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Abstract. Mott variable-range hopping is a fundamental mechanism for low-temperature electron conduction in disordered solids
in the regime of Anderson localization. In a mean field approximation, it reduces to a random walk (shortly, Mott random walk) on
a random marked point process with possible long-range jumps.

We consider here the one-dimensional Mott random walk and we add an external field (or a bias to the right). We show that the
bias makes the walk transient, and investigate its linear speed. Our main results are conditions for ballisticity (positive linear speed)
and for sub-ballisticity (zero linear speed), and the existence in the ballistic regime of an invariant distribution for the environment
viewed from the walker, which is mutually absolutely continuous with respect to the original law of the environment. If the point
process is a renewal process, the aforementioned conditions result in a sharp criterion for ballisticity. Interestingly, the speed is not
always continuous as a function of the bias.

Résumé. Le « Mott variable-range hopping » est un mécanisme décrivant la conduction des electrons dans des solides désordonnés
dans le régime de localisation d’Anderson. Sous l’approximation de champ moyen, le modèle se réduit à une marche aléatoire
(marche aléatoire de Mott) sur un processus ponctuel. Cette marche peut sauter d’un point du processus ponctuel à n’importe quel
autre, les sauts ne sont donc pas limités en taille.

Nous considerons une marche aléatoire de Mott unidimensionelle soumis à un champ extérieur (équivalent à un biais à droite).
Nous montrons que la marche biaisée est transiente, et nous étudions sa vitesse linéaire. Nos résultats principaux sont des conditions
pour la ballisticité (vitesse strictement positif) et la sous-ballisticité (vitesse nulle). Dans le regime ballistique, nous montrons
l’existence d’une mesure invariante pour l’environment vu par la particule, absolument continue par rapport à la mesure originale.
Si le processus ponctuel est un processus de renouvellement, nos conditions deviennent une condition nécessaire et suffisante pour
la ballisticité. Nous montrons ainsi que la vitesse de la marche n’est pas, en général, une fonction continue du biais.
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1. Introduction

Mott variable-range hopping is a fundamental mechanism at the basis of low-temperature electron conduction in
disordered solids (e.g. doped semiconductors) in the regime of Anderson localization (see [2,16–18,20]). By localiza-
tion, and using a mean-field approximation, Mott variable-range hopping can be described by a suitable random walk
(Yt )t≥0 in a random environment ω. The environment ω is given by a marked simple point process {(xi,Ei)}i∈Z with
law P. The sites xi ∈ Rd correspond to the points in the disordered solid around which the conduction electrons are
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localized, and Ei ∈ [−A,A] is the ground energy of the associated localized wave function. The random walk Yt has
state space {xi} and can jump from a site xi to any other site xk �= xi with probability rate

rxi ,xk
(ω) := exp

{−|xi − xk| − β
(|Ei | + |Ek| + |Ei − Ek|

)}
,

β being the inverse temperature.
We refer to [5–7,11,12] for rigorous results on the random walk Yt , including the stretched exponential decay of the

diffusion matrix as β → ∞ in accordance with the physical Mott law for d ≥ 2. Here we focus on the one-dimensional
case, i.e. {xi}i∈Z ⊂ R (we order the sites xi ’s in increasing order, with x0 = 0), and study the effect of applying an
external field. This corresponds to modifying the above jump rates rxi ,xk

(ω) by a factor eλ(xk−xi ), where λ ∈ (0,1)

has to be interpreted as the intensity of the external field. Moreover, we generalize the form of the jump rates, finally
taking

rλ
xi ,xk

(ω) := exp
{−|xi − xk| + λ(xk − xi) + u(Ei,Ek)

}
,

with u a symmetric bounded function. For simplicity, we keep the same notation Yt for the resulting random walk
starting at the origin.

Under rather weak assumptions on the environment, we will show that Yt is a.s. transient for almost every envi-
ronment ω (cf. Theorem 1(i)). In the rest of Theorem 1 we give two conditions in terms of the exponential moments
of the inter-point distances, both assuring that the asymptotic velocity vY(λ) := limt→∞ Yt

t
is well defined and almost

surely constant, that is, it does not depend on the realization of ω. Call E the expectation with respect to P. The first
condition, namely E[e(1−λ)(x1−x0)] < ∞ and u continuous, implies ballisticity, i.e. vY(λ) > 0. The second condition,
namely E[e(1−λ)(x1−x0)−(1+λ)(x0−x−1)] = ∞, implies sub-ballisticity, i.e. vY(λ) = 0. In particular, if the points {xi}i∈Z
are given by a renewal process, our two conditions give a sharp dichotomy (when u is continuous). We point out that
there are cases in which vY(λ) is not continuous in λ (see Example 2 in Section 2.2).

Under the condition leading to ballisticity we also show that the Markov process given by the environment viewed
from the walker admits a stationary ergodic distribution Q∞, which is mutually absolutely continuous to the original
law P of the environment. Moreover, we give an upper bound for the Radon–Nikodym derivative dQ∞

dP
in terms of

an explicit function in L1(P) and we give a lower bound in terms of a positive constant. We also characterize the
asymptotic velocity as the expectation of the local drift with respect to the measure Q∞ (cf. Theorem 2).

The study of ballisticity for the Mott random walk is the first fundamental step towards proving the Einstein
Relation, which states the proportionality of diffusivity and mobility of the process (see e.g. [14]). Among other
important applications, the Einstein Relation would allow to conclude the proof of the physical Mott law, which was
originally stated for the mobility of the process and has only been proved for its diffusivity (see [5,11] and [12]). The
Einstein Relation will be addressed in future work (some remarks in the paper will stress the behavior of some crucial
bounds in the limit λ → 0).

The techniques used to prove ballisticity and sub-ballisticity are different. In order to comment them it is convenient
to refer to the discrete-time random walk1 (Xn)n∈N on Z such that Xn = i if after n jumps the random walk Yt is at
site xi . Due to our assumptions on the environment, the ballistic/sub-ballistic behavior of (Yt )t≥0 is indeed the same
as that of (Xn)n∈N, and therefore we focus on the latter.

We first comment the ballistic regime. Considering first a generic random walk on Z starting at the origin and a.s.
transient to the right, ballisticity is usually derived by proving a law of large numbers (LLN) for the hitting times
(Tn)n≥1, where Tn is the first time the random walk reaches the half-line [n,+∞). In the case of nearest neighbor
random walks, Tn is simply the hitting time of n, and considering an ergodic environment one can derive the LLN
for (Tn)n≥1 by showing that the sequence (Tn+1 − Tn)n≥1 is stationary and mixing for the annealed law as in [1,21].
This technique cannot be applied in the present case, since our random walk has infinite range and much information
about the environment to the right is known, when a site in [n,+∞) is visited for the first time. A very useful tool
is the method developed in [8] where the authors have studied ballisticity for a class of random walks on Z with
arbitrarily long jumps. Their strategy is as follows. First one introduces for any positive integer ρ a truncated random
walk obtained from the original one by forbidding all jumps of length larger than ρ. The ergodicity of the environment

1We use the convention N+ := {1,2, . . . } and N := {0,1,2, . . . }.
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and the finite range of the jumps allow to introduce a regenerative structure related to the times Tρn, and to analyze the
asymptotic behavior of the ρ-truncated random walk. In particular, one proves that the environment viewed from the
ρ-truncated random walk admits a stationary ergodic distribution Qρ which is mutually absolutely continuous to the
original law of the environment. A basic ingredient here is the theory of cycle-stationarity and cycle-ergodicity (cf. [22,
Chapter 8] and [9] for an example in a simplified setting). Finally, one proves that the sequence (Qρ)ρ∈N+ converges
weakly to a probability distribution Q∞, which is indeed a stationary and ergodic distribution for the environment
viewed from the random walker (Xn)n∈N and is also mutually absolutely continuous to the law of the environment P.
Since, as usual, the random walk can be written as an additive functional of the environment viewed from the random
walker, one can apply Birkhoff’s ergodic theorem and use the ergodicity of Q∞ to get the strong LLN for the random
walk (hence its asymptotic velocity) for Q∞-a.e. environment. Using the fact that P � Q∞, the above strong LLN
holds for P-a.e. environment, too. Finally, since the velocities of the ρ-truncated walks are uniformly bounded from
below by a strictly positive constant and since they converge to the velocity of (Xn)n∈N when ρ → ∞, we obtain a
ballistic behavior.

To analyze ballisticity we have used the same method as in [8], although one cannot apply [8, Theorems 2.3, 2.4]
directly to the present case, since some hypotheses are not satisfied in our context. In particular, in [8] three conditions
(called E, C, D) are assumed, and only condition C is satisfied by our model. By means of estimates based on electrical
networks, we are able to extend the method developed in [8] to the present case. We point out that a crucial tool in
the study of effective conductances is given by a comparison with the nearest-neighbor conductance model. Indeed,
a posteriori, the ballistic/subballistic behavior of Mott random walk appears very similar to the one of the modified
version with only nearest-neighbor jumps.

We now move to sub-ballisticity (the regime of zero velocity is not covered in [8] and our method could be in
principle applied to random walks on Z with arbitrarily long jumps). We define a coupling between the random walk
(Xn)n≥0, a sequence of suitable N+-valued i.i.d. random variables ξ1, ξ2, . . . with finite mean, and an ergodic sequence
of random variables S1, S2, . . . with the following properties: Fix ω and call now Tk+1 the first time the random walk
overjumps the point ξ1 + · · · + ξk . Sk is a geometric random variable of parameter sk = s(τξ1+···+ξk

ω), where τ· is the
usual shift and s a deterministic function. The coupling guarantees that XTk+1 does not exceed ξ1 + · · · + ξk + ξk+1
and also ensures that the time Tk+1 − Tk is larger than Sk . Notice that

Xn

n
≤ XTk+1

Tk

≤ ξ1 + · · · + ξk+1

S1 + S2 + · · · + Sk

if Tk ≤ n < Tk+1, (1)

and therefore the sub-ballisticity of (Xn)n≥0 follows from the LLN for (ξk)k∈N+ and the LLN for (Sk)k∈N+ , since our
assumption E[e(1−λ)(x1−x0)−(1+λ)(x0−x−1)] = ∞ implies that E[1/s(ω)] = +∞.

1.1. Outline

In Section 2 we rigorously introduce the (perturbed) Mott random walk in its continuous and discrete-time versions.
Theorem 1 states the transience to the right and gives conditions implying ballisticity or subballisticity. Theorem 2
deals with the Radon–Nikodym derivative of the invariant measure for the environment viewed from the walker
with respect to the original law P of the environment and gives a characterization of the limiting speed of the walk.
Section 2.1 comments the assumptions we made for the Theorems, while two important (counter-)examples can be
found in Section 2.2.

In Section 3 we collect results on the ρ-truncated walks. Estimates of the effective conductances induced by these
walks and of the time they spend on a given interval are carried out in Sections 3.1 and 3.2, respectively. In Section 3.3
we show that the probability for them to hit a specific site to the right is uniformly bounded from below.

Section 4 introduces the regenerative structure for the ρ-truncated random walks and in Section 4.1 we give esti-
mates on the regeneration times. The existence and positivity of the limiting speed for the truncated walks is proven
in Section 4.2.

In Section 5 we characterize the density of the invariant measure for the process viewed from the ρ-truncated
walker with respect to the original law of the environment. In Section 5.1 we bound the Radon–Nikodym derivatives
from above by an L1 function, while in Section 5.2 we give a uniform lower bound. In Section 5.3 we finally pass
to the limit ρ → ∞ and obtain an invariant measure for the environment viewed from the non-truncated walker and
show that it is also absolutely continuous with respect to P (see Lemma 5.9).
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To conclude, in Sections 6, 7 and 8 we prove, respectively, parts (i), (ii) and (iii) of Theorem 1. Some technical
results are collected in the Appendixes A, B and C.

2. Mott random walk and main results

One-dimensional Mott random walk is a particular random walk in a random environment. The environment ω is given
by a double-sided sequence (Zk,Ek)k∈Z, with Zk ∈ (0,+∞) and Ek ∈R for all k ∈ Z. We denote by � = ((0,+∞)×
R)Z the set of all environments. Let P be a probability on �, standing for the law of the environment. We denote by
E the associated expectation. Given 	 ∈ Z, we define the shifted environment τ	ω as τ	ω := (Zk+	,Ek+	)k∈Z. From
now on, with slight abuse of notation, we will denote by Zk , Ek also the random variables on (�,P) such that
(Zk(ω),Ek(ω)) is the kth projection of the environment ω.

Our main assumptions on the environment are the following:

(A1) The random sequence (Zk,Ek)k∈Z is stationary and ergodic with respect to shifts;
(A2) E[Z0] is finite;
(A3) P(ω = τ	ω) = 0 for all 	 ∈ Z;
(A4) There exists d > 0 satisfying P(Z0 ≥ d) = 1.

We postpone to Section 2.1 some comments on the above assumptions.
It is convenient to introduce the sequence (xk)k∈Z of points on the real line, where x0 = 0 and xk+1 = xk + Zk .

Then the environment ω can be thought also as the marked simple point process (xk,Ek)k∈Z, which will be denoted
again by ω (with some abuse of notation). In this case, the 	-shift reads τ	ω = (xk+	 − x	,Ek+	)k∈Z. For physical
reasons, Ek is called the energy mark associated to point xk , while Zk is the interpoint distance (between xk−1 and xk).

Fix now a symmetric and bounded (from below by umin and from above by umax) measurable function
u : R × R → R. Given an environment ω, the Mott random walk (Yt )t≥0 is the continuous-time random walk on
{xk}k∈Z with probability rate

rxi ,xk
(ω) := exp

{−|xi − xk| + u(Ei,Ek)
}

(2)

for a jump from xi to xk �= xi . For convenience, we set rx,x(ω) ≡ 0. Note that the Mott walk is well defined for P-
a.a. ω. Indeed, since the interpoint distance is a.s. at least d and the function u is uniformly bounded, the holding time
parameter rx(ω) := ∑

y rx,y(ω) can be bounded from above by a constant C > 0 uniformly in x ∈ {xk}k∈Z, hence
explosion does not take place.

We now introduce a bias λ which corresponds to the intensity of the external field. For a fixed λ ∈ [0,1), the biased
Mott random walk (Yt )t≥0 with environment ω is the continuous-time random walk on {xk}k∈Z with probability rates

rλ
x,y(ω) = eλ(y−x)rx,y(ω) (3)

for a jump from x to y �= x. For convenience, we set rλ
x,x(ω) ≡ 0 and denote the holding time parameter by rλ

x (ω) :=∑
y rλ

x,y(ω). When λ = 0, one recovers the original Mott random walk. Since for λ ∈ (0,1) we have, for P-a.a. ω,

rλ
x (ω) ≤ ∑

k∈Z e−(1−λ)|k|d+umax < ∞, the biased Mott random walk with environment ω is well defined for P-a.a. ω.
We can consider also the jump chain (Yn)n≥0 associated to the biased Mott random walk (we call it the discrete-

time Mott random walk). Given the environment ω, (Yn)n≥0 is the discrete-time random walk on {xk}k∈Z with jump
probabilities

pλ
x,y(ω) := rλ

x,y(ω)

rλ
x (ω)

, x �= y. (4)

A similar definition holds for the unbiased case (λ = 0).
The following result concerns transience, sub-ballisticity and ballisticity:

Theorem 1. Fix λ ∈ (0,1). Then, for P-a.a. ω, the continuous-time Mott random walk (Yt )t≥0 with environment ω,
bias λ and starting at the origin satisfies the following properties:
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(i) Transience to the right: limt→∞ Yt = +∞ a.s.
(ii) Ballistic regime: If E[e(1−λ)Z0] < +∞ and u : R×R→R is continuous, then the asymptotic velocity

vY(λ) := lim
t→∞

Yt

t

exists a.s., it is deterministic (and does not depend on ω), finite and strictly positive (an integral representation
of vY is given in Section 7, see (85) and (95)).

(iii) Sub-ballistic regime: If

E
[
e(1−λ)Z0−(1+λ)Z−1

] = ∞, (5)

then

vY(λ) := lim
t→∞

Yt

t
= 0 a.s. (6)

In particular, if E[Z−1|Z0] ≤ C for some constant C which does not depend on ω and E[e(1−λ)Z0 ] = ∞, then
condition (5) is satisfied and vY(λ) = 0.

In addition, for P-a.a. ω the above properties remain valid (restricting to integer times n ≥ 0) for the discrete-time
Mott random walk (Yn)n≥0 with environment ω, bias λ and starting at the origin, and its velocity vY (λ) := limn→∞ Yn

n
.

Remark 2.1. In the case λ = 0 the Mott random walks Yt and Yn are recurrent and have a.s. zero velocity. Recurrence
follows from [6, Theorem 1.2(iii)] and the recurrence of the spatially homogeneous discrete-time random walk on Z

with probability to jump from x to y proportional to e−|x−y|. To see that the velocity is zero, set Q(dω) = r0(ω)
E[r0]P(dω).

Q is a reversible and ergodic distribution for the environment viewed from the discrete-time Mott random walker Yn

(see [5]). By writing Yn as an additive function of the process “environment viewed from the walker” and using the
ergodicity of Q, one gets that vY (λ = 0) is zero a.s., for Q-a.a. ω and therefore for P-a.a. ω. Similarly, vY(λ = 0) = 0
a.s., for P-a.a. ω (use that P is reversible and ergodic for the environment viewed from Yt , see [12]).

Remark 2.2. If the random variables Zk are i.i.d. (or even when only Zk , Zk+1 are independent for every k) and
u is continuous, the above theorem implies the following dichotomy: vY(λ) > 0 if and only if E[e(1−λ)Z0] < +∞,
otherwise vY(λ) = 0. The same holds for vY (λ). We point out that, if the Zk’s are correlated, E[e(1−λ)Z0 ] = +∞ does
not imply in general zero velocity (see Example 1 in Section 2.2).

Remark 2.3. Theorem 1 shows that there are cases in which the limiting speed vY(λ) is not continuous in λ. See
Example 2 in Section 2.2.

Remark 2.4. When considering the continuous-time nearest neighbor random walk on {xk}k∈Z with probability rate
for a jump from x to a neighboring site y given by (3), the random walk is ballistic if and only if

∞∑
i=1

E
[

exp
{
(1 − λ)Z0 − (1 + λ)Z−i − 2λ(Z−i+1 + · · · + Z−1)

}]
< ∞ (7)

(the same criterion holds for the discrete-time version of the random walk). A derivation of this fact from classical
results on random walks in random environment (cf. [24]) is given in Appendix C. Note that, if the Zk’s are i.i.d.,
the above condition (7) reduces to the bound E[e(1−λ)Z0 ] < ∞, thus leading to the same dichotomy as pointed out
in Remark 2.2. Formula (7) would suggest that, in order to ensure ballisticity for Mott random walk, the condition
E[e(1−λ)Z0 ] < +∞ introduced in Theorem 1(ii) could be weakened. As outlined in Remark 3.13, this can indeed be
achieved at the cost of dealing with rather ugly formulas having some analogy with (7).

One of the most interesting technical results we use in the proof of Theorem 1, Part (ii), concerns the invariant
measure for the environment seen from the point of view of the walker:
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Theorem 2. Fix λ ∈ (0,1). Suppose that E[e(1−λ)Z0 ] < +∞ and u : R × R → R is continuous. Then the following
holds:

(i) The environment viewed from the discrete-time Mott random walker (Yn)n≥0, i.e. the process (τφ(Yn)ω)n≥0 where
φ(xi) = i, admits an invariant and ergodic distribution Q∞ absolutely continuous to P such that

0 < γ ≤ dQ∞

dP
≤ F, P-a.s. (8)

for a suitable universal constant γ and an explicit function F ∈ L1(P) (defined in (65)).
(ii) By writing E∞ for the expectation with respect to Q∞, the velocities vY(λ), vY (λ) can be expressed as

vY(λ) = vY (λ)/E∞[
1/rλ

0 (ω)
]
, (9)

vY (λ) = E[Z0]E∞
[∑

k∈Z
kpλ

0,xk
(ω)

]
, (10)

and the expectations in (9), (10) are finite and positive (recall that rλ
0 (ω) = ∑

k rλ
0,k(ω)).

Proof. Theorem 2(i) is part of Proposition 5.3 given at the end of Section 5. The proof of Theorem 2(ii) is part of
Section 7, more precisely (9) and (10) are an immediate consequence of (85), (94) and the observation just after
(88). �

In the rest of the paper, if not stated otherwise, λ will be thought of as a fixed constant in (0,1).

2.1. Comments on assumptions (A1)–(A4)

By Assumption (A1) both random sequences (Zk)k∈Z and (Ek)k∈Z are stationary and ergodic with respect to shifts.
The physically interesting case is given by two independent random sequences (Zk)k∈Z and (Ek)k∈Z, the former
stationary and ergodic, while the latter given by i.i.d. random variables. In this case assumption (A1) is satisfied (see
Lemma B.4 in Appendix B).

Assumption (A3) ensures that a.s. the environment is not periodic. If the energy marks Ek are i.i.d. and non-
constant, as in the physically interesting case, then (A3) is automatically fulfilled. Note that the sequence (Zk)k∈Z
could be periodic, without violating our assumptions (e.g. take Zk = 1 for all k ∈ Z).

Assumption (A4), corresponding to interpoint distances which are uniformly bounded from below, is not restrictive
from a physical viewpoint and d can be taken of the angstrom order. On the other hand, (A4) plays a crucial role in
our proofs.

2.2. Examples

In this section we give two examples highlighting the importance of the assumptions in Theorem 1 and showing some
of its consequences.

Example 1. E[e(1−λ)Z0 ] = ∞ does in general not imply that vY(λ) = 0, vY (λ) = 0.
We set u(·, ·) ≡ 0 and take p ∈ (0,1/2). We choose (Zk)k∈Z as the reversible Markov chain with values in

{γ,2γ,3γ, . . .} for some γ ≥ 1 and with transition probabilities defined as follows:⎧⎪⎨
⎪⎩

P(kγ, (k + 1)γ ) = p for k ≥ 1,

P (kγ, (k − 1)γ ) = 1 − p for k ≥ 2,

P (γ, γ ) = 1 − p.

The equilibrium distribution is given by π(kγ ) = c(p/(1 − p))k for k ≥ 1, c being the normalizing constant. Hence,
P(Z0 = kγ ) = π(kγ ), for each k ≥ 1. Notice that E[e(1−λ)Z0 ] = c

∑
k≥1 e(1−λ)kγ (p/(1 − p))k is infinite if and only
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if

λ ≤ 1 − 1

γ
log

1 − p

p
. (11)

We now show that we can choose the parameters such that E[e(1−λ)Z0 ] = ∞ and
∑

k krλ
0,xk

(ω) > 0 for each ω, the

latter implying that vY(λ), vY (λ) > 0 due to Theorem 2(ii) and the definition of pλ
0,xk

(ω) in (4).

If Z0 = jγ , for some j ≥ 1, the local drift
∑

k krλ
0,xk

(ω) can be bounded from below by the drift of the configuration
with longer and longer interpoint distances to the right and shorter and shorter interpoint distances to the left: Zk =
(j + k)γ for all k ≥ −j + 1 and Zk = γ for all k ≤ −j . Note that in this case

⎧⎪⎨
⎪⎩

xk = γ [kj + k(k−1)
2 ] if k ≥ 1,

x−k = −γ [kj − k(k+1)
2 ] if 1 ≤ k ≤ j − 1,

x−k = −γ [ j (j−1)
2 + k − j + 1] if k ≥ j.

Hence we can write∑
k

krλ
0,xk

(ω) ≥ A(λ,γ, j) − B(λ,γ, j) − C(λ,γ, j),

where A(λ,γ, j) = ∑
k≥1 k exp{−(1 − λ)γ (kj + k(k − 1)/2)}, B(λ,γ, j) = ∑

1≤k≤j−1 k exp{−(1 + λ)γ (kj −
k(k + 1)/2)} and C(λ,γ, j) = ∑

k≥j k exp{−(1 + λ)γ (j (j − 1)/2 + k − j + 1)}. We bound A(λ,γ, j) from be-
low with its first summand exp{−(1 − λ)γj} and prove that

lim
γ→∞ sup

j∈N
[
B(λ,γ, j) + C(λ,γ, j)

]
exp

{
(1 − λ)γj

}
< 1, (12)

since this will imply the positivity of the local drift
∑

k krλ
0,xk

(ω) for any possible ω, for γ big enough. Using that

Z−1 = γ (j − 1) we bound B(λ,γ, j) ≤ j2 exp{−(1 + λ)γ (j − 1)} and, using that j (j − 1)/2 + 1 ≥ j/2, we bound

C(λ,γ, j) ≤ e− (1+λ)
2 γj

(∑
k≥j

(k − j)e−(1+λ)γ (k−j) + j
∑
k≥0

e−(1+λ)γ k

)
≤ jKe− (1+λ)

2 γj ,

for some constant K > 0 independent of λ and γ (recall that γ ≥ 1). With these bounds we see that (12) holds as soon
as λ > 1/3. On the other hand, by (11) we can choose p close enough to 1/2 so that E[e(1−λ)Z0 ] is infinite.

Example 2. The velocities vY(λ), vY (λ) are not continuous in general.
Take u ≡ 0. Let the Zk be i.i.d. random variables larger than 1 such that eZ0 has probability density f (x) :=
c

xγ (lnx)2 1[e,+∞)(x), with γ ∈ (1,2) and c is the normalizing constant. Since, for x ≥ e, 1
xγ (lnx)2 ≤ 1

x(lnx)2 =
− d

dx
(1/ lnx), the constant c is well defined and E[e(1−λ)Z0] = ∫ ∞

e
cx1−λ

xγ (lnx)2 dx < ∞ if and only if λ ≥ 2 − γ . Note
that λc := 2 − γ ∈ (0,1). Then the above observations and Theorem 1 imply that vY(λ), vY (λ) are zero for λ ∈ (0, λc)

and are strictly positive for λ ∈ [λc,1).

3. A class of random walks on Z with jumps of size at most ρ ∈ [1,+∞]

Given i, j ∈ Z we replace, with a slight abuse of notation, rλ
i,j (ω) := rλ

xi ,xj
(ω) and the associated conductance

ci,j (ω) := e2λxi rλ
i,j (ω) (note that in ci,j (ω) the dependence on λ has been omitted). Hence we have ci,i ≡ 0 and

ci,j (ω) = eλ(xi+xj )−|xj −xi |+u(Ei ,Ej ) = cj,i(ω), i �= j in Z. (13)
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Given ρ ∈ N+ ∪{+∞} we introduce the discrete-time random walk (X
ρ
n )n≥0 with environment ω as the Markov chain

on Z such that the ω-dependent probability to jump from i to j in one step is given by⎧⎪⎨
⎪⎩

ci,j (ω)/
∑

k∈Z ci,k(ω), if 0 < |i − j | ≤ ρ,

0 if |i − j | > ρ,

1 − ∑
j :|j−i|≤ρ ci,j (ω)/

∑
k∈Z ci,k(ω) if i = j.

(14)

Warning 3.1. When the Markov chain (X
ρ
n )n≥0 starts at i ∈ Z, we write P

ω,ρ
i for its law and E

ω,ρ
i for the associated

expectation. In order to make the notation lighter, inside P
ω,ρ
i (·) and E

ω,ρ
i [·] we will usually write Xn instead of X

ρ
n .

It is convenient to introduce the random bijection ψ : Z → {xk}k∈Z defined as ψ(i) = xi , and also the continuous-
time random walk (X∞

t )t≥0 on Z with probability rate rλ
i,j (ω) for a jump from i to j . Since

ci,j (ω)∑
k∈Z ci,k(ω)

= rλ
i,j (ω)∑

k∈Z rλ
i,k(ω)

,

we conclude that realizations of Y and Y can be obtained as

Yt = ψ
(
X∞

t

)
, Yn = ψ

(
X∞

n

)
. (15)

In particular, when the denominators are nonzero, we can write

Yt

t
= ψ(X∞

t )

X∞
t

X∞
t

t
,

Yn

n
= ψ(X∞

n )

X∞
n

X∞
n

n
. (16)

By Assumptions (A1) and (A2), limi→∞ ψ(i)/i = E[Z0] < ∞, P-a.s. By this limit, together with (15) and (16), we
will see in Sections 7, 8 that in order to prove Theorem 1 it is enough to show the same properties for X∞, X∞ instead
of Y, Y .

In what follows, we write vXρ (λ) = v if, for P-a.a. ω, limn→∞ X
ρ
n

n
= v P

ω,ρ
0 -a.s. A similar meaning is assigned to

vXρ (λ).

Remark 3.2. In the rest of this section we will present propositions, lemmas and corollaries containing several bounds
with positive constants. These will be denoted by the letter K possibly with some subindex, which are uniform in ρ

and ω. As the reader can easily check, these constants can be taken independent also from λ when λ varies e.g. in
[0,1/2). The same is true also for the positive constant ε appearing in Lemma 3.16. This observation could be very
relevant in the derivation of the Einsten relation.

3.1. Estimates on effective conductances

We take again ρ ∈ N+ ∪ {+∞}. For A, B disjoint subsets of Z, we introduce the effective conductance between A

and B as

C
ρ
eff(A ↔ B) := min

{ ∑
i<j∈Z:|i−j |≤ρ

ci,j

(
f (j) − f (i)

)2 : f |A = 0, f |B = 1

}
. (17)

We also set

πρ(i) :=
∑

j∈Z:|j−i|≤ρ

ci,j , i ∈ Z, (18)

and define p
ρ
esc(i) as the escape probability of X

ρ
n from i ∈ Z, i.e.

pρ
esc(i) := P

ω,ρ
i (Xn �= i for all n ≥ 1). (19)
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It is known (see the discussion before Theorem 2.3 in [15, Section 2.2], formula (2.4) and exercise 2.13 therein) that

pρ
esc(i) := lim

N→∞
C

ρ
eff(i ↔ (−∞, i − N ] ∪ [i + N,∞))

π∞(i)
(20)

(recall that the probability for X
ρ
n to jump from i to j (for 0 < |i − j | ≤ ρ) is given by ci,j /π

∞(i), cf. (14)). We will
see (cf. Corollary 3.5) that the escape probability of each ρ-random walk can be uniformly bounded from below and
above by the escape probability of the nearest neighbor walk times constants.

Warning 3.3. Note that C
ρ
eff(A ↔ B), πρ(i) and p

ρ
esc(i) depend on the environment ω, although we have omitted ω

from the notation.

Proposition 3.4. There exists a constant K > 0 not depending on ω, ρ, A and B such that

C1
eff(A ↔ B) ≤ C

ρ
eff(A ↔ B) ≤ KC1

eff(A ↔ B).

Proof. Since C
ρ
eff(A ↔ B) is increasing in ρ, it is enough to show the second inequality for ρ = ∞. To this aim take

any valid f : Z → R and note that

∑
i<j∈Z

ci,j

(
f (j) − f (i)

)2 =
∑

i<j∈Z
ci,j

(
j−1∑
z=i

f (z + 1) − f (z)

)2

≤
∑

i<j∈Z
ci,j · (j − i)

j−1∑
z=i

(
f (z + 1) − f (z)

)2

=
∑
z∈Z

(
f (z + 1) − f (z)

)2
[∑

i≤z

∑
j≥z+1

ci,j · (j − i)

]
, (21)

where we have used the Cauchy–Schwarz inequality for the second step. Define the new conductances

c̄z,z+1 =
∑
i≤z

∑
j≥z+1

ci,j · (j − i).

Now we are left to show that c̄z,z+1 ≤ Kcz,z+1 for some K and this will conclude the proof. Using the fact that ∀k > k′
we have xk − xk′ > d(k − k′), we have

c̄z,z+1 =
∑
i≤z

∑
j≥z+1

eλ(xi+xj )−(xj −xi )+u(Ei,Ej )(j − i)

≤ eλ(xz+xz+1)−(xz+1−xz)+umax
∑
i≤z

∑
j≥z+1

e−(xj −xz+1)(1−λ)e−(xz−xi )(1+λ)(j − i)

≤ cz,z+1eumax−umin
∑
i≤z

∑
j≥z+1

e−d(j−z−1)(1−λ)e−d(z−i)(1+λ)(j − i)

≤ cz,z+1eumax−umin

∞∑
l=0

∞∑
h=0

e−d(1−λ)he−d(1+λ)l(h + l + 1)=: cz,z+1K.

Since the last double sum is bounded for each λ ∈ [0,1), we obtain the claim. �

As a byproduct of (20) and Proposition 3.4 we get:
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Corollary 3.5. There exist constants K1,K2 > 0 which do not depend on ω, ρ such that

K1p
1
esc(i) ≤ pρ

esc(i) ≤ K2p
1
esc(i), ∀i ∈ Z.

Lemma 3.6. There exists a constant K > 0 which does not depend on ω, ρ such that

π1(k) ≤ πρ(k) ≤ Kπ1(k), ∀k ∈ Z.

Proof. Since πρ(k) is increasing in ρ it is enough to prove that π∞(k) ≤ Kπ1(k) for all k ∈ Z. We easily see that∑
j>k

ck,j = eλ(xk+1+xk)−(xk+1−xk)
∑
j>k

e−(1−λ)(xj −xk+1)+u(Ej ,Ek)

≤ ck,k+1eumax−umin
∑
j>k

e−d(j−k−1)(1−λ)=: ck,k+1K1. (22)

Analogously,∑
j<k

ck,j = eλ(xk−1+xk)−(xk−xk−1)
∑
j<k

e−(xk−1−xj )(1−λ)+u(Ej ,Ek)

≤ ck−1,keumax−umin
∑
j>k

e−d(k−1−j)(1−λ)=: ck−1,kK2. (23)
�

The following lemma is well known and corresponds to formula (2.1.4) in [24]:

Lemma 3.7. Let {c̄k,k+1}k∈Z be any system of strictly positive conductances on the nearest neighbor bonds of Z.
Let HA be the first hitting time of the set A ⊂ Z for the associated discrete-time nearest-neighbor random walk
among the conductances {c̄k,k+1}k∈Z, which jumps from k to k ± 1 with probability c̄k,k±1/(c̄k,k−1 + c̄k,k+1). Take
−∞ < M < x < N < ∞, with M,x,N ∈ Z and write HM , HN for H{M}, H{N}. Then

P n.n.
x (HM < HN) = Cn.n.

eff (x ↔ (−∞,M])
Cn.n.

eff (x ↔ (−∞,M] ∪ [N,∞))
,

where P n.n.
x is the probability for the nearest-neighbor random walk starting at x, and Cn.n.

eff (A ↔ B) is the effective
conductance of the nearest-neighbor walk between A and B .

We state another technical lemma which will be frequently used when dealing with conductances:

Lemma 3.8. P(
∑∞

j=0
1

cj,j+1
< +∞) = 1.

Proof. By assumption (A1), (xj+1 − xj )j∈Z is a stationary ergodic sequence. By writing xj = ∑j−1
k=0(xk+1 − xk), the

ergodic theorem implies that limj→∞
xj

j
= E[x1], P-a.s. As a consequence we get that

lim
j→∞

−λ(xj + xj+1) + (xj+1 − xj )

j
= −2λE[x1] < 0, P-a.s.

Since
∑∞

j=0
1

cj,j+1
= ∑∞

j=0 e−λ(xj +xj+1)+(xj+1−xj ), the claim follows. �

We conclude this section with a simple estimate leading to an exponential decay of the transition probabilities:

Lemma 3.9. There exists a constant K which does not depend on ω, ρ, such that P-a.s.

P
ω,ρ
i

(|X1 − i| > s
) ≤

∑
j :|j−i|>s

ci,j∑
k∈Z ci,k

≤ Ke−ds(1−λ) ∀s, ρ ∈ N+ ∪ {+∞},∀i ∈ Z. (24)
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Proof. The first inequality follows from the definitions. To prove the second one, we can estimate∑
j>i+s

ci,j = eλ(xi+1+xi )−(xi+1−xi )
∑

j>i+s

e−(xj −xi+1)(1−λ)+u(Ej ,Ei)

≤ ci,i+1eumax−umin
∑

j>i+s

e−d(j−i−1)(1−λ)

= ci,i+1e−ds(1−λ) eumax−umin

1 − e−d(1−λ)
=: ci,i+1e−ds(1−λ)K1, (25)

∑
j<i−s

ci,j = eλ(xi−1+xi )−(xi−xi−1)
∑

j<i−s

e−(xi−1−xj )(1−λ)+u(Ej ,Ei)

≤ ci−1,ie
umax−umin

∑
j<i−s

e−d(i−1−j)(1−λ)= ci−1,ie
−ds(1−λ)K1. (26)

The second bound in (24) now follows from (25), (26) and Lemma 3.6. �

3.2. Expected number of visits

We fix some notations which will be frequently used below. For I ⊆ {0,1,2, . . . } and A ⊂ Z, we denote by N
ρ
I (A)

the time spent by the random walk X
ρ
n in the set A during the time interval I :

N
ρ
I (A) :=

∑
k∈I

1X
ρ
k ∈A.

If I := {0,1,2, . . . } we simply write N
ρ∞(A) and if A = {x} we write N

ρ∞(x).

Warning 3.10. When appearing inside Pω,ρ(·) or Eω,ρ(·), NI (A), N∞(A) will usually replace N
ρ
I (A), N

ρ∞(A).

We can state our main result on the expected number of visits to a site k for a given environment:

Proposition 3.11. There exists a constant K0, not depending on ρ, ω, such that the function gω : {0,1, . . . } → R+,
defined as

gω(n) := K0π
1(−n)

∞∑
j=0

e−2λxj +(1−λ)(xj+1−xj ), n ≥ 0, (27)

satisfies

E
ω,ρ
0

[
N∞(k)

] ≤ gω

(|k|), ∀k ≤ 0. (28)

We recall that π1(k) = ck−1,k + ck,k+1 for all k ∈ Z. Moreover, we point out that gω(n) can be rewritten as
K0π

1(−n)
∑∞

j=0
1

cj,j+1
, therefore it is finite P-a.s. by Lemma 3.8. We remark that estimate (28) is not uniform in

the environment ω, and in general one cannot expect a uniform bound. This technical fact represents a major differ-
ence with the setting of [8], where the existence of an ω-independent upper bound of the expected number of visits is
required (cf. Condition D therein).

Proof. During the proof K will denote a generic positive constant, not depending on ρ, ω, whose value may change
from line to line.

Fix k < 0. Starting from 0, the random variable N
ρ∞(k) is equal to

N
ρ∞(k) =

{
0 with probability 1 − P

ω,ρ
0 (X· eventually reaches k),

Y (k) with probability P
ω,ρ
0 (X· eventually reaches k),
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where Y(k) is a geometric random variable whose parameter is the escape probability p
ρ
esc(k) from k (recall Warn-

ing 3.3). Therefore

E
ω,ρ
0

[
N∞(k)

] = 1

p
ρ
esc(k)

P
ω,ρ
0 (X· eventually reaches k). (29)

Let us start by giving an upper bound for the probability of reaching k in finite time:

P
ω,ρ
0 (X· eventually reaches k) ≤ P

ω,ρ
0

(
X· eventually reaches A := (−∞, k])

= lim
N→∞P

ω,ρ
0 (HBN

> HA), (30)

where BN := [N,∞) and the H ’s are the hitting times of the respective sets. By a well-known formula (see [3, Proof
of Fact 2], [15, Exercise 2.36])

P
ω,ρ
0 (HBN

> HA) ≤ C
ρ
eff(0 ↔ A)

C
ρ
eff(0 ↔ A ∪ BN)

. (31)

Using now Proposition 3.4 we have that there exists a K such that

P
ω,ρ
0 (X· eventually reaches k) ≤ lim

N→∞K
C1

eff(0 ↔ A)

C1
eff(0 ↔ A ∪ BN)

= K
C1

eff(0 ↔ A)

C1
eff(0 ↔ A ∪ B∞)

, (32)

where C1
eff(0 ↔ A ∪ B∞) := limN→∞ C1

eff(0 ↔ A ∪ BN).
Call CN := (−∞,−N + k] ∪ [N + k,∞). By Corollary 3.5 and equation (20), we know that

pρ
esc(k) ≥ 1

K
lim

N→∞
C1

eff(k ↔ CN)

π1(k)

= 1

K

C1
eff(k ↔ C∞)

π1(k)
, (33)

where C1
eff(k ↔ C∞) := limN→∞ C1

eff(k ↔ CN).
Since we have conductances in series, we can write

C1
eff(k ↔ C∞) =

(
k−1∑

j=−∞

1

cj,j+1

)−1

+
( ∞∑

j=k

1

cj,j+1

)−1

. (34)

We claim that

k−1∑
j=−∞

1

cj,j+1
= +∞,

(35)∞∑
j=k

1

cj,j+1
< +∞ P-a.s.

Indeed, the first series diverges a.s. since, for j ≤ −1, 1/cj,j+1 ≥ Ke−λ(xj +xj+1)+(xj+1−xj ) ≥ K (note that
xj , xj+1 ≤ 0). The second series is finite a.s. due to Lemma 3.8.
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Due to (29), (32), (33), (34) and (35) we can write

E
ω,ρ
0

[
N∞(k)

] ≤ K
π1(k)

C1
eff(k ↔ C∞)

· C1
eff(0 ↔ A)

C1
eff(0 ↔ A ∪ B∞)

= K
π1(k)

(
∑k−1

j=−∞ 1
cj,j+1

)−1 + (
∑∞

j=k
1

cj,j+1
)−1

·
(
∑−1

j=k
1

cj,j+1
)−1

(
∑−1

j=k
1

cj,j+1
)−1 + (

∑∞
j=0

1
cj,j+1

)−1

= Kπ1(k)

( ∞∑
j=0

1

cj,j+1

)
≤ K0π

1(k)

∞∑
j=0

e−λ(xj +xj+1)+(xj+1−xj ) ≤ gω

(|k|). (36)

We now consider the case k = 0. By (29), (33), (34) and (35) we have

E
ω,ρ
0

[
N∞(0)

] = 1

p
ρ
esc(0)

≤ K
π1(0)

C1
eff(0 ↔ C∞)

= Kπ1(0)

∞∑
j=0

1

cj,j+1

and we can conclude as in (36). �

We now collect some properties of the function gω:

Lemma 3.12. There exist constants K∗ > 0 which do not depend on ρ, ω, such that

π1(k) ≤ K∗e2λdk, ∀k ≤ 0, (37)

E
[
gω(k)

] ≤ K∗
e−2λdk

1 − e−2λd
E

[
e(1−λ)x1

]
, ∀k ≥ 0, (38)

gω(k) ≥ gτ	ω(k + 	), ∀k, 	 ≥ 0, (39)

EE
ω,ρ
k

[
N∞(Z−)

] ≤ K∗
(

1

(1 − e−2λd)2
+ |k|

1 − e−2λd

)
E

[
e(1−λ)x1

]
, ∀k ≤ 0. (40)

Trivially, the second and fourth estimates are effective when E[e(1−λ)x1 ] < ∞.

Proof. We first prove (37). Recall π1(k) = ck−1,k + ck,k+1. Given i ≤ 0 we have xi ≤ id , implying ci−1,i ≤
eumax eλ(xi−1+xi )−(xi−xi−1) ≤ Ke2λdi . By the same argument, for i < 0 one gets ci,i+1 ≤ Ke2λdi and, for i = 0,
c0,1 = eλx1−x1+u(E0,E1) ≤ K .

(38) is obtained noting that, by (37), E[gω(k)] ≤ K∗e−2λdk
∑∞

j=0 e−2λjdE[e(1−λ)x1 ].
To get (39) we first observe that xi−	(τ	ω) = xi(ω) − x	(ω) and Ei−	(τ	ω) = Ei(ω) for all i ∈ Z. As a conse-

quence, we get π1(−k − 	)[τ	ω] = e−2λx	π1(−k) (the r.h.s. refers to the environment ω). Therefore, using also that
xj (τ	ω) = xj+	(ω) − x	(ω) and that xj+1(τ	ω) − xj (τ	ω) = xj+1+	(ω) − xj+	(ω), we have

gτ	ω(k + 	) = K0π
1(−k)e−2λx	(ω)

∞∑
j=0

e−2λxj (τ	ω)+(1−λ)(xj+1(τ	ω)−xj (τ	ω))

= K0π
1(−k)

∞∑
j=0

e−2λxj+	+(1−λ)(xj+1+	−xj+	) ≤ gω(k), (41)

thus completing the proof of (39).



1178 A. Faggionato, N. Gantert and M. Salvi

Finally, for (40), we write, thanks to Proposition 3.11,

EE
ω,ρ
k

[
N∞(Z−)

] =
∑
z≤k

EE
ω,ρ
k

[
N∞(z)

] +
∑

k<z≤0

EE
ω,ρ
k

[
N∞(z)

]

≤
∑
z≤k

EE
ω,ρ
k

[
N∞(z)

] +
∑

k<z≤0

EEω,ρ
z

[
N∞(z)

]
(Markov Property)

≤
∑
i≥0

E
[
gτkω(i)

] + |k|E[
gω(0)

]
,

and the claim then follows from (38). �

Remark 3.13. In the spirit of Remark 2.4, we point out that we could consider weaker conditions than E[e(1−λ)Z0 ] <

+∞, at the cost of dealing with rather involved formulas. Take for simplicity u ≡ 0. In our case, E[e(1−λ)Z0 ] <

+∞ guarantees, by Lemma 3.12, that E[gω(k)] is finite and summable over k ≥ 0. But what is actually required is
that gω(k) bounds from above the quantity αω(k) := Kπ1(−k)

∑
j≥0

1
cj,j+1

(see the proof of Proposition 3.11). By
stationarity, one has

E[ck,k+1/ck+i,k+i+1] = E
[
e−(1+λ)Z0−2λ(Z1+···+Zi−1)+(1−λ)Zi

]
.

This identity allows to provide conditions for
∑

k≥0 E[αω(k)] to be finite, which are weaker than E[e(1−λ)Z0 ] < +∞.
One could go on in weakening conditions, also inside Proposition 5.4, and still get the ballisticity of the Mott random
walks Yt and Yn.

Corollary 3.14. There exist constants K1,K2 > 0 which do not depend on ρ, ω such that

E
ω,ρ
0

[
N∞(k)

] ≤ K1E
ω,1
0

[
N∞(k)

] ≤ K1gω

(|k|) ∀k ≤ 0, (42)

E
ω,ρ
0

[
N∞(k)

] ≤ K2E
ω,1
0

[
N∞(k)

] ∀k > 0. (43)

Proof. First we consider (42). Its second inequality is a restatement of Proposition 3.11. For the first inequality we
distinguish the cases k < 0 and k = 0. When k < 0 note that (32) and Lemma 3.7 imply that

P
ω,ρ
0 (X· eventually reaches k) ≤ KP

ω,1
0 (X· eventually reaches k). (44)

Then put together equation (29) (and its analogous version for ρ = 1), equation (44) and Corollary 3.5. For k = 0 use
that E

ω,ρ
0 [N∞(0)] = 1

p
ρ
esc(0)

(also in the case ρ = 1) and use Corollary 3.5.

Let us now consider equation (43). Start with (29). Due to Corollary 3.5 and the fact that P
ω,1
0 (X· eventually

reaches k) = 1 for each k > 0 (cf. Lemma 3.15 below) it is simple to conclude. �

3.3. Probability to hit a site on the right

Following [8], given k, z ∈ Z, we set

T ρ
z := inf

{
n ≥ 0 : Xρ

n ≥ z
}
, T ρ := T

ρ
0 , r

ρ
k (z) := P

ω,ρ
k (XTz = z).

Note that the dependence of ω has been omitted. Again (see Warnings 3.1 and 3.10), we simply write Tz, rk(z) inside
P

ω,ρ
k (·), E

ω,ρ
k (·).

Lemma 3.15. For P-a.a. ω and for each ρ ∈ N+ ∪ {∞} it holds that

P
ω,ρ
k (Tz < ∞) = 1 ∀k < z in Z.
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Proof. Without loss of generality we take k < 0 =: z and prove that P
ω,ρ
k (T0 = ∞) = 0. As in (31), setting CN :=

(−∞,−N ] and D = [0,∞), we can bound

P
ω,ρ
k (T0 = ∞) = lim

N→∞P
ω,ρ
k (τCN

< τD) ≤ lim inf
N→∞

C
ρ
eff(k ↔ CN)

C
ρ
eff(k ↔ CN ∪ D)

.

We observe that C1
eff(k ↔ CN ∪ D) = C1

eff(k ↔ CN) + C1
eff(k ↔ D), while (recall (35))

lim
N→∞C1

eff(k ↔ CN) =
(

k−1∑
j=−∞

1

cj,j+1

)−1

= 0, C1
eff(k ↔ D) =

( −1∑
j=k

1

cj,j+1

)−1

> 0.

Together with Proposition 3.4, this allows to conclude that P
ω,ρ
k (T0 = ∞) = 0. �

Our next result, Lemma 3.16, is the analog of Lemma 3.1 in [8]. Our proof follows a different strategy in order to
avoid to deal with Conditions D, E of [8], which are not satisfied in our context.

Lemma 3.16. There exists ε > 0 which does not depend on ρ, ω such that, P-a.s., r
ρ
k (0) ≥ 2ε for all k < 0 and for

all ρ ∈N+ ∪ {∞}.

Proof. We just make a pathwise analysis. By the Markov property we get

r
ρ
k (0) =

∑
−ρ≤j<0

∞∑
n=1

P
ω,ρ
k (Xn = 0,Xn−1 = j,X0,X1, . . . ,Xn−2 < 0)

=
∑

−ρ≤j<0

∞∑
n=1

P
ω,ρ
j (X1 = 0)P

ω,ρ
k (Xn−1 = j,X0,X1, . . . ,Xn−2 < 0). (45)

We claim that there exists ε > 0 such that, for all j and ω,

P
ω,ρ
j (X1 = 0) ≥ 2εP

ω,ρ
j (X1 ≥ 0).

Indeed, given j with −ρ ≤ j < 0, we can write

P
ω,ρ
j (X1 = 0)

P
ω,ρ
j (X1 ≥ 0)

≥ cj,0∑∞
l=0 cj,l

≥ K
eλxj +xj∑∞

l=0 eλ(xl+xj )−(xl−xj )
= K

1∑∞
l=0 e−(1−λ)xl

≥ K
1∑∞

l=0 e−(1−λ)dl
=: 2ε.

Coming back to (45), using the Markov property and the fact that T0 < ∞ a.s., we get

r
ρ
k (0) ≥ 2ε

∑
−ρ≤j<0

∞∑
n=1

P
ω,ρ
j (X1 ≥ 0)P

ω,ρ
k (Xn−1 = j,X0,X1, . . . ,Xn−2 < 0)

= 2ε
∑

−ρ≤j<0

∞∑
n=1

P
ω,ρ
k (Xn ≥ 0,Xn−1 = j,X0,X1, . . . ,Xn−2 < 0)

= 2εP
ω,ρ
k (XT0 ≥ 0) = 2ε. �
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4. Regenerative structure for the ρ-truncated random walk with ρ < ∞

In this section we take ρ < ∞. We recall the regenerative structure of [8] for the ρ-truncated random walk with ρ

finite.

Warning 4.1. In order to avoid heavy notation, in this section ρ is fixed once and for all in N+ and we write P ω
x , Tk ,

rk(z), Xn, . . . instead of P
ω,ρ
x , T

ρ
k , r

ρ
k (z), X

ρ
n , . . . . The whole section refers to the ρ-truncated random walk. Only in

Section 4.2, in which we collect the main conclusions, we will indicate ρ explicitly according to the usual notation.

Consider a sequence of i.i.d. Bernoulli r.v.’s ζ1, ζ2, . . . with parameter P(ζ1 = 1) = ε (the same ε as in Lemma 3.16)
which does not depend on the environment ω. P and E denote the probability law and the expectation of the ζ ’s. We
couple the sequence ζ = (ζ1, ζ2, . . .) with the random walk Xn in such a way that ζj = 1 implies XTjρ

= jρ.

To this aim we construct the quenched measure P
ω,ζ
0 of the random walk starting at 0 once both ω and ζ are fixed.

Recall Lemma 3.16. First, the law of (Xn)n≤Tρ is defined by

1{ζ1=1}P ω
0 (·|XTρ = ρ) + 1{ζ1=0}

[
r0(ρ) − ε

1 − ε
P ω

0 (·|XTρ = ρ) + 1 − r0(ρ)

1 − ε
P ω

0 (·|XTρ > ρ)

]
. (46)

Then, given j ≥ 1 and XTjρ
= y ∈ [jρ, (j + 1)ρ), the law of (XTjρ+n)n∈[0,T(j+1)ρ−Tjρ ] is

1{ζj+1=1}P ω
y

(·|XT(j+1)ρ
= (j + 1)ρ

) + 1{ζj+1=0}
[
ry((j + 1)ρ) − ε

1 − ε
P ω

y

(·|XT(j+1)ρ
= (j + 1)ρ

)

+ 1 − ry((j + 1)ρ)

1 − ε
P ω

y

(·|XT(j+1)ρ
> (j + 1)ρ

)]
. (47)

One can check that, by averaging P
ω,ζ
0 over ζ , one obtains the law P ω

0 of the original random walk (Xn)n≥0.
We introduce by iteration the sequence (	k)k≥0 as follows:

	0 := 0, 	k+1 := min{j > 	k : ζj = 1}, k ≥ 0.

Note that by construction we have XT	kρ
= 	kρ.

Given k ≥ 0 let Ck := (τXj +T	kρ
ω : 0 ≤ j < T	k+1ρ − T	kρ). As in [8] one can prove the following result (cf. [8,

Lemma 3.2] and the corresponding proof):

Lemma 4.2. Let ρ < ∞. Then the sequence of random pieces (Ck)k≥0 is stationary and ergodic under the measure
P ⊗ P⊗ P

ω,ζ
0 . In particular, τ	kρω has the same law P as ω for all k = 1,2, . . . .

As in [22], the fact that (Ck)k≥1 is stationary and ergodic can be restated as follows: under P ⊗ P ⊗ P
ω,ζ
0 the

random path (Xn)n≥0 with time points 0 < T	1ρ < T	2ρ < · · · is cycle-stationary and ergodic. This is the regenerative
structure pointed out in [8].

In what follows, we will consider also the random walk (Xn)n≥0 starting at x and with law P
ω,ζ
x . This random

walk is built as follows. Fix a such that x ∈ [aρ, (a + 1)ρ). Then, the law of (Xn)n≤T(a+1)ρ
is defined by (4) with j

replaced by a and y replaced by x. Note that Taρ = 0. Given j ≥ a + 1 and XTjρ
= y ∈ [jρ, (j + 1)ρ), the law of

(Xn)n∈[Tjρ+1,T(j+1)ρ ] is then given by (4). Again, the average over ζ of P
ω,ζ
x gives P ω

x .

4.1. Estimates on the regeneration times

As in [8] we set

P′ := P ⊗ P, E′[·] = E
[
E[·]].

In what follows we assume that E[e(1−λ)x1 ] < ∞.
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Lemma 4.3. Let ρ < ∞. There exist constants K1,K2 > 0 not depending on ω, ρ such that

E
[
E

ω,ζ
0 [T	1ρ]] ≥ K1ρ, (48)

E′[Eω,ζ
0 [T	1ρ]] ≤ K2

(
1

(1 − e−2λd)2
+ ρ

1 − e−2λd

)
E

[
e(1−λ)x1

]
. (49)

Proof. The proof of (48) is very similar to the derivation of the first inequality of (19) in [8]. We make some comments.
One first gets that

E
[
E

ω,ζ
0 [T	1ρ]] ≥ E

[
E

ω,ζ
0 [Tρ]] ≥ εEω

0 [Tρ], (50)

since, arguing as in [8], one derives from Lemma 3.16 that E
ω,ζ
0 [Tρ] ≥ ε

1−ε
Eω

0 [Tρ] on the event {ζ1 = 0}. Now take a

sequence Y1, Y2, . . . of i.i.d. positive random variables with P(Yi ≥ s) = (Ke−ds(1−λ)) ∧ 1 for s ≥ 1 integer, K being
the constant appearing in Lemma 3.9. Due to this lemma, under P ω

0 , Xk is stochastically dominated by Y1 + · · · + Yk

for any k ≥ 0. This domination allows to bound Eω
0 [Tρ] from below as in [8].

We concentrate on (49). Exactly like on page 731, formulas (21) and (22) of [8], we also have that for any ζ and
for all j ≥ 0

Eω,ζ
y [T(j+1)ρ] ≤ 1

ε(1 − ε)
Eω

y [T(j+1)ρ] (51)

for all y ∈ [jρ, (j + 1)ρ − 1).
When 	1 = k we can write

T	1ρ = Tρ + (T2ρ − Tρ) + · · · + (Tkρ − T(k−1)ρ).

Now for each j ≥ 1 we have

E
ω,ζ
0 [T(j+1)ρ − Tjρ] =

∑
y∈[jρ,(j+1)ρ)

Eω,ζ
y [T(j+1)ρ]P ω,ζ

0 (XTjρ
= y)

≤ 1

ε(1 − ε)

∑
y∈[jρ,(j+1)ρ)

Eω
y [T(j+1)ρ]P ω,ζ

0 (XTjρ
= y),

where we have used (51). Now we see that, for any y ∈ [jρ, (j + 1)ρ),

Eω
y [T(j+1)ρ] ≤ Eω

y

[
N∞

((−∞, (j + 1)ρ
])]

≤ KEω,1
y

[
N∞

((−∞, (j + 1)ρ
])]

≤ KE
ω,1
jρ

[
N∞

((−∞, (j + 1)ρ
])]

,

where the second inequality is due to Corollary 3.14.
Hence

E
ω,ζ
0 [T(j+1)ρ − Tjρ] ≤ K

1

ε(1 − ε)
E

ω,1
jρ

[
N∞

((−∞, (j + 1)ρ
])]

≤ K
1

ε(1 − ε)

(∑
z≤jρ

E
ω,1
jρ

[
N∞(z)

] +
∑

jρ<z≤(j+1)ρ

E
ω,1
jρ

[
N∞(z)

])

= K
1

ε(1 − ε)

(∑
z≤jρ

E
ω,1
jρ

[
N∞(z)

] +
∑

jρ<z≤(j+1)ρ

Eω,1
z

[
N∞(z)

])
.
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Using the results of Lemma 3.12 and Corollary 3.14 we obtain for every j ≥ 1

EE
ω,ζ
0 [T(j+1)ρ − Tjρ] ≤ K

1

ε(1 − ε)

(∑
k≥0

E
[
gτjρω(k)

] +
∑

jρ<z≤(j+1)ρ

E
[
gτzω(0)

])

≤ K
1

ε(1 − ε)

(
1

(1 − e−2λd)2
+ ρ

1 − e−2λd

)
E

[
e(1−λ)x1

]
and hence

EE
ω,ζ
0 [Tkρ] ≤ K

k

ε(1 − ε)

(
1

(1 − e−2λd)2
+ ρ

1 − e−2λd

)
E

[
e(1−λ)x1

]
.

Since P(	1 = k) = ε(1 − ε)k−1, we obtain

E′[Eω,ζ
0 [T	1ρ]] ≤ K

(
1

(1 − e−2λd)2
+ ρ

1 − e−2λd

)
E

[
e(1−λ)x1

] ∞∑
k=1

k(1 − ε)k−2

= K̄

(
1

(1 − e−2λd)2
+ ρ

1 − e−2λd

)
E

[
e(1−λ)x1

]
. (52)�

Recall the definition of the function gω given in Proposition 3.11.

Lemma 4.4. Let ρ < ∞. Given k ≤ 0 it holds

E
ω,ζ
0

[
N∞(k)

] ≤ 1

ε(1 − ε)

∞∑
j=0

gτjρω

(|k| + jρ
)
. (53)

Proof. As for the derivation of (33) in [8] one can prove that, if y ∈ [jρ, (j + 1)ρ), then

Eω,ζ
y

[
N[Tjρ,T(j+1)ρ )(k)

] ≤ 1

ε(1 − ε)
Eω

y

[
N[Tjρ,T(j+1)ρ )(k)

]
. (54)

On the other hand, by applying Proposition 3.11 , we get

Eω
y

[
N[Tjρ,T(j+1)ρ )(k)

] ≤ Eω
y

[
N∞(k)

] = E
τyω

0

[
N∞(k − y)

] ≤ gτyω

(|k| + y
)
. (55)

At this point we write y as y = jρ + 	 and set ω′ := τjρω. Then, by applying (39) in Lemma 3.12, we get

gτyω

(|k| + y
) = gτ	ω

′
(|k| + jρ + 	

) ≤ gω′
(|k| + jρ

) = gτjρω

(|k| + jρ
)
. (56)

As a byproduct of (54), (55) and (56) we conclude that

Eω,ζ
y

[
N[Tjρ,T(j+1)ρ )(k)

] ≤ 1

ε(1 − ε)
gτjρω

(|k| + jρ
)
. (57)

The above bound and the strong Markov property applied at time Tjρ (which holds by construction of P
ω,ζ
0 ) imply

that

E
ω,ζ
0

[
N[Tjρ,T(j+1)ρ )(k)

] = E
ω,ζ
0

[
E

ω,ζ
XTjρ

[
N[Tjρ,T(j+1)ρ )(k)

]] ≤ 1

ε(1 − ε)
gτjρω

(|k| + jρ
)
. (58)

Since N∞(k) = ∑∞
j=0 N[Tjρ,T(j+1)ρ )(k), the above bound (58) implies (53). �
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4.2. Speed for the truncated process

Recall that ρ < ∞ is fixed and recall Warning 4.1. Here we follow the usual notation, indicating explicitly ρ, and we
also write P

ω,ζ,ρ
0 instead of P

ω,ζ
0 to stress the dependence on ρ.

Proposition 4.5. Fix ρ < +∞. For P-a.a. ω ∈ � it holds

vXρ (λ) := lim
n→∞

X
ρ
n

n
= ρE[	1]

E′[Eω,ζ
0 [T ρ

	1ρ
]] = ρ

εE′[Eω,ζ
0 [T ρ

	1ρ
]]P

ω,ρ
0 -a.s., (59)

where ε is the same as in Lemma 3.16. Moreover, vXρ (λ) does not depend on ω and

vXρ (λ) ∈ (c1, c2) (60)

for strictly positive constants c1, c2, which do neither depend on ω nor on ρ.

Proof. We work on the probability space (�,P ⊗P⊗P
ω,ζ,ρ
0 ) where � := {0,1}N+ ×�×ZN. For n ∈ [T ρ

	kρ
, T

ρ
	k+1ρ

)

we have 	k+1ρ − (T
ρ
	k+1ρ

− T
ρ
	kρ

)ρ < X
ρ
n < 	k+1ρ (note in particular that X

ρ
n has to be thought as a function on �). It

then follows

	k+1ρ − (T
ρ
	k+1

− T
ρ
	kρ

)ρ

T
ρ
	k+1ρ

<
X

ρ
n

n
<

	k+1ρ

T
ρ
	kρ

. (61)

Due to the cycle stationarity and ergodicity stated in Lemma 4.2, we let n → ∞ in (61) and obtain that the limit in
(59) holds P ⊗P⊗P

ω,ζ,ρ
0 -a.s. This can be restated as E[E[P ω,ζ,ρ

0 (X
ρ
n/n → ρ/εE′[Eω,ζ

0 [T ρ
	1ρ

]])]] = 1. To conclude

the proof of (59), it is enough to recall that, by averaging P
ω,ζ,ρ
0 over ζ , one obtains the law P

ω,ρ
0 of the original

random walk (X
ρ
n )n≥0, in particular we get E[P ω,ρ

0 (X
ρ
n/n → ρ/εE′[Eω,ζ

0 [T ρ
	1ρ

]])] = 1.
Finally, we observe that vXρ (λ) does not depend on ω since the last term in (59) doesn’t, and that vXρ (λ) ∈ (c1, c2)

due to (48) and (49). �

5. Stationary distribution Qρ of the environment viewed from the ρ-walker

In this section we assume that E[e(1−λ)x1 ] < ∞ and we fix ρ < ∞. We consider the process environment viewed
from the ρ-walker, which is the Markov chain (τX

ρ
n
ω)n∈N on the space of environments � with transition mechanism

induced by P
ω,ρ
0 . When starting with initial distribution Q, we denote by Pρ

Q its law as probability distribution on �N.
Lemma 4.2 and bound (49) in Lemma 4.3 guarantee (cf. [22, Section 4, Chapter 8]) the existence of a stationary

distribution Qρ of the process environment viewed from the ρ-walker, such that Qρ is absolutely continuous with
respect to P.

From [22, Chapter 8, Equation (4.14◦)], Qρ can be characterized by its expectation:

Eρ
[
f (ω)

] = 1

E′[Eω,ζ,ρ
0 [T	1ρ]]E

′
[
E

ω,ζ,ρ
0

[T	1ρ∑
k=1

f (τXk
ω)

]]
. (62)

As in [8, Proposition 3.4] one can prove that Qρ is absolutely continuous to P with Radon–Nikodym derivative

dQρ

dP
(ω) = 1

E′[Eω,ζ,ρ
0 [T	1ρ]]

∑
k∈Z

EE
τ−kω,ζ,ρ

0

[
NT	1ρ

(k)
]
. (63)

Note that the denominator in the r.h.s. is finite due to (49) and the numerator is positive. As a consequence, P is also
absolutely continuous to Qρ .
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Lemma 5.1. Fix ρ ∈ N+. Then Qρ is ergodic with respect to shifts for the environment seen from the ρ-walker.

Remark 5.2. The above ergodicity means that any Borel subset of the path space �N, which is left invariant by shifts,
has Pρ

Qρ -probability equal to 0 or 1.
Due to Theorem 6.9 in [23] (cf. also [19, Chapter IV]), the above ergodicity is equivalent to the following

fact: Qρ(A) ∈ {0,1} whenever A ⊂ � is an invariant Borel set, in the sense that “τX
ρ
n
ω ∈ A for any n ∈ N”

holds Qρ ⊗ P
ω,ρ
0 -a.s. on {ω ∈ A} and “τX

ρ
n
ω ∈ Ac for any n ∈ N” holds Qρ ⊗ P

ω,ρ
0 -a.s. on {ω ∈ Ac}. As

usual, Qρ ⊗ P
ω,ρ
0 is the probability measure on � × ZN such that the expectation of a function f is given by∫

Qρ(dω)E
ω,ρ
0 [f (ω, (Xn)n≥0)].

Proof of Lemma 5.1. The proof can be obtained as in [8, pages 735–736]. The only difference is that in [8] the
authors use their formula (29), which is not satisfied in our case. More precisely, they use their formula (29) to
argue that 0 < P(A) < 1 for any Qρ -nontrivial set A. On the other hand, this claim follows simply from the absolute
continuity of Qρ to P. �

The rest of this section is devoted to the proof of Lemma 5.9 which leads to the following result:

Proposition 5.3. Suppose E[e(1−λ)x1 ] < ∞ and that u : R × R → R is continuous. Then the sequence (Qρ)ρ∈N+
converges weakly to a unique measure Q∞ as ρ → ∞. Q∞ is absolutely continuous to P and, P-a.s., 0 < γ ≤
dQ∞
dP

≤ F (cf. (65)). Furthermore, Q∞ is invariant and ergodic for the dynamics from the point of view of the ∞-
walker.2

Having Lemma 3.9 and Lemma 5.9 below, Proposition 5.3 can be proved by the same arguments used in [8, p. 735],
with some slight modifications. For completeness, we give the proof in Appendix A.

5.1. Upper bound for the Radon–Nikodym derivative dQρ/dP

Proposition 5.4. Suppose E[e(1−λ)x1 ] < ∞. Then, uniformly in ρ ∈ N+,

dQρ

dP
(ω) ≤ F(ω) P-a.s., (64)

where

F(ω) := Kπ1(0)

∞∑
j=0

(j + 2)2e−2λxj +(1−λ)(xj+1−xj ), (65)

for some constant K > 0. Moreover, E[F ] < ∞.

Before proving Proposition 5.4 we state a technical result:

Lemma 5.5. Let F∗(ω) := K0
∑∞

i=0(i + 1)e−2λxi+(1−λ)(xi+1−xi ), with K0 as in Proposition 3.11. Then

∞∑
j=0

gτjρω

(|k| + jρ
) ≤

∞∑
r=0

gτrω

(|k| + r
) ≤ π1(−|k|)F∗(ω). (66)

2Ergodicity means that the law P∞
Q∞ on the path space �N is ergodic with respect to shifts (cf. Remark 5.2).
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Proof. The first inequality in (66) is trivial. We prove the second one. By (41) we can write

∞∑
r=0

gτrω

(|k| + r
) ≤ K0π

1(−|k|) ∞∑
r=0

∞∑
j=0

e−2λxj+r+(1−λ)(xj+1+r−xj+r )

= K0π
1(−|k|) ∞∑

i=0

(i + 1)e−2λxi+(1−λ)(xi+1−xi ).
�

We can now prove Proposition 5.4:

Proof of Proposition 5.4. Due to (48) and (63) we can bound

dQρ

dP
(ω) ≤ H+(ω) + H−(ω)

K1ρ
, (67)

where K1 is the constant appearing in (48) and

H+(ω) :=
∑
k>0

EE
τ−kω,ζ,ρ

0

[
NT	1ρ

(k)
]
, H−(ω) :=

∑
k≤0

EE
τ−kω,ζ,ρ

0

[
NT	1ρ

(k)
]
.

As a byproduct of Lemma 4.4 and Lemma 5.5 it holds (see the proof of (39) for the equality below)

H−(ω) ≤ 1

ε(1 − ε)

∑
k≤0

π1(k)[τ−kω]F∗(τ−kω) = 1

ε(1 − ε)
π1(0)

∑
k≤0

e−2λx−kF∗(τ−kω). (68)

Let us bound H+(ω). We can write

∞∑
k=0

EE
τ−kω,ζ,ρ

0

[
NT	1ρ

(k)
] =

∞∑
m=0

∑
k∈[mρ,(m+1)ρ)

∞∑
i=1

E
[
1	1=iE

τ−kω,ζ,ρ

0

[
NTiρ

(k)
]]

≤
∞∑

m=0

∑
k∈[mρ,(m+1)ρ)

∞∑
i=1

i∑
j=0

E
[
1	1=iE

τ−kω,ζ,ρ

0

[
N[Tjρ,T(j+1)ρ )(k)

]]
. (69)

Note that, given m > j ≥ 0 and k ∈ [mρ, (m + 1)ρ), it holds N[Tjρ,T(j+1)ρ )(k) = 0, hence in the last expression of (69)
we can restrict to 0 ≤ m ≤ j ≤ i. Moreover note that (cf. (54))

E
τ−kω,ζ,ρ

0

[
N[Tjρ,T(j+1)ρ )(k)

] ≤ 1

ε(1 − ε)
E

τ−kω,ρ

0

[
N[Tjρ,T(j+1)ρ )(k)

]
. (70)

Consider then the case k ∈ [mρ, (m+1)ρ) with 0 ≤ m ≤ j ≤ i. Note that X
ρ
Tjρ

∈ [jρ, (j +1)ρ) due to the maximal
length of the jump. Fix y ∈ [jρ, (j + 1)ρ). Then, for any environment ω, we have

Eω,ρ
y

[
N[Tjρ,T(j+1)ρ )(k)

] = Eω,ρ
y

[
NT(j+1)ρ

(k)
] ≤

{
gτkω(0) if j = m,

gτjρω(jρ − k) if j > m.
(71)

Indeed, consider first the case j > m. Then k < y and by Proposition 3.11

Eω,ρ
y

[
NT(j+1)ρ

(k)
] ≤ Eω,ρ

y

[
NT∞(k)

] = E
τyω,ρ

0

[
NT∞(k − y)

] ≤ gτyω(y − k), (72)

Write y = jρ + 	 and ω′ := τjρω. Then we have

gτyω(y − k) = gτ	ω
′(jρ − k + 	) ≤ gω′(jρ − k) = gτjρω(jρ − k)
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(in the last step we have used (39)). This proves (71) for j > m. If j = m we bound (by the Markov property at the
first visit of k)

Eω,ρ
y

[
NT(j+1)ρ

(k)
] ≤ Eω,ρ

y

[
NT∞(k)

] ≤ E
ω,ρ
k

[
NT∞(k)

] = E
τkω,ρ
0

[
NT∞(0)

]
.

At this point (71) for j = m follows from Proposition 3.11.
The above bound (71), the Markov property and (70) imply

E
τ−kω,ζ,ρ

0

[
N[Tjρ,T(j+1)ρ )(k)

] ≤ 1

ε(1 − ε)
·
{

gω(0) if j = m,

gτjρ−kω(jρ − k) if j > m.
(73)

Coming back to (69) and due to the above observations we can bound

H+(ω) ≤
∞∑

k=0

EE
τ−kω,ζ,ρ

0

[
NT	1ρ

(k)
] ≤ A(ω) + B(ω), (74)

where (distinguishing the cases m = j and m < j )

A(ω) :=
∞∑
i=1

i∑
j=0

∑
k∈[jρ,(j+1)ρ)

E[1	1=i]gω(0) = ρ
(
E(	1) + 1

)
gω(0),

B(ω) :=
∞∑
i=1

i∑
j=1

j−1∑
m=0

∑
k∈[mρ,(m+1)ρ)

E[1	1=i]gτjρ−kω(jρ − k).

(75)

For what concerns B(ω) observe that
∑∞

i=j E[1	1=i] = (1 − ε)j−1, hence

B(ω) ≤
∞∑

j=1

(1 − ε)j−1
j−1∑
m=0

∑
k∈[mρ,(m+1)ρ)

gτjρ−kω(jρ − k)

=
∞∑

j=1

(1 − ε)j−1
∑

k∈[0,jρ)

gτjρ−kω(jρ − k) =
∞∑

j=1

(1 − ε)j−1
jρ∑

h=1

gτhω(h). (76)

Since, by (39), gτhω(h) ≤ gω(0), we get that B(ω) ≤ ∑∞
j=1(1 − ε)j−1jρgω(0). Combining this estimate with (75)

we conclude that H+(ω) ≤ Cρgω(0), where the constant C depends only on ε. Coming back to (67) and (68), and
observing that gω(0) ≤ π1(0)F∗(ω), we have

dQρ

dP
(ω) ≤ C′

K1

[
π1(0)

∑
k≤0 e−2λx−kF∗(τ−kω)

ρ
+ gω(0)

]

≤ 2C′

K1
π1(0)

∑
k≤0

e−2λx−kF∗(τ−kω), (77)

where C′ depends only on ε. Since xa(τ−kω) = xa−k(ω) − x−k(ω), by definition of F∗ (and setting r = i − k) we can
write ∑

k≤0

e−2λx−kF∗(τ−kω) = K0

∑
k≤0

∑
i≥0

(i + 1)e−2λxi−k+(1−λ)(xi−k+1−xi−k)

= K0

∑
r≥0

e−2λxr+(1−λ)(xr+1−xr )
(r + 1)(r + 2)

2
. (78)

As byproduct of (77) and (78) we get (64).
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Finally, by using (37) and that xj ≥ jd for j ≥ 0, we can bound E[F ] ≤ C
∑

j≥0(j + 2)2e−2λjE[e(1−λ)x1 ] for

some positive constant C. Since by assumption E[e(1−λ)x1 ] < ∞, we conclude that E[F ] < ∞. �

5.2. Uniform lower bound for dQρ/dP

We remark that, following the proof of Proposition 3.4 in [8], we could easily obtain a lower bound on dQρ/dP which
is independent of ρ, but which would in principle depend on the particular argument ω. Here we will do more: We
will exhibit a lower bound that is uniform in both ρ and ω (see Corollary 5.8 below).

For fixed ω ∈ �, we denote by Qω
n the empirical measure at time n for the environment viewed from the ρ-walker.

More precisely, Qω
n is a random probability measure on � defined as

Qω
n := 1

n

n∑
j=1

δτ
X

ρ
j

ω.

Averaging over the paths of the walk we obtain the probability E
ω,ρ
0 [Qω

n (·)]. For fixed ω ∈ �, we define another
probability measure on �, given by

Rω
n := 1

m(n)

m(n)∑
j=1

δτj ω,

where m(n) := n · vXρ /2 and vXρ is the positive limiting speed of the truncated random walk given in (59) (we are
omitting the dependence on λ; the 1/2 could be replaced by any other constant smaller than 1).

We remark that Rω
n and E

ω,ρ
0 [Qω

n (·)] can be thought of as random variables on (�,P) with values in P(�), the
space of probability measures on � endowed with the weak topology. Note also that P,Qρ ∈P(�). Furthermore, Qω

n

can be thought of as a random variable on the probability space (� ×ZN,P⊗ P
ω,ρ
0 ) with values in P(�).

Proposition 5.6. For P-almost every ω ∈ � we have that Rω
n → P and E

ω,ρ
0 [Qω

n (·)] → Qρ weakly in P(�). More-
over, P⊗ P

ω,ρ
0 -a.s., we have that Qω

n →Qρ weakly in P(�).

Proof. The a.s. convergence of Rω
n to P comes directly from the ergodicity of P with respect to shifts.

We claim that Qω
n → Qρ weakly in P(�), Qρ ⊗P

ω,ρ
0 -a.s. This follows from Birkhoff’s ergodic theorem applied to

the Markov chain τX
ρ
n
ω starting from the ergodic distribution Qρ (cf. Lemma 5.1). As already observed after equation

(63), P is absolutely continuous to Qρ . Hence, due to the above claim, Qω
n → Qρ weakly in P(�) also P⊗ P

ω,ρ
0 -a.s.

Finally, the last a.s. convergence and the dominated convergence theorem imply that E
ω,ρ
0 [Qω

n (·)] → Qρ weakly
in P(�), P-a.s. �

Lemma 5.7. There exists γ > 0, depending neither on ω nor on ρ, such that the following holds: For P-almost every
ω, there exists an n̄ω such that, ∀n ≥ n̄ω,

E
ω,ρ
0 [Qω

n ({τkω})]
Rω

n ({τkω}) > γ, ∀k : 1 ≤ k ≤ m(n).

Proof. For all k = 1, . . . ,m(n), we have

E
ω,ρ
0

[
Qω

n (·)] ≥ 1

n
P

ω,ρ
0 (∃j ≤ n : Xj = k)δτkω. (79)

We claim that, for n big enough and k = 1, . . . ,m(n), it holds

P
ω,ρ
0 (∃j ≤ n : Xj = k) ≥ ε, (80)
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where ε > 0 is the same as in Lemma 3.16. To prove our claim, we bound

P
ω,ρ
0 (∃j ≤ n : Xj = k) ≥ P

ω,ρ
0 (XTk

= k,Tk ≤ n)

≥ P
ω,ρ
0 (XTk

= k) − P
ω,ρ
0 (Tk > n)

≥ 2ε − P
ω,ρ
0 (Tm(n) > n),

where in the last line we have used Lemma 3.16. On the other hand, we also know, by the definition of the limiting
speed, that for almost every ω ∈ �, there exists an n̄ω such that, ∀n > n̄ω, P

ω,ρ
0 (Tm(n) > n) ≤ P

ω,ρ
0 (Xn < m(n)) < ε.

This completes the proof of the claim.
Hence, putting together (79) and (80), for all n ≥ n̄ω and k = 1, . . . ,m(n), we have

E
ω,ρ
0

[
Qω

n (·)] ≥ ε

n
δτkω.

On the other hand, by definition, Rω
n ({τkω}) = 1

m(n)
for all k = 1, . . . ,m(n) and for P-a.a. ω (since periodic environ-

ments have P-measure zero by Assumption (A3)). It then follows that, for all k = 1, . . . ,m(n) and for P-a.a. ω,

E
ω,ρ
0 [Qω

n ({τkω})]
Rω

n ({τkω}) ≥
ε
n

1
m(n)

= εvXρ

2
≥ εc1

2
=: γ > 0, (81)

where c1 is from (60). Note that γ does not depend on ω. �

We finally need to show that the lower bound extends also to the Radon–Nikodym derivative of the limiting mea-
sures.

Corollary 5.8. The Radon–Nikodym derivative dQρ

dP
is uniformly bounded from below: dQρ

dP
≥ γ , where γ is from

(81).

Proof. Take any f ≥ 0 continuous and bounded. Lemma 5.7 and the fact that Rω
n has support in {τkω : k =

1, . . . ,m(n)} guarantee that, for all n large enough,

E
ω,ρ
0

[
Qω

n (f )
] ≥ γRω

n (f ) for P-a.e. ω.

Passing to the limit n → ∞, and observing that, by Proposition 5.6, E
ω,ρ
0 [Qω

n (f )] → Qρ(f ) and Rω
n (f ) → P(f ) for

P-a.e. ω, we have that Qρ(f ) ≥ γP(f ). The claim follows from the arbitrariness of f . �

5.3. The weak limit of Qρ as ρ → ∞

Recall the definition of the function F given in (65) and of the constant γ given in Corollary 5.8.

Lemma 5.9. Suppose E[e(1−λ)x1 ] < ∞. Then the following holds:

(i) The family of probability measures (Qρ)ρ∈N+ is tight;
(ii) Any subsequential limit Q∞ of (Qρ)ρ∈N+ is absolutely continuous to P and

0 < γ ≤ dQ∞

dP
≤ F P-a.s.

Proof. For proving part (i), fix an increasing sequence of compact subsets Kn exhausting all of �. Thanks to Propo-
sition 5.4 we have

Qρ
(
Kc

n

) = E

[
dQρ

dP
1Kc

n

]
≤ E[F1Kc

n
].
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Setting fn := F1Kc
n

we have that 0 ≤ fn ≤ F and fn(ω) → 0 everywhere. By the dominated convergence theorem,
given ε > 0 we conclude that Qρ(Kc

n) ≤ ε uniformly in ρ eventually in n, hence the tightness.
We turn now to (ii). Let Q∞ be any subsequential limit of (Qρ)ρ∈N+ . In particular, there exists a sequence ρk → ∞

such that Qρk converges weakly to Q∞. Let A ⊂ � be measurable. Due to Corollary 5.8 and Proposition 5.4 we have
γP(C) ≤ Qρk (C) and Qρk (G) ≤ E[F1G] for any C ⊂ A ⊂ G with C closed and G open. Hence, by the Portmanteau
Theorem (cf. [4, Theorem 2.1]), we conclude that

γP(C) ≤ lim sup
k→∞

Qρk (C) ≤Q∞(C) ≤ Q∞(A) ≤ Q∞(G) ≤ lim inf
k→∞ Qρk (G) ≤ E[F1G]. (82)

By the the regularity of P (cf. [4, Theorem 1.1]), one can choose C and G so that the extreme terms in (82) are
arbitrary close to γP(A) and E[F1A] respectively, from which Item (ii) follows. �

6. Proof of Theorem 1(i): Transience to the right

By the discussion at the end of Section 3, it is enough to show the a.s. transience to the right of X∞
n and X∞

t . Since
the former is the jump chain associated to the latter, we only need to derive the a.s. transience to the right of X∞

n .
To this aim, it is sufficient to show that, for any m ∈ N, there exists some n(m,ω) < ∞ such that X∞

n > m for all
n ≥ n(m,ω).

First of all notice that, by Proposition 3.11, for P-almost every ω ∈ � and i ∈ Z we have

E
ω,∞
i

[
N∞

(
(−∞, i])] ≤

∞∑
k=0

gτiω(k)

= K0

( ∞∑
k=0

K0π
1(−k)[τiω]

)
·
( ∞∑

j=0

e−2λxj (τiω)+(1−λ)(xj+1(τiω)−xj (τiω))

)
,

which is P-almost surely finite (see (37) and the discussion after Proposition 3.11). Hence

P
ω,∞
i

(
N∞

(
(−∞, i]) < ∞) = 1. (83)

Now fix m ∈ N and consider Tm, the first time the random walk is larger or equal than m. Applying the Markov
property at time Tm and using (83) one gets the claim.

7. Proof of Theorem 1(ii): The ballistic regime

In this section we assume that E[e(1−λ)x1 ] < +∞ and that u : R × R → R is continuous. Recall that (Y)t≥0 and
(Yn)n≥0 denote the continuous-time Mott random walk and the associated jump process, respectively. Recall also the
definition of the Markov chains (X∞

t )t≥0 and (X∞
n )n∈N, given in Section 3 and that Pρ

Q is the law of the process
environment viewed from the ρ-walker (τX

ρ
n
ω)n∈N when started with some initial distribution Q.

Given ρ ∈ N+ ∪ {+∞}, by writing (X
ρ
n )n∈N as a functional of (τX

ρ
n
ω)n∈N (which is possible for P-a.e. ω to due

Assumption (A3)) and using the ergodicity of Qρ (cf. Lemma 5.1 and Proposition 5.3) we get that the asymptotic
velocity of (X

ρ
n )n≥0 exists Pρ

Qρ -a.s. and therefore Pρ

P
-a.s. since Qρ and P are mutually absolutely continuous:

vXρ (λ) := lim
n→∞

X
ρ
n

n
Pρ

Qρ -a.s. and Pρ

P
-a.s. (84)

Moreover, vXρ (λ) does not depend on ω and can be characterized as

vXρ (λ) := Eρ
[
E

ω,ρ
0 [X1]

] = Eρ

[∑
m∈Z

mP
ω,ρ
0 (X1 = m)

]
, ∀ρ ∈ N+ ∪ {+∞}. (85)
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Here, Eρ denotes the expectation with respect to Qρ . Recall that for ρ < ∞ we have also an alternative representation
for vXρ (λ) (see Proposition 4.5).

We now prove that

lim
ρ→∞vXρ (λ) = vX∞(λ). (86)

By the exponential decay of the jump probabilities (see (24)), for all δ > 0 there exists m0 ∈ N such that, for all ρ,

∑
|m|>m0

|m|P ω,ρ
0 (X1 = m) < δ P-a.s.

We now observe that, for ρ > |m| > 0, we have

P
ω,ρ
0 (X1 = m) = P

ω,∞
0 (X1 = m) = c0,m(ω)∑

k∈Z c0,k(ω)
, (87)

and the r.h.s. of (87) is continuous in ω due to the continuity assumption on u and since ‖c0,k(·)‖∞ ≤ e−(1−λ)dk+‖u‖∞ .

Since Qρ w−→ Q∞, it is now simple to get (86).
Finally, we also have that vX∞(λ) ∈ [c1, c2] because of the limit (86) and since, by Proposition 4.5, vXρ (λ) ∈

(c1, c2) for suitable strictly positive constants c1, c2.
By the previous observations and by the second identity in (16), we also obtain that the limit

vY (λ) := lim
n→∞

Yn

n
(88)

exists P∞
P

-a.s. and equals E[Z0]vX∞(λ). As a consequence, vY (λ) is deterministic, finite and strictly positive.
By a suitable time change we can recover the LLN for (X∞

t )t≥0 from the LLN for (X∞
n )n≥0 as follows. By

enlarging the probability space (�N,P∞
Q∞) with a product space, we introduce a sequence of i.i.d. exponential random

variables (βn)n≥0 of mean one, all independent from the process environment viewed from the ∞-walker (τX∞
n

ω)n∈N.
We call (�N ⊗ RN+, P̄∞

Q∞) the resulting probability space. Note that P̄∞
Q∞ is stationary and ergodic with respect to

shifts. On (�N ⊗RN+, P̄∞
Q∞) we define the random variable

Sn :=
n−1∑
k=0

βk

r(τX∞
k

ω)
, r(ω) := π∞(0)[ω] =

∑
k∈Z

c0,k(ω).

We note that r(ω) coincides with rλ
0 (ω) of Section 2. By the ergodicity of P̄∞

Q∞ we have

lim
n→∞

Sn

n
= E∞[1/r] P̄∞

Q∞ -a.s. (89)

Since, by Proposition 5.3, Q∞ � P and dQ∞
dP

≤ F with F defined in (65), using Lemma 3.6, Assumption (A4) and
the hypothesis E[e(1−λ)Z0] < +∞ we get

0 < E∞[1/r] ≤ KE

[
π1(0)

r

∞∑
j=0

(j + 2)2e−2λxj +(1−λ)(xj+1−xj )

]

≤ K ′
∞∑

j=0

(j + 2)2e−2λdE
[
e(1−λ)Z0

]
< +∞. (90)
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For any t ≥ 0 we define n(t) on (�N ⊗RN+, P̄∞
Q∞) as the only integer n such that Sn ≤ t < Sn+1. By (89) and (90) we

get that n(t) → ∞ as t → ∞, P̄∞
Q∞-a.s. As a byproduct of the above limit, of (89) and the bound

Sn(t)

n(t)
≤ t

n(t)
<

Sn(t)+1

n(t)
, (91)

we conclude that

lim
n→∞

n(t)

t
= 1

E∞[1/r] P̄∞
Q∞-a.s. (92)

By writing
X∞

n(t)

t
= X∞

n(t)

n(t)
n(t)
t

, from (84) and (92) we get that

lim
t→∞

X∞
n(t)

t
= vX∞(λ)

E∞[1/r] , P̄∞
Q∞ -a.s. (93)

At this point it is enough to observe that the process (X∞
n(t))t≥0 defined on the probability space (�N ⊗RN+, P̄∞

Q∞) has
the same law as the process (X∞

t )t≥0. Using also (90) and the fact that P∞
P

�P∞
Q∞ , we conclude that

vX∞(λ) := lim
t→∞

X∞
t

t
= vX∞(λ)

E∞[1/r] ∈ (0,+∞) (94)

holds P
ω,∞
0 -a.s., for P-a.e. ω. Finally, using (16), we conclude that

vY(λ) := lim
t→∞

Yt

t
= E[Z0]

E∞[1/r]vX∞(λ) ∈ (0,+∞) (95)

holds for almost all trajectories of the Mott random walk, for P-a.e. ω. As already observed, the r.h.s. of (95) is
deterministic and this concludes the proof of Theorem 1(ii) and its counterpart for the jump process (Yn)n≥0 (cf.
(88)).

8. Proof of theorem 1(iii): The sub-ballistic regime

First we point out that it will be sufficient to prove that vX∞(λ) = 0 a.s., for P-a.e. realization of the environment ω:
Recall the identities (15) and (16) of Section 3. By Assumptions (A1) and (A2), limi→∞ ψ(i)/i = E[Z0] < ∞, P-a.s.
On the other hand, as proved in Section 6, the random walks X∞

n and X∞
t are a.s. transient to the right. As a byproduct,

due to (15) and (16), we have vY (λ) = 0, vY(λ) = 0 whenever vX∞(λ) = 0, vX∞(λ) = 0, respectively. But we also
have that vX∞(λ) = 0 implies vX∞(λ) = 0. Indeed, the continuous-time random walk (X∞

t )t≥0 is obtained from the
discrete-time random walk (X∞

n )n≥0 by the rule that, when site k is reached, X∞ remains at k for an exponential
time with parameter rλ

k (ω). Since supk∈Z,ω∈� rλ
k (ω) =: C < ∞ (cf. Section 2), we can speed up X∞ by replacing all

parameters rλ
k (ω) by C. The resulting random walk can be realized as t �→ X∞

n(t) where (n(t))t≥0 is a Poisson process
with intensity C. Hence, its velocity is zero whenever vX∞(λ) = 0.

We first show in Proposition 8.1 a sufficient condition for vX∞(λ) = 0. In Lemma 8.2 we prove that this condi-
tion is equivalent to the hypothesis (5) of Theorem 1(iii) and in Corollary 8.3 we discuss some stronger conditions
corresponding to the last statement in Theorem 1(iii).

Proposition 8.1. Suppose that

E

[(
sup
z≤0

P ω,∞
z (X1 ≥ 1)

)−1] = ∞. (96)

Then vX∞(λ) = 0.



1192 A. Faggionato, N. Gantert and M. Salvi

We postpone the proof of the above proposition to Section 8.1.

Lemma 8.2. Condition (96) is equivalent to

E
[
e(1−λ)Z0−(1+λ)Z−1

] = ∞. (97)

Proof. First of all, we claim that for all ω ∈ � and z ≤ 0 we have

P ω
0 (X1 ≥ 1) ≥ e2(umin−umax)P ω

z (X1 ≥ 1). (98)

In fact,

P ω
0 (X1 ≥ 1) ≥ e(umin−umax)

∑
j≥1 e−(1−λ)xj∑

j≥1 e−(1−λ)xj + ∑
j≤−1 e(1+λ)xj

and

P ω
z (X1 ≥ 1) ≤ e(umax−umin)

e(1−λ)xz
∑

j≥1 e−(1−λ)xj∑
j≥z+1 e−(1−λ)(xj −xz) + ∑

j≤z−1 e(1+λ)(xj −xz)
.

Hence, (98) is satisfied if∑
j≥1 e−(1−λ)xj∑

j≥1 e−(1−λ)xj + ∑
j≤−1 e(1+λ)xj

≥ e(1−λ)xz
∑

j≥1 e−(1−λ)xj∑
j≥z+1 e−(1−λ)(xj −xz) + ∑

j≤z−1 e(1+λ)(xj −xz)
,

which is true if and only if

e−(1−λ)xz

( ∑
j≥z+1

e−(1−λ)(xj −xz) +
∑

j≤z−1

e(1+λ)(xj −xz)

)
≥

∑
j≥1

e−(1−λ)xj +
∑

j≤−1

e(1+λ)xj .

Simplifying the expression (the terms with j ≥ 1 cancel out), the last display is equivalent to∑
z+1≤j≤−1

e−(1−λ)xj + 1 + e−2xz
∑

j≤z−1

e(1+λ)xj ≥
∑

z+1≤j≤−1

e(1+λ)xj + e(1+λ)xz +
∑

j≤z−1

e(1+λ)xj

and the last inequality clearly holds since the l.h.s. terms dominate one by one the r.h.s. ones.
Equation (98) shows that P ω

0 (X1 ≥ 1) ≤ supz≤0 P ω
z (X1 ≥ 1) ≤ C · P ω

0 (X1 ≥ 1) for a constant C which does not
depend on ω. On the other hand, using estimates (22) and (23),

P ω
0 (X1 ≥ 1) =

∑
j>1 c0,j∑
j �=0 c0,j

≤ K1 · c0,1

c0,−1
= K ′

1 · e−(1−λ)Z0+(1+λ)Z−1 ,

P ω
0 (X1 ≥ 1) ≥ K2 · c0,1

c0,−1 + c0,1
= K ′

2 · e−(1−λ)Z0

e−(1+λ)Z−1 + e−(1−λ)Z0

for constants K1, K ′
1, K2, K ′

2 which do not depend on ω.
Hence, we have (96) ⇐⇒ E[ 1

Pω
0 (Xλ

1≥1)
] = ∞ ⇐⇒ E[e(1−λ)Z0−(1+λ)Z−1 ] = ∞. �

Corollary 8.3. Suppose that E[Z−1|Z0] ≤ C for some constant which does not depend on ω (e.g. if the (Zi)i∈Z are
i.i.d.) and that E[e(1−λ)Z0 ] = ∞. Then condition (97) is satisfied and in particular vX∞(λ) = 0.

Proof. Conditioning on Z0 and using Jensen’s inequality, we get

E
[
e(1−λ)Z0−(1+λ)Z−1

] = E
[
e(1−λ)Z0E

[
e−(1+λ)Z−1 |Z0

]] ≥ E
[
e(1−λ)Z0e−(1+λ)E[Z−1|Z0]]

≥ e−(1+λ)CE
[
e(1−λ)Z0

] = ∞. �
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8.1. Proof of Proposition 8.1

The proof goes through the construction of several couplings, including the so called quantile coupling that we recall
in Lemma 8.4 below.

Before entering into the technical details we give a sketch of the proof and its main ideas. We fix an environment
ω ∈ �. In Step 1 below we define T1 as the first time the random walk (X

ω,∞
n )n∈N goes to the right of the origin and

couple W1 := X
ω,∞
T1

with a suitable finite-mean random variable ξ1 such that ξ1 is independent of ω and ξ1 ≥ W1
almost surely (see Claim 8.6). We also couple (see the paragraph containing (112)) T1 with a geometric random
variable S0 of parameter s0 = supz≤0 P

ω,∞
z (X1 ≥ 1) in a way that guarantees S0 ≤ T1 almost surely.

At this point, we can inductively define the random variables Tk+1, Wk+1, ξk+1 (see Step k+1) and Sk (see the
paragraph containing (112)) for k ≥ 1 in the following way:

• Tk+1 is the first time (X
ω,∞
n )n∈N goes to the right of the point ξ1 + · · · + ξk (see Fig. 1);

• Wk+1 is the overshoot X
ω,∞
Tk+1

− (ξ1 + · · · + ξk);
• ξk+1 is a random variable with the same law of ξ1 that is independent of all the previous ξ·’s and of ω. We can couple

ξk+1 and Wk+1 so that ξk+1 ≥ Wk+1 almost surely (see Claim 8.8). As a consequence, X∞
Tk+1

≤ ξ1 + · · · + ξk+1
almost surely;

• Sk is a geometric random variable (with parameter given in (112)) coupled with the difference Tk+1 − Tk in a way
that guarantees Sk ≤ Tk+1 − Tk almost surely.

We point out that, to have a unique probability space where all the above infinite random objects are defined, we
will use the Ionescu–Tulcea Extension Theorem as discussed in Step +∞. In particular, to be precise, in the kth step
we will work on a k-fold product probability space, and the random walk built on such a space, and behaving as
(X

ω,∞
n )n∈N when ω is fixed, will be denoted by (X

(k)
n )n∈N.

Notice now that, by construction, for Tk ≤ n < Tk+1 we have

X
ω,∞
n

n
≤ X

ω,∞
Tk+1

Tk

≤ ξ1 + · · · + ξk+1

S1 + · · · + Sk

(99)

and we would like to conclude by applying the LLN to the ξ·’s and S·’s sequences. While (ξk)k∈N+ is an i.i.d. sequence,
the S·’s are unfortunately not independent since their parameters depend on the ξ·’s. Nevertheless, it can be proven that
they still constitute a stationary ergodic sequence (see Lemma B.3 in Appendix B). Hence, we are allowed to apply
the LLN and derive the sub-ballisticity of (X∞

n )n∈N by noticing that ξ1 has finite mean, but E[S1] = +∞ because of
our assumption (96).

Finally, we point out that the above strategy can be implemented in other contexts to derive sub-ballisticity of
random walks in random environment, possibly with long jumps. On the other hand, the construction of the above
mentioned couplings require some care also from a notational viewpoint. In order not to introduce further notation we
have restricted the exposition to our random walk (X

ω,∞
n )n∈N.

Fig. 1. Tk+1 is the first time the random walk overjumps the point ξ1 +· · ·+ ξk . The overshoot w(uk+1) is dominated by ξ(uk+1) by construction.
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Before giving the proof of Proposition 8.1 we describe in the next lemma a basic tool to build couplings:

Lemma 8.4 (Quantile coupling). For a distribution function G and a value u ∈ [0,1], define the function

φ(G,u) := inf
{
x ∈ R : G(x) > u

}
.

Let F and F ′ be two distribution functions such that F(x) ≤ F ′(x) for all x ∈ R. Take U to be a uniform random
variable on [0,1] and let Y := φ(F,U) and Y ′ := φ(F ′,U). Then Y is distributed according to F , Y ′ is distributed
according to F ′ and Y ≥ Y ′ almost surely.

The proof of the above lemma can be found in [22]. Usually, as in [22], the quantile coupling is defined with φq(G,u)

instead of φ(G,u), where φq(G,u) is the quantile function φq(G,u) := inf{x ∈ R : G(x) ≥ u}. One can easily prove
that φ(G,U) = φq(G,U) a.s.

Proof of Proposition 8.1. Call Fξ the distribution function of the random variable ξ := L + G, where L ∈ N is some
constant such that

eumax−umin e−(1−λ)dL

1 − e−(1−λ)d
< 1, (100)

and G is a geometric random variable with parameter γ = 1 − e−(1−λ)d . Note that given an integer a it holds

1 − Fξ (a) =
{

1 if a − L ≤ 0,

(1 − γ )a−L = e−(1−λ)d(a−L) if a − L ≥ 1.
(101)

In particular, given an integer M ≥ L + 2, due to (100) we have

eumax−umin e−(1−λ)d(M−1)

1 − e−(1−λ)d
< e−(1−λ)d(M−1−L) = 1 − Fξ (M − 1). (102)

We will now inductively construct a sequence of probability spaces (� × ZN × [0,1]n,P (n)), on which we will
define some random variables.

Step 1. We first consider the space � ×ZN × [0,1], the generic element of which is denoted by (ω, x̄, u1).
We introduce a probability P (1) on � × ZN × [0,1] by the following rules. The marginal of P (1) on � is P,

its marginal on [0,1] is the uniform distribution and, under P (1), the coordinate functions (ω, x̄, u1) �→ ω and
(ω, x̄, u1) �→ u1 are independent random variables. Finally, we require that

P (1)
(
X(1)· ∈ A|ω,u1

) = P
ω,∞
0

(
X· ∈ A|XT1 = φ

(
F (1)

ω , u1
))

(103)

for any measurable set A ⊆ ZN, where (X
(1)
n )n∈N is the second-coordinate function (ω, x̄, u1) �→ x̄ and

F (1)
ω (y) = P

ω,∞
0 (XT1 ≤ y), T1 = inf

{
n ∈N : X∞

n > 0
}
.

From now on we consider the space � ×ZN × [0,1] endowed with the probability P (1).
It is convenient to introduce the random variables U1, ξ1, W1 defined as follows:3

U1(ω, x̄, u1) := u1, ξ1(ω, x̄, u1) := φ(Fξ ,u1), W1(ω, x̄, u1) := φ
(
F (1)

ω , u1
)
.

Note that, by the quantile coupling (cf. Lemma 8.4), ξ1 is distributed as ξ and W1 under P (1)(·|ω) is distributed as
X∞

T1
under P

ω,∞
0 .

The interpretation to keep in mind is the following: (X
(1)
n )n∈N plays the role of our initial random walk in environ-

ment ω; W1 is the overshoot at time T1, i.e. how far from 0 the random walk will land the first time it jumps beyond
the point 0; ξ1 is a positive random variable that dominates W1 (see Claim 8.6) and that is distributed like ξ .

3We will denote the first-coordinate function again by ω, without introducing a new symbol.
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Claim 8.5. For any integer M ≥ 1 it holds

P
ω,∞
0 (XT1 ≥ M) ≤ sup

z≤0
P ω,∞

z (X1 ≥ M|X1 ≥ 1). (104)

Proof of Claim 8.5. Given j ≥ 1 and integers z1, z2, . . . , zj−1 ≤ 0 we denote by E(z1, z2, . . . , zj−1) the event {X∞
1 =

z1, . . . ,X
∞
j−1 = zj−1}. Note that, by the Markov property,

P
ω,∞
0 (Xj ≥ M,E(z1, . . . , zj−1))

P
ω,∞
0 (Xj ≥ 1,E(z1, . . . , zj−1))

= P
ω,∞
zj−1 (X1 ≥ M)

P
ω,∞
zj−1 (X1 ≥ 1)

= P ω,∞
zj−1

(X1 ≥ M|X1 ≥ 1).

By the above identity we can write

P
ω,∞
0 (XT1 ≥ M)

=
∞∑

j=1

∑
z1,...,zj−1≤0

P
ω,∞
0

(
Xj ≥ M|Xj ≥ 1,E(z1, . . . , zj−1)

)
P

ω,∞
0

(
Xj ≥ 1,E(z1, . . . , zj−1)

)

≤ sup
z≤0

P ω,∞
z (X1 ≥ M|X1 ≥ 1)

∞∑
j=1

∑
z1,...,zj−1≤0

P
ω,∞
0

(
Xj ≥ 1,E(z1, . . . , zj−1)

)

≤ sup
z≤0

P ω,∞
z (X1 ≥ M|X1 ≥ 1). �

Claim 8.6. The following holds:

(i) P (1)(ξ1 ≥ W1) = 1;
(ii) ξ1 is independent of ω under P (1);

(iii) P (1)(X
(1)· ∈ B|ω) = P

ω,∞
0 (X· ∈ B) for each measurable set B ⊂ ZN.

Proof of Claim 8.6. In order to show (i), we just have to prove that F
(1)
ω (x) ≤ Fξ (x) for all ω ∈ � and x ∈ R (in

fact, it is enough to prove it for all x ∈ N) thanks to Lemma 8.4. To this aim, recall the definition of L (see (100)) and
notice that for all ω ∈ � and all integers M ≥ L + 2, one has

1 − F (1)
ω (M − 1) = P

ω,∞
0 (XT1 ≥ M) ≤ sup

z≤0
P ω,∞

z (X1 ≥ M|X1 ≥ 1)

= sup
z≤0

∑
j≥M e−(1−λ)(xj −xz)+u(Ez,Ej )∑
j≥1 e−(1−λ)(xj −xz)+u(Ez,Ej )

≤ eumax−umin sup
z≤0

∑
j≥M e−(1−λ)(xj −xz)

e−(1−λ)(x1−xz)

= eumax−umin
∑
j≥M

e−(1−λ)(xj −x1) ≤ eumax−umin
∑
j≥M

e−(1−λ)d(j−1)

= eumax−umin
e−(1−λ)d(M−1)

1 − e−(1−λ)d
≤ 1 − Fξ (M − 1), (105)

where in the first line we have used Claim 8.5 and in the last bound we have used (102) and the fact that M ≥ L + 2.
This proves that F

(1)
ω (a) ≥ Fξ (a) for all a ∈ N with a ≥ L + 1. The same inequality trivially holds also for a ≤ L

since in this case Fξ (a) = 0 (because ξ > L).
Part (ii) is clear since ξ1 is determined only by U1, while U1 and ω are independent by construction.
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For part (iii) take some measurable set B ⊂ ZN and notice that (recalling (103) and the independence of ω and
U − 1)

P (1)
(
X(1)· ∈ B|ω) =

∫
[0,1]

P (1)
(
X(1)· ∈ B|ω,U1 = u1

)
P (1)(U1 ∈ du1)

=
∫

[0,1]
P

ω,∞
0

(
X· ∈ B|XT1 = φ

(
F (1)

ω , u1
))

du1

=
∞∑

j=1

P
ω,∞
0 (X· ∈ B|XT1 = j)P

ω,∞
0 (XT1 = j) = P

ω,∞
0 (X· ∈ B).

�

Step k +1. Suppose now we have achieved our construction up to step k. In particular, we have built the probability
P (k) on the space � ×ZN × [0,1]k and several random variables on (� ×ZN × [0,1]k,P (k)) that we list:

• U1, . . . ,Uk are independent and uniformly distributed random variables such that (U1, . . . ,Uk) is the projection
function on [0,1]k ;

• ξ1, . . . , ξk is defined as ξj = φ(Fξ ,Uj ), j = 1, . . . , k;

• (X
(k)
n )n≥0, defined as the projection function on ZN, whose law under P (k)(·|ω) is P

ω,∞
0 ;

• W1,W2, . . . ,Wk such that P (k)(ξi ≥ Wi for all i = 1, . . . , k) = 1.

We introduce a probability P (k+1) on �×ZN ×[0,1]k+1 by the following rules. The marginal of P (k+1) on � is P,
its marginal on [0,1]k+1 is the uniform distribution and, under P (k+1), the projection functions (ω, x̄, u1, . . . , uk+1) �→
ω and (ω, x̄, u1, . . . , uk+1) �→ (u1, . . . , uk+1) are independent random variables. Finally, we require that

P (k+1)
(
X(k+1)· ∈ A|ω,u1, . . . , uk, uk+1

)
= P (k)

(
X(k)· ∈ A|ω,u1, . . . , uk,X

(k)
Tk+1

= ξ1 + · · · + ξk + φ
(
F (k+1)

ω,u1,...,uk
, uk+1

))
(106)

for any measurable set A ⊆ ZN, where

F (k+1)
ω,u1,...,uk

(y) := P (k)
(
X

(k)
Tk+1

≤ ξ1 + · · · + ξk + y|ω,u1, . . . , uk

)
,

Tk+1 := inf
{
n ∈ N : X(k)

n > ξ1 + · · · + ξk

}
.

Note that Tk+1 is a random variable on (�×ZN ×[0,1]k,P (k)). We stress that the conditional probability in the r.h.s.
of (8.1) has to be thought of as the regular conditional probability P (k)(·|ω,u1, . . . , uk) further conditioned on the
event {X(k)

Tk+1
= ξ1 + · · · + ξk + φ(F

(k+1)
ω,u1,...,uk

, uk+1)}.

Claim 8.7. The marginal of P (k+1) on � ×ZN × [0,1]k is exactly P (k).

Proof of Claim 8.7. Since the marginal of P (k+1) along the coordinate uk+1 is the uniform distribution, by integrating
(8.1) over uk+1, we get

P (k+1)
(
X(k+1)· ∈ A|ω,u1, . . . , uk

)
=

∞∑
j=1

P (k)
(
X(k)· ∈ A|ω,u1, . . . , uk,X

(k)
Tk+1

= ξ1 + · · · + ξk + j
)∫ 1

0
1
(
φ
(
F (k+1)

ω,u1,...,uk
, u

) = j
)
du. (107)

Above we have used Lemma 8.4 to deduce that φ(F
(k+1)
ω,u1,...,uk

, u) has integer values. Applying again Lemma 8.4 and

the definition of F
(k+1)
ω,u1,...,uk

we have

∫ 1

0
1
(
φ
(
F (k+1)

ω,u1,...,uk
, u

) = j
)
du = P (k)

(
X

(k)
Tk+1

= ξ1 + · · · + ξk + j |ω,u1, . . . , uk

)
. (108)
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Plugging (108) into (8.1), we get

P (k+1)
(
X(k+1)· ∈ A|ω,u1, . . . , uk

) = P (k)
(
X(k)· ∈ A|ω,u1, . . . , uk

)
. (109)

On the other hand, the projections of P (k+1) and P (k) on � × [0,1]k , i.e. along the coordinates ω,u1, . . . , uk , are
equal by construction, thus concluding the proof of our claim. �

Due to the above claim, any random variable Y defined on (� ×ZN × [0,1]k,P (k)) can be thought of as a random
variable on (� × ZN × [0,1]k+1,P (k+1)), by considering the map (ω, x̄, u1, . . . , uk, uk+1) �→ Y(ω, x̄, u1, . . . , uk).
With some abuse of notation, we denote by Y also the last random variable.

As a consequence, U1, . . . ,Uk, ξ1, . . . , ξk,W1, . . . ,Wk can be thought as random variables on (� × ZN ×
[0,1]k+1,P (k+1)). Finally, we introduce the new random variables Uk+1, ξk+1, Wk+1 on (�×ZN×[0,1]k+1,P (k+1))

defined as

Uk+1(ω, x̄, u1, . . . , uk+1) := uk+1,

ξk+1(ω, x̄, u1, . . . , uk+1) := φ(Fξ ,uk+1),

Wk+1(ω, x̄, u1, . . . , uk+1) := φ
(
F (k+1)

ω,u1,...,uk
, uk+1

)
.

The interpretation is similar as in Step 1: Wk+1 is the overshoot at time Tk+1, i.e. how far from ξ1 + · · · + ξk the
random walk will land the first time it jumps beyond that point; ξk+1 is a positive random variable that dominates
Wk+1 (see Claim 8.8) and that is distributed as ξ .

Claim 8.8. The following three facts hold true:

(i) P (k+1)(ξk+1 ≥ Wk+1) = 1;
(ii) ξk+1 is independent of ω,U1, . . . ,Uk under P (k+1);

(iii) For each measurable set B ⊂ ZN,

P (k+1)
(
X(k+1)· ∈ B|ω) = P

ω,∞
0 (X· ∈ B).

Proof of Claim 8.8. The three facts can be proved in a similar way as Claim 8.6. We give the proof for completeness.
For Part (i) we want to show that F

(k+1)
ω,u1,...,uk

(M − 1) ≥ Fξ (M − 1) for all M ≥ L + 2, with M ∈ N. In fact, as for
Claim 8.6, this inequality can easily be extended to all M ∈N and the conclusion follows.

First of all we notice that, by iteratively applying (8.1) and using Claim 8.6(iii), we have

1 − F (k+1)
ω,u1,...,uk

(M − 1) = P (k)
(
X

(k)
Tk+1

≥ ξ1 + · · · + ξk + M|ω,u1, . . . , uk

)
= P

ω,∞
0

(
Xinf{n:Xn>ξ(u1)+···+ξ(uk)} ≥ ξ(u1) + · · · + ξ(uk) + M|Dk

)
, (110)

where we have used the shortened notation ξ(u) := φ(Fξ ,u) and Dk is the event

Dk : = {
XT1 = φ

(
F (1)

ω , u1
)
,Xinf{n:Xn>ξ(u1)} = ξ(u1) + φ

(
F (2)

ω,u1
, u2

)
, . . . ,

Xinf{n:Xn>ξ(u1)+···+ξ(uk−1)} = ξ(u1) + · · · + ξ(uk−1) + φ
(
F (k)

ω,u1,...,uk−1
, uk

)}
.

For convenience we call

D′
k := {Xinf{n:Xn>ξ(u1)+···+ξ(uk−1)} = yk},

yk := yk(u1, . . . , uk) := ξ(u1) + · · · + ξ(uk−1) + φ
(
F (k)

ω,u1,...,uk−1
, uk

)
,

wk = wk(u1, . . . , uk) := φ
(
F (k)

ω,u1,...,uk−1
, uk

)
.
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We also note that ξ(uk) ≥ wk P (k)-a.s. (see the list of properties at the beginning of Step k + 1). Coming back to
(110), by using the strong Markov Property, we obtain (see also the proof of Claim 8.5)

P (k)
(
X

(k)
Tk+1

≥ ξ1 + · · · + ξk + M|ω,u1, . . . , uk

)
= P

ω,∞
0

(
Xinf{n:Xn>ξ(u1)+···+ξ(uk)} ≥ ξ(u1) + · · · + ξ(uk) + M|D′

k

)
= P

τyk
ω,∞

0

(
Xinf{n:Xn>ξ(uk)−wk} ≥ ξ(uk) − wk + M

)
=

∑
i∈N+

P
τyk

ω,∞
0

(
Xi ≥ ξ(uk) − wk + M| inf

{
n : Xn > ξ(uk) − wk

} = i
)

× P
τyk

ω,∞
0

(
inf

{
n : Xn > ξ(uk)

} = i
)

≤ sup
z≤ξ(uk)−wk

P
τyk

ω,∞
z (X1 ≥ M|X1 ≥ 1). (111)

The last inequality follows by conditioning to the position of the random walk at time i − 1. Knowing this, we can
proceed as in (105) getting that the last term in (8.1) is bounded from above by 1 − Fξ (M − 1). This concludes the
proof of Part (i).

Part (ii) is clear by the construction of ξk+1. Finally, we prove Part (iii). Since the projections of P (k+1) and of P (k)

on [0,1]k , i.e. along the coordinates u1, . . . , uk , are both the uniform distribution on [0,1]k , integrating (109) over
u1, . . . , uk we get P (k+1)(X

(k+1)· ∈ A|ω) = P (k)(X
(k)· ∈ A|ω). The claim then follows by the induction hypothesis

(see the discussion at the beginning of Step k + 1). �

Due to the results discussed above, the list of properties at the beginning of Step k + 1 is valid also for P (k+1).
Step +∞: By the Ionescu–Tulcea Extension Theorem, there exists a measure P (∞) on the space �×ZN ×[0,1]N,

random variables ξ1, ξ2, . . . , W1,W2, . . . , T1, T2, . . . and a random walk (X
(∞)
n )n∈N, such that: For all measurable

A ⊂ �, P (∞)(ω ∈ A) = P(ω ∈ A); the ξk’s are i.i.d., distributed like ξ and independent of ω; P (∞)(X
(∞)
Tk

= ξ1 +· · ·+
ξk−1 + Wk) = 1; P (∞)(ξk ≥ Wk) = 1; for all measurable B ⊂ ZN, P (∞)((X

(∞)
n )n∈N ∈ B|ω) = P

ω,∞
0 ((Xn)n∈N ∈ B).

We are now ready to finish the proof. Notice that, under P (∞)(·|ω), the differences (Tk+1 −Tk)k=0,1,... have a rather
complicated structure, but they stochastically dominate a sequence of pretty simple objects, call them (Sk)k=0,1,....
Each Sk is a geometric random variable of parameter

sk = sup
z≤0

P
τξ1+···+ξk

ω,∞
z (X1 ≥ 1). (112)

In fact, due to Lemma 3.16, we can imagine that for each n ≥ Tk the random walk “attempts” to overjump ξ1 +· · ·+ξk

and manages to do so with a probability that is clearly smaller than sk . By Strassen’s Theorem, on an enlarged
probability space with new probability P̃ (∞), we can couple each Sk with Tk+1 − Tk so that Sk ≤ Tk+1 − Tk almost
surely. Moreover, due to the strong Markov property of the random walk, all the Sk’s can be taken independent once we
have fixed the parameters sk’s. Now note the key fact that, since the ξ·’s are independent of the environment and that
the GCD of the values attained with positive probability by the ξ·’s is 1, the shifts (τξ1+···+ξk

ω)k∈N form a stationary
ergodic sequence under P (∞). We refer to Appendix B for a proof of this fact (see Lemma B.1). This observation
allows to prove that (Sj )j∈N is a stationary ergodic sequence with respect to shifts under P̃ (∞) (see Lemma B.3 in
Appendix B).

We now take ω ∈ � such that limn→∞ Xn = +∞ P ω
0 -a.s. (which holds for P-a.a. ω by Theorem 1(i)). This implies

that lim infn→∞ Xn

n
≥ 0, P ω

0 -a.s.
We can bound (see (1))

P ω
0

(
lim sup
n→∞

Xn

n
> 0

)
= P (∞)

(
lim sup
n→∞

Xn

n
> 0

∣∣∣ω)

≤ P (∞)

(
lim sup
k→∞

XTk+1

Tk

> 0
∣∣∣ω)
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≤ P (∞)

(
lim sup
k→∞

ξ1 + · · · + ξk+1∑k−1
j=0(Tj+1 − Tj )

> 0
∣∣∣ω)

≤ P̃ (∞)

(
lim sup
k→∞

(∑k+1
i=1 ξi

k

)(∑k−1
j=0 Sj

k

)−1

> 0
∣∣∣ω)

.

Let us concentrate on the last line. The arithmetic mean of ξ1, . . . , ξk+1 converges almost surely to L + 1/γ , the
mean of ξ , by the law of large numbers. The arithmetic mean of S0, . . . , Sk−1 converges instead to E[S0] because
of the ergodic theorem (for simplicity, we write simply E for the expectation with respect to P̃ (∞)). Since E[S0] =
E[E[S0|s0]] = E[ 1

s0
] = ∞ by assumption (96) and by (112), we obtain that P

ω,∞
0 (lim supn→∞ Xn

n
> 0) = 0 for almost

all ω ∈ �. Taking into account that lim infn→∞ Xn

n
≥ 0, P

ω,∞
0 -a.s., we get that limn→∞ Xn

n
= 0, P

ω,∞
0 -a.s. �

Appendix A: Proof of Proposition 5.3

By the tightness stated in Lemma 5.9 and by Prohorov’s theorem, (Qρ)ρ∈N+ admits some limit point and any limit

point Q∞ is absolutely continuous to P, with Radon–Nikodym derivative dQ∞
dP

bounded by F from above and by γ

from below.
We now show that any limit point is an invariant distribution of the process given by the environment viewed

from the walker without truncation (τX∞
n

ω)n∈N. To this end, let (Qρk )k≥1 be a subsequence weakly converging to
some probability Q∞ on �. We take a bounded continuous function f on � (without loss of generality we assume
‖f ‖∞ ≤ 1) and we write∣∣E∞[

f (ω)
] −E∞E

ω,∞
0

[
f (τX1ω)

]∣∣ ≤ ∣∣E∞[
f (ω)

] −Eρk
[
f (ω)

]∣∣
+ ∣∣EρkE

ω,ρk

0

[
f (τX1ω)

] −E∞E
ω,ρk

0

[
f (τX1ω)

]∣∣
+ ∣∣E∞E

ω,ρk

0

[
f (τX1ω)

] −E∞E
ω,∞
0

[
f (τX1ω)

]∣∣
=: B1 + B2 + B3. (113)

Above, E∞ is the expectation with respect to the measure Q∞ and in the second line we have used the fact that Eρk ,
the expectation with respect to the measure Qρk , is invariant for the process (τ

X
ρk
n

ω)n∈N. The term B1 goes to zero as
k → ∞ since Qρk → Q∞. To deal with term B2 we observe that, by Lemma 3.9, for any δ > 0 there exists h0 such
that, for any ρ ∈N+ ∪ {∞},

P
ω,ρ
0

(|X1| > h0
)
< δ, P-a.s. (114)

Then, for ρk ≥ h0, we write

B2 ≤
∣∣∣∣Eρk

[ ∑
|j |≤h0

P
ω,ρk

0 (X1 = j)f (τjω)

]
−E∞

[ ∑
|j |≤h0

P
ω,ρk

0 (X1 = j)f (τjω)

]∣∣∣∣ + 2δ

≤
∣∣∣∣Eρk

[ ∑
|j |≤h0

P
ω,∞
0 (X1 = j)f (τjω)

]
−E∞

[ ∑
|j |≤h0

P
ω,∞
0 (X1 = j)f (τjω)

]∣∣∣∣
+Eρk

[
P

ω,∞
0

(|X1| > h0
)] +E∞[

P
ω,∞
0

(|X1| > h0
)] + 2δ

≤
∣∣∣∣Eρk

[ ∑
|j |≤h0

P
ω,∞
0 (X1 = j)f (τjω)

]
−E∞

[ ∑
|j |≤h0

P
ω,∞
0 (X1 = j)f (τjω)

]∣∣∣∣ + 4δ.

Note that we have used (114) in the first and third estimates. For the second bound we have used that h0 ≤ ρk ,
P

ω,ρk

0 (X1 = j) = P
ω,∞
0 (X1 = j) for 0 < |j | ≤ ρk , while P

ω,ρk

0 (X1 = 0) = 1 − ∑
j :0<|j−x|≤ρk

P
ω,∞
0 (X1 = j) and

P
ω,∞
0 (X1 = 0) = 0 (cf. (14)).
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By the continuity assumption on u and since ‖c0,k(·)‖∞ ≤ e−(1−λ)dk+umax , the map � � ω �→ P
ω,∞
0 (X1 = j) =

c0,j (ω)∑
i∈Z c0,i (ω)

∈R+ is continuous. Hence, using that Qρk converges to Q∞ as k → ∞, we can choose k large enough so

that B2 ≤ 5δ. B3 is also smaller than δ for k big enough, again by (114). Altogether, letting ρ → ∞, (113) implies
that Q∞ is invariant for (τX∞

n
ω)n∈N with transition mechanism induced by P

ω,∞
0 .

Having that Q∞ � P, the ergodicity of Q∞ can be proved in the same way as Lemma 5.1.
It remains to prove uniqueness of the limit point. To this aim, take two limit points Q∞ and Q′∞ of (Qρ)ρ∈N+ .

Recall that we write P∞
Q∞ and P∞

Q′∞ for the law on the path space �Z of the Markov chains (τX∞
n

ω)n∈N, induced

by P
ω,∞
0 , with initial distributions Q∞ and Q′∞, respectively. As proved above, P∞

Q∞ and P∞
Q′∞ are stationary and

ergodic with respect to shifts. In particular, they must be either singular or the same. They cannot be singular, since
Q∞ and Q′∞ are both mutually absolutely continuous with respect to P by Lemma 5.9 and therefore absolutely
continuous with respect to each other. Hence, P∞

Q∞ and P∞
Q′∞ are equal, and therefore Q∞ =Q′∞.

Appendix B: Ergodic issues

In Lemmas B.1 and B.3 we prove the results we used in the proof of Proposition 8.1, see the discussion after equation
(112). In Lemma B.4 we prove an assertion on assumption (A1) made in Section 2.1.

For the first technical result, we slightly change the notation to make it lighter: Take � := RZ, the space of two-
sided sequences with real values, and let μ be a stationary measure on �, ergodic with respect to the usual shift τ1 for
sequences. We indicate by ω an element in �. Let � := NN and P be a probability measure on it. η = (ηi)i∈N ∈ � is
an i.i.d. sequence of natural numbers under the measure P . We assume that the ηi ’s are independent of the ω’s.

On the space � × � endowed with the product measure L = μ ⊗ P , we define the transformation T : � × � →
� × �, with T (ω,η) = (τη1ω,τ1η).

Lemma B.1. Assume that the greatest common divisor of {k : P(η1 = k) > 0} equals 1. Assume also (just for sim-
plicity) that the ηi ’s have finite expectation. Then, the transformation T is ergodic.

Remark B.2. The statement is not true in general without the GCD condition. Indeed, take the very simple space
with only two elements, ω1 = (. . . ,0,1,0,1,0,1, . . .) and ω2 = τ1ω1, and take μ putting 1/2 probability to each of
the two elements. Then μ is ergodic with respect to τ1. But, if we take ηi ’s that can attain only even values, then the
sequence (τη1+···+ηj

ω)j∈N is not ergodic under L = μ × P .

Proof. Take a function f = f (ω,η) which is invariant under T and bounded. We are going to show that f is constant,
L-almost surely, hence proving the claim.

Assume we have, for two sequences η(1), η(2),

n∑
k=1

η
(1)
k =

n∑
k=1

η
(2)
k (115)

for some n and η
(1)
k = η

(2)
k for k ≥ n. Then T n(ω,η(1)) = T n(ω,η(2)) and hence f (ω,η(1)) = f (ω,η(2)).

We define Fn as the σ -algebra generated by ω,η1, . . . , ηn. By the above observation we get

EL[f |Fn]
(
ω,η(1)

) = EL[f |Fn]
(
ω,η(2)

)
(116)

if (115) holds true for some n (where EL denotes the expectation with respect to the measure L). On the other hand,
f = limn→∞ EL[f |Fn] L-a.s. As a byproduct, we get that f (ω,η(1)) = f (ω,η(2)) for μ ⊗ P ⊗ P a.e. (ω,η(1), η(2))

such that (115) happens for infinitely many n (note that this event has probability one due to the Chung–Fuchs
Theorem [10] applied to the random walk Zn := ∑n

j=1(η
(1)
j − η

(2)
j )). Hence,

f
(
ω,η(1)

) = f
(
ω,η(2)

)
, μ ⊗ P ⊗ P -a.s. (117)
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We now claim that for μ-a.e. ω the function f (ω, ·) is constant P -a.s. To this aim, it is enough to show that for
μ-a.e. ω the P -variance of f (ω, ·) is zero, and this follows from (117) and the identity

VarP
(
f (ω, ·)) = 1

2

∫
dP

(
η(1)

)∫
dP

(
η(2)

)[
f

(
ω,η(1)

) − f
(
ω,η(2)

)]2
.

Now let A	,m := {η : ∑m
i=1 ηi = 	}. Since f is invariant under T , f (ω,η) = f (τ	ω, τmη) for η ∈ A	,m. If

P(A	,m) > 0, we conclude that f (ω, ·) = f (τ	ω, ·) P -almost surely, for μ-a.e. ω. Since the greatest common di-
visor of {k : P(η1 = k) > 0} equals 1, we conclude that there is some finite L such that f (ω, ·) = f (τ	ω, ·) for all
	 ≥ L, for μ-a.e. ω. Since the law of ω is ergodic with respect to τ1, this implies easily that f (·, ·) is constant L-almost
surely. �

Now recall the definition of the random sequence (Sk)k≥0 introduced at the end of the proof of Proposition 8.1,
and the notation therein.

Lemma B.3. The random sequence (Sk)k∈N is stationary and ergodic with respect to shifts.

Proof. We first show that the sequence (sk)k≥0 (see (112)) is stationary and ergodic with respect to shifts, under
P (∞). Indeed, writing (112) in a compact form as (sk)k≥0 = G(ω, (ξk)k≥1), it holds (sk)k≥1 = G(τξ1ω, (ξk)k≥2).
Then stationarity and ergodicity of (sk)k≥0 under P (∞) follow from the stationarity and ergodicity of (ω, (ξk)k≥1)

under P (∞) as in Lemma B.1.
We move to (Sk)k≥0. Since (sk)k≥0, under P (∞), is stationary, one gets easily the stationarity of (Sk)k≥0 under

P̃ (∞). Take now a shift invariant Borel set A ⊂NN0 (i.e. A = {(x0, x1, . . . ) ∈NN0 : (x1, x2, . . . ) ∈ A}). We claim that

P̃ (∞)
(
(S0, S1, . . . ) ∈ A

) ∈ {0,1}. (118)

We define f : NN0 → R as the Borel function such that

f (s0, s1, s2, . . . ) = P̃ (∞)
(
(S0, S1, . . . ) ∈ A|s0, s1, . . .

)
.

Since A is shift invariant, A belongs to the tail σ -algebra of NN0 . By Kolmogorov’s 0–1 law and due to the indepen-
dence of S0, S1, . . . under P̃ (∞)(·|s0, s1, . . . ), we get that f has values in {0,1}.

Below, for the sake of intuition we condition to events of zero probability although all can be formalized by means
of regular conditional probabilities. Using that {(S0, S1, . . . ) ∈ A} = {(S1, S2, . . . ) ∈ A} due to the shift invariance of
A and using the definition of (Sk)k≥0, we get

f (a0, a1, . . . ) = P̃ (∞)
(
(S0, S1, . . . ) ∈ A|s0 = a0, s1 = a1, . . .

)
= P̃ (∞)

(
(S1, S2, . . . ) ∈ A|s0 = a0, s1 = a1, s2 = a2, . . .

)
= P̃ (∞)

(
(S0, S1, . . . ) ∈ A|s0 = a1, s1 = a2, . . .

) = f (a1, a2, . . . ).

Hence f is shift invariant. By the ergodicity of (sk)k≥0, we conclude that the 0/1-function f (s0, s1, . . . ) is constant
P (∞)-a.s. An integration over (s0, s1, . . . ) allows to get (118). �

Lemma B.4. Consider two independent random sequences (Zk)k∈Z and (Ek)k∈Z, the former stationary and ergodic
with respect to shifts, the latter given by i.i.d. random variables. Then the random sequence (Zk,Ek)k∈Z is stationary
and ergodic with respect to shifts.

The above statement can be derived also from more general results on ergodic theory for dynamical systems, see [13].
We give an independent proof for completeness.

Proof. Call P the law of ((Zk)k∈Z, (Ek)k∈Z), which is a probability measure on the space RZ × RZ, whose generic
element will be denoted by (z, e). We write T for the shift [T (z, e)]k = (zk+1, ek+1). Let A be a shift-invariant Borel
subset of RZ ×RZ. We want to show that P(A) ∈ {0,1}.
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We first claim that, given r ≥ 1, A is independent of any set B in the σ -algebra generated by ei with |i| ≤ r . To
this aim, given ε > 0, we fix a Borel set An ⊂ RZ × RZ belonging to the σ -algebra generated by ei , zi with |i| ≤ n,
and such that P(A�An) ≤ ε. We take m large enough so that [−r, r] ∩ [−n + m,n + m] =∅. We observe that

P(A ∩ B) = P(An ∩ B) + O(ε), (119)

P(A ∩ B) = P
(
T mA ∩ B

) = P
(
T mAn ∩ B

) + O(ε) = P
(
T mAn

)
P(B) + O(ε). (120)

Indeed, the first identity in (120) follows from the shift invariance of A, while the second identity follows from the
shift stationarity of P implying that P(T mAn�T mA) ≤ ε. To get the third identity in (120) we observe that T mAn

belongs to the σ -algebra generated by ei , zi with i ∈ [−n + m,n + m]. By our choice of m and due to the properties
of P , we get that T mAn and B are independent, thus implying the third identity.

As a byproduct of (119) and (120) and the fact that P(T mAn) = P(A) + O(ε), we get that P(A ∩ B) =
P(A)P (B) + O(ε). By the arbitrariness of ε we conclude the proof of our claim.

Due to our claim, 1A = P(A|F), F being the σ -algebra generated by zi , i ∈ Z. We can think of P(A|F) as function
of z ∈ RZ. Due to the shift invariance of A, P(A|F) is shift invariant in RZ except on an event of probability zero.
Due to the ergodicity of the marginal of P along z, we conclude that P(A|F) is constant a.s. Since 1A = P(A|F),
1A is constant a.s., hence P(A) ∈ {0,1}. �

Appendix C: The nearest neighbor random walk (X
ρ
n)n≥1, ρ = 1

The biased Mott random walk (Yt )t≥0 can be compared to the nearest neighbor random walk obtained by considering
only nearest neighbor jumps on {xj }j∈Z with probability rate for a jump from x to y given by (3) when x, y are nearest
neighbors. By the same arguments as in Section 7, it is simple to show that this random walk is ballistic/subballistic
if and only if the same holds for (X

ρ
n )n∈N, ρ = 1. The latter can be easily analyzed and the following holds:

Proposition C.1. The limit vX1(λ) := limn→∞ X1
n

n
exists P

ω,1
0 -a.s. for P-a.a. ω, and it does not dependent on ω.

Moreover, the velocity vX1(λ) is positive if and only if condition (7) is fulfilled, otherwise it is zero.

Proof. We apply Theorem 2.1.9 in [24] using the notations therein. Since ρi = ci,i−1/ci,i+1 we get that S̄ =
1

c0,1

∑∞
i=0(c−i,−i−1 + c−i,−i+1). Therefore, E(S̄) < ∞ if and only if

∑∞
i=0 E(c−i,−i−1/c0,1) < ∞. The last condi-

tion is equivalent to (7) since the energy marks are bounded. On the other hand F̄ = 1
c−1,0

∑∞
i=1(ci,i−1 + ci,i+1).

Hence, E(F̄ ) = ∞ if and only if
∑∞

i=0 E(ci,i+1/c−1,0) = ∞. Since, when u ≡ 0, ci,i+1/c−1,0 = exp{(1 + λ)Z−1 +
2λ(Z0 + · · · + Zi−1) − (1 − λ)Zi}, by Assumption (A4) it follows that E(F̄ ) = +∞ always. The claim then follows
since, by Theorem 2.1.9 in [24], vX1(λ) > 0 if E(S̄) < ∞, while vX1(λ) = 0 if E(S̄) = ∞ and E(F̄ ) = ∞. �
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