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Abstract
Various elements of the Earth system have the potential to undergo critical transitions to a radically
different state, under sustained changes to climate forcing. The Atlantic meridional overturning
circulation (AMOC) is of particular importance for North Atlantic heat transport and is thought
to be potentially at risk of passing such a tipping point (TP). In climate models, the location and
likelihood of such TPs depends on model parameters that may be poorly known. Reducing this
parametric uncertainty is important to understand the likelihood of tipping behaviour. In this
letter, we develop estimates for parametric uncertainty in a simple model of AMOC tipping, using
a Bayesian inversion technique. When applied using synthetic (‘perfect model’) salinity timeseries
data, the technique drastically reduces the uncertainty in model parameters, compared to prior
estimates derived from previous literature, resulting in tighter constraints on the AMOC TPs. To
visualise the impact of parametric uncertainty on TPs, we extend classical tipping diagrams by
showing probabilistic bifurcation curves according to the inferred distribution of the model
parameter, allowing the uncertain locations of TPs along the probabilistic bifurcation curves to be
highlighted. Our results show that suitable palaeo-proxy timeseries may contain enough
information to assess the likely position of AMOC (and potentially other Earth system) TPs, even
in cases where no tipping occurred during the period of the proxy data.

1. Introduction

Several elements of the Earth system have been iden-
tified as at risk of crossing a tipping point (TP) [1]
in which the element loses stability and passes from
its current stable state to a new, possibly quite differ-
ent, stable state. Awell-studied example is the Atlantic
meridional overturning circulation (AMOC), a sys-
tem of ocean currents that influences Northern
Hemisphere climate by transporting heat from the
tropics to the higher latitude North Atlantic, but
which at times in the distant past may have ‘switched
off ’ via such a tipping process [1, 2]. Such a switch-
off would be expected to cause widespread cool-
ing and drying over the northern hemisphere, major
changes to tropical rainfall systems and mid-latitude

jets, and regional sea level rise (e.g. [3]). In order to
build societal resilience to future climate changes, it is
important to determine whether such tipping could
happen in the present or future states of the climate
system. Given our incomplete knowledge of the real
world, the answer to this question will necessarily be
probabilistic.

Tipping behaviour in the climate system has often
been studied using low order models (e.g. [4–6]).
Such models often show tipping behaviour when
some system parameter (e.g. the strength of some
climate forcing factor) passes a critical value. There
is a well-developed mathematical theory of these
bifurcations [7–10], which can be used to analyse the
response to changes in climate forcing. Insights from
low order models have been shown to be relevant to
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tipping behaviour seen in far more complex climate
general circulation models (GCMs) [6].

In classical bifurcation theory, model paramet-
ers are assumed known. However, in practical climate
modelling, parameter values are uncertain and often
have to be estimated indirectly. We can think of a cli-
mate model as consisting of a parameter-dependent
system of ordinary differential equations (ODEs):

dx

dt
= ẋ= f(x, r), (1)

where vector x represents the climate state and vector
r of dimension d represents the d model parameters.
The uncertainty in parameter values can be represen-
ted by passing from the deterministic ODE system (1)
to a system of random ODEs:

ẋ= f(x, r(ω)), (2)

where r(ω) is a random vector corresponding to
sampling of d uncertain model parameters from a
probability space. Hence, we have to deal with para-
metric uncertainty, i.e. uncertainty about the values
of some model inputs (see e.g. [11]). For practical
modelling of TPs in climate systems this leads to two
key questions:

Q1: How can the probability distribution of the
model parameters be inferred?

Q2: How does this parametric uncertainty affect
model estimates of the tipping behaviour of the
system?

Q1 is a generic question for climate model-
ling, on which there has been much research. Many
approaches to parameter estimation have been invest-
igated [12–15]. The use of Bayesian inference meth-
ods [13] has become widely used in climate science
(see e.g. [16, 17]), and forms the basis of many cli-
mate change assessments using state-of-the art cli-
mate models (e.g. [18–20]). Typically, available phys-
ical constraints are combined with an element of
expert opinion to provide an initial (prior) distribu-
tion for the parameters in question. This prior distri-
bution is then modified by evaluating the ability of
the model to simulate a range of observed properties
of the climate system, under different choices of para-
meters. Parameter settings that produce good simula-
tions of the target observations are assigned a higher
weight, resulting in a modified (posterior) parameter
distribution. The approach can be considered as a
problem in inverse modelling or data assimilation.

In contrast, Q2 has received much less attention,
despite a few exploratory studies (e.g. [6, 16, 21–23]).
The link between model parameter uncertainty and
TPs is important, as an apparently small uncertainty
in a parameter may lead to a large uncertainty in
the location of TPs or the shape of the bifurcation
curve. Hence, a TP might be much closer to the

current system state than expected from the ‘best
estimate’ model parameters [24]. Only recently, this
link between parametric uncertainty and bifurca-
tions has emerged as a sub-area within the the-
ory of nonlinear dynamics [25–28], with methods
being developed for applications in fields including
aerospace engineering [29, 30] and biomedical sci-
ence [31]. Studies in the climate domain have been
limited; however [16, 21, 22] show the possibility
of AMOC collapse in certain parameter regimes
of simple and intermediate-complexity climate
models.

Here, we address the link between parametric
uncertainty and tipping dynamics, by showing that a
Bayesian approach to parameter estimation can pro-
duce refined knowledge of the position of TPs, even
if the observations used for the Bayesian constraints
are sampled well away from any TPs (e.g. using recent
AMOC observations, sampled during a period of
strong AMOC, to constrain potential future AMOC
tipping). We go on to present some visual tools to aid
interpretation of the resulting probabilistic estimates
of the tipping behaviour, including probabilistic visu-
alisations of the classical bifurcation diagram, and of
how far the system may be from tipping. We illus-
trate our approach using a widely-studied, low-order
model of AMOC tipping. While our purpose here
is primarily to use this simple model to present the
method and the visualisation tools, we discuss in the
final section how our ideas may be applicable to more
complexmodels and ‘real world’ estimation of risks of
climate tipping.

The framework is sketched in figure 1. We use the
Stommel–Cessi model for the AMOC to illustrate our
method [5]. Note that this bypasses the step of model
selection that is an important part of some Bayesian
approaches [32]. We discuss the importance of this
step in the final section of this paper. Our approach is
not limited to this particular model.

Section 2 outlines the AMOC box model [5]
and its deterministic tipping behaviour. We present
physically-constrained prior ranges for model para-
meters, and a Bayesian inference method to infer
probability distributions based on these physical con-
straints and available data. The derived probability
distribution for the parameters implies a probabilistic
view of the TPs, and in section 3, we construct corres-
ponding probabilistic tipping diagrams to illustrate
how the parametric uncertainty leads to uncertainty
in tipping behaviour. We conclude with a discussion
of the implications of our work for robust estimation
of the risk of crossing an AMOC TP, and potentially
other Earth System TPs.

2. Problem setup

To illustrate our method, we consider here the
Stommel–Cessi box model [5], which is a simpli-
fied description of the AMOC based on two boxes,
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Figure 1. Outline of the steps described in this paper. Given a climate model, we provide prior ranges for uncertain model
parameters and present a Bayesian inference method to derive corresponding parameter probability distributions. For
visualisation, we construct corresponding probabilistic tipping diagrams.

an equatorial (e) and a polar (p) one. Temperat-
ure differences∆T= Te −Tp and salinity differences
∆S= Se − Sp may arise due to an atmospheric fresh-
water flux p(t) leading to a density gradient, in turn
enabling a circulation between the boxes.

As described in [33, section 6.2.1], the system
can be reduced to an attracting invariant mani-
fold and after rescaling one obtains the reduced
dynamics as:

ẋ= µ− x
(
1+ η2 (1− x)2

)
, (3)

with x= αS∆S/(αTθ) corresponding to a dimen-
sionless salinity difference, whereαS andαT are saline
contraction and thermal expansion coefficients and
θ is a reference value for ∆T. For a physical inter-
pretation, note that in this model x is typically pos-
itive (subtropics saltier than subpolar), meaning that
salinity is acting to slow the AMOC, while the tem-
perature difference is acting to drive it. Thus small x
corresponds to the current strong AMOC state, while
large x corresponds to weak or reversed AMOC. The
parameterµ is proportional to the atmospheric fresh-
water flux, and the parameter:

η2 = td/ta, (4)

is the ratio of the diffusive timescale td (represent-
ing wind-driven transports) to the advective times-
cale due to the AMOC itself, ta. The steady states of
(3) are given by:

µ= x
(
1+ η2 (1− x)2

)
. (5)

The precise shape of the equilibrium curve for x
as a function of µ depends crucially on the para-
meter η2. Although, for all η2, the points (µ,x) =
(0,0) and (µ,x) = (1,1) are equilibria, the dynam-
ics show important qualitative differences for differ-
ent values of η2. In particular, on η2 = 3 (red solid
line in figure 2) there is a cusp bifurcation point at
µ= 1.

Parameter regime η2 > 3 (weak diffusion): In this
case, the steady states (5) form the classical S-shape
(figure 2). There are two fold bifurcations linked to
variation in the bifurcation parameter µ with corres-
ponding fold points:
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Figure 2. The shape of the equilibrium curve (5) depends
crucially on the value of the parameter η2. For η2 < 3, there
are no TPs whereas for η2 > 3, the curve is S-shape and
admits two fold points (magenta and black dots).
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2

3
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2

3
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2η2

27
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(
2η2

9
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)
,

where A=
√

1
9 −

1
(3η2) . The TPs (x−,µ−) and

(x+,µ+) split the curve into an upper and lower
attracting branch of fixed points x< x− and x> x+

(upper and lower solid magenta and black lines in
figure 2). The upper branch (x> x+) corresponds
to a stable weak AMOC, while the lower branch
(x< x−) corresponds to a stable strong AMOC. For
values of µ between µ− and µ+ both strong and weak
AMOC states are stable. The two attracting branches
are connected by a repelling branch (unstable equi-
librium) x− < x< x+ (dashed magenta and black
lines in figure 2). Tipping of the AMOC from its
current strong stable state to a new weak stable state
might occur if the fresh water flux µ were increased
beyond µ−. The bistable regime leads to a hyster-
esis behaviour of the AMOC, in which reversing the
bifurcation parameter µ to its value before the tip-
ping occurred would not be enough to switch the
AMOC back to its strong state. The freshwater flux
would have to be further decreased below µ+ to get
the strong stable state back again.

Parameter regime η2 > 3 (strong diffusion): In this
case, there are no longer any values of µ that give
bistability of the system, and no bifurcations on vary-
ing µ.

The true value of η2 is unknown. Figure 2 reveals
that its value makes a major difference in the shape of
the equilibrium curve (5). A mis-specification of the
value of η2 can crucially change the overall qualitat-
ive behaviour of (3). Therefore, a quantification of the
effect of the uncertainty in η2 is needed. In the rest of

this section we describe an approach to constrain the
value of η2. First (section 2.1), we determine a prior
parameter range for η2 based on physical constraints
and previous evidence. Then (section 2.2), we infer
a probability distribution of the parameter η2 using
a Bayesian inference technique. Since the freshwater
flux µ is the main forcing parameter and is modi-
fied by climate change, we leave it as a deterministic
bifurcation parameter here.

2.1. Prior physical constraints onmodel
parameters
Different values for η2 are used in the literature
(e.g. η2 = 6.2 and η2 = 6.25 in [4, section 10.5]) and
η2 = 7.5 in [5, 33]). We aim to derive a reasonable
prior range for η2 before refining it using Bayesian
inference.

Physically, η2 represents the ratio of the exchange
timescale due to advection and mixing by wind-
driven gyres and eddies (represented by a diffusive
timescale in the boxmodel), to the advective timescale
by the AMOC itself. Estimating values of these times-
cales is not straightforward because the boxes of the
underlying two-box model cannot be directly associ-
ated with a closed representation of physical regions
of the ocean.We therefore estimate a reasonable range
for η2 using a set of seven GCM states studied by [6].

In [6, table 1], seven GCM states, representing a
range of GCMs of different generations and with car-
bon dioxide concentrations between 1 and 4 times
pre-industrial, have been used to estimate paramet-
ers including the North Atlantic exchange rate due
to gyre/eddy processes, and the effective flushing
volume of the subpolar North Atlantic region. These
parameters (denoted KN and VN in [6]) are suffi-
cient to estimate the flushing timescale of the high
latitude box in the Stommel–Cessi model. Across the
sevenmodel states,KN varies between 5.4 and 20.9 Sv,
and different values for the effective volume of the
North Atlantic box (VN) are given [6, table 1], lead-
ing to a range for the diffusive timescale td between
79 and 662 years. Based on the values for VN in [6]
and assuming a MOC transport of 18 Sv (relatively
well constrained by observations [34]), we obtain the
range of [57,92] years for the advective timescale ta.
On rounding the range for td to give td ∈ [60,700]
years, we finally obtain from equation (4) the range
for our parameter of interest, i.e.

η2 = td/ta ∈ [0.6,12.3]. (6)

We use this (rather wide) range as our prior input
to the Bayesian inference step in section 2.2. Note
that there is necessarily an element of judgement in
determining the prior, and other choices would be
possible. However in section 2.2 we show that the
constrained (posterior) solution is rather insensitive
to the choice of prior.
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2.2. Bayesian inference of model parameters
Here, we assume that timeseries data for the salin-
ity difference or AMOC are available, and use these
to perform Bayesian inference on the model para-
meter η2 in (3), narrowing the prior uncertainty range
(6). We use a Markov chain Monte Carlo (MCMC)
approach where a Markov chain is constructed over
the prior support such that its invariant distribu-
tion equals the posterior distribution. The MATLAB-
based software UQLab [35], version 1.3.0. provides
anMCMC implementation. More details on the con-
struction of the Markov chain are provided in the
corresponding manual [36]. For more information
on MCMC methods, see [14, 37–39], also [40, 41]
in the context of parameter identification. UQLab
offers several algorithms within the MCMC frame-
work. Here, we use the affine invariant ensemble
algorithm (AIES) [36, 42] with 400 steps and 100
chains. Our setup is based upon the UQLab example5

of parameter estimation in a predator prey model.
The code for the Bayesian inference and the visualisa-
tion can be found at https://github.com/kerstinLux/
parametricUncertaintyAMOCtipping [43].

2.2.1. Synthetic data generation
Since we do not have suitably long real data on the
salinity differences or AMOC available, we gener-
ate synthetic data to illustrate the method sketched
in figure 1. The synthetic data could be replaced
by appropriately scaled real salinity or AMOC data,
or palaeo-proxy data, if available. To generate our
synthetic ‘truth’ time series of salinity differences,
we adopt a ‘perfect model’ approach. We assume
a true value of η2 = 4, and simulate (3) forward
in time by using the MATLAB ODE solver ode456.
We use an assumed true value of µ= 0.85 (equival-
ent to a fresh water flux of order 0.5 Sv into the
North Atlantic basin), an initial salinity difference
of x0 = 0.4, a step size of ∆t= 10−3, and a final
time T= 5 (corresponding to a dimensional integ-
ration timeseries length of around 1400 years). For
the Bayesian inference, we use every 100th point of
the time series (corresponding to sampling every 30
years) and put normally distributed noise with mean
zero and a standard deviation of σ= 0.3 on the data
points except the first one (corresponding to a phys-
ical standard deviation of order 0.13 psu).

2.2.2. Application of the prior and discrepancy model
We specify a uniform prior over the physical para-
meter range (6). To bridge the gap between obser-
vations and model forecasts (forward simulation of
ODE (3)), we introduce a discrepancy term. For

5 www.uqlab.com/inversion-predator-prey.
6 https://de.mathworks.com/help/matlab/ref/ode45.html,
last checked: 12 August 2021.

Figure 3. Bayesian inference via UQLab [36] with uniform
prior U(0.6,12.3): MCMC paths and posterior distribution
of η2 (mean: 4.1235, std: 0.5864, median: 4.0357, 5th
percentile: 3.3645, 95th percentile: 5.1811).

the inference of the discrepancy variance, we use a
lognormal prior with mean −1 and standard devi-
ation 1. The discrepancy is assumed to be Gaus-
sian. Further details on the discrepancy and the log
likelihood function are provided in the appendix—
Information on Bayesian setup.

The method works well in tightening the con-
straint on the value of η2, and the convergence of the
MCMC paths can be observed in figure 3. Note fur-
ther that the posterior mean of 4.1235 is very close
to the true value of η2 = 4 and the posterior standard
deviation is 0.5864. A comparison of the prior and the
posterior predictive distribution can be found in the
appendix. We make the following observations about
the method:

• Robustness against prior information: Our result
is rather robust against variations in prior inform-
ation. For a uniform prior η2 ∼ U(0,5), the pos-
terior mean is 3.9815 and the posterior standard
deviation (std) is 0.4295. For a Gaussian prior
η2 ∼N (6.45,4)

(
η2 ∼N (4,1)

)
, where the first

entry is the mean and the second entry the vari-
ance, the posterior mean is 4.3513 (4.0365) and the
posterior std is 0.6956 (0.4357). Ourmethod there-
fore reduces uncertainty associated with somewhat
arbitrary factors in the specification of the prior
distribution (appendix, figure 9).

• Robustness against noise level: If the noise in the
data is too large relative to the dynamical variations
themselves, the estimation procedure usually does
not produce reliable results. Increasing the Gaus-
sian noise standard deviation from 0.3 to 0.5, the
posterior mean changes to 4.7042 and the std rises
to 1.5139. For a noise intensity of 1, the posterior
std is 2.6745 and the mean of 6.0544 is rather far
from the true value of 4, although at least the mode

5
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of the posterior distribution is still close to the true
value.

• Closeness of initial value to equilibrium value: The
inference method seems capable of dealing with
initial values of the time series close to an equi-
librium point. For example, the choice of the ini-
tial value x0 = 0.3 being very close to the equilib-
rium of 0.2729 still recovers a posterior mean of
4.1593 with a posterior std of 0.6674, only slightly
larger than the posterior std of 0.5864 for an ini-
tial value x0 = 0.4. This is important because any
recent (Holocene) AMOC proxy timeseries would
be close to the strong AMOC equilibrium through-
out its length; yet even variations close to one equi-
librium state are giving information that constrains
the TP.

• Robustness against discrepancy assumptions: As a
robustness check for the inference of the discrep-
ancy variance, we replace the log normal prior with
mean −1 and standard deviation 1 by a uniform
prior over [0,1] on the discrepancy variance. The
model discrepancy is still assumed to be Gaus-
sian. The mean and standard deviation of the pos-
terior distribution of η2 change only slightly (mean:
4.1462 and std: 0.6056).

3. Probabilistic tipping diagrams

The prior physical ranges from section 2.1 and the
probability distribution obtained by the Bayesian
inference method in section 2.2 can now be used
to generate probabilistic tipping diagrams. These are
intended to visually support the assessment of how far
the system is from tipping.

3.1. Tipping diagrams based on prior parameter
ranges
We first show a probabilistic representation of the
equilibrium curve when using the prior parameter
range (6) for η2. In figure 4(a), we plot the steady
states (5) for η2 ∼ U(0.6,12.3), i.e. η2 is assumed to
be uniformly distributed on the interval [0.6,12.3].
The grey scale shows the mass levels indicating the
percentages of realisations that are covered by the
corresponding area. These are calculated numeric-
ally based onM= 103 realisations. The red solid line
here and in subsequent figures indicates the bifurca-
tion curve for the cusp value η2 = 3. The black solid
line corresponds to the mean η2 = 6.45 and obeys
the characteristic S-shape described in section 2. Note
that, due to the nonlinearity, the range of values of µ
is squeezed and expanded depending on the salinity
difference x.

In this case a wide range of behaviours is pos-
sible. A significant number of realisations show tip-
ping at a relatively low value of the freshwater flux
(say µ< 1), while a few realisations have η2 < 3 and

so have no tipping behaviour, but nevertheless show a
large AMOC decline in response to small increases in
water flux. Such a decline would be expected to have
significant climate impacts but would bemore revers-
ible than if a TP had been crossed.

The parameter distribution assumption over the
prior physical range (6) can have a major impact on
the prior probabilistic tipping diagram that emerges.
This is shown in the appendix which recalculates the
probabilistic bifurcation diagram 4(a) with the uni-
form prior distribution replaced by a truncated nor-
mal distribution. Therefore, confident conclusions
about the likelihood of AMOC tipping cannot be
made based purely on knowledge of the physical
range (6). The Bayesian step delivers a more robust
distribution for η2.

3.2. Tipping diagrams based on Bayesian
parameter inference
Figure 4(b) shows how the probabilistic tipping curve
is constrained by the Bayesian inference step. It
shows the sample-based probabilistic tipping dia-
gram according to the posterior distribution of η2.
Here, we use a sample of sizeM= 20100 drawn from
the posterior distribution exported from our UQLab
result. The area in which the bifurcation curves lie
is far narrower than under the uniform distribution
assumption (figure 4(a)). In particular the range of
fresh water flux µ for which a strong AMOC can
be maintained is much narrower, and large AMOC
changes at extremely low values of µ have been ruled
out. Note that the regime without TPs is no longer
present within 97.5% of the realisations. The Bayesian
step has drastically reduced the dependence of the TP
estimate on the somewhat arbitrary choice of prior
distribution.

3.2.1. Visualisation of probabilistic TPs
Not only does the parameter uncertainty in η2 turn
the bifurcation curves into random objects, but also
the locations of the TPs themselves become uncer-
tain. Histograms based on the posterior sample of
η2 for critical values of the nondimensional fresh-
water flux (µ− and µ+) and salinity difference
(x− and x+) are depicted in figures 5(a) and (b)
respectively.

By putting together the critical values (µ−, µ+)
and (x−, x+), we obtain an approximation of the 2D
joint probability distribution of the strong (x−,µ−)
and weak (x+,µ+) AMOC TPs (figure 6). The grey
scale again indicates the ranges, in which the TPs
lie for the indicated masses of realisations of η2.
Figure 6 reveals that the location of the TPs var-
ies significantly, even for the sample values from
the posterior distribution of η2, as was suggested by
figure 4(b).

6
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Figure 4. Probabilistic bifurcation diagrams for Stommel–Cessi model according to prior and posterior parameter distribution
from Bayesian inference on synthetic data from section 2.2.1. The uncertainty in the key model parameter η2 has been drastically
reduced resulting in a substantial narrowing of the range of tipping behaviour. For this and subsequent diagrams: the grey scale
shows the mass levels indicating the percentages of realisations that are covered by the corresponding area. The red line
corresponds to the cusp η2 = 3 case (no tipping for η2 < 3, two TPs for η2 > 3).

Figure 5. Histogram of critical values of the nondimensional freshwater flux and the salinity difference for the strong AMOC TP
(x−,µ−) and the weak AMOC TP (x+,µ+) based on a posterior sample of η2.

3.2.2. Probabilistic visualisation of cusp bifurcation
By passing from a 2D representation as in figure 4(b)
to a 3D representation and again using the grey scale
colour code as before, we provide a probabilistic visu-
alisation of the fold curves with corresponding val-
ues of η2 (see figure 7). Observe again the occurrence
of a cusp bifurcation at η2 = 3 (red line): In front of
this curve (η2 < 3), there is no value of the nondi-
mensional freshwater flux for which bistability of the
system occurs, i.e. no TPs exist. The classical S-shape
double fold curve can be observed behind the red
curve (η2 > 3).

An alternative view on the probabilistic cusp
bifurcation behaviour is provided in the appendix.

It shows that the range of the fresh water flux µ for
which a strong AMOC can be maintained is much
narrower for the posterior sample. For further visual
insights combining the probabilistic bifurcation dia-
gram with the probabilistic location of the TPs, see
figure 11 in the appendix.

4. Discussion and outlook

We have proposed new techniques to understand
how uncertainty in model parameters translates to
uncertainty in the location of climate TPs. We have
illustrated our methods using a simple AMOC box
model, focusing on a particular parameter η2 that

7
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Figure 6. Probabilistic location of strong and weak AMOC
tipping points (TPs) (x−,µ−) and (x+,µ+) based on
posterior sample of η2.

Figure 7. Probabilistic fold curves in 3D (only 1
10
·

M= 2010 posterior samples used).

is difficult to estimate directly from observations.
We have described a Bayesian approach to obtain a
probabilistic estimate of the model parameter(s) and
shown that, given a suitable observed timeseries, this
can drastically narrow uncertainty in the location of
the bifurcation point.We have proposed visualisation
techniques to understand the impact of parameter
uncertainty on bifurcations. The key advances shown
by our work are:

• First, that the Bayesian method produces a distri-
bution for the unknown model parameter η2 that
dramatically narrows the range of η2 compared
to several reasonable choices of prior, and that
the posterior is rather insensitive to the choice of
prior.

• Secondly, that the resulting posterior distribution
of η2 also results in significantly narrowed uncer-
tainty in the nature and location of the AMOCTPs.

• Thirdly, that timeseries data can provide strong
constraints on the TPs, even if they are sampled
from a period when the AMOCwas well away from
a TP.

• Finally, we have presented a number of visualisa-
tions to aid interpretation of the probabilistic TP
behaviour.

Our approach is rather generic. It might also
prove valuable in the assessment of other tipping ele-
ments of the Earth System, or indeed in other sci-
entific disciplines such as neuroscience and epidemi-
ology, where parametric uncertainty is common.

Our results show promise that suitable proxy
timeseries may be used to give valuable constraints
on AMOC TPs, even if the timeseries only cover the
Holocene period when the AMOC has been relatively
stable. Our goal here has been to illustrate the promise
of the approach using a simple modelling framework.
Several caveats exist that require further work before
the method can be used to develop a robust probab-
ilistic assessment of AMOC TPs. In particular:

• A long enough observed timeseries would be
required to adequately constrain the model para-
meter(s). We have used a synthetic timeseries of
length around 1400 years. We note that proxy
AMOC timeseries of the required length are avail-
able [44], but application of these goes beyond the
scope of this paper.

• It is important that the underlying model
adequately captures the dynamics of AMOC tip-
ping. While the 2-box model may be too simple as
it does not allow a salinity-driven AMOC through
the net evaporative nature of the Atlantic basin
[45], it has recently been shown that a slightlymore
complex box model has quantitative skill in repro-
ducing the dynamics of AMOC tipping in a GCM
[6]. The selection of an appropriate simple model
as an emulator or surrogate model for GCMs is
likely to be an important step in assessing likeli-
hood of tipping in the real world [18, 29, 31].

• We have illustrated our method using a single
uncertain parameter, with other parameters
assumed to be known. The Bayesian approach
can be readily generalised to more parameters, as
shown for a simple climate-carbon-AMOC model
by [22]. For the AMOC, credible underlying mod-
els exist, whose parameters can mostly be well con-
strained by observations [6], helping to keep the
number of uncertain parameters to a level where
computational cost is not a decisive factor. Similar
approaches for higher dimensional systems may
rely on carefully chosen and optimised numerical
methods.
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• As the dimension of the parameter space
increases, visualisation becomes more difficult.
However, the diagrams shown here are valuable
as ‘cross-sections’ of the parameter space, to build
understanding of which parameter regimes entail
high likelihood of tipping. In the case of a second
uncertain parameter, a three-dimensional exten-
sion of figure 6 would provide a useful summary
of the TPs as a function of physical climate vari-
ables, within which we obtain a two-dimensional
manifold instead of a one-dimensional curve, so
that a suitable two-dimensional projection would
provide a ‘heat map’ of the location of the TPs.

For future research, it will be valuable to explore
whether useful constraints can be derived from
available Holocene AMOC timeseries (e.g. [44]),
or from deeper-time proxies where AMOC tipping
may have occurred. Application of current meth-
ods to other climate TPs [46, 47] may also be
productive.

The importance of high impact, low likelihood
climate outcomes, including TPs, is only just emer-
ging as a key element in climate risk assessments
[48], and improved methods will be required to
assess whether such outcomes could plausibly occur
in future climates. The techniques developed here
show promise in that we can use knowledge of past
behaviour to better understand likelihoods of such
events in future.
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Appendix

Information on Bayesian setup
If we denote the numerical solution of the ODE
model (3) (with η2 = 4 and µ= 0.85) at time
ti = i∆t, i ∈ {0,1, . . . , T

∆t}, by Mi, the synthetic
‘truth’ time series x̂= (x̂j)j∈J, where j= i · 100, i.e.
j ∈ J=

{
0,1, . . . , T

∆t·100
}
, can be written as:

x̂0 =M0, x̂j =Mj + ϵj,

where ϵj ∼N (0,σ2), j ∈
{
1, . . . , T

∆t·100
}
, with an

unknown variance σ2, represent the discrep-
ancy between observations and model forecasts.
For simplicity, we assume an additive Gaussian
discrepancy also for x̂0. We obtain the log likelihood
function logL(η2,σ2; x̂) as in [36, p 6], which reads
as:

log

 1(√
2πσ2

)Nout
exp

(
−

1

2σ2

(
x̂−M(η

2
)
)T(

x̂−M(η
2
)
)) ,

where Nout = |J|= T
∆t·100 + 1 is the number of

data points in the synthetic ‘truth’ time series
and M(η2) denotes the vector of the numerical
solutions of the ODE (3) at times t j, j ∈ J, with
parameter η2.

Comparison of prior and posterior predictive
distribution
We take the Bayesian inference settingfrom section 2.4
and compare the prior and the posterior pre-
dictive distributions in figure 8. The posterior
predictive distribution gives a narrower predic-
tion of the green synthetic data points than the
prior distribution, indicating a qualitative improve-
ment of the parameter estimate over the inference
process.

Major impact of prior parameter distribution on
prior tipping behaviour
The assumed distribution within the prior parameter
range (6) could have a major impact on the (prior)
probabilistic tipping curve. If we assume a trun-
cated normal distribution over the physical range
(6) for η2 with mean 6.45 and standard deviation
of 1, i. e. η2 ∼Ntrunc(6.45,1) instead of the uni-
form parameter distribution in figure 4(a), we obtain
a narrower area for the bifurcation curves being
comprised by the bistable regime η2 > 3 (figure 9).
Whereas a value of η2 = 3 is within the range
where 75% of the realisations lie for the uniform
distribution (figure 4(a)), η2 = 3 is not contained
in 97.5% of the realisations with the truncated
normal distribution η2 ∼Ntrunc(6.45,1). With this
choice of parameter distribution nearly all cases are
bistable, and very few tip to the weak AMOC branch
for µ< 1.

This problem of major differences in the shape
of the bifurcation curve is removed after applying
our Bayesian inference procedure from section 2.4.
If more information on the parameter distribution
is known in advance, of course, a more tightly con-
strained prior further reduces the standard deviation
of the posterior parameter distribution and is thus
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Figure 8. Prior and posterior predictive distribution (first half of time depicted). Green synthetic data points are more narrowly
comprised by posterior predictive (dark blue) indicating qualitative improvement within inference process on η2.

Figure 9. Qualitatively different shape of probabilistic fold
curves for η2 ∼Ntrunc(6.45,1) (truncated normal
distribution over physical range (6)) compared to the shape
in figure 4(a) for a uniform parameter distribution. The red
line corresponds to the η2 = 3 case (no tipping for η2 < 3,
two TPs for η2 > 3).

preferable. For more details on prior assessments,
see [49].

Alternative visualisation of probabilistic cusp
bifurcation behaviour
The probabilistic cusp bifurcation behaviour can be
visualised by plotting realisations of the posterior
distribution of the uncertain model parameter η2

against the corresponding critical nondimensional
freshwater flux values (figure 10). Again, the grey
scale indicates the spread of the realisations of η2

and the red line the cusp value of η2 = 3. The
black dotted line shows the critical nondimensional
freshwater flux values according to the prior dis-
tribution of η2. Note again that the range of the
fresh water flux µ for which a strong AMOC can

Figure 10. Visualisation of critical flux values µ− and µ+,
corresponding to the posterior sample of η2 (upper and
lower grey scale curves, respectively). The dotted lines show
the range of bifurcation positions using a uniform prior
distribution for η2. The red line indicates the cusp case
η2 = 3.

be maintained is much narrower for the posterior
sample.

Holistic probabilistic tipping visualisation
In a holistic visualisation (figure 11), we combine
insights gained from previous diagrams. We combine
the probabilistic bifurcation diagram inferred by
our Bayesian inference (figure 4(b)) with the prob-
abilistic location of the TPs shown in figure 6.
A top-down view is shown in figure 11(a). The
grey scale is used for the probabilistic bifurcation
curves as before and the probabilistic location of
the TPs is depicted using a histogram based on
the posterior sample of η2 in the third dimension
(figure 11(b)).
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Figure 11. Probabilistic bifurcation diagram for Stommel–Cessi model resulting from Bayesian inference on synthetic data from
section 2.2.1 with probabilistic TPs locations (red: µ+, yellow: µ−).
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