the message signify that—even if the receiving entity violates consent or
the contract—no additional information can be gained. This is especially relevant in the
case of legitimate interest, which is amenable to flexible interpretation by data processors
and could be vulnerable to misuse. Last but not least, the rights granted by Chapter 3 of
the regulation, and particularly the right to restrict processing (Article 18), are enhanced by
the inviolable guarantees that technologies like DP offer. However, we remark that two of
these rights interact in specific ways with our framework and—by extension—with formal
PETs like DP and cryptography. On the one hand, the right to be forgotten (Article 17) does
not directly fall under the scope of our privacy definition, as we consider it a matter of gov-
ernance. This categorization is supported by recent findings demonstrating that, although
DP and machine unlearning, the technical implementation of the right to be forgotten in
machine learning algorithms, share certain properties, they have distinct behaviors [31]. On
the other hand, the GDPR stipulates restrictions to the rights of Chapter 3 in Article 23. For
example, public security may justify a restriction of informational self-determination. Our
definition can be applied in two ways in such cases: when entities relinquish their ability to
reduce the information of flows originating from them due to trust in regulations such as
the GDPR, no privacy violation is observed. When, however, the ability of the individual is
subverted (or is forcibly removed as discusses above), a privacy violation takes place. It is
then a social matter to decide whether this violation is (legally or ethically) acceptable for
the sake of welfare or not. In this sense, our definition views privacy as an ability neutrally
and delegates the enactment of the right to privacy and the appraisal of its value to society.

6. Conclusions and Future Work

We introduced an axiomatic privacy definition based on a flexible, information-
theoretic formalism. Our framework has a close and natural relationship to the guarantees
offered by PETs such as differential privacy, while allowing one to better interpret the poten-
tial shortcomings of techniques such as k-anonymity, whose guarantees may degrade in an
unpredictable fashion in the presence of auxiliary information. Our definition encompasses
not only Shannon’s information theory but can also be used to cover structural or metrical
interpretations that are encountered in human perception and communication.

Our formalism exhibits strong links to complex systems research [32] and lends itself to
experimental evaluation using agent-based models or reinforcement learning. We intend to
implement such models of information flow in society, for example, to investigate economic
implications of privacy, in future work. Moreover, we intend to propose a more holistic
taxonomy of other PETs, such as cryptographic techniques and distributed computation
methods. Lastly, we encourage the utilization of our formalism by social, legal, and
communication scientists to find a “common ground” of reasoning about privacy and the
guarantees offered by various technologies, for which we provide an initial impulse above.
Such standard terminology (data ownership, governance, privacy, etc.) will promote a clear
understanding of the promises and shortcomings of such technologies and be paramount
for their long-term acceptance, the objective discourse about them on a political and social
level, and, ultimately, their broad implementation and adoption.
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