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Abstract

In this dissertation, we investigate assistive teleoperation and apply it to liquid handling
and pouring, demonstrating reliable and safe teleoperation. Assistive teleoperation heavily
depends on autonomy sharing, which we cover in four major topics.

The first topic emphasizes manipulator motion planning. Teleoperation of robotic ma-
nipulators necessitates proper motion control and planning. Online motion control, while
active in obstacle avoidance, often leads to unsafe motion. In contrast, offline motion plan-
ning produces precise and secure trajectories for complex manipulation tasks. We introduce
a real-time nonlinear model predictive control-based motion planner (NMPC-MP) for teleop-
erated manipulation. Our model accommodates a complicated environment with dynamic
obstacles, differing from traditional NMPC-based models. Real-time planning becomes fea-
sible through our multi-threaded NMPC-MP. Utilizing the Kinova® Movo platform, we as-
sess our methodology in both simulated and real-world environments. When juxtaposed
with state-of-the-art approaches (e.g., RRT-Connect, CHOMP, and STOMP), our NMPC-MP
reveals notable enhancements in real-time motion planning. This planner was employed in
a dual manipulator setup during real-world tests. Experimental results illustrate that plan-
ners can accurately track the teleoperator’s active goals while evading self-collisions and
obstructions.

The second topic addresses shared autonomy amidst network discontinuity. Although
wireless communication networks offer reduced latency and augmented transmission rates,
the potential for network instability or packet drop persists. Real-time teleoperation neces-
sitates seamless data transmission. Shared autonomy (SA) provides a solution. If remote
data becomes inaccessible, the controller can persevere, drawing from previously observed
models. Nonetheless, the spatial divergence between human and robot trajectories induces
evident fluctuations, which pose challenges for teleoperation applications. We, therefore,
suggest an innovative skill refinement technique to modify earlier trained skills and coun-
teract unexpected, undesired motions during the control takeover phase. In our approach,
we integrate the Hidden Semi-Markov Model (HSMM) with the Linear Quadratic Tracker
(LQT) to comprehend and forecast user intentions. Subsequently, we use the Coherent Point
Drift (CPD) to enhance the executable trajectory. We evaluate our strategy in simulations and
real-world settings, specifically for 2D English letter drawing and 3D robot-assisted feeding
scenarios. Results from the Kinova® Movo platform demonstrate that our refinement tech-
nique formulates stable trajectories and curtails inconsistencies during control switches.

Our third topic zeroes in on robot-liquid interaction. By harnessing a digital twin of the
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manipulator and an avant-garde real-time liquid simulator, we explore the feasibility of re-
mote precision in liquid pouring via complete autonomy. When broaching liquid pouring
tasks in robotics, the issues of diversity and trainability often surface. A deficiency in ample
datasets curtails the efficacy of robotic learning, especially in liquid pouring tasks. However,
simulated liquid datasets, crafted in a virtual milieu, can bolster dataset diversity, present-
ing myriad simulation possibilities that cater to robot learning prerequisites. We dub our
simulator the "Realistic Robotic Simulator for Pouring Liquids (RRS-PL)".

The dissertation culminates with a methodological approach for robot training in liquid
pouring. Liquids present an intricate puzzle for robots, mainly due to their obliviousness to
the multifaceted fluid dynamics and behavior of these liquids. For real-time engagements, a
universal pouring policy remains elusive. We present "PourNet" as a significant contribution
to this domain—a generalized remedy for pouring diverse liquids into varied containers.
PourNet is an eclectic planner amalgamating deep reinforcement learning for end-effector
planning and Nonlinear Model Predictive Control for joint planning. We train the pouring
agent in this simulation backdrop using Proximal Policy Optimization (PPO) as the learn-
ing algorithm, with force/torque feedback as the dominant perception modality. Strategic
selections of the state space, action space, and reward functions enable a direct sim-to-real
skills transfer, obviating the need for auxiliary training. We integrate a curiosity-driven re-
ward system, motivating agents to incessantly expand their internal knowledge repertoire.
Concurrently, we randomize liquid parameters via a curriculum-centric learning approach.
In simulations, PourNet trumps its competitors by a margin of 4.9g deviation for water-like
substances and 9.2g for honey-like mediums. In real-world trials using the Kinova® Movo
Platform, PourNet boasts an average pouring discrepancy of 2.3g for dish soap with a pi-
oneering pouring container. For water, the deviation averages at 5.5g. All encompassing
experiments and accompanying visuals are accessible at: http://www.5g-munich.de.

http://www.5g-munich.de


Kurzfassung

In dieser Dissertation haben wir Assistenzfunktionen für die Teleoperation untersucht und
hinsichtlich einer zuverlässigen und sicheren Teleoperation für das Handhaben/Ausgießen
von Flüssigkeiten erweitert. Die geteilte Autonomie gilt als eine der kritischsten Aspek-
te unterstützten Teleoperation. Das erste Thema der Dissertation ist die Bewegungspla-
nung von Manipulatoren. Die Teleoperation von Robotermanipulatoren hängt von der Be-
wegungssteuerung und -planung ab. Die Verwendung von Online-Bewegungssteuerung
ist eine Herausforderung für die aktive Vermeidung von Hindernissen und führt zu un-
sicheren Bewegungen. Im Gegensatz dazu generiert die Offline-Bewegungsplanung prä-
zise und sichere Trajektorien für komplexe Manipulationen. Wir präsentieren einen nicht-
linearen modellprädiktiven steuerungsbasierten Bewegungsplaner (NMPC-MP) in Echt-
zeit für die teleoperierte Manipulation. Unser Modell berücksichtigt im Gegensatz zu her-
kömmlichen NMPC-basierten Modellen eine komplexe Umgebung mit dynamischen Hin-
dernissen. Echtzeit-Planung ist mit unserem Multi-Threaded NMPC-MP möglich. Unter Ver-
wendung der Kinova® Movo-Plattform evaluieren wir unseren Ansatz sowohl in einer si-
mulierten als auch in einer realen Umgebung. Der Vergleich von NMPC-MP mit moder-
nen Ansätzen (z. B. RRT-Connect, CHOMP und STOMP) zeigt deutliche Verbesserungen
bei der Echtzeit-Bewegungsplanung. Dieser Planer wurde in realen Tests auf einen Dual-
Manipulator-Aufbau angewendet. Experimentelle Ergebnisse zeigen, dass Planer die akti-
ven Ziele des Teleoperators genau verfolgen und dabei Selbstkollisionen und Hindernis-
se vermeiden können. Als Teil des zweiten Themas der Dissertation diskutieren wir ge-
teilte Autonomie in Gegenwart von Kommunikationsstörungen. Drahtlose Kommunikati-
onsnetzwerke bieten eine geringere Latenz und höhere Übertragungsraten. Das Risiko von
Netzwerkinstabilität oder Paketverlust besteht immer noch, obwohl dies viele neue Teleope-
rationsanwendungen ermöglicht. Teleoperation in Echtzeit erfordert eine unterbrechungs-
freie Datenübertragung. Shared Autonomy (SA) mildert dieses Problem. Wenn die Fernda-
ten nicht verfügbar sind, kann der Controller basierend auf den zuvor beobachteten Mo-
dellen fortfahren. Aufgrund der räumlichen Lücke zwischen den Bewegungsbahnen von
Mensch und Roboter treten unbestreitbare Schwankungen auf, die Probleme für Teleopera-
tionsanwendungen verursachen. Daher schlagen wir eine neuartige Strategie zur Verfeine-
rung von Fähigkeiten vor, um zuvor trainierte Fähigkeiten zu modifizieren und die plötzli-
chen unerwünschten Bewegungen abzumildern, die während der Kontrollübernahmephase
auftreten. Zu diesem Zweck umfasst unser Ansatz die kombinierte Anwendung des Hidden
Semi-Markov-Modells (HSMM) und des Linear Quadratic Tracker (LQT), um die Absichten
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des Benutzers zu lernen und vorherzusagen, und die anschließende Nutzung von Coherent
Point Drift (CPD), um die ausführbare Trajektorie zu verfeinern. Wir testen unsere Metho-
de sowohl in der Simulation als auch in der realen Welt für das Zeichnen von englischen
Buchstaben in 2D und robotergestützte Fütterungsszenarien in 3D. Unsere experimentel-
len Ergebnisse mit der Kinova® Movo-Plattform zeigen, dass der vorgeschlagene Verfeine-
rungsansatz eine stabile Trajektorie erzeugt und die Inkonsistenz der Steuerungsumschal-
tung mildert. Das dritte Thema konzentriert sich auf die Roboter-Flüssigkeits-Interaktion.
Durch die Verwendung eines digitalen Zwillings des Manipulators und eines neuartigen
Echtzeit-Flüssigkeitssimulators untersuchen wir die Möglichkeit des präzisen Flüssigkeits-
gießens aus der Ferne mit vollständiger Autonomie. Für die Entwicklung von Flüssigkeits-
gießaufgaben in der Robotik sind Diversität und Trainierbarkeit zu großen Herausforderun-
gen geworden. Der Mangel an ausreichenden Datensätzen schränkt die Forschungseffekti-
vität des Roboterlernens ein, insbesondere im verwandten Bereich der Aufgaben zum Gie-
ßen von Flüssigkeiten. In der virtuellen Umgebung generierte simulierte Datensätze können
die Vielfalt der Daten erheblich erhöhen und eine Reihe von Simulationsmöglichkeiten bie-
ten, um die Anforderungen des Roboterlernens zu erfüllen. Realistic Robotic Simulator for
Pouring Liquids (RRS-PL) ist der Name unseres Simulators. Die Dissertation endet mit einer
Methode zum Trainieren von Robotern zum Ausgießen von Flüssigkeiten. Flüssigkeiten sind
eine der herausforderndsten Aufgaben für Roboter, da sie sich der komplexen Fluiddynamik
und des Verhaltens von Flüssigkeiten nicht bewusst sind. Für Echtzeitanwendungen ist eine
generische Pouring-Policy nicht möglich. Als wichtigen Beitrag zu diesem Thema schlagen
wir PourNet als allgemeine Lösung zum Einfüllen verschiedener Flüssigkeiten in Behälter
vor. PourNet ist ein hybrider Planer, der Deep Reinforcement Learning für die Endeffektor-
Planung und Nonlinear Model Predictive Control für die gemeinsame Planung verwen-
det. Das Gießmittel wird in dieser Simulationsumgebung unter Verwendung von Proximal
Policy Optimization (PPO) als Lernalgorithmus und Kraft-/Drehmoment-Feedback als pri-
märem Wahrnehmungssystem trainiert. Durch die effektive Wahl des Zustandsraums, des
Aktionsraums und der Belohnungsfunktionen ermöglichen wir einen direkten Sim-to-Real-
Transfer der erlernten Fähigkeiten ohne zusätzliches Training. Ein auf Neugier basierendes
Belohnungssystem gibt Agenten einen Anreiz, ihr Wissen intern zu erweitern. Darüber hin-
aus werden die Flüssigkeitsparameter durch ein Curriculum-basiertes Lernverfahren ran-
domisiert. In der Simulation übertrifft PourNet den Stand der Technik um durchschnittlich
4,9 g Abweichung für wasserähnliche und 9,2 g Abweichung für honigähnliche Flüssigkei-
ten. Im realen Szenario mit Kinova Movo Platform erreicht PourNet eine durchschnittliche
Ausgießabweichung von 2,3 g für Spülmittel bei Verwendung eines neuartigen Ausgießbe-
hälters. Die für Wasser gemessene durchschnittliche Gießabweichung beträgt 5,5 g.
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Chapter 1

Introduction

Figure 1.1: Dual hand liquid pouring. One of the basic requirements of a dual arm motion planning
system is self-awareness. In a sense, each manipulator is a dynamic obstacle to the other. [1]

In the last century, healthcare and lifestyle improvements have made people live longer.
Despite longevity being a significant achievement of modern society, it poses challenges in
terms of caring for an elderly population. There is a supply and demand issue for elder care.
The number of caregivers is not increasing as the elderly population increases. A relative
lack of caregivers keeps elderly care costs high and places a heavy burden on families and
caregivers. Robotics can address the supply and demand issue in elder care. Elderly care
costs will be drastically reduced when medical robots are used. Medical robotics can be used
to help the elderly in many ways, including fetching food and water. As people get older,
their physical capabilities decrease: not only mobility decreases, but also sight, precision,
and strength. Therefore, they need assistance with most activities of daily living (ADL). Per-
forming daily tasks by themselves is no longer feasible for elderly people due to their lack
of coordination. Among the ADLs that service robots would encounter, tasks that involve
liquids deserve special attention. The use of robots in activities that involve liquids, on the
other hand, has not been the focus of attention until recent years. Household activities are
not the only ones in which we encounter liquids, since a lot of medicine comes in liquid
form, such as pills, cough syrup, and vaccines. Therefore, pouring liquids without spilling
and controlling precise quantities have become important research topics.

1
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Figure 1.2: Image (a) illustrates an example application for rigid object manipulation [2]. An example
of liquid handling and feeding is shown in image (b). Image (c) illustrates precise liquid pouring.
Here is an example of medicine in the form of syrup [3].

Table 1.1: Summarizing levels of autonomy in this dissertation.

Thesis Chapter Chapter 4 Chapter 5 Chapter 6

Arbitration Blend Binary Only Robot

Methodology NMPC HSMM/LQT/CPD PPO/RL

HRI Level high high low

Environment dynamic dynamic dynamic

Task Complexity simple moderate extreme

Elderly Care Task rigid object manipulation handling liquids pouring liquids

Input Device Sigma7/HTC Vive Ph. Omni/HTC Vive Tablet

Mode Shared Autonomy Shared Autonomy Autonomous

Using robots to provide care for the elderly is one of the most active areas of research.
Teleoperation offers a promising opportunity for assisting as many elderly with limited care
givers as possible. Teleoperation is an aspect of human-robot interaction (HRI) in which
the nurse (care provider) communicates remotely with a robot. The concept of autonomy is
a critical component of HRI that differs considerably between platforms. Various levels of
robot autonomy, from teleoperation to fully autonomous systems, impact the way humans
and robots interact with one another. According to the level of autonomy within HRI, we can
divide teleoperation into three major categories. The first type of control is direct control, in
which the robot follows the movements of the teleoperator directly. A second way of control-
ling the robots is through the shared control process. This is where the robots correct their
own behaviors based on local sensor feedback. The third way is through the supervisory
control process where the robot performs the actions independently.

There are tasks which robots are currently not able to perform independently due to im-
proper regulation or tasks that require human-level dexterity. These tasks include remote
food feeding, medical examinations, injections, and general nurse duties. Although robots
are capable of performing some tasks independently, teleoperators are not able to execute
them remotely due to the limited setting or lack of transparent sensory feedback. For in-
stance, indoor navigation in dynamic environments and picking up and placing objects ac-
curately and efficiently are examples of these tasks.
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Figure 1.3: Assistive teleportation in dynamic environments.

Table 1.1 summarizes the HRI levels in teleoperation and related methodologies which
are covered in this dissertation.

The first topic in this desertion is motion planning in dynamic environments. This is also
important in dual arm systems as the one manipulator sees the other one a dynamic obsta-
cle. Figure 1.1 shows our experimental setup for shared autonomy, consisting of an operator
interface and HTC® VR HMD and the Movo platform as the telerobot with two arm-based
manipulators. A common problem in teleoperating a robot, is the lack of dexterity in the
human operator’s input. Typically, only the end-effector’s posture is under the direct con-
trol of a human operator. Other parts of the manipulator only serve to take the end-effector
to the goal posture. Therefore, they usually have redundancy in autonomy and can not be
directly controlled. This may result in dangerous situations. Therefore, this redundancy
should be exploited to ensure obstacle and self-collision avoidance. Besides, the manipula-
tor also needs to have an autonomous reaction when the teleoperation commands are cut or
delayed due to unfavorable network conditions. This combination of an autonomous system
and a human operator that controls a robot, is called shared autonomy.

For the second topic of this dissertation, we adopt a more general way to mitigate net-
work latency in teleoperation by leveraging machine learning and shared autonomy [4]. To
do this, our system is able to perform direct teleoperation until network instability is de-
tected. The intention of the human teleoperator is recognized at the same time. When the
communication network is affected and thus becomes unstable, our system will switch to
the complete autonomy mode. The performance of reproduction on the robot side could be
also affected by varying environmental situations. Therefore, we are motivated to develop
a new skill refinement method to improve the performance of task reproduction. In order
to fit the reproduced trajectory and the demonstrated trajectory better, the skill refinement
in our work is viewed as a point set registration problem. The goal of point set registration
is to assign correspondences between two point sets and to recover the transformation that
maps one point set to the other [5]. The Coherent Point Drift (CPD) algorithm is applied in
our system due to its more robust and accurate performance compared with other methods.
The CPD algorithm is a probabilistic method that converts the alignment of two point sets to
a probability density estimation problem, where one point set represents the Gaussian Mix-
ture Model (GMM) centroids, and the other one represents the data points [5]. With our skill



4 Chapter 1. Introduction

refinement in task reproduction, the experimental results reveal that our system improves
the performance of the remote manipulation task in teleoperation by mitigating the effect of
imprecise movements, especially the intersection part of the partial demonstration and the
reproduction.

For the third topic in this dissertation independent liquid pouring has been investigated.
With the advent of automation in our industries to the applications in our homes, pour-
ing liquids precisely and efficiently is becoming an indispensable skill for robotics. In this
dissertation, a robust policy is developed called “PourNet", which can perform precision
pouring actions for any liquid type, provided that the liquid parameters are available. We
consider precision robotic pouring as a “Sparse Reward Reinforcement Learning Problem".
The approach for precision pouring can be made better by incorporating a large number of
experiences while working with a multitude of liquid types. This ensures that the preci-
sion pouring policy is representative of many liquid types which may behave differently in
their pouring dynamics because of their different properties like viscosity, surface tension,
etc. Since acquiring a large number of experiences from the real world can be time and cost
expensive, this thesis discusses the ability to gain precision pouring skill in a pure simula-
tion environment. The thesis further considers that a policy trained on domain randomized
liquid properties in the simulation can be transferred to a real robot for planning pouring
actions while minimizing pouring errors. Figure 1.4 summarizes the major topics of the dis-
sertation.

The key contributions of the work presented in this manuscript can be summarized as
follows:

• Proposal of a motion planner based on nonlinear model predictive control.

• Implementation of warm start and multi-threading mechanisms, which accelerate
the motion planning and enables it to be applied in real-time for dynamic obsta-
cles.

• Design of the novel online skill refinement approach using the CPD algorithm.

• Implementation of a shared control switching and reverse takeover strategy with
minimum displacement.

• Setup robust and representative pouring scenario in simulation using Unity3D
and Nvidia Flex.

• Introduce an internal reward based on curiosity regarding the liquid pouring pol-
icy. This makes an agent capable of growing its knowledge itself. Furthermore,
it provides a delicate balance between “exploration" and “exploitation" of the
emerging precision pouring policy.

• Implement Curriculum Learning for liquid parameter randomization. This en-
ables the pouring policy’s generalization to many liquid types by gaining experi-
ence, with increasing difficulty as the lessons in curriculum progress.



1.1. Thesis Outline 5

Simulation
RRS-PL

Network

Non-rigid Liquid Interaction

Real Robot

• Knowledge Fine-tune

Remote User

Machine Learning 

Remote User

Network

Real Robot

• Mitigate Network Artifacts

• Shared Autonomy for safety and simplicity

Model Update Behavior Update• Intuitive Interface
• Complete Autonomy
• Tablet Application

Figure 1.4: Dissertation big picture.

Figure 1.5: Overview of research questions and subsequent improvements.

1.1 Thesis Outline

Chapter 2 introduces the theoretical background needed to understand the proposed con-
cepts and the decisions made within the scope of this work. The proposed methodology
is confronted with related work. The main advantages are discussed and compared to the
state-of-the-art.

The experimental framework is described in Chapter 3. In order to gain a deeper un-
derstanding of the methodologies, we examine the performed upgrade of MOVO’s grippers
and head in relation to its hardware specifications. An additional presentation illustrates
and discusses the software architecture, shared autonomy interface, liquid pouring simula-
tor, and two datasets for network interaction study from a motion generation perspective
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and simulated liquid profiles from the policy training perspective to facilitate reproducible
validation.

Chapter 4 introduces the model predictive control approach and establishes a generic,
algebraic formulation of the continuous motion planner for a redundant manipulator.

Chapter 5 analyzes the effects of the network impairments on teleoperation in dynamic
environments. This section describes the skill refinement methodology as a non-rigid point
set registration problem. Deep Reinforcement learning-based approach to design a hy-
brid motion planner is described in Chapter 6. The proposed deep reinforcement learning
paradigm is compared to prior art and evaluated by different liquid profiles on both simula-
tion and real experiments.

Chapter 7 concludes this work by summarizing the most distinct outcomes of this
manuscript, discussing their limitations, and briefly broaching some potential conceptual
improvements for future work.

Parts of this manuscript have been published in [6], [1], [7], [8], [9]. Contribution to other
publications are [10], [11], [12].



Chapter 2

Background and Related Work

2.1 Redundant Robots

The main purpose of adopting redundancy in robot systems is to improve reliability and
safety. For example, in most industrial robots, end-effectors need to be arbitrarily positioned
in a three-dimensional workspace, and usually, six actuators are mounted in order to per-
form the task. And when tasks are defined in a six-dimensional workspace for position and
orientation, a robot manipulator with seven or more joint actuators is used for the tasks. In
this case, the robot is said to have kinematic redundancy. Redundancy is useful for not only
the reliability but also the dexterity of the manipulator.

Figure 2.1: This figures illustrates the kinematic redundancy of a simple interconnected kinematic
chain: thanks to one additional joint, the kinematics solver can find a large set of solutions.

2.2 Forward Kinematics and Jacobian Matrix

The Kinematics of a robot consists of Forward Kinematic (FK) and Inverse Kinematic (IK). FK
is the computation needed to obtain the cartesian position and orientation of the end-effector
given joint angles. And IK is to solve the joint angles from the given cartesian position and
orientation of the end-effector. While FK can be represented by a closed-form nonlinear alge-
bra computation, there is no analytical closed-form solution for IK. Besides, for a redundant
robot, the number of solutions for a given cartesian position can be infinite. Thus, in Naka-
mura’s control scheme [13], directly calculating the joint angles from cartesian position via

7
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IK is avoided. Instead, the Jacobian matrix of the FK is used to calculate joint velocities. The
Jacobian matrix represents the linear relationship between the cartesian velocities of the end-
effector and the joint velocities. And the Jacobian matrix itself is nonlinearly and uniquely
determined by the joint angles. Based on these facts, a resolved motion rate control can be
implemented to control the end-effector to move to the desired position.

Figure 2.2: Simulated planar robot manipulator

Since the structure of the four Degrees of Freedom (DOF) planar robot is simple, the cor-
responding FK, and Jacobian matrix can be analytically derived in an intuitive way:

X(q) =


x

y

θ

 =


l1c1 + l2c12 + l3c123

l1s1 + l2s12 + l3s123

q1 + q2 + q3 + q4

 (2.1)

J(q) =
dX

dq
=


−l1s1 − l2s12 − l3s123 −l2s12 − l3s123 −l3s123 0

l1c1 + l2c12 + l3c123 l2c12 + l3c123 l3c123 0

1 1 1 1

 (2.2)

where X ∈ Rm represents the position of the end-effector and J ∈ Rm×n the Jacobian
Matrix, q ∈ Rn is the joint angles vector, namely [q1, q2, q3, q4]

T . m and n represent the di-
mension of cartesian space and the number of robot joints respectively, here in the simulation
of the planar robot, m is equal to 3 and n is 4. l1 to l3 are the lengths of the links. c1 is for the
abbreviation of cos(q1) and similarly s123 for sin(q1 + q2 + q3).

Differentiating both sides of Eq 2.1 with respect to time leads to:

Ẋ =
dX

dt
=
dX

dq
· dq
dt

=
dX

dq
· q̇ =


ẋ

ẏ

θ̇

 (2.3)
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Substituting Eq 2.2 into Eq 2.3 results in:

Ẋ = J(q) · q̇ (2.4)

where a linear relationship between the velocity in cartesian space and the joint velocities is
formulated.

2.2.1 Resolved motion rate control

Given the desired velocities in cartesian space, the joint velocities can be obtained by solving
Eq 2.4. However, for the J(q) ∈ Rm×n of a redundant robot, where n > m, solving Eq 2.4 for
q̇ yields infinitely many solutions. In order to make the solution unique, one good measure-
ment is to select the solution that minimizes q̇. In this way, the problem is converted to the
following:

min ∥q̇∥2 , s.t. Ẋ = J(q)q̇ (2.5)

Using Lagrange multipliers, we have:

L(q̇,λ) = ∥q̇∥2 + λT (Ẋ − J(q)q̇) (2.6)

Differentiating Eq 2.6 with respect to q̇ yields:

∂L

∂q̇
= 2q̇ − J(q)Tλ (2.7)

Letting ∂L
∂q̇ be 0 and multiplying both sides by J(q):

2J(q)q̇ − J(q)J(q)Tλ = 0 (2.8)

Substituting Eq 2.4 into Eq 2.8 and solve for λ:

2Ẋ = J(q)J(q)Tλ

λ = 2(J(q)J(q)T )−1Ẋ
(2.9)

Now substituting Eq 2.9 into Eq 2.7:

q̇ = J#Ẋ

J# = J(q)T (J(q)J(q)T )−1
(2.10)

where J# represents the pesudo-inverse of J(q) ∈ Rm×n when J(q) is under-determined,
i.e. m < n.

2.3 IK with the Order of Priority

2.3.1 General Formulation of Prioritized Subtasks

A task can be divided into multiple subtasks with the order of priority. A subtask is defined
by a manipulation variable, si ∈ Rmi , where i specifies the order of the subtask and mi the
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dimension of the manipulation variable for this subtask. Then the relationship between the
manipulation variable and the joint angles can be represented by:

si = fi(q) (2.11)

and the differential relationship is expressed by:

ṡi = Ji(q)q̇ (2.12)

As discussed in the previous section, for the Jacobian matrix Ji ∈ Rmi×n, if mi < n, solv-
ing Eq 2.11 yeilds infinite many solutions for q̇. The set of this infinite variety of solutions
can be analytically derived via the pseudo-inverse of Ji:

q̇ = J#
i (q)ṡi + {In − J#

i (q)Ji(q)}v (2.13)

where In ∈ Rn×n is an identity matrix and matrix {In − J#
i (q)Ji(q)} represents a projection

of an arbitrary vector v ∈ Rn onto the nullspace of Ji. Any motion in the nullspace doesn’t
affect the motion in the task space. And v = 0 indicates the solution with the minimum
norm.

Now consider a task consisting of two subtasks. The first subtask is fulfilled by using
Eq 2.13. Substitute Eq 2.13 for the first subtask into Eq 2.11 for the second subtask, in order
to find a vector v whose projection onto the nullspace of the Jacobian matrix for the first
task helps fulfill the second subtask and doesn’t affect fulfilling the first subtask. Then the
following equation is obstained:

ṡ2 − J2J
#
1 ṡ1 = J2(In − J#

1 J1)v (2.14)

If the solution of v for Eq 2.14 exists, the second subtask can be achieved. However, such
solution doesn’t always exist. In that case, a v is only obtained to minimize ∥ṡ2 − J2q̇∥. Eq
2.14 is of the same form as Eq 2.11 and can be solved for v in the same way:

v = Ĵ2
#
(ṡ2 − J2J

#
1 ṡ1) + (In − Ĵ2

#
Ĵ2)w

Ĵ2
.
= J2(In − J#

1 J1)
(2.15)

Substituting Eq 2.15 into Eq 2.13 for first subtask, solution of q̇ is obtained:

q̇ =J#
1 ṡ1 + (In − J#

1 J1)Ĵ2
#
(ṡ2 − J2J

#
1 ṡ1)

+ (In − J#
1 J1)(In − Ĵ2

#
Ĵ2)w

(2.16)

Eq 2.16 can be simplified to the following:

q̇ = J#
1 ṡ1 + Ĵ2

#
(ṡ2 − J2J

#
1 ṡ1) + (In − J#

1 J1)(In − Ĵ2
#
Ĵ2)w (2.17)

Eq 2.17 indicates the inverse kinematics for prioritized subtasks s1 and s2.
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2.3.2 The Damped Pseudo-inverse

Eq 2.17 used the pseudo-inverse of the Jacobian matrices. However, near a singular configu-
ration of the robot for a task, some elements of its Jacobian matrix can be close to zero, which
yields elements close to infinity in its pseudo-inverse and causes the problem of discontinu-
ity. In order to address this problem, the damped pseudo-inverse is used. The core of the
damped pseudo-inverse is to find the q̇ that minimizes the following:

E =
∥∥∥J(q)q̇ − Ẋ

∥∥∥2 + ρ2 ∥q̇∥2 (2.18)

where ρ≪ 1 is the damping factor. The solution to this problem is:

q̇ = J#
ρ Ẋ

J#
ρ = JT (JJT + ρ2Im)−1

(2.19)

J#
ρ is called the damped pseudo-inverse of J . As ρ→ 0, J#

ρ is identical to J .
Given the singular value decomposition of J :

J = UΣV T (2.20)

the following is derived:

J#
ρ = JT (JJT + ρ2Im)−1 = V ΣTUT (UΣV TV ΣUT + ρ2Im)−1

= V ΣTUT
[
U
(
ΣΣT + ρ2Im

)
UT
]−1

= V ΣTUTU
(
ΣΣT + ρ2Im

)−1
UT

= V ΣT
(
ΣΣT + ρ2Im

)−1
UT

= V ΣρU
T

(2.21)

Σρ =



σ̃1 0 · · · 0

0 σ̃2 · · · 0

...
...

. . .
...

0 0 · · · σ̃m

0 0 · · · 0


where σ̃i =

σi
σ2i + ρ2

(2.22)

Therefore, by applying the modification of Eq 2.22 during the singular value decomposition
of J , its damped pseudo-inverse is obtained.

2.3.3 Obstacle Avoidance by Potential Function

Based on Khatib’s usage of the artificial potential function in the obstacle avoidance prob-
lem[14], Nakamura proposed an artificial potential functions specified for defining a task of



obstacle avoidance in his prioritized task framework[15]. The potential function is defined
by:

PO = kO

6∑
i=1

(CO(pi)− 1)−1 (2.23)

where PO gives the potential of the planar robot due to the obstacle, pis represent six critical
points on the robot, including three mobile joints and three centroids of the three robot links,
as shown in Figure 2.3.

Figure 2.3: Critical points on the robot

When all of these six points are out of the dangerous range of the obstacle, it is assumed
that the whole robot is safe from the obstacle. CO(pi) is used to approximate the contour of
the obstacle. For a rectangular obstacle, Co(pi) is given as follows[14]:

CO(pi) = (
xi − 60

20
)8 + (

yi − 15

15
)8 (2.24)

The exponent of the two addend terms can be set accordingly, the higher it is, the more
accurate the approximation of the contour of the rectangular obstacle is.

2.3.4 Obstacle Avoidance as Prioritized Task

Now consider a task of reaching the goal while the whole robot is avoiding an obstacle. The
task is divided into a subtask of reaching the goal with first priority order and a subtask of
avoiding obstacle with second priority order. Two subtasks can be defined as follows:

s1 = ∥Xdesired − f(q)∥2

s2 = PO

(2.25)

where Xdesired ∈ R3 is the goal for the end-effector, f(q) is the FK of the end-effector, and
PO is the scalar potential of the robot due to the obstacle. The Jacobian matrices J1 ∈ R3 and
J2 ∈ R3 for subtasks s1 and s2 can be analytically derived. And the solution for realizing the
task can be obtained by applying Eq 2.17.
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2.4 Offline Motion Planning

As opposed to the online instantaneous control, which calculates a control policy for the cur-
rent time instant and executes it immediately, offline motion planners calculate a trajectory
from the current time instant to a certain future time beforehand and drive the robot to follow
the calculated trajectory. Basically, motion planning is to search for a continuous trajectory
from an initial state qinit to a goal state qgoal or region Qgoal in a configuration space C. Each
q ∈ C specifies a state for the robot. And for scenarios with obstacles, an obstacle region
Cobs ⊂ C should be avoided. However, in most problems, it is difficult or even impossible
to have an explicit representation of Cobs. One can only use a collision detection method to
check whether a configuration q is in Cobs. Motion planners are supposed to search for a tra-
jectory that entirely lies in Cfree, the complement of Cobs. Generally speaking, offline motion
planners can be divided into two types: sampling-based planners and optimization-based
planners. Sampling-based planners are widely used as they are easier to implement and can
spare high computation costs in high-dimensional spaces that have complex constraints and
thus are adaptable in various applications. The key idea behind sampling-based planners is
to randomly sample valid configurations between initial and goal states and chain them in
Cfree to form a feasible trajectory. On the other hand, optimization-based planners find op-
timal trajectories via solving a constrained optimization problem. They refrain from rough
motions at the cost of more computation.

2.4.1 Sampling-based motion planners

Rapidly-exploring Random Trees (RRT) method[16] and Probabilistic RoadMaps (PRM)
method[17] are the two most influential sampling-based planners. Many other planners are
their extensions and improvements. These two methods are different from the way how they
construct the graph connecting the configuration points. The roadmap generated from PRM
covers the whole free configuration space, this roadmap can be reused for other motion plan-
ning problems in the same configuration space, this is referred to as a multi-query planning
method, while RRT constructs a new graph for every motion planning problem and is called
a single-query planning method.

2.4.2 Optimization-based Motion Planners

Sampling-based planners can be surprisingly good at finding a feasible path in a compli-
cated environment with densely positioned obstacles. In this case, finding a path is much
more important than focusing on the quality of the path. However, in many scenarios, where
the environment has relatively simple structure and obstacles are sparsely located, heuristics
used by RRT and PRM is then unnecessary and generated paths are unreasonable although
they reach the goal position. RRT∗ and PRM∗ realize some optimization and smoothing op-
erations on the trajectory, but these operations are only confined to choosing connections
between fixed sampled vertices. Therefore, optimization-based planners are needed, either
as a post-processing for the generated trajectory from sampling-based planners or as a stan-
dalone motion planner.
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2.4.2.1 CHOMP

CHOMP is a trajectory optimization method based on covariant gradient descent. Two goals
are realized by CHOMP[18]: smoothness and obstacle avoidance of the trajectory between
start and goal configurations qinit,qgoal ∈ Rm. Here, only discrete trajectory is considered
and a trajectory between qinit and qgoal is then defined by q1, · · · , qn. Velocities and acceler-
ations at waypoints can be approximated by finite difference. The problem is modeled as a
problem of minimizing the cost of a trajectory. This cost describes how near the robot is to
the obstacles plus the norm of the dynamical quantities of the robot which determines the
smoothness of the trajectory. The cost is then written as:

c(ξ) = cprior(ξ) + cobs(ξ) (2.26)

where ξ describes a trajectory, cobs indicates the cost of being close to obstacles and cprior is a
sum of squared derivatives. calculation of cprior via finite finite difference is as follows:

cprior(ξ) =
1

2

D∑
d=1

ωd ∥Kdξ + ed∥2 (2.27)

where Kd ∈ R(n+1)·m×n·ms are finite difference matrices with d = 1 · · ·D and ed ∈ R(n+1·m)s
are constant vectors that are used to approximate derivatives at the starting and ending con-
figurations. Eq. 2.27 can be rewritten to quadratic form:

cprior(ξ) =
1

2

D∑
d=1

ωd(Kdξ + ed)
T (Kdξ + ed)

=
1

2

D∑
d=1

ωd

[
ξTKd

TKdξ + 2ed
TKdξ + ed

T ed
]

=
1

2
ξT

[
ωd

D∑
d=1

Kd
TKd

]
ξ +

[
ωd

D∑
d=1

ed
TKd

]
ξ +

1

2
ωd

D∑
d=1

ed
T ed

=
1

2
ξTAξ + bT ξ + c

(2.28)

The prior cost is then determined by constant matricesA = ωd
∑D

d=1Kd
TKd, b = ωd

∑D
d=1 ed

TKd

and c = 1
2ωd

∑D
d=1 ed

T ed.
At k-th iteration, the value of the objective function c(ξ) can be approximated in the small

region around current trajectory point ξk by first-order Taylor expansion:

c(ξ) ≈ c(ξk) +∇c(ξk)T (ξ − ξk) (2.29)

A minimization procedure is then conducted on Eq. 2.29 to find the optimal ξ at current iter-
ation, with a regularization on ξ to retain the smoothness of the trajectory. Then the trajectory
point at next iteration ξk+1 is then given by:

ξk+1 = argmin
ξ

{
c(ξk +∇c(ξk)T (ξ − ξk)) +

λ

2
∥ξ − ξk∥2M

}
(2.30)
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According to Ratliff[18], the regularization term is a norm taken with respect to the Rieman-
nian metric M and this metric M is set to the matrix A in Eq. 2.28. The reason for this
operation is that, under the metric A, the regularization term can be large if the trajectory
at the current iteration is not smooth, which leads to a minimization mainly on this term
during the optimization. In this way, the trajectory will keep as smooth as possible after each
optimization. Solving Eq. 2.30 yields then the following update rule for ξ.

ξk+1 = ξk − 1

λ
A−1∇c(ξk) (2.31)

Without loss of generality, assuming cobs is convex and considering in a fairly small region
around a local optimum, covariant gradient descent based on update rule 2.31 is said to
be O(n) times faster to converge as opposed to standard gradient descent[18], where n is
the number of the waypoints in a trajectory. Besides, covariant gradient descent spares the
calculation of the Hessian matrix, which is a large computation overhead but necessary for
traditional gradient descent methods.

Definition of obstacle cost cobs can be an arbitrary potential function, as long as it achieves
reasonable obstacle avoidance during the minimization of its value. It should be close to zero
when the robot is away from obstacles but increases rapidly when the robot is near the ob-
stacles. For example, a smooth cost function can be defined as follows:

c(d) =

e−d, if x ≥ 0

−d+ 1, otherwise
(2.32)

The deficiency of CHOMP is that it needs to solve a inverse kinematics from a cartesian
goal first, which would slow down the procedure. Besides, same as Nakamura’s instanta-
neous control, there is still a risk of collision. Because obstacle avoidance is only achieved by
minimizing obstacle cost, when the cost is not optimized down to a safe level, requirement
for avoiding obstacle is broken.

2.4.2.2 STOMP

Optimization-based planners like CHOMP are prone to getting stuck in local minima and
STOMP[19] overcomes this disadvantage. STOMP updates the candidate trajectory to a
lower cost based on the combination of multiple generated noisy trajectories between given
start and goal configurations. This stochastic nature of the method helps jump out of local
minima. Another advantage for STOMP is that it does not need a gradient of the cost func-
tion to perform updates, while for CHOMP, smoothness and differentiability are necessary
for its cost function to yield gradient information. Furthermore, the Hessian of the defined
cost function needs to be positive definite for CHOMP to guarantee convergence and STOMP
does not have this limitation.

Given ξ0 ∈ RN ·m, an initial guess on the trajectory with N waypoints between qinit,
qgoal ∈ Rm, STOMP formulates the following optimization problem:

min
ξ̂

E

[
N∑
i=1

c(ξ̂i) +
1

2
ξ̂TRξ̂

]
(2.33)
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where ξ̂ = N (ξ,Σ) denotes a normal distribution with mean ξ and covariance matrix Σ, un-
der which current stochastic trajectory candidates are sampled. Cost function c(ξ̂i) can be
defined to fulfill certain task. Matrix R is chosen, so that ξ̂TRξ̂ represents the sum of the
squared dynamical quantities of the robot.

Taking the derivative of Eq. 2.33 and setting it to zero results in:

∇ξ̂

(
E

[
N∑
i=1

c(ξ̂i) +
1

2
ξ̂TRξ̂

])
.
= 0,

E(ξ̂) = −R−1E

(
∇ξ̂

[
N∑
i=1

q(ξ̂i)

])
= −R−1δξ̂G

δξ̂G = E

(
∇ξ̂

[
N∑
i=1

q(ξ̂i)

]) (2.34)

where δξ̂G denotes the estimated gradient, and according to [19], this term can be formu-
lated as follows:

δξ̂G =

∫
exp

(
− 1

λ
S(ξ)

)
δξd(δξ) (2.35)

This equation is the expectation of δξ under the probability distribution of exp
(
− 1

λS(ξ)
)

where S(ξ) =
∑N

i=1 c(ξi) indicates the accumulated cost along the trajectory ξ. For discrete
case where K noisy trajectories are sampled and their costs are calculated, δξ̂G is then given
by the following equation:

[δξ̂G]i =
K∑
k=1

exp(− 1
λS(ξ̂k,i))∑K

l=1 exp( 1λS(ξ̂l,i))
δξk,i (2.36)

And STOMP update rule for current trajectory is ξ+ = ξ +Mδξ̂, the multiplication with
M = R−1 realizes the smoothness of the trajectory update. Updated trajectory is a convex
combination of the sampled noisy trajectories from the last iteration.

2.5 Introduction to MPC

The fundamental concept of MPC is to use a dynamic model of the system to predict the
future states of the system, and optimize one or multiple future state dependent metrics to
produce a sequence of optimal control moves. However, only the control move at the first
time step is executed, control moves after that are discarded. At coming to the next time
step, the system state may be different from what MPC has predicted due to unmeasured
disturbance. It is not a good choice to stick to executing the planned control move at the
second time step from the solution sequence generated by the previous MPC, a new MPC is
formulated according to the current system state and solved to generate new control moves.
Figure 2.4 illustrates the concept of MPC. It is assumed that system states can be exactly
measured for the robot manipulator system considered in this thesis. System states are joint
angles and they can be precisely captured.
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Figure 2.4: Concept of MPC.

Figure 2.5: Prediction horizon in MPC [20].

2.5.1 Models

The model of the system is important for the prediction of MPC Figure 2.5. General contin-
uous time variant systems can be described by:

x(k + 1) = f(x(k),u(k), t),

y(k) = h(x(k), t).
(2.37)

where x ∈ Rn denotes the system states, u ∈ Rm the system inputs and y ∈ Rq the
system outputs. Although natural systems are all continuous, discretized systems can well
describe the original system as long as the sampling frequency is high enough. Discretization
leads to a reduction in computation overhead and acceleration of the process. But it is worth
mentioning that, there are novel optimal control schemes designed for continuous systems.
For example, Nakamura and Hanafusa proposed an optimal redundancy control for a robot
manipulator [13], by applying Pontryagin’s Maximum Principle. The optimization problem
is solved to generate an optimal continuous control function u(t) for the continuous system.
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This dissertation focuses on discretized systems. Furthermore, linear time invariant (LTI)
systems are used for conciser explanation of the MPC concept in this section.

Until now, we have discussed the basic fundamentals of robot motion planning and
model predictive control. In Chapter 4, we will expand on this topic and relate it to non-
linear model predictive control. Now we will move on to understand the basics of intention
recognition in teleoperation using Markov Chains [21].

2.6 Hidden Semi-Markov Model

Hidden Markov Models (HMM) contain the spatial and temporal information by augment-
ing a Gaussian Mixture Model (GMM) with latent states that sequentially evolve over time
in the demonstrations [22]. As an extension to the Hidden Markov Model (HMM), a Hidden
Semi-Markov Model (HSMM) is traditionally defined by allowing the underlying process to
be a semi-Markov chain with a variable duration/elapsed time for each state [23], i.e., the du-
ration time d of each given state is also explicitly defined in HSMM in addition to the defined
parameters in HMM. The state duration denotes a random integer variable that assumes a
value in the set {1, 2, . . . , D}. The value indicates the number of observations produced in
the given state i before the transition to the next state i+ 1 [22].

Figure 2.6: General HSMM [23] ©2010 Elsevier.

A general HSMM is illustrated in Figure 2.6, i0 and d0 are the initial state and duration,
according to the transition probability ai0,i1 , the first state i1 with duration d1 are selected. i1
lasts for d1 = 2 time units in this instance and produces two observations o1 and o2 with the
emission probability Π1. The model continues to develop with this rule.

In this dissertation, we use the HSMMs to segment the motion of the desired task, i.e.,
the letter trajectories are clustered according to the different datapoints in different states.
Let {ξt}Tt=1 denote the sequence of observations with datapoints ξt ∈ RN collected while
demonstrating the letter drawing task. The observation sequence is associated with a hid-
den state sequence {zt}Tt=1 with zt ∈ {1, . . . ,K} belonging to a set of K cluster indices. The
HSMM model is parameterized by θ = {Πi, {ai,j}Kj=1,µi,Σi, µ

S
i ,Σ

S
i }Ki=1. The transition ma-

trix a ∈ RK×K with ai,j ≜ P (zt = j|zt−1 = i) denotes the transition from one state i at time
t − 1 to another state j at time t. Πi is the initial state probability, the output distribution of
state i is described by a multivariate Gaussian with parameters {µi,Σi}, and the parameters
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{µSi ,ΣS
i } represent the mean and the standard deviation of staying s consecutive steps in

state i estimated by a Gaussian N (s|µSi ,ΣS
i ) [24].

2.6.1 Discussion about other State-of-the-art Approaches

As described above, we carry out the motion segmentation of desired letter trajectories using
the HSMM and predict the intention of the human teleoperator in the letter drawing task by
calculating the highest probabilities among 26 letters. However, there are also other state-
of-art approaches to reach the same goal. For instance, Gaussian Mixture Model (GMM)
and Hidden Markov Model (HMM) can be applied to segment the motions in the encoding
step, k-nearest neighbors (KNN) algorithm, deep neural networks, and other machine learn-
ing methods can be also used to recognize the intention of the human teleoperator in recent
years. A discussion about these state-of-art approaches is introduced as follows.

A GMM is a probabilistic clustering model to encode the local structure in the data for
classification or regression and represented as a weighted sum of Gaussian component densi-
ties [25]. Given a set of T observations {ξt}Tt=1 with ξt ∈ RD, the probability density function
P with K mixture components can be computed as [22]:

P(ξt|θ) =
K∑
i=1

πiN (ξt|µi,Σi), (2.38)

where N (µi,Σi) denotes the multivariate Gaussian distribution with parameters θ =

{πi,µi,Σi}Ki=1 which indicates a set of prior πi, mean µi, and covariance matrix Σi and are
estimated in the density function. For the case of motion segmentation, we focus mostly on
clustering the given data to encode their local structure based on the variance in the demon-
stration, and the overall behavior of the given data interested us not. The log-likelihood
function of the GMM is expressed as:

L(θ|ξ) =
T∑
t=1

log(
K∑
i=1

πiN (ξt|µi,Σi)). (2.39)

For the initial set of parameters θold, the auxiliary function of GMM takes form:

Q(θ, θold) = E{
T∑
t=1

logP(ξt, zt|θ)|ξt, θold}

≈ 1

2

T∑
t=1

K∑
i=1

hθ
old

t,i (log π2i − log |Σi| − (ξt − µi)
TΣ−1

i (ξt − µi)−D log(2π)),

(2.40)

where {zt}Tt=1 denotes the unobserved labels that are assumed to be independent realiza-
tions of a random variable zt ∈ {1, . . . ,K}. hθ

old

t,i = p(zt = i|ξt, θold) represents the probability
that the data point ξt belongs to i-th Gaussian component. In this case, the model can be
trained to encode the desired motions using EM algorithms, in which we set the derivatives
of the auxiliary function Q(θ, θold) with respect to the model parameters equal to zero. The



20 Chapter 2. Background and Related Work

E-step and M-step proceed iteratively until the likelihood function in Eq. 2.39 converges to a
local optimum:

E-step:

ht,j =
πiN (ξt|µi,Σi)∑K

k=1 πkN (ξt|µk,Σk)
. (2.41)

M -step:

πi ←
∑T

t=1 ht,i
T

, (2.42)

µi ←
∑T

t=1 ht,iξt∑T
t=1 ht,i

, (2.43)

Σi ←
∑T

t=1 ht,i(ξt − µi)(ξt − µi)
T∑T

t=1 ht,i
, (2.44)

However, GMM can only encode the structure of motion and does not model the tran-
sition between the different states (see Fig. 2.7). Hence, the performance of GMM is worse
than the one of HMM or HSMM. A graphical representation of the difference of encoding
among GMM, HMM, and HSMM is illustrated in Fig. 2.7, as an extension of the HMM,
HSMM models also the state duration probabilities as Gaussian distribution when the tran-
sition probabilities among states are kept. Therefore, HSMM performs better than the HMM
due to the better models movements with longer state duration time. A comparison for use
in robotic applications can be found in [26].

Figure 2.7: Graphical representation of a GMM, HMM, and HSMM with 7 components [22] ©2018
EPFL.

2.6.2 Linear Quadratic Tracker

In this section, we synthesize the motion of the recognized letter using a linear quadratic
tracker (LQT), which is a commonly used tool from control theory to derive an optimal con-
trol policy for the robot. The step-wise desired sequences of poses {N (µ̂t, Σ̂t)}

Tp

t=1 are tracked
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by optimizing a scalar cost function with a LQT [22]. We acquire the optimal control policy
ut at each time step by minimizing the cost function over the finite time horizon Tp:

ct(ξt,ut) =

Tp∑
t=1

(ξt − µ̂t)
TQt(ξt − µ̂t) + uT

t Rtut,

s.t. ξt+1 = Adξt +Bdut,

(2.45)

We use a linear time-invariant double integrator system to describe the discrete-time dy-
namical system, which is specified by Ad and Bd as follows [27]:

ξt+1︷ ︸︸ ︷ xt+1

xt+2

 =

Ad︷ ︸︸ ︷ I ∆t

0 I


ξt︷ ︸︸ ︷ xt

xt+1

+

Bd︷ ︸︸ ︷ I 1
2∆t

2

I∆t

ut. (2.46)

By minimizing the cost function in Eq. 2.45 and setting Qt = Σ̂−1
t ≥ 0, Rt > 0, the

optimal control policy u∗
t subject to the linear dynamics in discrete time is obtained as [27]:

u∗
t = −(R+BT

d PtBd)
−1BT

d PtAd(ξt − µ̂t)− (R+BT
d PtBd)

−1BT
d (Pt(Adµ̂t − µ̂t) + dt)

= KP
t (µ̂x

t − xt) +KV
t (µ̂

ẋ
t − ẋt)− (R+BT

d PtBd)
−1BT

d (Pt(Adµ̂t − µ̂t) + dt),
(2.47)

where x, ẋ indicate the position and velocity of the double integrator system, µ̂x
t , µ̂

ẋ
t rep-

resent the desired position and velocity to follow, and [KP
t ,K

V
t ] = −(R+BT

d PtBd)
−1BT

d PtAd

denote the full stiffness and damping matrices for the feedback term. uFF
t = (R +

BT
d PtBd)

−1BT
d (Pt(Adµ̂t − µ̂t) + dt) is the feedforward term. By solving the Riccati dif-

ferential equation and linear differential equation backwards in discrete time, we acquire Pt

and dt with terminal conditions respectively:

Pt−1 = Qt −AT
d (PtBd(R+BT

d PtBd)
−1BT

d Pt − Pt)Ad, PTp = QTp , (2.48)

dt−1 = (AT
d −AT

dPtBd(R+BT
d PtBd)

−1BT
d )(Pt(Adµ̂t − µ̂t+1) + dt), dTp = 0. (2.49)

We described the formulations with finite horizon case, and for the infinite horizon case
with Tp → ∞ and the desired pose µ̂t = µ̂t0 , the feedforward term uFF

t is set to zero and
Pt−1 = Pt = P is obtained by calculating the steady-state solution of eigenvalue decom-
position of the discrete algebraic Riccati equation (DARE) in Eq. 2.48. Then we define the
symplectic matrix [27]:

Hb =

Ad +BdR
−1BT

d (A
−1
d )TQ BdR

−1BT
d (A

−1
d )T

−(A−1
d )TQ (A−1

d )T

 . (2.50)
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Let
[
V T
1 V T

21

]
be the corresponding subspace of Hb, thus the solution of DARE indicates

P = V21V
−1
1 and the optimal control policy is expressed as:

u∗
t = −(R+BT

d PBd)
−1BT

d PAd(ξt − µ̂t). (2.51)

After computing the optimal control policy, we can reproduce the desired trajectory ac-
cording to the recognized letter. In this dissertation, the discrete-time LQT based on [27]
is applied after encoding with HSMM. Fig. 2.8 shows the results of applying discrete LQT
from an HSMM encoding of the demonstrations of the example letters A and C. The blue
lines shown in Fig. 2.8 represent respectively the reproduced positions of the trajectory of
the letter A and the reproduced velocity of the trajectory of the letter A. The lines with other
colors in the figures are the trajectories of the letters of 10 observed demonstrations while en-
coding with the HSMM. We can clearly see the good performance of trajectory reproduction
using discrete-time LQT.

Figure 2.8: Trajectory reproduction of two example letters (from Chapter 5 experiments).

2.6.2.1 Continuous-time LQT

However, the continuous-time LQT can also be used to follow the desired pose N (µ̂t, Σ̂t) at
time t based on [28]. Same with the discrete-time LQT, a linear time-invariant double inte-
grator system is considered to describe the dynamics of the linear system. In this case, the
double integrator is defined as:

ξ̇t︷ ︸︸ ︷ ẋt

ẍt

 =

Ad︷ ︸︸ ︷ 0 I

0 0


ξt︷ ︸︸ ︷ xt

ẋt

+

Bd︷ ︸︸ ︷ 0

I

ut. (2.52)

where datapoint ξt =
[
xT
t ẋT

t

]T
, µ̂t =

[
(µ̂x

t )
T (µ̂ẋ

t )
T

]T
. Therefore, by minimizing the

Hamilton-Jacobi-Bellman equation [22], the optimal control policy u∗
t that minimizes the cost

function in Eq. 2.45 can be computed as:
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u∗
t = −R−1

t BT
d Pt(ξt − µ̂t) +R−1

t BT
d dt

= KP
t (µ̂x

t − xt) +KV
t (µ̂

ẋ
t − ẋt) +R−1

t BT
d dt,

(2.53)

where [KP
t ,K

V
t ] = R−1

t BT
d Pt denote the full stiffness and damping matrices, uFF

t =

R−1
t BT

d dt indicates the feedforward term. By setting the terminal conditions PTp = 0 and
dTp = 0, Pt and dt can be solved respectively by:

− Ṗt = AT
dPt + PtAd − PtBdR

−1
t BT

d Pt +Qt, (2.54)

− ḋt = AT
ddt − PtBdR

−1
t BT

d dt + Pt
ˆ̇µt − PtAdµ̂t. (2.55)

In the case of infinite horizon with Tp →∞ and Qt = Q in Eq. 2.45, the feedforward term
uFF
t is set to zero. Pt−1 = Pt = P can be calculated by minimizing the continuous algebraic

Riccati equation (CARE):

AT
dP + PAd − PBdR

−1BT
d P +Q = 0. (2.56)

In order to solve CARE, the Hamiltonian matrix is defined as:

Ha =

Ad −BdR
−1BT

d

−Q −AT
d

 . (2.57)

The solution denotes P = V21V
−1
1 by solving the eigenvalue decomposition of the

Hamiltonian matrix Ha as follows:

Ha = V

λ1 0

0 λ2

V T, V =

V1 V12

V21 V2

 . (2.58)

The optimal control policy µ∗
t can be obtained as:

u∗
t = −R−1BT

d P (ξt − µ̂t). (2.59)

Both discrete and continuous-time LQT can be applied to reproduce the desired trajec-
tory. However, numerically stable results are acquired for a wide range of weight values R

in the discrete-time LQT [22]. Thus, we used the discrete-time LQT in this dissertation.

2.7 Point Set Registration

In this section, we describe the basic fundamentals of the point set registration problem in
order to give you a better understanding of the problem in chapter 5. We will then use this
fundamental knowledge for skill refinement in manipulator teleoperation using shared au-
tonomy.
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The registration strategy we used in chapter 5 was applied to a letter dataset as an ex-
ample. The skill refinement is converted into a point set registration problem, which is fre-
quently encountered in numerous applications of computer vision, medical image analysis,
etc. A letter trajectory in our defined task can be considered as a point set and the points
in a point set represent features extracted from the corresponding letter trajectory. The ob-
jective of point set registration is to assign correspondences between two point sets and to
recover the transformation that maps one point set to the other [5]. Therefore, the partial
demonstrated trajectory and the reproduced trajectory can be treated as the two point sets,
whose correspondences and the transformation need to be assigned in order to improve the
sub-optimal performance due to the unmatch between the partial demonstration and the
reproduction.

An example of a point set registration problem is shown in Fig. 2.9. The point set registra-
tion methods usually fall into two categories: rigid and non-rigid. The rigid registration of
two point sets yields a rigid transformation that the distance between any two points in the
two point sets is preserved. Thus, the typical rigid transformation comprises translation and
rotation. In contrast, anisotropic scaling and skews are also allowed in non-rigid transforma-
tion which is usually associated with nonlinear transformation. The non-rigid registration
problem is normally more difficult to solve because the true underlying model for non-rigid
transformation is often unknown and hard to find. However, the non-rigid transformation
still plays a very important role in many real-world tasks.

Figure 2.9: Non-rigid point set registration problem [5] ©2010 IEEE.

Solving the practical point set registration problem is challenging due to multiple fac-
tors, including the large dimensionality of point sets, high computational complexity, un-
predictable noise, and outliers in the real world. Therefore, a reliable point set registration
algorithm should be able to: (1) accurately model the transformation with tractable compu-
tational complexity; (2) handle possible high dimensional point sets; (3) become robust to
noise, outliers, and even missing points because of the imperfect image acquisition and fea-
ture extraction [5]. Hence, the coherent point drift (CPD) algorithm is applied in our system
due to its robust and accurate performance for both rigid and non-rigid transforms. In the
following, we describe mainly the CPD algorithm and give then a discussion about other
state-of-art methods for point set registration problem.
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2.7.1 Coherent Point Drift Algorithm

Coherent point drift (CPD) is known as a robust probabilistic multidimensional point set
registration algorithm for both rigid and non-rigid transforms [5]. Herein the alignment of
two point sets is viewed as a probability density estimation problem. The one point set indi-
cates the Gaussian Mixture Model (GMM) centroids and the second point set represents the
data points that are fit by maximizing the likelihood. The Expectation-Maximization (EM)
algorithm is applied for the optimization and the correspondence between the two point sets
can be inferred by calculating the maximum of the posterior probability of the Gaussian mix-
ture components. In order to preserve the topological structure of the point set, the GMM
centroids are forced to move coherently as a group, which is also the core of this method.
An example of affine point registration using CPD algorithm is illustrated in Fig. 2.10. As
shown in Fig. 2.10, the two fish point sets are independent before using CPD algorithm. The
result after using CPD algorithm is shown in Fig. 2.10, the blue fish point set is registered to
the red one with a perfect correspondence.

(a) Iteration 1 (b) Iteration 3 (c) Iteration 6 (d) Iteration 9

Figure 2.10: Affine registration using CPD [29] ©2010 IEEE.

According to [5], the CPD algorithm for affine and non-rigid point set registration case is
derived as follows. Firstly, we give the following notations that are used during the deriva-
tion:

• The reference point set XN×D = (x1, . . . ,xN )T is expressed as a N ×D matrix, where
D denotes the dimension of the point set,

• The template point set YM×D = (y1, . . . ,yN )T is expressed as a M ×D matrix,

• T (Y , θ) indicates the transformation applied to Y , where θ denotes a set of the trans-
formation parameters,

• I represents the identity matrix,

• col(1) denotes the column vector of all ones,

• d(a) is the diagonal matrix formed from the vector a.

Consider two point set X and Y , the objective is to align Y with X . The points in Y are
treated as the GMM centroids and the points in X are viewed as the data points generated
by the GMM. The GMM probability density function p(x) is expressed as:
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p(x) =

M+1∑
m=1

P (m)p(x|m), (2.60)

where

p(x|m) =
1

(2πσ2)D/2
exp−∥ x− ym ∥2

2σ2
. (2.61)

In order to account for noise and outliers that could appear in the point sets, an addi-
tional uniform distribution p(x|M + 1) = 1

N is also considered in the mixture model. The
membership probabilities P (m) = 1

M and the isotropic covariances σ2 are equal for all GMM
components m = 1, . . . ,M . We denote the weight of the uniform distribution as w, where
0 ≤ w ≤ 1. Therefore, the mixture model can be expressed as:

p(x) = w
1

N
+ (1− w)

M∑
m=1

1

M
p(x|m). (2.62)

The GMM centroid locations are reparameterized by a set of parameters θ that can be esti-
mated by maximizing the likelihood. It can be done equivalently by minimizing the negative
log-likelihood function:

E(θ, σ2) = −
N∑

n=1

log
M+1∑
m=1

P (m)p(x|m). (2.63)

where we make the assumption that the data is independent and identically distributed.
The correspondence probability between two points xn in point set X and ym in point set Y
is defined as the posterior probability of the GMM centroid given the data point:

P (m|xn) =
P (m)p(xn|m)

p(xn)
. (2.64)

To find the optimal θ and σ2, Expectation-Maximization (EM) algorithm is applied, which
consists of two steps. The first step is the expectation or E-step, the values of the "old" param-
eter is guessed and a posteriori probability distributions P old(m|xn) of mixture components
is calculated using the Bayes’ theorem. In the second step, i.e., the maximization or M-step,
the "new" parameter values are then found by minimizing the expectation of the complete
negative log-likelihood function which is called also as cost function:

Q(θ, σ2) = −
N∑

n=1

M+1∑
m=1

P old(m|xn) log(P
new(m)pnew(xn|m)). (2.65)

We can see that the cost function in Eq. 2.65 is actually also an upper bound of the neg-
ative log-likelihood function in Eq. 5.6. Therefore, it’s necessary to decrease the negative
log-likelihood function E in Eq. 5.6 in order to minimize the cost function Q, unless it is
already at a local minimum [5]. By alternating between the E- and M-step, the EM algorithm
converges to the optimum. Ignoring the constants independent of θ and σ2, the cost function
can then be expressed as:
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Q(θ, σ2) =
1

2σ2

N∑
n=1

M∑
m=1

P old(m|xn) ∥ xn − T (ym, θ) ∥2 +
NPD

2
log σ2, (2.66)

where

NP =
N∑

n=1

M∑
m=1

P old(m|xn) ≤ N. (2.67)

with NP = N only if w = 0. The posterior probabilities of GMM components P old(m|xn)

can be computed with the help of the previous parameter values:

P old(m|xn) =
exp (−1

2 ∥
xn−T (ym,θold)

σold ∥2)∑M
k=1 exp (−

1
2 ∥

xn−T (yk,θold)
σold ∥2) + (2πσ2)

D
2

w
1−w

M
N

, (2.68)

Then we describe the rigid, affine, and non-rigid point set registration with different
transformation T separately.

2.8 Reinforcement Learning

The purpose of this section is to introduce the principles of Reinforcement Learning (RL),
which will later be applied to a liquid pouring problem in Chapter 6.

RL as an Artificial Intelligence approach was possibly described by Waltz and Fu in 1965
in their paper “A heuristic approach to reinforcement learning control systems" [30] for the
first time. However, Rich Sutton [31] is often credited with the popularity of RL through his
exceptional work on Temporal Difference Learning [32] and Policy Gradient Methods [33],
which today forms the fundamentals of the RL in the domain of Artificial Intelligence. He
is for his contributions towards RL, often regarded as one of the founding fathers of the
domain.

In a nutshell, RL is the domain of Machine Learning, where an intelligent agent acts in
its environment, observing the states in order to maximize the notion of “cumulative re-
ward" [31]. Reinforcement learning unlike Supervised Learning does not need labelled data
to be present. Likewise, the sub-optimal actions need not be explicitly corrected. Instead the
focus is on finding a balance between exploration (of uncharted territory in the environment)
and exploitation (of current knowledge the policy has). Particularly in the context of preci-
sion pouring, a RL-based scenario can be broken down to have the following components:

• States: This comprises of liquid features, measurements from the force/torque feed-
back and pouring container’s translation and rotational positions, object’s geometrical
features and weight of liquid in both pouring and target container at a given time-step
in the scene. The states form the basis of observation that an intelligent RL agent per-
ceives in it’s environment. Based on the observations made, an agent should be in a
position to exploit it’s policy to generate the suitable actions for the next time frame.
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• Actions: This comprises of translation and rotational speed control actions that an
agent perform in order to precisely pour the liquid contents into the target container.
An action causes change in the states in the scene i.e. in terms of measurements, weight
of liquid transferred, etc. Based on the actions that the agent takes, it receives a reward
from the environment which can either be reinforcing in nature or negative to avoid
the sequence of actions taken.

• Rewards: Each action is associated with a small negative reward to motivate the agent
to complete it’s task as quickly as possible. However, the overall task completion is a
“Sparse Reward" problem, i.e. an agent can only get a final large positive reinforcing
reward, if the sequence of actions till the task completion results in pouring deviation
within some tolerable limit. If the pouring deviation is large, the agent can not get a
positive reinforcing reward. The reward shaping hence, is one of the most important
component of the RL-based applications.

• Environment: The RL agent works in an environment where it can observe the states,
make actions and receive rewards from the environment for the actions, resulting in
changing states. It is possible to have a real or virtual working environment. In this dis-
sertation, the RL-based precision pouring problem is considered in a simulation-based
environment where an agent comes up with a robust pouring policy by working with
a multitude of liquids. Replicating the same behavior for training in the real world
would be time and cost expensive. However, it is possible to transfer a simulation-
driven policy in the real-world environment. In this dissertation, a simulation-to-real
transfer of the pouring policy has been demonstrated.

2.8.1 Proximal Policy Optimization

The RL algorithm considered in this dissertation is based on Proximal Policy Optimization
(PPO) [34]. For the pouring liquids problem, we will discuss in the chapter 6 that the PPO
observed a better average pouring error when compared to the Soft-Actor-Critical (SAC) [35]
based RL algorithm. In Table 2.1, all major algorithms for RL optimization are compared. For
robot control training, the state space and action space must be continuous. In simulation,
on-policy methods are more efficient as the state space is generated from scratch each time,
allowing for a better exploration of the agent’s behavior. PPO, TRPO and A3C are good in
continuous actions and multi-processed problems. Training is faster in A3C but the conver-
gence is better is in PPO while TRPO struggles at some points.

The PPO is one of the policy gradient method-based approaches which alternates be-
tween sampling data through interaction with the environment and optimizing a “surrogate"
objective function using stochastic gradient ascent. This approach sets PPO apart from the
other policy gradient method approaches, where PPO is capable of multiple epochs for mini-
batch updates. On the contrary, the traditional policy gradient methods are only capable of
one gradient update per data sample. PPO is simpler to implement, exhibits better empirical
sample complexity and is more general.

Some of the salient features of PPO are:
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Table 2.1: Comparison of reinforcement learning algorithms.

Algorithm Description Policy Action Space State Space Operator

Monte Carlo Every visit to Monte Carlo Either Discrete Discrete Sample-means

Q-learning State-action-reward-state Off-policy Discrete Discrete Q-value

SARSA State-action-reward-state-action On-policy Discrete Discrete Q-value

Q-learning - Lambda State-action-reward-state with eligibility traces Off-policy Discrete Discrete Q-value

SARSA - Lambda State-action-reward-state-action with eligibility traces On-policy Discrete Discrete Q-value

DQN Deep Q Network Off-policy Discrete Continuous Q-value

DDPG Deep Deterministic Policy Gradient Off-policy Continuous Continuous Q-value

A3C Asynchronous Advantage Actor-Critic Algorithm On-policy Continuous Continuous Advantage

NAF Q-Learning with Normalized Advantage Functions Off-policy Continuous Continuous Advantage

TRPO Trust Region Policy Optimization On-policy Continuous Continuous Advantage

PPO Proximal Policy Optimization On-policy Continuous Continuous Advantage

TD3 Twin Delayed Deep Deterministic Policy Gradient Off-policy Continuous Continuous Q-value

SAC Soft Actor-Critic Off-policy Continuous Continuous Advantage

1. PPO is On-policy algorithm, i.e. PPO-based policy evaluates and improves the same
policy which is being used to select actions based on the inputs. PPO thus do not re-
quire an experience buffer which can be looked on to for observation-action pair as seen
in the traditional algorithms like Soft Actor Critic [35], etc. This makes PPO more stable
but data inefficient, as a large number of representative experience data is required in
absence of an experience buffer to lookup to.

2. PPO-based policy is suited both for Continuous domain and Discrete actions.

3. PPO-based policy uses entropy regularization unlike traditional approaches involving
addition of entropy for the objective maximization.

PPO ensures robustness of policy by optimizing a novel loss function called the Clipped
Surrogate Objective [34]. This ensures that the sudden catastrophic drops in performance is
avoided. The Clipped Surrogate Objective is described below:

LCLIP (θ) = t̂[min(rt(θ)Ât , clip(rt(θ), 1− ϵ, 1 + ϵ)Ât] (2.69)

Here, expectation is calculated over a minimum of two terms, i.e., normal policy gradi-
ent objective and a clipped policy gradient objective. The key component comes from the
second term where a normal policy gradient objective is truncated with a clipping operation
between 1-ϵ and 1+ϵ, epsilon being the hyperparameter. Epsilon influences how rapidly the
policy can evolve during training. Epsilon also corresponds to the acceptable threshold of
divergence between the old and new policies during gradient ascent update.

2.9 Liquid Simulation

In this section we explain more details about the liquid simulation background which later
in chapter 6 will be utilized for the pouring task in the RRS-PL simulator. For many years,
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computer graphics researchers have been studying the modeling and simulation of compli-
cated fluid effects. The dynamics of complicated fluids, such as those with high viscosity
or nonlinear strain-stress relationships, have attracted the interest of various researchers, as
these fluids exhibit a variety of unique effects and behaviors.

2.9.1 Position Based Fluids

Enforcing incompressibility is critical for realism in fluid simulation, but it is also compu-
tationally expensive. Although related work has improved efficiency, real-time applications
still require time-steps that are impractical. An iterative density solver is integrated into
the Position Based Dynamics framework. By formulating and solving a set of positional
constraints that enforce constant density, Position Based Dynamics allows similar incom-
pressibility and convergence to modern smoothed particle hydrodynamic (SPH) solvers, but
inherits the stability of the geometric, position-based dynamics method, allowing large time
steps suitable for real-time applications.An artificial pressure term is been used to improve
particle distribution, create surface tension, and reduce traditional SPH’s neighborhood re-
quirements. Furthermore, vorticity confinement will be incorporated as a velocity postpro-
cess to address the issue of energy loss.

Smoothed Particle Hydrodynamics (SPH) is a well-known particle-based method for
fluid simulation [36]. It has a number of appealing features, including mass conservation,
Lagrangian discretization (which is especially useful in games where the simulation domain
isn’t known ahead of time), and conceptual simplicity. However, due to the unstructured
character of the model, SPH is susceptible to density fluctuations caused by neighborhood
defects, and enforcing incompressibility is costly. Robustness is a fundamental concern in
interactive environments: the simulation must smoothly tolerate degenerate conditions. Po-
sition Based Fluids method is chosen because of its unwaveringly steady time integration
and robustness, which has made it popular among game and film developers. This solution
allows users to exchange incompressibility for performance while remaining stable by ad-
dressing particle shortage at free surfaces and handling significant density errors. Figure 2.11
illustrates the underlying particle simulation of an example liquid rendering. Moreover, it
illustrates particle clumping and artificial pressure.

2.9.2 Enforcing Incompressibility

PBD solves a system of non-linear constraints with one constraint per particle to enforce con-
stant density. Each constraint is determined by the particle’s position as well as the positions
of its neighbors, which we refer to as p1, · · · ,pn. The density limitation on the ith particle is
defined using an equation of state according to [38]:

Ci (p1, . . . ,pn) =
ρi
ρ0
− 1 (2.70)

where ρ0 is the rest density and ρi is given by the standard SPH density estimator:

ρi =
∑
j

mjW (pi − pj , h) (2.71)
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Figure 2.11: (a) Real-time rendered fluid ellipsoid splatting. (b) Underlying simulation particles. (c)
Particle clumping due to neighbor deficiencies. (d) with artificial pressure term. [37] ©2013 ACM.

It has been assumed that all particles have the same mass and remove this term from sub-
sequent equations. As in [39], the Poly6 kernel for density estimation and the Spiky kernel
for gradient calculation has been implemented.

The SPH formula for the gradient of a function specified on the particles is given in [40].
The gradient of the constraint function (1) with regard to a particle k can be calculated as
follows:

∇pk
Ci =

1

ρ0

∑
j

∇pk
W (pi − pj , h) (2.72)

Which has two different cases based on whether k is a neighboring particle or not:

∇pk
Ci =

1

ρ0


∑

j ∇pk
W (pi − pj , h) if k = i

−∇pk
W (pi − pj , h) if k = j

(2.73)

Plugging this into the equation of a series of Newton steps along the constraint gradient and
solving for λ gives

λi = −
Ci (p1, . . . ,pn)∑

k |∇pk
Ci|2

(2.74)

which is the same for all particles in the constraint. The denominator in equation (9)
creates instability when particles are close to splitting because the constraint function (1) is
non-linear and has a vanishing gradient at the smoothing kernel border. This can be solved
similarly to Predictive-corrective incompressible SPH (PCISPH) [41] by computing a cau-
tious corrective scale in advance based on a reference particle configuration with a filled
neighborhood.
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Constraint force mixing (CFM) [Smith 2006] is another option for regularizing the con-
straint. CFM softens the constraint by reintroducing some of the constraint force into the
constraint function; in the instance of PBD, this alters the equation of a series of Newton
steps along the constraint gradient to:

C(p+∆p) ≈ C(p) +∇CT∇Cλ+ ελ = 0 (2.75)

Where ε is a user specified relaxation parameter that is constant over the simulation. The
scaling factor is now:

λi = −
Ci (p1, . . . ,pn)∑
k |∇pk

Ci|2 + ε
(2.76)

and the total position update pi including corrections from neighbor particles density
constraint λj is:

∆pi =
1

ρ0

∑
j

(λi + λj)∇W (pi − pj , h) (2.77)

2.9.3 Tensile Instability

For fluid simulation methods that use SPH interpolation technology to calculate density,
usually 30-40 neighbor particles are needed to make the density evaluation result tend to be
static. In the case of insufficient neighbor particles, the density of the fluid calculated by for-
mula (3.9) will be lower than the static density, which will cause the pressure to be negative,
and the original pressure between the particles will become attractive, causing the particles
to produce unrealistic conditions. Cohesion, this is the concrete manifestation of the Tensile
Instability problem of SPH in fluid simulation, which leads to the result that the simulation
of the fluid surface feels unreal.

[3] uses an artificial repulsive force calculation model. When the fluid particles are too
close, the repulsive force will separate them, thereby avoiding particle aggregation. When
the pressure of the fluid particles becomes negative, replacing the pressure with the repul-
sive force can effectively eliminate the Tensile Instability problem of the SPH method and
prevent the unnatural attraction between particles caused by the negative pressure. PBF also
adopted a similar method, adding a repulsive term scorr on the basis of formula (3.8):

∆pi =
1

ρ0

∑
j

(λi + λj + scorr)∇W (pi − pj , h) (2.78)

scorr = −k
(
W (pi − pj , h)
W (∆q, h)

)n

(2.79)

Here, ∆q means a point at a fixed distance from the particle ∆q, usually 0.1h...0.3h. In
addition, k can be regarded as a surface tension parameter (because scorr can produce an
effect similar to surface tension, so that the particles on the surface of the fluid are evenly
distributed), here are the values k = 0.1 and n = 4.

As shown in Figure(3.3) and Figure(3.4)
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2.9.4 Vorticity Confinement and Viscosity

The PBD method usually introduces additional damping, resulting in energy loss of the en-
tire system, which will cause some vortices that should have disappeared quickly. Similar to
[4], PBF reinjects energy into the system through vorticity confinement:

f
vorticity
i = ϵ (N × ωi) (2.80)

which
N =

η

|η|
, η = ∇|ω|i (2.81)

And the curl formula of the particle is:

ωi = ∇× v =
∑
j

(vj − vi)×∇pjW (pi − pj , h) (2.82)

The basic idea of Vorticity Confinement is: by adding a body force, the curl particles
(which can be intuitively understood as particles that rotate faster than the surrounding par-
ticles, ωi points to the axis of rotation of the particle i) In this way, the rotation of the particles
is accelerated to maintain the rotation of the system. ϵ Used to control the intensity of Vortic-
ity Confinement.

In the SPH fluid simulation method, Artificial Viscosity can not only increase the numer-
ical stability of the simulation, but also eliminate nonphysical oscillations. In the Lagrangian
fluid simulation method, artificial viscosity essentially produces a damping effect on the rel-
ative motion of fluid particles, so that the kinetic energy of the fluid is converted into thermal
energy. As in [5], PBF uses XSPH to directly update the speed to generate damping in this
way.

vnewi = vi + c
∑
j

vij ·W (pi − pj , h) (2.83)

2.10 Related Work

Motion planning for robot manipulators is an active research field in robotics. Motion plan-
ners can be divided into three types. The first type is online instantaneous controllers which
only consider the robot configuration and environment observation at the current time in-
stant. Nakamura et al. in [15] first described a scheme for redundant manipulators, in which
task priority was introduced by using the redundancy for Inverse Kinematics (IK). Based on
[15], An et al. proposed prioritized IK for multiple tasks, which allows for a smooth transi-
tion between tasks via a method called task transition control [42]. Flacco et al. presented a
method that handles the saturation of the joint command in the null space [43]. Rakita pro-
posed RelaxedIK, which incorporates IK along with obstacle, singularity, and joint bounds
avoidance into a nonlinear optimization problem [44].

The second type is offline planners. They generate a trajectory of configurations for the
robot joints, and the robot will strictly execute this trajectory. Offline planners can be further
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Table 2.2: The state-of-the-art motion controllers and planners comparison.

Controller
/Planner

Nakamura et al.
[15]

RRT
[16]

PRM
[17]

CHOMP
[18]

STOMP
[19]

Schulman et al.
[46]

RelaxedIK
[44]

Rubagatti et al.
[48]

NMPC-MP
(Ours)

Real-time ✓ ✓ ✓ ✓

Smoothness ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dynamic obstacle ✓

Octomap/mesh obstacle ✓ ✓ ✓ ✓ ✓ ✓

Hard obstacle
constraint

✓ ✓ ✓ ✓ ✓

Optimization ✓ ✓ ✓ ✓ ✓ ✓

Dexterity ✓ ✓ ✓ ✓ ✓ ✓ ✓

Robust against
local minimum

✓ ✓ ✓

divided into sampling-based planners and optimization-based planners. The most funda-
mental sampling-based planning methods are the Rapidly-exploring Random Trees (RRT)
method [16] and the Probabilistic Roadmaps (PRM) method [17]. Conceptually, methods of
this kind first determine the free configuration space and then generate a trajectory connect-
ing the start and goal points in free space by sampling. Based on RRT and PRM, Karaman
et al. proposed RRT* and PRM*, which improve the solution from RRT and PRM [45]. For
optimization-based methods, Ratliff et al. designed the CHOMP method that uses covari-
ant gradient techniques to improve the quality of the trajectory [18]. The STOMP method
proposed in [19] addresses CHOMP’s disadvantage of getting stuck in the local minimum
by generating noisy trajectories and exploring the free configuration space. Schulman et al.
formulated an optimization problem for motion planning, in which the cost function is the
error between the goal and the current measurement, and collisions are penalized with a
hinge loss [46].

The third type of motion planners uses a combination of offline planning and online ex-
ecution. Methods built on model predictive control (MPC) are typical examples, as they
predict the states in a certain amount of time into the future. Only the solution in the first
time step of the calculated solution will be executed. Girgin et al. utilized the rich planning
redundancy and nullspace that MPC would be a natural fit to solve linear motion plan-
ning problems [47]. Using nonlinear model predictive control (NMPC) in teleoperation of
a manipulator was successfully demonstrated in [48][49] [50]. Although these methods are
real-time capable, they can only handle simple static obstacles. Table 2.2 shows the merits
and demerits of the controllers and planners that have been introduced and sets goals that
we want our NMPC based method to achieve.

Table 2.2 shows the merits and demerits of the controllers and planners that have been
introduced and sets goals that we want our NMPC-MP to achieve.

The shared autonomy (SA) paradigm can be categorized into three major parts: The first
is the robot inference subsystem. Several baseline works such as [4], [51] use the Hidden
Semi Markov Model (HSMM) [52] to predict the operator’s intention by only using the tem-
poral and spatial motion [53]. Aronson et al. improved the prediction by leveraging gaze
eye-tracking [54], and vision-based approaches try to improve the classification using video
feeds in remote surgery [55] using neural networks. In [56], the intention prediction prob-



2.10. Related Work 35

lem in teleoperation is converted into an inverse reinforcement learning (IRL) problem. In
addition, the use of a Layered Hidden Markov Model (LHMM) to model human skills are
indicated in [57]. [58] presented a combination of HMM and virtual fixtures for the recog-
nition of user motions. [59] performed the recognition of task segments using hierarchically
clustered Hidden Markov Models and increased the robot’s joint manipulation skills with
incremental learning. [60] proposed the Intention-Driven Dynamics Model (IDDM) to infer
the intention from observed movements using Bayes’ theorem.

The second part is motion reproduction. Dynamic motion primitives (DMPs) [61], the
combination of Hidden Markov Model (HMM) and Gaussian Mixture Regression (GMR)
[62], HSMM and LQT [4] have been used for motion segmentation and synthesis for robotics.
In our work, we adopt motion reproduction using HSMM and LQT from [51] and [4].

The third subsystem is the control switching strategy known as arbitration. This can be
modeled as a non-linear function that blends the human and autonomous control input sig-
nals [63], [64]. This thesis targets discrete switching from direct teleoperation to autonomous
control in this subsystem of shared-autonomy. As stated above, adaptation is the most de-
sirable feature when a robot operates in a dynamically changing environment. For high
latency teleoperation (> 1 s) such as deep space missions, [65] proposed physics simulation
and scene representation to adapt and bridge the gap between autonomous control and di-
rect teleoperation. In the shared control (SC) paradigm, virtual fixtures have been applied in
many manipulation tasks by limiting the movement at the remote side into restricted regions
along desired paths [58] [66]. This thesis introduces a novel online skill refinement approach
using the Coherent Point Drift (CPD) algorithm to minimize the spatial displacement for con-
trol switching. In Table 2.3 we summarize the state-of-the-art solutions and compare them
with our approach (named Skill-CPD in the following) from different perspectives.

Table 2.3: Comparison of the state-of-the-art shared autonomy-based teleoperation.

Criteria
Tanwani et al.

[51]
Tian et al.

[4]
Skill-CPD

(Ours)

2D scenarios ✗ ✓ ✓

3D scenarios ✓ ✗ ✓

Min. displacement ✗ ✗ ✓

Rigid registration ✗ ✗ ✓

Non-rigid registration ✗ ✗ ✓

As a result of research related to precision pouring, the approaches can be divided into
two categories, classical closed-loop control approaches and machine learning-based meth-
ods.

Closed-loop control approaches do not require data-driven methods and use mechanisms
such as Proportional-Integral-Derivative (PID) controllers. For instance, Dong et al. pro-
posed a PD controller-based approach [67]. In their approach, they propose calculating the
volume of the poured liquid using the model of the target container and the height of liq-
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uid contained in it. Likewise, for controlling actions of pouring, they propose using a (PD)
controller, using the pouring container’s angular speed as a process variable and poured vol-
ume as a control variable. A prominent drawback observed was the inability to factor in the
effect of surface tension of the water. Since the PD-based mechanism is not aware of these
liquid-specific variables, it cannot generalize to get the best results.

Learning from Demonstrations (LfD) is one of the popular methods to teach robots a
particular skill [68], [69]. Usually, a human teacher demonstrates the skill using teleoper-
ation. Rozo et al. proposed an innovative approach using LfD and force feedback-based
perception [70]. The underlying policy is based on a Parametric Hidden Markov Model for
Behavior Cloning. However, the model is blind towards the type of the liquid it works with.
As a result, for each novel liquid, a new set of demonstrations would be required and hence
is not generic for all liquid types.

In [71] Linag et al. proposed a Multimodal Pouring network (MP-Net) to robustly pre-
dict the liquid height by considering audio and haptics as input. Using raw audio data, a
spectrogram with 257 descriptors is created. The haptic data associated with each time slice
is gradually fed into the encoder module (a recurrent neural unit). In the final step, the height
predictor module calculates the 1D length of the air column in the target container. Using a
multimodal pouring data set including 300 recordings and force-torque measurements, the
MP-Net is trained based on three types of containers. However, it suffers from the same
prominent drawback, where the underlying model is blind towards the liquid properties.
This is observed as a poor generalization of MP-Net to liquids of approximate similar nature
like milk and fruit juices [71] which perform poorly, although for water the results are very
promising.

Schenck et al. [72], [73] described a machine-vision-based approach, which uses visual
feedback to perform closed-loop control for pouring liquids [74]. To detect liquids, convo-
lutional neural networks (CNNs) are used to detect the type of container and the volume of
liquid within it based on RGB and thermal images [75]. The CNN-based output is restricted
to merely 10 classes of volume. This approach , hence, is not completely representative for
precise pouring. Based on the pouring model trained on a sequence of 279 pouring actions,
the pouring policy tested on water observed an average 38ml deviation [74] from the target
amount. Besides, the model is unaware of the liquid properties. In addition, the scenarios
involving occlusion of camera feedback would greatly impact the performance.

Chau et al. [76] presented a deep reinforcement learning-based approach to learn a pol-
icy for pouring using Deep Deterministic Policy Gradients (DDPG) [77]. In their work, the
training experiences were collected using a state-of-the-art liquid simulator PreonLab [78].
Through their experiments, performed with a PR2 robot, they demonstrated a successfully
transfer of the learned policy to a real robot. Despite the absence of force sensors, the task in-
volved pouring liquids using a robot at specific heights while avoiding spills and collisions.
Using force/torque sensors can on contrary provide means for better precision pouring con-
trol. In Table 2.4 we summarize the state-of-the-art solutions and compare them with our
approach (named PourNet in the following) from different perspectives. We will explain our
method in chapter 6.
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Table 2.4: PourNet compared to the other state-of-the-art approaches.

Evaluation Criteria Closed-loop
Control [67]

LfD
[70]

MPNet
[71]

Vision CNN
[74]

DDPG
[76] PourNet

Liquid Properties Awareness ✗ ✗ ✗ ✗ ✓ ✓

Container Geometry Awareness ✓ ✗ ✗ ✗ ✗ ✓

Ability to control multiple actions ✗ ✓ ✓ ✗ ✓ ✓

Generalization to novel liquids ✗ ✗ ✗ ✗ ✓ ✓

2.11 Chapter Summary

This chapter introduced the most relevant background needed to better comprehend the rea-
soning discussed and the concepts proposed in this work.

The first part addressed the basics of robot kinematics and the basics of motion plan-
ning and a short introduction for model predictive control. State-of-the-art technologies that
approach this issue were presented and thoroughly debated. Intention recognition in teleop-
eration was discussed next where we adapted the basic knowledge and extended it using the
novel non-rigid registration method. At the end the concept of reinforcement learning was
mentioned which enabled us to train the pouring skill in simulation using trial and errors
with the PPO algorithm. Later in this dissertation, we will expand on each in the subsequent
chapters (4,5,6).
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Figure 3.1: 5G Research Hub Munich. The image illustrates the room setup with different pieces of
equipment.

This chapter briefly revisits the structural basics of the Movo telepresece platform that
was used to test the algorithms presented in this thesis.

3.1 Movo Telepresence Platform

Kinova Movo is a mobile manipulation platform designed to aid in the research and experi-
mentation of mobile robotics. Movo is fully designed and developed using the Robotic Op-
erating System (ROS) and offers an application programming interface (API) that provides
researchers the most advanced functionality in all areas of robotics. Its unique combination
of performance, scalability, modularity and openness allows one to configure a robot for ap-
plication specific needs. Figure 3.1 illustrates the experimental room in which Movo was
located.
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3.2 Upgrading Movo’s Hardware

In order to meet the project requirements and increase the robot’s functionality for assistive
teleoperation we upgraded the robot in two major steps. First we exchanged the old head
with a new stereoscopic head and second we installed industrial grade parallel grippers as
well as Force/Torque (FT) sensors to the manipulators. Figure 3.2 shows the differences
between the original version and the upgraded version.

Movo Original Version Movo LMT Version

1 2

3

A B

3

B

5

A

6

1234

C

C7 8 9

Figure 3.2: Movo platfrom, LMT version. 1) Robotiq® Hand-e gripper 2) Intel® Real-sense camera
3) Botasys® F/T sensor 4) Kinova® Jaco2 manipulator 5) The roll actuator to extend the head motion
with the new Robotis® Dynamixel MX-106 actuator 6) XIMEA® Stereo cameras 7) TYRO® Wireless
emergency stop 8) Customized power regulators 9) Hp® embedded computers.

3.2.1 Setup of a New Jaco2 Robot Model with Hand-e Gripper

As part of the upgrade, a new Hand-e parallel gripper had to be installed in place of the
three finger gripper. We assembled the hand not only mechanically, but also updated the
Universal Robot Description Format (URDF) of the robot to accommodate the new hand pa-
rameters. From the previous URDF file, the eighth link with three fingers was deleted and
replaced with the new gripper. The inertial matrix, mass, and meshes for the new gripper
can be found on Robotiq’s Github repository1.

Inertialbase =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 =


1017560E − 9 0 2235E − 9

0 1028041E − 9 0

0 0 489810E − 9

 (3.1)

For the left and right fingers (same mass 0.03804 Kg), their inertial parameters (Il, Ir) are
shown in Equation 3.2 respectively.
1 Github page: https://github.com/cambel/robotiq (Commit: Feb 10, 2021)
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Ir = Il =


13567E − 9 1849E − 9 3622E − 9

0 15784E − 9 3616E − 9

0 0 7478E − 9

 (3.2)

3.2.2 Force/Torque Sensor and Filtering

A robotic force torque sensor is a device that measures force and torque when they are ap-
plied. Through this a signal is created, measured, recorded, and used as a feedback signal in
human-robot interaction. The most widely used sensor in robotics is a 6-axis force torque
sensor where 3 forces and 3 torques can be measured. Static and dynamic force torque
measurement devices measure strain induced from applied forces/torques using resistive,
capacitive, and optical technologies. Among these, the most reliable and predictable mea-
surements are resistive strain gauges. When compared to other technologies, these gauges
are very effective when working with steel, aluminium, or titanium. In this dissertation we
employed Botasys SensOne FT sensor on the wrist of the robot. The maximal reachable frame
rate is 800Hz, in our experiments we worked with 100 samples per second.

Although Jaco2 has torque sensors on each joint, the gripper’s control and grasping are
performed in Cartesian space. Therefore, in order to increase precision and sensitivity to
external forces and torques, an industry grade FT sensor was installed on the wrist between
the gripper and the manipulator’s final joint. The Table 3.1 provides specifications of the
corresponding FT sensor with serial communication.

3.2.3 Low-Pass Filter

In signal preprocessing, a filter is a process that is responsible for cutting off frequencies
to reduce background noise so that unwanted values are removed from a signal. In this
dissertation we make use of low-pass filter. A low-pass filter is a filter that only allows sig-
nals below a certain cutoff frequency to pass. There are various types of filters, we will use
the Butterworth low pass filter. The Butterworth filter was first described in 1930 [17] and
is today one of the most common frequency domain filters. It is a type of an active low
pass filter that has been used in several signal denoising applications. It is considered as an
anti-aliasing filter in data converter and audio processing applications. Moreover, in some
research work [9], using low pass filter has shown good results when applied on FT signals
[18]. The frequency response of Butterworth filter is smooth at the frequencies of the pass-
band and almost zero at the frequencies of the stop band. It is known as a "maximally flat
magnitude filter". The the nth-order Butterworth filter is defined in terms of its frequency
response as follows:

H(jω) =
1√

1 + ε2
(

ω
ωc

)2n (3.3)
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where
n : order of the filter = 2
w : passband frequency = 50
wc : cut-off frequency = 1

The filter is characterized by two parameters: one is the cut-off frequency and one is the
order of filtering which is a parameter that determines the steepness of the filter’s transfer
function. Fig 3.3 illustrates the filtering result after data accusation. For DSP implementation
we used the design from Dr. Bernd Porr accessable from his official Github repository2.

Figure 3.3: Butterworth filter result. The raw sensory data is shown in blue, and the result of a low
pass filter is shown in orange.

3.2.4 Installation of the Real-sense camera

In addition to the force torque sensor which is mounted before the Hand-e gripper for grav-
ity compensation algorithm an Intel Real-sense D435i camera is mounted on on the gripper
to provide (Inertial Measurement Unit) IMU data. See Figure 3.2 and Figure 3.4. The IMU
has an accelerometer to measure the acceleration in

[
m/s2

]
, a Gyroscope for angular velocity

calculation [rad/s] and its frequency is configurable (200 Hz− 400 Hz). The important task is
the calibration of the IMU and the gravity compensation, in order to receive external torque
signal without disturbances due to temperature and transient current, plus the gravity in-
duced torques/forces should be compensated after the incorporating of the FT sensor and
the Hand-e gripper in the Jaco2 robot arm.

The calibration parameters of the IMU include intrinsic and extrinsic parameters. In the
intrinsic side, there are the scale factor (Sx, Sy, Sz), the Bias (abias ) and the Off-axis terms
(Cxy, Cyx, Cxz, Czx, Cyz, Czy) of the accelerometer and the Wbials term for the Gyroscope.
2 Github page: https://github.com/berndporr/iir1 (Commit: Dec 27, 2021)
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The following transformation equations represent the mapping between raw data output
and real measurements by modelling the inaccuracies and temperature-dependent drift of
the sensor.

atrue =


Sx Cxy Cxz

Cyx Sy Cyz

Czx Czy Sz

araw − abias (3.4)

wtrue = wraw −wbias (3.5)

Figure 3.4: The new Hand-e gripper and the 6 axis force torque sensor and the Intel Real-sense cam-
era.

Table 3.1: Serial SensONE Force Torque Sensor from BOTA system.

Specifications SensONE Serial

Ranega (Fxy, Fz,Mxy,Mz) 500 N, 1200 N, 15Nm, 12Nm

Overload (Fxy, Fz,Mxy,Mz) 2500 N, 4500 N, 35Nm, 40Nm

Noise Free Resolution (100 Hz) 0.15 N, 0.15 N, 0.005Nm, 0.002Nm

Weight 220 g

Size ( DxL ) 70× 35 mm

Communication USB, RS422

Sampling Rate (Max.) 800 Hz

IMU external (Real sense camera)

Ingress protection dustproof and water resistance

Operating temperature 0− 55 Celsius

Power supply 5 V, 1.0 W

3.2.5 Gravity Compensation

We used the calibration algorithm from [79] for gravity compensation of the gripper and our
calibration software3 ran only once to guide the robot arm (end effector) to different positions
(these positions may be randomly determined or manipulated manually). The FT sensor and
3 Github page: https://github.com/kth-ros-pkg/force-torque-tools (Commit: May 7, 2021)
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accelerometer signals stored in these poses (Cartesian x, y, z and Quaternion for the orienta-
tion) are then used to compute a least square estimation of the Bias term of the force torque
sensor, the mass of the gripper and the location of the center of mass of the attached gripper.
These estimations are stored in a configuration file. The compensation algorithm then uses
the stored estimated parameters from the calibration phase and filters the raw data of the FT
sensor afterwards. The output signal from the force torque sensor should be only sensitive
to external forces or torques, otherwise no zeros signals are expected in output.

The center of mass as well as the mass and the inertial matrix of the used Hand-e gripper
with Real-sense camera D435i and FT-sensor are shown in Table 3.2.

Table 3.2: Parameters of the new gripper.

Product Center of Mass [mm] Total Mass [g] Total Length [cm]

FT-sensor+camera+Hand-e −1.1 0.8 78.6 1435.0 16.0

Figure 3.5 illustrates the output readings of a calibrated torque sensor used in a peg-in-
the-hole application. When there was no contact with the surface, the force-torque readings
were zero. In motion, the maximum noise error was 2N for force and 0.04Nm for torque. In
idle, the maximum noise error was 0.5N for force and 0.01Nm for torque. In both motion
and idle conditions, this allows us to obtain accurate measurements. In idle mode, we were
able to achieve an accuracy of ±2 grams.

Figure 3.5: Illustrations of a peg-in-the-hole application and the results of the experiment.

3.3 Upgrading Movo’s Software

3.3.1 Shared Autonomy Interface (SAI)

Our goal was to be able to change the input control to the robot quickly and intuitively
for different experiments, so we developed a GUI interface using Microsoft .NET. The GUI
serves as a network multiplexer between different external input devices and is the central
monitoring and control system for the robot. Specifically, it bridges with ROS using a high
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performance bridge that utilizes the ZMQ network SDK to implement a pub/sub paradigm
with TCP/IP sockets and Google protobuf serializers and deserlizers to encapsulate mes-
sages to the robot and vice versa. Several external interfaces are compatible with the shared
autonomy interface, including the HTC Vive, Xbox Joystick, Sigma7, Phantom Omni, Tablet
interface, and standard mouse and keyboard inputs. Figure 3.6 illustrates the GUI interface
and Figure 3.7 shows the software architecture of different components in the experimental
setup.

Figure 3.6: LMT’s shared autonomy interface, the graphical user interface (GUI) software.
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Figure 3.7: Software architecture

Figure 3.7 depicts the software architecture of the setup. There are two major concepts
represented here. First of all, there is the teleoperation interface and the shared autonomy in-
terface which are located in the base station computer in order to be able to control the robot
remotely. Wireless, LAN, or 5G networks may be used as the network. The second concept is
the digital twin of the robot which later we introduce it as realistic robotic simulator for pour-
ing liquids. Our dissertation aims to minimize the simulation-to-reality gap by providing the
same robot back end as a virtual computer. We used Unity3D in conjunction with NVIDIA’s
Physics to simulate the robot. In addition, we used the ML-agent OpenAI interface of Unit3D
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to train skills to our robot using simulation. All other robot software is located on different
computers (Movo1-5). ROS is responsible for the interprocess communication. Our custom
bridge was used [80] to connect ROS to the .Net environment, particularly Unity3D.

3.3.2 NVIDIA FLEX

The theoretical basis of fluid simulation in Nvidia FleX is PBF and the treatment methods of
surface tension, viscosity, cohesion and adhesion that are unique to fluid simulation. Com-
pared with the PCISPH method, PBF is more stable, allows large time steps, and is more
suitable for the simulation of game physics engine fluids. In addition, both the SPH-based
method and the PBD-based method are very suitable for parallelization,

Algorithm 1 describes the simulation loop. It’s similar to the original Position Based
Dynamics update, except that instead of using sequential Gauss-Seidel iteration, each con-
straint is solved independently in a Jacobi iteration. As part of the constraint solving process,
collisions between solids have been detected.

Each solver iteration,particle neighborhoods have been recomputed once per step and
recalculate distance and constraint values. When a particle separates from its initial set
of neighbors, this optimization can result in density underestimates. This can cause seri-
ous problems in PCISPH because once a particle is isolated, each iteration lowers its pres-
sure.Large erroneous pressure forces are applied if it comes back into contact on a subsequent
iteration. Because this algorithm only considers current particle positions (not accumulated
pressure), this problem does not arise.

Figure 3.8: PBF Algorithm[37]. ©2013 ACM.
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3.3.3 Digital Twin and PhysX Implementation

An articulation is a set of bodies arranged in a logical tree. The parent-child link in this tree
reflects that the bodies have their relative motion constrained. Articulations are solved by a
Featherstone solver that works in reduced coordinates - that is each body has relative coor-
dinates to its parent but only along the unlocked degrees of freedom. This guarantees there
is no unwanted stretch. The Movo’s digital twin was developed using Unity3D engine and
the upgraded PhysX 4.1 technology for articulation bodies. PhysX 4.1 introduced the new
Temporal Gauss-Seidel (TGS) solver which has improved joint drive accuracy and non-linear
rigid body solver with high-mass ratios. In chapter 6, we used this simulator to test the robot
in the loop scenarios. We plan to release the public repository of our simulator in the near
future4. You can find more technical details on implementation here [81] .

Figure 3.9: Photo realistic high definition rendering pipeline in Unity3D on the left and sensor outputs
on the right. All the robot sensors such as IMU, LiDAR, cameras, depth cameras, transformations, and
joint force and position feedback are provided to the ROS side through RRS.

3.3.4 Tablet Interface

During the project, a tablet interface based on the Unity3D engine has been developed in
order to test the robot navigation and general functionality. It is directly connected to the
shared autonomy interface, and can send and receive commands from human operators as
well as status information from the robot. The purpose of this interface is to perform re-
mote assistive teleportation in complete autonomy with the robot. With this interface, liquid
pouring as well as autonomous navigation has been tested.
4 Github page: https://github.com/cxdcxd/RRS (Commit: June 03, 2022)
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Figure 3.10: Operating Movo directly from the app using a tablet

3.4 Datasets

3.4.1 YCB Standard Model Dataset

The YCB Object and Model Set [82] is intended to aid in robotic manipulation benchmarking.
The set includes everyday objects with varying shapes, sizes, textures, weight, and rigidity,
as well as some commonly used manipulation tests. The physical objects are distributed to
any research group that registers on the website. They hope that the ready availability of
physical objects will allow the community of manipulation researchers to more easily com-
pare approaches and continuously evolve benchmarking tests as the field matures.The set is
linked to a model database, which contains mesh models and high-resolution RGB-D scans
of the objects, allowing them to be easily integrated into manipulation and planning software
platforms.

3.4.2 Liquid Profile Dataset

3.4.2.1 Liquids

Several liquids were used for experimentation. Due to the experiments involve fluid dy-
namics and viscosity, 10 different liquids were selected in order to have the broadest liquid
properties covered such as their appearance, transparency and mainly diverse levels of vis-
cosity.
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Figure 3.11: YCB Object Set [82]. ©2015 IEEE.

3.4.2.2 Density and Viscosity

Although in the industry the liquids’ parameters such as viscosity are measured with highly
precise instruments, looking at the qualitative effects of different liquids and their attributes
does not require highly sophisticated technology. First of all, we need to obtain the respective
densities of the 10 liquids presented. For this, we proceeded as follows: using the measuring
glasses and the scale we poured each liquid four times and measured its weight at 50 ml, 100
ml, 150 ml and 200 ml, respectively.

Then we calculate the mean of the four values and using equation 3.1 we obtain the den-
sity ρ, where m is the mass and V the volume from the respective liquid.

ρ =
m

V
(3.6)

After obtaining the density from each experimental liquid we elaborate Table 3.3 and
present the results.

Table 3.3: Density calculation from liquids.

Liquids 50 ml [g] 100 ml [g] 150 ml [g] 200 ml [g] Mean [g] Density [g/ml]

Apple Juice 46 98 148 196 49 0.98 ± 0.14

Washing soap 50 102 156 212 53 1.06 ± 0.15

Handgel 40 82 124 162 40.5 0.81 ± 0.12

Honey 74 156 228 300 75 1.5 ± 0.19

Rapseed oil 40 90 136 184 46 0.92 ± 0.13

Balsamico 50 106 160 210 52.5 1.05 ± 0.15

Joghurt 64 110 166 216 54 1.08 ± 0.15

Hand soap 52 102 154 200 50 1 ± 0.14

Shampoo 52 102 154 200 50 1 ± 0.14

Milk 48 100 150 198 49.5 0.99 ± 0.14
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Figure 3.12: Real liquids used for the experiments.

Subsequently we proceed to look qualitatively and quantitatively how viscosity affects
solid objects and their differences. As shown in Figure 3.13, in some liquids the marble is
more visible than others. Therefore, the velocity could not be measured for some dark liq-
uids like balsamico and shampoo. In Figure 3.13 we can observe the marble position after
0.5 seconds in water, apple juice, oil, hand-gel, dish soap, hand soap, honey, respectively.
Whereas the marble already came to the bottom of the cylinder filled with water, in honey
the marble is not even entire submerged at the same time. Due to the marble’s velocity we
had to film recordings at 400 fps to determine how much time it takes the marble to travel 50
ml trough every liquid. Three trials were performed for each liquid.

Then the mean time was calculated and finally the velocity was obtained dividing the
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Figure 3.13: Marble position in 6 liquids after 0.5 seconds.

Table 3.4: Measurements of different liquids for obtaining their viscosity

Liquids 1. Trail [s] 2. Trail [s] 3. Trail [s] Mean [s] Speed [m/s] Viscocity [cP]

Water 0.2 0.22 0.22 0.2133 0.4173 0.87

Apple 0.27 0.29 0.29 0.2833 0.3142 1.15

Oil 0.33 0.34 0.35 0.34 0.2618 1.39

Handgel 1.3 1.14 1.13 1.19 0.0748 4.85

Dish soap 3.87 3.58 3.6 3.6833 0.0242 14.99

Hand soap 9.33 9.04 9.02 9.13 0.0097 37.4

Honey 72.78 73.45 76.49 74.24 0.0012 302.35

distance travelled, i.e., 8.9 cm through the respective time. The velocities are presented be-
low. Using Equation 3.7 we calculate viscosity µ, where r is the radius of the marble, g the
gravitational acceleration, ρs the density of the marble, ρf the density of the liquid and Vs

the velocity of the marble. The viscosity is obtained in Pascal seconds [Pa·s], but the most
common magnitude is centipoise [cP]. Therefore we multiply by a magnitude of 3 and show
the results in Table 3.4.

µ =
2

9

r2g(ρs − ρf )
Vs

(3.7)

The final experiment focuses deeply in tuning the parameters of the simulator based on
the appearance of each liquid in the real world while pouring and model them as similar as
possible. Five different simulated liquids were compared with their real-world counterparts.

Factors such as liquid appearance and how it behaves when it finds itself in the target
container can be further improved in some liquids like in water, milk and hand-gel. Despite
the fact that the parameters are dependent and they will be used for more viscous liquids
to keep the consistency in all liquid types we selected the best possible parameters with
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Table 3.5: Liquids’ parameters in RRS Simulator

Parameters Water Milk Dish Soap Honey Ketchup Hand-gel

Solid Rest 0.005 0.01 0.001 0.05 1 0.001

Fluid Rest 0.14 0.15 0.16 0.16 0.16 0.15

Static Friction 0.1 0.5 0.5 1 2 0.1

Dynamic Friction 0.1 0.5 0.5 1 2 0.1

Particle Friction 1 0.5 0.5 1 2 1

Adhesion 0 0 0 0.003 0.01 0

Dissipation 0 0 5 4 0.2 0.2

Damping 0 0 0.5 2 2 0

Cohesion 0.03 0.03 0.05 0.05 0.1 0.04

Surface Tension 0 0 0 0 0.01 0

Viscosity 0.3 0.5 0.8 1 0 0.5

Buoyancy 2 2.1 3 3 1 2.2

trial and error and real footage comparison manually. The tuning of some parameters does
not seem to affect the appearance of the liquid such as surface tension in Table 3.5, some
of them change drastically the behaviour after a small tuning like adhesion. Furthermore,
it seems that some parameters have more weight than others and therefore their tuning af-
fects and covers the effects from the other parameters. Following this notion we can affirm
that concentrating only on how the liquid is transferred from source to target container is
more valuable than the appearance of the liquid. Figure 3.14 illustrates simulation and real
experiments for 5 different liquids.

Figure 3.14: Qualitative comparison of 5 different liquids in simulations and reality.
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3.5 Chapter Summary

This chapter introduced the experimental setup that is used to evaluate the proposed ap-
proaches. After a general overview of the Movo’s hardware upgrade the software archi-
tecture and the liquid simulator was discussed in details. At the end the simulated liquid
profiles from real experiments are introduced which are implemented using NVIDIA’s Flex
in real-time.





Chapter 4

Nonlinear Model Predictive Control
for Real-time Motion Planning

Figure 4.1: Real-time motion planning for dual-arm Kinova® Movo platform using the proposed
NMPC-MP for low-level shared autonomy in teleoperation. The orange object is the obstacle, and the
dashed-red arrow denotes the desired motion. The dashed-yellow trajectory is the generated motion
in order to avoid the obstacle. [1], ©2021 IEEE.

Conventional Motion planners usually run in an offline manner. For the teleoperation of
the Jaco2 manipulator in this dissertation, a motion planner needs to run at 10Hz to generate
the motion control given a goal sent by the teleoperator. Currently, there are no motion plan-
ners who can achieve this frequency. Schulman’s approach can achieve the fastest perfor-
mance among planners: 100-200 ms [46]. An alternative is using Nakamura’s instantaneous
control method [15] as a lower layer controller for teleoperation to fulfill the frequency re-
quirement. But in contrast to offline motion planners, a great deficiency of the instantaneous
control is that it lacks redundancy and dexterity. In a complicated environment, instanta-
neous control methods may fail to drive the robot to reach the goal while avoiding obstacles,

55
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whereas motion planners are able to find a path heuristically. For the teleoperation applica-
tion in this dissertation, the NMPC-MP is not required to be robust against local minimum,
as in a shared autonomy system, operator gains more control and can guide the robot out of
local minimum when the robot gets stuck in it.

Model predictive control (MPC) found its application in process industries back in 1980s.
With a significant growth on computing power of microprocessors, MPC now can be applied
to solve complex problems from various fields. In robotics motion planning, Nonlinear MPC
(NMPC) is a good choice. It is able to fulfill most of the merits listed in Table 2.2 for the fol-
lowing reasons: (i) NMPC plans a sequence of control moves and thus is dexterous to handle
complex problems. (ii) Using Sequential Quadratic Programming (SQP), the NMPC problem
can be solved quickly, thus can be applied in real-time. (iii) NMPC has a preview capabil-
ity, which makes its solution proactive to system changes. As a result, NMPC-MP generates
smooth trajectories despite the changes in the goal and environment. (iv) Arbitrary objective
criteria and constraints can be added to the optimization, making the NMPC problem highly
customizable. The concept of NMPC is to use a dynamic model of the system to predict the
future states of the system and optimize one or multiple future-state-dependent metrics to
produce a sequence of optimal movements. However, only the control movement of the first
time step is executed. For the next time step, system states may be different from what has
been predicted before. Then, a new NMPC is formulated and solved to generate new control
moves. Therefore, NMPC is proactive yet still quickly responsive to system dynamics and
noise.

4.0.1 Linear MPC regulator

[83] introduces a simple MPC regulation problem to elaborate the basics of MPC and uses
dynamic programming to solve the problem. The system model of the problem is:

x+ = Ax+Bu

y = x
(4.1)

where x+ is the next system states calculated from current inputs u and current system states
x. The system states x are directly measured and are supposed to be manipulated to the ori-
gin by the MPC regulator. Considering N time steps into the future, the sequence of the
inputs that need to be optimized is:

U = {u0,u1, · · · ,uN−1} (4.2)

Given U and the current system state x0, the system states for the next N time steps
X = {x1, · · · ,xN} can be forecast according to Equation 4.1. The objective function for
the optimization is defined as:

f(x0,X ,U) =
1

2

N−1∑
k=0

[
xT
kQxk + uT

kRuk

]
+

1

2
xT
NPfxN

subject to

xk = Axk−1 +Buk−1 for k = 1, · · · , N

(4.3)
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where Q,R and Pf are diagonal matrices and denote cost weights for different kinds of cost.
Larger values in Q indicate that the regulator needs to drive the states to zero more quickly,
larger values in R mean that control moves should be relatively smaller and larger values
in Pf will lay more importance on checking whether the system states at the N -th time step
are at the origin. These parameters need to be well-tuned and balanced, in order to achieve
satisfying performance. Then, the following problem is formulated:

min
U

f(x0,X ,U) (4.4)

Dynamic Programming Solution: [83] describes a dynamic programming method to
solve the optimization problem in Equation 4.4. First Equation 4.3 is rewritten as:

f(x0,X ,U) =
N−1∑
k=0

l(xk,uk) + lN (xN )

subject to

xk = Axk−1 +Buk−1 for k = 1, · · · , N

(4.5)

where l(x,u) = (1/2)(xTQx+ uTRu) and lN (x) = (1/2)(xTPfx). As the first system state
x0 is the current system state and is fixed, backward dynamic programming is performed
and the first optimization is conducted on the last system state. Then, optimizations are pro-
ceeded in a reverse order. Based on Equation 4.5, the optimization problem in Equation 4.4
is rearranged to the following form:

min
u0,x1,···,uN−2xN−1

l(x0,u0) + · · ·+ l(xN−2,uN−2)+

min
uN−1,xN

l(xN−1,uN−1) + lN (xN )

subject to

xk = Axk−1 +Buk−1 for k = 1, · · · , N

(4.6)

Thus, the first optimization problem at the last time step is given by:

min
uN−1,xN

l(xN−1,uN−1) + lN (xN )

subject to

xN = AxN−1 +BuN−1

(4.7)

where xN is treated only as a constant and optimal input u∗
N−1 can be analytically derived.

Then, the optimal stage cost at the last time step is obtained as: f∗N−1 = fN−1(u
∗
N−1), the

system state at the last time step is also derived: xN = AxN−1+Bu∗
N−1. Derivation of u∗

N−1

is as follows:

l(xN−1,uN−1) + lN (xN )

= (1/2)
[
xT
N−1QxN−1 + uT

N−1RuN−1 + (AxN−1 +BuN−1)
TPf (AxN−1 +BuN−1)

]
(4.8)
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Taking the derivative of Equation 4.8 with respect to uN−1 and setting the derivative to 0

yields:

RuN−1 +BTPf (AxN−1 +BuN−1)
.
= 0

⇒ (R+BTPfB)uN−1 +BTPfAxN−1 = 0

⇒ uN−1 = −(R+BTPfB)−1BTPfAxN−1

(4.9)

Thus the optimal input and optimal stage cost are given as follows:

u∗
N−1 = KN−1xN−1

f∗N−1 = (1/2)xT
N−1ΠN−1xN−1

(4.10)

where KN−1 and ΠN−1 are defined as follows:

KN−1
.
= −(R+BTPfB)−1BTPfA

ΠN−1
.
= Q+ATPfA+ATPfBKN−1

= Q+ATPfA−ATPfB(R+BTPfB)−1BTPfA

(4.11)

u∗
N−1 and f∗N−1 are functions of xN−1 and the optimization problem for the last but one time

step is given as:

min
uN−2,xN−1

l(xN−2,uN−2) + f∗N−1(xN−1)

subject to

xN−1 = AxN−2 +BuN−2

(4.12)

This problem has the same structure as the problem formulation in Equation 4.7 and the
optimal solution u∗

N−1 and f∗N−1 can be derived analogously:

u∗
N−2 = KN−2xN−2

f∗N−2 = (1/2)xT
N−2ΠN−2xN−2

(4.13)

with

KN−2
.
= −(R+BTΠN−1B)−1BTΠN−1A

ΠN−2
.
= Q+ATΠN−1A+ATΠN−1BKN−2

= Q+ATΠN−1A−ATΠN−1B(R+BTΠN−1B)−1BTΠN−1A

(4.14)

To summarize for all time steps, given Πk at k-th time step, Πk−1 at (k − 1)-th time step is
obtained as:

Πk−1 = Q+ATΠkA−ATΠkB(R+BTΠkB)−1BTΠkA

for k = N,N − 1, · · · , 1
(4.15)

with a terminal condition ΠN = Pf . And the optimal input and cost value are calculated as:

u∗
k = Kkxk

f∗k = (1/2)xT
kΠkxk

Kk
.
= −(R+BTΠk+1B)−1BTΠk+1A

(4.16)
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Recursive calculations of Equation 4.15 and Equation 4.16 end until u∗
0 = K0x0 is obtained.

Batch Solution. Aside from recursive dynamic programming, Equation 4.4 can also be
directly solved by considering the cost function to be solely dependent on an input vector
U =

[
uT
0 ,u

T
1 , · · · ,uT

N−1

]T ∈ RN ·m. The optimization is then performed on U once to calcu-
late the optimal input U∗[84]. System states at the next N time steps are collected in a vector
X =

[
xT
0 ,x

T
1 , · · · ,xT

N

]T ∈ R(N+1)·n. X is determined by the following equation:



x0

x1

...

xN


︸ ︷︷ ︸

X

=



In

A

...

AN


︸ ︷︷ ︸

SX

x0 +



0 · · · · · · 0

B 0 · · · 0

AB B
. . .

...
...

. . . . . .
...

AN−1B · · · · · · B


︸ ︷︷ ︸

SU



u0

u1

...

uN−1


︸ ︷︷ ︸

U

(4.17)

In this way, the calculation of the sequence of the system states is written in a shorter form:

X = SXx0 + SUU (4.18)

The original cost function in the form of summation of stage costs can also be expressed in
one equation:

f(x0,U) = XT Q̄X +UT R̄U (4.19)

with Q̄ = diag(Q, · · · ,Q,Pf ) and R̄ = diag(R, · · · ,R). Substituting Equation 4.18 into
Equation 4.19, taking derivative of the cost function with respect to U and setting the deriva-
tive to 0, we have:

2ST
UQ̄(S̄Xx0 + SUU) + 2R̄U

.
= 0

⇒ U = −(ST
UQ̄SU + R̄)−1ST

UQ̄SXx0

(4.20)

The sequence of the optimal inputs U∗ is derived and solely depends on the initial system
state x0.

Simulations are conducted by using both dynamic programming-based MPC regulator
and Batch-based MPC regulator. Given a discrete LTI system model with the same form of
Equation 4.1, matrices A and B are defined as:

A =


1.5 −2.13 0.78

1.2 0 0

0 0.5 0

 ,B =


0.5

0

0

 (4.21)

And cost weight matrices are chosen as:

Q =


10 0 0

0 10 0

0 0 10

 ,Pf =


2 0 0

0 2 0

0 0 2

 , R = 20 (4.22)
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Figure 4.2: Linear MPC regulator DP vs. Batch approach

The MPC regulator of both approaches can be analytically derived and the evolution of the
system states and optimal inputs is illustrated in the Figure 4.2. As shown in the figure,
the two different approaches (dynamic programming-based MPC regulator and Batch-based
MPC regulator) generated exactly the same control moves and system behavior.

4.1 Forward kinematics and Jacobin for robot in real world

In this dissertation, the Kinova® Jaco2 7Dof version manipulator is used in the experi-
ments. For the manipulator system, the system states are defined as seven joint angles:
q = [q1, q2, q3, q4, q5, q6, q7]

T and the system input is the joint velocities sent to the joints:
u = [u1, u2, u3, u4, u5, u6, u7]

T . Thus the system model is written as:

q+ = q + u ∗ ts
y = q

(4.23)

However, tasks are often defined in cartesian space. Therefore, a FK that maps the points
in joint space to cartesian space is necessary. Besides, a Jacobian matrix is derived for the FK.

4.1.1 Forward kinematics

The Jaco manipulator is composed of eight links connected by seven joints. We follow the
convention from [85] and number the links from zero and number the joints from 1. Link 7 is
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the end-effector and Link 0 is the fixed manipulator base. All joints are revolute joints, which
means they can only rotate around a single axis and can not move along an axis. A joint
angle qn indicates rotating joint n by qn. A local coordinate frame is attached to each link, i.e.
Oixiyizi is attached to link i. A link will stay stationary in its own coordinate frame. Thus,
the position of Oi and directions of xi, yi, zi can uniquely describe the position and orien-
tation of link i. Denavit–Hartenberg table is used to represent the deviation of a coordinate
frame of link iwith respect to the coordinate frame of its parent link (i−1). There are mainly
two conventions in forming the DH table. One is distal convention, where coordinate frame
Oixiyizi is put on the rotation axis of joint i+ 1 and the transformation between two frames
is given by the following operations order:

H i
i−1 = Rotzi−1(θi) · Transzi−1(di) · Transxi(ai) · Rotxi(αi) (4.24)

Another is the proximal convention, where Oixiyizi is put on the rotation axis of joint i and
the transformation calculation is in the following order:

H i
i−1 = Rotxi−1(αi) · Transxi−1(ai) · Transzi(di) · Rotzi(θi) (4.25)

In this dissertation, the distal convention is used. The DH table of Jaco2 provided by [86] is
in proximal convention and is modified to Table 4.1 in distal convention. Four values in the
i-th row of the table indicate that parent coordinate frame Oi−1xi−1yi−1zi−1 first rotates by θi
about its z-axis and then, translates by di along the newly rotated x-axis and in the end rotat-
ing αi about the axis. These operations yield the child coordinate frame Oixiyizi. Figure 4.3
illustrates how DH parameters describe the deviation between two neighboring frames. A
homogeneous transformation matrix is used to define such deviation:

H i
i−1 =

Ri
i−1 T i

i−1

0 1

 (4.26)

where Ri ∈ R3x3 denotes the rotation matrix and Ti ∈ R3 the translation vector.

Table 4.1: DH table for Jaco2

i θi di ai αi

1 q1 + π -0.2755 0 π/2

2 q2 0 0 π/2

3 q3 -0.41 0 π/2

4 q4 -0.0098 0 π/2

5 q5 -0.3111 0 π/2

6 q6 + π 0 0 −π/2

7 q7 + π/2 -0.2638 0 π
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Figure 4.3: Example of DH in the distal convention

And H i
i−1 is calculated from DH table parameters:

H i
i−1 =



cos θi − sin θi 0 0

sin θi cos θi 0 0

0 0 1 di

0 0 0 1





1 0 0 ai

0 cosαi − sinαi 0

0 sinαi cosαi 0

0 0 0 1



=



cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1



(4.27)

Now the transformation between Oixiyizi and O0x0y0z0 can be expressed as a function
of joint values q by chaining local transformation between neighboring links one by one, i.e.
the transformation of link i with respect to the base frame can be calculated given q:

H i
0(q) = H i

i−1(qi) ·H i−1
i−2 (qi−1) · · ·H1

0 (q1) (4.28)

4.1.2 Orientation representation

It is impractical to use the rotation matrix in controlling the robot to the desired orientation
because there are too many elements that need to be steered. Besides, these elements are not
independent from each other. Actually, an orientation can be well represented by at most
three quantities.

Roll-pitch-yaw, an arbitrary rotation can be decomposed into three successive rotations
around fixed coordinate frame axes x0,y0,z0. Roll-pitch-yaw rotation is taken in a specific
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order and in this dissertation, we perform the rotation in order x-y-z, i.e. first a roll about x0
axis by an angle of ψ then a pitch about y0 axis by an angle of θ and in the end a yaw about
z0 axis by an angle of ϕ. Given roll, pitch, yaw, a rotation matrix is derived:

Rxyz =


cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ



1 0 0

0 cosψ − sinψ

0 sinψ cosψ



=


cos θ cos θ − sinϕ cosψ + cosϕ sin θ sinψ sinϕ sinψ + cosϕ sin θ cosψ

sinϕ cos θ cosϕ cosψ + sinϕ sin θ sinψ − cosϕ sinψ + sinϕ sin θ cosψ

− sin θ cos θ sinψ cos θ cosψ


(4.29)

Since rotations are performed around fixed axes, rotation matrices of successive decomposed
rotations are premultiplied. Reversely, given a rotation matrix, roll, pitch and yaw angles can
also be determined based on Equation 4.29.

In the next section, we will discuss how to minimize error between the current and de-
sired orientations of the end-effectors for our MPC controller. The MPC controller can be
viewed as a feedback controller. [87] pointed out that, despite its convenience in describing
orientation intuitively, roll-pitch-yaw representation is undesirable in feedback control due
to singularities and computational complexity. And the differential relationship between the
rates of change of roll-pitch-yaw angles and angular velocities is highly nonlinear, leading to
unpredictable behavior when steering roll-pitch-yaw angles.

Axis/Angle, any rotation can be considered as a rotation around an arbitrary axis in
space, where only three quantities are used as well. This representation provides a con-
cise way to describe a rotation in space and is crucial for the geometrical derivation of the
robot’s Jacobian later because angular velocities are defined around an axis in space. Given
an arbitrary unit vector k = [kx, ky, kz]

T in frame O0x0y0z0, the rotation matrix Rk,θ for a
rotation of θ around axis k is given [85] by:

Rk,θ =


k2xvθ + cos θ kxkyvθ − kz sin θ kxkzvθ + ky sin θ

kxkyvθ + kz sin θ k2yvθ + cos θ kykzvθ − kx sin θ

kxkzvθ − ky sin θ kykzvθ + kx sin θ k2zvθ + cos θ

 (4.30)

where vθ = versθ = 1− cos θ.
However, this representation is not intuitive and is complicated to derive. Thus it can not

be used in defining certain orientation requirements for a task. Besides, neither roll-pitch-
yaw nor axis/angle representations are unique for a given rotation. For example, a rotation
of −θ about −k is the same as a rotation of θ about k[85].

Quaternion, if the rotation between two coordinate frames O0x0y0z0 and O1x1y1z1 are
represented in axis/angle form, i.e., a rotation of θ about a unit vector k in O0x0y0z0. The
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quaternion representation of the two coordinate frames are defined as follows [87]:

w
.
= cos θ/2, p

.
= (sin θ/2)k (4.31)

Then, [w,p]T is the quaternion of O1x1y1z1 with respect to O0x0y0z0. Quaternion is normal
because:

w2 + pTp = (cos θ/2)2 + (sin θ/2)2kTk = (cos θ/2)2 + (sin θ/2)2 = 1 (4.32)

And quaternion is also unique as long as θ is confined to [−180°, 180°], which is often the
case.

Given a quaternion ξ = [w, qT ]T , the rotation matrix can be derived:

R = (w2 − pTp)I3 + 2pT − 2wp× (4.33)

where I3 is a 3 × 3 identity matrix and p× denotes the skew-symmetric matrix for vector p
and

p =


x

y

z

 , p× =


0 −z y

z 0 −x

−y x 0

 (4.34)

Quaternion is a good choice for orientation representation in feedback control and will
be used in the optimization of our MPC controller.

4.1.3 Jacobian

Basic Jacobian describes the relationship between joint velocities and linear, angular veloci-
ties in cartesian space. Since the joints of the robot manipulator used in this dissertation are
all of revolute type, only Jacobian for revolute joints is discussed.

As shown in Figure 4.4, geometrically, the rotation of a revolute joint produces exactly
the same rotation of the end-effector around that joint, which means a scalar joint velocity
q̇ causes on the end-effector an angular velocity ω whose magnitude is θ̇ and direction is
aligned with the rotation axis of the joint. The rotation of a joint also produces a linear ve-
locity v. v’s direction should be tangent to the circle around the joint at the position of the
end-effector. v is perpendicular to the rotating axis and ω, as the rotating axis is perpendic-
ular to the plane where v lies on. And obviously, v is also perpendicular to the circle radius
r pointing to the position of the end-effector. Furthermore, the magnitude of v is given by:

∥v∥ = θ̇ ∥r∥ = ∥ω∥ ∥v∥ = ∥ω∥ ∥v∥ sinβ (4.35)

β indicates the angle between r and ω and it is 90° as r and ω are also perpendicular to each
other. Thus sinβ = 1. The direction and magnitude of v confirm that it is the cross product
of ω and r. Therefore, a joint velocity produces on the end-effector an angular velocity ω

and a linear velocity v = ω× r, where r denotes a vector from the position of the joint to the
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Figure 4.4: Linear and angular velocity from a single joint

end-effector. We can see that the magnitudes of v and ω are proportional to the joint velocity
q̇ and their relationship is written as: v

ω

 =

 z × r

z


︸ ︷︷ ︸

Ji

q̇ (4.36)

where z denotes the unit rotating axis vector for the joint and Ji ∈ R6 is one column con-
tributed by this single joint for the whole Jacobian matrix. Since z and r both depend on
joint angles q, so does Ji.

The linear and angular velocities produced by multiple joints are simply added together,
yielding a total linear and angular velocities ωef and vef on the end-effector:

 vef

ωef

 = J1q̇1 + J2q̇2 + · · ·+ Jnq̇n = [J1,J2, · · · ,Jn]︸ ︷︷ ︸
J



q̇1

q̇2

...

q̇n


(4.37)

where n indicates the number of joints and J ∈ R6×n is the Jacobian matrix for the end-
effector with respect to n joints. J is also a function of joint angles q.

Joint i connects link i and link (i − 1) and local coordinate frame Oi−1xi−1yi−1zi−1 is
attached to link (i − 1). Distal DH convention always sets the origin of Oi−1xi−1yi−1zi−1

to where joint i is located and sets the z-axis to be aligned with the rotating axis of joint i.
Therefore, once the transformation H i−1

0 = [Ri−1
0 ,T i−1

0 ;0,1] of Oi−1xi−1yi−1zi−1 is given, zi
is determined as the third column of Ri−1

0 and ri is determined as the end-effector’s transla-
tion subtracting T i−1

0 :

Ri−1
0 =

[
R1 R2 R3

]
, zi = R3

ri = T ef
0 − T i−1

0

(4.38)
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And the Jacobian matrix is given by:

J =

z1 × r1 z2 × r2 · · · zn × rn

z1 z2 · · · zn

 (4.39)

Jacobian for quaternion: Let Jω denote the bottom three rows of J . Jω describes the
relationship between joint velocities q̇ and angular velocities ω of the end-effector. In this
dissertation, we use quaternion ξ = [η,pT ]T to represent the orientation. Thus instead of Jω

for ω, a Jacobian Jξ̇ is needed for the rate of change on quaternion. [87] gave a quaternion
propagation differential equation:

ξ̇ =

 ẇ

ṗ

 = 1/2

 0 −ωT

ω −ω×


 w

p

 (4.40)

Substituting ω = Jωq̇ into Equation 4.40:

ξ̇ = 1/2

 −ωTp

wω − ω×p

 = 1/2

 −pTω

wω + p×ω

 = 1/2

 −pTJωq̇

wJωq̇ + p×Jωq̇



= 1/2

 −pT

wI3 + p×

Jωq̇ = 1/2



−x −y −z

w −z y

z w −x

−y x w


︸ ︷︷ ︸

M

Jωq̇ = Jξ̇q̇

(4.41)

Therefore, given Jω and current quaternion ξ = [w, p1, p2, p3]
T , Jξ̇ ∈ R

4×n can be calculated
by Jξ̇ = 1/2 ·MJω.

4.2 Model predictive control for motion planning

Here in this section will extend the MPC to design a motion planner for Jaco2 manipulator.
Consider the linear MPC regulator discussed in Section 4.1, the goal is defined as 0 in

joint space. Given the system model Equation 4.1, an optimization function is formulated to
find the optimal system inputs for the next N time steps into the future. This sequence of
inputs is supposed to minimize an objective function. The objective function is defined as an
accumulation of the quadratic error between 0 and the actual system state for the nextN time
steps plus a regularization on the input sequence, as Equation 4.3 states. Equation 4.19 shows
that, with the current system state x0 known, the objective function is given as a quadratic
function of input sequence U . And the optimal solution U∗ can be analytically derived.

For a general MPC, a prediction horizon ph ∈ N+ defines the number of future time
steps that need to be predicted and control horizon ch ∈ N+ ≤ ph defines the number
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of system inputs in the predicted future. For time steps after ch and before ph, the input
for the ch-th time step is repeated. Thus, the sequence of inputs for the system becomes
{u0,u1, · · · ,uch−1,uch−1, · · · ,uch−1} and the input variable for the optimization problem is
U =

[
uT
0 ,u

T
1 , · · · ,uT

ch−1

]T . The dimension of the optimization is reduced from ph × m to
ch×m, where m is the number of the joints of the manipulator.

Now consider the robot manipulator motion planning problems, the system model is
written as:

q+ = q + u · ts
X = F(q)

(4.42)

where q ∈ R7 denotes joint positions on the 7-Dof manipulator, u ∈ R7 is the manipulated
joint velocities. System output X ∈ R7 represents the three-dimensional position and four-
dimensional quaternion of the end-effector in cartesian space. F describes the nonlinear
relationship between X and q. As discussed in Section 4.2, a homogeneous transformation
matrix H i

0(q) = [Ri
0(q),T

i
0(q),0, 1] for robot link i can be calculated via robot’s forward

kinematics, from which X is determined as:

X =

 T i
0(q)

G(Ri
0(q))

 (4.43)

Here G is implemented as a function extracting quaternion from a rotation matrix. [88]’s
method remains most popular for calculating quaternion from a rotation matrix. Equa-
tion 4.43 shows that the function F is highly nonlinear.

4.2.1 Optimization problem formulation

Given a cartesian goal Xd, the optimization problem for generating an optimal sequence of
joint velocities is formulated as follows:

min
U ,Q

{
ph−1∑
i=0

[
e(Xd,Xi)

TQe(Xd,Xi) + uT
i Rui

]
+ e(Xd,Xph)

TPfe(Xd,Xph)

}
subject to

lb ≤ U ≤ ub,

g(qi) ≤ 0, for i = 1, 2, · · · , ph
qi = qi−1 + ui−1 · Ts, for i = 1, 2, · · · , ch
qi = qi−1 + uch−1 · Ts, for i = ch+ 1, · · · , ph

(4.44)

where e(Xd,Xi) is an error metric that measures the difference between Xd and Xi. For
position, the error can be simply defined as the subtraction between desired position Td

and current position Ti. For quaternion difference between ξd = [wd, xd, yd, zd︸ ︷︷ ︸
pT
d

]T and
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ξi = [wi, xi, yi, zi︸ ︷︷ ︸
pT
i

]T , [87] introduced the following orientation error representation to define a

relative quaternion rotation, under which ξi is rotated to ξd:

∆ξ =

 ∆w

∆p

 =

 wdwi + pT
d pi

wdpi − wipd − p×
d pi

 (4.45)

where the skew-symmetric matrix p×
d can be expressed similarly to Equation 4.34. [87] states

that, ∆p alone can be a good representation for orientation error between two coordinate
frames, because two coordinate systems coincide if and only if ∆p = 0. Furthermore, also
adding ∆w into the feedback control always leads to a wrong convergence as ∆w = 0 hap-
pens only when the actual and desired orientation are separated by a Euler rotation of 180°.
Therefore, we choose the quaternion error as ∆ξ = ∆p ∈ R3 and ∆ξ can be written in an
affine form with respect to ξi:

∆ξ = ∆p = wd


xi

yi

zi

− wi


xd

yd

zd

−


0 −zd yd

zd 0 −xd

−yd xd 0



xi

yi

zi



=


−xd wd −zd yd

−yd zd wd −xd

−zd −yd xd wd


︸ ︷︷ ︸

Πd

ξi

(4.46)

where matrix Πd is built from ξd and remains constant during the whole optimization.
Then, the error function e(Xd,Xi) is given:

e(Xd,Xi) =

 Td − Ti

Πdξi

 (4.47)

U = [uT
0 ,u

T
1 , · · · ,uT

ch−1]
T , Q = [qT0 , q

T
1 , · · · , qTph]T and Xi = F(qi). lb and ub denote

the lower and upper limit of the joint velocities and g(qi) are defined as constraint functions
regarding collision avoidance.

Problem Equation 4.44 is a constrained nonlinear optimization problem. We propose to
use batch approach to solve the problem. Given current robot joint positions q0 and an ar-
bitrary hypothesis U on the joint velocities sequence, the sequence of the joint positions in
next ph time steps Q is predicted according to the system model. The objective function and
constraint functions in the problem Equation 4.44 are converted to be only dependent on U .
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4.2.2 Objective function

In order to reformulate the objective function in problem Equation 4.44, linear relationship
between U and Q is written in batched form:

q0

q1

q2

...

qch

qch+1

...

qph


︸ ︷︷ ︸
Q∈R7(ph+1)

= ts ·



0 0 · · · 0

1 0 · · · 0

1 1 · · · 0

...
...

. . .
...

1 1 · · · 1

1 1 · · · 2

...
...

. . .
...

1 1 · · · N


︸ ︷︷ ︸

M∈R(ph+1)×ch

⊗I7 ·



u0

u1

...

uch−1


︸ ︷︷ ︸

U∈R7ch

+



q0

q0

q0

...

q0

q0

...

q0


︸ ︷︷ ︸

Q0∈R7(ph+1)

(4.48)

where N = ph− ch+1. We can define SU = ts ·M ⊗I7 and⊗ indicates a kronecker product.
Thus, SU ∈ R7(ph+1)×7ch. And a simple version for Equation 4.48 is:

Q = SUU +Q0 (4.49)

The FK for all ph time steps are wrapped in one function F̄ , yielding a nonlinear relationship
between the joint angles sequence Q and the cartesian positions sequence of end-effector
X̄ = [XT

0 ,X
T
1 , · · · ,XT

ph]
T ∈ R7(ph+1):

X0

X1

...

Xph


︸ ︷︷ ︸

X̄

= F̄(Q) =



F(q0)

F(q1)

...

F(qph)


(4.50)

The objective function in problem Equation 4.44 can be expressed as:

f(U) = ē(Xd, X̄)T Q̄ē(Xd, X̄) +UT R̄U (4.51)

where Q̄ = diag(Q, · · · ,Q︸ ︷︷ ︸
ph

,Pf ) ∈ R6(ph+1)×6(ph+1), R̄ = diag(R, · · · ,R︸ ︷︷ ︸
ch−1

, NR) ∈ R7ch×7ch

and ē(Xd, X̄) = [e(Xd,X0)
T , e(Xd,X1)

T , · · · , e(Xd,Xph)
T ]T . Therefore, given the desired

cartesian goal Xd, current joint angles q0 and a hypothesis on the joint velocities sequence
U , the scalar value of the objective function can be calculated by Equation 4.51.

Gradient. The nonlinear optimization problem in Equation 4.44 can be solved by SQP.
When no gradient information is provided to SQP, it will have to numerically approximate
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gradients via finite differences, which is time-consuming for high-dimensional problems.
Therefore, we derive the analytical form of the gradients of the objective function and con-
straints for Equation 4.44. Before calculating gradient of the objective function, the derivative
of F̄ with respect to Q is first calculated:

∂F̄
∂Q =



∂F0
∂q0

∂F0
∂q1

· · · ∂F0
∂qph

∂F1
∂q0

. . . . . . ∂F1
∂qph

...
. . . . . .

...

∂Fph

∂q0
· · · · · · ∂Fph

∂qph


=



J0

J1

. . .

Jph


︸ ︷︷ ︸

J̄∈R7(ph+1)×7(ph+1)

(4.52)

where F i = F(qi) = Xi and Ji = J(qi) indicate the cartesian position and Jacobian of the
end-effector at i-th time step respectively for i = 0, 1, · · · , ph. According to Equation 4.37,
Ẋi = Jiq̇i, and we have:

Ẋi =
∂F i

∂t
= Ji

∂qi
∂t
⇒ ∂F i

∂qi
= Ji (4.53)

Given a qi at i-th time step, F i is solely determined by qi and can be seen independent from
qs before i-th time step. Obviously, qs after i-th time step don’t affect F i, either. Therefore,
we have:

∂F i

∂qj
=

Ji, if i = j

0, otherwise
for i, j = 0, 1, · · · , ph (4.54)

And Equation 4.52 holds.
Second, similarly to the statement from Equation 4.54, e(Xd,Xi) only depends on Xi and

is independent from X before and after i-th time step. Taking the derivative of Equation 4.47
yields:

∂e

Xi
=

 I3

Πd


︸ ︷︷ ︸

Γ∈R6×7

(4.55)

The derivative of ē(Xd, X̄) with respect to X̄ is given as: ∂ē/∂X̄ = diag(Γ, · · · ,Γ︸ ︷︷ ︸
ph+1

)
.
= Γ̄ ∈

R6(ph+1)×7(ph+1).
In the end, we take the derivative of Equation 4.51 with respect to U :

∂f

∂U
= 2ē(Xd, X̄)T Q̄Γ̄J̄SU + 2UT R̄ (4.56)

Therefore, given U and q0, the gradient of the objective function at U can be calculated:
∇f = (∂f/∂U)T .
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4.2.3 Constraints

In order to ensure that the robot will never collide with obstacles, hard constraints for obsta-
cle avoidance are imposed. Traditional optimization-based motion planning methods inte-
grate the proximity of the robot to obstacles into a potential function and attempt to minimize
it along with the main task cost. Schulman’s motion planning discarded the potential func-
tion representation for obstacles. Instead, it used the closest distance between a robot link
and an obstacle to represent the proximity of a robot link to the obstacle [46]. However, this
method does not consider the closest distance as a hard constraint but adds the hinge loss of
the closest distance to the objective function and minimizes it. In this dissertation the closest
distance between a robot link and an obstacle being larger than a safe threshold is imposed
as a hard constraint to the optimization problem.

Then, the constraint function g(qi) for a single time step in Equation 4.44 is defined
as g(qi) = [g11(qi)

T , · · · , gK1 (qi)
T , g12(qi)

T , · · · , gK2 (qi)
T , · · · , g1L(qi)T , · · · , gKL (qi)

T ]T , where
gkl (qi) = TH − sdk

l (qi) states that in i-th time step, the signed distance between l-th ob-
stacle and k-th robot collision object should be larger than a threshold TH , for i = 1, · · · , ph,
k = 1, · · · ,K and l = 1, · · · , L, where K denotes the number of collision objects used to rep-
resent the whole robot manipulator and L denotes the number of separated obstacles. Here
sd function is a collision detector that can calculate the distance between two objects given
the transformations of two objects. It is positive when two objects are not in collision and
negative otherwise. The transformation of the obstacle is detected and the transformation of
robot’s collision object is given by the FK of the robot. Hence, sd is a function of qi, and thus
a function of U . For the NMPC problem with ph prediction horizons, collisions in the next
ph time steps are considered, yielding ph × K × L obstacle constraints in total imposed on
the optimization problem.

Aside from the obstacle constraints, the lower and upper bounds for U are imposed on
the joint velocities. All constraints for the optimization problem are written in the batch form:

ḡ(Q) =



g(q1)

· · ·

g(qph)

Q− ub

lb−Q


≤ 0 (4.57)

Collision detection. We use the same collision detection method and proximity represen-
tation as those are used in Schulman’s method [46], i.e. a signed distance is defined and
detected to describe the proximity of the robot to an obstacle. Given two objectsA and B and
their transformations with respect to a global coordinate frame, the distance between them is
defined as the length of the smallest translation, by which two shapes are moved to contact.
Obviously, distance is zero if two objects are intersecting. A penetration depth is defined as
the smallest translation that drives two shapes out of contact and penetration depth is zero
when two shapes are not intersecting. At i-th time step, given current joint angles qi, the
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transformation H i
A for a collision object A of the robot is calculated by FK: H i

A = FA(qi).
It is also assumed that, the transformation H i

B of an obstacle B can be obtained and remains
unchanged for i = 1, · · · , ph. The distance between two objects can be calculated by the GJK
algorithm [89]. The algorithm first detects whether two objects are in collision, if not, dis-
tance along with the closest points pA and pB on each object are calculated. If two objects are
in collision, EPA algorithm [90] is used to calculate the deepest penetration depth and the
contacting points. Signed distance is expressed as:

sd(qi) =

GJK(A,H i
A,B,H i

B) if A and B are not in collision

EPA(A,H i
A,B,H i

B) otherwise
(4.58)

Figure 4.5 shows the signed distance and the closest or contacting points for both cases.

Figure 4.5: Example of signed distance

Gradient. The analytical expression for the gradient of the constraints is also neces-
sary for the optimization. Before deriving the constraints gradient, there are two points to
highlight. First, similarly to ∂F(qi)/qj , we have ∂g(qi)/∂qj = −∂sd(qi)/∂qj if i = j and
∂g(qi)/∂qj = 0 otherwise.

Second, collision detector outputs the positions pr
k and po

l of either the closest or contact-
ing points for k-th robot collision object and l-th obstacle collision object, respectively. Hence,
the signed distance function can also be expressed as:

sdk
l (qi) = sikl

√
(pr

k − po
l )

T (pr
k − po

l ) (4.59)

where sikl = 1 if object l and k are not in collision at i-th time step and sikl = −1 otherwise.
In this way, according to [46], derivative of sd function can be approximated:

∂sdkl (qi)

∂qi
≈

pr
k − po

l

sdkl (qi)

∂pr
k

∂qi
=

pr
k − po

l

sdkl (qi)
Jk
l (qi) (4.60)

where Jk
l ∈ R3×7 is the Jacobian matrix for the position of k-th robot collision object.
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Till now, the gradient of the constraints can be analytically written as follows:

∂ḡ

∂U
=



0
∂sd11(q1)

∂q1
0 · · · 0

0
∂sdkl (q1)

∂q1
0 · · · 0

...
...

. . . . . .
...

0 0 · · · 0
∂sdkl (qph)

∂qph

I7(ph+1)

−I7(ph+1)


SU (4.61)

In order to reduce the computation, the robot body is represented by three boxes and the
robot manipulator is represented by three cylinders instead of by the precise meshes of robot
links in collision detection. Figure 4.6 shows such simplification.

Figure 4.6: The collision objects used to represent the Movo robot. In order to plan for both arms, we
run the NMPC-MP twice. As a result, the environmental constraints for each hand are displayed as
primitive shapes in blue from each NMPC-MP’s perspective. [1], ©2021 IEEE.

4.2.4 Sequential quadratic programming method

The NMPC Equation 4.44 for robot motion planning is converted to a nonlinear optimization
problem of the following general form:

min
x

f(x)

subject to

gi(x) ≤ 0, for i = 1, · · · ,m

(4.62)

For the NMPC problem that only considers obstacle avoidance and physical limits during
motion planning, no equality constraints are imposed. As discussed in last subsection, given
a hypothesis on x, the values and gradients of f(x) and gi(x) can be analytically obtained.
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Now, we use SQP to solve problem Equation 4.62. At each iteration, an approximation
is made for the Hessian of the Lagrangian function of problem Equation 4.62 using BFGS
method [91]. The Hessian is used along with the given values and gradients information to
form a quadratic QP subproblem. The solution of the QP is used as a search direction for
the subsequent line search procedure. QP problems can be solved by different advanced QP
solvers such as OSQP[92] and qpOASES[93] in microseconds. Here, we use an open-source
nonlinear optimizer nlopt [94] to solve the QP and conduct line search.

Given a initial guess x0, xk+1 is obtained from xk by the following update rule [91]:

xk+1 = xk + αkdk (4.63)

where dk is the search direction found by solving the QP subproblem at k-th iteration and
αk is the step length found by line search.

QP subproblem. At k-th iteration, a QP is formulated by the a second-order Taylor ex-
pansion of the Lagrangian function of the original problem:

L(x,λ) = f(x) +
m∑
i=1

λigi(x) (4.64)

and a first-order Taylor expansion of constraints. Then, a QP of standard form is given as:

min
d∈Rn

1

2
dTBkd+∇f(xk)

Td

subject to

∇gi(xk)
Td+ gi(xk) ≤ 0, for i = 1, · · · ,m

(4.65)

where f(xk),∇f(xk), gi(xk) and ∇gi(xk) are calculated given xk. Bk is the Hessian ma-
trix of the Lagrangian function Equation 4.64: Bk = ∇2

xxL(x,λ). Exactly calculating Bk

at each iteration causes significantly high computation overheads. In order to increase the
efficiency of SQP, the Hessian is only iteratively approximated using gradients information.
This approximation of the Hessian is known as quasi-Newton methods, among which BFGS-
formula is the most popular. The update rule of Hessian according to BFGS-formula is stated
as follows:

Bk+1 = Bk +
qkq

T
k

qTk sk
−

Bksks
T
kB

T
k

sTkBksk

with

sk
.
= xk+1 − xk = αkdk,

qk
.
= θkδk + (1− θk)Bksk

(4.66)

where sk denotes the difference between current and next iterate, i.e. the calculated update,
δk denotes the difference between the gradients of two Lagrangian functions:

δk
.
=

(
∇f(xk+1) +

m∑
i=1

λi∇gi(xk+1)

)
−

(
∇f(xk) +

m∑
i=1

λi∇gi(xk)

)
(4.67)
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B needs to remain positive definite during the update, and this is achieved by choosing θk
from Equation 4.66 as:

θk
.
=

1, if sTk δk ≥ 0.2sTkBksk
0.8sTk Bksk

sTk Bksk−sTk δk
, otherwise

(4.68)

This definition ensures that sTk δk ≥ 0.2sTkBksk, which keeps Bk+1 positive definite within
the linear manifold defined by the tangent planes to active constraints at xk+1[91].

Line search. The solution of the QP serves as a search direction for a line search problem
to finds an optimal step size α∗ that minimizes some merit function φ:

φ(α)
.
= f(xk + αdk) +

m∑
i=1

µi |gi(xk + αdk)|+ (4.69)

with |z|+ = max(0, z) and the penalty coefficient µi is updated according to µi
.
= max((1/2)(µ−i +

|λi|), |λi|) for i = 1, · · · ,m where µ−i is the penalty coefficient from last iteration and λi de-
notes the Lagrangian multiplier for i-th constraint gi.

4.2.5 Real-time scheme and parallelization

The planner has to satisfy the minimum 10Hz frequency required by the real-time teleoper-
ation. Therefore, a maximum iteration number is set to restrain the optimizer from waiting
too long for an optimum. Regardless of optimality, the updated hypothesis at the last iter-
ation is returned. Although the solution trajectory is not optimal, it has been improved in
contrast to the initial hypothesis in terms of approaching the goal. The solution is called a
suboptimum.

The quality of the suboptimum can be improved and the convergence time of the op-
timization can be further reduced by introducing a real-time scheme. Since optimizations
are performed time instant after time instant, two adjacent optimizations don’t differ too
much from each other, as long as the environment between two time steps doesn’t change
too much. For a NMPC-MP, only the joint velocities u∗

0 in the first time step of the planned
trajectory are executed and the remaining the trajectory [u∗

1, · · · ,u∗
ch−1] is a close guess on

the solution of next optimization. Hence, the remaining trajectory is reserved and shifted
one time step forward and a new guess is appended to form a new joint velocities sequence:
[u∗

1, · · · ,u∗
ch−1,unew], this sequence is a good starting point for the next optimization and

cuts some iterations needed to converge to the optimum as opposed to optimizing from an
arbitrary starting point.

Newly formulated starting points can be infeasible. Optimizations starting from an in-
feasible region have a high failure probability. Therefore, before feeding the starting point
to the next optimization, another simple optimization is performed on the starting point, in
order to first update it to the feasible region:

min
x

f(x) = C

subject to

gi(x) ≤ 0, for i = 1, · · · ,m

(4.70)
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where C can be an arbitrary constant. This optimization is given a relatively larger number
of iterations. After performing it, a feasible starting point is guaranteed and the subsequent
optimization will be performed within the feasible region.

Warm start. A warm start is a feasible solution to your problem and the nature of opti-
mization problems is to evaluate feasible regions (all feasible solutions) in order to find the
optimal solution, which is not the original solution. Providing a warm start to the solver,
you help the solver converge in fewer iterations.

Aside from the warm start, a parallelization is implemented. The bottleneck for the opti-
mization is the calculation of the cost and constraint values, as each calculation needs to be
performed ph times. Therefore, ph calculations are assigned to multiple threads. After all
threads complete, values are summed up, and the final results are calculated. This concur-
rency further accelerates the optimization.

Till now, a NMPC-MP with SQP to find the solution is realized. The structure of the
system can be illustrated in the following diagram.

T1

𝒖𝒖𝟎𝟎,𝒖𝒖𝟏𝟏, … , 𝒖𝒖𝒄𝒄𝒄𝒄−𝟏𝟏
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OptimizationMulti-threaded

Optimization
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Figure 4.7: System diagram for NMPC-MP [1], ©2021 IEEE.

Algorithm 1 describes the pseudo-code for NMPC-MP. Ûinit is the feasible warm start
point built from the unexecuted solution inputs of the last optimization. Calculations of cost
and constraints in loops can be split into multiple threads and performed concurrently. After
Max_QP_Num iterations, the updated U is returned as the solution.
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For a clear distinction in motion planer design in this dissertation, the main contributions
are:

• Proposal of a motion planner based on nonlinear model predictive control for Jaco2
redundant manipulator.

• Warm start and multi-threading mechanisms have been implemented, enabling real-
time motion planning. This makes it suitable for avoiding obstacles in dynamic envi-
ronments.

4.3 Experiments and results

In this section, simulations and comparisons are conducted to show that our method is supe-
rior to the benchmarks in terms of planning time and planning quality. And then, the method
is applied on the teleoperation of the real Movo robot to validate that our method is eligi-
ble in real-time teleoperation applications. Simulations and real experiments are running
on an Intel® Xeon ® Gold 6242 CPU with 16 cores at 2.80GHz. The software is running on
Ubuntu® 18.04 LTS and ROS Melodic. Besides, for real experiments, the HMD and VR track-
ers are connected to ROS from Unity3D® via [80]. For the optimization’s multi-threading
mechanisms, four threads are set up for calculating the objective function and four threads
for the constraints.

For the following experiments, unless specially mentioned, parameters for the NMPC-
MP follow Table 4.2, where Q is built by Q = diag(Qpos, Qpos, Qpos, Qquat, Qqua, Qquat) and
analogously for Pf .

4.3.1 Simulations

The proposed NMPC-MP is first tested with primitive obstacles in simulations. Figure 4.8
shows two simulations, one is with a larger static obstacle and the other with a small dy-
namic obstacle. Orange lines are the actual trajectories of the end-effector and blue lines
with green dots are the initial predicted trajectory generated by the NMPC at the beginning
based on the initial robot states and environment. As shown in Figure 4.8a, due to the limit
of the prediction and control horizons, at the beginning, the NMPC can not foresee a trajec-
tory that reaches the goal. Anyhow, it will move one step forward according to this initial
"imperfect" trajectory and a new NMPC for finding the trajectory is formulated. This new
NMPC should have a slightly easier optimization problem for finding the trajectory. In this
way, NMPC in each time step contributes a bit to the whole problem, and the accumulation
of optimizations results in a successful actual motion of the robot. In Figure 4.8b, a dynamic
obstacle is applied and is moving along the red line. At the early phase, the obstacle is far
away, the initial predicted trajectory(blue) and actual executed trajectory(orange) roughly co-
incide and approach the goal. With the obstacle approaching, as the actual trajectory shows,
NMPC gives up staying at the goal position and tries to avoid the obstacle and find another
way to the goal.
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Algorithm 1: NMPC-MP

Uinit ←
[
u∗,T
1 , · · · ,u∗,T

ch−1,u
T
append

]T
;

Ûinit ← Feasiblity(Uinit, q0);
U ← Ûinit;
for k=1 to Max_QP_Num do

q1, · · · qph−1 ← SystemModel(q0,U );
cost← 0; cost_grad← 07ch×1;
for i=1 to ph-1 do

cost← cost+ObjFunc(xd, qi);
cost_grad← cost_grad+

∂ObjFunc
∂xi

· ∂xi
∂qi
· ∂qi∂U ;

end
cnt← 0n(ph−1)×1; cnt_grad← 0n(ph−1)7ch×1;
// cnt: closest distances to obstacles;
for i=1 to ph-1 do

cnts [in− n : in− 1] , cps← FCL(qi);
// n: number of obstacles;
// cps ∈ R3n×2: n pairs of closest points;
dist_directions← Normalize(cps);
cnt_grad [(in− n)7ch : in7ch− 1]← dist_directions · ∂cps[:,0]∂qi

· ∂qi∂U ;
end
d← QP(cost, cost_grad, cnt, cnt_grad);
α← LineSearch(U ,d, q0);
U ← U + αd;

end
u∗
0,u

∗
1, · · · ,u∗

ch−1 ← U ;
Execute(u∗

0); Reserve(u∗
1, · · · ,u∗

ch−1);

Table 4.2: Parameters for NMPC Motion Planner

Qpos Qquat P pos
f P quat

f R ph ch Max number of iterations

5 0.1 50 10 2 20 10 20

Figure 4.9a records the evolution of stage costs and the closest distances of three collision
cylinders to the obstacle. Here stage costs are defined as e(Xd,Xi)

TQe(Xd,Xi), i denotes
current time instant for actual cost and the i-th time step in the prediction horizon for pre-
dicted cost. In the upper figure, the orange curve predicts the change of the stage cost from
the initial time to 4s into the future. The solution of this initial problem tends to converge to
a local minimum. Blue curve denotes the evolution of actual stage cost, it loosely follows the
predicted horizon to the local minimum at the beginning but afterward it finds the real solu-
tion from newly formulated optimizations. The lower figure shows that the closest distances
to the obstacle are kept beyond a safety distance of 0.02m all the time.

Figure 4.9b simulates a scenario, where an obstacle approaches and goes through the goal
position. The upper figure shows that, when the obstacle is far away, predicted and actual
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(a) Large static obstacle (b) Small dynamic obstacle

Figure 4.8: Simulations with primitive obstacles for NMPC-MP
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(a) Cost and distance for sim(a)
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(b) Cost and distance for sim(b)

Figure 4.9: Stage costs and the closest distances to the obstacle

costs are directly reduced by a trajectory to the goal. Later, due to the hard constraints on
obstacle avoidance, costs are raised once again but the NMPC-MP still attempts to find an-
other trajectory to the goal via newly formulated optimization, in order to minimize the cost
once more. In the lower figure, the distance of object1 sometimes slightly breaks the hard
constraint for a safety distance of 0.05m. This is because that, the closest distance between
the robot and the obstacle is non-differentiable as a function of joint velocities in degenerate
cases. And the actual closest distance deviates from the approximated one, as the approxi-
mation assumes that closest contacting points don’t change during subtle motion of objects
but in reality the closest points will move to other positions when objects move. Inaccurate
approximation only causes a small break of obstacle constraints and this can be well handled
by setting a slightly larger safety distance.

Prediction horizon and control horizon. ph and ch are the two most crucial parameters
that decide the performance of the NMPC-MP. Larger values result in optimization prob-
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lems of higher dimensions at each time instant while small values make the planner prone
to local minima. Figure 4.10 illustrates some examples of the evolution of actual stage cost
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Figure 4.10: Actual stage costs for NMPC planners different phs and chs [1], ©2021 IEEE.

for NMPC-MPs with different phs and chs performing the same simulation as Figure 4.8a,
where a large obstacle is intentionally set and planners can fall into local minimum easily.
When ph = 10, ch = 5, the manipulator gets stuck in a position in front of the obstacle. For
ph = 15, ch = 10, the manipulator stays in local minimum for some time and then, a new
optimization finds a solution to reduce the cost to 0. For ph = 20, ch = 20, the manipulator
is able to escape from the local minimum quickly.

It is challenging to select suitable ph and ch for various applications. For example, in
a scenario where obstacles are few or are sparsely located, the risk for getting stuck is low,
and smaller ph and ch are enough. For a scenario where obstacles are densely positioned,
large ph and ch are necessary. Selecting right ph and ch is out of the scope of this disserta-
tion, we choose ph = 20, ch = 10 as they produced a relatively good performance and the
corresponding optimization is solved at more than 10Hz.

Octomap obstacle. With the help of the flexible-collision-library (FCL) [95], the NMPC-
MP is able to handle arbitrarily shaped obstacles of not only primitives but also mesh and
octomap types. Here, a Microsoft® Kinect2 camera is used in the simulation to capture the
point cloud of a bookshelf; this point cloud is converted to the octomap and considered by
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the NMPC-MP as an obstacle. The end-effector trajectory in Fig. 4.11 shows how the manip-
ulator avoids the octomap during its motion.

Figure 4.11: Trajectory of the end-effector during the motion of the manipulator considering octomap
obstacle avoidance. [1], ©2021 IEEE.

4.3.2 Comparison scenarios

In this subsection, we compare our method NMPC-MP in simulation with popular offline
motion planners and the state-of-the-art online controller RelaxedIK. Three tasks are de-
fined: (i) jogging arm (ii) planning trajectory for far goals without obstacle; (iii) planning
with a static obstacle, which is the same task as that of simulation(a) in Figure 4.12.

Task(i): Jogging Arm Without Obstacles. In the first task, the jogging of the robot arm
is tested. Jogging means continuously moving the end-effector by a little to reach a goal
position near the current position. Offline planners can only generate accurate motions for
reachable goals. Goals that are difficult to reach lead to a low success rate and long planning
time. Thus, offline planners are not applicable in jogging where planning time is limited, and
planning failure is intolerable. Here our method and RelaxedIK1 are tested. For small mo-
tions in jogging, the prediction is unnecessary, and hence, ph and ch for NMPC-MP are set to
one. Table 4.3 compares the performance of the two methods. Here, the average normalized
length is defined as the ratio of the actual trajectory length to the straight-line distance be-
tween starting end-effector position and the goal position. In arm jogging, this value is one
as goals are close to the starting position, and the trajectories to the goals are roughly a line
between them.
1 Officially released python version of relaxedIK (Commit: 18/05/2020)
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Table 4.3: Controller performance for task(i)

Avg normalized
length

Avg time
(second)

Avg joint velocity
(radian/second)

Avg position
squared error

Avg quaternion
squared error

Success
rate

NMPC-MP 1.0 0.016 0.033 1.10e-3 1.90e-3 1.0

RelaxedIK 1.0 0.106 0.11 4.00e-3 2.00e-4 1.0

Table 4.4: Planner/Controller performance for task(ii)

Avg normalized
length

Avg time
(second)

Avg joint velocity
(radian/second)

Avg position
squared error

Avg quaternion
squared error

Success rate

NMPC-MP 1.365 0.0848 0.1427 2.10e-3 2.70e-3 1.0

RelaxedIK 1.3677 0.1271 0.1907 1.30e-3 4.27e-4 1.0

RRT-Connect 2.46 0.075 0.0163 5.97e-9 2.34e-7 0.833

Task(ii): Far Goals Without Obstacles. In the second task, the motion planner should
generate a trajectory to be reached the far goals. We set six far goals for the end-effector to
reach one after the other. Three methods are tested in this scenario: NMPC-MP, RelaxedIK,
and RRT-Connect.

Fig. 4.12 draws the actual trajectories of the end-effector. The offline calculated trajectory
from RRT-Connect is the smoothest. However, the success rate is low, as shown in Table 4.4.
Furthermore, the trajectory from RRT-Connect sometimes can be too long. NMPC-MP and
RelaxedIK are running in real-time. Their trajectories are not pre-calculated and thus are
less smooth. Nevertheless, with the prediction capability, the actual trajectory from NMPC-
MP gets smoothed and optimized to a shorter length. The trajectory of RelaxedIK has some
sharp turns between neighboring goals, which could be dangerous and should be avoided.

Table 4.4 compares the three methods for task(ii) using different criteria. NMPC-MP ex-
hibits strengths for real-time application but relaxes requirements on diminishing errors to
guarantee success in planning.

Figure 4.12: Trajectories for task(ii). Left: NMPC-MP. Middle: RelaxedIK. Right: RRT-Connect. [1],
©2021 IEEE.

Task(iii): Far Goal With Static Obstacle. In the third task, a box obstacle is added. Re-
laxedIK does not consider external obstacles and thus can not handle this task. Our method
is compared against offline motion planners. Here, STOMP can only handle goal joint posi-
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Table 4.5: Planner/Controller performance for task(iii).

Avg normalized
length

Avg time
(second)

Avg joint velocity
(radian/second)

Avg position
squared error

Avg quaternion
squared error

Success rate

NMPC-MP 1.76 0.088 0.063 1.66e-3 8.60e-3 1.0

STOMP 3.1 0.613 0.0138 1.81e-3 8.33e-3 1.0

RRT 5.13 0.51 0.015 7.60e-9 5.00e-1 1.0

RRT Connect 5.6 0.3 0.02 9.00e-9 4.00e-1 1.0

PRM∗ 3.86 5.09 0.019 2.46e-9 1.70e-2 1.0

tion; RRT, RRT-Connect and PRM* fail to find a path to fulfill the posture goal, the orientation
goal is discarded, only the position goal is set.

Table 4.5 shows that NMPC-MP is the fastest and generates the shortest trajectory. Also,
as can be seen in Fig. 4.13, although the motion of the robot is calculated in real-time, the
actual trajectory of NMPC-MP is smooth enough.

Figure 4.13: Trajectories for task(iii). Left: NMPC-MP. Middle: STOMP. Right: RRT-Connect. [1], ©2021
IEEE.

4.3.3 Experiments on the real Movo robot

In the end, we apply our method on the real Movo robot and teleoperate both robot end-
effectors to reach goals. For the first real experiment, an HTC® Vive Tracker is put in front of
the robot representing a spherical obstacle which a rightward motion of the left arm is sup-
posed to avoid. ch for the task is set to 20, and the maximum QP number to 30. As shown in
Figure 4.14, goal points form a trajectory going through the sphere, but the predicted trajec-
tory from NMPC-MP in every iteration makes the robot bypass the obstacle.

In the second real experiment, two interactive markers specify goals for both arms in the
Rviz visualizer and an HTC® Vive Tracker as the dynamic spherical obstacle comes in during
their motions. In Figure 4.15, arms are avoiding the dynamic sphere.

Comparison results in simulation demonstrate that our method outperforms other mo-
tion planners and controllers on calculation time and trajectory quality. Experiments on the
real Movo robot also show that our method can be applied to real-time manipulator teleop-
eration with safety concerns.
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Figure 4.14: The first real experiment: NMPC-MP’s static obstacle avoidance. [1], ©2021 IEEE.

Figure 4.15: The second real experiment: NMPC-MP’s dynamic obstacle avoidance in motion. [1],
©2021 IEEE.

4.4 Adapting NMPC-MP for Franka

As the Jaco2 manipulator has unlimited joints, this section will test NMPC-MP on a manip-
ulator with limited joint movements. This will add additional constraints to the planner.
For this purpose, we have selected the Franka robot from Franka. Using the Franka as the
standard platform for manipulator research in this chapter, we explored the possibility of
teleoperating this robot with dynamic obstacles.

4.4.1 Forward Kinematic Calculation

In this section, we recalculate the forward kinematic part to support quick and accurate cal-
culation for getting the parameters of Franka. DH parameters are four parameters associated
with a particular convention for attaching reference frames to the links of a spatial kinematic
chain, or robot manipulator. For the standard DH parameter, the four transformation param-
eters are:

• d: offset along the previous z to the common normal

• θ: angle about the previous z, from old x to new x

• r: length of the common normal

• α: angle about common normal, from old z-axis to new z-axis
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Table 4.6: Modified Denavit-Hartenberg Parameters.

Joint i theta d a(i-1) alpha(i-1)

Joint1 q1 0.333 0 0

Joint2 q2 0 0 −pi/2

Joint3 q3 0.316 0 pi/2

Joint4 q4 0 0.0825 pi/2

Joint5 q5 0.384 −0.0825 −pi/2

Joint6 q6 0 0 pi/2

Joint7 q7 0.107 0.088 pi/2

Modified (proximal) DH parameter is a special form. The difference between them is
the locations of the coordinates system attached to the links and the order of the performed
transformations. Therefore, the four parameters are theta, d, and in this case, a(i-1) and
alpha(i-1) that denote the length and angle from the previous joint. The table of modified
DH parameters given by Franka’s official website is shown in Table 4.6. According to the
new DH parameters we recalculated the following functions:

• Jacobian Matrix J ∈ R6x7 of the end-effector in rotation format

• Quaternion Jacobian Matrix Jquat ∈ R7x7 of the end-effector with the joint position

• Reference Jacobian Matrix Jref ∈ R3x7 for the closest point calculated by FCL on the
arm cylinder

• End-effector Transform ∈ R4x4

• Position ∈ R7x1 for three translations and four quaternions

4.5 Simulated Franka

In this section, we will modify the NMPC-MP based on Franka. These steps include reshap-
ing collision cylinders and adding the joint limits.

4.5.1 Reconfiguration of cylinders

As mentioned before the collision detection in our NMPC-MP is completed by the FCL[95].
However, the objects supported by FCL are only a few simple basic shapes, which obviously
cannot directly work with the irregular shape of the manipulator. Therefore, after obtaining
the manipulator model, it is necessary to put a suitable cylinder on the outside of it. In other
words, we do not accurately detect the collision of the manipulator but detect the collision of
a virtual, invisible cylinder shell. This is an approximate method, and there is an error that
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is caused by the distance between the cylinder and the manipulator but makes the motion
safer.

Figure 4.16: Cylinder representation of the Movo on the left and the Franka on the right.

In this part, the difference between Franka and Movo is quite big. As shown in the Fig-
ure 4.16, Movo is based on three links, and three cylinders can almost cover the entire manip-
ulator. Franka, because the link moves in different but fixed directions, it needs to be based
on five links and five cylinders to cover the manipulator. The more completion the cylinder
covers, the smaller the obstacles that can be dealt with by collision detection, and the lower
the possibility of error. In both simulated and real experiments, collision detection is based
on this cylinder model.

4.5.2 Optimization with limits

In this section, we add a constraint to solve the irregular motion caused by the joint limits of
Franka’s characteristics. So far, simulated Franka can apply NMPC-MP as we did for Move.
The joints of the Kinova robot are continuous joints that rotate around the axis and have
no upper and lower limits. Therefore, in addition to the basic parameters, the optimization
process only needs to set a fixed upper and lower limit of joint velocity. In other words,
the optimal joint velocity obtained by any set of joint positions can be executed by Kinova.
However, the Franka robot has revolute joints that rotate along the axis and have a limited
range specified by the upper and lower limits as Table 4.7. Whether it is a simulated Franka
or a real Franka, once the joint position exceeds the position limit, the joints of the robot will
be locked by the joint "collision error" state, and cannot move anymore.
The upper and lower joint velocity limits in the Kinova program are the specified fixed ve-
locity range for safe motion, so when the program starts and initializes nlopt optimizer, the
settings can be completed at one time. Considering that the upper and lower limits of Franka
need to be adjusted according to the difference between the current joint position and the
limit at each time step, we put the setting of velocity limit of nlopt optimizer in the function
that receives the joint state from the ROS topic with the receiving time interval as 0.2 sec-
onds. After receiving the current joint state, we read the joint position, calculate the position
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error from limits to get the velocity limit range of the current time step, compare it with the
customized defined safe velocity if needed, and assign it to the nlopt optimizer. Note that,
on the simulation side, the limits can be set according to the data in the Table 4.7.

Figure 4.17: The trajectory of Movo and Franka

Figure 4.18: Rotated goal to Movo and Franka
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Figure 4.19: Virtual obstacle avoidance on Movo and Franka.

Table 4.7: Joint Space Limits of Franka.

Name Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 Unit

qmax 2.8973 1.7628 2.8973 −0.0698 2.8973 3.7525 2.8973 rad

qmin −2.8973 −1.7628 −2.8973 −3.0718 −2.8973 −0.0175 −2.8973 rad

q̇max 2.1750 2.1750 2.1750 2.1750 2.6100 2.6100 2.6100 rad
s

q̈max 15 7.5 10 12.5 15 20 20 rad
s2

4.6 Real Franka

When NMPC-MP runs successfully in the simulated Franka environment, it means that our
overall program has been almost completely modified. In this chapter, we verify whether
the real Franka can also achieve this motion planner.

In this experiment, we show the predicted path (the blue line represents the predicted
path, the green dot represents the 20 predicted results in sequence), and the motion trajectory
of the manipulator (red line). We set the initial end-effector position of the robots to the same
position through pre-processing. During the experiment, the goal is moved several times in
roughly the same direction, which was used to verify the response of the NMPC-MP to the
translation in the position and whether the path optimization function met expectations.

In this experiment, while moving the goal, we apply a rotation (counterclockwise on the
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read cycle) to change the quaternion of the goal, verifying that NMPC-MP can adjust for a
rotated goal to improve stability by ensuring that the contact point between them remains
unchanged, and the operating direction remains the same.

Next, we verify the obstacle avoidance. We set the goal at the dynamic obstacle mo-
tion path, verify that when the obstacle approaches, the manipulator can avoid the obstacle
with a relatively smooth trajectory, and when the obstacle is far away, instantly update the
predicted path in the current state, and try to re-reach the goal.

As shown in Figure 4.17, it can be seen that Franka, like Movo, successfully generated
the predicted path, and because we only use the first predicted value for each step, the sub-
sequent predicted values are only for reference and used for warm start, so the executed
trajectory is different from the predicted path and does not completely overlap.
In Figure 4.18, when the goal rotates, the predicted path of NMPC-MP changes obviously. It
can be seen that NMPC-MP reacts very sensitively to quaternion change, and can update the
corresponding prediction path instantly, adjust the end-effector angle of the manipulator, to
finally maintain a stable relative position with the goal.
And in Figure 4.19, when the obstacle is approaching, the manipulator avoids it by a smaller
margin, and when the obstacle is far away, the manipulator generates a new prediction path,
which is as close to the goal as possible under the constraints of the mechanical hardware.
When the obstacle completely leaves the detection area, the goal will be re-reached as soon
as possible.

After completing the functional verification in the simulated environment, we replace
the manipulator with real Franka, execute the real Franka through virtual scene operations,
and check the fluency of NMPC-MP process. Finally, we use HTC® Vive Trackers as a more
flexible, real obstacle to verify the dynamic obstacle avoidance capability.

Figure 4.20: Demonstration of Franka’s real-time capability to avoid dynamic obstacles in remote
teleoperation. The dynamic obstacle here in this picture is the HTC® Vive tracker.
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4.7 Chapter Summary

Control and planning of the manipulator motion are essential components of manipulator
teleoperation. Active obstacle avoidance can be challenging via real-time motion control,
and is often accompanied by fluctuations and unsafe motion. By contrast, offline motion
planning generates precise and secure trajectories for complex manipulation but they are
not suitable for teleoperation. In this chapter, a real-time nonlinear model predictive control
based motion planner (NMPC-MP) is designed for teleoperated manipulation. In contrast
to traditional NMPC-based approaches, our model considers a complex environment with
dynamic obstacles. Our multi-threaded NMPC-MP allows for real-time planning, includ-
ing dynamic objects. We evaluate our approach both in a simulated environment and with
real-world experiments using the Kinova® Movo platform and Franka Emika® Panda ma-
nipulator. The comparison to state-of-the-art approaches (e.g., RRT-Connect, CHOMP, and
STOMP) shows a significant improvement in real-time motion planning using NMPC-MP.
In real-world tests, the proposed planner was applied on a dual manipulator setup using the
Kinova Movo platform as shown in Figure 4.6 as well as the Franka manipulator Figure 4.20.
Our results show that the NMPC-MP runs in real-time and generates smooth and reliable
trajectories. According to the experiments, the planner is able to precisely track goals from
the teleoperator while avoiding self-collision and dynamic obstacles.
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Figure 5.1: The robot-assisted remote feeding scenario is simulated as marble pouring with the
Kinova® Movo platform using the proposed Skill-CPD for high-level skill refinement during the
shared-autonomy control switching. Phuman is the coordinate frame of the leader (here HTC Vive®

controller), and Probot is the coordinate frame of the follower. The main objective is to deliver the red
marble inside the spoon to one of the three main pouring destinations represented by orange, red,
and yellow containers. The robot continuously predicts the operator’s intention, and in case of net-
work disconnection, executes the task from the previously learned skill with minimum inconsistency.
Red ξh denotes the human trajectory, blue ξa denotes the learned skill trajectory, green ξc denotes
the refined trajectory, and Ptd1 indicates the network disconnection point. The network reconnection
point is indicated by Ptd2 [9], ©2022 IEEE.

Teleoperation is increasingly applied to assist humans in performing specialized real-life
tasks such as remote patient and elderly care or even inspection and exploration in deep
space, or underwater missions. However, performing teleoperated manipulation tasks are
challenging due to unavoidable network impairments such as delay, jitter, or packet drops.
A promising approach to mitigate the aforementioned artifacts is to use shared-autonomy

91
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instead of direct teleoperation [51]. In this approach, the desired trajectory is synthesized
according to the recognized intention. In the presence of communication impairments, the
system will switch to shared autonomy or, for longer network disconnection to autonomous
control mode [51], [65]. In [51], the authors introduced a shared autonomy solution for assis-
tive teleportation, which has two phases; First, individual skills are trained using Learning
from Demonstrations (LfD) and are encoded using Hidden Semi-Markov Models (HSMMs)
[52]. Second, the trained model from the first step is used to infer the operator’s intention
during teleoperation, and the Linear Quadratic Tracker (LQT) is used to synthesize the rec-
ognized skill. Similarly, Tian et al. [4] adopted the same approach to predict the operator’s
intention in an English letter drawing task. However, the stability performance is affected
by varying environmental conditions. Shared autonomy suffers from intensive fluctuation
when the directly demonstrated teleoperation varies from the learned skill, yielding unde-
fined situations for the robot. This is exaggerated when the system wants to hand over the
control to the autonomous mode. This is the major problem, which motivated us to extend
the previous solutions by developing a new skill refinement strategy to improve the perfor-
mance of task reproduction. In order to fit the reproduced trajectory and the demonstrated
trajectory better, the skill refinement in our work is formulated as a non-rigid point set reg-
istration problem. We propose a real-time skill refinement framework to support the shared
autonomy of the robot manipulator. Our trajectory refinement is based on the Coherent Point
Drift (CPD) [5] algorithm. Our experimental results reveal that our system improves the per-
formance of the remote manipulation task by mitigating the effect of imprecise movements,
especially for the intersection part of the partial demonstration and the reproduction.

5.1 Problem Statement

In shared autonomy, autonomous control and direct teleoperated trajectories are blended
with an arbitration strategy. If the network is disconnected, we cannot rely on the user’s
input, so the system needs to turn on autonomous control. In telerobotics, we cannot run
the entire task in autonomous control mode from the beginning because robots cannot yet
perform tasks entirely independently due to limited perception or safety regulations. Due
to the spatial differences (e.g., scaling, rotation and translation) between the human operator
and the remote robot side, if the system switches to the autonomous control from direct con-
trol, it cannot guarantee a smooth and reliable transition. This chapter addresses this issue
by formulating it as a point set registration problem, which is the process of finding a spatial
transformation that aligns two point sets. The mapping may consist of a rigid or non-rigid
transformation. For rigid registration, the iterative closest point (ICP) [96] is a promising
solution. Since, our skill refinement strategy cannot assume a rigid transformation, we em-
ploy a non-rigid registration algorithm known as Coherent Point Drift (CPD) that takes a
probabilistic approach to align point sets.
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5.2 System Architecture

Our system architecture is shown in Fig. 5.2. The n task-related skills with m points
nξs = {ns0,n s1, . . . ,n sm} are learned with the help of the HSMM beforehand. Point si is a
3D vector with [x, y, z] coordinates. The human teleoperator performs the manipulation task
of a trajectory ξh = {h0,h1, . . . ,ht, . . . } via a communication network, while the trajectory-
based intention is being recognized. Our system performs direct teleoperation using direct
trajectory commands ξh to control the remote robot when the network is available and sta-
ble. A network discontinuity detector is defined to monitor the quality and reliability of the
communication network. A network disconnection is detected by the deadline policy, which
is triggered in case of no packet allocation within every λdeadline ms. This policy is regard-
less of the connection type. Considering that λdeadline denotes the threshold for detecting the
network disconnection and λminconf indicates the threshold for HSMM recognition accuracy,
Skill-CPD switches to the autonomous control mode once the λdeadline and λminconf are satis-
fied at disconnection time td, meaning that network disconnection is detected and the relative
task trajectory is known. The system first generates the skill trajectory (autonomous mode
trajectory) ξa = {a0,a1, . . . ,am} using LQT according to the recognized intention. Second, it
is able to improve the performance of the reproduced trajectory ξa by registering it with the
direct teleoperated trajectory ξh using the CPD algorithm and yield the aligned trajectory
ξc = {c0, c1 . . . , ct, . . . }. Ultimately, the non-linear model predictive control-based motion
planner (NMPC-MP) receives the final refined trajectory ξee = {h0,h1, . . . ,htd , ctd+1

, . . . }
and generates the velocities ξv = {v0,v1, . . . ,vt, . . . } in real-time for the robot joints. NMPC-
MP is the trajectory-level motion planner for the Jaco-2 manipulator introduced in Chapter
4. The arbitration switch illustrated in Fig. 5.2 is implemented as a combination of the direct
and the autonomous control signals uh and ua as follows [63]:

H(uh,ua) = αuh + (1− α)ua, (5.1)

where uh and ua indicate in our case the trajectory commands ξh and ξa respectively. α ∈
{0, 1} denotes the weight of the direct control from the human and can be described as:

α =

{
0, ID(λdeadline) ∩HSMM(λminconf ),

1, otherwise.
(5.2)

5.3 Technical Details on Skill-CPD

5.3.1 Hidden Semi-Markov Model (HSMM)

To recognize the intention of the human teleoperator during task execution, we adopt HSMM
to encode and decode both temporal and spatial information [4], [51], [27]. First of all, the
task trajectory is demonstrated n times and the Expectation-Maximization (EM) algorithm
is applied for training the HSMM parameterized by θ = {Πi, {ai,j}Kj=1,µi,Σi, µ

S
i ,Σ

S
i }Ki=1.

We define ht ∈ {1, 2, . . . ,K} as the hidden state at time t which is represented by a multi-
variate Gaussian and thus a Gaussian Mixture Model (GMM) with parameters {µi,Σi}Ki=1 is
formulated by K hidden states.
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Figure 5.2: Skill-CPD System Diagram. ©2022 IEEE.

Fig. 5.3 illustrates how the GMM clusters segment the whole demonstrated trajectory for
a 2D and a 3D scenario. During the task execution, the directly teleoperated trajectory ξh =

{h1, . . . ,ht, . . . } is transmitted to Skill-CPD and the recognition is carried out by calculating
and comparing the probability of the trajectory point ht ∈ ξh to be in the hidden state at time
t. More details can be found in [4], [51] and [27].

5.3.2 Linear Quadratic Tracker (LQT)

We synthesize the trajectory of the recognized task using a LQT, which is a commonly used
tool from control theory to infer an optimal control policy for manipulation tasks [27], [22].
By minimizing a scalar cost function we obtain the optimal control policy ua,t at each time
step and thus the reproduced trajectory ξa = {a1, . . . ,at, . . . }. More details are introduced
in [27] and [22].
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Figure 5.3: The picture on the right illustrates the ten demonstrated trajectories of the example letter
B for the 2D scenario (in pixel). The picture on the left shows the five demonstrations of the marble
pouring task to the red container for the 3D scenario (in meter). The HSMM clusters are shown in
red. ©2022 IEEE.
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5.3.3 Coherent Point Drift (CPD) Algorithm

After receiving the reproduced trajectory from LQT, the CPD algorithm is applied to refine it
by registering the trajectory ξa to the ξh. The CPD algorithm is known as a robust probabilis-
tic multi-dimensional point sets registration algorithm for both rigid and non-rigid trans-
formations [5]. Gaussian Mixture Models (GMM) and Expectation Maximisation (EM) are
applied to detect point cloud changes. In contrast to the ICP, which minimizes distances
between points, it maximizes the probability of each source point given a set of Gaussian’s
centered at the target points.

We introduce briefly the general methodology according to [5]. Considering two point
set XN×D and YM×D, the objective is to find an optimal transformation T : RD → RD with
transformation parameters θT that aligns Y with X , which can be converted to a probabil-
ity density estimation problem. The points in Y are viewed as the Gaussian Mixture Model
(GMM) centroids and the points in X represent the target points generated by the GMM.
The GMM probability density function p(x) is expressed as:

p(x) =
M+1∑
m=1

P (m)p(x|m), (5.3)

with the the Gaussian distribution centered on point ym ∈ Y :

p(x|m) =
1

(2πσ2)D/2
exp−∥ x− ym ∥2

2σ2
. (5.4)

In order to account for noise and outliers that could appear in the point sets, an addi-
tional uniform distribution p(x|M + 1) = 1

N with the weight parameter 0 ≤ w < 1 is also
considered in the mixture model, which represents that the probability of a point xn ∈ X

is generated by one of the M Gaussian components is uniform. The membership proba-
bilities P (m) = 1

M and the isotropic covariances σ2 are equal for all Gaussian components
m = 1, . . . ,M . Therefore, the mixture model can be expressed as:

p(x) = w
1

N
+ (1− w)

M∑
m=1

1

M
p(x|m). (5.5)

The correspondences of the two point sets can be optimized by maximizing the GMM
posterior probability for the given point in X and converted to the minimization problem of
the negative log-likelihood function:

L(θT , σ2) = −
N∑

n=1

log

M+1∑
m=1

P (m)p(x|m). (5.6)

The EM algorithm is applied for optimizing θT and σ2: In the E-step, the posterior prob-
ability distribution with the "old" parameter θoldT is calculated according to Eq. 5.4 and 5.5. In
the M-step, the "new" parameter θnewT is then found by solving the minimization problem of
the cost function Q which is the expectation of the negative log-likelihood function L in Eq.
5.6.
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Figure 5.4: (1.a) is the raw trajectory from the human operator which could contain outliers and noise.
(1.b) indicates the trajectory after outlier removal and (1.c) denotes the final normalized trajectory. (2)
illustrates the closest point detection strategy. (3) shows the reverse takeover step as a linear interpo-
lation approach.
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Figure 5.5: The simulation experiment for the task(i): 2D English letter drawing. The green dotted
trajectory denotes the learned skill. Blue continuous trajectory is the desired input from the human
operator (ground truth). The purple continuous trajectory is the system final output. (a) is the normal
system without shared autonomy (direct teleoperation). (b) and (d) are the standard shared auton-
omy systems with rigid and non-rigid deformations. (c) and (e) represent our Skill-CPD system with
same deformations. Yellow dotted trajectory is the registered skill.

After reaching the minimum of the cost function Q, we acquire the optimal transforma-
tion parameters θT and thus the aligned trajectory point set:

T = argmin
T

Q(θT , σ2). (5.7)
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Figure 5.6: The real experiment for the task(i): 2D English letter drawing. The gray dotted trajectory
denotes the direct teleoperation and the red dotted trajectory denotes the autonomous controller out-
put. In the second row, we applied Skill-CPD whereas in the first we didn’t.
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Algorithm 2: Skill-CPD

ξh ← {h0,h1, . . . ,ht}; ξa ← {a0,a1, . . . ,at};
Current_step← 0; state← ”Direct”;
if time ≥ next_time then

next_time = time+∆t;
d← Dist(ht, old_desired_robot_position);
if d > ∆d then

desired_robot_position = htd ;
if ID(λd)&HSMM(λm) ̸= True then

if state = ”Direct” then
α← 1;
robot_position← desired_robot_position;
ξ∗h ← robot_position;

end
if state = ”Skill” then

robot_position← (1−α)∗ξc[current_step]+α∗desired_robot_position;
α← α+ 0.1;
if α = 1 then

state← ”Direct”

end
end
current_step← current_step+ 1;

end
else

if state = ”Direct” then
state← ”ToSkill”;
DoRegisteration();

end
else if state = ”Skill” then

α← 0;
robot_position← ξc[current_step];
ξ∗h ← robot_position;
current_step← current_step+ 1;

end
end

end
end

Algorithm 3: DoRegisteration

ξc ← DoRigidCPD(ξ∗h, ξa);
error ← Dist(ξ∗h, ξc); w ← 10; i← 0;
if error < ∆e then

i← FindClosestStep(robot_position, ξc, w);
end
else

ξc ← DoNonRigidCPD(ξ∗h, ξa);
i← FindClosestStep(robot_position, ξc, w);

end
current_step← i;
state← ”Skill”;
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5.3.4 Skill Registration

Considering the directly teleoperated trajectory ξh = {h1, . . . ,hN} and reproduced LQT tra-
jectory ξa = {a1, . . . ,aM} in D dimensions, the objective of Skill-CPD is to find an optimal
transformation T with transformation parameters θT that aligns ξa with ξh. The transforma-
tion T (ξa, θT ) can be specified for different cases. We only consider the situation ofD = 3 for
2D and 3D scenarios in our experiments and keep the z-coordinate constant for writing let-
ters on a whiteboard in the 2D case. As shown in Eq. 5.8, the rigid registration is used in case
only rotation and translation are considered, whereas the non-rigid registration is used when
a non-linear transformation is involved. Since the non-rigid registration is computationally
demanding, we apply the Fast Gauss Transform (FGT) [97] in the CPD algorithm to reduce
the computational complexity from o(MN) to o(M + N) for accelerating the registration
process. Thus, the registration can be conducted in real-time. (See Fig. 5.9).

T (ξa; θT ) =

{
Ram + t, Rigid

ξa +GW , NonRigid
(5.8)

5.3.4.1 Trajectory Sampling and Step Indicator

The update rate of our system is ∆t = 33ms. To normalize the task trajectories, point Probot

will be valid as long as the Euclidean distance from the previous point exceeds the threshold
∆d = 0.6cm. We call this the normalization step which can determine the total number of
points in the trajectory (See Fig. 5.4 and Fig. 5.9). We carry out the sampling step on the
learned skill ξa and the input trajectory ξh to eliminate the redundant points and convert the
continuous trajectory point set to a discrete finite point set. As illustrated in Fig. 5.4, we de-
fine the skill as a specific temporal and spatial trajectory that the robot end-effector performs.
Meanwhile, the velocity pattern that the human operator executes during teleoperation is as-
sumed to be constant, as it was with the primary skill learned from HSMMs, and can only
be scaled slightly if the entire trajectory is scaled (±1.3x). Otherwise, the accuracy of inten-
tion recognition could be significantly lowered. HSMM-based approaches are limited in this
respect. Although the CPD algorithm can be applied for extremely non-rigid deformations
(≫ ±1.3x), it’s still not supported in our system.

5.3.4.2 Adaptive Registration and Switching Strategy

Assuming that the network is disconnected and the predicted skill from HSMMs is correct,
our system will activate the control switching strategy and the correspondence disconnec-
tion point index in the skill can be determined roughly. First, we consider that the trajectory
from the human operator is only shifted or rotated compared to the learned skill. We split
the skill from the beginning to the detected disconnection index and register these two point
sets using the rigid registration. After finding the appropriate transformation T , we apply
it to the whole skill trajectory. Then we calculate the Euclidean distance between each point
of the robot’s trajectory with the registered trajectory and determine the error E. If E is less
than the threshold Prigid_error = 0.1cm, the rigid registration is considered to be valid and
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switch to the skill. Because we cannot guarantee that the detected disconnection index on
the skill is the closest point, the closest point search strategy is applied. To find that, we use
a window with a size of w = ±10 steps (see Fig. 5.4) and select the closest point according to
the Euclidean distance between all points at ∈ ξa and the point htd :

atd := argmin
at∈ξa

∥at − htd∥2. (5.9)

In case the registration error Prigid_error in the previous step is not satisfied, we apply the
non-rigid registration strategy. Since the non-rigid registration is computationally heavier,
we always perform the rigid registration first and suppose the human operator’s trajectory
is only shifted or rotated. In non-rigid registration, the only difference is that we apply the
complete skill registration without splitting it. Non-rigid registration will automatically shift
all the skill points coherently to keep the skill’s consistency. Similar to the rigid version, we
will apply the closest point search strategy and then switch to the skill. Finally, our sys-
tem switches to the registered skill points and continues the task trajectory without obvious
displacement.

5.3.4.3 Reverse Takeover Strategy

When the network is connected again, the human operator takes over the control of our
system and could perform the task with a slightly different relative velocity during the dis-
connection period. Therefore, we can not hand over the control immediately. To tackle this,
our system applies the trajectory interpolation strategy to slowly switch from autonomous
control mode to the direct teleoperation. The parameter α in arbitration Eq. 5.1 is set to 0 and
will be ascended in 10 steps to hand over the control to the human operator smoothly (see
Fig. 5.4). For each step, we increase α by:

α = α+ 0.1. (5.10)

5.4 Experimental Evaluation

5.4.1 Experimental Setup

The real experiments are running on a Intel® Core-i7 ® CPU with 8 cores at 2.80 GHz. The
software is running on Ubuntu® 18.04 LTS and ROS Melodic. Besides, the HTC Vive ® HMD
and VR controllers for 3D experiments and the Phantom-Omni ® haptic master device for
2D experiments both simulation and real are used and connected to ROS from Unity3D®

via [80]. All scenarios have been tested using the Kinova ® Movo platform. In addition, for
3D robot-assisted feeding the marbles and containers are adapted from the YCB real-world
object dataset [82]. For the following experiments, unless specially mentioned, parameters
for Skill-CPD follow Table 5.2. For the CPD algorithm the internal parameters were β = 3

and λ = 3 . We tested our solution over various connection types: LAN, WiFi (considered
as the main interface in this dissertation) and even 5G over realistic satellite link emulated
connection calvo2020optical.



100 Chapter 5. Real-time Skill Refinement for Shared Autonomy in Manipulator Teleoperation
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Figure 5.7: Closeup view of the 2D English letter drawing. We apply force feedback control to keep
the marker on the whiteboard. 1) the 3d-printed marker holder, 2) Robotiq® Hand-e gripper 3) Bota-
sys ® SensONE force/torque sensor 4) Kinova ® Jaco-2 manipulator 5) Pan/Tilt/Roll unit 6) Network
interface (5G UE) 7) Phantom-Omni ® haptic master.

Figure 5.8: Motion generation and dataset creation environment.

5.4.2 Task(i): 2D English Letter Experiments in Simulation

We used the dataset from [4] and performed several automated experiments to benchmark
the performance of the proposed approach and make it reproducible. For each letter we
applied ±10 cm shifting, ±30 degree rotation and ± 1.3x scaling. Overall, eight variations
are considered. We have simulated the task executions using the Unity3D engine. After 40
percent of task execution, we disconnected the network randomly to make sure the letter
detection confidence meets the minimum threshold of 0.9. The communication network be-
tween the human operator and the remote robot is disconnected randomly and reconnected
with random intervals. The maximum disconnection period was 5 seconds. Fig. 5.4 illus-
trates the letter A in this experiment with different modes. We can observe the dramatic
trajectory consistency improvement for rigid and non-rigid scenarios.
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Table 5.1: Performance Analysis in Simulation and Real Experiments

Task Experiment Average Error (cm) No Shared Autonomy Standard Shared Autonomy [51], [4] Skill-CPD

2D (1.1) Max Displacement (Identical Skill) 9.98 0.90 0.82

2D (1.2) Trajectory RMSE (Identical Skill) 3.74 0.0020 0.0010

2D (1.3) Max Displacement (±10cm translated) 9.95 14.42 0.85

2D (1.4) Trajectory RMSE (±10cm translated) 3.76 2.96 0.0014

2D (1.5) Max Displacement (±30 deg. rotated) 9.95 14.05 0.85

2D (1.6) Trajectory RMSE (±30 deg. rotated) 3.73 1.86 0.0012

2D (1.7) Max Displacement (±1.3x scaled) 4.23 to 11.94 7.15 to 15.63 0.83

2D (1.8) Trajectory RMSE (±1.3x scaled) 1.20 to 5.75 2.13 to 5.12 0.0013

2D (2) Max Displacement (± 10cm translated) 7.96 12.67 0.97

2D (2) Trajectory RMSE (± 10cm translated) 5.98 4.73 0.023

3D (3) Max Displacement (± 15cm translated) 20.93 14.58 1.12

3D (3) Trajectory RMSE (± 15cm translated) 12.34 9.76 0.56

Table 5.2: Parameters for Skill-CPD for task(i), task(ii), and task(iii)

Task Experiments Demonstration
Number n

Normalization
Samples (Average)

Task
Length (s) λdeadline λminconf ∆t ∆d

Hidden States
Number K

2D Sim 624 (3x26x8) 10 160 20 50 ms 0.9 33 ms 0.6 cm 5

2D Real 78 (3x26) 10 200 40 50 ms 0.8 33 ms 0.6 cm 5

3D Real 9 (3x3) 5 200 30 50 ms 0.8 33 ms 1 cm 5

5.4.3 Task(ii): 2D English Letter Experiments in Reality

We define the manipulation task in the 2D scenario as drawing an English letter l ∈
{A,B, . . . , Z} on the whiteboard. The objective of this task is to draw the desired letter
with a marker in a smooth and reliable manner even if the communication network becomes
unstable or interrupted during direct teleoperation.

To guarantee that the marker held by the robot manipulator is in contact with the white-
board, force feedback-based control is applied (see Fig. 5.6). In this 2D case, we consider the
consistency and smoothness of the whole trajectory more important than reaching the same
remaining target points. Skill-CPD maps the most likely part of the LQT reproduction to the
direct teleoperated trajectory part by finding the closest point of the LQT trajectory to the
current trajectory. (as illustrated in Fig. 5.4).

5.4.4 Task(iii): 3D robot-assisted Feeding in Reality

As a 3D scenario, we select feeding with a spoon to elderly who are not able or hard to
move. The goal of this task is to pour the food, which we replace with marbles, into the
desired container. Only slight displacements are allowed to make sure that the marble could
not fall down. We use the orientation parameters from our previous demonstrations to ac-
complish the pouring action. Fig. 5.11 illustrates the trajectories for each scenarios during
the task execution.
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Figure 5.10: The real experiment for the task(iii): 3D robot-assisted feeding. It illustrates the different
scenarios from robot prospective.

5.4.5 Discussion

We summarize the quantitative results of our experiments in Table 5.1. In both 2D and 3D
experiment we measure the maximum displacement error, which is the Euclidean distance
between points in the trajectory and it can indicate the disconnection point htd ∈ ξh, greater
than ∆d. Additionally, the trajectory Root Mean Square Error (RMSE) is calculated by sum-
mation of the Euclidean distance between individual points of the leader (ξh) and the fol-
lower (ξee). We can generally see that Skill-CPD improves the performance by mitigating the
displacement error in both 2D and 3D experiments. The real-time performance of the CPD
algorithm is affected by the number of points which as trade-off (∆d = 0.6cm) was the best
parameter in our experiments. (See Fig. 5.9).
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Figure 5.11: The real experiment for the task(iii): 3D robot-assisted feeding. It illustrates the different
scenarios from robot prospective. The red marble (as a liquid handling task) for Skill-CPD remains in
the container after the network impairment but due to the acceleration caused by the displacement
error, it falls in other modes.

5.5 Chapter Summary

Advanced wireless communication networks provide lower latency and a higher transmis-
sion rate. Although this is an enabler for many new teleoperation applications, the risk of
network instability or packet drop is still unavoidable. Real-time manipulator teleopera-
tion requires data transmission with no discontinuity. Shared autonomy (SA) is a standard
method to mitigate this issue. In this way, if the data from the remote side is unavailable, the
controller can continue based on the previously observed models. However, due to the spa-
tial gap between human and robot trajectories, indisputable fluctuations occur, which cause
issues in teleoperation applications. This motivates us to propose a new skill refinement
strategy to modify the previously trained skill and mitigate the sudden unwanted motions
within the control takeover phase. To this end, our approach comprises applying the Hidden
Semi-Markov Model (HSMM) and Linear Quadratic Tracker (LQT) in combination to learn
and predict the user’s intentions and then exploiting Coherent Point Drift (CPD) to refine
the executable trajectory. We test our method both in simulation and in the real world for
2D English letter drawing and 3D robot-assisted feeding scenarios. Our experimental results
using the Kinova® Movo platform show that the proposed refinement approach generates a
stable trajectory and mitigates the control switching inconsistency.





Chapter 6

Liquid Pouring Through Curriculum
and Curiosity-based Reinforcement
Learning

Real Sim

Figure 6.1: On the right, the simulation environment is illustrated during the pouring of a water-like
liquid. On the left, the robot is pouring orange juice in a real environment using our trained policy
network, PourNet. PourNet learns to perform natural human-like pouring actions through several
simulated experiences [8]. ©2022 IEEE.

Our ability to accurately pour liquids into containers might seem trivial to us. On the
contrary, such an ordinary interaction is one of the most challenging tasks in Robotics. With
automation entering more and more aspects of our professional and private life, pouring liq-
uids is becoming an indispensable skill for robots. The potential of using precision pouring
robots is immense in the catering/hospitality industry. Likewise, in service robotics, pre-
cision pouring as a skill will make robots valuable kitchen assistant robots. Furthermore,
robots can aid as drinking and eating assistants for motor-impaired patients or the elderly.

Given the complexity of the fluid dynamics and the limited degrees of freedom in robots,
formulating a direct control mechanism for pouring is difficult. For example, solving the
Naiver-Stokes [98] formulation to predict the behaviour of liquids in 3D is still an open mil-

105
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lennium prize problem. Therefore, most of the recent works simplify the state space or the
action space of the pouring problem. This results in failure under real world scenarios and
to the best of our knowledge, there hasn’t been any robust controller that can handle the
robot pouring scenario using different liquids. Recent progress in deep reinforcement learn-
ing (RL) [99] has brought promising results for controlling agents in complex environments
with large state or action spaces. This motivated us to solve the robotic pouring using deep
reinforcement learning. One of the challenges in applying RL to robotics problems is that
acquiring a large number of experiences from the real world can be time and cost expensive.
Therefore, often it is more beneficial to carry out the training in a simulation environment
and later transfer the skill to the real world. To this end, we implemented a simulation en-
vironment for the interaction between robots and the liquids. Through extensive real-world
and simulated experiments, we design the optimized state-space, action-space, and the re-
ward functions. As a result not only the robot can easily learn the tasks within the simulation
environment, but the transition from simulation to real goes smoothly.
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Figure 6.2: Training Architecture.©2022 IEEE.

6.1 Liquid Property Awareness

The motion of the fluid is largely described by the Navier-Stokes equations [98].These equa-
tions make up bulwark of the Fluid Mechanics Theory with a great importance in the science
and engineering. However, the theoretical understanding of their solutions is incomplete.
Particularly, for the three-dimensional system of equations, and given some initial condi-
tions, existence of smooth solution is yet to be proven. This makes the “Navier-Stokes exis-
tence and smoothness problem" one of the worthy “Millennium Prize problems" in the field
of Mathematics [100]. With a complete solution of the Navier-Stokes equation, a revolution
in motion and trajectory prediction is expected. However, till then, it’s expected that an in-
telligent liquid pouring agent has an abstract understanding of the liquid properties relevant
for precision pouring. Some of these properties are described below (as shown in Figure 6.3):

• Adhesion: This property of fluids make them stick to the surface of containers. This be-
haviour emanates because of the attractive electromagnetic and van der Waals forces
between liquid and container solid particles [101]. This is visible to a greater extent in
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fluids like Ketchup, Marmalade, etc. The adhesive forces are always perpendicular to
the surface of solids directed into the solid [102]. This is visualized in the Figure 6.3.

• Viscosity: This property of fluids characterizes the degree of the internal friction in the
liquids [102]. This internal friction arises because of the resistance between two layers
of the liquid while moving relative to each other. Hence, viscosity results in loss of the
Kinetic energy of the fluid in form of internal energy. The viscosity in whole is one of
the important factors deciding the velocity field of the fluid in motion. As a result, the
liquids with high viscosity tend to flow slowly and have less volumetric flow rate per
unit time. This can be seen in Figure 6.3.

• Cohesion: Cohesion is the intermolecular attractive force between the molecules of the
same kind or phase as seen in the Figure 6.3. The liquid is held together by the cohe-
sive forces between it’s molecules. The imbalance of cohesive forces with the molecules
on a liquid’s surface try to minimize the surface area of the liquid which manifests in
macro-world property of Surface Tension.

• Surface Tension: This is the fluid property observed on the fluid’s surface due to imbal-
ance of cohesive forces between the fluid’s molecules on the surface when compared
to the molecules remaining in the bulk of the liquid [102]. Surface tension causes the
water to form small droplets at the lip of the container while pouring as seen in the Fig-
ure 6.3.

• Density: Density of the fluid is defined as the mass a fluid has per unit volume (ρ =
m
V ). This has a direct implication in terms of expected mass a liquid will occupy for
an agent to apply suitable force-torque in order to resist gravity and also to control the
dynamics of the pouring motion.

Figure 6.3: Comparison of flow rates of low viscous fluids with the high viscous fluids. [103] [104]
[105] [106].

6.2 Operating Environment Awareness

For a precision pouring task, the underlying mechanism must rely on some methods to per-
ceive it’s environment. This can be a machine vision-based, audition-based, force-torque
sensor-based or a closed-loop control mechanism-based methodology. Each approach can
be thought of as a digital adaptation of sensory organs that animals use to make sense of
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their environment. These methodologies can either be used independently or in a quorum
to enable a pouring agent to make sense of it’s working environment. Each approach, how-
ever, comes with limitations. For instance, it is hard to purely use vision as classification of
liquid pixels is tricky and getting a dataset to model this behaviour might be expensive to
acquire. Likewise, using purely audition-based approach would require a large dataset of
pouring sounds with added noises and again expensive to acquire. However, each approach
also comes with a unique set of features that are relevant for precision pouring task. As a
result, to have an awareness of the operating environment using sensor-based systems is in-
dispensable for an agent to pour liquids. These can then be used to ensure a generic pouring
policy which works on any liquid and any container type. This dissertation relies on force-
torque sensor feedback as a fundamental approach in a Reinforcement Learning setup. So, in
summary, to automate precision pouring tasks, the agent should know the fluid, the vessel
geometry, and the environment in which it is working. The design of PourNet is based on
this consideration. The agent trains in a simulation environment where it knows exactly the
properties of the fluid, the geometry of the containers, and the environment.

Figure 6.4: Different types of containers with variation in geometrical features. [107]

6.3 Pouring Container Geometry Awareness

The containers used for keeping liquids can come in a vast variety of shapes and sizes as
shown in the Figure 6.4. Hence, to be sensitive towards the geometry of the containers is a
property that can improve the precision of pouring task. The pouring profile of the liquid is
vastly affected by the angle of tilt of the pouring container and it’s inherent geometry. Dong
et al. [67] describe one such scenario where the liquid volume is estimated by integrating the
cross-sectional areas of slices a container is divided into from it’s base to the liquid surface’s
height by factoring in the angle of the tilt of the container.
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6.4 Problem Statement

PourNet is a continuous control RL model for liquid pouring. Given a set of observations in
an operating environment, PourNet generates actions from a policy that is trained to maxi-
mize its cumulative reward ( Figure 6.2). This can be described as:

Set of observations:

L : Set of liquid features,

S: Set of state information,

F: Feedback measurements from the environment,

T: Desired liquid to be poured.

Set of actions:

ω: Pouring Container’s rotational velocity,

r: Pouring Container’s translational velocity.

Such that,
(ω, r) = π(L , S, F,T) (6.1)

Where, π is the policy and Success Criteria will be satisfied if the poured quantity is within
some tolerable deviation of T.

6.5 Technical Details on PourNet

The success criteria described in Section 6.4 makes precision pouring a “Sparse Reward Re-
inforcement Learning” problem. This is attributed to the fact that the agent can only receive
reinforcing rewards from the environment, if the poured quantity in the receiving container
is within some tolerable deviation. From the technical point of view, this chapter proposes
PourNet as an intelligent agent which is capable of pouring a liquid with liquid property
awareness, container geometry awareness and environment awareness using force/torque
based perception.

6.5.1 Average Pouring Error

We introduce “Avg. Pouring Error” as a performance metric. This is defined as the average
pouring deviation over n successfully completed pouring episodes. We use Avg. Pouring
Error to evaluate the agent’s progress during training. Therefore, we design the extrinsic
rewards of an agent as a function of Avg. Pouring Error such that the agents with a tolerable
average pouring errors are rewarded additionally to the consequence of the actions taken
during a single episode. This allows us to also use this metric for hyperparameter tuning
such that the average pouring error does not increase many-fold over time.

6.5.2 Proximal Policy Optimization

The RL algorithm considered in this chapter is based on Proximal Policy Optimization
(PPO) [34]. The choice of PPO was based on a training experiment in the simulation setup
using a single liquid profile. For this experiment, it was observed that the PPO observed a
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Figure 6.5: PourNet Model Architecture.

better average pouring error when compared to the Soft-Actor-Critic (SAC) [35] based RL
algorithm.

6.5.3 Action Handler

PourNet’s policy described in Section 6.4 outputs two floating number values, i.e. transla-
tion and rotation speed; therefore, the action handler of the agent is designed to reflect these
values in terms of 6D poses and 3D motions. In Algorithm 4, the chapter discusses the action
handler, which converts the PourNet’s actions to the subsequent 3D motions. The training
of PourNet is always without the real robot in the loop. However, for transferring the policy
to a robot, the pouring container’s pose essentially becomes the manipulator’s end-effector.
This is because the pouring container is held within the grippers, and hence, becomes the
end-effector for the motion-planner to execute the actions. Ultimately, the Non-linear Model
Predictive Control-based Motion Planner (NMPC-MP) introduced in Chapter 4 receives the
final trajectory.

6.5.4 Reward Shaping

As established in the introduction of Section 6.5, the PourNet’s RL problem essentially is a
Sparse Reward problem. This has a great implication on the agent to train for development
of a generalized pouring policy, as it’s not guaranteed that the agent will see positive rein-
forcing rewards in each episode of pouring. The extrinsic reward shaping in this context is
described in Algorithm 5.

6.5.5 Intrinsic Curiosity Module

The reward function as discussed in Algorithm 5, is essentially a Sparse Reward Problem.
In the absence of recurrent reinforcing rewards, this means that an agent requires a large
number of training steps to explore the environment for training a robust policy. One way
to essentially improve this situation is to use an intrinsic reward-based system. In addition
to the extrinsic rewards, intrinsic rewards can aid an agent to explore it’s environment along
with exploitation of the policy. This chapter uses one such intrinsic reward-based system
called the “Intrinsic Curiosity Module" based on the work of Pathak et al. [108]. The idea of
curiosity-driven learning is to build a reward function intrinsic to an agent, such that it acts
as a self-learner, and improves it’s own policy based on the intrinsic reward. This involves
using the feature representation of the states of two successive time steps to predict the cur-
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rent time-step’s actions and using current time step’s actions and feature representation of
the states to predict next time step’s feature representation of the state. The discrepancy in
prediction of next feature representation of the states, finally forms the basis of the intrinsic
reward signal. A large prediction error is indicative of exploration of uncharted environ-
ment. This in turn helps the agent to explore, thus, finding better extrinsic results in the
future. In this work, a prominent observation is made in the PourNet’s performance im-
provement when using the ICM. Chapter 6.7, showcases this improvement for LSTM-based
PourNet. As compared to the standalone PPO-based model, using ICM sees a steady im-
provement of the performance in terms of reducing average pouring errors.

Algorithm 4: Action handler algorithm uses output from PourNet to plan 3D mo-
tion at Robot’s end effector.

Given:
S ← Pouring container’s Position.
T ← Receiving container’s Position.
Lw ←Weight of liquid in the receiving container.
Wr ← Target to be filled in the receiving container.
∆Lw ← Tolerance in deviation.
Tgeometry ← Geometry of receiving container defined by center T and extents.
(ω, r) Output from PourNet (∆x, ∆θ) 3D Motion at the robot’s end effector if
Sx ̸∈ [Tgeometryxmin , Tgeometryxmax ] & Sz ̸∈ [Tgeometryzmin , Tgeometryzmax ] then

if Sy − Ty ≥ 2× Tgeometryyextents
+ 0.05 then

d = T − S

else
d = (Tx, Sy, Tz)− (Sx, Sy, Sz)

// d← Direction of Motion.
∆x = S + (r ×∆t)× d
output ∆x

else
if Lw ≤ (Wr ± ∆Lw) then

∆θ = ω × ∆t ∀ω ≥ 0

else
∆θ = ω × ∆t ∀ω < 0

// ∆θ ← Rotation about pouring container’s forward axis.
output ∆θ

6.5.6 Curriculum Learning

Curriculum Learning [109] is inspired from human behavior of breaking down a complex
difficult task into smaller structured tasks with increasing difficulty.

As an inherent part of humans learning from their environment, it can be observed that
learning is certainly better and more efficient if it’s organized into some meaningful order.
The order is illustrative of gradually increasing concepts, and complexity. Hence, an intelli-
gent agent using curriculum learning approach, first starts out with only easy examples of a
task and then gradually increases the task difficulty.
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This is often considered as a robust Environment Parameter Randomization strategy di-
vided into a hierarchical structure of lessons. An agent tries to solve a task using easier
lessons at first. As the policy becomes good in determining appropriate actions for the ob-
servations, gradually, the difficulty of the next lessons is increased.

PourNet uses the Curriculum Learning as a primary “Liquid Properties Randomization
Strategy". Some liquids are easier to handle for pouring. However, as viscosity and adhesion
in liquids tend to increase, the pouring task becomes more challenging. As a result, PourNet
uses a hierarchically designed curriculum for liquid parameter randomization.

Increasing Difficulty

Lesson 1 Lesson 2 Lesson 3
Adhesion: 0.0 – 0.01
Cohesion: 0.0 – 0.01

Tension: 0 – 0.01
Viscosity: 0.0 – 50.0

Adhesion: 0.0075 – 0.015
Cohesion: 0.0075 – 0.015
Tension: 0.0075 – 0.015

Viscosity: 45.0 – 75.0

Adhesion: 0.0125 – 0.02
Cohesion: 0.0125 – 0.02
Tension: 0.0125 – 0.02
Viscosity: 70.0 – 100.0

Density: 0.5 – 1.75 g/ml , Rest Distance (Simulation Parameter): 0.1 – 0.15 unitsUniformly Sampled

Figure 6.6: Curriculum Learning lessons and parameters. The idea is to domain randomize the pa-
rameters in increasing order of their difficulty in pouring dynamics.

6.5.6.1 Designing Pouring Curriculum

This chapter considers the following liquid properties for designing a curriculum-based
pouring scenario: Density, Rest Particle Distance, Adhesion, Cohesion, Surface Tension, Vis-
cosity.

As such, out of these enumerated liquid properties, the effect of adhesion, cohesion, sur-
face tension, and viscosity affects the pouring behavior to a greater extent. These are either
sources of spillage, or factor in the Naiver-Stokes [98] formulation describing fluids in mo-
tion. For instance, more viscous and adhesive liquids like honey and ketchup are difficult
to pour as compared to the less viscous ones like water. As a result, the curriculum can be
designed with these four properties in order of increasing values, representative of the in-
creasing complexity of the task. Density and Rest Particle Distance, on the other hand, can
be domain randomized using a simple uniform sampling strategy.

The PourNet’s curriculum as proposed in this chapter in terms of randomized Nvidia
Flex liquid parameters has been depicted in the Figure 6.6. The PourNet’s performance im-
provement can be seen in the Figure 6.8 when using Curriculum Learning along with curios-
ity. This is compared to the scenario where PPO is used standalone and where PPO is used
along with the ICM. This conforms with the expectation as the policy is trained with a three-
lesson curriculum of increasing difficulty. Hence, policy performs better from the first lesson
itself as it sees enough positive rewards from the environment and adjusts it’s knowledge as
the difficulty of the lesson begins to increase.
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6.5.7 End-to-end Technical Specifications

The details of the overall technical specifications, for PourNet as seen in Chapter 6.2 are:

1. PourNet: It is the intelligent agent in the environment which observes the input and
takes action by using it’s knowledge from the pouring policy.

2. Observations: The observation is a 12x1 vector with the following inputs. Liquid Fea-
tures: The liquid features are a 5x1 vector of observation including information of Den-
sity, Cohesion, Surface Tension, Viscosity, and Adhesion. Pouring Container Geometry:
It is a 2x1 vector of the pouring container’s diameter and depth. Force/Torque Feedback:
This includes a 1x1 vector of weight information of the liquid in the target container.
User Input: This is a 1x1 input of the target level of the liquid to fill. Measurements:
This is a 3x1 vector which includes measured observation from the environment and
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these include the difference in the fill level in the target container, average pouring er-
ror for all pouring trials until the current time step and the rotational tilt of the pouring
container.

3. ICM: This is the Intrinsic Curiosity Module, which form the basis of rewards intrinsic
to the PourNet.

4. Actions: The PourNet takes actions based on the observation by exploiting it’s underly-
ing pouring policy which updates the pouring container’s rotational and translational
positions in the scene.

5. Environment: It is the simulation environment where the PourNet gains the experi-
ences for a robust policy.

Algorithm 5: PourNet: Extrinsic Reward Shaping Algorithm
Given:
Coll: State of collision between pouring and receiving container.
ϵt: Current episode’s pouring error.
∆ϵ: Average Pouring error over past n successful episodes.
Lw ←Weight of liquid in the receiving container.
Wr ← Target to be filled in the receiving container.
∆Lw ← Tolerance in deviation.
(ϵt,∆ϵ) ret Extrinsic reward for the current episode. ret = 0
while Lw ≤ (Wr ± ∆Lw) do

ret = ret +
−1

Max.Number of Steps

if Coll is True then
ret = ret − 1
return ret

if ϵ ≤ 10 grams then
ret = ret + 1
if ∆ϵ ≤ 20 grams then

ret = ret + 1

output ret

6.5.8 PourNet’s Architecture

Overall, two contesting deep neural network architectures were considered for the PourNet.
One based on a recurrent neural network using LSTM [110] as foundational blocks and the
other using a feed-forward neural network.

The primary investigation of this chapter is to establish the applicability of the RL to
precision pouring problem. Hence, the aforementioned architectures forms the basis of un-
derlying model which uses RL for policy modeling.
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6.5.8.1 LSTM-based PourNet

The LSTM-based PourNet architecture is described in the Figure 6.5. The architecture has
the following features: Number of Layers: 3, Number of hidden units: 256 units per hidden
layer, Memory Size: 256, Sequence Length: 64.

6.5.8.2 Feed-forward neural network-based PourNet

Another architecture for the PourNet is based on the Feed-forward neural network (FNN).
The PourNet’s FNN-based architecture is similar to the LSTM-based one, where instead of
a LSTM block, a feedforward neural network is used. The performance comparison is as
described in Table 6.3.

6.6 Experimental Evaluation

6.6.1 Simulation

6.6.1.1 Simulation Setup

The primary precision pouring setup discussed in this chapter is based on a novel simu-
lation environment. The basis of our simulation environment are the Unity3D Game En-
gine [111] and the NVIDIA® Flex a Position Based Fluid [112] engine, and NVIDIA® PhysX
4.0 for rigid body simulations. The Machine Learning (ML) in the Unity3D® is catered to by
ML-Agents [111] library. The overall end-to-end pipeline is as described in Figure 6.2. We
tested on the simulated robot with a motion planner in the loop by bridging it to ROS via the
approach proposed in [80].

Figure 6.9: Liquid Pouring with robot in the loop scene inside RRS-PL.
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6.6.1.2 Training

The PourNet-based policy was trained for maximum 10 million time-steps in a Federated
Learning approach [113]. There are 32 parallel environments that independently provide
a set of observations and actions to collaboratively train a single brain i.e. PourNet-based
pouring policy. Essentially, each environment keeps all the local training data private to
itself. By using this approach, not only is the training sped up, but the experiences are ran-
domized as well. Randomness is a key to robust policy learning. The curriculum learning
was applied with the lesson progression as 25% of time-steps for the first lesson, further 25%
for the second lesson, and finally, remaining 50% of the time-steps for the third and the final
lesson. Training and simulations was done using two NVIDIA® Quadro RTX6000 GPUs.

6.6.1.3 Discussion

The Table 6.3 enumerates the results of the average pouring error for the simulated liquid
profiles as shown in Figure 6.10 with the NVIDIA Flex parameters as enlisted in Table 6.2.
Each simulated liquid profile was poured 10 times using a trained PourNet in the pure simu-
lation environment using a randomized pouring container as shown in Figure 6.10. It can be
observed that when comparing the LSTM-based PourNet with FNN-based PourNet, LSTM-
based PourNet performs slightly better than the FNN-based PourNet for all simulated liquid
profiles. Because of this better performance, all further experiments and results in the sub-
sequent sections are using LSTM-based PourNet. There is a 26.7% improvement for water,
16.6% for ink, 11.94% for oil, 15.6% for the glycerine, 4.5% for honey, and finally 8.04% for
the ketchup in terms of average pouring deviation. It should be noted that, since the sim-
ulated ketchup profile is very adhesive and also viscous, in absence of shaking action from
the PourNet, the higher targets could not be filled.

Figure 6.10: The simulated (top) vs real (bottom) liquids and containers. On the right the test envi-
ronment with robot in the loop is illustrated.
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Figure 6.11: a) Experimental Setup with Kinova Movo. b) Force measurement steps using F/T sensor.
c) Second-order ButterWorth Low-pass Filter, operating at 100 Hz, with a cut-off frequency of 1 Hz.

Table 6.1: Average Pouring deviation for water compared to the state-of-the-art approaches

Liquid Closed-loop Control [67] MPNet [71] MultiFrame CNN
(thermal vision) [74] DDPG [114] PourNet

Water 0.95±1.16 ml
to 11.88±4.63 ml

6.3±6.1 ml
to 23.7±18.7 ml 38 ml 19.96 ml 3.8 ± 0.69 ml

to 8.66 ± 1.52 ml

6.6.2 Real Experiments

6.6.2.1 Platform Setup

The experimental setup to transfer PourNet to a real robot is based on the Kinova® Movo. As
such, the experimental setup includes the following sub-systems: Robotiq HandE Gripper,
BotaSys® SENSONE force/torque sensor operating at 100 Hz, and Intel® RealSense D435i
only as Inertial Measurement Unit (IMU) at 200 Hz. Figure 6.11 highlights the overall exper-
imental setup with the appropriate modules labeled. In all of our experiments, the stationary
left arm is holding a tray with a radius of 10cm, and the pouring is carried out by the right
arm.

Table 6.2: Simulation Liquid Profiles (Flex Parameters)

Liquid Adhesion Cohesion Surface Tension Viscosity

Water 0.0001 0.001 0.005 0.01

Ink 0.0001 0.0025 0.0075 0.05

Oil 0.001 0.001 0.0001 6.5

Glycerine 0.005 0.001 0.0001 50

Honey 0.025 0.001 0.0001 65

Ketchup 0.1 0.001 0.00001 80

6.6.2.2 Weight Measurement

For accurate object in hand weight measurements, we should eliminate the effect of the grip-
per’s weight. After applying the gravity compensation using the IMU sensor [115] by fac-
toring in the sensor bias, an accurate reading can be provided. Additionally, as a result, the



118 Chapter 6. Liquid Pouring Through Curriculum and Curiosity-based Reinforcement Learning

Table 6.3: LSTM-based PourNet: Experiment with liquid simulation profiles

Type Target(g) Water Ink Oil Glycerine Honey Ketchup

LSTM 50 7.72 4.44 4.66 4.4 9.1 11.66

LSTM 100 2.3 6.34 8.64 7.66 5.26 20.36

LSTM 150 4.96 8.38 6.44 8.8 12 -

LSTM 200 4.76 5.9 7.38 6.9 10.54 -

FNN 50 8.49 7.65 5.35 8.3 9.4 15.42

FNN 100 5.13 7.94 8.91 8.52 8.26 19.40

FNN 150 7.65 8.32 8.3 8.6 10.2 -

FNN 200 5.65 6.17 8.25 7.5 10.79 -

sensor possesses a noise-free resolution of as low as 0.005 Nm torque for stationary left hand
and 0.01 Nm torque for moving right hand at the 100 Hz operating frequency. In our exper-
iments we are using the torque measurements on the left arm to measure the weight of the
target container. However, in order to ensure a smooth signal from the sensor, filtering must
be performed in order to safeguard PourNet’s observations from short-duration spikes. This
might result in unpredictable action response, which might be hazardous. As a result, for
filtering the raw force/torque reading from the sensors, a second-order Butterworth Low-Pass
Filter [116] was designed. On the left arm, we achieved an accuracy of 2 grams for the target
weight measurements.

6.6.2.3 Experimental Containers and Liquids

Figure 6.10 describes the containers and liquids used for pouring. As such, ten novel pour-
ing containers were used for the experimental evaluation along with one 3D printed training
container. These cover a wide range of container types demonstrating variation in geomet-
rical features. Likewise, seven liquids were considered for the pouring experiments. These
liquids cover a wide range of experimental liquid features demonstrating generalized be-
havior of the PourNet.

6.6.2.4 Pouring Experiments

Figure 6.12 describes the action sequence that the robot follows for precision pouring task.
The pouring experiments were divided into two categories i.e. I: demonstrating the general-
ization to different liquid types, and II: demonstrating generalization to different container
geometries. In the experiment I, the pouring container was kept the same. The results for the
experiment I has been enumerated in the Table 6.4. For each liquid, the container 2 as seen in
the Figure 6.10, was used to pour three target profiles i.e. 50g, 100g, and 150g. Against each
target, a liquid was poured thrice. Likewise, for the experiment II, the liquid type was fixed
by choosing water for each pouring container. For each container, 50g of water was poured
thrice. The Figure 6.13 depicts the pouring experiment for the experiment II. Beer cannot be
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simulated due to its effervescence and subsequent large foam formation, therefore in the real
experiments it failed (see Figure 6.12).

Figure 6.12: a) Denotes the novel oil to spoon pouring experiment, container number 13 to number
14 b) Denotes the beer pouring failure.
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Figure 6.13: Experiments using water and different containers.

Table 6.4: Deviation from target using different liquids.

Target
(g) Water Milk Cola Orange

Juice
Rapeseed

Oil
Dish
Soap Honey

50 6.33 3.33 6.00 2.67 8.55 3.33 9.33

100 3.55 3.66 7.55 2.33 5.67 1.67 8.66

150 7.33 5.53 6.00 4.67 8.55 2.12 5.23



120 Chapter 6. Liquid Pouring Through Curriculum and Curiosity-based Reinforcement Learning

6.6.2.5 Discussion

From Figure 6.13, it can be observed that the errors are within 10 grams for most of the
pouring containers. It can be noted however, that container number 5 and container number
10 are outliers. This can be attributed to the fact that these are bottles, and, were not a part
of the training setup. As a result, PourNet had no experience in dealing with such objects
while training. Hence, ignoring the outliers, on comparing the performance for pouring wa-
ter with some of the state-of-the-art methodologies, the results are as enlisted in Table 6.1. It
can be observed that the PourNet outperforms these with small errors.

Figure 6.14: Demonstration of pouring orange juice in the bowl.

Figure 6.15: Demonstration of pouring oil in the spoon.

Figure 6.16: Demonstration of generalization of the starting point.

6.7 Chapter Summary

Pouring liquids accurately into containers is one of the most challenging tasks for robots as
they are unaware of the complex fluid dynamics and the behavior of liquids when pouring.
Therefore, it is not possible to formulate a generic pouring policy for real-time applications.
In this chapter, we propose PourNet, as a generalized solution to pouring different liquids
into containers. PourNet is a hybrid planner that uses deep reinforcement learning for end-
effector planning, and Nonlinear Model Predictive Control, for joint planning. In this work,
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we introduce a novel simulation environment using Unity3D and NVIDIA-Flex to train our
agents. By effective choice of the state space, action space and the reward functions, we
allow for a direct sim-to-real transfer of the learned skills without additional training. In
the simulation, PourNet outperforms the state-of-the-art by an average of 4.9g deviation for
water-like, and 9.2g deviation for honey-like liquids. In the real-world scenario using Kinova
Movo Platform, PourNet achieves an average pouring deviation of 2.3g for dish soap when
using a novel pouring container. The average pouring deviation measured for water was
5.5g.





Chapter 7

Conclusion and Future work

The integration of teleoperation with medical robotics in elderly care is an active research
topic. The associated goal is that elderly people will be able to receive care with fewer care-
givers. After a brief introduction of background and related works as well as the experimen-
tal setup this dissertation started with designing a real-time motion planner for redundant
manipulators. Our next step was to extend the work to non-stable network connections,
and to use shared autonomy to handle network disconnections. We understood that there
is always a gap when we are switching to the predefined skill. We tackled this displace-
ment by applying non-rigid registration. At the end, we designed a hybrid planner using
reinforcement learning to train the robot to learn how to pour liquids. On the Kinova Movo
platform, we demonstrated that the pouring agent is capable of performing the task with
various liquid profiles and geometries in real-time.

7.1 Summary

We summarized the three main topics of the dissertation here:
This first topic of the dissertation was the NMPC-MP, a motion planner that can be used

for robot manipulator teleoperation. The planner has three features: (i) it works in real-time;
(ii) it can avoid dynamic and arbitrarily shaped obstacles of primitive, mesh, or octomap
type; (iii) it has a preview to the future, thus real-time motions are smoothed. Comparisons
in simulation show that NMPC-MP is the fastest among the tested planners and can be used
in real-time. Furthermore, it generates trajectories of high quality. We implemented our sys-
tem for bimanual teleoperation on the real Movo robot. Self-collision avoidance for robot
arms and body is integrated into the system, and external dynamic obstacles can be tackled
as well.

For the second topic, we presented Skill-CPD, a high-level skill adaptation strategy for
shared autonomy (SA) in manipulator teleoperation. Our approach refines the reproduced
LQT trajectory after the HSMM-based intention recognition. We formulate the skill refine-
ment as a point set registration problem using the CPD algorithm. Finally, we evaluate
Skill-CPD in a 2D English letter drawing and a 3D robot-assisted feeding scenario. The ex-
perimental results illustrate that Skill-CPD performs the manipulation task with minimum
displacement, thus enhances the overall trajectory consistency.

123
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Furthermore, we for the third topic we explored a RL method for precision pouring prob-
lem. Precision pouring was primarily driven by curiosity and curriculum-based reinforce-
ment learning. Based on the trained PourNet, various experiments were carried out both in
simulation and by transferring the trained policy on a real robot. Based on the experiments,
we observed generalization of the PourNet to different liquid types. The performance in
terms of pouring deviations ranged from 2.33 g for dish soap to 7.55 g for honey. Likewise,
the dissertation demonstrated PourNet’s ability to generalize to novel pouring containers.
The performance varied from 3.8±0.69 ml for the best performing container to the 8.6 ±1.52
ml for the worst performing container. This thus demonstrates PourNet as a precise pouring
agent with an ability to generalize for different liquid types and different pouring container
geometries.

7.2 Limitations

One disadvantage of NMPC-MP is that it is prone to a local minimum when complicated ob-
stacles are integrated. For Skill-CPD the super long trajectories with many points will slow
down the real-time behavior of the task performance and will lower the intention recognition
accuracy. PourNet could not pour beer as it’s foam resulted in excessive spillage about the
pouring container’s outer surface. Hence, it might be fruitful to investigate all liquids that
exhibit an effervescence behavior.

7.3 Future Work

One improvement for the motion planner could be adaptive modifications on parameters ph
and ch for different scenarios. Another direction is to study novel QP solvers and to have
faster optimizations. Rigorous proof of the stability for the NMPC-MP is left for future work
as well. For shared autonomy, further improvement of intention recognition would be ben-
eficial. For example, the recurrent neural network (RNN) or deep neural network (DNN)
have been widely employed to perform sequential recognition. Also since CPD in general
is resource hungry and slow, one promising direction for future work is to utilized neural
network-based methods instead of CPD. For the liquid pouring agent we can explore other
intrinsic reward signals using techniques such as Generative Adversarial Imitation Learning
(GAIL) [117]. As a result, the training speed will improve and the exploration will be easier
and more accurate for the agent.
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