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ABSTRACT For decades, acoustic models in speech recognition systems pivot on Hidden Markov Models
(HMMs), e.g., Gaussian Mixture Model-HMM system, Deep Neural Network-HMM system, etc., and
achieve remarkable results. However, the popular HMM model is the three-state left-to-right structure,
without the superiority certainty. There are multiple studies on the HMM structure’s optimization, but none
of them addresses this problem leveraging deep learning algorithms. For the first time, this paper proposes
a new training method based on Deep Neural Fenonic Baseform Growing to optimize the HMM structure,
which is concisely designed and computationally cheap. Moreover, this data-driven method customizes the
HMM structure for each phone precisely without external assumptions concerning the number of states or
transition patterns. Experimental results on both TIMIT and TEDliumv2 corpora indicate that the proposed
HMM structure improves both the monophone system and the triphone system substantially. Besides, its
adoption further improves state-of-the-art speech recognition systems with remarkably reduced parameters.

INDEX TERMS Deep neural network, HMM topology, speech recognition, vector quantization.

I. INTRODUCTION
Hidden Markov models (HMMs) [1] are a stochastic
process for modeling time-series data. Since speech sig-
nals possess natural temporality, Gaussian Mixture Mod-
els (GMMs)-HMM are the most classic acoustic model
of the Automatic Speech Recognition (ASR) system for
decades. With the debut of Deep Neural Networks (DNNs),
hybrid systems occupy the predominant status, including
DNN-HMM systems [2], [3], Convolution Neural Networks
(CNNs)-HMM system [4], and Recurrent Neural Networks
(RNNs)-HMM [5], etc. In recent years, another round of
revolution in machine learning triggers ASR architectures’
diversification into a completely new approach, specifically
end-to-end models, where HMM is abandoned [6]–[10].
However, the straightforward and challenging problems
derived from end-to-end models are the tremendous growth
of the model size, the increasing computational complexity,
and the weak robustness to the input variations [11]. This
drawback is proved by Lüscher et al. in [12], where on the
LibriSpeech 960h task [13], the hybrid DNN-HMM system
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outperforms the attention-based system by 15% relative
on the clean and 40% relative on the other test sets in
terms of Word Error Rate (WER). Moreover, experiments
on a reduced 100h-subset of the LibriSpeech training cor-
pus show a more pronounced margin between the hybrid
and attention-based architectures. Another argument is [14],
where Wang et al. demonstrate that their transformer-based
hybrid system outperforms the attention-based system
by 16.4% relative. Consequently, statistical approaches
remain to be essential and still draw considerable
attention [12], [14]–[23].

The commonly-employed HMM structure is the left-to-
right structure, with three states which model the beginning,
the middle, and the end of a phone. Nevertheless, there is no
adamant evidence for its suitability and superiority. Since the
structure affects the modeling capability considerably, there
are multiple studies on optimizing the HMM structure.

Bakis-type HMMs [24] are word-based models, which
are derived from sample utterances of the word. The num-
ber of states in the model is equal to the average duration
of the word in frames. The frame size in Bakis’s system
is 10 milliseconds, and the average number of states for
a word is about 30. Rabiner and Levinson [25] describe
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another word-based model in which the number of states
is reduced to approximately 5. This model results in a
substantial reduction in the number of parameters without
much deteriorating the accuracy. This is because neighbor-
ing states in the Bakis model tend to be quite similar, and
reducing several similar consecutive states into a single state
does not degrade the model very much. Biem [26] replace
Bayesian Information Criterion with Discriminative Infor-
mation Criterion, where discriminative power among mod-
els is maximized together with the likelihood. It achieves
a slightly higher recognition rate at the expense of more
complicated models. Geiger et al. [27] present a method
to determine the number of states in HMMs. They propose
a modification to the Bakis method [24] and a technique to
improve the topology with few iterations.

However, there are three general disadvantages existing in
the previous works [24]–[32]. Firstly, as they are all based
on statistical methods, HMM topologies are constructed from
limited data. Secondly, the statistical methods adopted in
these works are computationally-expensive heuristic algo-
rithms (e.g., the tree search algorithms), and not easy to
employ. Thirdly, they balance between the state length and
the model complexity poorly, leading to either high model
complexity or limited performance improvements.

To address these problems, we propose a novel approach
to optimize the HMM structure, leveraging deep learn-
ing, specifically, a Deep Neural Network Vector Quantizer
(DNNVQ). First, we introduce the concept ‘‘fenone’’ for
representing sub-phones [33]. Fenone is the building block of
phones and is modeled as one state of the HMM, which can
be obtained automatically through a vector quantizer. Next,
we classify all data against different phones and then apply
vector quantization on each phone’s data. Finally, DNNVQ
generates the fenonic baseforms for every phone, and accord-
ingly, the HMM structure is decided. We refer to this algo-
rithm as Neural Fenonic Baseform Growing (NFBG).

In summary, the main contributions of this paper lie as the
following:
• We propose an innovative algorithm leveraging deep
learning to customize an HMM structure for every
phone.

• Different from previous studies, the proposed method
discovers the potential information of the data and con-
tains the model complexity simultaneously, avoiding
excessive growth of the number of states.

• Our approach leads to an automatic data-driven state
tying. It not only improves the existing state-of-the-
art systems but further shrinks their parameter scale
considerably.

II. RELATED WORK
The notion of ‘‘fenone’’ is inspired by [34], [35], where
they describe a new technique for constructing HMM for
the acoustic representation of words. They create the notion
of ‘‘fenone’’ to represent sub-word units, and it is derived
automatically from one or more utterances of that word.

Then the word model is constructed from fenonic forms.
Since the word models are all composed of a small inventory
of sub-word models, training for large-vocabulary speech
recognition systems can be accomplished with a small train-
ing script by this technique. Amethod for combining phonetic
and fenonic models is also presented in [35], and impres-
sive improvements are achieved with speaker-dependent and
speaker-independent models on several isolated-word recog-
nition tasks.

The Neural Network Vector Quantizer was first proposed
by Rigoll and Neukirchen in [36], which is a shallow neural
network and is trained with the mutual information criterion.
The index of the neuron in the output layer with the high-
est activation returns the label for the training sample, and
thereby, the network performs the quantization to assign the
input feature to a specific cluster. This model outperforms
a K-means system and nearly matches the performance of a
system with continuous (non-quantized) models in terms of
word recognition accuracy rate.

Watzel et al. [37] extend the neural network vector quan-
tizer to a deep neural network quantizer and introduce a novel
approach, a mapping function, to train it in a supervised
fashion with an arbitrary output layer size even though suit-
able target values are not available. The experiments demon-
strate that the deep neural network quantizer reduces the
WER by 17.6% on monophones and by 2.2% on triphones,
respectively, compared to a continuous GMM-HMM system.
Inspired by our success in [37], we introduce it to this work
as the vector quantizer.

This paper extends the concept from ‘‘word’’ to ‘‘phone’’,
substitutes the sophisticated tree search algorithm in [35] with
a concise neural network, and confirms its viability on the
task of large vocabulary automatic speech recognition.

III. DEEP NEURAL NETWORK VECTOR QUANTIZER
LetD = {(xi, ŷi)}Ni=1 be a dataset comprising feature vectors
xi ∈ RD and their corresponding ground-truth labels ŷi ∈ N.
The goal of the training is to find a function f : xi → ŷi.
In [37], this goal is converted to approximate gθ : xi → m̂i,
where θ represents the parameters of the network and
m̂i ∈ N defines the index of the maximum value in the
DNNVQ output layer mi ∈ RNclu by

m̂i = argmax
1≤j≤Nclu

mji. (1)

Nclu is the dimension of the output layer, and j describes the
jth neuron in the layer. In contrast, the ground-truth label ŷi
is in the range [1,NK] = {ŷi ∈ N | 1 ≤ ŷi ≤ NK}, where
NK denotes the dimension of the ground-truth label space.
Watzel et al. [37] employ maximum mutual informa-

tion (MMI) as the criterion of the training. The mutual infor-
mation I (Y ;M ) is defined as

I (Y ;M ) = H (Y )− H (Y |M ). (2)

Y denotes a ground-truth label, andM is a firing neuron.H (Y )
defines the entropy of Y , and H (Y |M ) denotes the entropy
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of Y conditioned onM . Their probability mass functions are

P(M = m̂j) =
1
N

N∑
i=1

δ(m̂i, j) ∀1 ≤ j ≤ Nclu (3)

and

P(Y = ŷk ) =
1
N

N∑
i=1

δ(ŷi, k) ∀1 ≤ k ≤ NK. (4)

The probability mass functions are created by counting occur-
rence numbers of m̂j and ŷk based on all samples m̂i and ŷi,
where the index k denotes the kth label in the ground truth
label space and δ(·) refers to Kronecker delta.

As the entropy H (Y ) is a constant, we have to minimize
H (Y |M ) in order to maximize I (Y ;M ). For this purpose,
increasing the dimension of emitted labels m̂i could be a
straightforward solution. However, it causes a new problem
for training, where the dimension of the output layer and that
of the ground-truth label space are unequal, i.e., Nclu 6= NK.
To tackle this problem,Watzel et al. introduce the conditional
probability Pb(Y |M ) of the ground-truth labels ŷi conditioned
on the DNNVQ outputs mi as

Pb(Y |M ) = P(ŷb,k |mb,j)

≈
ε +

∑Nb
i=1 δ(ŷi, k)m

j
i

εNclu +
∑Nb

i=1m
j
i

,

∀1 ≤ k ≤ NK , 1 ≤ j ≤ Nclu (5)

where ε is a small constant and the conditional probability
Pb(Y |M ) ∈ RNK×Nclu . We take minibatches with a suffi-
cient batch size Nb to approximate Pb(y|m) ≈ P(Y |M ).
Then, the output mi is mapped from dimension Nclu to
dimension NK with Pb(Y |M ) as

mtra,i = Pb(Y |M )mi ∀1 ≤ i ≤ Nb, (6)

with mtra,i denoting the transformed outputs of mi. In this
way, the prototype size of the vector quantizer can be arbitrary
even though the dimension of the ground-truth labels yi is
determinate. During training, we implicitly maximize the
mutual information I (Y ;M ) by minimizing LCE (mtra,i; ŷi)
[38], where

LCE = −
1
Nb

Nb∑
i=1

NK∑
k=1

δ(ŷi, k) log(mktra,i). (7)

The diagram of DNNVQ training is depicted in Fig. 1.

IV. NEURAL FENONIC BASEFORM GROWING
In this section, the algorithm of the dynamic baseform gener-
ation is illustrated and three options of the baseform’s HMM
topology are presented.

First and foremost, we give the overview of the proposed
approach:

Step 1: Train a vanilla GMM-HMM model from flat-start
and obtain forced alignments as the ground truth for the
sebsequent DNNVQ training.

FIGURE 1. Diagram of DNNVQ training.

Step 2: Train a DNNVQ, as described in Section III, using
the forced alignments obtained from Step 1 to maximize the
mutual information between the ground truth labels and the
output units. For each training, the number of the prototype,
namely the dimension of the output layer, is specified and
fixed.

Step 3: Extract segments of each monophone. Exclude
extreme cases in the segment set of each monophone.

Step 4: Pad the remained segments to the same length.
Step 5: For the same frames of each phone’s segments,

calculate the products of all posteriors on the same output
unit, namely the same prototype. The prototype with the
highest product value is the fenone of the current frame.
Consequently, the fenone sequence of the phone is acquired.

Step 6: Compact the fenone sequence to the fenonic base-
form by eliminating all successive duplicated fenones.

A. SEGMENT LENGTHS PADDING
Intuitively, utilizing all training data must deliver the most
accurate result. However, for one thing, computation com-
plexity increases exponentially with the increment of training
data; for another, the extreme cases, e.g., the longest ones
or the shortest ones, which occur quite rare in the realistic
scene mislead the final decision. For this purpose, we plotted
histograms for each phone, exhibiting the distribution range
of lengths of all segments affiliated to a phone. Fig. 2 demon-
strate the histograms of phone [SIL] and [EY]. As shown
in Fig. 2, lengths of phone [SIL] differ in the range [0, 1750],
while that of phone [EY] is [0, 100]. According to these his-
tograms, we discard the extreme cases for every monophone,
and keep at least 80% data for each monophone eventually.
For instance, we keep segments ranging in [4, 120] for [SIL]
and that for phone [EY] is [4, 30]. We also conducted exper-
iments with 70% or 90% data for each phone, but results
indicated no difference, which also proves the robustness of
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FIGURE 2. Histograms of the segment length distribution of phones (a) [SIL] and (b) [EY].

our proposed approach to noise. Afterwards, all segments
affiliated to one phone need to be justified to the identical
length for the purpose that all frames representing for the
beginning, the middle or the end of the phoneme are aligned
together, i.e., we need to justify all lengths of the segments to
the maximum one. Instead of zero padding, we use a simple
division as the alternative. Assume lmax÷ln = lq · · · lr , where
lmax is the maximum length of all segments, ln represents the
length of any segment in the same set, lq denotes the quotient,
and lr refers to the remainder. Then we duplicate each frame
of the current segment lq times and the last frame lr times
more. Taking the shortest and the longest segments of phone
[EY] as the example, since 30÷4 = 7 · · · 2, we should dupli-
cate each frame of the 4-frame segment 7 times, while the
last frame 2 times more. As the result, the 4-frame segment
is padded to be the maximum length.

B. DYNAMIC BASEFORM GENERATION
Fenones represent short speech events and are obtained
automatically through the employment of a VQ. Different
from [35], where fenones represent sub-word units, we extend
its application to sub-phone units, a finer level of details.
DNNVQ is deployed for generating the fenone sequence for
each phone. Since the fenone sequence of a phone is derived
from its utterances, we realign all training utterances against
40 monophones on TEDliumv2 [39] and 48 monophones
on TIMIT [40], respectively. In order to distinguish from
utterances, the sub-units of utterances are henceforth named
as segments. Let F = {f1, f2, · · · , fNF } 1 ≤ NF ≤ Nclu
be the alphabet of fenones and F∗ be the set of all finite
length strings constructed by concatenating elements of F ,
namely fenone sequence. G = {g1, g2, · · · , gs} is the set of s
monophones while Ki ∈ K∗

= {K1,K2, · · · ,Ks} denotes
the set of all segments affiliated to the corresponding phone gi
1 ≤ i ≤ s. The goal here is to generate a fenone sequence for
phone gi based on its segments setKi. The generated fenone
sequence f 1→lgi

= {f1, f2, · · · , flgi } ∈ F∗ is spanned up on
f ∈ F , leveraging DNNVQ.

Initially, all segments affiliated to one phone gi need to
be padded to the identical length. For instance, we extract
n segments for phone [AW] from all utterances and
their lengths vary from lmin to lmax because of differ-
ent pronunciation habits or allophones. lmin is the mini-
mum length, while lmax is the maximum. Consequently,
Ki = {k

(1)
1→l1

, k(2)1→l2
, · · · , k(n)1→ln

} is converted to K′i =
{k′(1)1→lmax

, k′(2)1→lmax
, · · · , k′(n)1→lmax

}. Afterwards, the tth first
frame of k′(t) ∈ K′i 1 ≤ t ≤ n is fed into the DNNVQ in turn
(There are n first frames from n padded segments in total.).
As the output, the output vector mt 1 ≤ t ≤ n is obtained in
turn

mt = [ p(m1
1|k
′(1)
1 ) p(m2

1|k
′(1)
1 ) · · · p(mNclu

1 |k
′(1)
1 ) ]. (8)

After we get all the outputs of the first frames of k′(t) ∈
K′i 1 ≤ t ≤ n,A

n×Nclu is acquired as

A = [m1 m2 · · · mn]T

=


p(m1

1|k
′(1)
1 ) p(m2

1|k
′(1)
1 ) · · · p(mNclu

1 |k
′(1)
1 )

p(m1
2|k
′(2)
1 ) p(m2

2|k
′(2)
1 ) · · · p(mNclu

2 |k
′(2)
1 )

...
...

. . .
...

p(m1
n|k
′(n)
1 ) p(m2

n|k
′(n)
1 ) · · · p(mNclu

n |k
′(n)
1 )


=
[
q1 q2 · · · qNclu

]
, (9)

where

qj =
[
q1j q2j · · · qnj

]T
, 1 ≤ j ≤ Nclu. (10)

mt 1 ≤ t ≤ n is the row vector of matrix An×Nclu and it
denotes the output vector of the first frame of the tth segment.
qj is the column vector of matrix An×Nclu , and it represents
the posterior probabilities of all first frams on fenone j. By
the element-wise product of qj, we get the product of the jth
column Pqj as

Pqj =
n∏
t=1

p(m(j)
t |k
′(t)
1 ) ∀ 1 ≤ j ≤ Nclu. (11)
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Let ĵ be the index of the maximum value of Pqj , i.e.,

ĵ = argmax
1≤j≤Nclu

Pqj , (12)

then the first frame of k ′(t) 1 ≤ t ≤ n is quantized to the
ĵth neuron and the corresponding fenone is fĵ. Due to the risk
of underflow, the logarithm is employed, then

ĵ = argmax
1≤j≤Nclu

n∑
t=1

log(p(mjt |k
′(t)
1 )). (13)

Algorithm 1: Pseudo-Code for Dynamic Baseform

Growing
Input: padded segments

K′i = {k
′(1)
1→lmax

, k′(2)1→lmax
, · · · , k′(n)1→lmax

} of phone

gi 1 ≤ i ≤ s ;

Output: the corresponding fenone of frame l;

Training DNNVQ withD = {(xi, ŷi)}Ni=1;
while 1 ≤ i ≤ lmax do

for t = 1; t ≤ n; t ++ do
the output mt :

mt = [ p1t p
2
t · · · p

Nclu
t ]

end

the score of the tth frame on Nclu clusters:

Pqj =
n∏
t=1

pjt 1 ≤ j ≤ Nclu;

if
ĵ=argmaxPqj
1≤j≤Nclu

then

the tth frame of gi
fenone
←− fĵ

end

i = i+ 1;

end

the fenone sequence of gi:

{fĵ1 , fĵ2 , · · · , fĵlmax };

merge the successive duplicated fenones;

the fenonic baseform of gi:

{f
ĵ1
′ , f

ĵ2
′ , · · · , f

ĵl
′} 1 ≤ ĵl

′
≤ Nclu;

return fenonic baseform

Similarly, we repeat the same steps for the remaining
lmax − 1 frames chronologically, and the whole fenone
sequence {fĵ1 fĵ2 . . . fĵlmax} for phone gi 1 ≤ i ≤ s is acquired.
Importantly, the fenone sequence {fĵ1 fĵ2 . . . fĵlmax} could
contain several identical fenones. Subsequently, we elimi-
nate all successive duplicated fenones in the obtained fenone
sequence to generate the final fenonic baseform for a phone.
Hence the fenonic baseform is refined from the correspond-
ing fenone suquence, without any duplicated fenone. The
whole procedure of NFBG is illustrated in Alg. 1. Taking
phone [AW] as an example, the length of padded segments

of the phone [AW] is 20 and the generated fenone sequence
is {27 27 27 27 27 27 27 27 27 27 27 27 92 92 92 92 92 5 5
5}. Thereby, we merge these adjacent identical fenones, and
in consequence, the fenonic baseform of phone [AW] appears
to be {27 92 5}. We demonstrate the NFBG process of phone
[AW] in Fig. 3.

FIGURE 3. Illustration of the NFBG process of phone [AW]. The upper half
is the padding process, where the segment lengths of phone [AW] vary
from 3 to 20, and the pink frames are the duplicates of the blue original
frame before. The lower half is the process of NFBG, which starts from
that the 1st - 20th frames are fed into DNNVQ in turn and ends up with
compacting the 20-frame fenone sequence to the fenonic baseform.

C. ELEMENTARY MARKOV MODEL FOR FENONES
The HMM of a phone is constructed by concatenating the
elementary Markov model of the fenones in its fenonic base-
form. The fenonic baseform merely indicates the number of
states of an HMM, but the topology remains undetermined.
We investigate three sorts of topology for the elementary
Markov model: ergodic, Bakis-type [24], Vintsyuk-type [41],
as depicted (a), (b), and (c) in Fig. 4. Each state in the ergodic
topology can transit to every other state in a single step. Thus
the ergodic topology possesses the highest flexibility as well
as the highest complexity. By contrast, every state in the
Bakis-type [24] topology can only transit to itself or the next
one, but the Bakis-type topology dominates the advantage of
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FIGURE 4. Examples of Markov models for fenones. (a)
Vintsyuk-type [41], (b) Bakis-type [24], (c) ergodic.

simplicity. The Vintsyuk-type [41] topology is a compromise
of the former two, as it allows a maximum shortening by a
factor of two. It contains model parameters and preserves the
flexibility by a skip arc simultaneously. We execute ablation
experiments on the efficacy of each topology.

V. EXPERIMENTAL SETUPS
A. CORPORA AND FEATURES
We test our approach on TIMIT [40] and TEDliumv2 [39].

TIMIT contains a total of 6300 sentences (5.4 hours),
consisting of 10 sentences spoken by each of 630 speak-
ers from 8 major dialect regions of the United States. The
462-speaker training set is used. All SA records (i.e., identical
sentences for all speakers in the database) are removed as they
could bias the results. After realigning the training utterances
against 48 monophones, we obtain 220535 segments as the
training dataset. Results are reported using the 24-speaker
core test set. All of our experiments apply a bigram language
model over phones, estimated from the training set.

TEDliumv2 contains 207-hour training data from TED
talks, consisting of male and female speakers, native-
and nonnative-speakers, and speakers from all age ranges.
The contents of the data cover versatile fields. After the
realignment of training utterances against 40 monophones,
we obtain 8439059 segments as the training dataset. All
recognition results are reported on the heavily pruned 4-gram
language model and the dictionary with roughly 152k words
and 160k pronunciations released by [39].

As for features, we utilize 12-dim Mel frequency cepstral
coefficients (MFCC) along with the additional energy feature
and their first and second temporal derivatives, hence 39-dim
MFCC feature vectors in total. Cepstral mean normalization
is employed.

B. DNNVQ SETUPS
The DNNVQ system is trained in the Tensorflow library.
The network is composed of four fully-connected hidden

layers with 512 neurons and the ReLu activation function
followed by a batch-normalization [42] layer, respectively.
The dropout [43] layer is discarded due to worse results.
A subsequent fully-connected layer with the ReLu activation
function is deployed as the output layer. We optimize the
DNNVQwith Adam optimizer [44]. An exponentially decay-
ing schedule starts with an initial learning rate of 0.01 and
halves the rate when the improvement of the frame accu-
racy between two successive epochs on a cross-validation set
stops.

C. BASELINE
The training of the GMM-HMM and the DNN-HMM base-
line systems is pursuant to the Kaldi example recipe [45].
They are trained on the MFCC feature described in
Section V-A. The HMM structure adopted on TEDliumv2 is
3-state left-to-right structure for vocal phones while 5-state
structure for ‘‘silence’’ and ‘‘noise’’, leading to 127 Probabil-
ity Density Functions (PDFs). In contrast, the HMM structure
of all 48 monophones is the identical 3-state left-to-right
structure on TIMIT, resulting in 144 PDFs. GMM-HMM
system is trained from scratch, and 1K Gaussian models
are deployed in total; in the DNN-HMM system, the DNN
has four hidden layers, each of which has 512 neurons. The
number of nodes of the final layer is determined by the
number of PDFs. The DNN is initialized randomly with
weights drawn from N (0, 0.01), and the uniform bias drawn
randomly from µ(−4.1,−3.9). Stochastic gradient descent
is utilized to minimize the cross-entropy, with the minibatch
size of 512 frames. The learning rate is set at 0.0015 initially
and decays to 0.00015 progressively. All baseline systems are
conducted in the Kaldi toolkit [45].

Primary structures are chosen for baseline systems to force
focus on the impact of HMM structures. Besides, the effec-
tiveness of the proposed method in advanced systems will
also be given later.

VI. FENONIC BASEFORM RESULTS
In this section, we give the obtained fenonic baseforms for
phones included in Tedliumv2 (Table 1) and TIMIT (Table 2)
corpora when there are 127 prototypes in the case of Tedli-
umv2while 144 prototypes in the case of TIMIT, respectively.
There are 40 phones in Tedliumv2 corpus and 48 phones
included in TIMIT corpus. In TEDliumv2 corpus, 1 phone
gains five states, 6 phones gain four states, 7 phones gain two
states, and the remained phones gain three states. In contrast,
8 phones gain four states, 17 phones gain two states, and the
rest gain three states, in TIMIT corpus. Consequently, there
are 94/127 active fenones in Tedliumve, while 104/144 active
fenones in TIMIT. Hence the average numbers of states are
3.025 in Tedliumv2, while 2.8125 in TIMIT. Then it is safe
to draw the conclusion that even if the average numbers of
states do not change much, the state sharing relations among
phones reduce parameters.

After analysing the fenonic baseform results, we can draw
two conclusions. First, the shared states tend to appear in the
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TABLE 1. Fenonic baseforms for every monophone in Tedliumv2 corpus.

TABLE 2. Fenonic baseforms for every monophone in TIMIT corpus.

same or similar location of phones. For instance, in TEDli-
umv2, state /40/ is shared by phones [CH], [JH], [SH], [TH],
and [ZH]. It appears as the last state in cases of [JH], [SH],
[TH], and [ZH], while as the penultimate state in the case
of [CH]. The same phenomenon also appears in TIMIT,
where [CH], [JH], [SH], and [ZH] share the last state /25/,
and [CH], [SH], and [ZH] even share the last two states,
/133/ and /25/. This pattern reveals that a specific state always
tends to express a specific part of the phone (the beginning,
the middle, or the end). Second, phones with the same suffix
tend to share the state in the ending, while phones with the
same prefix tend to share the state at the beginning or in
the middle. For instance, in TEDliumv2, [EY] and [OY] share
the last state /81/, while in TIMIT, [AE] and [AW] share the
first state /136/. Nevertheless, the latter half of the pattern is
not as common as the former half, and thus we believe that the
suffix is more decisive than the prefix for the pronunciation
of a specific phone.

Besides, there are some interesting phenomenons in the
resultant fenonic baseforms which we highlight here for
any possible inspiration to our readers. Firstly, some phones

seemingly irrelative share states. For example, [TH] and [F]
share two states (/0/ and /21/) in TEDliumv2, and they share
one state (/87/) in TIMIT; [B] and [DH] share the state /79/
in Tedliumv2; and [K] and [HH] share the state of /46/ in
TIMIT. Secondly, some phones possess a high similarity
between them in terms of the state. For instance, it surprised
us that the states of [SH] are identical to those of [ZH]. This
phenomenon appears in both corpora, so we believe it is not
a coincidence. A similar pattern falls on the case of [AH]
and [UH], which share three states in both corpora. For these
counter-intuitive sharing relationships, we believe it reveals a
sort of interior relevance between those phones.

Additionally, there are two phenomenons emerging in the
process of compacting the fenonic sequence to the fenonic
baseform which are worth noting. For one thing, [SIL] pro-
cesses the repetitive fenone in its fenonic baseform. For
example, the fenonic baseform of [SIL] in TEDliumv2 is
derived from its original fenone sequence {17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 124, 124, 124, 124, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
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13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17}. We tried to
simplify its fenonic baseform as {17, 124, 13} and added
an skipping-back arc from state 13 to state 17. However,
the result turned to be slightly worse than keeping it as {17,
124, 13, 17} with the uniform Bakis-type topology for every
state. For another, some phones process a singleton state
occurrence. For instance, the fenonic sequence of phone [ZH]
in TEDliumv2 is {29, 29, 29, 29, 29, 29, 29, 29, 1, 40, 40,
40, 40, 40, 40, 40, 40, 40, 40, 40}. We recognized the single
occurrence of state 1 as a fortuity and believed that it should
have been 29 or 40 in that location. However, the comparison
experiments between setting the fenonic baseform of [ZH] as
{29, 40} and {29, 1, 40} indicates that every remained state
should be respected even though it is a singleton.

VII. EXPERIMENTAL RESULTS
For the experiments, we first conduct ablation tests on dif-
ferent elementary HMM topologies for the fenone and the
dimension of DNNVQ prototypes. Thereafter, we validate
the proposed NFBG-based HMM structure in both mono-
phone and triphone systems, with context-independent and
context-dependent inputs, and in already advanced systems.

A. EFFECTS OF THE ELEMENTARY HMM TOPOLOGY OF
THE FENONE
To execute the test in a fair comparison, we control the
nodes of the output layer to stay the same as their respective
Kaldi recipe (i.e., 127 nodes for Tedliumv2 while 144 nodes
for TIMIT). This rules out the possibility that any perfor-
mance improvement would come from different dimensions
of the output layer. Table 3 shows the effect of different HMM
topologies for the fenone. Three sorts of HMM topologies in
the table correspond to three HMMmodel examples in Fig. 4.
It is apparently shown that the basic left-to-right topology out-
performs the ergodic topology considerably, consistent with
the observation in [46]. The full ergodicmodel tends to overfit
the training data since it has large amounts of parameters
and the resultant high model complexity, resulting in a poor
generalization. The margin between the Bakis topology and
Vintsyuk topology is more pronounced on TIMIT than that
on TEDlium. We believe that it is owing to less training data
on TIMIT. As the Bakis-type topology outperforms both the
ergodic topology and the Vintsyuk topology, all the subse-
quent results in this paper are obtained using it as a fenone
topology.

B. EFFECTS OF THE NUMBER OF DNNVQ PROTOTYPES
As NFBG introduces state tying, different numbers of
DNNVQ prototypes lead to a different number of HMM
states in the NFBG-based model. Accordingly, the model
complexity and model strength vary. Fig. 5 highlights
the effect of setting different numbers of DNNVQ proto-
types. The corresponding HMM states of Nclu ∈ {127,

TABLE 3. WER[%] on TIMIT and TEDliumv2 for different elementary HMM
topologies in monophone systems.

FIGURE 5. Evolution of WER[%] along the number of DNNVQ prototypes
on TEDliumv2 and TIMIT, respectively.

250, 350, 450, 700, 1000} are {94, 110, 116, 120, 132, 199}
on Tedlium, while the HMM states of Nclu ∈ {144, 250, 350,
450, 700, 1000} are {110, 121, 134, 139, 144, 220} on TIMIT.
The recognition performance is gradually improved before
Nclu = 250 on both TEDliumv2 and TIMIT; thereafter,
it exposes a downward trend on both corpora. Especially on
TIMIT, the curve plunges from Nclu = 450, where the model
underfits due to large amounts of parameters and insufficient
data. Therefore, we take Nclu = 250 as the default number of
DNNVQ prototypes for the subsequent experiments.

C. NFBG VALIDATION IN MONOPHONE SYSTEMS
NFBG introduces a natural state tying in the monophone sys-
tem. Consequently, the NFBG-based HMM structure reduces
the number of PDFs from 127 to 110 on TEDliumv2 while
144 to 121 on TIMIT, leading to the HMM structure’s param-
eters are∼15% fewer compared to the baseline. Additionally,
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fewer parameters also make the HMM topology more resis-
tant to overfitting. As presented in Table 4, on TEDliumv2,
NFBG-based HMM delivers 2.5% relative improvements in
the GMM-HMM system, while 13.8% in the DNN-HMM
system with a 15% smaller parameter scale. Compara-
tively, improvements are more distinct on TIMIT, which are
5.8% and 14.8% relative in the GMM-HMM system and
DNN-HMM system, respectively, with more than 15% fewer
parameters.

TABLE 4. Impacts of the NFBG-based HMM structure in monophone
systems. Results are in WER[%].

D. NFBG VALIDATION WITH CONTEXT-DEPENDENT
INPUTS
We also examine the effectiveness of NFBG-based HMM
in the system with context-dependent inputs. By setting
Nspl = m, inputs are spliced over (2m + 1) frames.
It is worth noting that the setups of the context-dependent
system stay in accordance with the monophone system
(Section VII-C) except for the inputs. Here we only display
results in the DNN-HMM system. Tabel 5 displays that the
NFBG-based HMM outperforms the corresponding baseline
system in all Nspl ∈ {0, 1, 2, 3, 4} circumstances on both
corpora. Especially on TEDliumv2, the NFBG-based HMM
yields 17.1% relative improvements when Nspl = 1. How-
ever, we cannot obtain improvements constantly by increas-
ing the input dimension. When Nspl > 2, there is no further
improvement.

E. TRIPHONE SYSTEMS
The triphone generation leverages the benefit of the Kaldi
recipe.1 Table 6 shows that on Tedliumv2, the relative
improvement attained by the NFBG-based HMM is 1.8%
in the GMM-HMM system. Similarly, in the DNN-HMM
system, the NFBG-based HMM improves WERs in all splice
conditions while the most significant improvement appears
in the Nspl = 1 circumstance, which is 3.3%. As for TIMIT,
overall improvements are more distinct compared to TEDli-
umv2, and the most predominant improvement also appears
in Nspl = 1, which is 4.5%. Similar to Section VII-D, there is
no further improvement when Nspl > 2.

F. COMPARISONS WITH ADVANCED MODELS
In this section, we configure our best HMM structure for
published state-of-the-art systems on both TEDliumv2 and
TIMIT. Here we choose three representative systems for
Tedliumv2: the time delay neural network (TDNN) [16],

1https://github.com/kaldi-asr/kaldi/tree/master/egs/wsj/s5/steps

FIGURE 6. Training accuracy and converge speed on both TEDliumv2
and TIMIT.

SincNet architecture [47], and the improved RWTH ASR
system with SpecAugment [23]. The TDNN models long
term temporal dependencies with training times compa-
rable to standard feed-forward DNNs. The network uses
sub-sampling to reduce computation during training. It shows
a relative WER improvement of 6% on both Switchboard
and TEDlumv2 corpus. SincNet is a novel CNN architecture
that encourages the first convolutional layer to discover more
meaningful filters. In contrast to standard CNNs, which learn
all elements of each filter, only low and high cutoff frequen-
cies are directly learned from data with SincNet. Experimen-
tal results show that SincNet converges faster and performs
better than a standard CNN on rawwaveforms. The improved
RWTH ASR system with SpecAugmenta is a complete train-
ing pipeline to build a state-of-the-art hybrid HMM-based
ASR system on the TEDliumv2 corpus. Data augmenta-
tion using SpecAugment [50] is successfully applied therein.
Their best system achieves a 5.6%WER on the test set, which
outperforms the previous state-of-the-art by 27% relative.

Besides, we also choose two systems on TIMIT: DNNwith
a regularization post-layer [48] and DNN with instantaneous
frequency features [49]. Vaněk et al. [48] propose a regular-
ization post-layer that can be combined with prior techniques,
and it brings additional robustness to the DNN. On the TIMIT
benchmark task, the adoption of the regularization post
layer gives better results than DNN with DBN pre-training.
Nayak et al. [49] extract features from its time derivative,
referred to as instantaneous frequency (IF), to solve the
inevitable phase wrapping problem. The combination of IF
and MFCC features based systems, using minimum Bayes
risk decoding, provides a relative improvement of 8.7% over
the baseline system.

Table 7 presents the effectiveness of the NFBG-based
HMM in the aforementioned state-of-the-art models. As we
observe, these advanced systems are hard to be further
improved since they are already exceedingly-optimized.
On TEDliumv2, the NFBG-based HMM achieves a 0.3%
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TABLE 5. Impacts of the NFBG-based HMM structure with context-dependent inputs in monophone systems. Results are in WER[%].

TABLE 6. Impacts of the NFBG-based HMM structure in triphone systems. Results are in WER[%].

TABLE 7. The impact of the NFBG-based HMM structures in different advanced models. Results are in WER[%].

absolute improvement in both the SincNet system and
TDNN. Furthermore, the absolute improvement in the
improved RWTH ASR system is 0.1%. In comparison,
on TIMIT, the NFBG-based HMMperforms better. It delivers
3.8% and 2.8% relative improvements in the regularization
post-layer and IF feature systems, respectively.

VIII. DISCUSSIONS
From the above results, it is seemingly that the NFBG-
generated HMM structure yields improvements in both
monophone and triphone systems on both TEDliumv2 and
TIMIT. Overall, the improvement on TIMIT is more pre-
dominant than that on TEDliumv2. For instance, in the
monophone hybrid system, the NFBG-based HMM achieves

13.8% relative improvement on TEDliumv2 while the coun-
terpart of TIMIT is 14.8%. Besides, in the triphone hybrid
system, the NFBG-based HMM outperforms the baseline by
3.3%onTEDliumv2while that is 4.5%onTIMIT.We assume
that since the amount of training data of TIMIT is fewer than
that of TEDliumv2, TIMIT benefits more from the reduction
of parameters. In this section, we provide evidence from
the aspect of the convergence speed and the classification
performance of the network w/o NFBG-based HMM.

As displayed in Fig 6, introducing NFBG for the HMM
construction leads to the accuracy increment on both
TEDliumv2 and TIMIT. Additionally, the effectiveness is
more distinctive on TIMIT. Besides, the system with the
proposed HMM converges faster on both corpora. More-
over, TEDliumv2 is even faster than TIMIT, since there are
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FIGURE 7. 2D t-SNE visualisation from the baseline model and the proposed model. Horizontal axis: the 1st dimension of
t-SNE; vertical axis: the 2nd dimension of t-SNE.

110 HMM states on TEDliumv2 while 121 HMM states
on TIMIT.

Besides, we also choose t-distributed stochastic neigh-
bor embedding (t-SNE) [51] to visualize the outputs of
the network w/o the proposed HMM structure. To begin
with, We extract one utterance from the test sets of both
TEDliumv2 and TIMIT corpora. Furthermore, we also make

a comparison on more test utterances from both corpora.
We set the number of prototypes of the DNNVQ the same
as the number of PDFs in the baseline model. The per-
plexity is set to be 30. From every pair of comparisons
as dipicted in Fig 7, it is apparent that the employment of
NFBG-based HMM reinforces the networks’s classification
ability.
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IX. CONCLUSION
This paper proposes a novel, concise, data-driven, and deep-
learning-based method to customize HMM topology for
every phone. The proposed algorithm allows the data to reveal
their dynamic structure without external assumptions and
with a low computational cost. We conduct ablation tests
on different HMM topologies and the number of DNNVQ
prototypes. Besides, we validate the proposed algorithm on
TEDliumv2 and TIMIT in both monophone and triphone sys-
tems. Empirical results indicate that the proposed approach
improves both the monophone system’s and the triphone
system’s performances. The margin on TIMIT, a corpus with
a small amount of training data, is more remarkable. Albeit
the limited improvements in the already highly-optimized
systems, it reduces the parameters of those systems by 15%.
It is safe to conclude that this light-weight HMM struc-
ture possesses considerable potentials in various realistic
situations, e.g., the keyword spotting task in the always-on
and battery-powered application scenarios for smart devices,
with severe constraints on hardware resources and power
consumption; the task of low-resource speech recognition;
the classification task on portable devices. Therefore, our
future work will concentrate on the proper employment of
the NFBG-based HMM in realistic situations.
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