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Abstract: Hybrid Renewable Energy Sources (HRES) integrated into a microgrid (MG) are a cost-
effective and convenient solution to supply energy to off-grid and rural areas in developing countries.
This research paper focuses on the optimization of an HRES connected to a stand-alone microgrid
system consisting of photovoltaics (PV), wind turbines (WT), batteries (BT), diesel generators (DG),
and inverters to meet the energy demand of fifteen residential housing units in the city of Djelfa,
Algeria. In this context, the multiobjective salp swarm algorithm (MOSSA), which is among the latest
nature-inspired metaheuristic algorithms recently introduced for hybrid microgrid system (HMS)
optimization, has been proposed in this paper for solving the optimization of an isolated HRES. The
proposed multiobjective optimization problem takes into account the cost of energy (COE) and loss
of power supply probability (LPSP) as objective functions. The proposed approach is applied to
determine three design variables, which are the nominal power of photovoltaic, the number of wind
turbines, and the number of battery autonomy days considering higher reliability and minimum
COE. In order to perform the optimum size of HMG, MOSSA is combined with a rule-based energy
management strategy (EMS). The role of EMS is the coordination of the energy flow between different
system components. The effectiveness of using MOSSA in addressing the optimization issue is
investigated by comparing its performance with that of the multiobjective dragonfly algorithm
(MODA), multiobjective grasshopper optimization algorithm (MOGOA), and multiobjective ant
lion optimizer (MOALO). The MATLAB environment is used to simulate HMS. Simulation results
confirm that MOSSA achieves the optimum system size as it contributed 0.255 USD/kW h of COE
and LPSP of 27.079% compared to MODA, MOGOA, and MOALO. In addition, the optimization
results obtained using the proposed method provided a set of design solutions for the HMS, which
will help designers select the optimal solution for the HMS.

Keywords: multiobjective salp swarm algorithm; solar energy; microgrid; energy management
strategy; batteries; wind; Djelfa

1. Introduction

Population increase, rising energy consumption, rising energy production costs, green-
house gas emissions, and damage caused by fossil resources to the environment have led
to a greater emphasis on renewable energy sources [1–4].
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Although there have been considerable increases in renewable energy technology,
electricity shortages remain a problem in rural communities and islands. According to the
United Nations Development Program (UNDP), more than a quarter of the world’s popula-
tion, particularly those living in rural regions, suffer from lack of access to electricity. Rural
communities are typically isolated from the national grid and situated in challenging ter-
rain, such as steep terrain or dense jungle, making transmission line extension prohibitively
expensive or impossible. Renewable resources, such as wind, solar, and hydropower, help
these areas save energy because they possess potentially ubiquitous, abundant, accessible,
clean, and easy-to-obtain energy [5,6].

The most accessible and critical renewable resources, wind and solar energy, are
combined to create a higher quality and more reliable hybrid energy system than individual
resources [1–4]. In fact, in a hybrid energy system, wind and solar energy are the primary
energy sources. Battery units, energy storage, fuel cells, and DGs can all be used in hybrid
systems to improve efficiency and eliminate flaws. Indeed, when wind speed or solar
radiation falls below a certain threshold or when a peak in demand arises, the presence of
these storage devices becomes critical [4,7,8].

Renewable energy in the form of an HMS System is the most efficient, dependable, and
cost-effective way to use localized renewable energy resources which combine renewable
energy sources with a diesel generator as a backup system to provide centralized electricity
generation at the local level. These systems range in size from a basic 5 kW single-phase
system for a single residence to a massive three-phase network that serves as a primary
power supply for the entire neighborhood. When demand grows or the community
expands, they can quickly scale up and connect to the national grid [6,9].

Microgrid systems based on autonomous renewable energy sources (RES) are the
most viable and cost-effective option for electrifying off-grid areas [10,11]. Therefore, from
an economic and technical standpoint, such a system’s planning and optimal design are
complex for various reasons. One of these reasons would be the inconsistency of RESs
and their reliance on meteorological conditions. Microgrid systems are frequently either
over- or undersized in order to meet energy demand. An oversized system will have a
high operating cost and will create extra energy. Conversely, an undersized microgrid
system will fail to supply electricity to the required loads. To fully realize the benefits
of an RES-based microgrid, optimum microgrid sizing combined with a robust energy
management strategy is required [11,12].

1.1. Literature State of the Art

A large number of works has been reported in the field of hybrid microgrid system
sizing. Previous methodologies in the area of sizing can be grouped into different cate-
gories [13–16]. The first category—software tools such as HOMER, HOMER Pro, PVSYST,
HOGA, IHOGA, and RAPSIM—was applied to optimize microgrid systems [17–23]. Despite
being simple to use, this category has the drawback of users being unable to select appropri-
ate system components intuitively. Furthermore, users have no access to or visibility of the
calculations and algorithms [19,24]. The second category contains deterministic methods
such as iterative, analytical, numerical, graphical construction, etc. [25–31]. Although sim-
ple, these methods require considerable simulation time, as all system configurations are
analyzed [26]. The third category includes metaheuristic algorithms for solving microgrid
problems, many of which have been utilized in the literature to tackle optimization prob-
lems where authors [32] developed a recent methodology based on social spider optimizers
(SSO) to determine the optimal sizing of an HRES-integrated microgrid. This group com-
prises PV, WT, battery, DG, and inverter with COE as fitness function and was presented
for sensitivity analysis of sizing different topologies of MG, including PV/battery/DG,
WT/battery/DG, and PV/WT/battery/DG in Aljouf Region, Saudi Arabia. Another
study [11] focused on the application of the grasshopper optimization algorithm (GOA)
in the area of microgrid system sizing design problems in order to determine the optimal
system configuration comprising PV, WTs, BSS, and DGs with COE as a single objective
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function in Yobe State, Nigeria. In [33], a novel bonobo optimizer (BO) technique was
applied to find the optimal design for an off-grid HRES that contains a DG, PV, a WT, and
batteries as a storage system in Saudi Arabia. It is based on annualized system cost (ASC)
minimization and power system reliability enhancement. A hybrid power generation sys-
tem consisting of DGs, PV systems, and battery energy storage (BES) has been optimized on
the basis of BES dispatch (OBD) by considering two objectives in Indonesia: the levelized
cost of energy (LCOE) and renewable energy (RE) [34].

A particle swarm optimization (MOPSO) method was proposed in [6], which dealt
with the optimization problem consisting of COE and LPSP minimization for an HMS
system and has been tested on three selected stations in Iran. Elsewhere, the authors
of [35] proposed a multiobjective problem formulation to solve the optimization task with
a self-adaptive differential evolution (DE) algorithm. This latter research has been used to
analyze LPSP, COE, and RF for the city of Yanbu, Saudi Arabia for three cases of load profile.
Another study presented a multiobjective evolutionary algorithm to optimally design an
HMS considering load uncertainty [36]. A MOGOA was applied in [37] to optimize
a microgrid with a rule-based energy management scheme. In [38], an HMS system
comprising PV, wind, and battery with a diesel generator was introduced to supply load
demand in Shlateen, Egypt with two planning scenarios. The first is PV/wind/battery and
the second is PV/wind/battery/diesel. A multiobjective optimization problem has been
solved by considering three objective functions—COE, LPSP, and RF—based on MODA. A
hybrid photovoltaic, diesel, and battery nanogrid system installed in Saudi Arabia has been
introduced and optimized by the parallel multiobjective PSO-based approach (PMOPSO)
in [39].

Table 1 summarizes the details of the reported approaches.

Table 1. Summary of reported methods in optimizing HRES.

Reference Year Location Objective Function Algorithm

Bouchekara, H.R.E.H. [36] 2021 Saudi Arabia Minimize the Annual
LPSP/COE

Multiobjective
Evolutionary Algorithm

Bukar, A.L. [37] 2020 Nigeria Minimize the Annual
COE/DPSP

Multiobjective Grasshopper
Optimization Algorithm

Bouchekara, H.R. [39] 2021 Saudi Arabia Minimize the Annual
COE/LPSP

Parallel Multiobjective
PSO (PMOPSO)

Farh, H.M.H. [33] 2022 Saudi Arabia Minimize the total Annualized
System Cost (ASC) Bonobo Optimizer

Seedahmed, M.M. [22] 2022 Saudi Arabia Minimize the Annual COE HOMER

Thirunavukkarasu, M. [23] 2021 India Minimize the Annual
NPC/COE HOMER

Fathy, A. [32] 2020 Saudi Arabia Minimize the Annual COE Social Spider Optimizer

Omar, A.S. [38] 2019 Egypt Minimize the Annual
LPSP/COE and Maximize RF

Multiobjective Dragonfly
Algorithm (MODA)

Bukar, A.L. [12] 2019 Nigeria Minimize the Annual COE Grasshopper
Optimization Algorithm

Zhu, W. [40] 2020 China Minimize the Annual
CACS/DPSP

Multiobjective Grey
Wolf Optimizer

These algorithms are flexible; they avoid falling into the trap of local optima and
offer a better solution than other methods. In addition, these methods have various
advantages that make them worthy of solving any kind of optimization problem because
they simulate the problem-solving methods used by creatures and they offer promising
results in solving such problems, but the same algorithm may show poor performance in
another optimization problem [11]. However, based on the free lunch theory, it is always
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possible to develop new methods or algorithms that can solve the problem in a better way
than the existing techniques [36]. To overcome these above-mentioned defects, MOSSA is
chosen because of its simplicity, ease of use, and requirement of fewer control parameters,
as it has shown impressive results in solving other engineering problems.

1.2. Article Contribution and Organization

To date, no study has been performed to show the effectiveness of MOSSA in mul-
tiobjective optimization of an HMS. MOSSA is a novel nature-inspired meta-heuristic
optimization algorithm. The objective of this research paper is to design the optimal con-
figuration of an HMS system. The main contributions of the paper can be summarized
as follow:

• Determination of the optimal sizing of PV, WT, BT, DG, and inverter integrated HMS
based on a recent approach called MOSSA;

• A rule-based EMS that manages the energy flow between different HRESs is proposed;
• Analysis is performed using solar radiation, wind speed, and ambient temperature

data obtained from the Djelfa region in Algeria;
• The multiobjective optimization approach considered COE and LPSP as objective

functions and renewable factor (RF) as a constraint.

The obtained results from MOSSA are compared with three algorithms: MODA,
MOGOA, and MOALO. The comparison clearly shows that MOSSA performs better, with
very fast convergence and balance between exploitation and exploration.

The rest of this paper is organized as follows: Section 2 is dedicated to the modeling
of the hybrid microgrid system components, Section 3 presents the study site and the
system specifications, Section 4 focusses on the proposed EMS. Whereas, Section 5 presents
the obtained results based on the used optimization technique, and Section 6 contains
discussion on the obtained results. This paper ends with a conclusion.

2. Modeling of Hybrid Microgrid System Components

The stand-alone microgrid of the HRES proposed in the present study is composed
of two renewable energy sources (PV system, WT), an energy storage unit (battery), a
backup power source (DG), and two types of loads. The PV system, WT, and battery are
connected to the DC bus via bidirectional converters; in contrast, DG, load, and dump load
are connected directly to the single-phase AC bus. Figure 1 shows the whole configuration
of the studied stand-alone microgrid system. It is worthy to clarify that this stand-alone
microgrid system is designed to be a low-voltage distribution network 220 V, 50 Hz that
supplies power to a single-phase AC power system.
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2.1. PV Array Modeling

The photovoltaic (PV) panels are obtained based on appropriate connections of photo-
voltaic cells. To provide the required output voltage in the PV panel, PV cells are connected
in series to form a string. On the other side, to increase the output current capability of a
panel, similar strings are connected in parallel, which forms a PV panel or a PV module
whose output power rating is obtained by multiplying the voltage and the current at the
output side [26,32,41].

In [42], several models were developed for the calculation of PV panel output power
Ppv_out. However, in this study, a simple model has been used which takes into considera-
tion two variables: ambient temperature and solar irradiance. The output power of this
model can be obtained as follows [6,11,43,44]:

Ppv−out(t) = PN−pv ×
Gt(t)

Gt−STC
×
[
1 + αt

(
TC(t)− TC−STC

)]
(1)

where Ppv_out is the output power of the PV module (W); PN_pv is the rated power (W)
of the PV module at standard test condition (STC), which is usually stipulated by the
manufacturer, Gt is the solar irradiance (W/m2); Gt_STC is the solar irradiance at STC
(Gt_STC = 1000 W/m2); αt is the temperature coefficient, its value is αt = −3.7 × 10−31/◦C
for the mono- and polycrystalline (Si) solar cells [45,46]; TC_STC is the cell temperature at
STC (TC_STC = 25 ◦); and Tamb is the ambient temperature (◦C).

The cell temperature Tc is calculated by the following expression [44]:

TC(t) = Tamb(t) + [0.0256 × Gt(t)] (2)

2.2. Wind Turbine Modeling

The output power of the wind turbine generator varies following variation of wind
speed, which is a function of the height at the same location. Thus, the measured wind
speed at the anemometer height must be adjusted to the used hub height of the wind
turbine [12]. In this context, two mathematical models are used for the determination of
the wind speed vertical profile of a specific location such as the log-law and the power-
law [47,48].

In this study, the determination of the wind profile is obtained by using the power-law
model as follows [48]:

V2

V1
=

(
h2

h1

)α

(3)

where V2(m/s) is the wind speed at the hub height h2(m), V1(m/s) is the wind speed at the
reference height h1(m), and α is the friction coefficient (also known as: Hellmann exponent,
wind gradient, or power-law exponent). α is a function of varying parameters such as wind
speed, roughness of terrain, height above ground, temperature, hour of the day, and time
of the year [6,49–51]. The value of the friction coefficient can be considered to be 0.11 at
extreme wind conditions and 0.2 at normal wind conditions as specified by Standard IEC
61400-1 [49,52,53]. However, a value of (α = 1/7) is commonly accepted [6].

The output power of wind turbine generator can be evaluated based on the following
equation [54–56]:

Pwt(t) =



0 V < Vcut−in

V3
(

Pr
V3

r −V3
cut−in

)
− Pr

(
V3

cut−in
V3

r −V3
cut−in

)
Vcut−in ≤ V < Vrated

Pr Vrated ≤ V ≤ Vcut−out
0 V > Vcut−out

(4)

where Pr is the rated power (kW); V is the wind speed (m/s); Vcut_in, Vrated, Vcut−out
represent the cut-in, rated, and cut-out wind speed of the WT, respectively in m/s. These
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values are usually stipulated by the manufacturer. Figure 2 shows the output power of the
wind turbine generator versus the wind speed at the height of the hub.
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The rated power Pr (W) of a wind turbine generator is expressed as a function of the
area swept by the blades Awind, the maximum power coefficient Cp, the air density ρair,
and the rated wind speed, as follows [55]:

Pr =
1
2

Cp × ρair × Awind × V3
r (5)

2.3. Battery Bank Modeling

The battery system is an important unit in the stand-alone microgrid and ensures
supply of the load when the power generated from renewable energy sources is insufficient.

Battery capacity can be calculated as follows [57,58]:

CBatt =
AD × Pload

ηInv × ηBatt × DOD
(6)

where Pload is the power demand of the load, ηInv is the inverter efficiency, ηBatt is the
battery efficiency, DOD is the battery depth of discharge, and AD is the days of autonomy,
which is defined as the number of days that the battery will be able to supply the required
power demand of the load without deficiency.

It is obvious that the energy generated from renewable energy sources (PV and WT)
depends on wind speed and solar radiation, which are intermittent in nature; therefore,
days of autonomy is of great importance and must be taken into account while sizing the
battery bank to overcome the problem of power deficit production from these sources.
In case of energy production excess, the excess is used to charge the battery. The power
produced from the battery bank can be expressed as follows [40]:

PBatt(t) =
(

Ppv(t) + Pwt(t)
)
− Pload(t)

ηInv
(7)

where Ppv(t), Pwt(t), and Pload(t) represent the power produced from PV, WT, and load
power demand, respectively, and ηInv is the inverter efficiency.

When PBatt(t) < 0, this indicates that there is an energy generation deficit. Otherwise,
if PBatt(t) > 0, it indicates that the energy generation exceeds the power demand. In the
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rare case that PBatt(t) = 0, the generated power from the renewable sources is equal to the
load power demand.

For checking the state of the battery bank, the state of charge (SOC) of the battery is
an important parameter that affects battery performance and indicates its current capacity.
Indeed, the SOC can be defined following both the states of charging and discharging as
follows [59,60]:

• Charging process, if; Ppv(t) + Pwt(t) > Pload(t)

SOC(t) = SOC(t − 1)× (1 − σ) +

((
Ppv(t) + Pwt(t)

)
− Pload(t)

ηInv

)
× ηBatt (8)

• Discharging process, if; Ppv(t) + Pwt(t) < Pload(t)

SOC(t) = SOC(t − 1)× (1 − σ) +

(
Pload(t)

ηInv
−
(

Ppv(t) + Pwt(t)
))

× ηBatt (9)

2.4. Diesel Generator Modeling

The diesel generator is used as a backup source if the renewable energy sources and
battery bank are insufficient to meet the load power demand requirement. The following
equation can be used to calculate the hourly fuel consumption of the diesel generator [61,62]:

FDG(t) = αPDG(t) + βPr (10)

where FDG(t) is the generator fuel consumption (L/hr), PDG(t) is the generated power (kW),
Pr is the capacity of the generator (kW), α is the fuel curve slope coefficient (L/hr/kWoutput),
and β is the fuel intercept coefficient (L/hr/kWrated). α and β used in the present study are
taken as α = 0.246 and β = 0.08415 [61,62].

The efficiency of the diesel generator can be calculated as [63]:

ηoverall = ηbrake−thermal × ηgenerator (11)

where ηoverall , ηgenerator, and ηbrake−thermal represent the overall efficiency, generator effi-
ciency, and brake thermal efficiency of the diesel generator, respectively.

2.5. Inverter Modelling

The inverter converts the electrical energy from direct current (DC) to alternating
current (AC). The inverter’s efficiency is defined as follows [6,64,65]:

ηinv =
P

P + P0 + KP2 (12)

where P, P0, and K can be calculated by the following equations [6,64,65]:

P = Pout/Pn

P0 = 1 − 99(1/η10 − 1/η100 − 9)2

K = 1/η100 − P0 − 1

where Pn is the inverter’s rated power and η10 and η100 are the efficiencies of the inverter
at 10 and 100% of the rated power, respectively. Both η10 and η100 are stipulated by the
manufacturer.

3. Definition of the Study Site and System Specifications
3.1. Location and Meteorological Conditions

The proposed stand-alone microgrid of the hybrid renewable energy system is sup-
posed to be located in Aïn El Ibel, Djelfa in the north-central region of Algeria at 34.346◦

latitude and 3.163◦ longitude. It is situated in a transitional zone between the dry high
plains in the north and the desert in the south. The area is characterized by very hot
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weather in the summer and very cold weather in winter, with high wind speeds in the
winter. Figure 3 shows the geographical location of the study site, while Table 2 presents
the related background information and the period of data measurement.
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Figure 3. The geographical map of the study location using Google Earth. (a) Map of the selected
location; (b) close look at the selected location.

Table 2. Geographical coordinates of the study site.

Particulars Details

Country Algeria
State Djelfa

District Aïn El Ibel
Municipality Aïn El Ibel

Latitude 34.346◦

Longitude 3.163◦

Altitude above sea level 1098 m
Study site Central PV Aïn El Ibel (SKTM)

Period of measurement 1 January 2020–31 December 2020

Wind speed, solar radiation, and ambient temperature used for the simulations in this
study were obtained from the National Aeronautics and Space Administration (NASA) [66]
at the coordinates of Aïn El Ibel (34.346◦ latitude and 3.163◦ longitude). The average solar
radiation of the selected location during the mentioned year is 0.2357 KW/m2, the average
wind speed is 4.3467 m/s, and the average ambient temperature is 290.4010 K. Figures 4–6
show the hourly solar radiation profile, the wind speed at the height of 10 m above ground
level, and the ambient temperature over a year (8784 h).
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3.2. Load Assessment

To design a reliable and efficient stand-alone microgrid based on renewable energy
sources system for a specific location, the load profile must be defined precisely. Indeed, it
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is obvious that the fluctuating nature of the load affects the system reliability, the number
of components, and the price of the produced electrical energy. Therefore, in the present
study, it is supposed that the studied stand-alone microgrid will power a specific load of a
residential area composed of a group of homes with each home presented as a residential
unit as detailed in Table 3.

Table 3. Power-consuming appliances needed for the residential units.

Appliances Power (W) Quantity Electric Load (W)

Refrigerator 220 2 440
Television 150 3 450

Mobile Charger 12 6 72
Water Pump 450 2 900

Radio 12 1 12
Lamps Bulb 75 5 375
Lamps CFL 18 8 144

Fluorescent Light 40 5 200
Laptop 46 3 138

Desktop computer 120 2 240
Mixer 450 1 450

Deep freezer 260 1 260
Air conditioner 430 2 860

Washing machine 420 1 420
Microwave 900 1 900

The microgrid is analyzed for ten residential units in an off-grid community. The
studied load profile is presented within the four seasons of the year—winter, spring,
summer, and autumn—and has an average annual power consumption of 12.04545 kW.
Figures 7 and 8 present the hourly load profile of the residential units.
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3.3. Specifications of Hybrid Microgrid System Components

The economic and technical parameters of hybrid microgrid system components used
in this study are listed in Table 4:

Table 4. Technical and economic specifications of the HMGS components [6,32,36].

Component Parameter Value Unit

Photovoltaic

Rated power
PV regulator efficiency
Lifetime
PV regulator cost
Initial cost

7.3
95
24
1500
2150

kW
%
Year
$
$/kW

Wind Turbine

Model
Rated power
Cut-in wind speed
Rated wind speed
Cut-out wind speed
Number of blades
Tower height
Efficiency
Lifetime
Wind turbine regulator cost
Price

Eolica 2 kW
2
2.0
9.0
20.0
3
20
95
24
1000
2000

kW
m/s
m/s
m/s
m
%
Year
$
$/kW

Battery

Rated power
Efficiency
Lifetime
SOC_Min
SOC_Max
DOD
Initial cost

40
85
2
30
100
70
220

kW h
%
Year
%
%
%
USD/kW h

Diesel Generator
Rated power
Lifetime
Initial cost

4
24,000
1000

kW
hours
USD/kW h

Inverter
Lifetime
Efficiency
Initial cost

24922500
Year
%
$

Economic Parameters

Project lifetime
Fuel inflation rate
O&M + Running cost
Real interest
Discount rate

24
5
20
13
8

Year
%
%
%
%

4. Energy Management Strategy of Hybrid Microgrid System

The energy management strategy (EMS) is one of the main criteria to be considered
when designing or sizing an autonomous microgrid which is intended to ensure the
distribution and management of power flow among the various elements of the studied
stand-alone microgrid system. The main targets of the proposed EMS can be summarized
as follows:

• System efficiency enhancement, thus achieving low cost and energy-saving benefits;
• Maximization of utilization of the renewable energy sources (PV and WT);
• Protection of the battery bank and minimization of its degradation;
• Minimization of fuel consumption.

In this study, four modes of energy management strategy (EMS) have been used:

• Mode 1: In this mode, the generated power from renewable energy sources (PV and
WT) is sufficient to supply the load demand requirement. The extra energy is used to
charge the battery bank system;
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• Mode 2: In this mode, the generated power from the renewable energy sources
exceeds the load demand requirement while the battery is fully charged. In this case,
the surplus of energy is consumed in a dump load;

• Mode 3: In this mode, the generated power from the renewable energy sources is less
than the load demand requirements. In this case the battery bank will cover the power
generation deficiency to fit the load demand requirements;

• Mode 4: In this mode, the power generated from the renewable energy sources is not
sufficient to meet the load demand requirement and at the same time, the battery bank
storage level is low. In this case, the diesel generator will operate to cover the gap in
power generation to fit the load demand requirement and further ensure the battery
bank’s charging

Figure 9 shows the flowchart of the proposed EMS algorithm used in the presen study.
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5. Optimization Problem Formulation of the Studied Stand-Alone Microgrid
5.1. Multiobjective Optimization

In this work, the optimization problem of the studied hybrid microgrid system (HMGS)
is based on solving a multiobjective optimization problem which is formulated as follows:

Minimize : f (x) =



f1(x)
f2(x)

·
·
·

fn(x)

 (13)

Subjected to
{

H(x) = 0
G(x) ≤ 0

(14)
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where f (x) = [ f1(x), f2(x), . . . . . . , fn(x)] is the vector of the objective functions and n is the num-
ber of objective functions, fi(x) is the objective function number i, x = [x1, x2, x3, . . . . . . . . . . . . , xn]
is the vector of the variables to be designed, H(x) is the set of equality constraints, and G(x) is the
set of inequality constraints.

5.2. Objective Functions

In order to evaluate microgrid performances, the loss of power supply probability
(LPSP) and the cost of energy (COE) are proposed as objective functions, where the main
aim is to minimize these two functions in order to maintain the high reliability and the
lowest cost of the studied HMGS.

5.2.1. Loss of Power Supply Probability

The reliability of the microgrid system is evaluated based on LPSP . It is a statistical
term which indicates the probability of power supply failing to meet the load demand
requirement due to technical problems or because the energy produced from renewable
sources is insufficient to meet the load demand requirement. The LPSP can be calculated
using the following equation [67,68]:

LPSP =
∑
(

Pload − Ppv − Pwt + PSOC−min + Pdiesel
)

∑ Pload
(15)

where the value of LPSP is in the range between [0, 1]. If its value is equal to zero, the load
energy demand is fully satisfied. On other hand, if the LPSP equal to unity, the load energy
demand is not satisfied.

In this work, the evaluation of the system’s reliability is taken within the worst
conditions as follows [6,35]:

P(t)load > P(t)generate (16)

where P(t)generate denotes the power generated. It should be noted that under this condition,
the total load energy demand is greater than the entire energy generation from all the
available sources.

5.2.2. Cost of Energy

The COE is one of the most important indicators of the economic profitability of HRES
integrated in microgrid [6,69]. It is defined as the unit of cost per unit of energy production
from the HRES (USD/kW h), and it can be calculated for each component of the studied
microgrid based on the following equations [32,70]:

CPV
t = N PV

(
CPV

C + CPV
O&M ×

(
(1 + i)n − 1

i(1 + i)n

))
(17)

CWT
t = N WT

(
CWT

C + CWT
O&M ×

(
(1 + i)n − 1

i(1 + i)n

))
(18)

CBatt
t = CBatt

C + CBatt
O&M ×

(
(1 + i)n − 1

i(1 + i)n

)
+ CBatt

R × ∑
( n

nBatt
−1)

j=1

(
1 +

1

(1 + i)jnBatt

)
(19)

CDG
t = CDG

C + CDG
O&M ×

(
(1 + i)n − 1

i(1 + i)n

)
+ CDG

R × ∑
( n

nBatt
−1)

j=1

(
1 +

1

(1 + i)jnDG

)
(20)

The resulting net cost of the four sources can be calculated as follows:

NPC = CPV
t + CWT

t + CBatt
t + CDG

t + CInv
t (21)

where CPV
t , CWT

t , CBatt
t , CDG

t , and CInv
t are the energy costs of PV system, WT system,

battery bank, and diesel generator, respectively; CPV
C , CWT

C , CBatt
C , and CDG

C represent
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the investment costs put into these sources of energy, respectively; CPV
O&M, CWT

O&M, CBatt
O&M,

and CDG
O&M are the operation and maintenance costs of PV, WT, battery bank, and diesel

generator, respectively; CBatt
R and CDG

R are the replacement costs of the battery bank and
the diesel generator, respectively; i is the annual interest; n is the system life time; and nBatt
and nDG are the life time of the battery bank and the diesel generator, respectively. The
COE can be calculated as follows [69]:

COE =
NPC

∑8784
h=1 P load

× CRF (22)

where Pload is the hourly power consumption and CRF is the capital recovery factor, which
is defined as follows [71]:

CRF =
i(1 + i)n

(1 + i)n − 1
(23)

5.3. Constraints
Renewable Factor

The renewable factor (RF) is a factor that determines the amount of power generated
from renewable resources in comparison to non-renewable resources (diesel generator)
used in the microgrid, and it is expressed as follows [36]:

RF(%) =

(
1 − ∑ Pdiesel

∑ Ppv + ∑ Pwt

)
× 100 (24)

when the RF equals 100%, it means that the system is in an ideal state and is dependent
only on power generated from renewable energy resources. When it equals zero percent,
it means that the power coming from the diesel generator is equivalent to the power
generated from renewable energy resources.

5.4. Design Variables

The design variables considered in this study are the nominal power of the photo-
voltaic system (PV), the number of wind turbines (NWT), and the number of autonomy
days (NAD). The constraints on the proposed design variables are given as follows:

Design variables :


0 ≤ PV ≤ 80
0 ≤ N WT ≤ 10
0 ≤ N AD ≤ 3

(25)

5.5. Multiobjective Salp Swarm Algorithm

Salp swarm algorithm (SSA) is a new swarm intelligence algorithm that belongs to
the family of metaheuristic optimization algorithms. It has been proposed based on the
foraging behaviors of salps and their intelligence, which was proposed by Mirjalili et al.
in 2017 [72]. After the food source is detected in salp lookup mechanisms, salps gather in
chains to search for food sources using these chains. Each series will follow the lead salp
(the leader), and the leader will direct and lead the other salps to catch the food source [73].
The shape of a salp is shown in Figure 10a, and the salp chain is illustrated in Figure 10b.
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5.5.1. Basic Salp Swarm Algorithm

The salp leader moves toward the food source named (Fj) in the search space, while
all followers can move toward the rest of the salp. The position of the salps is specified in
the n-dimensional search space, where n is the number of variables for a given problem.
Therefore, the position of all the salps is stored in a two-dimensional matrix called Xi with
a size of N × d, as described in the flowing equation [75]:

Xi =


x1

1 x1
2 . . . x1

d
x2

1 x2
2 . . . x2

d
...

... . . .
...

xN
1 xN

2 . . . xN
d

 (26)

The update of the leader’s position is performed based on the following equation [72]:

x1
j =

{
Fj + c1

((
ubj − lbj

)
c2 + lbj

)
c3 ≥ 0

Fj − c1
((

ubj − lbj
)
c2 + lbj

)
c3 < 0

(27)

where x1
j is the position vector of the first salp (the leader) in the jth dimension, Fj is the

position vector of the food source in the jth dimension. ubj and lbj represent the upper
bound and the lower bound of the jth dimension, respectively. c1, c2, and c3 are random
numbers that uniformly generated with values between [0, 1]. As indicated in Equation (7),
the leader will only update its position with respect to the food source.

The coefficient c1 balances between the exploration and exploitation, so it is considered
one of the most important parameters in salp swarm algorithms (SSA), and it is defined as
follows [72]:

c1 = 2e−( 4l
L )

2
(28)

where l indicates the current iteration, and L indicates to the maximum number of iterations.
The followers update their positions based on Newton’s law of motion as follows [72]:

xi
j =

1
2

at2 + v0t (29)

where i ≥ 2, xi
j is the position vector of the i th follower salp in the j th dimension, t is the

time, v0 is the initial speed, and a =
v f inal

v0
where v = x−x0

t .
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Because the time in optimization represents the iteration based on a specified sampling
unit, the discrepancy between iterations is equal to 1, and by considering that v0 = 0, the
aforementioned equation can be expressed as follows [72]:

xi
j =

1
2

(
xi

j + xi−1
j

)
(30)

where i ≥ 2, and xi
j is the follower salps’ position vector in the jth dimension. According

to the mathematical simulation described in the above equations, the swarm behavior of
the salp chains can be clearly understood and easily simulated.

5.5.2. Multiobjective Salp Swarm Algorithm

A set of solutions called the Pareto group presents the solution to the problem of
multiple objective function optimization. The SSA algorithm is based on the movement
of the salps towards the food source and updating their position over the course of itera-
tions. This first problem is addressed by equipping the SSA algorithm with a food source
repository. This repository holds the best nondominant solutions obtained so far during
optimization. The multiobjective salp swarm algorithm (MOSSA) approach inherits the
SSA operators due to the similar population division (leader and follower salps) and the
position updating process. The MOSSA algorithm is logically capable of finding the perfect
Pareto solutions with high distribution across all objective functions [75–77]. The MOSSA
pseudo-code is represented in Algorithm 1.

Algorithm 1. Pseudo code of the MOSSA algorithm [72,78]

1 Set the hyper-parameter:
2 Max_iter: Maximum of iteration
3 ArchiveMaxSize: Max capacity of archive (repository)
4 Dim: The number of parameters on each salp
5 ubj and lbj: The upper bound and the lower bound of salp population
6 Obj-no: The objective number to be estimated
7 Initialize the salp population xi(i = 1, 2, . . . , n) considering ubj and lbj
8 Define the objective function (loss function): @ Ob-func
9 while (end criterion is not met) do
10 Calculate the fitness of each search agent (salp) with Ob-func
11 Determine the non-dominated salps
12 Update the repository considering the obtained non-dominated salps
13 if (the repository becomes full) then
14 Call the repository maintenance procedure to remove one repository resident
15 Add the non-dominated salp to the repository
16 end
17 Choose a source of food from repository: F = SelectFood (repository)
18 Update c1 by c1 = 2e−( 4l

L )
2

19 for each salp xi: do
20 if(i == 1)then
21 Update the position of the leading salp by:

22 x1
j =

 Fj + c1

((
ubj − lbj

)
c2 + lbj

)
c3 ≥ 0

Fj − c1

((
ubj − lbj

)
c2 + lbj

)
c3 < 0

23 else
24 Update the position of the follower salp by:
25 xi

j =
1
2

(
xi

j + xi−1
j

)
26 end
27 end
28 Amend the salps based on the upper and lower bounds of variables
29 end
30 return repository



Energies 2022, 15, 3579 17 of 30

To solve the sizing problem, MOSSA is used to follow several procedures. The pro-
posed procedure of actions is defined in detail in Figure 11. When the simulation begins, like
any other optimization algorithm, MOSSA places random particles in the search landscape,
whose bounds are set by the user. According to the algorithm’s governing equations, these
particles move around the search landscape, optimizing the defined objective function. To
validate the effectiveness and performance of the MOSSA, the developers have carried out a
series of tests, in which the performance of the MOSSA is compared with other well-known
optimization algorithms like the multiobjective particle swarm optimization (MOPSO)
and the non-dominated sorting genetic algorithm (NSGA-II) [72], and they concluded that
MOSSA balances between exploration and exploitation in a satisfactory and improved
manner compared to its counterparts.
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MOSSA has recently been used to solve engineering problems, such as short-term
load forecasting presented by J. Wang et al. [78] and for the enhancement of electrical distri-
bution system performances including DG and DSTATCOM simultaneously proposed by
A. Lasmari et al. [75]. The authors of [75–78] have affirmed that the result of the MOSSA
outperforms other approaches, namely the multiobjective grasshopper optimization algo-
rithm (MOGOA) and the multiobjective ant lion optimizer (MOALO). These studies have
verified the effectiveness of the MOSSA in solving complex optimizations problems better
than the other techniques.

6. Results and Discussion

In this paper, the optimization design of a stand-alone microgrid based on hybrid
renewable energy system consisting of PV/WT/battery bank with a diesel generator
system as a backup source is presented. These sources’ main role is to fulfill the load energy
demand, which is composed of 15 residential housing units. The whole studied system has
been implemented in the MATLAB R2018a environment. All tests were performed on an
Intel Core i7-10510U CPU 2.30 GHz 16 GB RAM, Windows 10 Pro Version 21H2 (64-bit)
personal computer.

This study comprises the application of four optimization algorithms to solve the main
problem of optimization design presented in this paper:

• First Algorithm: MOSSA optimization algorithm;
• Second Algorithm: multiobjective dragonfly algorithm (MODA) [79];
• Third Algorithm: multiobjective grasshopper optimization algorithm (MOGOA) [80];
• Fourth Algorithm: multiobjective ant lion optimizer (MOALO) [81].

In a previous study [6,35], the optimization problem of HMS was treated only as a
single-target optimization problem where different objective functions have been grouped
into one objective function as single-objective optimization problem. This approach has
the disadvantage of determining only one optimal solution. In this paper, multiple choices
are offered for the optimal design of the studied microgrid based on the approach of
multiobjective optimization. This approach creates a set of optimal solutions known as the
Pareto front.

MOSSA, MODA, MOGOA, and MOALO have been executed along 100 iterations. Table 5
shows the different control parameters, which have been used for each proposed approach.

The solutions obtained by applying the previously mentioned methods for stand-alone
microgrid configurations present an impressive and consistent distribution. Figure 12a–d
presents the Pareto front of the stand-alone microgrid system obtained for each algorithm
based on LPSP and COE functions.

On the Pareto front, the results show not only an optimal solution, but a group of optimal
solutions (non-dominated solutions), a variety of design decision possibilities. The next section
presents the obtained results of MOSSA, MODA, MOGOA, and MOALO algorithms.

Table 6 shows 20 selected solutions from the Pareto fronts for the first algorithm as
shown in Figure 12a. For more clarification, these solutions have been organized based on
the COE. If solution #1 is selected by the designer, the power generated by the PV panels is
65.883 kW, the autonomy days is equal to three days, and the required number of wind
turbines is ten, which ensures a power generation of 20 kW. This solution corresponds to a
COE of 0.255 USD/kW h, an LPSP of 27.079%, and an RF of 90.46%. It can be noted that
the COE and the RE have higher values and the LPSP has a lower value than the other
available solutions.
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Table 5. Parameters for each approach.

Algorithms Parameters

MOSSA

Population size: 100
Number of iterations: 100

Archive size: 200
The coefficient c1: Equation (28)

The coefficient c2: rand
The coefficient c3: rand, c3 < 0.5

MODA

Population size: 100
Number of iterations: 100

Archive size: 200
w = 0.9 − 0.2, s = 0.1

a = 0.1, c = 0.7
f = 1, e = 1

MOGOA

Population size: 100
Number of iterations: 100

Archive size: 200
The coefficient cMax : 1

The coefficient cMin : 0.00004

MOALO

Population size: 100
Number of iterations: 100

Archive size: 200
ct = ct

I , dt = dt

I
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Table 6. Selected solutions from the Pareto front of MOSSA.

Solution # PV (KW) NAD NWT COE
(USD/kW h) LPSP (%) RE (%)

The AEC
from PV

(MW)

The AEC
from WT

(MW)

The AEC
from BT

(MW)

The AEC
from DG

(MW)

Solution # 1 65.883 3 10 0.255 27.079 90.46 121.8 38.87 118.33 15.33
Solution # 2 64.715 3 10 0.252 27.118 90.31 119.64 38.87 118.18 15.36
Solution # 3 64.436 3 10 0.251 27.153 90.27 119.12 38.87 118.09 15.36
Solution # 4 63.734 2.953 10 0.249 27.213 90.17 117.82 38.87 116.21 15.4
Solution # 5 63.773 2.979 10 0.249 27.215 90.17 117.9 38.87 117.18 15.4
Solution # 6 51.454 2.721 10 0.214 27.859 88.18 95.12 38.87 105.3 15.84
Solution # 7 46.642 2.781 10 0.201 28.105 87.2 86.23 38.87 106.61 16.01
Solution # 8 44.638 3 10 0.196 28.126 86.8 82.52 38.87 114.34 16.02
Solution # 9 42.836 3 10 0.191 28.252 86.36 79.19 38.87 113.74 16.11
Solution # 10 41.726 2.711 10 0.187 28.424 85.9 77.14 38.87 102.74 16.36
Solution # 11 32.414 2.697 10 0.161 29.353 82.49 59.92 38.87 98.07 17.22
Solution # 12 30.978 2.844 10 0.158 29.382 82.04 57.27 38.87 102.35 17.27
Solution # 13 29.081 3 10 0.152 29.57 81.12 53.76 38.87 106.38 17.49
Solution # 14 26.493 2.766 10 0.145 30.028 79.41 48.98 38.87 96.35 18.09
Solution # 15 25.132 2.733 10 0.141 30.294 78.46 46.46 38.87 94.21 18.38
Solution # 16 24.935 2.711 10 0.139 30.48 77.94 46.1 38.87 92.95 18.55
Solution # 17 23.83 2.887 10 0.136 30.715 77.17 44.05 38.87 97.6 18.7
Solution # 18 23.59 2.697 10 0.135 30.962 76.61 43.61 38.87 90.98 18.9
Solution # 19 23.843 1.169 10 0.134 31.026 75.63 44.08 38.87 41.5 19.87
Solution # 20 24.093 1 9 0.133 31.121 75.24 44.54 36.58 35.83 20.09

AEC: Annual Energy Contribution.

In case when solution #10 is selected by the designer, the power generated by the
PV panels is 41.726 kW, the autonomy days is equal to 2.711, and ten wind turbines are
required, which generates a total power of 20 kW. This solution corresponds to a COE of
0.187 USD/kW h, an LPSP of 28.424%, and an RF of 85.90%.

If solution #20 is selected by the designer, the total power generated by the PV panels is
24.093 kW, one autonomy day is required, and nine wind turbines are required to generate
a total power of 18 kW. This solution corresponds to a COE of 0.133 USD/kW h, an LPSP
of 31.121%, and an RF of 75.24%.

The annual contributions of energy generated by each source in the studied power
generation system (i.e., PV, WT, BT, and DG) for solutions #1, #10, and #20 of the first
algorithm are represented in Figure 13a–c, respectively. The annual contribution of the
energy produced by the PV panels is 121.80 MW, which presents 42% of the total generated
energy in solution #1 of the first algorithm, shown in Figure 13a and Table 6. It can be
clearly observed that this production is higher compared to solution #10 and solution #20.
The WT and DG provide 38.87 MW and 15.33 MW, respectively, which represent 13 and
5%, respectively, of the total generated energy in solution #1. It can be clearly noted that is
lower than the energy contribution of the WT and DG in solution #10 and solution #20. The
BT contributes 118.33 MW, which represents 40% of the total generated energy in solution
#1. In Figure 13b, the annual contributions of the energy provided by the PV, WT, BT, and
DG are 77.14 MW, 38.87 MW, 102.74 MW, and 16.36 MW, representing 33, 16, 44, and 7% of
the total generated energy in solution #10, respectively.

Figure 13c shows the annual contribution of the energy provided by each source—PV,
WT, BT, and DG—as 44.54 MW, 36.58 MW, 35.83 MW, and 20.09 MW, which represent 32,
27, 26, and 15% of the total generated energy in solution #20, respectively.

The same analysis can also be made for the results of MODA, MOGOA, and MOALO
when the algorithms are changed while maintaining the same system.
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(a) Solution #1; (b) solution #10; (c) solution #20.

Comparison between MOSSA and the Other Techniques

In this section, the performance of the MOSSA algorithm has been compared to
the MODA, MOGOA, and MOALO algorithms for solving the optimization problem
investigated in this paper. From the previously obtained results in Figure 12a–d and
Tables 6–9, MOSSA provided the best solution (Solution #1, Table 6) among the optimal
solutions, corresponding to a COE of 0.255 USD/kW h and an LPSP of 27.079%. MODA,
MOGOA, and MOALO algorithms provided more expensive solutions than MOSSA with
a COE of 0.286 USD/kW h and an LPSP of 27.149%; a COE of 0.307 USD/kW h and an
LPSP of 27.021%; and a COE of 0.290 USD/kW h and an LPSP of 27.018%, respectively. In
addition, MOSSS balanced the contributions of renewable energy sources in a way that
corresponds to the objective function by a PV of 42%, WT of 13%, batteries of 40%, and
DG of 5%. The other contributions of energy generation by PV/WT/battery and DG for
MODA, MOGOA, and MOALO are presented in Figures 14–16, respectively. On the other
hand, MOGOA provided the best RE result among the previous algorithms, and at the same
time, it had the highest COE among them, indicating that it did not succeed in balancing
between COE and LPSP.
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Table 7. Selected solutions from the Pareto front of MODA.

Solution # PV (KW) NAD NWT COE
(USD/kW h) LPSP (%) RE (%)

The AEC
from PV

(MW)

The AEC
from WT

(MW)

The AEC
from BT

(MW)

The AEC
from DG

(MW)

Solution #1 78.057 1.215 10 0.286 27.149 90.99 144.3 38.87 49.24 16.24
Solution #2 76.811 1.119 10 0.283 27.154 90.99 142 38.87 45.48 16.3
Solution #3 76.499 1.137 10 0.282 27.155 90.96 141.42 38.87 46.15 16.29
Solution #4 75.377 1.478 10 0.28 27.158 90.99 139.35 38.87 59.52 16.07
Solution #5 74.679 1.478 10 0.278 27.177 90.91 138.06 38.87 59.49 16.08
Solution #6 73.399 1.437 10 0.274 27.215 90.76 135.69 38.87 57.8 16.13
Solution #7 73.368 1.452 10 0.274 27.223 90.77 135.63 38.87 58.41 16.11
Solution #8 74.282 1.135 9 0.273 27.642 90.47 137.32 36.65 45.69 16.53
Solution #9 54.734 2.271 10 0.221 28.132 88.41 101.19 38.87 88.25 16.07
Solution #10 44.195 1.926 10 0.193 28.425 86.12 81.7 38.87 74.02 16.74
Solution #11 43.87 1.882 10 0.192 28.495 86.01 81.1 38.87 72.32 16.77
Solution #12 34.075 2.6 10 0.165 29.184 83.16 62.99 38.87 95.47 17.07
Solution #13 33.13 1 10 0.16 29.523 81.51 61.25 38.87 37.85 18.38
Solution #14 29.655 1.342 9 0.149 30.257 79.62 54.82 36.65 48.94 18.64
Solution #15 28.743 1.436 9 0.146 30.482 78.93 53.14 36.65 51.86 18.8
Solution #16 28.717 1.4 9 0.146 30.496 78.9 53.09 36.65 50.59 18.82
Solution #17 28.683 1.47 9 0.146 30.502 78.88 53.03 36.65 53 18.79
Solution #18 28.853 1.383 9 0.144 30.711 78.48 53.34 36.65 49.77 18.98
Solution #19 25.706 1 8 0.134 31.347 75.4 47.52 33.86 35.8 20.08
Solution #20 25.637 1.003 8 0.134 31.411 75.25 47.39 33.86 35.83 20.11

AEC: annual energy contribution.

Table 8. Selected solutions from the Pareto front of MOGOA.

Solution # PV (KW) NAD NWT COE
(USD/kW h) LPSP (%) RE (%)

The AEC
from PV

(MW)

The AEC
from WT

(MW)

The AEC
from BT

(MW)

The AEC
from DG

(MW)

Solution #1 85.825 1.014 10 0.307 27.021 91.74 158.66 38.26 41.47 16.26
Solution #2 74.989 1.007 10 0.277 27.332 90.68 138.63 38.26 40.91 16.47
Solution #3 66.413 2.695 10 0.254 27.442 90.32 122.78 38.26 106.10 15.53
Solution #4 64.188 2.098 10 0.247 27.825 89.81 118.66 38.26 82.63 15.91
Solution #5 64.188 2.098 10 0.247 27.831 89.80 118.66 38.26 82.62 15.91
Solution #6 64.309 2.721 9 0.244 28.119 89.64 118.89 34.06 105.80 15.85
Solution #7 63.919 2.686 9 0.241 28.356 89.43 118.17 34.06 104.17 15.99
Solution #8 50.841 3.000 9 0.208 28.459 87.56 93.99 34.06 114.34 16.03
Solution #9 48.944 2.079 8 0.198 29.275 86.14 90.48 32.20 79.02 17.01
Solution #10 48.446 1.117 8 0.196 29.304 85.55 89.56 32.20 43.23 17.68
Solution #11 43.247 1.130 9 0.184 29.350 84.57 79.95 34.06 43.38 17.69
Solution #12 43.326 1.115 9 0.184 29.387 84.49 80.10 34.06 42.84 17.75
Solution #13 37.080 1.897 9 0.167 29.811 82.92 68.55 34.06 70.51 17.60
Solution #14 26.733 1.005 10 0.143 30.331 77.88 49.42 38.26 36.79 19.39
Solution #15 25.487 1.117 9 0.134 31.378 75.53 47.12 34.06 39.69 19.94
Solution #16 20.161 1.102 9 0.119 32.600 70.42 37.27 34.06 37.51 21.14
Solution #17 16.490 1.131 8 0.105 34.570 63.46 30.48 32.20 36.34 22.50
Solution #18 12.920 2.682 9 0.102 34.950 61.84 23.89 34.06 76.89 22.47
Solution #19 15.144 1.950 7 0.101 35.199 58.41 28.00 27.21 56.98 22.96
Solution #20 12.565 1.242 6 0.084 38.810 45.94 23.23 23.32 34.44 25.17

AEC: annual energy contribution.

As mentioned previously, this work attaches importance to preserving the environ-
ment. In this sense, MOSSA provided the lowest fuel consumed by DGs of 15.33 MW
annual contribution compared to others, where contribution in MODA was 16.24 MW,
contribution in MOGOA was 16.26 MW, and contribution in MOALO was 15.38 MW.

Figure 17 summarizes the comparison results between the previous algorithms; it can
be noted clearly that the MOSSA algorithm offers better convergence than others, as it has
a broader and consistent distribution in the Pareto front. It can be said that the MOSSA has
good performance in improving system cost and reliability, and it provides better COE and
LPSP. The obtained results indicate that the proposed MOSSA possesses good performance
in solving such types multiobjective problems.
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Table 9. Selected solutions from the Pareto front of MOALO.

Solution # PV (KW) NAD NWT COE
(USD/kW h) LPSP (%) RE (%)

The AEC
from PV

(MW)

The AEC
from WT

(MW)

The AEC
from BT

(MW)

The AEC
from DG

(MW)

Solution #1 78.813 2.39 10 0.29 27.018 91.67 145.7 38.87 95.56 15.38
Solution #2 75.317 1.953 10 0.28 27.228 91.19 139.24 38.87 78.09 15.69
Solution #3 64.59 2.666 10 0.251 27.339 90.21 119.41 38.87 105.12 15.49
Solution #4 62.96 1.842 10 0.245 27.54 89.64 116.39 38.87 72.98 16.08
Solution #5 51.387 2.629 10 0.214 27.882 88.13 95 38.87 101.8 15.89
Solution #6 46.735 1.629 10 0.2 28.358 86.56 86.4 38.87 63.15 16.81
Solution #7 42.991 1 10 0.189 28.602 85.19 79.48 38.87 39.15 17.52
Solution #8 38.052 1.555 10 0.174 29.262 83.85 70.35 38.87 58.83 17.43
Solution #9 35.045 1.644 10 0.166 29.414 82.86 64.79 38.87 61.53 17.61
Solution #10 33.112 1.615 10 0.161 29.561 82.08 61.21 38.87 59.93 17.81
Solution #11 29.121 2.008 10 0.151 29.829 80.53 53.84 38.87 72.39 18.05
Solution #12 28.185 1 10 0.147 30.008 79.02 52.11 38.87 37.07 19.09
Solution #13 24.526 1.532 10 0.135 31.072 76.37 45.34 38.87 53.61 19.43
Solution #14 20.076 1.517 10 0.123 32.053 72.44 37.11 38.87 51.13 20.44
Solution #15 15.922 1.535 10 0.112 33.344 67.56 29.43 38.87 49.33 21.57
Solution #16 16.957 1.49 8 0.107 34.326 64.96 31.35 31.53 47.24 22.03
Solution #17 12.117 1.395 9 0.097 35.741 58.93 22.4 34.55 41.29 23.39
Solution #18 12.169 3 8 0.095 36.589 56.12 22.5 31.53 81.18 23.37
Solution #19 12.474 1 7 0.089 37.443 51.31 23.06 27.52 29.39 24.63
Solution #20 13.973 1.103 6 0.087 38.106 49.55 25.83 22.94 31.89 24.61

AEC: annual energy contribution.
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MOSSA, MODA, MOGOA, and MOALO.

After comparing the previous algorithms, the solution #1 corresponding to the first
algorithm is chosen, which ensures the optimal design of the studied stand-alone microgrid
system of HRES consisting of PV/WT/battery and DG system to fulfill the load energy
demand as shown in Figure 1. The obtained optimal solution allows ensuring total annual
power generations of 121.80 MW, 38.87 MW, 118.33 MW, and 15.33 MW by PV, WT, battery,
and DG, respectively, as presented in Table 6.

The annual generated power by the PV and wind turbine according to the selected
optimal system configuration are presented in Figure 18a,b, respectively. The contribution
of the backup system (diesel generator) is shown in Figure 18c. At the same time, the SOC
of the battery is shown in Figure 18d, while Figure 19 presents the total annual power
generated by all sources—PV, WT, battery, and DG—and the load power demand.

For example, if the period [8300; 8200] in hours during the winter season is chosen in
order to observe the behavior of the SOC of the battery, a zoom is taken from Figure 18d
and shown in Figure 20, while Figure 21 shows the contribution of the diesel generator in
the same period.
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7. Conclusions

This research paper has proposed an approach for the optimal sizing of a stand-alone
microgrid system which is powered by hybrid sources of energy such as PV, WT, BT, and
DG and comprises two buses such as a DC bus and an AC bus that are bidirectionally
connected with a power electronics conversion system. The main aim of the designed
hybrid stand-alone microgrid system is to meet the load energy demand of a remote area in
an off-grid community in Djelfa, Algeria. Indeed, this paper has proposed an optimization
design based on a recent nature-inspired metaheuristic optimization algorithm called the
multiobjective salp swarm algorithm in order to find the minimum cost of electricity COE
and minimum potential for electrical loss LPSP at the same time. Moreover, the renewable
energy factor has been introduced to ensure that the system works mainly on renewable
energy resources. To prove the validity and the effectiveness of the proposed approach
using MOSSA, simulations have been carried out based on real data collected from the
study site. The obtained results based on MOSSA have been compared with those obtained
using MODA, MOGOA, and MOALO and some previously obtained results, where it
has been proved that the proposed approach based on MOSSA yields better results; it
contributed 90.46% of RF, a COE of 0.255 USD/kW h, and an LPSP of 27.079%. This
outperforms MODA, MOGOA, and MOALO, where the offered optimal solutions show
clear superiority compared to other presented results due to the design goal of the hybrid
stand-alone microgrid system being to obtain a set of solutions to be adopted following
different scenarios which can be faced in real cases. Finally, it can be concluded that the
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proposed approach based on the MOSSA can be a promising tool for the designer to obtain
optimal design solutions.

As part of future work, other renewable energy sources can be added and diversified
in line with the capabilities of each region. The newly discovered artificial intelligence
algorithms can also be applied. Another perspective is the study of optimal sizing using
hybrid optimization techniques for further explorations in future research and facing the
complexities and challenges of hybrid systems.
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