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Abstract
Molecular docking is an important step of the drug discovery process which aims at calculating the
preferred position and shape of one molecule to a second when they are bound to each other.
During such analysis, 3D representations of molecules are manipulated according to their degree
of freedoms: rigid roto-translation and fragment rotations along the rotatable bonds. In our work,
we focussed on one specific phase of the molecular docking procedure i.e. molecular unfolding
(MU), which is used to remove the initial bias of a molecule by expanding it to an unfolded shape
simpler to manipulate within the target cavity. The objective of the MU problem is to find the
configuration that maximizes the molecular area, or equivalently, that maximizes the internal
distances between atoms inside the molecule. We propose a quantum annealing approach to MU
by formulating it as a high-order unconstrained binary optimization which was possible to solve
on the latest D-wave annealing hardware (2000Q and advantage). Results and performances
obtained with quantum annealers are compared with state of art classical solvers.

1. Introduction

Drug discovery [1] is a process that includes several phases, from virtual in silico simulations [2] to in vitro
and in vivo experimentation. Molecular docking [3] is an important step of the drug discovery process
which aims at calculating the preferred position and shape of one molecule to a second when they are
bound to each other. The computational resources needed to address the docking-related tasks are usually
quite large, as problems of this kind involve several degrees of freedom and rapidly growing dimensionality.

In recent years, the field of quantum computing (QC) [4] has undergone significant developments from
both hardware and algorithms points of view. In particular, we are living in the so-called NISQ [5] era in
which it is not clear whether the quantum devices currently available are actually capable of producing
better or comparable results compared to classical methods.

In this work, we explored the possibility of using a QC technique called quantum annealing (QA) [6–8]
to support the molecular docking phase. In particular, we focussed on the molecular unfolding (MU)
process, which is the first step in geometric molecular docking techniques. MU aims at finding the
molecular configuration that maximizes its volume, or equivalently, that maximizes the internal distances
between atoms inside the molecule. This phase is not available in all the docking algorithms [9], but it is
used for initializing a geometric procedure [10]. In any case, the interesting point of this procedure is that it
involves the same degrees of freedom that a molecule has during the molecular docking phase, without
involving a second entity, i.e. the target protein. Our aim was to develop a quantum MU approach and
execute it on the latest QA hardware (D-wave advantage and 2000Q) in order to understand the capabilities
of these devices and compare their performances with respect to classical methods.

The remainder of the paper is structured as follows. In section 2, the topic of molecular docking is
introduced, while in section 3 the problem of MU is discussed. In sections 4 and 5, the concepts of QA are
illustrated followed by the binary optimization formulation of the target problem. Later in sections 6 and 7,
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Figure 1. Rotatable fragments and rotatable bonds.

the dataset and pre-processing steps employed before the unfolding phase is presented. This is followed in
section 8 that provides by a review of the state-of-the-art classical algorithms employed to compare
solutions obtained with the quantum devices. In sections 9 and 10, the experimental results regarding the
embedding on the QPUs are presented as well as a detailed performance comparison between the different
methods. Finally, section 11 concludes the paper.

2. Preliminaries on molecular docking

In-silico approach to drug discovery [1] can be seen as a multi-tiered process that encompasses several
sequential computational techniques with the aim of screening virtual libraries of the order of billions of
compounds for the most suitable molecules to forward to later experiments.

Molecular docking [3] is an essential step in virtual screening which is used to simulate the atomic
interactions of a ligand inside a protein binding site, in order to highlight their possible biochemical
reactions and predict whether a stable complex could be formed.

The molecular docking process is divided into two main tasks:

• Detection of three-dimensional poses of the ligand, i.e. valid ligand conformations, positions, and
orientations inside the active site of the protein (usually called pocket).

• Ranking of the poses via a scoring function. Usually the lower the docking score, the better the
resulting binding affinity.

Since electrons inside atoms are repulsive to each other, their interaction affects both molecular shape
and reactivity. Therefore, by controlling the molecular shape, it is possible to predict the ligand reactivity to
a protein’s pocket as well as the energy cost of such configuration. This direct connection between
molecular conformation and binding affinity is what enables geometrical scoring functions [10].

In our approach, the docking process considers the pocket as a rigid structure, while the ligand is a
flexible set of atoms. Furthermore, from a strictly geometrical interpretation, the ligand can be seen as a set
of chemical bonds (or edges) with a fixed length, where only a subset of edges are rotatable.

Rotatable bonds (or torsionals) are bonds that split the molecule in two nonempty disjointed fragments
when virtually removed. The two fragments that are linked to a rotatable bond can rotate independently
from each other around the axis of the rotatable bond. In the remainder of the paper we will call such
fragments as rotatable fragments. These concepts are graphically reported in figure 1, where the rightmost
rotatable bond is splitting the molecule in left and right rotatable fragments. Finally, note that the number
of rotatable fragments in a molecule is usually double the number of rotatable bonds.

In general, when applying a geometric approach such as in [10], it is possible to point out three main
phases in molecular docking: ligand expansion, intial placement and shape refinement inside the pocket.

In this work, we focus on the ligand expansion phase, which is essential for improving the quality of a
geometric docking procedure. An initial pose of the ligand that is set a priori may introduce shape bias
affecting the final quality of the docking. MU is the technique used for removing such initial bias by
expanding the ligand to an unfolded shape.
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Figure 2. Illustration of a simple molecule. The molecular structure presents four rotatable bonds, highlighted in red in the
graph representation.

3. Molecular unfolding problem definition

The objective of the MU problem is to find the unfolded shape of the ligand or, in other terms, the torsional
configuration that maximises the molecular volume expressed as the total sum of internal distances between
pairs of atoms in the ligand. The starting point is the folded molecule defined by a set of atoms together
with its fixed and rotatable bonds. We can assign to each rotatable bonds ti a variable corresponding to the
angle θi which is responsible for rotatable fragment rotation. As a convention, we identify the ordered set of
rotations by a vector:

t =
[
θ1, θ2, . . . , θn

]
(1)

where each torsion θi around the bond’s axis can assume values [0, 2π ). Given a molecule, it is possible to
construct the associated graph as shown in figure 2 where edges represent bonds (which can not contract).
Torsional bonds are depicted in red in the image below.

The objective for the MU problem can be expressed in mathematical terms as follows: given a molecule,
find the torsional configuration

tunfold = [θunfold
1 , . . . , θunfold

M ] (2)

such that the following quantity is maximised

D(�t) =
∑

a,b∈M
a�=b

Dab(Θ)2. (3)

The function Dab(Θ) denotes the distance between two different atoms a and b belonging to the
molecule M while D(�t) is the sum of all square distances between atoms.

The rationale behind this choice is that the objective function is simple and relies just on the geometry
of the molecule. Each distance Dab(Θ) only depends on the angles induced by those rotatable bonds that
appear in the shortest path connecting atom a to b in the graph.

It is worth noticing that it is not necessary to calculate all the pairwise distances that are expressed in
equation (3). In fact, it is possible to apply simplifications to Dab(Θ), as expressed by the following two
conditions:

Condition 1. The shortest path between two atoms must contain at least one torsional. We define as
rigid fragment a subset of the atoms of the molecule whose shortest path among each pair does not contain
any rotatable bond. If two atoms belong to the same rigid fragment, their relative position never changes.

Condition 2. The shortest path connecting two atoms must have at least three edges. This is a
consequence of the fact that atoms connected by only one or two bonds have always the same distance, even
when bonds are rotatable.

A useful mathematical representation for rotations are rotation matrices, R(θi), which are function of
the angle θi associated to torsion Ti. If two atoms are connected via multiple torsional, the rotation matrix
R(Θ) = R(θi, θj, . . . , θk), characterizing their relationship is an ordered multiplication of single torsion
rotation matrices

R(Θ) = R(θi, θj, . . . , θk) = R(θi) × R(θj) × · · · × R(θk). (4)

Each rotation R(θi) is expressed via a 4 × 4 rotation matrix acting on atomic coordinates. The extremes of a
bond connecting two atoms are identified by the coordinates of the atoms themselves. The explicit
formulation of the rotation matrix can be found in the appendix.

Consider now the distance Dab(Θ) and the initial positions of atoms a and b which are identified with �a0

and �b0 respectively. Relative positions are obtained by fixing one of the two atoms while rotating the other

3



Quantum Sci. Technol. 7 (2022) 035020 K Mato et al

Figure 3. Visual representation of the action of two rotations θ1 and θ2 on the distance expressed in equation (6).

as follows
�a = �a0

�b = R(Θ)�b0. (5)

Hence, we can rewrite the single contributes in equation (3) using the Euclidean distance as

Dab(Θ)2 = ‖�a0 − R(Θ)�b0‖2. (6)

Figure 3 shows how the relative positions change as function of the angles assumed by the two rotatable
bonds.

4. Quantum annealing

QA is a meta-heuristic technique for addressing challenging combinatorial problems. It can be seen as a
variation of the simulated annealing (SA) [11] algorithm where quantum fluctuation, instead of thermal
effects, are employed in the exploration of the configuration space. QA devices, like those implemented with
superconductive qubits by the Canadian company D-wave4, can solve combinatorial problems expressed in
quadratic unconstrained binary optimization (QUBO) terms. A generic QUBO problem is defined as

O(x) =
∑

i

hixi +
∑
i>j

Ji,jxixj (7)

where xi ∈ {0, 1} are binary variables while hi and Jij are parameters whose values encode the optimization
task in such a way that the minimum of O(x) represents the solution to the optimization problem.

In general, a given optimization problem can be easily translated into binary combinatorial terms as a
high-order QUBO (high-order unconstrained binary optimization (HUBO)) problem

OHubo(x) =
∑

i

αixi +
∑

i,j

βi,jxixj +
∑
i,j,k

γi,j,kxixjxk + · · · . (8)

Fortunately, it is always possible to convert HUBOs into QUBOs. The trick used is to add new ancillary
binary variables and substitute high-order terms with sums of quadratic expressions (made up with original
binary variables and new ones) to preserve local and global minima [12].

As an example, a cubic term like ±x1 · x2 · x3 can be divided using the ancillary binary variable a1 as

± x1 · x2 · x3 →±a1x3 + 2(x1x2 − 2x1a1 − 2x2a1 + 3a1). (9)

In practice, one can decide to build a custom function for quadratisation or exploit the functions
present in the D-wave software offer, such as make_quadratic5.

5. HUBO formulation

As a first step, it is necessary to formulate the MU problem in binary optimization terms to employ a QA
approach.

Let us consider a discretisation of the angle θi associated to a rotatable bond Ti into d possible values

θi = [θ1
i , θ2

i , θ3
i , . . . , θd

i ]. (10)

4 dwavesys.com

5 https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/higherorder.html.
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As a consequence, continuous functions of the angles like sine and cosine can be discretised as well in d
values

sin(θi) = [sin(θ1
i ), sin(θ2

i ), sin(θ3
i ), . . . , sin(θd

i )] (11)

cos(θi) = [cos(θ1
i ), cos(θ2

i ), cos(θ3
i ), . . . , cos(θd

i )]. (12)

Moreover, since torsional angles can assume only one value at a time, it is necessary to associate each θi with
only one value among all the possible θk

i . A one-hot encoding strategy is adopted for each torsional Ti, to
which are assigned binary variables xik, with 1 � k � d, such that

xik =

{
1 if θi = θk

i ;

0 otherwise.
. (13)

Definition (13) tells us that only one among the binary variables can be assigned to a one or truth value.
This means that their sum is always equal to one:

d∑
k=1

xik = 1. (14)

Note that equation (14) must hold for all rotatables. To convert such algebraic constraint into QUBO, the
following term has to be considered: ∑

i

(
d∑

k=1

x ik − 1

)2

. (15)

The constraint of equation (15) is usually called a hard constraint because it is mandatory to satisfy this
term i.e. minimize it in the combinatorial optimization.

The selection of the one-hot encoding strategy has been done because of the direct and simple problem
formulation. Recently, a novel encoding technique called domain-wall [13] have been proposed for similar
problems demonstrating a better embedding capability [14, 15]. The evaluation of different encoding
strategies is out of the scope of the current paper and it is considered a future work.

Regarding those functions that appear in the rotation matrix R(θi) such as sin(θi) and cos(θi), they can
be expressed as

sin(θi) =
d∑

k=1

sin(θk
i ) xik (16)

cos(θi) =
d∑

k=1

cos(θk
i ) xik. (17)

Therefore, a rotation matrix R(θi) becomes a function of all the binary variables xik needed to represent the
angle θi

R(θi) = R(xi1, xi2, . . . , xid). (18)

For a generic rotation we have

R(Θ) = R(θi) × R(θj) × · · · × R(θk)

= R(xi1, xi2, . . . , xid) × R(xj1, xj2, . . . , xjd) × · · ·

× R(xk1, xk2, . . . , xkd). (19)

Note that, for what concerns the granularity of the rotations, in order to obtain a precision of
Δθi = θk+1

i − θk
i in the representation of angle θi, the number of variables xik needed for each torsion is

given by

d =
2π

Δθi
=

2π

θk+1
i − θk

i

. (20)
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Figure 4. Analysis of the distribution for number of atoms and number of rotatable fragments.

Given a number M of torsional bonds, the total number of binary variables is

n = d × M =
2π

Δθi
× M. (21)

The general form of the HUBO optimization function can be written as

O(xik) = Aconst

∑
i

(
d∑

k=1

xik − 1

)2

−
∑
a,b

Dab(Θ)2. (22)

In the last equation, the second term identifies the optimization term, which has a minus sign in front
because it should be maximized (while the whole expression is minimized). The first term instead
represents the hard constraint, where the parameter Aconst is a penalty scalar that modulates its strength.
Finally, it is worth noticing that, given a molecule with M torsionals, the highest order term that appears in
equation (22) is 2M, where the number 2 comes from the squared distances.

6. Dataset and pre-processing

6.1. Ligand dataset
The ligand dataset in our possession is derived by PDBbind [16] and made up of 118 molecules, with a
number of atoms ranging from 20 to more than 120 and a number of torsionals up to about 50. Figure 4,
shows an overview of the ligand distributions for the dataset under analysis in terms of rotatable fragments
and number of atoms. It is possible to see that 60% of the ligands in our database have between 10 and 20
rotatable fragments, which means 5–10 rotatable bonds. The number of atoms has a peak at about the
40–50 interval. Within our study, we considered molecules with a number of rotatable bonds up to 12 and a
number of atoms up to 50. This gave us the chance to highlight the increment of the problem complexity by
increasing the two characteristics of the molecules, without making it explode too much.

6.2. Pre-processing phase
The pre-processing starts with the parsing of the information about the molecule via analysis of its MOL2
file [17]. A graph containing a three-dimensional description of the ligand together with the bond type
(bonds could be single, double, triple, amide, or aromatic) is constructed.

Two simplifications related to chemical–physical properties of ligands are applied in the pre-processing
phase: one is because only single bonds can be rotatable, while the other concerns the removal of terminal
hydrogen atoms whose distances with the rest do not affect the total sum of internal distances. Note that the
removal of terminal hydrogens may trigger the generation of conformations where the final position of
atoms does not satisfy their minimum Van der Waals distance. Such invalid shapes are discarded in
post-processing.

After this, the graph associated to the molecule is divided into rigid fragments as shown in figure 5. At
this stage, the betweenness centrality [18], defined in equation (23), is employed to obtain an ordering of
the atoms within the graph. As a consequence, this procedure also specifies an ordering of rotatable bonds

Betweenness centrality of atom v : bv =
∑

s,t

wv
s,t =

∑
s,t

nv
σs,t

nσs,t

. (23)

6
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Figure 5. Atoms belonging to the same rigid fragment, depicted using colours, are affected by the same rotatables influence set.

The betweenness centrality value for an atom v is calculated by accumulating its contribution wv
s,t for

each pair of atoms, s and t, of the molecules. Let us consider, σs, t as the shortest path between s and t. The
value wv

s,t is derived as the number of all the possible shortest paths connecting atoms s and t which also
cross v, nv

σs,t
, divided by the total number of shortest paths between s and t, nσs,t . The weight wv

s,t has a value
between 0 and 1 and represents the betweenness of the atom v with respect to the pair s, t. If s = t and then
nσs,t = 0 the corresponding weight wv

s,t is considered 0. The atom with the greatest centrality across the
molecule is chosen as the centre of the graph and origin for deriving the torsional ordering. As an example,
looking at the molecule in figure 5 the atom with the highest value of betweenness centrality is the
number 5.

Each rotatable fragment is identified as a set of atoms influenced by the same set of rotatable bonds,
called rotatable influence set, with respect to the central atom of the molecule. The definition of rotatable
influence set for a generic atom ai is the following:

Rotable influece set for ai : Iai
s = Eσai ,c ∩ ER (24)

where ER is the entire set of the rotatable bonds within the molecule, c is the atom with greatest
betweenness centrality, while Eσai ,c are the Bonds on the shortest path between ai and c. Atoms belonging to
the same rigid fragment have the same set of rotatable bonds within their shortest path to the central atom.

Finally, contributions appearing in equation (6) are obtained for each rigid fragment, where distances
between atoms are calculated only once and respecting conditions 1 and 2. Distances between atoms
belonging to the same rigid fragment are fixed, hence not considered.

7. Model development

As mentioned earlier, the complexity of the creation of the HUBO model shown in equation (22) grows
with the dimension of the molecule and by its flexibility (rotatable bonds). This brings to two problems.
First, the limitation in the number of qubits available on the physical machine. Second, our current
approach builds a HUBO formulation for each molecule to be unfolded using a symbolic framework and
this requires time to be created. To reduce both the complexity of the problem to be solved and the
overhead in the model creation, we studied and applied different approaches that we describe
hereafter.

7.1. Distance simplification
The first simplification concerns the calculation of contributions in equation (6), as the number of terms
increases quadratically with the number of atoms involved. Hence, instead of measuring the Euclidean
distance between each atom a in rigid fragment A and each atom b in rigid fragment B, only distances
between different rigid fragments have been considered. In particular, each rigid fragment was identified
with the coordinates of the median atom inside the set.

Partial contributions for single fragments are summed up together in the HUBO as in equation (22).
Note that such optimization function is a non-linear symbolic expression where symbolic variables
representing torsional angles appear in the rotation matrix in the form of trigonometric functions as
defined in equation (16).

7
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Figure 6. Analysis of the degradation by transitioning to a coarse-grained rotation.

7.2. Coarse-grained rotations
The number of variables needed to express the MU problem in combinatorial optimization form depends
on the discretisation of the angles, as shown in equation (20). It is therefore essential to understand how to
choose an optimal granularity for the torsionals. In this regard, previous knowledge about the dataset was
used to obtain approximate solutions achieving an acceptable quality.

Figure 6 shows the effect of the rotation angle discretization (columns) with respect to the degradation
of the molecule volume obtained (x-axis). The vertical axis represents the occurrence in percentage of the
molecules included in the target dataset within a certain degradation interval. The degradation level of the
volume is measured against the one obtained by applying one degree as rotation interval. The plots shows
how for all the coarse grain angles from 2 to 20, the quality of the unfolding is comparable with the one
degree case. The surprising result is that also considering a discretization for the rotation angle equal to 45
degrees, the average degradation is around 0.9%, while remaining always below 4.5%.

For this reason, even though we introduced in the problem formulation the possibility of using different
angular discretisations, as shown in equation (20), we focuses on the rest of the paper to a granularity of 45
degrees. Thus, the combinatorial optimization would only require eight binary variables for each rotatable
bond to identify its angle while keeping the final quality loss acceptably low.

7.3. Threshold approximation
The generation of the HUBO phase is one of the most computationally intensive since we are using a
symbolic framework. The challenges that arise are strictly related to the enormous amount of memory used
and the unparalleled implementation of the symbolic engine. Hence, a straight derivation of the HUBO
becomes unrealistic when increasing problem size.

For this reason, a last simplification was introduced, which consists in eliminating the optimization
terms in equation (22) (only those not related to the hard constraints) whose coefficient is strictly less than
a certain threshold value, since it was proved to be efficient in [19].

The effect of such threshold approximation (also called chop) was to speed up the computation of the
HUBOs, as shown in figure 7, and decrease the number of terms in the QUBO function to match the QA
hardware specifications and limitations such as the number of qubits (i.e. binary variables) and connectivity
(i.e. quadratic terms) of the problem. Our study does not go beyond the eight rotatable bonds as HUBO
construction involving ten torsionals exceeded the time limit with the current setup and software.

8. Alternative search strategies

In this section, we presents classical optimization strategies used to compare QA results.

8.1. Random search
Random search [20] algorithm works by picking up randomly the candidate solution from a uniform
distribution. A big strength of this method is the high parallelization and the possibility of using Bayesian
techniques or probability distributions that are more suitable for a given problem (algorithm 1).

8.2. GeoDock search
The GeoDock search [10] is a greedy algorithm that considers a single torsional at a time and makes a
decision locally for each rotatable bond. The algorithm usually does not lead to an optimal solution but it
can reach good approximate solutions in a reasonable time.

8
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Figure 7. Average creation time for HUBOs. We were able to generate HUBOs without the threshold approximation, up to five
torsionals. In the case of six and eight rotatable bonds, the threshold was increase to the vale of 30 and 60 respectively. The
configuration Xr–cY is the case for molecules with X rotatable bonds and a chopping threshold at Y.

Algorithm 1. Random search.

Require: A = Angles, Poly = Dab(Θ)2, T = Torsional Bonds Set
Ensure:γmax : max Dab(γmax)2

1: |T| = m
2: Γ = A1 × A2 × · · · × Am � Cartesian product of the set of angles—m times
3: whilet < MaxTime do
4: γ = pickranduniform(Γ)
5: Evaluate Poly(Θ = γ) � Evaluate assignments and record the optimum.
6: end while
7: return [γmax, max Poly]

Algorithm 2. GeoDock search.

Require: A = Angles, Poly = Dab(Θ)2, T = Torsional Bonds Set
Ensure: amax : max Dab(amax)2

1: |T| = m
2: for ti, θi in Tordered do � Ordered by betweenness centrality.
3: for a in A do
4: Evaluate Poly(θi = a) � Record intermediate optimums.
5: end for
6: end for
7: return [ amax, max Poly]

This algorithm (algorithm 2) is the only one that is not employing symbolic computation. Each bond is
rotated independently, starting from the most central and internal bond with respect to betweenness
centrality. Only the conformation that improves the volume is recorded as a solution. The whole process is
repeated a fixed number of times or until a plateau in the improvement is reached.

8.3. Simulated annealing
SA is a meta-heuristic technique, useful in the search of the optimum in large solution spaces (algorithm 3).

Since we can visualize the solution space as points belonging to a graph, SA starts with a random initial
guess that is set as the initial best solution (amax), and it considers its evaluation Poly(amax). The successive
step is to pick a neighbouring solution, and if the neighbour has a lower evaluation, we take it as the current
solution. If the neighbour has a higher evaluation, we accept it with a probability written as:

Paccept = min
(

1, e−
Poly(neigh.)−Poly(amax)

T

)
(25)

where T is the temperature that starts from a high value and decreases in time according to a cooling
schedule. Since SA solves the QUBO formulations of our problems, this algorithm was taken as the main
comparison against QA.

9
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Algorithm 3. Simulated annealing.

Require: A = Angles, Poly = Dab(Θ)2, T = Torsional Bonds Set, Nmax = Total Iterations
Ensure: amax : max Dab(amax)2

1: T ← Tmax

2: amax = NULL
3: while T > Tmin and N < Nmax do
4: next = pickNeighbour(T, amax)
5: ΔE = Poly(next) − Poly(amax)
6: r = randomNumberUniform(0, 1)
7: if ΔE < 0 then
8: amax = next � The neighbour is

accepted as the new
optimum.

9: else if r < e
−ΔE
kb∗T then

10: amax = next � Moving to a neighbour.
11: end if
12: T = geometricDecrease(T)
13: end while
14: return [ amax, max Poly]

Figure 8. Mean number of linear and non-linear terms in the HUBOs, obtained varying the number of torsionals and value of
the approximation threshold. The configuration Xr–cY is the case for molecules with X rotatable bonds and a chopping
threshold at Y.

9. Problem complexity and embedding

9.1. Resources estimation
The metrics considered for evaluating the complexity of the problem are the number of linear and
high-order terms appearing in the HUBO (plotted in figure 8). The number of linear terms follows the
relation Number of rotatables × granularity of rotation. Recall that a granularity of 45 degrees was selected,
i.e. d = 8 in equation (20).

The number of non-linear terms grows rapidly going from two to six torsions. However, by increasing
the problem size, the threshold approximation allowed us to avoid the exponential growth that these
numbers would otherwise follow.

Since the final objective is to be able to embed our problems into a QPU, a second threshold
approximation acting on the QUBO has been applied. The choice of the amount of chop is done by a
fine-tuning of the threshold, which is lowered until the embedding cannot be performed anymore. In
figure 9, we plot the average number of linear and quadratic terms by varying the number of torsional and
the value of the approximation threshold. The reported values are only for those molecules which problem
we were able to embed into the QPU.

The plots in figure 9 show an increasing trend in the number of QUBO linear terms associated with the
same threshold, for an increasing number of rotatables. Linear terms also decrease by increasing the
threshold when the number of torsionals is fixed. Quadratic terms have a similar behaviour, except done for
the class with eight rotatable where more complex problems seem to peak at a threshold equal to 200. This
behaviour is due to the fact that with eight rotatable bonds (but also with six) the threshold value of 100
was not sufficient to embed the problem in the QPU for most of the cases except those that were
simpler.
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Figure 9. Average number of linear and quadratic terms in the QUBOs, obtained varying the number of torsionals and value of
the approximation threshold. The configuration Xr–cY is the case for molecules with X rotatable bonds and a chopping
threshold at Y.

Figure 10. Plots depicting the variation of average chain length and average number of qubits in the embeddings by increasing
number of rotatables and value of the approximating threshold (also called chop). The configuration Xr–cY is the case for
molecules with X rotatable bonds and a chopping threshold at Y.

9.2. D-wave embedding
In the embedding phase, a heuristic algorithm tries to find the optimal matching between problem
resources and physical D-wave hardware. Several embeddings are possible, so the one that uses the least
physical qubits out of a few trials is employed. It is implicit in this choice that such embedding will also
have shortest chains on average, i.e. chains of physical qubits representing a single QUBO variable.

The embeddings shown in figure 10 are highly representative of the capabilities of each QPU topology.
On average, the chains obtained with a Chimera topology are 2.09 times longer than those found using the
Pegasus topology, which therefore returns 52% shorter chains.

Regarding the number of qubits, Pegasus is again the winner as it enables embedding with 1.39 up to 2.4
times fewer qubits with respect to Chimera. On average, advantage is 1.96 times more efficient than 2000Q,
or 51% less expensive in terms of qubits; this will be reflected in the quality of results. There are only two
results slightly diverging from our expectations. The columns regarding the class 6–100 are shorter than
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expected because, due to the complexity of the problem, only simpler instances were embedded. Hence the
average is biased towards a lower value.

Another important detail shown in the figure involves the class 8–100 where both the average chain
length and the average number of qubits are saturated to the maximum value for the 2000Q Chimera
topology. This happened because the device could not embed all the possible molecules for that class,
therefore radically increasing the average.

10. Experimental results

A short remark should be made on the way these algorithms run. Regarding the QA set-ups, since the
QUBO constant Aconst modulating the strength of the hard constraint must be tuned, ten runs for each
value assigned to Aconst are performed. Aconst is evaluated as the maximum coefficient in the optimization
contribution multiplied by an increasing factor. Since we were interested in studying the solution quality by
reducing as much as possible the required QPU time, each run is performing 10 000 cycles of forward
anneals, with an annealing schedule of 1 μs. SA is performed on the same QUBOs, with the possibility of
choosing the number of epochs and the function which is responsible for the temperature decrease. In our
case, we used 500 annealing epochs and a geometrical decrease function.

Since the execution of the quantum and SA are repeated many times in the attempt of finding the best
solution, also the other classical techniques are executed until their run-time does not exceed a time limit
that was set from the beginning. Random search divides the solution space in N parallel processes and as
long as it does not run out of time, it executes and records the maximal value found. The Geodock search is
trying an incremental approach, which consists in performing the rotation on an incremental number of
bonds.

10.1. Volume gain in time
Figure 11 show the average trends in volume gain obtained by each algorithm on a fixed time window,
increasing rotatable bonds. On the Y-axis, the maximum volume reached by every algorithm at each second
is displayed. The plots show the algorithmic behaviour up to 100 s since this is the interval where greatest
changes in volume appear. The maximum volume gain shown in the plots is measured against the best
solution found by all the methods adopted in the experimental campaign. While for small problems it
represents the global optimum, for larger ones this is not guaranteed.

The first thing worth noticing is that SA gave the best overall performance as it was able to provide good
solutions falling inside the [90%, 100%] volume gain range with a run-time that never exceeded the 15 s.

It is also possible to observe that advantage is the best among D-wave devices. For an increasing number
of rotatable bonds, volume achieved by 2000Q quickly dies off, while the results of advantage remain
competitive for a good number of torsionals.

When two torsionals are considered, the MU problem looks like an easy task and all the approaches are
able to recover the optimal solution (only GeoDock gets close but fails to find optimal). Random search, SA,
and the advantage QA can reach the 100% volume gain within the first 5 s of runtime.

Increasing the problem size to four torsionals we can foresee a deviation of the trends: SA is again the
fastest to reach a plateau while the quantum annealers perform better than random search in the first 5 s.
After that, random search presents a disruptive improvement that comes with a delay due to overheads in
the memory access. A promising result is obtained after 25 s, where advantage is able to find the optimal
solution among the methods. This indicates that QA could be a competitive approach when solving
medium-small sized problems.

It is possible to see another reversal of the trends when the number of torsions rises to 6, in which SA
and random search establish themselves as the most reliable solvers, followed by the advantage quantum
annealer. This behaviour is confirmed at eight rotatable bonds, where performances of 2000Q become very
similar to that of the GeoDock greedy algorithm.

10.2. Comparison between SA and QA
Comparing classical algorithms with quantum annealers in terms of absolute time is not fair, since the
quantum devices have run-times that are comprising of programing time, readout time, and delay time,
besides the time spent in actually performing the annealing.

Therefore, a more suitable metric for comparing annealing solvers is given by the time to solution
(TTS),

TTS =
total execution time

occurrence of the best solution
. (26)
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Figure 11. Comparison of average volume gained on a time window of 100 s for two, four, six and eight rotatable bonds.

Table 1. Comparison on the TTS measured in milliseconds, mean and range (Min–Max values), while
increasing number of rotatable bonds.

SA 2000Q ADV

Rot. Bonds Mean (ms) Range (ms) Mean (ms) Range (ms) Mean (ms) Range (ms)

2 0.01 [0.00–0.01] 0.87 [0.02–8.29] 0.16 [0.01–1.22]
4 4.14 [0.28–33.89] 65.48 [0.29–395.22] 12.82 [0.61–39.52]
5 5.50 [1.35–13.92] 63.00 [13.26–132.63] 34.51 [2.97–61.60]
6 10.38 [2.30–26.34] 204.46 [66.31–663.09] 50.43 [30.00–106.98]
8 12.94 [4.04–23.26] 503.94 [66.31–1326.26] 43.36 [33.39–71.34]

Table 2. Comparison on the volumes, mean value and range (Min–Max), while
increasing number of rotatable bonds.

SA 2000Q ADV

Rot. Bonds Mean Range Mean Range Mean Range

2 1.00 [1.00–1.00] 1.00 [0.97–1.00] 1.00 [0.97–1.00]
4 0.92 [0.00–1.00] 0.86 [0.01–1.00] 0.97 [0.86–1.00]
5 0.99 [0.96–1.00] 0.84 [0.49–0.93] 0.95 [0.90–0.98]
6 0.98 [0.94–1.00] 0.62 [0.00–0.95] 0.88 [0.59–1.00]
8 0.93 [0.82–1.00] 0.20 [0.00–0.66] 0.66 [0.40–0.91]

The total execution time can be calculated as the number of anneals multiplied by the total access time for a
single anneal. The occurrences of the best solution simply count the number of times the best solution is
found in the annealing. The TTS metric can be interpreted as the inverse of the probability of finding the
optimal configuration in a unit time interval. Moreover, the TTS is telling us how long we have to wait on
average before the annealer outputs the best solution. For this reason, better solvers have low values of TTS.
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Table 3. Normalized volume gain over TTS for
each algorithm, at different number of rotatable
bonds.

Rot. Bonds SA 2000Q ADV

2 2.001 031 2.000 690 2.005 038
4 0.003 190 0.022 822 0.025 046
5 0.002 582 0.023 171 0.009 112
6 0.001 354 0.005 269 0.005 776
8 0.001 031 0.000 690 0.005 038

Figure 12. A comparison between SA, advantage and 2000Q on TTSs measured in milliseconds (ms), for increasing number of
rotatable bonds. Numerical data can be found in table 1.

Figure 12 shows that the TTS is very high for 2000Q, followed by advantage, while SA has the best TTS.
SA has a TTS several times smaller than advantage, which means that its convergence to the optimum is
much faster than in QA.

Regarding the volumes achieved, figure 13 represent the degradation in the final volume gain as the
problem complexity increases. The volumes have a common starting point since all the three algorithms
actually reach the maximum steadily and completely for problems involving two rotatable bonds. As seen in
the previous section, advantage works well up to four torsions, SA has an inflection on four bonds but then
recovers and finishes as the best in absolute terms; it has a volume which is 4.65 times better than the one
found by 2000Q at eight bonds, and 1.4 times better than advantage.

The last concept worth mentioning is the measure of how much volume in percentage can be gained per
unit of TTS. Practically, it is computed as the normalized ratio between the volume gain Vg and TTS, as
described by the following equation:

Norm

(
Vg

TTS

)
=

Vg/TTS

(Vg/TTS)max − (Vg/TTS)min
(27)

where Vg/TTS is the volume gain divided by TTS, while (Vg/TTS)max and (Vg/TTS)min are respectively, the
maximum and the minimum values obtained by Vg/TTS varying the number of rotatables.

A negative slope in the plot of figure 14 can be interpreted as an increasing TTS required to achieve the
same volume when scaling up to a more difficult problem. A higher negative slope means faster worsening
of the algorithm with the increasing difficulty, while a smaller slope is a synonym for stability. Therefore,
trends running towards the bottom of the plot belong to algorithms that are defective. The SA line falls very
fast from two to four torsionals, and then starts becoming stable. The same happens to advantage which
slows down this negative acceleration before. 2000Q never stops decreasing its quality, if not for a special
case between four and five torsionals.

By checking the slopes Δ(Vg/TTS)
Δ(NRot)

when increasing the number of torsionals, we can understand how
much the algorithms are worsening adding more degrees of freedom. For this purpose, slopes are calculated
in the plateau region, i.e. starting from four up to eight torsionals. On average, we observed that the
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Figure 13. A comparison between SA, advantage and 2000Q on volumes. Numerical data can be found in table 2.

Figure 14. A comparison between SA, advantage and 2000Q on the normalised decreasing quality of the volumes per TTS.
Numerical data can be found in table 3.

smallest growth in scaling of the slopes belongs to advantage, with 1.36, whereas SA presents a higher 1.61,
meanwhile 2000Q has an average of 6.02.

Although the results obtained with advantage may not be the winners in absolute terms, the fact that
advantage has good performances with respect to SA according to this metric is very promising. This result
reflects how much QA is still immature but also how far from saturation the margin of growth for QA really
is. Improvements in the next generation of QPU hardware could definitely affect both TTS and the quality
of sampling in a positive way.

11. Conclusions

In this work, we explored the possibility of using a quantum annealer to support the drug discovery process
within the in-silico virtual screening phase. In particular, we studied a new method regarding the process of
MU, which is the first step in geometric molecular docking techniques. This phase aims at finding the
molecule’s configuration that maximizes its volume, or equivalently, that maximizes the internal distances
of the atoms that compose the molecule. We proposed our quantum MU model to execute it on D-wave’s
latest hardware, advantage and 2000Q. The usage of the quantum annealers has the objective of
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understanding the capabilities of these QA devices and discovering if it is possible to improve the quality
and the throughput of the ligand expansion in the state-of-art molecular docking methods.

The model is constructed starting from the identification of the rotatable bonds which are the
parameters of the problem. Once their discrete rotations are rewritten via one-hot encoding thanks to the
introduction of binary variables, the total sum of internal atomic distances can be expressed as a HUBO.
The HUBO is then transformed into a QUBO after three steps are applied: (i) distance simplification, (ii)
coarse-grained rotations, and (iii) threshold approximation. These three approximations enabled us to
reduce the complexity of the model with the aim of embedding and running complex instances on the
QPUs.

We compared the performances of advantage and 2000Q, with three other optimization methods, which
are parallel random optimization, SA, and a GeoDock greedy algorithm. The outcomes of the experiments
show that advantage has good performances on medium-small problems while classical techniques are
better than quantum approaches when problem size increases. Interestingly, the results obtained by the
quantum annealer, both while running on advantage and 2000Q, are better than the GeoDock greedy
approach. In terms of the evolution of the quantum annealers, embedding our problems on advantage,
compared to 2000Q, was on average 51% less expensive in terms of qubits and with chains 52% shorter.
Advantage significantly outperforms 2000Q in terms of TTS and volume gain when increasing the number
of torsionals. Advantage also presents the best scaling of the normalized volume gain over time-to-solution
when compared to both 2000Q and SA; this last result is one of the most promising as D-wave devices are
only bound to get better.

Future work could consider alternative encoding strategies for the discrete rotations such as the recently
proposed ‘domain-wall’ encoding scheme [13–15], to reduce the number of resources required by the
quadratic formulation. Moreover, additional developments could consist of the introduction of new
dynamic thresholds approximation, which may lead to smaller embeddings but still of high quality. Finally,
the introduction of solution refinement techniques like reverse annealing and pausing may increase the
probability of finding close to optimal results [21, 22], provided that a sufficient QPU access time is
available. A more difficult but also feasible and interesting task could be extending the QA approach to the
whole docking process.

Finally, we are confident that this study will shed further light on the applications of QC, thus enriching
knowledge on topics that are becoming central in computational sciences. The HUBOs and the code for
solving the problem using the different algorithms reported in the paper have been made available at
https://gitlab.hpc.cineca.it/rmengoni/quantum-molecular-unfolding.
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Appendix A

A.1. Machines and libraries

The platform used for running the classical algorithms is based on NUMA nodes, featuring two Intel(R)
Xeon(R) CPU E5-2630 v3 CPUs (@2.40GHz), Virtualisation VT-x, caches L1d, L1i cache of 32K. L2 and L3
caches are, respectively, 256K and 20480K. RAM memory of 125 Gb and 114 Gb of SWAP memory.
Operative system used is Ubuntu 18.04.5 LTS Bionic. The code was written in python 3.9.1, compiled with
gcc 9.2.0. The parallelization was actuated with the usage of mpi4py 3.0.3, compiled with MPICH 3.3.2.

Since the classical probabilistic algorithms and random search, could be run in embarrassingly parallel
mode, mpi4py [23] was used. For each problem instance, the number of processes used for each run was 32.

Other libraries of support are: Pandas 1.2.1, Numpy 1.19.5, symbolic calculations were performed
thanks to Sympy 1.7.1 [24].

A.2. Rotation matrix R(θ)
Here in the following we are reporting the rotation matrix used to modify the position of each atom within
a rotatable fragment once known the related rotatable bond. This matrix represents the base for the
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formulation reported in the paper within sections 3–5. The matrix is generated considering the angle θ of
the rotation and the coordinates of the two atoms connected by the considered rotatable bond
(a′ = 〈x′, y′, z′〉 and a′′ = 〈x′′, y′′, z′′〉). The matrix is build considering the rotation happening around an
arbitrary line passing through the rotatable bond, and having a direction vector from a′ to a′′ [25].

Let us define dx = x′′ − x′, dy = y′′ − y′, dz = z′′ − z′ as the x, y and z components of the direction

vector from a′ to a′′ respectively, while l =
√

(d2
x + d2

y + d2
z ) as the length of the vector. Moreover for space

reason, let us use a compressed version for sin(θ) = sθ and cos(θ) = cθ. We can now write the rotation
matrix R(θ) as follows:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(d2
x + (d2

y + d2
z )cθ)

l2

(dxdy(1 − cθ) − dzlsθ)

l2

(dxdz(1 − cθ) + dylsθ)

l2

((x′(d2
y + d2

z ) − dx(y′dy + z′dz))(1 − cθ) + (y′dz − z′dy)lsθ)

l2

(dxdy(1 − cθ) + dzlsθ)

l2

(d2
y + (d2

x + d2
z )cθ)

l2

(dydz(1 − cθ) − dxlsθ)

l2

((y′(d2
x + d2

z ) − dy(x′dx + z′dz))(1 − cθ) + (z′dx − x′dz)lsθ)

l2

(dxdz(1 − cθ) − dylsθ)

l2

(dydz(1 − cθ) + dxlsθ)

l2

(d2
z + (d2

x + d2
y )cθ)

l2

((z′(d2
x + d2

y ) − dz((x′dx + y′dy))(1 − cθ) + (x′dy − y′dx)lsθ)

l2

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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