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Abstract

In recent years, autonomous robots are increasingly used to conduct maintenance or inspec-
tion tasks. Infrastructure, such as bridges, buildings, windmills, and also airplanes need
to be visually inspected regularly. Rifts in the facade of buildings and impacts of lightning
strikes on airplanes can pose a severe safety risk.

The development of inexpensive Unmanned Aerial Vehicles (UAVs) has recently been the
focus of many researchers and engineers. When a UAV is used for visual inspection, a very
high localization and control precision are required to take close-up images while avoiding a
collision. However, GPS is often unreliable close to buildings or indoors. Also, algorithms for
Simultaneous Localization and Mapping (SLAM) are subject to drift, especially in long-term
exploration. In this regard, prior knowledge about a reference object can improve SLAM
accuracy.

To this end, this thesis proposes methods to further improve 3D LiDAR-SLAM accuracy
by leveraging prior knowledge:

The first contribution presents an approach to building an initial map from the starting
location of the robotic platform. The initial map is created by accumulating scans from an
actuated LiDAR sensor. The key contribution is an approach to leave the voxelized feature
maps of the initial map unchanged (immutable) while dynamically extending the maps dur-
ing the exploration phase. Experiments show that leaving the initial map unchanged in a
static environment improves the localization accuracy and map quality.

The second contribution leverages prior knowledge about a 3D reference object to im-
prove 3D LiDAR-SLAM accuracy. Here, the location of the reference object in a global coordi-
nate frame and its geometry in form of a 3D triangular mesh are considered prior knowledge.
The approach allows the direct use of the triangular mesh, instead of requiring a prior con-
version to a point cloud. In a novel formulation, the reference object is tightly coupled in a
joint map optimization.

The third contribution proposes an approach for reference object-based trajectory and
map optimization. This method loosely couples the 3D model of the reference object into
the LiDAR-SLAM algorithm, allowing for a remote SLAM setup. Whenever a scan can be
aligned well to the surface of the reference object, an optimization of the past trajectory is
performed. In addition, drift in the map is corrected, improving the map quality for future
localization. Due to the loose coupling of the reference object’s 3D model, the proposed
method is suitable for Edge Cloud processing.
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Kurzfassung

In den letzten Jahren werden zunehmend autonome Roboter eingesetzt, um Wartungs-
oder Inspektionsaufgaben durchzuführen. Infrastruktur wie Brücken, Gebäude, Windmüh-
len und auch Flugzeuge müssen regelmäßig einer Sichtprüfung unterzogen werden, da Risse
in der Fassade von Gebäuden und Blitzeinschläge in Flugzeuge ein erhebliches Sicherheits-
risiko darstellen können.

Die Entwicklung kostengünstiger UAVs stand in letzter Zeit im Fokus von Forschern und
Ingenieuren. Bei der visuellen Inspektion mit einem UAV ist eine sehr hohe Lokalisierungs-
und Steuerungspräzision erforderlich, um Nahaufnahmen zu machen und gleichzeitig eine
Kollision zu vermeiden. In der Nähe von Gebäuden oder in Innenräumen ist GPS jedoch
oft unzuverlässig. Algorithmen für Simultaneous Localization and Mapping (SLAM) unter-
liegen ebenso Abweichungen, insbesondere bei langfristiger Exploration. In dieser Hinsicht
kann Vorwissen über ein Referenzobjekt die SLAM-Genauigkeit verbessern.

Zu diesem Zweck schlägt diese Arbeit Methoden vor, um die Genauigkeit von 3D
LiDAR-SLAM durch die Nutzung von Vorwissen weiter zu verbessern:

Der erste Beitrag stellt einen Ansatz vor, um eine anfängliche Karte vom Startort der
Roboterplattform aus zu erstellen. Die anfängliche Karte wird durch Sammeln von Scans
von einem aktuierten LiDAR-Sensor erstellt. Der Schlüsselbeitrag ist ein Ansatz, die voxeli-
sierten Merkmalskarten der anfänglichen Karte unverändert zu lassen, während die Karten
während der Erkundungsphase dynamisch erweitert werden. Experimente zeigen, dass das
unveränderte Belassen der ursprünglichen Karte in einer statischen Umgebung die Lokali-
sierungsgenauigkeit und die Kartenqualität verbessert.

Der zweite Beitrag nutzt Vorwissen über ein 3D-Referenzobjekt, um die Genauigkeit von
3D LiDAR-SLAM zu verbessern. Dabei werden die Lage des Bezugsobjekts in einem globa-
len Koordinatensystem und seine Geometrie in Form eines 3D-Dreiecksnetzes als Vorwissen
betrachtet. Der Ansatz ermöglicht die direkte Verwendung des Dreiecksnetzes, anstatt eine
vorherige Umwandlung in eine Punktwolke zu erfordern. In einer neuartigen Formulierung
wird das Referenzobjekt mit in die Kartenoptimierung eingebunden.

Der dritte Beitrag schlägt einen Ansatz zur referenzobjektbasierten Trajektorien- und
Kartenoptimierung vor. Diese Methode koppelt das 3D-Modell des Referenzobjekts lose in
den LiDAR-SLAM-Algorithmus, was einen Einsatz als Remote-SLAM ermöglicht. Immer
wenn ein Scan gut an die Oberfläche des Referenzobjekts angelegt werden kann, wird ei-
ne Optimierung der vergangenen Trajektorie durchgeführt. Darüber hinaus wird der Drift
in der Karte korrigiert, wodurch die Kartenqualität für die zukünftige Lokalisierung verbes-
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sert wird. Aufgrund der losen Kopplung des 3D-Modells des Referenzobjekts eignet sich das
vorgeschlagene Verfahren für Edge-Cloud-Verarbeitung.
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Chapter 1

Introduction

1.1 Motivation

Robotic platforms in outdoor scenarios or autonomous cars may determine their position
with GPS, 5G, or even WiFi signals. The challenge is to acquire an as-high-as-possible up-
date rate from sensors to frequently capture the state of the environment, while at the same
time ensuring real-time processing of the recorded data. With 5G, some of the data may be
offloaded to an Edge Cloud with high processing performance, while ensuring low latency.
Autonomous cars mainly rely on GPS for localization and only use visual data for traffic
analysis, i.e., traffic light or sign detection and road safety. For the safety of pedestrians and
other road users, autonomous cars are equipped with several cameras and/or Light Detec-
tion and Ranging (LiDAR) sensors.

LiDAR sensors exist in various price ranges, accuracies, and properties. Some of the first
were 1D range-finders, returning only the distance of a single point. Later on, 2D LiDAR
sensors were developed, returning several measurements distributed along the horizontal
Field-of-View (hFoV) of a single scan line. The FoV may be constrained or even reach full
360◦. Most recently, 3D LiDAR sensors are widely used for robotic applications. They have
several scan lines distributed along a vertical Field-of-View (vFoV). The current trend in-
creases the number of scan lines and therefore the vertical point density, but also the maxi-
mum measurement range. Typically, LiDAR sensors have a range of a few meters up to sev-
eral hundred meters with ranging errors of only a few centimeters. LiDAR sensors have the
advantage of being independent of light, i.e., night or bright daylight should not influence
the measurements. Newest advances in LiDAR technology aim at increasing the reliability
of measurements even for difficult visibility conditions, e.g., rain, snow, and fog. However,
cameras have the advantage of higher resolution, higher update rates, and low cost. For this
reason, cameras and LiDAR sensors are often combined for autonomous navigation or other
robotic tasks.

Apart from automotive purposes, LiDAR sensors and cameras are often mounted on
robotic platforms for autonomous tasks, e.g., package delivery service or assembly tasks
with manipulators. Robotic platforms, however, often operate in indoor environments and
require highly accurate positioning. LiDAR sensors may also be used to generate frequent,
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2 Chapter 1. Introduction

highly accurate digital twins in an indoor or outdoor environment. Digital twins are recon-
structions in form of a point cloud, typically in 3D, that can be used as input to point cloud
segmentation and object classification algorithms for inventory applications or process anal-
ysis. The digital twin can then be further processed and converted to a mesh representation,
which may have a better visual appearance and reduced file size. Digital twins require a
frequent update in dynamic indoor environments and may be created by mobile or static
sensors. Mobile mapping backpacks or trolleys, for example, use Simultaneous Localization
and Mapping (SLAM) algorithms for digital twin creation. In contrast, static sensors may be
more accurate, but require an extrinsic calibration and are fixed to the room.

SLAM is still one of the major challenges for autonomous robots, which can not make use
of accurate global positioning systems, e.g., GPS. SLAM is often referred to as a "chicken-or-
egg" problem since the robot needs to localize itself within the map while at the same time
extending the map. SLAM algorithms exist for a variety of sensors, such as cameras or Li-
DARs. Sometimes the computed poses are fused as odometry input in an Extended Kalman
Filter (EKF) with measurements of Inertial Measurement Units (IMUs) to further improve lo-
calization accuracy and mapping quality, e.g., visual-inertial SLAM. If the robot starts with-
out prior knowledge about the environment, the map is empty initially. While sensor data is
captured and the robot explores the environment, a map is built and the position is contin-
uously estimated. The map may not only be used for self-localization, but also for collision
avoidance and path planning. In controlled environments, a highly accurate map as a digital
twin can be built prior to the robotic exploration in an offline process. It can then be used
by the SLAM algorithm as an initial map, i.e., prior knowledge about the environment to
improve localization accuracy. The initial map can be as accurate as a digital twin or just be
a representation of the room outline, e.g., an emergency floor plan in the form of a 2D or 3D
point cloud.

If an initial map is given to the robot, it first has to localize itself within the map. This
is known as the "kidnapped robot" problem. An initial guess about the position can result
in a more accurate localization. Rather than creating an extensive prior map, only parts of
the environment can be mapped and then be extended by the robot when exploring areas
that were not previously visited. The map may also be updated if some parts have changed.
Prior knowledge does not only have to be a previously built map but can also just be about
the geometry and location of a known object in the environment. This enables the robot not
only to localize within the map but also relative to the known object. Effectively, this enables
another source for reference. As long as the robot stays in the vicinity of the reference object,
it can make use of the absolute position within the map, but it can also relatively localize to
the reference object.

In recent years, there is a growing demand for services providing visual inspection of
infrastructure using Unmanned Aerial Vehicles (UAVs). Airplanes, train rails, windmills,
bridges, or even large buildings need to be inspected on a regular basis to identify poten-
tial damages, which might pose a safety risk in the future. At the same time, architectural
Computer-aided Design (CAD) models of the objects become available from manufacturers
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or highly accurate 3D models can be generated using devices from Building Information
Modeling (BIM). 3D triangular meshes can be converted to point clouds or vice versa.

The generated 3D models can then be used as prior knowledge to improve localization
accuracy and map quality. They can be applied to all inspection objects of the same type,
or, can be reused for future inspections at the same site. Methods proposed in this thesis
leverage this knowledge about the 3D geometry, while at the same time not making any as-
sumptions about the surroundings. For example, this allows for airplane inspections in any
kind of hangar or even outdoors, as long as the airplane type is the same.

Autonomous inspections require a highly accurate localization and control algorithm.
Usually, high-resolution images of the inspection object’s surface are taken and either trans-
ferred wirelessly or stored onboard for offline analysis. Lightning strikes on airplanes can
have the size of a millimeter and pose a safety risk. To detect these damages, an autonomous
inspection UAV needs to take close-up images. This also holds for many other inspection
tasks. Therefore, highly accurate localization is required to pinpoint potential damage on the
object’s surface after its identification on the inspection images.

1.2 Major contributions

The goal of this thesis is to present novel methods to improve 3D LiDAR-SLAM accuracy
with prior knowledge about the environment. Prior knowledge in this thesis is defined in
two ways: The first way leverages an initial map, which was created by the robot at its
starting location and is used as prior knowledge for the exploration. Assuming a static en-
vironment, it is argued that by keeping the initial map unchanged during the exploration, a
further improvement in LiDAR-SLAM accuracy can be achieved. The second way leverages
the knowledge about the position, orientation, and geometry of a 3D reference object.

The major contributions of this thesis are based on the LiDAR Odometry and Mapping
framework (LOAM) [12] and are as follows:

1. A modification of the LOAM framework is proposed to enable immutable initial map
creation. An initial map is built at the starting location by the robot itself by rotating a
3D LiDAR sensor with an actuator. A highly accurate map is created by accumulating
LiDAR scans in a common coordinate frame with transforms reported by the actuator.
The immutable initial map is extended throughout the exploration while leaving the
points of the initial map unchanged. The basic idea is that the initial map is created
with high accuracy while the robot is still static and points acquired during explo-
ration are added with transforms from the estimated motion and are subject to higher
insertion errors. It is shown that an immutable (fixed) initial map yields superior lo-
calization performance in a static environment compared to using a mutable (variable)
initial map or conventional LOAM, which starts with an empty map.

2. A joint map-optimization formulation for the LOAM algorithm [12] is proposed,
which not only makes use of conventional point-to-point correspondences between
the LiDAR scan and the map but also takes point-to-mesh correspondences between



4 Chapter 1. Introduction

Point-to-Point 

Correspondence

Estimation

3D scan

points

Point-to-Mesh

Correspondence

Estimation

Joint 

Optimization

3D triangular mesh

Map Building

Scan 

Registration

Odometry

Estimation

Mapping3D point cloud

Trajectory

Optimization

Map

Correction

Scan-to-

Model 

Alignment

Phase 1: Initialization

Phase 2: Exploration

BVH

Initialization

6-DoF pose + map

2nd

contribution

State-of-the-art 

LOAMLegend:
3rd

contribution

1st

contribution

Figure 1.1: Integration overview of the contributions to the state-of-the-art LOAM framework [12].
Modifications are marked in different colors according to their contribution.

the LiDAR scan and a 3D reference object into account. The proposed method tightly
couples the 3D mesh of the reference object to the map optimization process of con-
ventional LOAM. The prior knowledge is seamlessly integrated and considered for
each processed LiDAR scan. Whenever the robot is in the vicinity of the reference ob-
ject, point-to-mesh correspondences are additionally added to the map optimization,
increasing localization accuracy.

3. A loosely coupled reference object-based trajectory and map optimization method
is proposed. LiDAR scans are aligned to the 3D reference object with map-optimized
poses as initial guesses, yielding highly accurate model-converged poses as candidates
for Trajectory and Map Optimization (TMO). The candidates are then verified by a
motion prior check of an EKF. If the verification is successful, a partial Pose Graph
Optimization (PGO) is triggered, correcting the poses of the conventional LOAM algo-
rithm [12] since the previous TMO. A map correction module rebuilds the map since
the last TMO with the corrected poses. The proposed approach reduces drift and im-
proves long-term map quality. In addition, it allows for frequent TMOs with high
accuracy, without the need for revisiting a place or an initial map.

Figure 1.1 gives an overview of the contributions in this thesis and how they are inte-
grated into the existing LOAM framework.

The first contribution adds an initialization phase, creating an immutable initial map by
accumulating scans at the starting location of the robot. The second contribution tightly cou-
ples a 3D triangular mesh as prior knowledge into the map optimization process of LOAM.
The known 3D reference object effectively guides the SLAM process with its global cues.
The third contribution leverages a known 3D point cloud model by finding highly accurate
absolute poses with scan-to-model alignments. These absolute poses are then used to per-
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form trajectory and map optimization to improve future localization and mapping. It can be
seen that the third contribution is loosely coupled in comparison to the second contribution.
Hence, this makes it especially suitable for a remote SLAM setup, e.g., offloaded processing
to an Edge Cloud.

1.3 Thesis structure

The thesis is structured as follows:
Chapter 2 elaborates on the background of LiDAR sensors, point cloud acquisition, rep-

resentations, and registration. Furthermore, different methods for trajectory alignment are
explained in detail and evaluation error metrics are discussed. The EKF as state estimator
finalizes the background section. In the related work section, state-of-the-art LiDAR-SLAM
algorithms are discussed and the well-known LOAM algorithm [12] is explained in detail.
Also, related works leveraging prior knowledge, e.g., by using prior maps, CAD models,
or emergency floor plans are discussed. Finally, publications in the area of trajectory and
map optimization by closing loops or relocalization are elaborated. Chapter 3 explains the
first contribution in detail by creating an immutable initial map to improve LOAM accu-
racy. Chapter 4 presents the second contribution, by tightly coupling a known 3D triangular
mesh into the map optimization process of LOAM. Chapter 5 presents the third contribution,
by improving LOAM with scan-to-model alignments with a known 3D reference object and
subsequent trajectory and map optimization. This thesis is concluded with a summary of the
proposed methods and possible future improvements in Chapter 6.

Parts of this thesis have been published in peer-reviewed conferences [5] and journals [1],
[2]. Other works outside the scope of this thesis were published in [6], [7], [3], [4], [8]–[11].





Chapter 2

Background and related work

This chapter first gives explanations and details about the background of LiDAR-SLAM,
ranging from the acquisition of 3D points using LiDAR sensors to the detailed explanation
of the LOAM [12] algorithm. The second section elaborates on related work in the area of
LiDAR-SLAM, leveraging prior knowledge and trajectory and map optimization.

2.1 Background

2.1.1 LiDAR-based Simultaneous Localization and Mapping (LiDAR-SLAM)

SLAM has various applications ranging from autonomous robots and cars to Virtual Real-
ity (VR) and Augmented Reality (AR). Outdoors, global positioning, and navigation systems
such as GPS can be used to retrieve the current position in a global coordinate frame. In some
scenarios, however, global positioning may not be available or is too imprecise for specific
applications. Indoors, for example, the current position can be determined by prior knowl-
edge about the environment, i.e., extrinsically calibrated wireless hotspots or a previously
built map for visual or LiDAR-based localization. If no prior knowledge exists, a full SLAM
algorithm needs to be employed, building a new map from scratch. An autonomous deliv-
ery UAV may rely on GPS data to find its way to the delivery location. Once arriving, local
sensors on the UAV need to record data of the surroundings to identify suitable drop-off lo-
cations with segmentation and classification algorithms. A SLAM algorithm is then required
to navigate the UAV for an exact parcel drop-off, but also for collision avoidance. Due to
its robustness to lighting and weather conditions, LiDAR sensors are often used to perform
SLAM.

LiDAR-SLAM is the challenge of creating a map of the environment, which is dependent
on the correct insertion of new scans by self-localization within the map. It is sometimes re-
ferred to as a "chicken-or-egg" problem since localization and mapping are both dependent
on each other.

In SLAM terminology, a pose in 3D space is consisting of the position with x, y, and
z coordinates, as well as the orientation roll, pitch, and yaw. It is therefore considered as
a 6-Degree-of-Freedom (DoF) pose. Often, the orientation is converted and processed as
quaternion rather than Euler angles for computational purposes. The position can be writ-

7
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ten as a translational vector t = [tx, ty, tz]. The complete 6-DoF pose can be expressed as a
4× 4 homogeneous transformation matrix:

T =



R1,1 R1,2 R1,3 tx

R2,1 R2,2 R2,3 ty

R3,1 R3,2 R3,3 tz

0 0 0 1


(2.1)

or in short

T =

 R t

0 1

 (2.2)

R is the 3 × 3 rotation matrix, describing the orientation, and t is the translational vector,
describing the position of the pose.

Since a 6-DoF pose can be directly described as a transformation matrix T , both terms are
used interchangeably in this thesis. A pose T and an acquired LiDAR point cloud P are
always relative to a coordinate frame. Newly captured LiDAR data is in the sensor frame by
default, denoted as {L} in this thesis. The map coordinate frame, sometimes referred to as
world {W}, is initialized when capturing the first LiDAR scan. Hence, the first pose is set to
T = I , also called the origin. Once the robot starts exploring the environment, the pose of
the LiDAR sensor in the map frame at a time t can be described with WT Lt . The point cloud
of the LiDAR scan from which the pose was computed is then denoted as PLt . Essentially,
it is the task of the SLAM algorithm to compute WT Lt from PLt . The LiDAR scan can then
be transformed to the map frame PWt for insertion. Usually, the SLAM algorithm estimates
the pose with extracted point features. These are then inserted into the map, instead of the
LiDAR points directly.

The full trajectory is the sequence of individual poses. The coordinate frames for LiDAR-
SLAM systems and also other robotic applications follow the right-hand rule for the axis
orientation. When mimicking the coordinate axes illustrated in Figure 2.1(a) with the first
three fingers of the right hand, the index finger will point to the X-axis, the middle finger
to the positive Y direction, and the thumb upwards along the Z-axis. Positive rotations
for roll, pitch, and yaw follow the directions of the arrows as illustrated in the figure. Fig-
ure 2.1(b) shows a sequence of four poses {L1} to {L4}, e.g., of a moved LiDAR sensor, and
the world coordinate frame {W}with T = I representing the origin. Typically, the trajectory
of a robotic system is evaluated with all poses being in the world or map coordinate frame,
i.e., WT L1 , · · · ,WT L4 . Although, the same trajectory can also be described by the relative
transformations of consecutive poses, i.e., WT L1 ,

L1T L2 , · · · , L3T L4 . Graph-based SLAM or
loop closure-enabled algorithms may use graph optimization methods and prefer this kind
of trajectory representation. The black arrows in Figure 2.1(b) illustrate the relative transfor-
mations to the world frame and between consecutive poses.

It should be noted that the map created and used by the SLAM algorithm is usually
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(a) Coordinate system following the right-hand
rule

Z

Y
X

(b) Four poses {L1} to {L4} are described as transforma-
tions to the world coordinate system {W} and relative to each
other.

Figure 2.1: The right-hand coordinate system is used in LiDAR-SLAM systems as illustrated in (a). A
sequence of poses is described as relative transformations (b). The coordinate systems represent the
poses and the black arrows illustrate the relative transformations between the poses.

(a) Sparse map of a building created by a SLAM
algorithm and used for online localization

(b) Dense 3D reconstruction created offline from
accumulated raw LiDAR scans using the com-
puted poses from the SLAM algorithm in (a)

Figure 2.2: Comparison of a map from a SLAM algorithm (a) with the 3D reconstruction created with
raw LiDAR scans and the SLAM poses (b). The ground was removed for illustrative purposes in both
figures.

quite sparse and only contains points or point features necessary for accurate localization.
Typically, SLAM algorithms use some kind of voxelization techniques and do not retain all
information captured by the sensors. Otherwise, this would lead to rapidly growing memory
consumption and higher computational requirements when estimating the pose in very large
maps. Figure 2.2 shows a comparison between a SLAM map and a dense 3D reconstruction
of the same building. The map (a) is voxelized and only one point per voxel (centroid) is
kept during the map creation process, which is sufficient for pose estimation but leads to a
sparse environment model. For the map creation, a voxel edge length of 40 cm was used.
On the walls and roof, the regular distance between the voxel centroids can be seen. Denser
regions are due to multiple occupied voxels behind each other, i.e., "double walls". A full 3D
reconstruction can be created by transforming and accumulating all raw LiDAR scans PLi in
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the world/map frame (b) with the corresponding SLAM poses WT Li .
On the left corner of the point cloud in Figure 2.2(a), the "double wall" effect can be seen.

Due to wrong scan matches during the pose estimation, new scans are inserted into the map
with a wrong transformation. A common challenge in long-term localization and mapping
is the maintenance of the map while preventing deterioration. The more scans are captured
during exploration and inserted into the map, the worse the quality of the map becomes. This
gets more obvious if the robot stays in the same environment during exploration. Points are
continuously inserted into the map to correct prior mistakes during mapping, but also to add
new parts to the map. The contributions of this thesis aim at reducing map deterioration by
leveraging prior knowledge about the environment.

2.1.2 Point cloud acquisition

Point clouds can be generated with depth sensors, such as RGB-D cameras or LiDAR sen-
sors. For RGB-D, three different types of depth perception currently exist: structured light
(active), stereopsis (passive), and laser scanning (active). The first active RGB-D cameras
projected structured light on surfaces to perceive depth. By measuring the deformation of
a known light pattern in the scene, depth values can be computed. Structured light cam-
eras usually have a low range of a few meters due to the limitations of the light projector.
Other RGB-D cameras use stereopsis for depth perception. The disparity between two cal-
ibrated RGB cameras is used to estimate the depth for each pixel. Hence, it does not have
an active depth sensor, but can generate higher resolution RGB-D images and can estimate
depth values at a longer range compared to structured light sensors. Currently, there is a
trend towards active RGB-D cameras with laser scanning technology. Depth is measured
with a solid-state LiDAR sensor allowing for higher measurement ranges compared to struc-
tured light sensors. Due to the active depth sensor, range values can be measured with much
higher accuracy compared to the disparity computation of cameras using stereopsis technol-
ogy. A detailed comparison was conducted by Laurenço et al. [13]. They compared the three
different types of depth perception using Intel RealSense RGB-D cameras.

Two types can be differentiated concerning depth-only sensors: solid-state and spinning
LiDAR. The major difference between a solid-state sensor and a spinning LiDAR is that the
former produces a more dense depth output compared to spinning LiDAR sensors at the
cost of a lower horizontal FoV. Spinning LiDARs usually cover the full 360◦ range and solid-
state only a fraction of it. Different types of solid-state sensors exist, such as Micro-Electro-
Mechanical Systems (MEMS), phased array, or flash LiDAR. MEMS steer a single laser beam
with small mirrors, while phased array and flash LiDARs do not contain moving parts. Due
to the smaller FoV, the emitted light is higher concentrated in one direction and therefore
needs to be less energetic compared to spinning LiDAR sensors to comply with Class 1 eye
safety. It implies that no eye damage must occur, even when putting the eye without blink-
ing right in front of the sensor for several seconds. Spinning LiDAR sensors consist of a
rapidly rotating mirror, refracting the laser beam horizontally and vertically in case of 360◦

3D spinning LiDAR sensors. When putting the eye right in front of it, no eye damage occurs
even with a higher energetic laser beam compared to solid-state due to the quick 360◦ rota-
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(a) Velodyne VLP-16L
"Puck Lite"

(b) Single scan of a VLP-16 (a)

(c) Ouster OS1-128 (d) Single scan of an OS1-128 (c)

Figure 2.3: Illustration of two spinning 360◦ 3D LiDAR sensors from the manufacturers Velodyne (a)
with 16 scan lines and Ouster (c) with 128 scan lines. (b) and (d) show simulated LiDAR scans of a
hall. The virtual sensors follow the technical specifications of the manufacturers. Lower scan lines
are displayed in blue and higher scan lines in red color.

tions. This allows for measuring higher distances with spinning LiDAR sensors compared
to solid-state. Hence, eye safety is still one of the main hurdles for solid-state LiDAR to catch
up.

Figure 2.3 shows examples of 360◦ 3D LiDAR sensors. A Velodyne VLP-16 (a) with 16 ver-
tical scan lines and an Ouster OS1-128 (c) with 128 vertical scan lines. Exemplary virtual
LiDAR scans of the two sensors can be seen in (b) and (d). The OS1-128 has a much higher
vertical point density, which significantly increases the scene understanding ability. Also, the
OS1-128 LiDAR has a higher vFoV, which can be seen on the higher wall in (d). The size of
the sensors is very similar, despite the more recently released Ouster LiDAR sensor having
8 times the number of vertical scan lines. Table 2.1 shows a comparison of their technical
specifications according to the official datasheets from the manufacturers. The OS1-128 has
a slightly larger vFoV with 45◦ compared to 30◦ of the VLP-16. Both detect points up to a
distance of 100 m and weight around 500 g, which make both suitable for mounting on larger
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Table 2.1: Overview of the technical specifications of a Velodyne VLP-16L "Puck Lite" and Ouster
OS1-128 LiDAR. *The results are presented for the single return mode.

LiDAR #scan lines vFoV Range Rotation Rate Points per second* Weight

Velodyne VLP-16L [14] 16 ±15◦ up to 100 m 5 Hz− 20 Hz 300 000 590 g

Ouster OS1-128 [15] 128 ±22.5◦ 0.3− 100 m 10 Hz or 20 Hz 2 621 440 447 g

UAVs. The weight specified for the Ouster sensor is not considering the mounting bracket
shown in Figure 2.3(c), which can be replaced with a lighter alternative. The main differ-
ence between the sensors is the number of points that can be measured per second. While
the VLP-16 may be sufficient for SLAM applications, the OS1-128 has a much higher point
density, which makes it more suitable for object detection in single LiDAR scans. However,
processing so many points in real-time requires a powerful computational unit, which may
not be carried by a UAV depending on the point cloud processing algorithms. Both sensors
have the option to not only return one point per measurement but the strongest and the sec-
ond strongest. This may be useful when measuring through transparent glass, fog, or dust.
By default, the strongest point is saved for each measurement in single return mode. How-
ever, especially in foggy environments, the second strongest measurement may reveal the
true underlying structure and therefore increase object detection capability, e.g., pedestrians
and other traffic participants.

In this thesis, a VLP-16 "Puck Lite" LiDAR sensor is used for the majority of the experi-
ments in simulation and also in a real environment. The Ouster OS1-128 is used in simulation
and offline processing to give an impression of the performance of the proposed algorithms
if a LiDAR sensor with more scan lines is used.

2.1.3 Point cloud and mesh representation

The environment can be represented as different digital models. One of the most common
representations is the point cloud and a mesh. Both types are explained in more detail in the
following sections.

2.1.3.1 Point cloud

A point cloud P = {p1, · · · , pn} is a collection of n individual points p. The most common
properties of a 3D point p are listed as follows:

• Position (required): x, y and z coordinate of the point p in 3D space

• Color (optional): Red, Green and Blue values of the point p

• Intensity (optional): Intensity value of the scan point, e.g., obtained from the LiDAR
sensor

• Normal (optional): A three-dimensional normal vector defining a local plane
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The position of the points is the only required information. In addition, each point may fea-
ture color information in RGB format. Typically, the values are specified in 8-bit, ranging
from 0 to 255. The color information may be measured directly by the sensor, e.g., RGB-D,
or can be assigned afterward to the points. For example, by mapping RGB image data to
the point cloud, leveraging calibration data. An intensity value is directly measured for each
point by a LiDAR sensor. It is a measure of reflectivity and depends on the angle the LiDAR
beam hit the surface and surface properties. For example, some black materials may fully
absorb the beam and no point will be measured. Other materials and surface colors have a
strong reflectivity. A higher intensity value means that the LiDAR sensor picked up a strong
return signal and vice versa. Each point may also have normal information. The normal
vector consists of three 32-bit (typically) real values, describing a local plane at the point
location. Normal vectors can be computed for each point by considering their local neigh-
borhood. Rusu [16] described a method based on least-square plane fitting. It first computes
the 3D centroid of the local neighborhood around the point, followed by the covariance com-
putation. The eigenvector with the smallest eigenvalue is then considered as point normal.
The biggest challenge here is to find the correct orientation of the normal. If a viewpoint or
sensor origin is known, normal vectors are typically flipped towards it. If it is unknown, the
point normals may be wrongly oriented and have a negative impact on further processing
steps. Normal vectors are essential for some surface reconstruction algorithms, e.g., Poisson
Surface Reconstruction [17], which computes a triangular mesh from an input point cloud
with normals. Also, point feature extraction algorithms use normal vectors to compute point
descriptors for point cloud registration [18].

Point clouds are common not only for environmental representations but also for raw
LiDAR scans. By default, each LiDAR scan has the sensor center as the coordinate frame
(origin). In order to properly reconstruct an environment consisting of accumulated point
clouds, the transformation between the point clouds or to a global frame must be known,
i.e., WT L1 for PL1 , WT L2 for PL2 , and so on. Now the point clouds can be transformed
and accumulated in the common frame {W}. The transforms can be estimated with LiDAR-
SLAM algorithms.

Point clouds can be stored in different file formats. One of the most common is the Point
Cloud Data (PCD) or ASCII (ASC/PTS) format. While ASC is very useful for manually in-
specting point cloud data, the binary encoding of a PCD file reduces the required file size,
which is especially interesting for very large point clouds. As an example, a point cloud con-
sisting of 100 million points requires 3.61 GB when saved in ASC format, while the binary
PCD file of the same content only requires 1.60 GB (44.3%). This ratio scales linearly with the
number of points.

CloudCompare1 is an open-source point cloud processing software, which also features a
Graphical User Interface (GUI). It allows for quick point cloud visualization, manipulation,
cropping, registration, and also mesh surface reconstruction. For the integration of point
cloud handling and processing in C++ or python code, the Point Cloud Library (PCL) [19] is
the current state-of-the-art. It has a collection of seemingly all basic point cloud processing
1 https://www.cloudcompare.org

https://www.cloudcompare.org
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(a) 19 vertices, 32 faces (b) 3 vertices, 1 face (c) 50 points (d) 1000 points

Figure 2.4: Description of the same triangular surface in different representations: (a) subdivision in
multiple sub-triangles, (b) single triangle, (c) sparse uniform point sampling, (d) dense uniform point
sampling

methods, such as smoothing, coordinate transformation, cropping, registration, normal esti-
mation, and so on. It can be integrated as a library in C++ code to efficiently process large
point clouds and LiDAR sensor data in real-time. The PCL library can be found as a depen-
dency in many existing LiDAR-SLAM algorithms. Its popularity partially arises due to the
3-clause BSD license, which allows its usage for commercial and research applications. In
this thesis, the functionality of the PCL library is a basic part of the presented contributions.

2.1.3.2 Triangular mesh

A triangular mesh is composed of vertices and faces. A vertex vi = [i, x, y, z] contains the
index i, and the x, y and z position. Essentially, it is an enumerated 3D point. All vertices V
in the mesh can then be described as a collection V = {v1, · · · , vn}, consisting of n vertices.
In a 3D triangular mesh, a face is a 3D triangle defined by three vertices in V . Hence, a face
can be written as fj = [j, va, vb, vc]. j is the index of the face and va, vb, and vc are the vertices
with indices a, b and c, which define the 3D triangle. A collection of m faces is therefore
F = {f1, · · · , fm}. The triangular mesh can then be expressed asM = [V,F ]. This is a very
basic definition. Eventually, it can also include texture information for each vertex or face
and normal information. Some mesh file formats even skip the index value i for the vertices.
Instead, a, b and c in the definition of a face f refer to the corresponding line numbers in the
file where the vertices are defined. This reduces the file size even further.

Triangular meshes can be saved in various file formats, e.g., Stanford Polygon (PLY),
Stereolithography (STL), or Object (OBJ) among many other open and proprietary formats.
As for point clouds, the vertex and face information can be saved in ASCII and binary format.
MeshLab [20] is open-source software, featuring many methods for mesh visualization and
processing. It supports many open mesh file formats and can also be used for conversion.

Figure 2.4 illustrates different representations of a triangular surface. (a) consists of
32 faces and (b) shows the same surface, described with only a single face. (a) can be re-
duced to the single face (b) without a loss of information, assuming that all faces of (a) and
(b) lie on the same 3D hyperplane, i.e., without curvature. This mesh simplification can
be performed with Quadratic Edge Collapse Decimation [21], for example. (c) and (d) are
uniformly sampled point clouds on the triangle surface, consisting of 50 and 1000 points,
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respectively. 50 points are barely enough to estimate the triangular shape, while it is clearly
visible with 1000 points. Comparing these representations, it can be concluded that a trian-
gular mesh is a much more efficient and complete way to describe 3D surfaces. Hence, one
can see a triangular mesh as an infinitely dense sampled surface, where the triangles are im-
plicitly described by the three enclosing vertices. If an environment or object model exists in
form of a CAD format or mesh file, the conversion to a point cloud inevitably leads to a loss
of surface information and should be avoided. On the other hand, if a dense and accurate
point cloud exists, the conversion to a mesh file may introduce errors. The main challenge
here is to correctly combine neighboring three points forming a triangle/face. Poisson Sur-
face Reconstruction [17] is an algorithm that takes a point cloud with pre-computed normals
for all points as input and reconstructs the surface as a triangular mesh. It is, however, highly
dependent on correctly oriented normals and an equal point cloud density.

Several programming libraries exist that support triangular mesh handling. The PCL li-
brary possesses basic mesh visualization capability. The libigl [22], Computational Geometry
Algorithms Library (CGAL) [23] or Open3D [24] libraries feature extensive mesh generation,
manipulation, and computational capabilities in C++ and partially Python. In this thesis, the
libigl library is used for efficient mesh processing.

2.1.4 Point cloud registration

A LiDAR point cloud is usually recorded in the coordinate system of the sensor. When the
position of the sensor is not tracked while moving it to the next recording position, the trans-
formation between the two coordinate systems is unknown and the recorded point clouds
can not be merged without additional computation and adjustment. Several applications ex-
ist for which a point cloud registration is required. Two or more point clouds were recorded
in the same environment and have an overlap, meaning that some structures in both point
clouds are identical. Typically, the larger this overlap is, the easier it is for the registration
algorithm to align the two point clouds and the better is the result. A synonym for point
cloud registration is therefore point cloud alignment. The necessity to merge several point
clouds may arise from the goal of an improved 3D reconstruction of an object or a whole
environment. For example, if the complete reconstruction of an object is desired, the LiDAR
sensor needs to be positioned multiple times around the object to record point clouds. These
individual point clouds then need to be merged to retrieve a single point cloud of the full
reconstruction. Another application for point cloud registration is not targeting the recon-
struction itself but rather aims at refining the pose, where the LiDAR sensor was positioned
during the recording. A good reconstruction result and the proper knowledge of the LiDAR
pose are tightly coupled since only a well-refined pose will lead to a good reconstruction.
An example is the registration of a single LiDAR scan to a map. After registering a scan, the
refined pose is the best estimate of the LiDAR sensor’s position within the map.

Different types of point set registrations exist, e.g., rigid or non-rigid registration. In this
thesis, only rigid registrations are considered where the transformation is a homogeneous
4 × 4 matrix with only a rotational and translational component without scaling. Non-rigid
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(a) Stanford Bunny as triangular
mesh with 112k faces and 56k ver-
tices

(b) Overlay of the Stanford Bunny
mesh with 100k uniform point sam-
ples

(c) Pure point-sampled Stanford
Bunny

Figure 2.5: Illustration of the triangular mesh to point cloud conversion process. The Stanford Bunny
as triangular mesh (a) is converted to a pure point-sampled representation (c).

registration would require an affine transformation with scaling and possibly shearing. Typ-
ically, scaling of point clouds from a LiDAR sensor is not required, since all points are in the
same unit system after acquisition (i.e., metric or imperial). However, scaling is sometimes
used in trajectory alignment methods for evaluation, e.g., Umeyama’s method.

Point cloud registration is mostly performed between two point clouds, e.g., for LiDAR-
SLAM applications or 3D reconstructions. However, some circumstances require the regis-
tration of a point cloud to a triangular mesh. For example, when the goal is the LiDAR-based
relative localization to an object, whose model is directly available as a triangular mesh (e.g.,
as a CAD model). The mesh can be converted to a point cloud by uniform point-sampling of
the faces, but this would effectively remove the surface information of the mesh model. Fig-
ure 2.5 illustrates the conversion process of the Stanford Bunny from a triangular mesh to a
point cloud. The model initially consists of 112k faces and 56k vertices (a). Here, the efficient
surface description becomes visible. In areas with higher curvature, more faces/vertices are
required (front of the bunny). In contrast, flatter regions can be described with larger trian-
gles, resulting in fewer faces and vertices (center). The surface is then uniformly sampled to
generate a total of 100k points (b). Instead, the vertices of the mesh from (a) could be used di-
rectly as point cloud representation. However, the surface of larger triangles is then not well
described in the point cloud model and this may result in poorer point cloud registration
performance. The figure in (c) shows the final point cloud of the Stanford Bunny without
normals, which may be used for point cloud to point cloud registration.

In the following, algorithms for feature extraction, and point cloud to point cloud/mesh
registration without conversion are explained in detail.
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2.1.4.1 Point cloud features

Feature extraction is an important process for many applications on point cloud processing,
such as registration for 3D reconstruction or pose estimation. Feature extraction algorithms
are dependent on the point cloud density/resolution and noise level. To improve reliable
feature extraction, smoothing or outlier filtering methods may be used in a preprocessing
step. However, in most SLAM applications, voxelization rather than smoothing operations
are used to overcome the problem of growing map sizes and memory consumption in the
course of the robot exploration.

The extraction of features for global registration mainly takes place when a kidnapped
robot event occurred. In this case, no assumption about the position of the robot within the
map is necessary. It may also be used to register the point cloud model of an object in a
map, e.g., to find the position of the object or to count the present instances for inventory
purposes. A traditional and commonly used point feature is the Fast Point Feature His-
togram (FPFH) [25]. It creates descriptors from weighted, histogram-binned angular values
of the connections between a query point and its neighboring points. It is a real-time capable
version of Point Feature Histograms (PFH) [18]. Both methods require surface normals for
each query point to compute the angular values. Recently, there is a shift from hand-crafted
features, following deterministic and reproducible results to deep features, which may have
some kind of randomness involved depending on the architecture. The randomness may be
introduced already in the training process of the network by random weight initialization,
or random shuffling of the training data. During inference, randomness is introduced by
regularization techniques such as dropouts. One example of a neural network-based feature
is the Fully Convolutional Geometric Feature (FCGF) [26].

The mentioned features may also be used for feature-based local point cloud registration.
Most of these feature extraction algorithms are applied to dense representations of either a
complete scene or individual objects, which are registered to the scene. In the context of
LiDAR-SLAM however, the main challenge is to register a sparse incoming LiDAR scan to
either a previous scan or to the map. To overcome the sparseness of single scans, Droeschel
et al. [27] accumulate 2D LiDAR scans in a Micro Aerial Vehicle (MAV) frame. The motion of
the MAV during acquisition is estimated with visual odometry of two stereo cameras. The
resulting local maps then have a higher density than single scans and can be better integrated
into the global map with an approach based on Iterative Closest Point (ICP) using all points
to find correspondences.

Instead of using all points of the sparse scan for the registration to the map, feature detec-
tion algorithms have been developed, which leverage knowledge about the LiDAR sensor
specifications, e.g., the number of vertical scan lines or horizontal angular resolution.

The LOAM framework, proposed by Zhang et al. [12], extracts corner and surface fea-
tures directly from sparse 3D LiDAR scans. The extracted features are suitable for scan-
to-scan (odometry) and scan-to-map matching (mapping). The correspondence estimation
steps of the LOAM framework perform searches across several scan lines. Hence, for each
scan point, it needs to be reconstructed from which scan line of the LiDAR sensor it orig-
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inated. A requirement for this computation is knowledge of the technical specifications of
the sensor, i.e., vFoV and the number of vertical scan lines. For a 3D point p = [x, y, z], the
elevation angle φ can then be determined with

φ = arctan

(
z√

x2 + y2

)
· 180

π
. (2.3)

With the elevation angle φ for the point p, it is now possible to reconstruct from which scan
line of the LiDAR sensor p originated. The following equation assumes a zero-centered uni-
form beam configuration (i.e., equally distributed scan lines over the vFoV). For example, the
scan lines need to be distributed from −X to +X degrees vFoV. It is not suitable for sensors,
which have a varying scan line density (e.g., Ouster "Gradient") or when the scan lines are
not centered around 0 degrees (e.g., Ouster "Below horizon").

l =
⌊(
φ+

v

2

)
· n
v

⌋
(2.4)

v is the vFoV in degrees and n is the number of scan lines of the sensor. l is the zero-based
scan line number from which the point p originated. This equation can be adapted to be com-
patible with other types of sensors as well, e.g., varying scan line density or non-centered.
Figure 2.6(a) illustrates the result of the scan line sorting. The simulated scan shows an empty
indoor environment. The LiDAR sensor was placed on the ground during acquisition. Blue
color correspond to lower and red color to higher scan lines. The typical ring shapes of a
360◦ LiDAR sensor in the lower scan lines on the ground are visible.

The feature extraction process of the LOAM framework [12] computes corner and surface
features based on the curvature of each point. With the points sorted into the corresponding
scan lines, it is now possible to compute the curvature for each point by taking the position
of preceding and succeeding points in the same scan line into account. The curvature cp for
a point p is computed with the following equation:

cp =
∑

a=[x,y,z]

( −1∑
i=−5

pi(a)− 10 · p(a) +
5∑
i=1

pi(a)

)2

(2.5)

p is the current point, and pi represents the five preceding and succeeding points. The sum
of squares for each axis [x, y, z] is then the scalar curvature value cp for the point p. Fig-
ure 2.6(b) shows the scan points colored according to their curvature value. Low curvature
is represented by blue color and high curvature is represented by red color. It can be seen
that mostly the corners of the room have the highest curvature along the scan lines.

After the curvature computation, the corner and surface features are extracted. Assuming
360◦, the scan is first divided into six horizontal sections as illustrated in Figure 2.6(c). In each
section and for each scan line, the two sharpest (PE ), 20 less sharp corner features (PEless), and
the four flattest surface features (PH) are extracted. A curvature threshold of 0.1 is used to
separate corner (c > 0.1) and surface (c < 0.1) features. The sharpest and flattest features are
determined after sorting according to the curvature values (see Fig. 2.7). Less sharp features
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(a) Scan points colored according to their scan line
(blue = lower scan line, red = higher scan line)

(b) Scan points colored according to their curvature
value computed with Equation 2.5 (blue = low curva-
ture, red = high curvature)

(c) Division of the scan into six sections (d) Extracted sharp corner and flat surface features

Figure 2.6: Visualization of the feature extraction process from scan line sorting (a), curvature com-
putation (b), section division (c) to the extracted features per section and scan line (d). The scan was
generated in an indoor environment with a virtual VLP-16 LiDAR sensor from a simulation. Gaussian
noise was added to simulate ranging errors.

curvature

c = 0.1

Figure 2.7: Division of the scan points of one section and one scan line into the four types of features.
The scan points of the section are sorted ascendingly according to their curvature value.

can be understood as the 20 sharpest points, which also include the two sharpest features.
All remaining points are assigned to the category of less flat surface features (PHless), which
can be seen as something in between flat and less sharp features. The division into sections
ensures that features are extracted from all parts of the 360◦ scan. Otherwise, there might
be the chance that features are clustering around one object in the environment, which is
unsuitable for the SLAM algorithm. Figure 2.6(d) shows the resulting sharp corner (red) and
flat surface features (blue). The corners of the room are clearly well represented by equally-
spaced corner features. Surface features are also equally distributed on the walls and ground.
However, the forced extraction of sharp corner features in each section of the scan and for
each scan line results in incorrect/too many corner features. This effect can be seen on the
ground and on the walls, where practically no corners are to be expected. Nevertheless, this
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method guarantees a stable number of extracted features in each category and has proven
sufficient for most SLAM scenarios.

The presented corner and surface feature extraction algorithm is used for the experiments
in this thesis due to its reliability and real-time performance.

2.1.4.2 Point cloud to point cloud registration

Point cloud to point cloud registration aims at finding a transformation T , which best aligns
a source point cloud Ps = {ps1 , ps2 , · · · , psl} to a target point cloud Pt = {pt1 , pt2 , · · · , ptn}. A
typical sequence of steps is as follows:

1. Feature detection

2. Feature description

3. Correspondence estimation (feature matching)

4. Correspondence rejection

5. Optimization

Steps 1 and 2 are sometimes also called feature extraction.
Feature detection is the process of selecting a subset of keypoints from Ps and Pt. These

are points that best describe the scanned part of the environment, e.g., corners, edges, or
surfaces as described in Section 2.1.4.1. Detected features should also have a high chance for
redetection in other point clouds if the environment is the same. This property of a feature
detection algorithm is also called repeatability.

During feature description, the local neighborhood of points is considered for each key-
point to compute aX dimensional feature descriptor vector. It consists of up to several thou-
sand integer values (ZX ) or real (RX ) numbers. A common method is to estimate surface
normals from neighboring points and then convert the normals to feature vectors.

During correspondence estimation, matching pairs of features are detected between Ps
and Pt based on a nearest neighbor search in feature space. Alternatively, a nearest neighbor
search can be performed directly on the points in Ps and Pt, skipping the feature detection
and/or description process of steps 1+2 to find correspondences.

Correspondence estimation is known to suffer from outliers, which are incorrect point or
feature matches forming a correspondence. These can be filtered with correspondence re-
jection methods. The reason for removing incorrect correspondences is to improve the input
data quality for the following optimization in step 5. A variety of correspondence rejection
methods exist. Some apply a maximum or median distance threshold to each correspon-
dence in either point or feature space. Other methods eliminate correspondences with dupli-
cate point/feature usages or by performing a nearest neighbor consistency check from Ps to
Pt as well as from Pt to Ps. Only if the correspondence pair is confirmed in both directions, it
is retained as a valid match. More advanced rejection algorithms estimate a RANSAC model
to reject outliers, use thresholds on angles of corresponding surface normals, or only keep a
number of correspondences based on an overlap parameter between the two point sets [28].
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Table 2.2: Overview of the required steps for global and local registration of two 3D point clouds

Registration

type

Steps for point cloud registration

1. Feature 2. Feature 3. Correspondence 4. Correspondence
5. Optimization

detection description estimation rejection

Global and
x x x (in ZX/RX ) x (in ZX/RX ) x (in ZX/RX )

feature-based local

Local optional - x (in R3) x (in R3) x (in R3)

Every step from 1 to 4 is critical since the optimization of step 5 is highly dependent on
the correct correspondences. Mistakes in earlier steps will accumulate through later stages,
i.e., inliers in step 4 may be wrongly removed and outliers may be kept. The optimization
in step 5 aims at minimizing the residuals of an objective (cost) function. It may be as simple
as minimizing the Euclidean distances between the correspondences by refining the rigid
transform T . The transform aligns the source point set Ps to the target point set Pt. In the
case of point features, e.g., corner or surface points, more advanced cost functions minimize
line or planar distances, respectively.

Depending on the accuracy of the initial guess transformation T between Ps and Pt, one
speaks of global or local registration. Table 2.2 shows a comparison of the required steps for
global and local registration of two 3D point clouds. Global registration does not require a
good initial guess, but instead fully relies on the proper feature extraction and correspon-
dence estimation (steps 1-4) for the optimization in step 5. The key to this is the computation
of feature descriptors in step 2 and the correspondence estimation in feature space (step 3).
Some feature-based local registration methods combine the 3D point coordinates with fea-
ture information, resulting in a descriptor vector, e.g., ICPIF [29]. It then follows the same
steps as for global registration. In contrast, conventional local registration does not require
feature description and can therefore perform correspondence estimation, rejection, and op-
timization in point space R3. Neighboring points of the point sets Ps and Pt can be directly
used to form correspondences.

With a good initial guess and a rough point cloud to point cloud alignment, the trans-
formation can be refined with a local registration method. The initial guess may either be
known or can be acquired using a global registration algorithm. The most popular method
for local point cloud to point cloud registration is ICP. It does not require a prior feature
extraction but directly operates on the points. The first step is the correspondence estima-
tion between two point sets. An exhaustive search would have the complexity O(n) when
trying to find the exact nearest neighbor of a single query point in a target point cloud. To
quickly find the point correspondences between a source and target point cloud, k-d trees
are frequently used. A k-d tree is a space-partitioning structure with complexity O(log n) to
speed up nearest neighbor or radius searches in k-dimensional space. It is built by finding
the median along one data dimension, splitting this space in half, and recursively repeating
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this process until a certain depth level is reached or the leaf nodes contain a certain number
of points. Often it is sufficient to find the approximate nearest neighbors rather than per-
forming an exhaustive search, which additionally speeds up the computation. This can be
achieved by not traversing down the k-d tree to the last leaf node.

The first formulation of ICP was suggested by Chen et al. [30]. It essentially computes
the nearest neighbors between two point clouds and iteratively minimizes their distance by
repeating correspondence estimation and optimization steps until a convergence criterion is
met, e.g., the Mean Squared Error (MSE) is below a threshold. The objective function [30],
[31] to be minimized is denoted as

T ← arg min
T

∑
i

wi||T · psi − pti ||2 . (2.6)

Between a target point set Pt = {pt1 , pt2 , · · · , ptn} and a source point set Ps = {ps1 , ps2 , · · · ,
psl}, a point psi is transformed with a matrix T to find the closest point pti in Pt. T is then
iteratively optimized to minimize the correspondence distances between Pt and Ps. wi is a
binary operator, which is set to 0 when the correspondence distance is larger than an outlier
threshold and set to 1 if it is below. This formulation is known as the point-to-point variant
since it only uses point information in its optimization.

Chen et al. [30] also proposed a point-to-plane variant of ICP, improving local registration
performance. It leverages additional normal information for each point. The optimization
formulation is adjusted as follows:

T ← arg min
T

∑
i

wi||ηi · (T · psi − pti)||2 (2.7)

The formulation is very similar, but a scaling factor ηi is introduced, which scales the resid-
ual vector by the surface normal of pti . Evaluations have shown an improvement compared
to the point-to-point variant. However, it requires the existence or computation of surface
normals for each point in the target point cloud Pt.

Rusinkiewicz [32] proposed the use of a symmetric objective function, which considers
the normals of the target as well as source point cloud at a similar computational complexity
and a wider convergence basin. Segal et al. [31] then extended this approach by incorporat-
ing the plane-to-plane distance. The authors named the method Generalized-ICP (G-ICP).
It adds a probabilistic model to the optimization step shown in Eq. 2.6, but also requires
normals for the points. In the original publication, G-ICP outperforms standard point-to-
point and point-to-plane ICP on real and simulated LiDAR data. Other ICP variants, e.g.,
Trimmed-ICP (TrICP) [28], Cluster-ICP (CICP) [33], and Go-ICP [34] performing optimiza-
tion in a global search space have been proposed. Furthermore, the ICPIF algorithm [29] uses
invariant features, e.g., shape descriptors for the correspondences.

Also, learning-based methods have been proposed recently, namely Deep Closest Point
(DCP) [35] using DCGNN features [36] and Fast Global Registration (FGR) [37]. The latter
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claims to perform global registration with a shorter execution time than ICP. PointNetLK [38]
employs the Lucas & Kanade algorithm for point cloud registration by leveraging Point-
Net [39] as a learnable function. Teaser++ [40] employs a truncated least-squares cost func-
tion, making the registration more robust against outlier correspondences. Yin et al. pro-
posed LocNet [41]. The method leverages siamese networks for global coarse registration
with ICP refinement.

In this thesis, the initial guess is assumed to be sufficient, and therefore only local regis-
tration is applied to point clouds. Due to the absence of normals and sparseness of the raw
LiDAR data, the standard point-to-point ICP algorithm is applied.

2.1.4.3 Point cloud to triangular mesh registration

In contrast to point cloud to point cloud registration, some additional steps have to be taken
for point cloud to triangular mesh alignment. As previously discussed, an existing triangular
mesh may be converted to a point cloud and the registration methods of Section 2.1.4.2 may
then be applied. However, this would remove surface information, which can be exploited
especially in larger meshes with flat surfaces (e.g., walls, ceiling, and ground). These can be
efficiently described with few faces.

Similar to point cloud to point cloud registration, the goal is to minimize the distance be-
tween the point cloud and the triangular mesh surface. Also here, the distance between each
query point and the mesh can be seen as a straight line in 3D space. Since the mesh surface
is implicitly defined as triangular faces by the enclosing vertices, the computation of virtual
points on the faces is required as the nearest counterpart for each point in the query point
cloud. Let Pv = {pv1 , pv2 , · · · , pvn} be the virtual point set with n points on the mesh surface
consisting of m faces/triangles and let Ps = {ps1 , ps2 , · · · , psn} be the query (= source) point
cloud. The search for the nearest virtual point pvi on the mesh surface for each query point
psi can then be divided into two phases:

• Phase 1: Find the closest triangle on the mesh to the query point psi

• Phase 2: Find the virtual point pvi on the triangle from step 1 closest to psi

The number of points in Pv is implicitly determined by the size of Ps, since a virtual point
pvi needs to be found for each query point psi .

Phase 1 The first step is to find the closest triangle/face on the mesh for each point psi
in the query point cloud. The naïve approach is to compute the closest virtual point on all
faces of the mesh for each query point and then the virtual point with the shortest distance
is taken as the closest point on the mesh surface. However, this brute-force approach scales
with complexity O(m ∗n) for a number of faces m in the mesh for n query points. Assuming
n to be constant, the brute-force approach has a linear complexity O(m). The computational
time required for large meshes with hundreds of thousands or even millions of faces is not
tractable, nor is real-time capable for a larger number of query points.

In the area of computer graphics, several applications exist in which it is required to de-
tect object collision in real-time. Often, it is sufficient to just detect if a collision between
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(a) Bounding Sphere (b) Axis-aligned Bound-
ing Box (AABB)

(c) Oriented Bounding Box (OBB)

Figure 2.8: Illustration of the most common bounding volumes used in collision detection applica-
tions. The triangles inside the bounding volumes have equal sizes. From left to right: better bound
(less white space), more memory consumption, more expensive intersection/distance queries.

objects is taking place in a simulation or computer game, e.g., to trigger an explosion effect.
Although, sometimes it may be required to determine the colliding sections of the objects,
e.g., to visualize an impact or damage on the respective parts. With a large number of meshes
and faces, a real-time capable collision detection using a brute-force approach is not realistic.
For this reason, space partitioning techniques are used, i.e., Bounding Volume Hierarchies
(BVHs) consisting of a hierarchy (tree) of bounding volumes. BVHs are comparable to k-d
trees for point clouds.

The most common bounding volumes for collision detection are Bounding Spheres, Axis-
aligned Bounding Boxes (AABBs), or Oriented Bounding Boxes (OBBs) as illustrated in Fig-
ure 2.8. While the triangle is more tightly bound from (a) through (c), intersection tests and
distance queries are more complex. Also, the information to be stored about the bounding
volume itself is higher. For example, for the Bounding Sphere (a) only the [x, y, z] position
of the sphere center and its radius need to be stored in 3D space, corresponding to four real
values. The AABB (b) requires the minimum and maximum points of the box to be stored,
corresponding to six values. OBBs (c) are defined by their center point (three values), ori-
entation basis vectors (3 × 3 = 9) and three scalars defining the dimensions of the box [42].
Each OBB, therefore, requires 15 real values to be stored, almost three times as much as for
one AABB. A distance query between a point and an AABB can be efficiently performed by
just computing the excess distance of a point outside the box to its minimum and maximum
points, leveraging the axis alignment property. Bounding volumes may contain different
kinds of basic primitives, i.e., polygons. Although, due to its convex properties, collision
computation with triangles is computationally more efficient compared to the same number
of polygons of higher order [43].

Individual bounding volumes can be organized in a hierarchy, i.e., one AABB may also
contain several AABBs recursively. Like any hierarchical structure, a BVH has a tree degree
(width), also called the branching factor, and a depth. A larger degree results in more chil-
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Figure 2.9: Hierarchical BVH tree using AABBs as bounding volumes. The tree contains five triangles
as basic primitives. Reproduced and adapted from [44].

dren nodes but a more shallow tree, decreasing top-down traversal time while increasing
required collision checks at each level. The opposite holds for low-degree BVHs, respec-
tively. The most commonly used is a binary-degree BVH, due to its easy construction and
traversal [44]. Van den Bergen [45] was one of the first to describe an efficient way to up-
date and query binary AABB trees. For more information on how to construct or query BVH
structures efficiently, the reader is referred to the book of Ericson [46].

Among all types of BVH, AABB trees are one of the most used structures for real-time
collision avoidance due to their fast querying and construction. A major disadvantage, how-
ever, is that they can not be easily updated when the primitives inside were subject to a
rotation, e.g., they belong to a moving object. In contrast, due to its orientation information,
the bounding volumes inside an OBB tree can be updated with the new rotation without the
need for recreating the whole structure.

Figure 2.9 illustrates an AABB tree with binary degree containing five triangles. A closest
point computation will traverse down the tree by comparing the distance to the two AABBs
of the current level. The next branches are chosen recursively by selecting the AABB with the
shortest distance. Once the leaf AABB is found, the exact distance between the query point
and the triangle can be computed (Phase 2).

In this thesis, AABB trees are used for fast point cloud to triangular mesh queries. The
mesh object is static so there is no need for updating or recreating the AABB tree once it is
constructed. Another term the reader might come across for BVH construction is initializa-
tion.

Phase 2 After querying the AABB tree to find the closest triangle with vertices ABC to a
query point psi , the closest virtual point pvi on the triangle to the query point needs to be
computed. Despite it being an actual point on the triangle once found, it is termed virtual
here, since it is no pre-existing point as in a real point cloud. To find the virtual point on
the triangle closest to the query point, basic 3D geometry can be used. Ericson [47] describes
several ways to efficiently determine the closest distance and the virtual point. If the orthog-
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onal projection of psi on the plane of ABC lies within the triangle, the closest point is the
projection itself. Otherwise, it must lie on one of the edges of the triangle or maybe a vertex.

In the following, the notation of 3D geometry is adopted, which may coincide with the
general notation used in this thesis for point cloud processing.

Let Q′ be the projection of a point Q (e.g., the query point psi) onto the plane of a triangle
ABC. The barycentric coordinates [u, v, w] of Q′ can be determined directly from Q without
computing the projection itself.

pQAB = n · (QA×QB)

pQBC = n · (QB ×QC)

pQCA = n · (QC ×QA)

(2.8)

n is the unit normal vector on ABC computed with n =
AB ×AC

||AB ×AC||2
. pQAB , pQBC and

pQCA are then the proportions of the signed areas of the triangles QAB, QBC and QCA with
respect to the signed area of triangle ABC. The barycentric coordinates can then be derived
with:

pABC = pQAB + pQBC + pQCA

u =
pQBC
pABC

v =
pQCA
pABC

w =
pQAB
pABC

(2.9)

If all barycentric coordinates [u, v, w] are positive, the projection of Q must lie within ABC

and is, therefore, the closest point directly. Otherwise, it needs to be determined whether the
closest point is on one of the edges or is a vertex. Instead of checking all edges and vertices
for the closest point, it can be investigated in which Voronoi feature region the projected
point Q′ lies. The Voronoi regions of the vertices are determined by the intersection of the
negative halfspaces of the planes through the vertices, which are in turn determined by the
normal vectors of the adjacent triangle edges. Figure 2.10(a) illustrates the vertex Voronoi
regions and the negative halfspaces at the vertex A. The intersections of the negative halfs-
paces are marked in blue color (vertex Voronoi regions). They mark the regions in which a
projected query point on the plane of ABC has one of the vertices A, B, or C as the closest
counterpart on the triangle. The white space outside the triangle and between the vertex
Voronoi regions, mark the areas in which projected points have a virtual point on the edges
AB, BC or CA as the closest point on the triangle.

When evaluating the barycentric coordinates of three projected points Q′, R′, and S′ in
Figure 2.10(b), one will notice that one coordinate is always negative. However, only from
the barycentric coordinates, it can not be easily determined whether the closest point is one
of the vertices A/B or whether it lies on the edge AB. Also, R′ has a negative value in a
different barycentric coordinate than Q′, while still having A as its closest point.

Without having to compute the barycentric coordinates of the projected point Q′ on the
plane of ABC, it can be determined whether Q′ lies within the vertex Voronoi region of A by
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(a) Vertex Voronoi regions of a triangle ABC and
the negative halfspaces at A

Q’
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(b) Orthogonal projection of three points onto the
plane of ABC

Figure 2.10: Illustration of the vertex Voronoi regions of a triangle ABC and exemplary orthogonal
projections Q′, R′ and S′. Partially reproduced from [47].

determining s and t as illustrated in Figure 2.10(b):

s =
AQ ·AB

AQ ·AB + BQ ·BA

t =
AQ ·AC

AQ ·AC + CQ ·CA

(2.10)

If s and t are negative, Q′ definitely lies in the vertex Voronoi region of A and the closest
point toQ/Q′ is the vertexA. In fact, s and t ofQ′ as illustrated lie on the extended segments
of AB and CA and are therefore indeed negative. The closest point to Q′ on the triangle in
Figure 2.10(b) is A.

If the conditions above are not met, the closest point to Q′ may lie on the edges of the
triangle. As an example, the edge AB is analyzed in the following. Let r be the counterpart
of s on AB from the vertex B. While s is slightly negative in Figure 2.10(b), r is positive,
starting from B through A to the end of s. r is computed with

r =
BQ ·BA

AQ ·AB + BQ ·BA
. (2.11)

To determine, whether a projected point Q′ lies in the Voronoi feature region of AB with its
closest point on the edge AB, the following conditions must be met:

pQAB <= 0 and

s >= 0 and

r >= 0

(2.12)

pQAB from Eq. 2.8 is negative, if Q′ lies outside the edge AB and 0 if it is directly on the
edge. At the same time, s and r are only positive (or 0) if Q′ lies in the area between the
vertex Voronoi regions of A and B. For example, S′ fulfills these conditions as illustrated in
Figure 2.10(b). Finally, the closest point to S′ is a virtual point V on the edge AB, which can
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be computed with
V = A+ s ∗AB . (2.13)

Similarly, the same checks can be performed for the vertices B/C and the edges BC/CA.

The processes of finding the closest triangle (Phase 1) and finding the closest virtual
point on this triangle (Phase 2) are repeated for all points of the query point cloud Ps. The
found virtual points and their corresponding query points then form point-to-mesh corre-
spondences, which may be used in methods for local registration (Section 2.1.4.2).

In the area of BIM, the alignment of an accumulated laser scan to a CAD model is a com-
mon procedure for construction progress monitoring. Bosché et al. [48] proposed a semi-
automatic registration with a planar surface feature extraction from the CAD model and the
accumulated scan. A coarse alignment is achieved by manual point selection to create corre-
spondences and ICP is employed for fine alignment.

2.1.5 Trajectory evaluation

The trajectory evaluation is a very important part of a scientific SLAM pipeline. Unfortu-
nately, its importance is often underestimated and it generally receives little attention in
publications. The major outputs of a SLAM pipeline are the map and the path a robotic plat-
form has followed during its exploration, also called trajectory. It is composed of a sequence
of poses, which are computed at discrete time steps from the sensor data, e.g., LiDAR/IMU.
The output of a 3D LiDAR-SLAM algorithm is usually 6-DoF poses, containing the [x, y, z]

position and [roll, pitch, yaw] Euler angles as orientation information. Alternatively, the lat-
ter can also be represented as a quaternion.

The evaluation of a trajectory output of a SLAM algorithm is conducted in two phases:

1. Alignment of a SLAM trajectory with a ground-truth (GT) trajectory

2. Trajectory error evaluation with selected metrics

Mistakes in the trajectory evaluation can therefore occur during the alignment of the two
trajectories, but also when computing the error metric. In the following, techniques for the
alignment of trajectories and selected evaluation metrics are discussed in more detail.

2.1.5.1 Trajectory alignment

The alignment of the SLAM and GT trajectories is only required, if they are not in a common
coordinate frame, i.e., the transformation between the SLAM and GT coordinate systems is
unknown. In a simulation environment, the real (GT) position of the LiDAR sensor and all
other objects and their coordinate frames are known, even with a high update rate. There-
fore, the trajectory computed by the SLAM algorithm can be directly compared to the GT
trajectory (step 2) without an additional alignment.

Unfortunately, in reality there is a disconnect between the coordinate frames of the SLAM
algorithm and the GT system. The coordinate frame of the map (e.g., world {W}) is com-
monly initialized at the starting position of the robot, while the coordinate frame of the GT
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system may have its own calibrated world frame as is the case for the motion capture in-
frared camera system "Vicon"2. Due to the statically mounted cameras, its coordinate frame
is initialized once the calibration of the system has finished. All following pose recordings
are then automatically in this frame. Since the robot does not always start in the same (exact)
position due to positioning imprecision by the operator, the transform between the Vicon
and SLAM coordinate frames is not only unknown but also varies for each exploration run.
One could mark the starting location of the robot on the ground and compute the transform
between the frames once, assuming always the same offset. However, robot positioning
imprecision, even if it is a few centimeters in translation or a few degrees in rotation may
result in an artificially high SLAM trajectory error. If undetected, wrong conclusions from
the performance of the SLAM algorithm are drawn in the worst case.

Depending on the information retrieved from the GT system (i.e., 3-DoF or 6-DoF), dif-
ferent alignment strategies can be applied. The methods presented in the following assume
the alignment of a SLAM and GT trajectory. However, they can also be used to determine the
offset between two SLAM trajectories, e.g., different SLAM algorithms or parametrization.

Origin alignment One of the most common methods is the origin alignment strategy. Es-
sentially, it determines the initial offset in translation and rotation between the first matching
timestamp of the GT measurements and SLAM poses. The first common timestamp is as-
sumed to be the start of the robot exploration and trajectory. If the GT system provides a
full 6-DoF pose, the origin alignment is the most suitable strategy and results in the most
accurate trajectory alignment.

Figures 2.11(a) and 2.11(b) show a 3D LiDAR-SLAM and GT trajectory before the align-
ment. The offset between the trajectories consisting of a translation and rotation is clearly
visible. The rotational part includes an offset in yaw and pitch. Both trajectories consist of
individual 6-DoF poses. The first measurements are illustrated as coordinate systems in the
figures. The transform offset SLAM,1TGT,1 can then be easily determined with

SLAM,1TGT,1 = T−1SLAM,1TGT,1 , (2.14)

where T SLAM,1 is the first SLAM pose and TGT,1 is the first GT measurement with corre-
sponding matching timestamps. SLAM,1TGT,1 can then be used to align the GT to the SLAM
trajectory with

TGTaligned,1:n = TGT,1:n
SLAM,1T−1GT,1 (2.15)

or vice versa. The GT trajectory consists of n 6-DoF poses, denoted as TGT,1:n. It shall be
noted that for the following error evaluation, it is not important in which direction the tra-
jectories are aligned, i.e., the SLAM to the GT or vice versa. Usually, only the errors, e.g.,
Euclidean distances between the poses of the trajectories are computed. Figures 2.11(c) and
2.11(d) show the trajectories after the origin alignment. The coordinate systems now per-
fectly align. However, a height drift of the SLAM trajectory is clearly visible compared to the
GT. Since the coordinate systems are aligned, the error is solely due to inaccurate pose esti-
2 https://www.vicon.com

https://www.vicon.com
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(a) Before the alignment in perspective view (b) Before the alignment in side view

(c) After the origin alignment in perspective
view

(d) After the origin alignment in side view

(e) After the Umeyama alignment in per-
spective view

(f) After the Umeyama alignment in side view

Figure 2.11: Trajectories of a 3D LiDAR-SLAM algorithm (green) and GT system (red) before and af-
ter different alignment strategies in perspective (left) and side views (right). The coordinate systems
illustrate the first measurement values of the corresponding trajectories.

mation of the SLAM algorithm. After the origin alignment, the pose error can be determined
with selected methods as discussed in Section 2.1.5.2.

Umeyama alignment Another common method for trajectory alignment is based on Ume-
yama’s point set registration algorithm [49]. If no knowledge about the relative transfor-
mation between the SLAM and GT trajectories exists and no assumptions can be made, the
method of Umeyama is a good choice for trajectory alignment. It finds the transformation
T to align two point sets, e.g., X and Y . The point sets may also be the positional compo-
nents [x, y, z] of two trajectories T SLAM,1:n and TGT,1:n, consisting of n individual poses with
matching timestamps. The method is based on least-squares optimization using Singular
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Value Decomposition (SVD) and it is capable of not only determining the rotation and trans-
lation but also the scale to align X and Y . Given the two point sets X = {x1, x2, · · · , xn} and
Y = {y1, y2, · · · , yn}, the rotation matrix RUm, translation vector tUm and scale c to align the
two sets are computed with [49]:

µX =
1

n

n∑
i=1

xi (2.16)

µY =
1

n

n∑
i=1

yi (2.17)

∑
XY

=
1

n

n∑
i=1

(yi − µY )(xi − µX)T (2.18)

UDV T = SVD

(∑
XY

)
(2.19)

S =

I if det(U) det(V ) = 1

diag(1, 1, · · · , 1,−1) if det(U) det(V ) = −1
(2.20)

RUm = USV T (2.21)

σ2X =
1

n

n∑
i=1

||xi − µX ||2 (2.22)

c =
1

σ2X
tr(DS) (2.23)

tUm = µY − cRµX (2.24)

µX and µY are the centroids of X and Y ,
∑

XY is the covariance matrix, and UDV T is the
decomposed covariance. Equation 2.20 is the Kabsch algorithm to ensure a right-handed co-
ordinate system when computing the rotation matrix RUm in Eq. 2.21. σ2X is the variance of
X . If the scale c is not to be corrected, it can be set to c = 1 when computing the translation
tUm in Eq. 2.24.

Let

tGT,1:n =


tTGT,1 1

...
...

tTGT,n 1

 (2.25)

be the concatenation of the n translational components of the GT poses:

TGT,i =

 RGT,i tGT,i

0 1

 (2.26)
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And let

SLAMTGT =

 RUm tUm

0 1

 (2.27)

be the transformation matrix consisting of the rotation matrix RUm and translational vector
tUm computed with Umeyama’s method in Equations 2.21 and 2.24, respectively. Note that
in Eq. 2.26 RGT,i = I , if the GT provides only 3-DoF positions. The Umeyama-aligned GT
positions tGTaligned,1:n can then be computed with

tGTaligned,1:n = tGT,1:n(SLAMT−1GT)T . (2.28)

Alternatively, the GT poses can be aligned using the transformation matrices TGT,1:n di-
rectly:

TGTaligned,1:n = TGT,1:n
SLAMT−1GT (2.29)

Figures 2.11(e) and 2.11(f) show the results of Umeyama’s alignment method. Comparing
it with the results of the origin alignment in Figures 2.11(c) and 2.11(d), it can be seen that
the trajectories are better aligning with Umeyama due to the least-squares method. How-
ever, since the GT trajectory in this example provides full 6-DoF poses, the origin alignment
is more accurate. In fact, Umeyama alignment also corrects the drift caused by the SLAM
algorithm, which is still clearly visible in Figure 2.11(d). While the trajectory alignment with
Umeyama seems successful visually, it significantly alters the following trajectory error com-
putation and influences the conclusions drawn from the accuracy of the SLAM algorithm.
The "evo_tools" software package3 by Michael Grupp is a helpful tool to align trajectories,
which also implements optional Umeyama alignment and scale correction. If not used with
caution, the error displayed may be significantly lower than the true SLAM error.

If the GT system only provides 3-DoF position information, origin alignment can not be
performed, since the rotation component of the relative transformation between the SLAM
and GT trajectories is unknown. In this case, Umeyama’s method can be used to determine
parts of the rotation, i.e., roll, pitch, and/or yaw. A typical artifact of Umeyama alignment
after the error computation is that the pose error does not start from 0, as one would expect.
Instead, it may have already a higher value even at the first pose due to the least-squares
optimization by aligning the whole trajectory. In contrast, the pose error when using origin
alignment is 0 at the beginning since T SLAM,1 ≡ TGTaligned,1.

A similar method to Umeyama is the rigid-body transformation estimation by Horn et
al. [50].

Alignment using sensor information If the GT system provides only 3-DoF position data
without orientation information, Umeyama alignment may be used to estimate the transfor-
mation between the trajectories. Instead of using Umeyama’s method to estimate the full
6-DoF transformation, it can be used to only estimate some of the Euler angles, if some as-
sumptions can be made. For example, if the XY -plane of the GT system is assumed to be
3 https://github.com/MichaelGrupp/evo

https://github.com/MichaelGrupp/evo
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fully parallel to the ground (i.e., rollGT,1 = 0, pitchGT,1 = 0), and an IMU sensor mounted
on the LiDAR sensor measures rollSLAM,1 and pitchSLAM,1 with its accelerometer, then only
the yaw offset needs to be determined by the Umeyama alignment. Hence, this removes the
possibility to draw conclusions about the yaw drift of the SLAM trajectory but allows for
proper evaluation of roll and pitch drift.

In special scenarios, LiDAR information can be used directly to determine the 6-DoF
alignment transformation. If both, the position of a 3D object in the coordinate frame of the
GT system and the geometry of the object in form of a 3D point cloud or mesh are known,
local registration methods can be employed to align captured LiDAR data at the starting po-
sition of the robot to the known 3D model. Since the position of the known 3D object in the
GT coordinate frame is known, the output transform of the local registration can be used to
determine the trajectory alignment transformation SLAMTGT.

2.1.5.2 Evaluation metrics

After the alignment of the SLAM and GT trajectories, the errors can be computed, which are
the most important results to evaluate the performance of a SLAM algorithm. A direct influ-
ence on the evaluation metrics is the alignment strategy from Section 2.1.5.1. Wrong origin
alignment will most likely increase the errors, while on the other hand, Umeyama alignment
effectively removes drift and therefore artificially decreases the trajectory error. For this rea-
son, the errors computed with the evaluation metrics are highly dependent on the proper
trajectory alignment.

Evaluation metrics have the requirement of synchronized timestamps in common, i.e.,
the SLAM and GT system should be using the same master clock or should be synchronized
by adjusting a time offset. Due to different sampling frequencies of the LiDAR sensor and GT
system, timestamps will never match exactly. Instead, interpolation techniques on the poses
of the trajectories can be used, e.g., linear interpolation. A maximum time interval threshold
can be used to avoid too high interpolation errors if the time between two measurements is
too large. For example, the interpolation between two SLAM poses with a time distance of
1 s will lead to a much larger error compared to the interpolation between poses with a time
distance of 0.1 s. If no maximum interpolation threshold is set, the errors may exceed the real
position estimation errors of the SLAM system and influence the results.

A metric not further discussed in this thesis is the Relative Pose Error (RPE), which com-
pares the relative drift of one trajectory compared to another. Kümmerle et al. [51] described
a method to compare the relative poses of a trajectory with another. In other words, it com-
putes the translational and rotational displacement between short sequences of the two tra-
jectories and represents the offset in one single error metric.

In the following, the Absolute Pose Error (APE) and Rotational Error (RE) evaluation
metrics are explained in more detail.

Absolute Pose Error (APE) It is one of the most used metrics when evaluating the perfor-
mance of SLAM algorithms. The computation is identical to the Absolute Trajectory Error
(ATE) used by Sturm et al. [52] for evaluating the performance of RGB-D SLAM. The authors
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provide an open-source implementation to compute the ATE in their TUM RGB-D bench-
mark suite4.

The metric computes the translational offset between the absolute poses of two aligned
trajectories. Assuming the comparison of aligned SLAM and GT trajectories, let

et,i = ||tSLAM,i − tGTaligned,i||2 (2.30)

be the translational error between a SLAM and corresponding aligned GT pose (e.g., as in
Eq. 2.28). The maximum APE of the SLAM trajectory can then be simply determined with

APEmax = max(et,1, et,2, · · · , et,n) . (2.31)

Following the same principle, the median APE, mean APE, minimum APE and APE Root
Mean Squared Error (RMSE) can be computed:

APEmedian = median(et,1, et,2, · · · , et,n) (2.32)

APEmean =
1

n

n∑
i=1

et,i (2.33)

APEmin = min(et,1, et,2, · · · , et,n) . (2.34)

APERMSE =

√√√√ 1

n

n∑
i=1

e2t,i (2.35)

APEmin is the least commonly used evaluation metric since the first SLAM and GT pose are
perfectly aligned when using the origin alignment strategy. Therefore, APEmin = 0 and no
conclusions can be drawn about the SLAM performance from this metric. A good combi-
nation is to provide result values for APEmax, APEmedian, APEmean and eventually APERMSE.
Since the APEmean is more susceptible to high APEmax outliers, the APEmedian is an important
value for the performance evaluation of the SLAM algorithm.

Rotational Error (RE) Apart from the translational error computed with the APE metrics,
the RE of the SLAM poses is another important metric when evaluating the performance of a
SLAM algorithm. The RE can only be computed if both, the SLAM algorithm and GT system
provide 6-DoF poses.

Assuming the SLAM and trajectory-aligned GT poses in homogeneous 4 × 4 format
T SLAM,1:n and TGTaligned,1:n, the error transform between two matching poses with index i

is then denoted as
SLAM,iTGTaligned,i = T−1SLAM,iTGTaligned,i . (2.36)

Let R be the 3 × 3 rotation matrix component of an error transform SLAM,iTGTaligned,i. The
error rotation matrix with a ’ZYX’ axis order can then be converted to Euler angles (roll = φ,
4 https://vision.in.tum.de/data/datasets/rgbd-dataset/tools#evaluation

https://vision.in.tum.de/data/datasets/rgbd-dataset/tools#evaluation
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pitch = θ, yaw = ψ) for easier interpretation:

sy =
√
R2

1,1 + R2
2,1 (2.37)

φ =

arctan2(R3,2,R3,3) if sy ≥ ε

arctan2(−R2,3,R2,2) if sy < ε
(2.38)

θ = arctan2(−R3,1, sy) (2.39)

ψ =

arctan2(R2,1,R1,1) if sy ≥ ε

0 if sy < ε
(2.40)

sy is a variable to detect the phenomenon of angle singularities, which may lead to an effect
often referred to as "gimbal lock". It causes the loss of one DoF, if two of the three axes are
reaching a parallel configuration and is especially critical for mechanical gimbals. For this
reason, the conditional terms are introduced to handle possible singularities properly. To
express the rotational error in a single scalar, the Euclidean norm can be computed:

eR =
√
φ2 + θ2 + ψ2 (2.41)

eR is the rotational error of a single SLAM pose. Equations 2.31 to 2.35 for the APE compu-
tation can then also be applied using eR to compute the metrics for the rotational error.

2.1.6 Extended Kalman Filter (EKF)

The EKF is a nonlinear state estimator often used to predict and correct the state of a system,
which suffers from noise, e.g., measurement noise. Instead of fully relying on the system
state computed from the most recent measurement, the EKF also considers the previous sys-
tem state, covariances, and motion model. An easy example of an EKF application is the
prediction of the position of an airplane, which is disappearing behind a cloud. Considering
the motion before it disappears behind the cloud, the EKF is capable of predicting the posi-
tion of the airplane for a short amount of time. Once the airplane reappears, the state of the
EKF is corrected with the new observation.

In practice, EKFs are a widely used method for sensor fusion, e.g., late fusion. The 6-
DoF pose output of a SLAM algorithm and 9-DoF IMU measurements (orientation, angular
velocity, linear acceleration) can be used as input to an EKF. Since the SLAM output usu-
ally has a lower frequency than IMU sensors, the EKF can be used to effectively increase the
update rate of the final fused pose output. Measurement covariance can be used to control
the weight of the SLAM pose and IMU data, depending on the confidence in the current
measurements.

Like the conventional Kalman Filter (KF) as its linear counterpart, it consists of a predic-
tion and correction step. Note that in literature and implementations, the matrices may have
different names, and also the formulation might be varying. The prediction step of an EKF
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can be denoted as follows:

xK|K−1 =f(xK−1|K−1)

PK|K−1 =FK−1PK−1|K−1F
T
K−1 + QK−1

(2.42)

xK|K−1 and PK|K−1 are the predicted state and predicted process noise covariance, respec-
tively. f(·) is the state transition function. It is computed from the corrected previous system

state xK−1|K−1. FK−1 =
∂f

∂x

∣∣∣∣
xK−1|K−1

is the Jacobian of the state transition function. QK−1

is the constant process noise covariance, which is added after each prediction step. The val-
ues are tuned depending on the application. The correction step consists of the computation
of the Kalman gain KK , system state xK|K and state covariance PK|K .

KK =
PK|K−1H

T
K

HKPK|K−1H
T
K + RK

(2.43)

xK|K =xK|K−1 + KK(zK −HKxK|K−1)

PK|K =(I −KKHK)PK|K−1(I −KKHK)T

+ KKRKKT
K

(2.44)

HK is the measurement model matrix or is sometimes referred to as the "state-to-measure-
ment" function. RK is the measurement noise covariance, which specifies the confidence in
the current measurement values. A higher covariance will decrease the weight of the Kalman
gain KK . In Equation 2.44, the current state xK|K and state covariance PK|K are updated
with the Kalman gain. During the state update, the Kalman gain is used to control the in-
fluence of the new measurement zK . If the Kalman gain is high, the new measurement is
fully trusted and it therefore heavily influences the new system state. On the other hand, a
low Kalman gain gives no weight to the new measurement and therefore only relies on the
prediction from Equation 2.42. Finally, the state covariance PK|K is also updated with the
Kalman gain for the next EKF iterations.

Typically, an EKF runs with a periodic update function and a constant frequency. In-
coming measurements are stored in chronologically-sorted queues. For each measurement
in the queue, one prediction and correction step are performed. Although, in practice, sit-
uations may occur where the prediction step is omitted, i.e., when an old measurement is
received. Care should be taken when setting the frequency of the EKF much higher than
incoming odometry data, i.e., a SLAM algorithm has a high processing delay. Let’s assume
an EKF and IMU frequency of 100 Hz and a LiDAR-to-SLAM-pose delay of 50 ms. Up to 5

IMU measurements will be integrated into the current state of the EKF until the SLAM pose
from 50 ms old LiDAR data is available to the EKF. Since the integration of this old data into
the state might have a significant negative effect on the reliability of the EKF output [53],
the frequency of the EKF should not be set too high. Even though a high fused update rate
may feel appealing. In an ideal case, the odometry measurement is instantaneous (e.g., from
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wheel encoders) and immediately available together with the IMU data to the EKF. To com-
pensate for sensor delays, Das et al. [54] proposed the Augmented State EKF (AS-EKF) for
real-time telepresence navigation using sensor measurements subject to transmission delays.
Van Merwe et al. [55] proposed the use of a Sigma-Point Kalman Filter (SPKF) to fuse delayed
GPS measurements with IMU and altimeter data.

2.2 Related work

This section gives an overview of LiDAR-SLAM algorithms, their differences, and ap-
proaches, in particular the LOAM framework [12]. Subsequently, publications are discussed,
which incorporate prior knowledge of different kinds and formats in order to improve lo-
calization and mapping accuracy. Finally, this section presents related work in the area of
trajectory and map optimization for LiDAR-SLAM by closing loops or absolute relocaliza-
tion.

2.2.1 LiDAR-SLAM

LiDAR-SLAM algorithms have gained increasing attention from the robotics community
since the first 2D LiDAR sensors became available. In the late years of the 1990s in modern
LiDAR-SLAM, typically 2D LiDAR sensors were affordable and used to determine the pose
in an unknown environment. In 1997, Lu et al. [56] presented a graph mapping approach
for 2D scan matching by modeling poses as random variables and solving a maximum like-
lihood criterion.

If a 6-DoF pose and a 3D map representation were required, researchers mounted the
sensors on actuators to continuously rotate the LiDAR sensor. Many different variations of
actuated 2D LiDAR sensors for 3D perception were proposed. KaRoLa [57] is a hardware
setup comprising a rotating 2D LiDAR, an embedded PC, and IMU including wireless con-
nectivity. Bosse et al. [58] mounted a 2D LiDAR on a spinning platform and perform LiDAR
sweep matching with ICP. Their approach is sometimes referred to as C-SLAM. Later they
extended the approach by mounting a 2D LiDAR combined with an IMU on a spring [59].
They termed their innovative device Zebedee, which can be handheld, hands-free, or vehicle-
mounted. Similarly, Schadler et al. [60] also use a continuously actuated 2D LiDAR sensor
for 3D perception but use a surfel-based map representation. Surfels [61] are voxel-like vol-
umes, containing surface shape and reflectance distributions of the points within the volume.
By finding surfel associations between a scan and the target map, followed by a pose opti-
mization using the Levenberg-Marquardt (LM) method, a 6-DoF pose can be determined.
Since single 2D LiDAR scans are very sparse, Droeschel et al. [27] proposed to accumulate
2D scans from a rotating LiDAR with visual odometry from two stereo cameras. Obstacles
and the robot position can then be extracted from the accumulated local map. Map points
are stored in a multiresolution grid. This structure is also leveraged to find point correspon-
dences for the pose estimation. Later, Droeschel et al. [62] proposed a multimodal sensor
setup on a MAV, composed of a rotating 2D LiDAR, two stereo cameras, and ultrasonic sen-
sors. Obstacle avoidance, trajectory planning, and pose estimation are performed with a
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multiresolution map. The ultrasonic sensors are able to detect windows, which is not reli-
ably possible with a LiDAR or camera. In a later publication [63], the authors improved map
maintenance for a more robust registration and demonstrated their approach on the DARPA
Robotics Challenge (DRC) for human assistance in disaster scenarios. Kohlbrecher et al. [64]
introduced Hector-SLAM, a popular 2D open-source SLAM framework. It is capable of in-
tegrating the pose estimation from scan-to-map matching with IMU measurements using a
multiresolution grid map. It is available as an open-source software package in the Robot
Operating System (ROS) framework [65]. One of the most known open-source frameworks
for 2D LiDAR-SLAM, which supports loop closures, was introduced by Hess et al. [66] un-
der the name "Google Cartographer". The map is divided into submaps. New scans are only
inserted into the local submap, while other submaps are used for loop closure detection. For
the scan matching, the authors employ a least-squares optimization approach. Cartographer
with LiDAR-only sensor data is running in 2D by default, providing a 3-DoF pose and 2D
map. It is also capable of running in 3D, computing 6-DoF poses. However, it requires ad-
ditional IMU input to pre-transform 3D scans according to the orientation measured by the
IMU.

Opromolla et al. [67] proposed a 2D LiDAR-Inertial SLAM framework, fusing IMU with
the pose obtained from scan-to-scan matching using a modified ICP algorithm. Mapping
is conducted with extracted line features from LiDAR scans. Kumar et al. [68] proposed to
use two 2D LiDAR sensors and an IMU for UAV position estimation. The primary LiDAR is
used together with IMU data to perform scan-to-scan matching, yielding a 2D position. Line
segments are extracted from the secondary LiDAR data and used as 1D height information.
The position and height are then fused in a Kalman Filter to obtain the 3D position.

The evaluation of the map quality is challenging if no GT poses are available. Typically,
the accuracy of pose estimation is tightly coupled with the quality of the 3D reconstruction,
since the estimated poses are used to accumulate the LiDAR scans in a common coordinate
frame. Razlaw et al. [69] proposed the Mean Map Entropy (MME) and Mean Plane Variance
(MPV) metrics to evaluate 3D map quality without a GT.

In recent years, prices of 3D LiDAR sensors dropped significantly and became more af-
fordable. Besides the well-known 3D LiDAR manufacturer Velodyne, Ouster has recently
started selling 3D LiDAR sensors with up to 128 scan lines at competitive prices. Hence,
in the research community, there was a shift from 2D to 3D LiDAR sensors for 6-DoF pose
estimation. SegMatch [70] is an open-source 3D LiDAR framework, which is based on ex-
tracting segments rather than point features from the LiDAR scan. An algorithm clusters
points belonging to the same object and a feature vector is composed, describing statistics of
the object/segment point cloud. A random forest classifier matches the segments between
the source point cloud and a target map. The latter can be created online or pre-loaded from
the previous exploration. The method also features a loop closing mechanism. The authors
later further developed the approach in SegMap [71]. Instead of using hand-crafted descrip-
tors to describe the segments, Convolutional Neural Networks (CNNs) are employed for
descriptor vector generation, reconstruction, and segment classification, e.g., building, car,
or other types. A major improvement is the capability to reconstruct the segments for obsta-
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Figure 2.12: Pipeline of the LOAM framework by Zhang et al. [12]

cle avoidance and situation awareness by an operator. LOL [72], proposed by Rozenberszki
and Majdik, is an open-source 3D LiDAR-SLAM framework. It uses segment features and
correspondence estimation of SegMap [71]. The method requires an a priori known map for
coarse global relocalization, e.g., from an offline recording that could be provided by auto-
motive companies for autonomous driving scenarios. Fine relocalization is achieved with
ICP. Zhen et al. [73] extended the Cartographer framework to support 2D and 3D static and
rotating LiDAR sensors. They found that a rotating LiDAR is crucial for reliable height esti-
mation. Despite multiple vertical scan lines, 3D LiDAR sensors typically only have a small
vFoV, i.e., 30◦ for a Velodyne VLP-16 and 45◦ for an Ouster OS1-128. If the sensor is mounted
on a UAV, not enough ground points are captured for reliable height estimation. Hence, the
authors recommend additionally rotating the sensor to capture an even wider FoV. Dubé et
al. [74] extended the SegMatch framework [70] later on, to support even multiple agents.
Each agent creates its own source map, in which it localizes. Frequently, the source map is
matched against a global target map to detect loop closures. The method uses the segment
features proposed in the SegMatch approach for correspondence estimation. LLOAM [75] is
a full 3D LiDAR-SLAM algorithm, similar to [74]. It performs real-time scan segmentation
for odometry estimation, mapping, and loop closure.

Zhang et al. [12] proposed the open-source LOAM framework based on corner and sur-
face features extracted from 3D LiDAR scans. The contributions presented in this paper
are all based on this framework, due to ease of implementation and top performance on the
official KITTI odometry benchmark [76] for LiDAR-only sensor data as of today5. The frame-
work is specialized in 3D LiDAR data with equally distributed vertical scan lines and a 360◦

hFoV. The pipeline can be seen in Figure 2.12. It basically consists of three modules: Scan
registration, odometry estimation, and mapping. Their functionality is explained in more
detail in the following.

Scan registration The name of the module may be misleading, since a scan registration
may be understood as aligning the scan to another scan or point cloud. In fact, the mod-
ule performs the feature extraction as described in Section 2.1.4.1. Incoming scan points are
first assigned to the corresponding scan line they originated from. For this, the number of
scan lines and vFoV of the LiDAR sensor must be known. Subsequently, the curvature of
the points within each scan line is computed. A number of corner and surface features is ex-
tracted from six sections of the 360◦ LiDAR scan. The features are then sent to the odometry
module.
5 May 2022



40 Chapter 2. Background and related work

(a) Correspondence detection for corner fea-
tures. For a corner feature pi in the current scan,
pj is the closest corner feature of the previous
scan on any scan line and pl is the closest cor-
ner feature to pi on a neighboring scan line of
pj , i.e., above or below.

(b) Correspondence detection for surface features.
For a surface feature pi in the current scan, pj is the
closest surface feature of the previous scan on any scan
line, pm is the closest surface feature on either the same
or neighboring scan line of pj and pl is the closest sur-
face feature on definitely another scan line than pj .

Figure 2.13: Correspondence detection for odometry estimation in the LOAM framework [12]. Blue
lines depict the scan lines of the previous scan. pi is the feature point in the current scan for which
correspondences are found in the previous scan. Reproduced from [12].

Odometry estimation The main task of the odometry estimation module is to compute
the transform between consecutive LiDAR scans PLt−1 and PLt at times t−1 and t using the
features from scan registration. As for any point cloud registration method, correspondences
between the two scans need to be established, which are then used for an optimization step
to obtain the transform.

Figure 2.13 depicts the correspondence detection between a feature pi of the current scan
and features of the previous scan. For corner features, a correspondence is created between
pi and two other corner features of the previous scan, as depicted in (a). Let pa = pj and
pb = pl, the residual vector r for a single corner feature pi can then be computed with

r =
(p̂i − pa)× (p̂i − pb)
||(pa − pb||2

. (2.45)

p̂i is the transformed corner feature of the current scan using the currently optimized trans-
form. The optimization process aims at minimizing ||r||22 by effectively converging the cross
product in the numerator of the equation towards zero. By definition, a cross product is zero,
when (1) either of the product’s vectors point in the same or opposite directions, or (2) either
of the vectors has a length of zero. In both cases, pi would lie on the line defined by pl and
pj , representing the edge in the LiDAR scan. In other words, the optimization process aims
at minimizing the distance between p̂i and the line defined by pl and pj .

For surface features, three correspondences are found on different scan lines in the previ-
ous scan as depicted in 2.13(b). pj , pl and pm define a 3D plane. Let pa = pj , pb = pl and
pc = pm, the normalized (unit) normal vector n of the plane is then computed with

n =
(pa − pb)× (pa − pc)
||(pa − pb)× (pa − pc)||2

. (2.46)
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Finally, the scalar residual r for a single surface feature pi can be computed with

r = (p̂i − pa) · n . (2.47)

The scalar product in Eq. 2.47 converges towards zero when the vectors become perpendicu-
lar to each other. A vector, which is perpendicular to the normal n, lies on the plane defined
by pj , pl and pm. Hence, the optimization process aims at finding a transform, which creates
a vector p̂i − pj , lying on the plane. Effectively, it minimizes the distance between pi and the
planar surface.

Let CE = {cE1 , cE2 , · · · } and CH = {cH1 , cH2 , · · · } be the sets of correspondences for cor-
ner and surface features, respectively. The optimization can be written as a nonlinear least-
squares problem with the total cost J :

J(q, t) =
∑

cH∈CH

ρ(‖fH(cH, q, t)‖22) +
∑
cE∈CE

ρ(‖fE(cE , q, t)‖22) (2.48)

fE(·) and fH(·) are the cost functions computing the residuals from Eq. 2.45 and 2.47, re-
spectively. ‖ · ‖22 represents the squared L2-norm of the residuals, which is wrapped inside
a Huber loss function ρ(·). The LOAM framework solves the optimization problem with
the Levenberg-Marquardt trust-region algorithm [77], [78]. q and t are the quaternion and
translational vectors of the optimized transform.

The correspondence estimation and optimization steps are repeated twice in the original
implementation. The output of the odometry module is the transform between the previous
and current LiDAR scan, denoted as Lt−1T Lt , which can be created from q and t of Eq. 2.48
after the optimization. This transform serves as an initial estimate for the motion since the
last LiDAR scan for the mapping module.

Mapping The mapping module is the most complex part of the LOAM algorithm [12]. The
main task is to estimate a transform WT Lt , which best integrates the current scanPLt into the
(voxelized) map. With this optimized transform, the point features are then inserted into the
map. In fact, LOAM keeps two separate maps for corner and surface features and jointly op-
timizes them. There is a deviation in the correspondence estimation and residual calculation
between the original LOAM and the advanced A-LOAM6 implementations, which is used in
this thesis. Hence, the following mathematical notations are derived from the program code
of the mapping module of A-LOAM.

Correspondences in the map are not restricted to scan lines, in contrast to the odome-
try estimation. First, a corner or surface feature p̂i is transformed to the map frame after
integrating the motion since the previous scan from the odometry module:

W T̂ Lt = WT Lt−1
Lt−1T Lt (2.49)

WT Lt−1 is the map-optimized transform and pose of the previous scan, Lt−1T Lt is the odom-
etry estimate and W T̂ Lt is the initial guess of the current scan in the map frame after inte-
6 https://github.com/HKUST-Aerial-Robotics/A-LOAM

https://github.com/HKUST-Aerial-Robotics/A-LOAM
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grating the odometry estimate.
For the corner features, the five closest features in the map to a corner feature p̂i in the cur-

rent scan are determined with a nearest neighbor search. Let v1, · · · , v3 and λ1, · · · , λ3 be the
eigenvectors and eigenvalues of the covariance matrix computed from the five corner points.
A corner correspondence is created if λ3 > 3λ2, assuming an ascending order of eigenvalues.
This ensures that the corresponding eigenvector v3 is dominant and the 3D ellipsoid formed
by the five closest corner features has a cigar-like shape, which could represent a wall corner
or an edge. Let c be the centroid of the five features, then pa = 0.1v3 + c and pb = −0.1v3.
Eq. 2.45 can then be reused for the residual vector computation.

The five surface features closest to a surface feature p̂i are found in the map with a k-
nearest neighbor k-d tree search. Let PNN = {p1, · · · , p5} be the five nearest surface features
to p̂i. Solving the linear system

−1

...

−1

 =


p1,x p1,y p1,z

...
. . .

...

p5,x p5,y p5,z




nx

ny

nz

 (2.50)

yields the normal vector n of the plane defined by PNN. In A-LOAM, the linear system is
solved using QR decomposition with column pivoting for computational efficiency. For the
following, let n = n

||n||2 be the normalized unit normal vector. If

∃po ∈ PNN : |po · n +
1

||n||2
| > 0.2 , (2.51)

then p̂i is rejected and will not form a correspondence. The equation essentially computes
the distance of each of the five features po ∈ PNN to the plane. This ensures the flatness and
quality of the estimated planar surface. If the condition is false for all five features, the scalar
residual r between the surface feature p̂i and the plane can be computed with

r = n · p̂i +
1

||n||2
. (2.52)

Once all corner and surface feature correspondences have been created, the optimization
problem as in Eq. 2.48 can be reused also for the map optimization. Just as for the odometry
estimation, the correspondence estimation and optimization are repeated twice by default.
The output of the mapping module is the map-optimized pose WT Lt , which is the best trans-
form estimate to fit the LiDAR scan PLt into the map. At the same time, it is also the best
pose estimate in the map frame for this scan. All LiDAR scans can be accumulated with the
corresponding map-optimized transforms to create a dense 3D reconstruction as described
in Section 2.1.1 and as illustrated in Fig. 2.2(a).

Since the publication of the LOAM algorithm’s source code, several variants have been
published. LeGO-LOAM [79] leverages the knowledge about a ground plane in the lower
scan lines. The authors specify that the algorithm can also be used for air-born robots, but



2.2. Related work 43

some modifications are needed. Recently, F-LOAM [80] with an even more efficient open-
source implementation was published.

2.2.2 Leveraging prior knowledge for pose estimation and SLAM

Prior knowledge can be interpreted in many different ways. It may be, for example, a pre-
viously created map from a prior exploration with mapping. The main challenge, in this
case, is the time that passes between the capture and reuse of the built map. Especially in
outdoor environments, techniques for long-term localization and mapping become crucial.
Seasons change the outlook of the environment significantly throughout the year, e.g., vege-
tation changes color from green to brown or yellow, flowers in spring flourish, and the winter
brings snow and ice to the streets, coloring them white. But also buildings may change their
appearance, get constructed or destructed at any time of the year. Movable objects such as
pedestrians, bicyclists, or vehicles make the scenery dynamic.

2.2.2.1 LiDAR-SLAM with a previously created map

Meyer-Delius et al. [81] reuse an a priori static map for localization, but also build a tem-
porary local map from 2D LiDAR scans. The temporary map is used to map objects, which
are not present in the static map. Depending on whether the observations are more con-
sistent with the static or temporary map, the corresponding map is chosen for localization.
Parsley et al. [82] were one of the first to leverage prior knowledge for graph SLAM. They
integrate landmarks from a previously known map as constraints into the graph structure.
Walcott-Bryant et al. [83] utilize a dynamic pose graph with local submaps for low-dynamic
environments. Changes in the 2D maps are detected and eventually updated. Tipaldi et
al. [84] use a particle filter in combination with a hidden Markov model for lifelong local-
ization. Their method uses an existing 2D map as input. They evaluate their approach on a
dynamic parking lot with a static 2D LiDAR sensor. Biswas et al. [85] differentiate in their
work between short-term and long-term features. The latter are static objects, e.g., walls,
and short-term features are considered dynamic or movable objects. By extracting long-term
features, a static map can be created to be reused in future explorations. Rosen et al. [86] pro-
posed a persistence filter for semi-static environments. Each feature is assigned a persistence
probability to tackle environmental evolution. In a sense, the features then evolve with the
environment. Fehr et al. [87] use a pan-tilt RGB-D sensor to build a static map from several
observation runs. Between the runs, the environment is changing and a change detection
algorithm is capable of segmenting the dynamic objects. Shaik et al. [88] create a 2D offline
map with Hector-SLAM [64] and extract only static parts, e.g., walls, in a static map. It is
then used as prior knowledge for an online exploration, where the static map is fused with a
newly created temporary map, containing the changes, for localization.

Dubé et al. [70], [71] proposed multiple approaches for 3D LiDAR sensors leveraging a
target map, which can be created offline a priori or online for loop closure. Later [89], they
proposed a Dynamic Voxel Grid (DVG) to store points for the local map, created online. The
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DVG allows to only update voxels, which got new point insertions. The mapping module is
based on SegMatch [70]. The tracking of feature segments allows for a robust map update
of the target map. Egger et al. [90] proposed PoseMap. It is a 3D LiDAR-SLAM algorithm
developed for lifelong localization, which mainly relies on a previously created map. 3D
LiDAR data is generated from a continuously rotating VLP-16 to increase the FoV. The map
can be updated and extended if significant changes are detected. The authors point out that
only small extensions to the offline created map can be made since it does not feature global
place recognition. Pfrunder et al. [91] create a map with a nodding 3D LiDAR by manu-
ally driving a vehicle with the sensor mounted in front. This offline-generated map is then
used several months later as prior knowledge for the localization of an autonomous vehicle.
The scan points are pre-transformed with a tightly coupled IMU mounted on the LiDAR.
Finally, high-frequency wheel odometry is fused with the LiDAR-SLAM pose for a more ro-
bust localization. Chen et al. [92] proposed an approach using a DNN for overlap prediction
between the current 3D scan and a pre-built map.

Indoors, related works also leverage a priori mapped environments in form of point
clouds or floor plans as CAD models. Winterhalter et al. [93] use the RGB-D images and
the depth information of a Google Tango device to find the pose on a previously known 2D
floor plan. The pose is estimated with Monte-Carlo localization (MCL). Boniardi et al. [94]
leverage an existing 2D floor plan from an architectural drawing to improve 2D LiDAR-
SLAM. The floor plan is converted to a binary image with appropriate scale and resolution.
It is then augmented with LiDAR scans to determine the pose of the robot and to map incon-
sistencies in the floor plan. Later, Boniardi et al. [95] improved this work by also handling
dynamic environments. Mielle et al. [96] generalized this approach, by incorporating prior
knowledge in form of a hand-sketched map into the matching process rather than using a
highly accurate floor plan. They also proposed several works leveraging a 2D emergency
plan for LiDAR-SLAM [97], [98].

2.2.2.2 3D object models for pose estimation

Rather than a previously known map, prior knowledge can also be just about the geometry
of individual objects. If the poses of objects should be determined, prior knowledge about
their geometry is beneficial. One application is the counting or bin picking of the same prod-
uct on an assembly belt. Another reason to determine the pose of an object in a scene is to
determine the distance of the sensor to the object, e.g., for heading estimation and collision
avoidance. If the object is known to be static, the relative pose to the object can be leveraged
to improve the ego-motion estimation.

Matching 3D models with point cloud data is not only relevant for robotic applications.
Müller et al. [99] register two organ meshes for image-guided liver surgery. The models
are created from Time-of-Flight (ToF) or CT data. For the registration, landmarks are usu-
ally manually selected. The proposed approach extracts local surface descriptors for coarse
alignment, which is then refined with ICP. Bauer et al. [100] proposed a similar approach for
the initial patient pose detection for radiation therapy. Another application is to find or track
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poses of rigid objects in a scene, e.g., using RGB-D image data. Armenise [101] described
a method to find the exact 6-DoF position of an object in a 3D scene. The object is avail-
able as a CAD model and the scene is captured with a Kinect depth sensor. The method is
termed the Iterative Closest Face (ICF) counterpart to ICP. In the work, simple CAD models
and dense scene representation are used for the alignment. No BVH techniques or similar
are employed, which raises the question of how the computational complexity scales when
using complex CAD models with many faces. The ICF method was later improved by Ye
et al. [102] using Particle Swarm Optimization (PSO). Wang et al. [103] proposed to extract
circular and corner features from a CAD model and simulated depth data from a scene. The
features are matched and optimized with ICP, giving the final pose of the CAD model in
the scene. However, the features on the CAD model are required to be labeled and indexed
beforehand. As an example, they use a truncated square pyramid to extract corner features
and a vase and cup for the extraction of circular features. Dos Santos et al. [104] developed
a method to track objects in RGB-D images given their known 3D models. Their tracking al-
gorithm employs particle swarm optimization. The fitness score of the particles is computed
from the Euclidean distances between the scene and 3D object, HSV color coordinates, and
the angles of the normal vectors. The 3D model is used as a point cloud, which can either be
sampled from a CAD model or be acquired from RGB-D sensors.

Also in the area of BIM, registering a CAD model to a measured point cloud finds many
applications. One of the most common is the progress monitoring of construction sites. Kim
et al. [105] proposed to convert the CAD model of a planned construction site to a uniformly
sampled point cloud, before coarsely registering it to a measured point cloud with Principal
Component Analysis (PCA). The Levenberg-Marquardt ICP (LM-ICP) [106] method is then
used for fine registration. Héry et al. [107], [108] proposed works to estimate the ego-vehicle
position relative to a vehicle driving in front. 2D LiDAR scans are either matched with the
2D point-sampled shape or with the polygon shape of the preceding vehicle, consisting of
2D vertices and edges. Interestingly, the authors came across similar scan-to-model align-
ment ambiguities as are faced in the contributions presented in this thesis. For example,
the authors found that the relative pose estimation has a larger rotational error if only the
back of the car is visible and not also the side of the car. Sandy et al. [109] developed the In
situ Fabricator (IF), an autonomous robotic platform for building construction. It features an
end-effector with brick-gripping capability and a 2D LiDAR sensor for positioning. In their
experiments, the IF autonomously places bricks on staples (workpieces) at different places on
a construction site. The robot pose is computed with 2D scan matching, while high-accuracy
end-effector positioning is achieved by scan-to-model alignment. For this, the end-effector
is moved to create a 3D representation of the workpiece and ground while the robot is sta-
tionary. A least-squares optimization of the accumulated scan to the simple CAD model,
consisting of primitives, then determines the relative pose to the workpiece. This approach
is similar to the ones discussed above, where the pose of an object is found by registering
an accumulated or dense point cloud to a CAD model. Gawel et al. [110] extended Sandy’s
approach. They developed a mobile platform with an end-effector for drilling operations.
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It is equipped with a 3D VLP-16 LiDAR and an IMU for SLAM. A prior map is generated
by point-sampling a 3D CAD model of the construction site. High-accuracy localization is
implemented by refining the 3D SLAM pose with scan-to-CAD registration. For this, several
distance measurements with single-point Laser Range Finders (LRFs) on the end-effector are
taken by moving it to different positions. The distances are then minimized together with
the expected distances from the planes of the CAD model, i.e., orthogonal walls, obtained
with ray tracing. This is necessary to perform highly precise drilling operations.

Kümmerle et al. [111] proposed a method, which leverages aerial images for 6-DoF pose
estimation. 3D LiDAR scans obtained from a continuously actuated 2D LiDAR are converted
to 2D range scans and matched to the Canny edges [112] computed from the aerial images.
The pose estimate is then integrated into the optimization problem and jointly optimized.

2.2.3 Trajectory and map optimization for SLAM

Trajectory and map optimization are an important part of relocalization or loop closure meth-
ods. Relocalization is typically achieved by revisiting a place. Assuming that the revisited
place is associated with an accurate absolute pose in a global frame, finding the relative trans-
form to this pose by sensor data associations can yield an accurate absolute pose for relocal-
ization. Afterward, a loop closure can be performed by correcting the past trajectory. This is
often done using a pose graph. By adding graph constraints with high pose confidence, an
optimization of the graph can be performed. This correction of the previous trajectory can
be leveraged to correct the map of the LiDAR-SLAM algorithm.

In the following, the most recent 3D LiDAR-SLAM algorithms with loop closure are dis-
cussed. Liu et al. [113] leverage the existence of a ground plane and perform loop closure
detection based on SegMatch [70]. Behley et al. proposed SuMa [114] for 3D LiDARs. Loop
closures are robustly detected with surfel maps and virtual view rendering, even with low
overlap. Chen et al. extended this work in SuMa++ [115] by semantic, point-wise label-
ing for dynamic object removal and improved scan registration using a Fully Convolutional
Neural Network (FCN). Ćwian et al. proposed PlaneLOAM 2.0 [116], an algorithm based
on LOAM [12] with advanced high-level geometric features for mapping and a loop closure
detection module from SegMap [89]. It finds loop closures when compared to a global map
and performs the optimization with added constraints to a factor graph. Chai et al. [117] pro-
posed a framework for global relocalization. An offline map is created from a mesh. Online
relocalization is performed with Locality Sensitive Hashing (LSH) and k-d trees. The authors
claim to achieve an accuracy up to 20 cm at 10 Hz. OverlapNet [118] converts the 3D LiDAR
scans to a multi-channel 2D image. A neural network predicts the yaw angle delta between
scans and an overlap score. The relative transform is refined with ICP.

Other methods for loop closures with the help of global cues exist. Relocalization can
also take place by finding an accurate transform to an object or tag, which was extrinsically
calibrated in the global frame, i.e., it has an associated accurate absolute pose. For example,
SPM-SLAM [119] or TagSLAM [120] use geometrically calibrated markers for visual SLAM.
The latter uses extrinsically calibrated AprilTags, which were distributed along a robot tra-
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jectory. If two or more markers in an image are detected, position tracking and loop closure
can be performed.

2.3 Chapter summary

The first part of this chapter introduced background knowledge in the area of 3D LiDAR-
SLAM. This was followed by methods for LiDAR data acquisition and different ways for
point cloud and triangular mesh representation. In many LiDAR-SLAM and point cloud reg-
istration algorithms, features are extracted and correspondence distances minimized. As an
example, the feature extraction process of the LOAM algorithm [12] was explained in detail.
Subsequently, local registration methods for point cloud to point cloud alignment were ex-
plained, with a focus on the ICP algorithm. In some cases, the registration of a point cloud to
a 3D triangular mesh is necessary. It was explained that BVHs can be used to efficiently find
the closest triangle to a query point and how the AABB tree can be leveraged. Furthermore,
the computation of the closest virtual point on a triangle to a query point was explained in
detail. Techniques to align a GT and SLAM trajectory were discussed and commonly used
evaluation metrics were described.

The second part of this chapter dealt with the discussion of state-of-the-art LiDAR-SLAM
algorithms. Especially, the LOAM algorithm [12], which is extensively used in this thesis,
was described in detail. Subsequently, related publications leveraging prior knowledge to
improve pose estimation and LiDAR-SLAM performance were discussed. Finally, related
works in the area of trajectory and map optimization specifically for relocalization and loop
closure were elaborated.





Chapter 3

3D LiDAR odometry and mapping
with a static self-generated initial
map

This chapter introduces an approach to enable immutable initial map creation for 3D Li-
DAR SLAM prior to the exploration. Using simulated data, the proposed approach is bench-
marked against state-of-the-art LOAM in three visual inspection scenarios.

Parts of this chapter have been published in [5].

3.1 Problem statement

A major challenge for SLAM algorithms is the beginning of the exploration when the map
has to be built from scratch. Visual-SLAM algorithms may even have to estimate the scale
factor when creating the map. An initial wrong estimate can have a significant negative effect
on the pose estimation and mapping for the whole exploration. LiDAR-SLAM algorithms do
not have to estimate the scale due to the inherent range measurement, but first scan-to-scan
registrations are crucial for the quality of the map and the accuracy of the pose estimation.

Also, in outdoor environments, maps can become very large and many parts may never
be revisited, e.g., in an autonomous driving scenario through a city. However, in indoor
scenarios with longer exploration periods inside the same hall or room many parts will be
scanned much more often. The continuous map update process deteriorates the map quality
over time but is required in dynamic environments to map new appearing obstacles, e.g.,
vehicles or people. Assuming a static environment, this may lead to unwanted effects on the
map. Wrong pose estimations lead to incorrect LiDAR scan insertions into the map and may
trigger the "double wall" effect, where the ground plane and walls grow thicker over time.

One type of prior knowledge, which is available to the robot before the start of the ex-
ploration is an initial map. It may be given to the robot, e.g., a previously built map from a
separate exploration run, or it may be created from the starting position of the robot. Related
works mainly focus on creating maps prior to the exploration for long-term localization and
mapping as discussed in Section 2.2.2.1. In the LoLa-SLAM algorithm [3] an initial map is
created by rotating a 3D LiDAR sensor at the starting position of the robot. LiDAR scans

49
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(a) Conventional map (b) Immutable initial map (blue) and dynamic map (red)

Figure 3.1: Visualization of a conventional map (a) versus a map with initialization (b). The ground
and parts of the hangar are removed for illustrative purposes.

are accumulated in a common coordinate frame and the scan points are inserted into the
initial map. This map is then used as prior knowledge and extended during the exploration.
The algorithm uses a voxelized map, so newly inserted scan points in occupied voxels are
merged into the already existing voxel centroid. This diminishes the effect of slight pose
estimation errors when inserting the new points, but still changes the position of the voxel
centroids continuously.

The initial map can be created with much higher accuracy when using the transforms
reported by the actuator compared to when using the transforms from the SLAM motion
estimation. When the robot is still static, LiDAR scans can be transformed to a common coor-
dinate frame with the actuator readings without motion estimation. In this chapter, a mod-
ification of the LOAM algorithm [12] is proposed, enabling immutable (fixed) initial map
creation with a rotating 3D LiDAR sensor. Assuming a static indoor environment, the core
idea is to keep the initial map unchanged (immutable) during the exploration and to only
update the voxels, which were newly added since the start of the exploration. The proposed
approach argues that updating the accurate initial map during the exploration will reduce
the performance compared to leaving the initial map static since no changes are expected in
the static environment. Fig. 3.1 shows a comparison between a conventional map (a) and
a map with initialization (b). Blue points are accumulated during initialization and remain
unchanged during exploration. They are part of the initial map. Red points are added during
the exploration and are part of the dynamic map.

In the following sections, first, the methodology of the proposed approach is explained
in detail. Second, the experimental setup comprised of the dataset generation is described
and implementation details are given. Finally, extensive experimental results are presented
before summarizing this chapter.

3.2 Methodology

The basic functionality of the LOAM algorithm [12] has already been described in the Sec-
tions 2.1.4.1 and 2.2.1. In the following, the notations PE , PEless represent the point clouds of
sharp and less sharp corner features, and PH, PHless represent the point clouds of flat and less
flat surface features, respectively.
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Figure 3.2: Overview of the proposed modifications to the LOAM framework to enable immutable
initial map creation. Blue color indicates modification and gray/black means unchanged. Repro-
duced from [5], ©2021 IEEE.

Figure 3.2 shows an overview of the proposed modifications to the LOAM framework.
Blue color indicates modifications and gray/black means unchanged. The original LOAM
algorithm only features the exploration phase (Phase 2). All incoming LiDAR scans are used
for motion estimation and all scan features are inserted into the map. To enable the ini-
tial map creation and bypass the motion estimation for the LiDAR scans acquired when the
robot is still stationary, an initialization phase (Phase 1) is introduced to the pipeline. During
this phase, the scan features are directly accumulated with the transforms reported by the
actuator, forming the initial map of the environment in the mapping module. After the ini-
tialization, all scans are processed by the lower pipeline (Phase 2) and the motion is estimated
before inserting the features into the map.

For the following algorithm description, the robot frame {D} is introduced. The 3D Li-
DAR sensor is mounted via a gimbal/actuator on the robot. The forward kinematics of the
LiDAR frame {L} in the world frame {W} at a time t can then be described as

WT Lt = WTDt
DtT Lt . (3.1)

WTDt is the estimated pose of the robot {D} in {W} obtained from the LOAM algorithm.
DtT Lt is the pose of the LiDAR sensor frame relatively to the robot frame. It is obtained from
the actuator reading at time t. t is the timestamp of the LiDAR scan and is assigned at the
driver level to the scan data.

3.2.1 Scan registration

Algorithm 1 shows the pseudo-code of the modified scan registration module. First, from
an incoming LiDAR scan point cloud PLt , the point features are extracted as described in
Section 2.1.4.1. In fact, the term extraction might be a bit misleading, since it is rather a clas-
sification of the points into the four categories sharp (PE ), less sharp (PEless), flat (PH) and
less flat (PHless). In the A-LOAM implementation, PHless are then downsampled with a voxel
filter of fixed size 20 cm. The reason simply is that all scan points are assigned to be less flat if
they do not belong to one of the other three categories. This significantly reduces the number
of features to be processed and the computational complexity in the following steps. If the
state is still in the initialization Phase 1, the actuator transform DtT Lt is looked up for the
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Algorithm 1: Scan registration algorithm. Modifications to the original algorithm
are marked in blue color. Adapted from [5], ©2021 IEEE.

Input: PLt , t
Output: PLt

H , PLt
E , PLt

Hless
, PLt
Eless

, PDt
Hless

, PDt
Eless

1 foreach incoming scan point cloud PLt do
2 PLt

H , PLt
E , PLt

Hless
, PLt
Eless
← extractFeatures(PLt)

3 /* Downsample less flat points to 20 cm */
4 PLt

Hless
← downsample(PLt

Hless
, 0.2)

5 if for initial map then
6 DtT Lt ← readActuatorTransform(t)
7 PDt

Hless
, PDt
Eless
← transform(PLt

Hless
, PLt
Eless

, DtT Lt)
8 sendToMapping(PDt

Hless
, PDt
Eless

)

9 else
10 sendToOdometry(PLt

H , PLt
E , PLt

Hless
, PLt
Eless

)

time t and used to transform PLt
Hless

and PLt
Eless

to the robot frame {D}. Since the actuator and
LiDAR are not synchronized, there is no exact actuator transform for the time t. Hence, a
linear interpolation of the transform is performed for DtT Lt . The scan features in the robot
frame are then sent directly to the mapping module. The reason why only less sharp and less
flat features are used in the mapping module is that, as described in Section 2.1.4.1, they are
more numerous and also include the sharp and flat features. If the state is already in Phase 2,
all extracted scan features are sent to the odometry module.

3.2.2 Odometry estimation

The purpose of the odometry estimation module is to estimate real-time scan-to-scan mo-
tion, considering that the mapping process may not be real-time capable. Algorithm 2 shows
the pseudo-code of the odometry module. The odometry optimization method is not modi-
fied by the proposed approach (lines 4-9). Here, the scan features from the scan registration
module are first projected to the estimated state using the scan-to-scan transform Lt−1T Lt

computed from the previous iteration. Feature correspondences are determined between the
sharp/flat features of the current scan and the less sharp/less flat features of the previous
scan, respectively. The correspondence distances are minimized in an optimization problem
as described in Section 2.2.1. The process is repeated for two iterations by default. The ac-
tuator transform DtT Lt is then looked up for the time t (line 12). The odometry module has
its own world frame {Wodom}. The current position WodomTDt of the robot in the odometry
world frame can then be computed with

WodomTDt = WodomTDt−1
Dt−1T Lt−1

Lt−1T Lt
DtT−1Lt

. (3.2)

The equation allows us to perform the unmodified optimization of the LOAM algorithm and
integrate the actuator transform afterward. The less sharp and less flat scan features are then
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Algorithm 2: Odometry algorithm. Modifications to the original algorithm are
marked in blue color. Reproduced from [5], ©2021 IEEE.

Input: PLt
H , PLt

E , PLt
Hless

, PLt
Eless

, t
Output: WodomTDt , PDt

Hless
, PDt
Eless

1 foreach incoming features PLt
H , PLt

E , PLt
Hless

, PLt
Eless

do
2 if not the first scan then
3 /* Odometry optimization iterations */
4 for two iterations do
5 /* Pre-project the scan features of the current scan to the estimated

position using the transform from the last optimization */
6 P̂Lt

H , P̂Lt
E ← transform(PLt

H , PLt
E , Lt−1T Lt)

7 CH, CE ← computeCorrs(T Lt−1

H , P̂Lt
H , T Lt−1

E , P̂Lt
E )

8 O ← createOptProblem(CH, CE , PLt−1

Hless
, PLt−1

Eless
, P̄Lt
H , P̄Lt

E )
9 Lt−1T Lt ← solveOpt(O)

10 else
11 /* Initialize all transforms with identity */

12 DtT Lt ← readActuatorTransform(t)
13 /* Compute the transform from {D} to {Wodom} using Eq. 3.2 */
14 WodomTDt ← WodomTDt−1

Dt−1T Lt−1
Lt−1T Lt

DtT−1Lt

15 PDt
Hless

, PDt
Eless
← transform( PLt

Hless
, PLt
Eless

, DtT Lt)
16 sendToMapping(PDt

Hless
, PDt
Eless

, WodomTDt)
17 /* Build k-d trees for next scan */
18 T Lt

H , T Lt
E ← buildKdTree(PLt

Hless
, PLt
Eless

)

transformed to the robot frame with the actuator transform (line 15) and sent to the mapping
module together with the optimized odometry pose (line 16). Finally, the k-d trees are built
with the less flat and less sharp scan features in the LiDAR frame {L}. These are then reused
for the correspondence computation in the next odometry estimation (line 7).

3.2.3 Mapping

Most modifications for the proposed approach are introduced in the mapping module of the
LOAM algorithm. The core idea of the proposed approach is to keep the initial map and
the dynamic map created during the exploration separate. In the following, the feature map
created in Phase 2 will be called a dynamic map since it is continuously updated during the
exploration. Alternatively, a new data structure could be implemented, which "freezes" the
voxels of the initial map and only updates the voxels of the dynamic map. However, no such
implementation exists. Algorithm 3 describes the modified mapping module schematically.
First, the transform WodomTDt is integrated into the world frame of the map to obtain WTDt ,
which is the best odometry estimate. If the state is still in Phase 1, incoming scan features are
directly added to the initial feature maps PWHinit

and PWEinit
(lines 4+5). This is possible since

the robot is assumed to be stationary and the assumption {W} ≡ {D} holds. If these are
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Algorithm 3: Mapping algorithm with immutable initial map creation. Modifica-
tions to the original algorithm are marked in blue color. Adapted and modified
from [5], ©2021 IEEE.

Input: WTDt ← WodomTDt , PDt
Hless

, PDt
Eless

, h, e
Output: WTDt

1 foreach incoming features PDt
Hless

and PDt
Eless

do
2 if for initial map then
3 /* Robot is still static, so {W} ≡ {D} */
4 PWHinit

←PWHinit
+ PDt

Hless

5 PWEinit
←PWEinit

+ PDt
Eless

6 if last features for initial map then
7 PWHinit

, PWEinit
← downsample(PWHinit

, PWEinit
, h, e)

8 THinit ,TEinit ← buildKdTree(PWHinit
, PWEinit

)

9 continue with next scan features

10
−→
PW
Hsub

,
−→
PW
Esub
← getSubmapCubes(

−→
PW
Hless

,
−→
PW
Eless

, WTDt)

11 PWHsub
, PWEsub

← unifySubmapCubes(
−→
PW
Hsub

,
−→
PW
Esub

)
12 /* Add initial map features to unified submaps */
13 PWHsub

←PWHsub
+ PWHinit

14 PWEsub
←PWEsub

+ PWEinit

15 PDt
Hless

, PDt
Eless
← downsample(PDt

Hless
, PDt
Eless

, h, e)
16 THsub ,TEsub ← buildKdTree(PWHsub

, PWEsub
)

17 /* Map optimization iterations */
18 for two iterations do
19 PWt

Hless
, PWt
Eless
← transform(PDt

Hless
, PDt
Eless

, WTDt)
20 CHless , CEless ← computeCorrs(THsub , PWt

Hless
, TEsub , PWt

Eless
)

21 O ← createOptProblem(CHless , CEless , PWHsub
, PWEsub

, PWt
Hless

, PWt
Eless

)
22 WTDt ← solveOpt(O)

23 /* Add points to cube structure */
24 foreach pDt

Hless
in PDt

Hless
and pDt

Eless
in PDt

Eless
do

25 /* Transform point to map using newly optimized pose */
26 pWt

Hless
, pWt
Eless
← transform(pDt

Hless
, pDt
Eless

, WTDt)
27 /* Compute sq. distance to closest point in initial map */
28 dH, dE ← nnSearch(THinit , p

Wt
Hless

, TEinit , p
Wt
Eless

)
29 if

√
dH < (h ∗

√
3) then

30 /* Too close to feature in initial map */
31 continue with next point

32 else
33

−→
PW
Hless
←
−→
PW
Hless

+ pWt
Hless

34 /* Repeat for pWt
Eless

with
√
dE < (e ∗

√
3) */

35
−→
PW
Hless

,
−→
PW
Eless
← downsample(

−→
PW
Hless

,
−→
PW
Eless

, h, e)
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the last scan features for the initial maps, and the next scans enter Phase 2, the initial maps
are voxelized (line 7). For this, the scalar parameters h and e define the voxel sizes of the
surface and corner feature maps, respectively. Subsequently, the k-d trees are built (line 8)
for efficient nearest neighbor search later on.

If the state is in Phase 2, the current best-estimate pose WTDt is used to shift the submap
window (line 10). The A-LOAM implementation uses a cube structure of size 50 × 50 × 50

meters to efficiently store the features of the dynamic maps, denoted as
−→
PW
Hless

and
−→
PW
Eless

. In
total, the cubes cover an area of 250 × 250 × 250 meters to limit the memory consumption
and processing time. All the features in the cubes are then combined to the point clouds
PWHsub

and PWEsub
(line 11). These contain all less flat and less sharp features of the dynamic

map. Now, the scan features of the initial map are added (lines 13+14), complementing the
dynamic map features. The current scan features are downsampled to match the resolution
of the feature maps and k-d trees (THsub , TEsub) are built. Two correspondence estimation and
map optimization iterations are performed by the LOAM algorithm by default (lines 18-22).
Here, the downsampled features of the current scan are transformed to the map frame with
WTDt , which are then used to find correspondences with the nearest neighbor search using
the previously built k-d trees. The correspondences are added to an optimization problem
described in Section 2.2.1. Solving it yields the map-optimized pose WTDt , which is the best
robot pose estimate {D} in the world frame {W} and subsequently used for the insertion of
the current scan features into the dynamic maps.

The current scan features are added to the maps in a point-by-point manner: A single fea-
ture point p is first transformed to the map frame with the map-optimized transform WTDt

(line 26). If the point is too close to a voxel centroid of the initial map, it is not added to the
dynamic map. This ensures that the initial and dynamic maps are complementing each other
and have no overlap. For this, the k-d trees built in Phase 1 are used for the nearest neighbor
search to obtain the squared distance d (line 28). This process is illustrated in Fig. 3.3(a). As
an example, a surface feature point pWt

Hless
is not added to the dynamic map if

√
dH < (h∗

√
3).

In other words, a point is added to the corresponding cube in the dynamic map (line 33), if
the Euclidean distance to the nearest point in the initial map is larger than the diagonal of
the voxel as shown in (b). If it is closer, then this point is skipped. Finally, each cube of the
dynamic map is downsampled. This effectively merges the new scan points into the voxel
centroids of the dynamic map, see (c).

The unified initial and dynamic feature maps can be used for real-time visualization, but
most importantly, the map-optimized transform WTDt can be used for real-time navigation,
e.g., for autonomous robots.

3.3 Experimental setup

The Gazebo simulation environment1 is used to generate datasets for the evaluation. A quad-
copter UAV is used as a robotic platform, see Figure 3.4. A virtual Velodyne VLP-16 LiDAR
sensor is mounted on the UAV via a gimbal. The LiDAR sensor is continuously actuated
1 http://gazebosim.org/

http://gazebosim.org/
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Initial Map Features

Current Scan Features

Initial Map Voxels

(a) Distance computation from a
feature point of the current scan
and points of the initial map
(Alg. 3 line 28)

Inserted Scan Features

Dynamic Map Voxels

Old Voxel Centroid

(b) Scan point insertion into the
dynamic map (Alg. 3 line 33). The
other voxels are empty since the
initial map (a) has scan points in
the corresponding voxels.

Dynamic Map Voxels

New Voxel Centroid

(c) The new scan point is merged
with the old centroid in a voxeliza-
tion step (Alg. 3 line 35).

Figure 3.3: Approach for scan insertion when using an immutable initial map.

(a) −0.6 rad ≈ −34 deg (b) Initial LiDAR position (c) +0.6 rad ≈ +34 deg

Figure 3.4: Illustration of the simulated quadcopter UAV with a VLP-16 LiDAR sensor mounted on a
gimbal. The sensor is continuously actuated between −0.6 rad (a) and +0.6 rad (c) during the initial-
ization (Phase 1) and during exploration (Phase 2).

back and forth between ±0.6 rad ≈ 34 deg during the map initialization (Phase 1), but also
during the exploration (Phase 2). The virtual LiDAR follows the manufacturer specifications
as described in Section 2.1.2. Acquired LiDAR scans are subject to zero-mean Gaussian noise
with σ = 0.03 to simulate ranging errors along the ray direction, as in [31]. A LiDAR sweep
is the set of scans acquired during one full actuation round. A sweep starts at the initial
position (see Fig. 3.4(b)), turns to the right (c) and to the left (a), before ending the sweep by
returning to the initial position. The next sweep then continues following the same actuation
pattern.

Three datasets of visual inspection scenarios were generated. Figure 3.5 shows the sce-
narios and trajectories in red color. Dataset 1 is an indoor visual airplane inspection scenario
inside a hangar and Datasets 2 and 3 are outdoor visual inspection scenarios at the Tower
Bridge (b) and the Eiffel Tower (c), respectively. The triangular meshes are scaled to their
real-world counterparts.

Table 3.1 shows the metadata about the three generated datasets. The average velocity
of 0.5 m/s for all three datasets is due to the consistent autonomous control of the UAV in
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(a) Dataset 1 - Indoors (b) Dataset 2 - Outdoors (c) Dataset 3 - Outdoors

Figure 3.5: Illustration of the three generated datasets. Dataset 1 (a) is indoors and Datasets 2 (b) and
3 (c) are outdoors. The hangar in (a) is not displayed for illustrative purposes. The trajectory followed
by the simulated UAV is shown in red. Adapted from [5], ©2021 IEEE.

Table 3.1: Metadata about the three generated datasets of Fig. 3.5

#scans length (m) duration (s) avg. vel (m/s) max. vel. (m/s)

Dataset 1 9802 475 980 0.48 1.21

Dataset 2 18605 933 1860 0.50 0.97

Dataset 3 5674 291 567 0.51 0.72

the simulation. It follows a predefined path using an autonomous flight controller. Dataset 2
is the largest with over 18k LiDAR scans and a path length of over 900 m. The simulation
allows for high-frequency, highly accurate GT poses and the generation of datasets, which
would not be trivial to realize [31], i.e., Datasets 2 and 3.

The communication between the modules as shown in Fig. 3.2 is handled by ROS
"melodic"2. The parameters of the LOAM algorithm are left as default.

3.4 Experimental results

The proposed approach creates an initial map by leveraging the known forward kinemat-
ics to the LiDAR sensor through the actuator transform while the robot is still stationary.
The quality of the initial map is therefore dependent on the accuracy of the LiDAR mea-
surements, i.e., ranging errors, and the accuracy of the actuator readings. Since the LOAM
algorithm is using voxelized feature maps, the size of the voxels influences the representation
of the underlying surface by the voxel centroid.

This section first presents an analysis, of how the actuator error as a function of the num-
ber of points (#points) within a single voxel influences the voxel centroid position relatively
to the underlying surface. Subsequently, results are presented by means of RMSE for a whole
triangular mesh and varying voxel size as a function of #sweeps. The voxel size and #sweep
parameters for the initial map creation are derived and discussed in these experiments. The
last section presents the results when using a static self-generated initial map before the ex-
ploration by means of APE and RE for all three datasets.
2 http://wiki.ros.org/melodic

http://wiki.ros.org/melodic
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3.4.1 Effect of voxelization and measurement imprecision on surface repre-
sentations

Essentially, LiDAR sensors create a sampled representation of a surface (real or simulated).
Measured points are subject to ranging errors, reflections, and motion distortion. When the
sensor is mounted on an actuator, the measured points are additionally subject to actuator
reading imprecision of the current rotation angle. With the continuous actuation of the sen-
sor, more points are acquired and a more dense and more complete representation of the
surface is created. Wang et al. [121] and Anderson et al. [122] developed a Lissajous scan
pattern and investigated the benefit for MEMS and 2D LiDAR sensors, respectively. Scan
patterns can also be applied to 3D LiDAR sensors to further increase the FoV.

LiDAR-SLAM algorithms often need to operate in real-time to compute the current posi-
tion in a built map. Hence, these algorithms do not keep all of the captured points but operate
on voxelized maps to keep computational complexity and memory consumption tractable
with increasing map sizes during robotic explorations. Different voxelization methods exist,
such as replacing the measured points with the centroid of the voxel. While this is certainly
the fastest way, it is not the most accurate. The goal of a voxel centroid is to represent the
underlying surface in the best way. A common technique is to use the centroid of the points
inside the voxel as the voxel centroid. Especially for voxels, which are only occupied in a
corner, this method adapts much better to the real surface. However, deciding which point
in a voxel best represents the underlying surface is not trivial.

3.4.1.1 Single voxel

This section investigates the effect of LiDAR ranging errors and single-axis actuator impreci-
sion on the centroid position for a single voxel with a planar and curved surface. The centroid
position of distorted points sampled on the surface is evaluated by (1) means of distance to
the underlying surface and by (2) means of distance to the real centroid of the surface. The
real centroid is computed from very densely sampled points without distortion.

A point p = [x, y, z] is measured on a surface at a distance d from the LiDAR sensor at
the position of origin o. p is distorted along the ray direction due to ranging errors of the
sensor and is additionally subject to actuator reading imprecision with angle α. Assuming a
zero-mean normal distribution, the ranging errors and actuator imprecision can be modeled
as Gaussian random variables G and H , respectively:

G ∼ N (0, 0.032)

H ∼ N (0, 0.12)
(3.3)

The standard deviation of 0.03 m follows the typical ranging errors of a Velodyne VLP-16
LiDAR sensor (see Section 2.1.2) and 0.1 deg is the imprecision of a 360◦ Dynamixel actuator
with a resolution of 4096 pulse/rev. Although, considering the empirical rule of statistics for
normal distributions, these values are even conservative.
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A distorted point p̂ can then be described as

p̂ = R ∗ θ(p, g, o)

with θ(p, g, o) = p ∗
(

1− g

||p− o||2

)
+ o ∗ g

||p− o||2
.

For o = [0,0,0]: θ(p, g, o) = p ∗
(

1− g

||p||2

) (3.4)

g is a ranging error value drawn from the distribution G (Eq. 3.3). The function θ distorts
the point p along the ray direction, emitted from the LiDAR sensor at position o. R is a
3 × 3 rotation matrix R = RyawRpitchRroll with a ’ZYX’ axis order. In this example, p is dis-
torted around the pitch axis by an angle α drawn from the distribution H (Eq. 3.3). R is then
computed with

R =


cos(α π

180) 0 sin(α π
180)

0 1 0

− sin(α π
180) 0 cos(α π

180)

 . (3.5)

The centroid p̄ of n points p can be computed as

p̄ =
1

n

n∑
i=1

pi . (3.6)

In the following, an investigation is conducted on how the measurement imprecision men-
tioned above influences the centroid position, considering different distances d and the num-
ber of points on a surface inside the voxel. Three types of centroids will be differentiated:

1. p̄ - centroid of a number of undistorted points sampled on the surface

2. p̄D - centroid of the points in (1) after distortion

3. p̄S - real centroid of the surface (e.g., centroid of infinitely sampled surface)

The centroid of perfectly sampled points on the surface is denoted as p̄, the centroid of the
corresponding distorted points is denoted as p̄D and the centroid of the surface is denoted as
p̄S .

Planar surface

A number n of points P = {p1, p2, · · · , pn} is uniformly sampled on a planar surface, e.g.,
a wall segment for x = d, y = [−v,+v] and z = [−v,+v] with v = 1 m corresponding to a
voxel size of 200 cm. The surface forms a square on a 3D hyperplane. The sampled points P
are then distorted according to Eq. 3.4 with random distortions drawn from the distributions
in Eq. 3.3 and also H ∼ N (0, 5.02) with an increased actuator imprecision for illustrative
purposes.
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(c) Distance of p̄D to the surface for actuator σ = 0.1
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(d) Distance of p̄D to the surface for actuator σ = 5.0
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(e) Distance of p̄D to the surface and p̄D to p̄S for actu-
ator σ = 0.1
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(f) Distance of p̄D to the surface and p̄D to p̄S for actu-
ator σ = 5.0

Figure 3.6: Random uniform generation of point samples on a wall segment with actuator σ = 0.1 (a)
and σ = 5.0 (b). The black point is the sensor origin o. The blue and red points are the perfectly
sampled and distorted points, respectively. The real centroid of the surface p̄S is displayed in green.
(c) and (d) illustrate the error of the voxel centroid of the distorted points p̄D to the surface as a func-
tion of #points n and distance d. (e) and (f) show the Euclidean distance of p̄D to the surface and the
distance of p̄D to p̄S as the mean over the distance d.

Figure 3.6 shows the planar surface at a distance d = 2 m for the actuator imprecision
σ = 0.1 in (a) and σ = 5.0 in (b). The results are presented column-wise. As an example
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and for illustrative purposes, 3000 points P (blue) were uniformly sampled on the surface.
In red color are the corresponding distorted counterparts P̂ , i.e., one distorted red point for
each sampled blue point. The green point is the real centroid p̄S of the planar surface and
the black point represents the LiDAR sensor at position o and is the center of rotation for the
actuator imprecision.

The plots (c) and (d) of Figure 3.6 show the distance of p̄D to the surface as a function of
#points and the distance d. Since random processes are involved, the experiment for each
parameter configuration is repeated 1000 times, and the mean is presented. It can be seen
that a higher number of sampled points leads to a lower error between the centroid and the
surface. For low actuator imprecision, the error is only increasing very slowly with increas-
ing distance d as can be seen in (c). With higher actuator imprecision, the error of the centroid
to the surface increases rapidly (d). The plots (e) and (f) illustrate the Euclidean distance of
the centroid p̄D to the surface and the distance of p̄D to p̄S as the mean over the distance d. In
both plots, the error decreases with an increasing number of points within the voxel. On the
other hand, the error is much higher in (f). This can be explained with the increasing error
over the distance d in (d). In (e), the distance of p̄D to the surface is very low, however, when
few points are in the voxel, the error is still quite high and is decreasing with the number of
points.

Summarizing the results for a planar surface, it can be said that the actuator imprecision
has almost no effect on the distortion of the voxel centroid p̄D for σ = 0.1. For a higher im-
precision, e.g., σ = 5.0, the error increases rapidly with the distance of the voxel/surface to
the LiDAR sensor. The distance d mainly alters the effect of the actuation distortion on p̄D.
A major influence is the number of points on the surface. The error decreases significantly
until at least 20 points in the voxel. For σ = 0.1 and≥ 10 points inside the voxel, the distance
of p̄D to the surface is smaller than 1 cm and therefore represents the underlying surface very
well, even at higher distances to the LiDAR sensor. However, ≥ 50 points in the voxel are
required in the given example for ||p̄D − p̄S ||2 < 10 cm.

Curved surface

For the evaluation of curvatures, a section of a unit circle is used as surface. Similar to the
planar surface, a number n of pointsP = {p1, p2, · · · , pn} is uniformly sampled on the curved
surface, e.g., similar to a segment of a jet engine of an airplane or the fuselage. The sampled
points can take values for x = [d− r + cos (arcsin (v)), d], y = [−v,+v] and z = [−v,+v] with
v = 1 m for a voxel size of 200 cm and r = 1 being the unit radius. The sampled points P are
distorted according to Eq. 3.3 and Eq. 3.4, yielding P̂ .

Figure 3.7 shows the curved segment at a distance d = 2 m and the results in column-
wise order for the actuator imprecisions σ = 0.1 and σ = 5.0. (a) and (b) illustrate that
even the real surface centroid p̄S (green) does not lie on the surface. For a surface with less
curvature, the centroid converges towards the surface, i.e., as in the example of the planar
surface above. (c) and (d) show the distance of the centroid p̄D to the surface as a function
of #points and distance d. The results presented in the figure are the mean values of 1000

repetitions of the random processes with the same parameter configuration. Just like for the
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(c) Distance of p̄D to the surface for actuator σ = 0.1
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(d) Distance of p̄D to the surface for actuator σ = 5.0
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(e) Distance of p̄D and p̄ to the surface and p̄S for actu-
ator σ = 0.1
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(f) Distance of p̄D and p̄ to the surface and p̄S for actu-
ator σ = 5.0

Figure 3.7: Random uniform generation of point samples on a curved segment with actuator
σ = 0.1 (a) and σ = 5.0 (b). The black point is the sensor origin o. The blue and red points are
the perfectly sampled and distorted points P and P̂ , respectively. The centroid of the blue points p̄S
is displayed in green. (c) and (d) illustrate the error of p̄D to the surface as a function of the number
of sampled points n and distance d. (e) and (f) show the Euclidean distance of p̄D and p̄ to the surface
and to p̄S as the mean over the distance d.

planar surface, an increase in d has no visible effect if the actuator standard deviation is low,
e.g., σ = 0.1 (c). Higher actuation imprecision leads to an increase in error for higher d, if the
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number of points in the voxel is low as can be seen in (d). (e) and (f) illustrate the distance of
p̄D and p̄ to the surface and to p̄S as a function of #points and the mean over the distance d.
For low actuation errors (e), there is almost no difference between p̄D and p̄. Despite an in-
creasing distance to the surface, the centroids converge to the real centroid p̄S of the surface.
However, a centroid lying on the surface itself may be more beneficial for SLAM algorithms,
since the distance between LiDAR measurements on the surface and the centroid is mini-
mized during the map optimization process. (f) shows an increased error between p̄D and p̄
due to the higher actuator imprecision. However, both centroids converge to p̄S when more
points are inside the voxel.

Summarizing the results for a curved surface inside a voxel, the results show that neither
the centroid of sampled points without distortion p̄, nor the real centroid of the surface p̄S
lies on the surface. A higher number of points inside the voxel increases the distance of p̄D
to the surface, while it is converging to the real centroid p̄S of the surface. Low actuation
imprecision with σ = 0.1 and the distance d have almost no effect on the error of p̄D to p̄. On
the other hand, high imprecision increases this error.

For the planar as well as for the curved surface segment, the centroid of the distorted
points p̄D converged towards p̄S with increasing #points inside the voxel.

Not a trivial question to answer is, whether the centroid p̄, p̄S or a point directly on the
curved surface is a better representation of the surface. Ultimately, this depends on the ap-
plication.

3.4.1.2 3D triangular mesh

Instead of a single voxel, this section investigates the distance of centroids to a whole mesh
surface using the airplane and Tower Bridge models of Dataset 1 (Fig. 3.5(a)) and Dataset 2
(Fig. 3.5(b)) as a function of the number of sweeps (#sweeps). Dataset 1 features the airplane
mesh with a lot of curvature on the fuselage, while Dataset 2 contains mainly planar faces on
the walls of the towers but also many edges. The setup consists of a virtual gimbal-mounted
Velodyne VLP-16 LiDAR sensor as described in Section 3.3. Following up on the findings
for a single voxel, the overall RMSE of the centroids to a full mesh surface is dependent on
the edge length or size of the voxels and the surface curvature inside of them. Assuming the
same mesh and surface for different voxel sizes, the centroids of smaller voxels are expected
to be closer to the mesh surface and have a lower RMSE.

An experiment was conducted to compute the RMSE between the voxel centroids and the
mesh surface as a function of #sweeps. The LiDAR points were subject to σ = 0.03 ranging
and σ = 0.1 actuator errors before the centroid computation. The general assumption is that
more accumulated points from more sweeps compensate for ranging errors and actuator im-
precision. The LiDAR sensor is actuated with an average speed of 9.6 deg/s between±0.6 rad

around the roll axis. Hence, one sweep consists of 96 scans on average. Figure 3.8 shows the
results of the experiment for different voxel sizes using Dataset 1 (a) and Dataset 2 (b). It can
be seen that for both datasets, there is a trend of increasing RMSE with increasing #sweeps,
independently of the voxel size. For the sake of the voxel centroids being close to the actual
mesh surface, it is, therefore, advisable to choose a low number of sweeps. However, a clear
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Figure 3.8: RMSE of the voxel centroids to the mesh surfaces as a function of the number of sweeps.
The legend contains the color code for the voxel edge length. The measured points were subject to
σ = 0.03 ranging errors and σ = 0.1 actuator error before the centroid computation.

difference can be seen between the two datasets regarding the voxel sizes. Dataset 1 shows
the lowest RMSE when choosing voxel sizes of 30 cm and 40 cm, while 5 cm shows the high-
est error. While it is difficult to gain insight into why this is the case, it shows that the best
voxel size is dependent on the underlying structure. In comparison, Dataset 2 shows the ex-
pected results: A smaller voxel size results in a lower RMSE. Still, the error is increasing with
more points in the voxels when capturing more sweeps. Despite Dataset 2 does not feature
much curvature, this may be caused by the edges and fine details of the Tower Bridge mesh.

3.4.2 LOAM with a static self-generated initial map

The previous experiments showed the influence of actuator distortion, the number of sweeps,
and voxel sizes on the centroid-to-surface distance. However, this distance may not nega-
tively influence the pose estimation by the LOAM algorithm. In this section, the results for
different voxel sizes, different numbers of sweeps during initial map creation, and varying
actuator errors are presented. Finally, the proposed approach is benchmarked using all three
datasets as shown in Fig. 3.5.

In the experimental results, the proposed approach is termed Init-LOAM-F (for fixed). It
creates an immutable initial map, which can not be changed during the exploration. New
points are only added to voxels, which are not occupied by points of the initial map. Karimi
et al. [3] presented a method for initial map creation, which leaves the points mutable. In the
experiments, this method is termed Init-LOAM-V (for variable), where the voxel centroids of
the initial map are updated during the exploration.

The results for this chapter are presented when running in offline mode. This means, that
only one LiDAR scan is sent into the pipeline at a time, e.g., in an on-demand manner. Once
the final map-optimized pose from the mapping module is available and the scan points are
inserted, a signal is sent to request the next LiDAR scan. This ensures that the pipeline can
run at its own speed and will therefore not perform frame dropping. In this mode, all LiDAR
scans of the dataset are processed and inserted into the map. The main advantage of this
mode is reproducibility since no LiDAR scans are randomly dropped.
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Table 3.2: Results of LOAM for different voxel edge lengths on Dataset 1. The parameter e defines
the voxel size for the corner feature map PE and h for the surface feature map PH, respectively. The
best results are marked in bold.

e (in cm) h (in cm)
APE (in cm) RE (in deg) map time (in ms)

meanmax mean median max mean median
5 10 46 19 19 2.29 0.55 0.55 5010
10 20 33 18 19 2.29 0.55 0.55 2102
20 40 20 14 15 1.99 0.17 0.18 747
30 60 101 52 47 2.85 2.18 2.19 451
40 80 46 26 23 1.37 1.03 1.03 286
50 100 66 34 29 2.19 1.52 1.52 185

3.4.2.1 Analysis for different voxel sizes

Before the results for the proposed approach are presented, the effect of different voxel sizes
on the APE for the conventional LOAM algorithm is investigated. Specifically, the values for
the parameters e and h as described in Section 3.2 are varied for Dataset 1. e and h control
the voxel edge length for the corner and surface feature map, respectively. The results in Sec-
tion 3.4.1.2 have shown, that the RMSE of the voxel centroids to the surface is dependent on
the surface structure. In the case of the airplane model of Dataset 1, the voxel sizes of 30 cm

and 40 cm have shown the lowest RMSE. However, these voxel sizes may not necessarily be
optimal for pose estimation and mapping.

As an example, experiments were conducted on Dataset 1 with varying voxel sizes using
the conventional LOAM algorithm [12]. As described in the previous sections, LOAM uses
two separate maps for corner and surface features. The default parameters of A-LOAM are
e = 20 cm and h = 40 cm. Table 3.2 shows the results of the experiments with h = 2 ∗ e, for
e = {5, 10, 20, 30, 40, 50}. It can be seen that a voxel size e < 20 cm has no improved APE
compared to e = 20 cm, but a significantly increased mapping time. This is due to the higher
number of features in the maps which need to be considered for correspondence estimation
and also map optimization. The voxelization of map points also compensates for small scan
insertion errors due to slightly wrong transform estimates of the map optimization. This may
move the voxel centroids slowly to an incorrect position within the voxels, but is not imme-
diately affected by a wrong scan insertion. However, this only holds for small transform
errors. For higher errors scan points are not even assigned to the same voxel and instead
may even occupy a new voxel triggering the "double wall" effect. In this regard, larger voxel
sizes may be more robust. On the other hand, this also decreases the accuracy of the pose
estimation, since fewer correspondences are used in the map optimization and the centroids
are only approximations within a larger voxel. This can be seen for the results e > 20 cm.
The highest error can be seen for e = 30 cm, however, no general conclusion can be drawn
from this. SLAM is a highly complex process and incorrect estimation of a single pose with
a wrong scan insertion can have a negative effect on all the following exploration, especially
indoors, when the robot stays in the same environment.
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Figure 3.9: Comparison of the APE (a) and RE (b) for Init-LOAM-V and Init-LOAM-F as a function of
#sweeps for the initial map creation. The results are presented for Dataset 1. The scan points are sub-
ject to Gaussian ranging errors with N (0, 0.032) and the actuator transforms are subject toN (0, 0.12).

To summarize the results, e = 20 cm and h = 40 cm shows the best performance on
Dataset 1 and also has a reasonable average mapping time with 747 ms, which ensures a
map-optimized pose with > 1 Hz as in the original LOAM publication [12]. With a LiDAR
sensor providing 10 Hz LiDAR scans, 1 out of 10 scans will be used to obtain a map-optimized
pose and will be inserted into the map. Note that all scans in between will still be processed
by the odometry module, providing high-frequency scan-to-scan pose estimates with 10 Hz.
For a short amount of time, this is sufficient for real-time robot control but suffers from severe
drift until a map optimization occurs to correct the most recent pose estimate.

For all following experiments in this thesis, the voxel size parameters are set to e = 20 cm

and h = 40 cm.

3.4.2.2 Analysis for different number of sweeps

As shown in the previous sections, the number of scan points within a voxel influence the
centroid position and the description of the underlying surface. The RMSE of the voxel cen-
troid to the surface consistently increased in the experiments of Section 3.4.1.2 with increas-
ing sweep number. Hence, the question arises whether an initial map, which was created
with more LiDAR sweeps, also leads to a worse performance of the LOAM algorithm and
therefore to a higher APE or RE.

Figure 3.9 shows the results for Init-LOAM-V and Init-LOAM-F as a function of #sweeps.
For Init-LOAM-V a slight increase in APE (a) can be seen with increasing #sweeps. The
proposed approach Init-LOAM-F is rather constant over the whole range with a slight min-
imum at 10 sweeps. The same can be seen when evaluating the RE (b). For Init-LOAM-V
there is a significant drop in RE for > 1 sweep. However, it should be noted that the RE
for Init-LOAM-V and Init-LOAM-F is below 0.1 deg for all #sweeps. In this experiment, Init-
LOAM-F (APE ≈ 2 cm) consistently performs better than Init-LOAM-V (APE ≈ 13 cm). It
can be concluded that for low actuator and ranging errors, even a low number of sweeps
may be sufficient for the initial map creation.

For the following experiments, the LiDAR scans points of three sweeps are collected to
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create the initial map for Init-LOAM-V and Init-LOAM-F.

3.4.2.3 Analysis for different actuator errors

Actuator measurement errors have a negative impact on the initial map creation. The pro-
posed approach relies on the high quality of the initial map, since it is created by accumu-
lating LiDAR scans without optimization, i.e., scans are directly inserted into the initial map
with the actuator transforms. Hence, the optimization process of LOAM might compensate
for higher actuator errors and result in a better performance than the proposed approach
with a static initial map, created with inaccurate actuator readings.

In the following experiments, the transform of the actuator reading (Alg. 1, line 6) is
augmented with a random Gaussian noise H as in Eq. 3.3. The rotation matrix can then be
computed with the random angle α drawn from the distribution. The augmented transform
LtT L̂t

is assembled with the rotation matrix and a zero-translation vector. The augmented
actuator transform for a LiDAR scan at time t is then described as:

DtT L̂t
= DtT Lt

LtT L̂t
(3.7)

DtT Lt is the perfect actuator transform obtained from the simulation. This augmentation is
performed for all actuator readings, i.e., during the initial map creation (Phase 1) as well as
during the exploration (Phase 2).

Table 3.3 shows the results of LOAM, Init-LOAM-V and Init-LOAM-F on Dataset 1 for
different actuator errors. For Init-LOAM, the initial maps are created by the accumulation
of three sweeps. Init-LOAM-F has a very low APE (≈ 1 cm) for σ = 0.1 and still performs
better than LOAM and Init-LOAM-V until the actuator error reaches σ = 3.0. For σ = 5.0,
Init-LOAM-V performs best, while Init-LOAM-F has a higher APE than LOAM. This is very
interesting since the major difference to Init-LOAM-F is that the voxels created during the ini-
tialization are modified and updated during the exploration, i.e., all scan points are inserted
into the dynamic map and merged with the voxel centroids. Hence, the actuator-distorted
voxels acquired during initialization are effectively corrected by the map optimization pro-
cess for Init-LOAM-V. At the same time Init-LOAM-V performs better than pure LOAM
with map optimization without initialization (Phase 1). It should be noted that the results
presented for LOAM also leverage the known actuator transform in the odometry module as
described in Alg. 2. The results for σ = 10.0 show that creating an initial map is not beneficial
anymore and even harmful. Init-LOAM-V and Init-LOAM-F perform worse than standard
LOAM with respect to APE and RE.

To summarize the results it can be said that the proposed approach Init-LOAM-F is ro-
bust to actuator errors up to σ = 3.0. Considering that current Dynamixel actuators have
an imprecision of 0.1 deg, Init-LOAM-F can be employed on real-world robots with standard
actuators. The advantages of an initial map vanish for σ > 5.0 and for σ ≥ 10.0 it is not
advisable to create an initial map.

For the following experiments an actuator error of σ = 0.1 is applied.
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Table 3.3: Experimental results for actuator augmentation using Dataset 1 with σ = {0.1, 0.5, 1.0, 3.0,
5.0, 10.0} in deg and 3 sweeps for Phase 1. The best results are marked in bold. Partially reproduced
and modified from [5], ©2021 IEEE.

act.
σ

method
APE in cm RE in deg

max mean median max mean median

0.1
LOAM [12] 26 16 16 2.15 0.36 0.36

Init-LOAM-V 16 11 13 0.39 0.09 0.07
Init-LOAM-F 8 2 1 0.41 0.08 0.07

0.5
LOAM [12] 21 15 15 2.10 0.47 0.40

Init-LOAM-V 19 14 15 2.14 0.41 0.34
Init-LOAM-F 14 3 2 2.13 0.40 0.34

1.0
LOAM [12] 24 18 20 4.70 0.84 0.71

Init-LOAM-V 30 24 25 4.02 0.81 0.67
Init-LOAM-F 25 9 8 4.33 0.82 0.68

3.0
LOAM [12] 78 43 41 13.19 2.76 2.36

Init-LOAM-V 44 32 32 12.58 2.47 2.08
Init-LOAM-F 26 10 10 12.29 2.44 2.05

5.0
LOAM [12] 238 127 117 23.88 5.85 5.27

Init-LOAM-V 167 87 76 21.94 5.03 4.38
Init-LOAM-F 275 145 136 23.46 6.40 5.89

10.0
LOAM [12] 373 197 180 46.82 10.50 9.18

Init-LOAM-V 580 309 287 46.78 13.17 12.28
Init-LOAM-F 801 421 390 58.38 17.14 16.64

3.4.2.4 Benchmark using all datasets

This section presents the results for LOAM, Init-LOAM-V, and the proposed Init-LOAM-F on
all three datasets. On one hand, Init-LOAM is compared to LOAM operating in frame {D},
which leverages the actuator transform in the odometry estimation module as described in
Alg. 2. Here, the map optimization is performed in the robot frame {D}. On the other hand,
Init-LOAM is benchmarked against the original LOAM algorithm operating in frame {L}. It
processes the scans in the LiDAR frame {L}, without leveraging the knowledge about the
actuator transform. Hence, the LiDAR rotation is fully estimated by the odometry and map
optimization.

Table 3.4 shows the results on all three datasets. For Dataset 1 all methods perform well
with an APE < 30 cm. LOAM with scans processed in the LiDAR frame {L} is not subject
to actuator reading errors, since no additional transform is performed. However, for the
methods leveraging the actuator transform (operating in frame {D}), a zero-mean Gaussian
noise of σ = 0.1 is applied. Creating an immutable initial map for Init-LOAM-F performs
exceptionally well with a median APE of only 1 cm. The same can be seen for Dataset 2,
where an initial map prevents heavy drift compared to LOAM. Init-LOAM-F also performs
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Table 3.4: Experimental results for LOAM, Init-LOAM-V, and Init-LOAM-F on all three datasets. The
best results are marked in bold. Adapted and modified from [5], ©2021 IEEE.

method frame act. σ
#sweeps
Phase 1

APE in cm RE in deg
max mean median max mean median

D
at

as
et

1 LOAM [12] {L} - - 29 16 17 0.10 0.02 0.02
LOAM [12] {D} 0.1 - 26 16 16 2.15 0.36 0.36

Init-LOAM-V {D} 0.1 3 16 11 13 0.39 0.09 0.07
Init-LOAM-F {D} 0.1 3 8 2 1 0.41 0.08 0.07

D
at

as
et

2 LOAM [12] {L} - - 740 549 609 13.41 11.87 11.99
LOAM [12] {D} 0.1 - 523 363 381 12.74 7.88 7.91

Init-LOAM-V {D} 0.1 3 69 10 8 0.73 0.23 0.23
Init-LOAM-F {D} 0.1 3 68 7 6 0.64 0.20 0.19

D
at

as
et

3 LOAM [12] {L} - - 1512 495 499 10.09 3.66 2.47
LOAM [12] {D} 0.1 - 1539 457 439 10.24 3.30 2.27

Init-LOAM-V {D} 0.1 3 1387 389 351 9.26 2.86 2.11
Init-LOAM-F {D} 0.1 3 1267 292 238 9.94 2.68 2.85

best in Dataset 3, despite the challenging outdoor environment at the Eiffel Tower. Here, all
methods have the highest APE at over 10 m, which is large considering that Dataset 3 has
the shortest flight trajectory of all datasets (see Table 3.1). Summarizing the results, creating
an initial map proved beneficial for all three datasets. Init-LOAM-F with the immutable ini-
tial map shows the best performance compared to Init-LOAM-V and conventional LOAM.
Leveraging the actuator transform reduces the APE in all cases compared to LOAM process-
ing the scans in the LiDAR frame {L}.

Figure 3.10 visualizes the results for Dataset 1. (a) and (b) show the APE mapped onto
the trajectory of Dataset 1 for LOAM operating in {D} and Init-LOAM-F, respectively. A
continuous drift can be seen for LOAM towards the rear of the airplane, while Init-LOAM-F
shows a very low APE around the whole airplane. (c) and (d) show the final surface fea-
ture maps and the airplane model as triangular mesh. For LOAM, all surface features are
inserted into a single dynamic map. In fact, all points shown are the voxel centroids of the
surface map with a voxel edge length of h = 40 cm, as discussed above. In (c), all centroids
are continuously updated after each scan insertion. In contrast, (d) shows the initial (blue)
and dynamic (red) surface feature maps. The blue points were processed by Phase 1 of the
proposed pipeline and the red points by Phase 2. The former were acquired from the starting
position of the UAV, while it was still stationary and the latter were acquired and inserted
during the exploration. Hence, the red points were not visible from the starting position. A
"V"-shape can be seen on the right side of the hangar between the initial and dynamic map
points. This is due to the actuation limit of ±0.6 rad of the LiDAR sensor during initial map
creation. In (d), above the airplane on the back wall of the hangar, a clear separation with a
fine white space is visible between the points of the initial and dynamic map. The proposed
scan insertion into the dynamic map as illustrated in Fig. 3.3 leads to this effect.

Figure 3.11 illustrates the APE mapped onto the trajectory and final surface feature maps
of Dataset 2 using LOAM operating in {D} (a), and Init-LOAM-F (b). Without the initial
map, wrong scan insertions are more likely and may lead to a skewed map representation
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(a) APE (m) using LOAM in {D} (b) APE (m) using Init-LOAM-F

(c) Final surface feature map using LOAM without
initial map (a)

(d) Immutable initial (blue) and dynamic (red) surface
feature maps using Init-LOAM-F (b)

Figure 3.10: Visualization of the APE mapped onto the trajectory of Dataset 1 for LOAM operating in
{D} (a), and Init-LOAM-F (b). (c) and (d) show the final surface feature maps, including the airplane
model as triangular mesh. The front of the hangar was removed for illustrative purposes.

(a) APE (m) using LOAM in {D} and dynamic sur-
face feature map

(b) APE (m) using Init-LOAM-F and initial (blue) and dy-
namic (red) surface feature maps. Reproduced from [5],
©2021 IEEE.

Figure 3.11: Visualization of the APE mapped onto the trajectory of Dataset 2 for LOAM operating in
{D} (a), and Init-LOAM-F (b). The final surface feature maps were overlaid with the triangular mesh
of the Tower Bridge. The ground was removed for illustrative purposes.
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and strong drift, as can be seen in (a). The maximum error of over 5 m is at the highest point
of the trajectory due to accumulated drift at the right tower. In contrast, the initial map (blue)
in (b) prevents the wrong scan insertion and effectively guides the localization and mapping
process during exploration. Here, the highest error is also at the top of the trajectory with
≈ 68 cm where few parts of the initial map are visible and the localization mainly needs to
rely on points inserted during exploration (Phase 2).

3.5 Chapter summary

This chapter presented a modification of the conventional LOAM framework to enable the
generation of an immutable initial map. The core idea of the proposed approach is that an
initial map can be created with much higher accuracy from the starting position of the robot
by accumulating LiDAR scans with the known actuator transforms. This assumes that the
sensor is mounted on a gimbal/actuator. The proposed pipeline is divided into two phases:
initialization (Phase 1) and exploration (Phase 2). This chapter gave a detailed description
of the modifications introduced to the LOAM algorithm to make the initial map immutable
during the exploration while being able to continue mapping unseen parts of the environ-
ment.

The experimental setup included a simulated UAV as a robotic platform, following pre-
defined trajectories for visual inspection. A virtual Velodyne VLP-16 LiDAR sensor was
mounted on the UAV via a gimbal, capturing LiDAR scans during the initialization and ex-
ploration phases. The LiDAR was continuously actuated back and forth.

First, the effects of actuator reading imprecision and ranging errors were evaluated on a
planar and curved surface within a single voxel. The results for a planar surface have shown,
that an increased number of points within the voxel decreases the distance between the cen-
troid of distorted points and the underlying surface. Also, the distance to the real surface
centroid decreases. However, in the case of a curved surface, even the centroid of undis-
torted points does not lie on the surface. A voxel centroid of a higher number of distorted
points converges towards the real surface centroid, but the distance to the surface increases.
The influence of #sweeps and different voxel sizes was then evaluated by means of RMSE on
a triangular mesh. The optimal voxel size varied for Dataset 1 and Dataset 2. However, in
both cases, the RMSE increased when accumulating more LiDAR scans.

Experiments have demonstrated that the default voxel size parameters of LOAM are op-
timal for Dataset 1 by means of APE and that accumulating more LiDAR sweeps does not
improve localization and mapping performance. Init-LOAM-F has proven robust to actuator
errors up to 3.0 deg in the benchmark against Init-LOAM-V and LOAM. For > 10.0 deg it is
rather harmful to create an initial map, and generally, the use of the actuator transform is
questionable with such high imprecision. In the benchmark, Init-LOAM-V performed better
than LOAM in all three datasets, demonstrating that creating an initial before the exploration
improves localization and mapping, even if the initial map is changed during the explo-
ration. Ultimately, Init-LOAM-F outperformed Init-LOAM-V and LOAM. Hence, keeping
the initial map immutable during the exploration has proven beneficial and led to a reduced



72 Chapter 3. 3D LiDAR odometry and mapping with a static self-generated initial map

APE.



Chapter 4

Improving LOAM with mesh features
of a known 3D reference object

This chapter introduces an approach to improving LOAM [12] accuracy by leveraging prior
knowledge about a 3D reference object. With simulated data, the proposed approach is eval-
uated in three visual inspection scenarios.

Parts of this chapter have been published in [1].

4.1 Problem statement

Instead of an a priori known map before the exploration or the generation of an initial map at
the starting position as in Chapter 3, the knowledge about only parts of the environment can
be leveraged to improve localization and mapping performance. Often, robotic platforms are
deployed in scenarios, where the area of operation is difficult to reach for human workers.
For example, windmills, bridges, buildings, or also airplanes need to be inspected regularly
for defects. For most of these objects, CAD models exist from the manufacturer or can be
created with highly accurate measuring devices. The CAD models can then be used as prior
knowledge by the robot. Due to the repetitive nature of visual inspections, the generated 3D
models can be reused. Windmills are not fully rigid due to the rotation of the blades but can
be put into a maintenance position so as to be consistent with the CAD model. In disaster
scenarios, robots are deployed for manipulation or search and rescue missions. Here, archi-
tectural or emergency floor plans [93]–[95], [97], [98] can be leveraged as prior knowledge
about the interior of a building and used by the robot for global relocalization and improved
LOAM accuracy. However, 2D floor plans can mainly only be used in 2D LiDAR-SLAM
applications due to the missing height information.

Instead of a single object, a whole 3D CAD building model can also be used as prior
knowledge by the robot. No matter if a whole building or a single 3D reference object is
used, in order to leverage it as prior knowledge the initial relative position to the reference
object in the global coordinate frame of the robot needs to be determined. This assumes that
the position of the reference object is not changing, i.e., an airplane or vehicle used as a refer-
ence object is not moved during the robot exploration. Since the map of the SLAM algorithm
is typically created at the starting position of the robot, the relative pose to the reference

73
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world

airplane
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Figure 4.1: Visualization of the concept for relative localization to a 3D reference object using a scene
from a simulation. The UAV is equipped with a LiDAR sensor and uses an airplane as a 3D reference
object during the exploration. Typically, the transformation world→ lidar is estimated by the LiDAR-
SLAM algorithm. The relative transform airplane→ lidar can support this estimation if the position of
the airplane in the world frame (world→ airplane) is known.

object needs to be determined from there before the start of the exploration. The starting po-
sition also defines the map/world coordinate frame of the LOAM algorithm. If the relative
position is fully unknown, global relocalization techniques need to be employed, eventually
followed by local registration. With a good initial guess, local registration methods can be
used directly to determine the relative pose to the reference object, e.g., using ICP. Hence,
the robot should be initially placed close to the reference object in a way that global/local
registration techniques can accurately determine the relative transform. For example, if a
building model is used for a facade inspection, the robot should be placed in a section with
a unique layout to avoid ambiguities. If an airplane or bridge is used, the robot should be
placed in an initial position, so that it can scan unique parts of the reference object with the
LiDAR sensor.

So far, only a few works have been presented to perform highly accurate ego pose estima-
tion leveraging a 3D reference object as a 3D CAD model as discussed in Section 2.2.2. Sandy
et al. [109] leveraged a CAD model for the highly precise positioning of an end-effector for
brick stapling. Gawel et al. [110] performed ray tracing into a CAD model for highly accurate
drilling operations. However, all these works do not improve mapping quality nor directly
integrate the 3D model into the mapping process of the LiDAR-SLAM pipeline.
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In this chapter, a method is presented as an extension to the LOAM framework [12] to
improve SLAM performance by leveraging knowledge about a known 3D reference object.
The proposed method is termed Reference-LOAM (R-LOAM). In contrast to previous work,
the proposed approach tightly couples the reference object into the SLAM pipeline. The ex-
perimental evaluation employs a known CAD model in the form of a triangular mesh as a
3D reference object. Also, the exact position of the reference object in the coordinate frame
of the robot is assumed to be known. Figure 4.1 shows the concept of a relative localization
between a LiDAR mounted on a UAV and an airplane as the reference object. A SLAM al-
gorithm estimates the transform or current pose of the LiDAR in the world or map frame,
depicted as world→ lidar. To further support this pose estimate, a relative localization to the
airplane is introduced (airplane→ lidar). However, the position of the airplane in the world
frame (world→ airplane) is required to be known with high precision.

The reference object could also be used as a partial initial map as described in Chap-
ter 3. In the case of LOAM [12], however, this is not possible since the maps are actually
consisting of corner and surface features (see Section 2.2.1). These are extracted in the scan
registration module directly from the LiDAR scan (see Section 2.1.4.1). Hence, a whole point
cloud or even triangular mesh can not be converted to feature maps when using the LOAM
framework. Besides, SLAM algorithms usually operate on sparse maps to maintain real-time
capability. The proposed approach combines the conventional map optimization on sparse
maps using point features, with additional mesh features extracted from a triangular mesh
of a 3D reference object. Alternatively, the mesh can be replaced by a dense point cloud of
the reference object. A triangular mesh can be seen as an infinitely dense point cloud due to
its implicit definition of the object surface with faces. Converting the mesh to a point cloud
will lose this implicit surface definition.

4.2 Methodology

This section describes the modules added to the conventional LOAM pipeline in detail to en-
able the usage of point-to-mesh correspondences in addition to conventional point-to-point
correspondences in the map optimization step. Figure 4.2 gives a schematic overview of
the proposed pipeline. The blue boxes are part of the original LOAM framework as de-
scribed in Section 2.2.1. The green boxes are the modules of the proposed extension. All
the modifications were introduced in the mapping module of the A-LOAM framework. A
key property of the extension is that the point-to-mesh correspondence estimation can be
performed in parallel to the estimation of conventional point-to-point correspondences, i.e.,
in a multi-threaded process until it is merged in the joint optimization module. This adds
computational overhead but limits the added pose estimation delay to a minimum.

In the following, the modules of the extension are described in detail.

4.2.1 BVH initialization

For the proposed approach, an AABB tree structure is used as BVH. An AABB tree is a space
division technique to speed up collision or closest points queries. Here, it is employed to
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Figure 4.2: Overview of the proposed pipeline to support mesh features in the mapping module.
Blue boxes represent unmodified components and green boxes were added to the pipeline. The joint
optimization module is the core of the proposed method, where point-to-mesh correspondences are
jointly optimized with conventional point-to-point correspondences. Reproduced from [1], ©2021
IEEE.

speed up the closest point search between a query point cloud and a triangular mesh. Sec-
tion 2.1.4.3 described in detail how the closest point on a face of the triangular mesh is found
for a query point. If no BVH method is used, all triangles of the mesh have to be tested to
find the closest point, which is computationally intractable for real-time applications. Other
space division techniques may be used as well, but AABB trees are very common among
computer graphics applications.

Initializing the BVH essentially creates the AABB tree structure. For this, the triangular
mesh needs to be transformed to the known location in the global frame, e.g., the map/world
frame {W} of the SLAM algorithm. The location of the mesh as a 3D reference object needs
to be determined before the exploration. As Fig. 4.1 has shown, the relative localization air-
plane→ lidar is only beneficial, if world→ airplane is exactly known. The vertices of a mesh
are defined with respect to its local coordinate frame (airplane in the figure). Once the BVH is
initialized, no changes to the position of the reference object in the global frame can be made.
In the case of an AABB tree, it would need to be reinitialized otherwise. Depending on the
complexity (#faces) of the triangular mesh, this can take several seconds.

After the initialization, it can be reused for arbitrary query point cloud to mesh queries.
Figure 4.3 illustrates the triangular mesh of the airplane as the reference object (a) and the
initialized AABB tree (b).

4.2.2 Scan isolation

The task of the scan isolation module is to remove all points from an incoming LiDAR scan,
which do not belong to the surface of the reference object. The module processes the raw
LiDAR scan points instead of the extracted features from the scan registration module of
LOAM. The LiDAR scan points PLt are first transformed to the map frame using the map-
integrated odometry estimate WT Lt ← WodomT Lt , obtaining PWt . Now, both the 3D reference
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(a) Triangular mesh of an airplane as 3D reference ob-
ject

(b) Hierarchical AABB tree structure of the airplane in
(a)

Figure 4.3: Illustration of the BVH initialization of an airplane as the reference object (a). The AABB
tree (b) is initialized before the exploration after the triangular mesh has been transformed to its loca-
tion in the global frame.

object and the recent LiDAR scan are in the same global coordinate frame.
To isolate the LiDAR scan points belonging to the reference object from the other points,

a cropping method can be employed. In this case, a bounding box cropping method is se-
lected. The bounding box is placed at the known location of the reference object in the global
frame and since the current LiDAR scan points PWt are in the same frame, they can be eas-
ily filtered with a cropping method. To compensate for localization errors of the transform
WT Lt , the bounding box is extended with an additional buffer of +2 m at the sides and top
of the bounding box. All points below 1 m height are removed, effectively removing the
ground in the scan. The size of the crop box is a trade-off. Alternatively, tighter and more
complex cropping methods can be used, e.g., convex hull cropping. However, if the localiza-
tion errors in WT Lt are higher, scan points of the reference object will be removed. On the
other hand, leaving too many non-reference object points might decrease the performance in
the following steps. Figure 4.4 illustrates the scan isolation process. After the transformation
to the map frame, the LiDAR scan is cropped using the extended bounding box. Ideally, all
remaining scan points belong to the reference object.

4.2.3 Point-to-mesh correspondence estimation

For each isolated scan point, the closest point on the triangular mesh surface needs to be de-
termined. The initialized AABB tree can be used to efficiently determine the closest face
of the mesh for each scan point. For this, the AABB tree is traversed downward to the
leaf node containing only a single face by comparing the query point to the extreme points
of the AABBs. The closest point on the face can be computed using 3D geometry as de-
scribed in detail in Section 2.1.4.3. In the following, a closest point on the mesh surface is
referred to as a virtual point pWt

V . Correspondences can then be created between the iso-
lated scan point cloud PWt = {pWt

1 , pWt
2 , · · · , pWt

n } captured at time t and the virtual point
cloud PWt

V = {pWt
V1 , p

Wt
V2 , · · · , p

Wt
Vn }. The set of point-to-mesh correspondences is denoted as

CM = {cM1 , cM2 , · · · , cMn}, with cMi = 〈pWi , pWVi 〉.
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Figure 4.4: Pipeline of the scan isolation process using a bounding box cropping method

(a) Conventional point-to-point correspondences be-
tween the current scan (green) and the map points
(blue)

(b) Point-to-mesh correspondences between the iso-
lated current scan points (green) and the triangular
mesh of the reference object

Figure 4.5: Illustration of the conventional point-to-point correspondences of LOAM (a) and the pro-
posed additional point-to-mesh correspondences between the isolated scan points (green) and the
virtual points (purple) on the surface of the triangular mesh as 3D reference object (b). In both fig-
ures, the correspondences are visualized as red lines. Adapted from [1], ©2021 IEEE.

The point-to-mesh correspondence estimation is a process running in parallel to the con-
ventional point-to-point correspondence estimation as shown in Fig. 4.2. The latter creates
corner and surface features correspondences CE and CH (see Section 2.2.1), respectively.

Figure 4.5 illustrates the conventional (a) and proposed point-to-mesh correspondences
(b). The red lines depict the correspondence distance. Assuming an exact known location of
the reference model in the map frame, this distance is exactly the error of the current pose
estimation WT Lt with which the current scan points were transformed to the map frame. If
the transform is corrected, the scan points will perfectly align to the surface of the reference
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model, and the pose error further decreases.
The current pose estimate WT Lt might be off by several meters in translation or the ro-

tation around roll, pitch, or yaw might be off by a few degrees. In this case, scan points not
belonging to the reference object will pass the scan isolation step and will be used to create
point-to-mesh correspondences. A simple maximum correspondence distance threshold of
1 m is applied to overcome this issue. All correspondences with a greater distance are re-
moved. Note that this might ignore all scan points on the reference object, if the translational
error is too high, e.g., > 2 m. However, in practice this is often prevented: Point-to-mesh cor-
respondences are used for every LiDAR scan and optimization step. Before the error gets too
high, most point-to-mesh correspondences fall within the maximum correspondence thresh-
old and even with a rotational error, there are usually always some valid point-to-mesh cor-
respondences. Therefore, an unrecoverable drift in the pose estimate WT Lt is rather unlikely.

4.2.4 Joint optimization

The conventional point-to-point and proposed point-to-mesh correspondences are added to
a joint optimization problem. The state-of-the-art LOAM map optimization was described
in Eq. 2.48.

The proposed joint optimization with the total cost J is formulated as

J(q, t) =
1
¯̄CH

∑
cH∈CH

ρ(‖fH(cH, q, t)‖22)

+
1
¯̄CE

∑
cE∈CE

ρ(‖fE(cE , q, t)‖22)

+
λ

¯̄CM

∑
cM∈CM

ρ(‖fM(cM, q, t)‖22) .

(4.1)

q and t are the quaternion and translational vectors to be optimized. fE and fH are the cost
functions for the corner and surface features, respectively. They compute the residuals as de-
scribed in Eq. 2.45 and 2.52. The equation is solved with a Levenberg-Marquardt trust-region
algorithm [77], [78]. fM is the proposed cost function for point-to-mesh correspondences,
which is defined as

fM(cM, q, t) = r = (qpLq−1 + t)− pWV , with pL, pWV ∈ cM . (4.2)

Note that here cM = 〈pL, pWV 〉. The isolated scan point p has been transformed back to the
LiDAR frame {L} after the isolation since the optimization process is refining the transform
WT L by adjusting q and t.

Normalization terms were added to Eq. 4.1 when comparing it to the original formulation
(Eq. 2.48). ¯̄CH and ¯̄CE are the number of corner and surface point-to-point correspondences,
respectively. The terms ensure an equal weight among the point-to-point correspondences.
Similarly, ¯̄CM is the number of point-to-mesh correspondences.

The following condition is implemented to avoid a too high influence of point-to-mesh
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Figure 4.6: Illustration of the most common loss functions for nonlinear least-squares optimization (a)
and different scaling parameters for the Huber loss function (b).

correspondences in the map optimization, when the number of mesh features is low:

¯̄CM =

100 ¯̄CM < 100

¯̄CM
¯̄CM ≥ 100

(4.3)

The residuals are Euclidean distances, i.e., depicted as the red lines in Fig. 4.5. The cost
functions, computing the residual r, are wrapped inside a loss function ρ(·), forming a resid-
ual block. It takes the squared residual (squared norm ||r||22) as input.

A variety of loss functions exist in the literature [123]. A selection is visualized in
Fig. 4.6(a). The trivial loss function maps the input residual to the output, whereas the Huber,
SoftLOne, and Cauchy loss functions use a more complex mapping function. The main goal
of the loss function is to reduce the influence of outliers in the overall optimization process,
i.e., a wrong correspondence with a high point-to-point or point-to-mesh distance will result
in a high residual and therefore heavily influence the optimization. A wrong correspondence
might be due to a LiDAR scan point not belonging to the reference object, which survived
the scan isolation step. This may prevent a proper convergence to the correct minimum. The
loss function reduces this influence of high residuals. A scaling factor α can be applied to the
loss function. By default, the LOAM algorithm [12] employs the Huber loss function of the
Ceres solver [123] with s = r2:

ρ(s) =

s s ≤ α2

2α
√
s− α2 s > α2

(4.4)

Fig. 4.6(b) shows the Huber loss function for different scaling parameters α = [0.05, · · · , 1.0].
It can be seen that until s ≤ α2, ρ(r2) has a linear increase, following the condition for s ≤ α2

in Eq. 4.4. For s > α2, the curve flattens faster for smaller α. Generally, there is no right or
wrong choice for a loss function and also for the scaling parameter. However, choosing the
trivial loss function might render the optimization fully exposed to outlier residuals. In the
following, the Huber loss function is chosen as default with α = 0.1 to reduce the influence
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of wrong correspondences.
In fact, the loss function ρ(·) returns a loss vector composed of l = [ρ(s), ρ′(s), ρ′′(s)],

where ρ′(s) and ρ′′(s) are the first and second derivatives of the loss ρ(s), respectively. The
derivatives and the Jacobian matrix are required for the gradient-based optimization solver.
The first and second derivatives for the Huber loss as implemented in the Ceres solver [123]
and used in this thesis are described as:

ρ′(s) =

1 s ≤ α2

max(ε,
α√
s

) s > α2
(4.5)

ρ′′(s) =

0 s ≤ α2

−ρ
′(s)

2s
s > α2

(4.6)

A lambda variable λ was added to the normalization term of point-to-mesh correspon-
dences in Eq. 4.1. This makes it possible to control the influence of the reference object-
based relative localization throughout the map optimization process. λ = 0 is equal to only
running the conventional LOAM with point-to-point correspondences since point-to-mesh
correspondences are fully ignored in the optimization. A very high value of λ makes the
optimization only rely on point-to-mesh correspondences. This is not recommended, since
the reference object may not be visible at all times or the LiDAR scan of the reference object
might be ambiguous and not unique. For example, a vertical scan slice of the fuselage of the
airplane might be identical to one recorded several meters apart. Hence, a trade-off between
conventional point-to-point and the proposed point-to-mesh correspondences is required.

Empirical observations have shown that an increasing value for λ with the number of
map optimization iterations leads to the best result. Hence, the following frame parame-
ters are identified: λmin = 0.1 for the first iteration (i = 1) and λmax = 40 after 35 iter-
ations (i = 35). Therefore, the first map optimization iteration is mostly determined by
point-to-point correspondences, whereas later iterations mainly rely on point-to-mesh corre-
spondences. The function, which maps the lambda values for the iterations 2− 34 however,
can vary significantly. Figure 4.7 illustrates λ as a function of the current iteration index
i ∈ i = {1, 2, · · · , 35} using linear, sigmoid and logarithmic functions. The most straightfor-
ward function performs a linear mapping:

λLin(i) = λmin +
(i− 1)(λmax − λmin)

max(i)− 1
(4.7)

A Sigmoid function has an "S-shaped" curve and is often used as an activation function in
Artificial Neural Networks (ANNs). It has a lower value than the linear function until its
midpoint c, but a higher one after. λSig using the Sigmoid function for an iteration i with a
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Figure 4.7: Selected functions for λ, scaled between λmin = 0.1 for iteration i = 1 and λmax = 40 at
iteration i = 35

scaling factor a can be obtained with

s(i, a) =
1

1 + e−a(i−1−c)
,

with c =
max(i)

2

λSig(s(i, a)) = λmin +
(s(i, a)− s(min(i), a))(λmax − λmin)

s(max(i) + 1, a)− s(min(i), a)

(4.8)

Function s(i, a) computes the Sigmoid value for iteration i with scaling factor a. Func-
tion λSig(s(i, a)) then scales the Sigmoid value for use as lambda weight.

In a similar fashion, a scaled logarithmic curve can be generated for the iteration i ∈ i:

λLog(i) = λmin +
(log(i)− log(min(i)))(λmax − λmin)

log(max(i))− log(min(i))
(4.9)

The influence of the different functions for lambda on the SLAM performance will be
evaluated in the experimental results section of this chapter.

4.3 Experimental setup

The Gazebo simulation environment is used to generate three datasets of visual inspection
scenarios. Figure 4.8 visualizes the followed trajectory by a UAV for each of the scenarios.
Scenario 1 (a) uses the airplane, Scenario 2 (b) the van, and Scenario 3 (c) the Eiffel Tower as
the reference object. Scenarios 1 and 2 are indoors inside a hangar, while Scenario 3 is out-
doors. Scenario 2 only uses the small van as the reference object. Therefore, it is not visible
at all times in the LiDAR scans, especially when the UAV is on the other side of the airplane.
Also, due to the small size of the van compared to the airplane as a reference object, a lot less
point-to-mesh correspondences can be extracted, making the reference object-based relative
localization very challenging.
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(a) Scenario 1 - Airplane (b) Scenario 2 - Van (c) Scenario 3 - Eiffel Tower

Figure 4.8: Illustration of the three simulated visual inspection scenarios and the followed trajectory
in red. Scenario 1 (a) uses the airplane, Scenario 2 (b) the van, and Scenario 3 (c) the Eiffel Tower as
the reference object. Adapted from [1], ©2021 IEEE.

Table 4.1: Metadata for the generated datasets. For each scenario, two datasets were generated. One
using a VLP-16 and one using an OS1-128 LiDAR sensor. Adapted and modified from [1], ©2021
IEEE.

dataset scenario LiDAR #scans avg. vel. length duration

1 1 VLP-16 15111 0.35 m/s 514 m 25m 11s

2 1 OS1-128 9905 0.48 m/s 474 m 16m 30s

3 2 VLP-16 9718 0.49 m/s 474 m 16m 11s

4 2 OS1-128 9726 0.49 m/s 474 m 16m 15s

5 3 VLP-16 5674 0.51 m/s 291 m 9m 26s

6 3 OS1-128 5762 0.51 m/s 291 m 9m 35s

The robotic platform is a UAV and is identical to the one described in Section 3.3. Here
too, a Velodyne VLP-16 LiDAR sensor with added zero-mean Gaussian noise with σ = 0.03

for ranging errors is employed. Besides, for each scenario, an Ouster OS1-128 LiDAR sen-
sor is simulated, following the manufacturer specifications with ranging errors of σ = 0.05.
Hence, two datasets are generated for each of the scenarios using either of the LiDAR sensors.
Both types of LiDAR sensors operate at 10 Hz in all datasets. As described in Section 2.1.2, the
OS1-128 features 128 scan lines compared to 16 of the VLP-16 and generates up to 2.6 million
points per second. The OS1-128 is the current high-end of spinning LiDAR sensors in the
industry with its vertical scan line density. It is added to the experiments to further evaluate
the performance of the approach, in case the data generated by the VLP-16 is insufficient.

Table 4.1 shows the metadata for each recorded dataset. In Dataset 1, the UAV was man-
ually controlled. Datasets 2-4 follow the same trajectory but with an autonomous flight con-
troller. Hence the difference in #scans for the datasets and the slower average velocity in
Dataset 1. The UAV of the Datasets 5 and 6 also used an autonomous flight controller. It was
configured with an average speed of 0.5 m/s, as can be seen in the average velocity of the
Datasets 2-6.

The LiDAR sensor is continuously actuated back and forth to increase the FoV. Note that
despite the same trajectory being followed in the Datasets 1 and 2, the LiDAR scans are sub-
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Figure 4.9: Illustration of the number of mesh, surface, and corner features for each LiDAR scan of
Dataset 1

stantially different due to the varying LiDAR actuation. Hence, each dataset recording will
yield different LiDAR scans despite identical trajectories.

4.4 Experimental results

LOAM and R-LOAM are capable of running online, e.g., the algorithms try to cope with the
rate of incoming LiDAR scans by dropping frames. The results presented in this section are
generated in offline mode. Here, each LiDAR scan of the dataset is fully processed to achieve
reproducible results.

4.4.1 Scenario 1 - Airplane as a reference object

Due to the LiDAR rotation and position relative to the reference object, the airplane might
not be visible at all times in the LiDAR scans. Figure 4.9 shows the number of mesh, sur-
face, and corner features extracted in each LiDAR scan of Dataset 1. While the number of
mesh and surface features varies significantly, it is quite stable for the corner features. In
fact, the surface and corner features were denoted as PHless and PEless previously. Hence, they
represent the less flat and less sharp features, respectively. Only these are sent to the map-
ping module. The number of less sharp corner features is stable because a fixed number is
extracted from each scan section and scan line (see Section 2.1.4.1). All remaining features
are assigned to the less flat category. Therefore, a significant difference in corner and surface
features can be seen. The number of mesh features is highly dependent on the visibility of
the reference object. Especially at the end of the trajectory of Dataset 1, when the UAV is
flying above the airplane, very few and sometimes no mesh features are extracted. Since the
LiDAR sensor is mounted horizontally, only when it reaches a tilted endpoint (i.e., ±0.6 rad),
the LiDAR scan contains some points on the airplane surface. When no mesh features are
extracted in a scan, the map optimization only relies on point-to-point correspondences and
is identical to the conventional LOAM algorithm.
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Figure 4.10: APE (m) as a function of different lambda values for Dataset 1 using R-LOAM. The re-
sults are shown for 2 iterations (a) and 35 iterations (b). [1.0, 40.0] are constant values for λ, whereas
the others are functions of the current iteration as shown in Fig. 4.7.

Figure 4.10 shows the results when using different λ-functions using R-LOAM on Data-
set 1. As previously discussed, it controls the weight of point-to-mesh correspondences in
the joint optimization formulation. In (a) it can be seen, that a value of λ = 5.0 yields the
lowest median APE among the constants. However, the max. APE increases with increasing
constant lambda. In comparison, the Sigmoid and linear functions show a lower max. APE,
but a slightly increased median APE. The logarithmic function yields the best results with
one of the lowest max. and median APEs. When looking at the results of the Sigmoid, linear,
and logarithmic functions it should be noted, that these are only for two iterations (which is
the default for LOAM). Hence, only two lambda values were sampled from the functions at
iteration 1 and 2. In fact, λ = 0.1 for all non-constant functions in the first iteration. Only
the second λ value depends on the actual function. The Sigmoid function with a = 0.1 is al-
most linear, therefore the result is nearly identical to the linear function. In contrast, a = 0.7

yields very low λ in the first two iterations as can be seen in Fig. 4.7. The lower λ, the closer
the results get to the conventional LOAM performance. The logarithmic function starts with
λ = 0.1, while the second value is λ > 7. This has proven to be most suitable for two iter-
ations. A high lambda value in the first iteration even worsens the performance, as can be
seen for the constant λ = 5.0 and λ = 10.0 results. While a lower constant lambda achieved
better performance for 2 iterations, the opposite can be seen for 35 iterations in Fig. 4.10(b).
A high constant lambda, e.g., 40, yields the lowest median APE, but the highest max. APE at
the same time. The Sigmoid functions perform very similarly for all parameters a. The log-
arithmic function achieves the lowest median APE with only 0.6 cm at the cost of a slightly
higher max. APE.

Considering the results for 2 and 35 iterations, the logarithmic function for lambda is ap-
plied to all of the following experiments.

Table 4.2 shows the results for Scenario 1 for LOAM and R-LOAM when using a different
number of iterations for correspondence estimation and map optimization by means of APE
(cm) and RE (deg). In this scenario, the airplane is used as a reference object by R-LOAM. By
default, the LOAM algorithm performs two iterations to maintain the capability to run on-
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Table 4.2: Experimental results for Scenario 1 with a varying number of iterations. The best results
for each dataset are marked in bold. Adapted and modified from [1], ©2021 IEEE.

method #iter
APE in cm RE in deg

max mean median max mean median

V
LP

-1
6

(D
at

as
et

1) LOAM [12]

2 (def) 102.4 55.8 50.5 2.98 2.19 2.20
5 116.9 64.7 57.7 3.13 2.55 2.56
15 101.0 55.5 51.1 3.14 2.11 2.12
25 69.6 35.9 30.9 3.14 1.58 1.59
35 71.2 36.8 31.9 3.14 1.61 1.61

R-LOAM

2 (def) 28.6 4.6 4.4 0.88 0.22 0.22
5 23.2 4.0 4.0 1.83 0.32 0.31
15 19.5 3.3 3.1 1.67 0.26 0.25
25 17.0 1.3 1.1 1.38 0.11 0.11
35 16.0 0.8 0.6 0.94 0.04 0.04

O
S1

-1
28

(D
at

as
et

2) LOAM [12]

2 (def) 20.8 12.7 13.2 0.29 0.10 0.09
5 20.9 13.0 13.5 0.29 0.09 0.08
15 20.9 13.0 13.5 0.29 0.09 0.08
25 20.9 13.0 13.5 0.29 0.09 0.08
35 20.9 13.0 13.5 0.29 0.09 0.08

R-LOAM

2 (def) 18.3 2.9 2.6 0.44 0.12 0.13
5 13.8 2.1 1.9 0.32 0.09 0.09
15 10.0 1.6 1.4 0.29 0.08 0.08
25 7.8 1.4 1.3 0.29 0.07 0.07
35 6.3 1.3 1.2 0.28 0.07 0.07

line. The results are shown until 35 iterations since a higher number did not show significant
changes anymore once the full convergence has been reached. It can be seen that R-LOAM
outperforms LOAM in both datasets for the VLP-16 and the OS1-128 LiDAR sensor. A higher
number of iterations was always beneficial for R-LOAM, however, less significant when us-
ing the OS1-128 LiDAR sensor. The overall lowest median APE was achieved by R-LOAM
at 35 iterations with the VLP-16 sensor (0.6 cm) and the lowest max. APE by R-LOAM at
35 iterations with the OS1-128 sensor (6.3 cm). The higher number of points in each scan of
Dataset 2 results in faster convergence. This can be clearly seen for LOAM at 5 − 35 itera-
tions. The scans already fully converge after only 5 iterations, without the chance for further
improvement. On the other hand, when using R-LOAM with the additional point-to-mesh
correspondences, a further reduction to 35 iterations can be achieved.

Figures 4.11(a) and (b) illustrate the APE mapped onto the trajectory of Dataset 1 after
35 correspondence estimation and map optimization iterations. LOAM suffers from drift to-
wards the rear of the airplane, even after 35 iterations. The reason is mainly inaccurate pose
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(a) APE (m) using LOAM [12] (b) APE (m) using R-LOAM

(c) Dense 3D reconstruction of (a) (d) Dense 3D reconstruction of (b)

Figure 4.11: Visualization of the APE mapped onto the trajectory of Dataset 1 for LOAM (a), and
R-LOAM (b) after 35 iterations. (c) and (d) show the dense 3D reconstruction and the GT mesh,
respectively.

estimation and accumulated scan insertion with the wrong transform in the mapping mod-
ule. The drift recovers towards the front since the UAV flies closer to the position, where the
map was created, i.e., the world frame {W}. As shown previously in Table 4.2, R-LOAM has
a median APE of 0.6 cm and no drift can be seen. Figures 4.11(c) and (d) show the dense 3D
reconstruction using the poses of (a) and (b), respectively. The point clouds are shown as a GT
mesh overlay. The reconstruction is created by accumulating the raw LiDAR scans with the
corresponding map-optimized transforms. For LOAM, the drift can be clearly seen towards
the airplane’s rear. The vertical stabilizer of the airplane is mapped below its actual position.
Also, the wings are mapped too low. The point cloud of the fuselage disappears towards the
rear into the GT mesh, indicating the drift. In comparison, the dense 3D reconstruction (d)
using the poses of R-LOAM perfectly aligns with the GT mesh. The joint optimization with
point-to-mesh correspondences guides the localization and mapping process of R-LOAM,
reducing trajectory error and improving map quality.

4.4.2 Scenario 2 - Van as a reference object

Table 4.3 shows the results for Scenario 2. In this scenario, R-LOAM uses the van as a refer-
ence object. However, the trajectory is identical to Scenario 1. First, it can be seen that the
performance of LOAM is quite different compared to Table 4.2. Despite the same trajectory,
the LiDAR scans differ significantly due to the varying LiDAR actuation with the gimbal.
Hence, each dataset recording will yield different results. Interestingly, when using the VLP-
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Table 4.3: Experimental results for Scenario 2 with varying number of iterations. The best results for
each dataset are marked in bold. Adapted and modified from [1], ©2021 IEEE.

method #iter
APE in cm RE in deg

max mean median max mean median

V
LP

-1
6

(D
at

as
et

3) LOAM [12]

2 (def) 37.7 22.2 19.0 1.46 0.84 0.83
5 136.7 72.7 65.0 3.24 3.08 3.08
15 60.5 28.9 24.0 3.52 1.65 1.63
25 59.9 28.6 23.8 3.52 1.63 1.62
35 60.4 28.9 23.9 3.52 1.64 1.62

R-LOAM

2 (def) 39.7 20.0 17.9 1.35 0.82 0.81
5 16.4 7.5 7.3 1.44 0.44 0.44
15 15.3 7.0 6.3 1.42 0.37 0.37
25 23.5 13.2 13.5 1.41 0.38 0.37
35 23.6 13.2 13.5 1.41 0.37 0.37

O
S1

-1
28

(D
at

as
et

4) LOAM [12]

2 (def) 23.9 14.5 14.8 0.46 0.08 0.07
5 24.2 15.0 15.3 0.41 0.08 0.06
15 24.1 15.1 15.4 0.41 0.07 0.06
25 24.1 15.1 15.4 0.41 0.07 0.06
35 24.1 15.1 15.4 0.41 0.07 0.06

R-LOAM

2 (def) 32.6 6.3 6.3 0.73 0.10 0.09
5 15.2 5.2 4.9 0.40 0.07 0.06
15 12.3 4.8 4.3 0.39 0.06 0.05
25 13.5 4.7 4.2 0.39 0.06 0.05
35 14.2 4.7 4.2 0.39 0.06 0.05

16 (Dataset 3) for LOAM, two iterations perform best. A higher number converges to wrong
minima in the optimization process, as can be seen in the sudden increase for five iterations.
Despite the small van, R-LOAM performs better than LOAM with the lowest median APE at
15 iterations with 6.3 cm. Also here, a higher number of iterations increases the APE and the
median APE converges to 13.5 cm. When looking at the results of Dataset 4, one notices that
similar to Scenario 1, LOAM fully converges after around 5 iterations. The benefit of using
the OS1-128 for the van as a small reference object becomes clearly visible for R-LOAM. The
median APE at 35 iterations improves by almost 10 cm for R-LOAM between Dataset 3 and
Dataset 4 compared to a slight decrease between Dataset 1 and Dataset 2. Therefore it can
be concluded, that using a LiDAR sensor with more scan points and more vertical scan lines
can indeed improve R-LOAM performance, if the reference object is small, or the distance
is large. Similar to Scenario 1, R-LOAM also achieves the lowest RE in Scenario 2. Due to
the distance and the size of the reference object, only 22 % of the scans using the VLP-16
(Dataset 3) have more than 100 mesh features in comparison to the OS1-128 (Dataset 4) with
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(a) VLP-16 (b) OS1-128

Figure 4.12: Number of extracted mesh features mapped onto the trajectory of Scenario 2 using a
VLP-16 (a) and an OS1-128 (b). Generally, more mesh features can be extracted with the OS1-128 due
to the higher number of scan points. The red circles show areas with a higher ratio of mesh features
when using an OS1-128 compared to a VLP-16.

45 %.
Figure 4.12 visualizes the number of extracted mesh features for Scenario 2 using the

VLP-16 (a) and OS1-128 4.12(b) LiDAR sensors. Due to the higher number of scan points,
more mesh features can be extracted with an OS1-128. When the UAV is still close to the
van as a reference object, the highest number of mesh features can be extracted. In the back
of the airplane and especially on the other side of the fuselage, the van is not visible and
the R-LOAM algorithm has to rely on conventional point-to-point correspondences. The red
circles in Fig. 4.12(b) show areas where a higher ratio of mesh features can be extracted com-
pared to a VLP-16. This is likely due to the increased vFoV of the OS1-128 as was shown in
Section 2.1.2.

4.4.3 Scenario 3 - Eiffel Tower as a reference object

Table 4.4 shows the results for Scenario 3. Here, the Eiffel Tower is used as a reference object
for R-LOAM. LOAM fails with the VLP-16, regardless of the number of iterations. At 15 iter-
ations a sudden increase in APE can be seen. This is most likely due to wrong point-to-point
correspondence estimation using point features. A single wrongly inserted scan can deterio-
rate the map quality significantly and therefore have a negative impact on future localization
and mapping. For R-LOAM, point-to-point correspondences are also affected by wrong scan
insertions. However, it does not affect the point-to-mesh correspondences, which are jointly
optimized. Hence, using a tightly coupled reference object, whose quality is not deteriorat-
ing over time, can compensate for wrong scan insertions into the map. R-LOAM fails at two
iterations but converges to a very low error of < 2.4 cm median APE at ≥ 5 iterations. At
≥ 15 iterations, R-LOAM achieves a subcentimeter median APE. The median RE amounts to
only 0.01 deg at 35 iterations. Using the OS1-128 sensor, LOAM converges well for > 15 it-
erations to a minimum of 9.3 cm median APE. For R-LOAM, two iterations are sufficient to
achieve 6.4 cm median APE. With this sensor, the max. APE is as low as 7.3 cm for R-LOAM
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Table 4.4: Experimental results for Scenario 3 with varying number of iterations. The best results for
each dataset are marked in bold. Adapted and modified from [1], ©2021 IEEE.

method #iter
APE in cm RE in deg

max mean median max mean median

V
LP

-1
6

(D
at

as
et

5) LOAM [12]

2 (def) 1512.2 495.0 499.3 10.09 3.66 2.47
5 443.4 327.0 380.2 5.35 4.38 4.08
15 1797.5 1244.7 1420.9 17.56 17.25 17.28
25 1696.2 1166.6 1326.4 16.61 16.36 16.40
35 1800.5 1218.6 1338.5 18.42 18.17 18.21

R-LOAM

2 (def) 1869.5 226.0 31.5 17.01 2.73 0.29
5 88.2 5.1 2.4 1.60 0.07 0.04
15 72.9 1.2 0.5 0.32 0.02 0.02
25 61.5 0.7 0.3 0.40 0.02 0.02
35 48.9 0.5 0.3 0.34 0.02 0.01

O
S1

-1
28

(D
at
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et

6) LOAM [12]

2 (def) 2472.0 1109.7 1058.2 12.77 6.12 4.97
5 1063.1 218.2 105.0 9.23 2.70 1.49
15 47.8 10.2 9.3 1.01 0.14 0.14
25 45.7 10.8 10.5 0.94 0.12 0.10
35 39.9 11.5 11.3 0.40 0.11 0.11

R-LOAM

2 (def) 94.1 11.1 6.4 1.42 0.19 0.12
5 42.9 3.5 2.4 0.69 0.10 0.08
15 13.1 1.6 1.2 0.25 0.08 0.07
25 8.5 1.3 1.1 0.25 0.08 0.07
35 7.3 1.2 1.0 0.25 0.07 0.07

at 35 iterations. Also in this scenario, using a LiDAR with more vertical scan lines and points
significantly reduces the APE and RE for LOAM and R-LOAM.

Figures 4.13(a) and (b) show the APE mapped onto the trajectory of Dataset 5 for LOAM
and R-LOAM after 35 iterations, respectively. Early wrong scan matches create a tilted map
when using LOAM. This leads to a high APE throughout the whole trajectory. The tilted 3D
reconstruction in Figure 4.13(c) visualizes the wrong map representation. On the left, a few
scans can be seen, which were correctly inserted. However, once several scan features were
inserted into the map with the wrong transform, its quality deteriorates rapidly. In this case,
the Eiffel Tower representation manifested after a few wrong scan insertions, as can be seen
in the still complete reconstruction. Since LOAM does not have an absolute reference, the
algorithm continues with the tilted map. In contrast, R-LOAM uses the triangular mesh of
the Eiffel Tower as an absolute reference object. Early wrong scan insertions are prevented
and the 3D reconstructed point cloud perfectly aligns with the GT mesh. The mean APE
amounts to 0.5 cm for R-LOAM on this dataset.
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(a) APE (m) using LOAM [12] (b) APE (m) using R-LOAM

(c) Dense 3D reconstruction of (a) (d) Dense 3D reconstruction of (b)

Figure 4.13: Visualization of the APE mapped onto the trajectory of Dataset 5 for LOAM (a), and
R-LOAM (b) after 35 iterations. (c) and (d) show the dense 3D reconstruction and the GT mesh,
respectively. The point cloud color is height-coded.

4.5 Limitations

The results presented in Section 4.4 assume an exact triangular mesh of the 3D reference ob-
ject, i.e., the mesh representation is identical to the one used in the simulation to generate
the LiDAR data. It is not possible to make a general statement about how deviations in the
geometry influence the R-LOAM performance. This certainly depends on the extent of the
deviation. It can be assumed that large deviations on a small portion of the reference object
will have less influence than small deviations on the whole surface. For example, adding
winglets to an airplane on the sides of the wings will cause LiDAR scan points to appear,
which do not have a counterpart in the triangular mesh. Hence, these points will find point-
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to-mesh correspondences on the wing edges in the mesh. All the other scan points will align
well on the mesh after the registration. The high residuals of the winglets will be reduced
by the loss function in the optimization. Therefore, few high residual outliers due to some
geometry deviation might only have a small influence on R-LOAM. Now assume opened
wing flaps in reality, which are closed in the model. The flaps significantly alter the shape
of the wings. LiDAR scans that include a large portion of the wings will create incorrect
point-to-mesh correspondences with consistently high residuals. A proper convergence can
not be expected in this case.

On the other hand, the presented experiments assume the knowledge about the exact ab-
solute position of the reference object in the map frame. When comparing it with the absolute
GT, the reference object pose error will have a direct influence on the R-LOAM output pose.
However, if the pose error is low (a few centimeters), the map quality of R-LOAM may not
suffer too much. The biggest effect would be seen at the beginning of the exploration: The
first LiDAR scans are inserted into the map, but initially do not align well with the reference
object due to the pose error. After a few scans, the ego pose estimation will slowly converge
until the following LiDAR scans consistently align with the mesh. Until then, the ego pose
error increases when compared to the GT, since the point-to-mesh correspondences are opti-
mized to an incorrect position in the map frame. Once all scans align with the mesh, the map
quality stabilizes. Due to this early drift, point-to-point correspondences may be wrongly
estimated throughout the exploration. However, assuming a perfect triangular mesh, point-
to-mesh correspondences will balance out this effect to some extent.

If the reference object pose is completely off, R-LOAM will have worse performance than
LOAM. In this case, it is using incorrect prior knowledge. The same holds for wrong infor-
mation about the geometry of the reference object, e.g., a van instead of an airplane.

4.6 Chapter summary

This chapter proposed a tightly coupled joint optimization approach by incorporating point-
to-mesh correspondences of a known reference object in the map optimization formulation of
LOAM. The approach is termed Reference-LOAM or R-LOAM. A requirement is the knowl-
edge about the geometry and location of the reference object in the global or map frame.
Conventional LOAM only uses point features and estimates the ego pose with point-to-point
correspondences between scan and map features. The proposed approach computes point-
to-mesh correspondences between isolated scan points and virtual points on the reference
object’s surface. These are then added to the map optimization problem and jointly op-
timized with the conventional point-to-point correspondences. Normalization terms were
introduced to give equal weight to corner and surface features, independently of their num-
ber. A lambda weight controls the influence of mesh features in the optimization problem.

For the experiments, the simulated UAV platform from Chapter 3 was used. The VLP-16
LiDAR sensor was replaced by an Ouster OS1-128 for some experiments. Six datasets were
recorded for three scenarios using either the VLP-16 or OS1-128. Scenario 1 and 2 were in-
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doors using an airplane and van as reference objects, while Scenario 3 was outdoors using
the Eiffel Tower as a reference object.

The experimental evaluation demonstrated on Dataset 1 that a logarithmic increase for
lambda is the best choice for two (default) and also 35 map optimization iterations. Two
iterations offer online running capability, while 35 provide full convergence.

In all three scenarios, the OS1-128 achieved a lower APE due to its higher number of scan
points and increased vFoV compared to the VLP-16. Using the airplane as a reference object,
R-LOAM achieved a significantly lower APE compared to LOAM. The small van in Sce-
nario 2 is not always visible throughout the trajectory. However, the OS1-128 LiDAR detects
sufficient mesh features for R-LOAM to still show three times lower median APE compared
to conventional LOAM. Scenario 3 using the Eiffel Tower is very challenging and LOAM
and R-LOAM fail with the VLP-16 at only two iterations. At 35 iterations, R-LOAM achieves
subcentimeter accuracy with both LiDAR sensors. Overall, R-LOAM achieved a reduction
in median APE of 98.12 % for Scenario 1, 43.51 % for Scenario 2, and 99.98 % for Scenario 3
using a VLP-16 at 35 correspondence estimation and map optimization iterations compared
to LOAM.

The proposed approach shows a way to directly integrate a triangular mesh into the joint
optimization formulation. In practice, CAD 3D models may be available and can be used
without modification. Alternatively, devices from Building Information Modeling (BIM) can
create highly accurate 3D point cloud representations of the 3D reference object. These can
then be converted to mesh files (see Section 2.1.3.2) or can be used directly in the point cloud
format. In this case, no virtual points need to be computed, but a k-d tree is used to find
correspondences. However, it should be noted that a sparse point cloud of the reference ob-
ject will decrease R-LOAM performance. Depending on the size of the reference object, the
computational complexity of using a point cloud as a reference object will exceed the one
of a triangular mesh. For example, a straight large wall or ground can be described with a
few triangles. To cover the same area with a dense point cloud, a large number of points is
required as was illustrated in Fig. 2.4.

Summarizing the findings, leveraging prior knowledge about a 3D reference object can
significantly improve LOAM accuracy. However, the geometry and location of the reference
object must be known as accurately as possible.





Chapter 5

3D reference object-based trajectory
and map optimization for LOAM

This chapter presents a novel extension to the LOAM framework [12] to enable reference
object-based trajectory and map optimization in a parallelized manner on an Edge Cloud.
The method is evaluated on real data captured in a visual airplane inspection scenario inside
a hangar.

Parts of this chapter have been published in [2].

5.1 Problem statement

The previous chapter introduced a way to incorporate a complex 3D reference object into the
conventional LOAM framework. Point-to-mesh correspondences were extracted and inte-
grated into the map optimization formulation. While this showed significant improvements,
it requires additional computational resources, which might not be available on all mobile
platforms. The tightly coupled architecture makes it unsuitable for a remote SLAM setup,
where the computationally expensive reference object-based relative localization can be of-
floaded to an Edge Cloud.

The experiments in Chapter 4 have shown the best performance of R-LOAM at higher
map optimization iterations while running in offline mode, i.e., all LiDAR scans were pro-
cessed without real-time constraints. This is suitable for applications where generally the
best possible localization and mapping is desired, even after the exploration. One example
is the capture of LiDAR scans using a UAV for visual inspection. High-resolution images are
captured of the object’s surface. If possible damages are found on some of these images, their
location must be found to further evaluate the affected area. For this, each image must be
stamped with the location it was taken. In this case, the time for improving the localization
is not a constraint, but a highly accurate pose estimation is desired.

By default, LOAM operates at two iterations to maintain online capability. Optionally,
this can be increased at the cost of more frame drops, assuming a constant LiDAR scan rate.
In this chapter, a novel extension to the LOAM framework is proposed by loosely coupling
the reference object-based relative localization to the mapping module of LOAM. The pro-
posed setup allows for online processing of the conventional LOAM algorithm while per-
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Figure 5.1: Overview of the proposed reference object-based trajectory and map optimization (TMO)
pipeline. The lower part (blue) shows the conventional LOAM [12] modules and the upper part
(green) shows the proposed extension. The map correction module represents the tightly-coupled
interface between the extension and the LOAM algorithm. Reproduced from [2], ©2022 IEEE.

forming Trajectory and Map Optimization (TMO) in a fully parallelized manner, suitable
for offloading to an Edge Cloud. Similar to the proposed method in the previous chapter, the
geometry and position of the reference object in a global coordinate frame must be known.
The proposed extension is termed Reference Object-LOAM (RO-LOAM).

5.2 Methodology

Figure 5.1 shows an overview of the proposed reference object-based TMO. The blue boxes
show the state-of-the-art LOAM modules [12] and the green part is the proposed extension.
The core idea can be divided into five steps:

1. Scan isolation: This part is identical to the one described in Section 4.2.2. Raw LiDAR
scan points are filtered so that ideally only scan points of the reference object remain.

2. Scan-to-model alignment: Map-optimized poses are used as initial guess for scan-to-
model alignments. A number of consecutive LiDAR scans are registered to the model,
yielding refined model-aligned poses.

3. Candidate evaluation: Model alignments may suffer from incorrect convergence due
to alignment ambiguities and therefore even increase the pose error. To determine, if
the last model-aligned pose of step 2 is a candidate for TMO, the sequence of model-
aligned poses is fed into an EKF and the last pose is compared to the motion prior.

4. Pose Graph Optimization (PGO): If the candidate pose was verified in the previous
step, a PGO is triggered to correct the poses since the last PGO. This effectively corrects
the previous trajectory.
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5. Map correction: With the corrected trajectory, the map of the LOAM algorithm can be
corrected by partial rebuilding. This effectively corrects drift and positively influences
the map quality for future localization and mapping.

The modules of the proposed extension are loosely coupled so that the scan isolation until
the PGO can be offloaded to an Edge Cloud with a higher processing capacity. Due to this
loose coupling, these modules can be connected to any LiDAR-SLAM algorithm. Only the
map correction module is highly dependent on the map structure of the LiDAR-SLAM al-
gorithm and needs to be adapted accordingly. Hence, it can be considered as an interface
between the TMO extension and the LiDAR-SLAM algorithm.

For the proposed approach, the LiDAR sensor is assumed to be mounted on the robot via
a gimbal. The transform of the LiDAR sensor {L} in the robot frame {D} is defined as DtT Lt

and can be created from the actuator readings. The forward kinematics of the LiDAR sensor
in the world/map frame {W} can then be described as

WT Lt = WTDt
DtT Lt . (5.1)

The transform WTDt describes the pose of the robot {D} in the world frame {W} and is
computed by the SLAM algorithm.

The blue modules in Fig. 5.1 of the conventional LOAM algorithm remain largely un-
modified by the extension and are not further explained. Only the extracted scan features
are transformed to the robot frame using the actuator transform. The interested reader is
referred to the original paper [12] or the description in Section 2.1.4.1 and 2.2.1 for further
information on LOAM.

In the following, the modules of the extension are explained in detail.

5.2.1 Scan isolation

The task of the scan isolation module is to filter out points, which do not belong to the refer-
ence object. This part is essentially identical to the one described in Section 4.2.2. Incoming
LiDAR scans are first transformed to the world frame utilizing the map-optimized poses of
LOAM WTDt , and the actuator transform DtT Lt in Eq. 5.1. Using a bounding box cropping
method centered at the position of the reference object, the LiDAR scan is filtered. The major-
ity of the scan points should now belong to the reference object. This step is mainly to speed
up the correspondence estimation and to support the following scan-to-model alignment
by reducing the influence of outliers. Alternatively, a maximum correspondence distance
threshold can be used, at the cost of increased computational complexity.

5.2.2 Scan-to-model alignment

The task of the scan-to-model alignment module is to refine a map-optimized pose WTDt to
retrieve a scan-to-model aligned pose W T̃Dt . For this, the LiDAR scan PDt captured at time
t, is transformed to the world frame {W}with the map-optimized transform WTDt as initial
guess. Figure 5.2 illustrates a LiDAR scan PWt transformed to the world frame before the
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(a) Isolated LiDAR scan before the scan-to-model
alignment. The offset is due to the error in the map-
optimized pose.

(b) Isolated LiDAR scan after 100 iterations of scan-
to-model alignment. The scan is fully aligned to the
model surface.

Figure 5.2: Illustration of an isolated LiDAR scan before (a) and after (b) the scan-to-model alignment.
A dense point cloud of a B737 airplane was used as a reference model. The isolated LiDAR scan in (a)
was transformed to the world frame with the map-optimized pose as an initial guess. After the scan-
to-model alignment (b), this pose is refined to a very low error. The LiDAR scan then perfectly aligns
with the model surface and has a very low MSE.

scan-to-model alignment (a) and after 100 iterations (b). This may result in a highly refined
pose W T̃Dt with a possibly very low translational and rotational error.

The ICP algorithm is employed for the scan-to-model alignment process. It is formulated
as a nonlinear least-squares optimization problem with the total cost J :

J(q, t) =
∑
c∈C

ρ(‖f(c, q, t)‖22) . (5.2)

C = {c1, c2, · · · , cl} is the set of correspondences between the isolated LiDAR scan with
l points and the points of the reference object point cloud. Hence, a correspondence
c = 〈pL, pWM〉 is a tuple, consisting of an isolated LiDAR scan point pL and a point pWM of
the reference modelM. Assuming the reference object model is in the form of a point cloud,
a k-d tree can be used to efficiently find the correspondences with a nearest neighbor search.
Here, correspondences with high distances can be filtered with a maximum correspondence
distance threshold. The cost function f(·) is formulated as:

f(c, q, t) = (qpLq−1 + t)− pWM , with c = 〈pL, pWM〉 . (5.3)

The isolated scan point pL is continuously transformed to the world frame with the opti-
mized quaternion q and translational vector t. The residual is the Euclidean distance to
the corresponding point pWM in the reference model point cloud. The squared residual is
wrapped inside a Huber loss function, diminishing the effect of outliers with high residu-
als. The total cost J of all residuals in Eq. 5.2 is minimized with a Levenberg-Marquardt
trust-region algorithm [77], [78].

Before the scan-to-model alignment, the isolated scan point cloud can be downsampled
in order to speed up the correspondence estimation and scan-to-model alignment. The steps



5.2. Methodology 99

of correspondence estimation and optimization can be repeated for many more iterations
than the joint map optimization of R-LOAM in Chapter 4. This is due to the offloaded and
fully parallelized process, which is independent of the LOAM processes running online on
the robot. The optimal number of iterations and downsampled isolated scan points are de-
termined in the experimental section of this chapter.

The scan-to-model alignment may fail due to a wrong convergence, inaccurate initial
guess, or simply alignment ambiguities. For example, the LiDAR scan may align very well
in different sections of the reference model, resulting in a very low MSE. To verify that the
alignment converged to the correct solution, a motion prior filtering step is employed. A
sequence of scan-to-model aligned poses is used to check if the last pose follows a motion
model.

The length of the sequence used for the verification is specified by a parameterM . Hence,
M + 1 isolated LiDAR scans PDt−M :t captured at times t−M until t are registered to the ref-
erence model in a parallelized manner using their respective initial guesses (map-optimized
poses) WTDt−M :t

. The parameter L controls the frequency of scan-to-model alignments and
therefore TMO attempts. After L map-optimized poses have been buffered, the parallelized
scan-to-model alignment of the most recent M + 1 isolated LiDAR scans is triggered. Note
that after a successful attempt, the buffer is reset until again L isolated LiDAR scans have
been buffered. The buffer is not reset, if the attempt failed, e.g., by not passing the candidate
evaluation step in the following section (5.2.3). Instead, another scan-to-model alignment
is triggered immediately, if the scan sequence is not identical (i.e., new scans have been re-
ceived in the meantime). A scan-to-model alignment is also only triggered if each of the
isolated LiDAR scans PDt−M :t has more than 50 points. Otherwise, this sequence is skipped
and the module waits for new incoming scans and corresponding map-optimized poses.

The ultimate output of the scan-to-model alignment module are the refined poses
W T̃Dt−M :t

. W T̃Dt is the last scan-to-model aligned pose and resembles the candidate for
TMO. The pose sequence is only sent to the following evaluation module, if the MSE of the
candidate pose W T̃Dt after the convergence is < 0.001. If the MSE is higher, it is rather un-
likely that the scan-to-model alignment was successful and has a low error. In this case, the
current attempt is dropped and the next sequence with new scans is processed.

5.2.3 Candidate evaluation

As described previously, the scan-to-model alignment may not converge to a good solution
with a low pose error, despite a low MSE. This is due to alignment ambiguities if the scan
slice of the reference object is not unique. To find out if the alignment process was success-
ful, the sequence of scan-to-model alignment poses from the previous step is evaluated. If
the last scan-to-model aligned pose W T̃Dt (= candidate pose for TMO) follows the motion
model of the previous scan-to-model aligned poses W T̃Dt−M :t−1

, the alignment is considered
successful.
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An EKF is leveraged to verify the candidate against a motion prior. The standard EKF
formulation of a prediction step

xK|K−1 =f(xK−1|K−1)

PK|K−1 =FK−1PK−1|K−1F
T
K−1 + QK−1

(5.4)

and correction step is used:

KK =
PK|K−1H

T
K

HKPK|K−1H
T
K + RK

(5.5)

xK|K =xK|K−1 + KK(zK −HKxK|K−1)

PK|K =(I −KKHK)PK|K−1(I −KKHK)T

+ KKRKKT
K

(5.6)

For a description of the matrices see Section 2.1.6. The state covariance PK|K is formulated
in the Joseph form to avoid numerical rounding issues. Note that the constant process noise
covariance QK−1 and the measurement noise covariance RK are used as constant matrices.
The latter defines the confidence in the recent measurement zK . Since the MSE for each
scan-to-model aligned pose is not reliable as a metric of how well the alignment worked, the
measurement noise covariance is set to RK = 0.01 ∗ I for each measurement input. RK is in
the denominator of the Kalman gain computation in Eq. 5.5. Lower values in RK , therefore,
lead to a higher Kalman gain and a higher trust in the recent measurement values in contrast
to the prediction when updating the current state xK|K (Eq. 5.6).

The scan-to-model aligned poses prior to the candidate W T̃Dt−M :t−1
are used as measure-

ment input zK to the EKF. The robot localization package1 of the ROS framework is used
for the EKF implementation. However, by default, the EKF operates in a periodic manner,
i.e., with a fixed update rate. If no measurement is received, usually only predictions are per-
formed. The implementation is adjusted to enforce exactly one prediction and one correction
step for each measurement input. Since each evaluation sequence is independent and not
necessarily connected to the previous sequence, the EKF and its motion model must be reset
for each evaluation. Hence, the EKF is re-initialized for each short input sequence of model-
aligned poses. This includes the state xK−1|K−1, the state transition function f(xK−1|K−1),
its Jacobian FK−1 and also the state covariance PK−1|K−1.

The last predicted state xK|K−1 after the last measurement input W T̃Dt−1 is used as a
motion prior. The predicted state can be converted to a homogeneous transformation matrix
and compared to the last model-aligned pose W T̃Dt . As thresholds, the following param-
eters are defined: If the rotational error is < 0.5 deg and the translational error is < 0.05 m,
W T̃Dt is close to the motion prior and can be considered as a good candidate for TMO. In this
case, the candidate is passed on to the PGO in the next step. If it is not close to the motion
prior, it does not follow the motion model of the previous model-aligned poses. The results
1 http://wiki.ros.org/robot_localization

http://wiki.ros.org/robot_localization


5.2. Methodology 101

3

4

5

6

(a) Trajectory consisting of map-
optimized poses (gray) along one
side of an airplane as reference ob-
ject

3

4

5

6

4

5

6

(b) Map-optimized poses with in-
dices 4 − 6 are corrected with scan-
to-model alignments, resulting in
model-aligned poses (blue)

3

4

5

6

4

5

6

6

6
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with the candidate (green)

Figure 5.3: Illustration of the procedure for candidate evaluation with an EKF. Map-optimized poses
(gray) are used as an initial guess for the scan-to-model alignment (a). A sequence of map-optimized
poses is then refined with individual scan-to-model alignments, resulting in model-aligned poses
(blue) (b). The sequence of model-aligned poses is used as input to an EKF (c). If the motion prior of
the EKF (red) is close to the last model-aligned pose (green = candidate pose), the attempt is consid-
ered successful and the candidate will be used for TMO in the following steps.

of the evaluation can be represented in the form of a confusion matrix:

• True positive: The candidate is close to the motion prior and indeed has a very low
APE.

• True negative: The candidate is not close to the motion prior and has a higher APE.

• False positive: The candidate is close to the motion prior but actually has a higher
APE.

• False negative: The candidate is not close to the motion prior but actually has a very
low APE.

The false-positive case occurs, when the candidate pose is close to the motion prior by
chance. However, due to the strict thresholds mentioned above, mostly false negatives oc-
cur: Some of the model-aligned scans in the sequence might have converged to a wrong
pose, causing the motion prior to being off. Since the candidate pose might still have a very
low APE, this can be considered a false negative. In any case, if scans did not converge well
in the sequence, the slices may be ambiguous and are not suitable for reliable high-accuracy
TMO.

Figure 5.3 illustrates the procedure of candidate evaluation. If it was successful, only the
last model-aligned pose W T̃Dt (green) is considered for the next steps.

5.2.4 Pose Graph Optimization (PGO)

Once the candidate pose is confirmed, it is assumed that it follows the motion model of
the previous model-aligned poses and therefore has a very low rotational and transla-
tional error. Hence, it is suitable to be inserted into a pose graph with very high confi-
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dence about the absolute pose in the global frame. In the PGO module, all map-optimized
poses received from the mapping module of LOAM are inserted into a pose graph struc-
ture. A pose graph G = {n0, n1, · · · } consists of graph nodes n. The graph node can
be written as a tuple ni = 〈qi, ti〉 or alternatively, as a transformation matrix of the map-
optimized pose ni = WTDi . Edges E = {e0,1, e1,2, · · · } connect the graph nodes. Each edge
ei,j = 〈Ωi,j , qi,j , ti,j〉 consists of a 6 × 6 information matrix Ωi,j and the relative transform
between the two nodes ni and nj , which the edge is connecting. The information matrix
essentially specifies the confidence in the relative transform. In practice, it can be derived
from the inverse of the covariance matrix, e.g., from sensor data. The Ceres Solver imple-
mentation [123] is used for the PGO. It is modeled as a nonlinear least-squares optimization
problem with the total cost J :

J(q̂i,j , t̂i,j) =
∑
e∈E

ρ(||f(ei,j , q̂i,j , t̂i,j)||22) ,

with f(ei,j , q̂i,j , t̂i,j) = Ω̂i,j

 ∆ti,j

2∆−→q i,j

 ,

with ∆ti,j = ti,j − t̂i,j

and ∆qi,j = qi,j q̂
∗
i,j

(5.7)

q̂i,j and t̂i,j are computed from the iteratively optimized graph nodes ni and nj . Ω̂i,j is
the lower triangular matrix of the Cholesky-decomposed information matrix Ωi,j . From the
equation, it can be seen, that the information matrix is used as a weight in the cost function
formulation. A higher value gives a higher weight to the ∆ti,j or ∆−→q i,j residuals. f(·) is the
cost function computing the weighted residual vector and is wrapped inside a Huber loss
function ρ(·). −→q i,j represents the vector part of qi,j . The last two terms effectively compute
the translational and rotational residuals ∆ti,j and ∆qi,j , respectively. qi,j and ti,j remain
static during the optimization process and are taken from the edge ei,j .

A new subgraph Gt−x,t = {nt−x, nt−x+1, · · · , nt} is created between two successful TMOs
at times t − x and t. Each map-optimized pose WTDt−x+1:t−1 received since then is inserted
as a node ni. Only optimizing the most recent subgraph overcomes the problem of growing
computational complexity and memory consumption for PGO. Assuming highly accurate
candidate poses, there is also no need to perform global PGO.

When building the subgraph optimization problem, the relative poses (i.e., qi,j , ti,j) be-
tween consecutive nodes have to be computed for the edge ei,j . Using homogeneous trans-
formation matrices, a relative transform between two nodes ni and nj is formulated as:

DiTDj = WT−1Di

WTDj (5.8)

The transformation matrix DiTDj can then be converted to a quaternion qi,j and a transla-
tion vector ti,j representation to form the edge ei,j . All edges of map-optimized poses are
inserted with the information matrix Ωi,j = I , giving them equal weight in the subgraph.
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Once a candidate pose is confirmed from the previous step, the scan-to-model aligned pose
W T̃Dt is inserted with a very high confidence, e.g., Ωt−x,t = 4000 ·I relatively to the previous
candidate pose W T̃Dt−x . Hence, only the nodes and edges of the current subgraph need to
be kept and all prior to t − x can be deleted to overcome the growing graph problem. The
relative transform between the previous and current candidate poses can be computed with
Eq. 5.8: Dt−xT̃Dt = W T̃

−1
Dt−x

W T̃Dt .
Finally, the PGO problem in Eq. 5.7 is solved with the Levenberg-Marquardt trust-region

algorithm [77], [78]. The first node nt−x and last node nt in the subgraph are set as constant,
which are the previous and current candidate poses, respectively. This ensures that the solver
can only adjust the map-optimized poses WTDt−x+1:t−1 according to the constraint Dt−xT̃Dt .
The ultimate output of the PGO module are the pose graph-optimized (PG-optimized) poses
W T̄Dt−x:t .

5.2.5 Map correction

The task of the map correction module is to correct the map of the LOAM algorithm with the
PG-optimized poses W T̄Dt−x:t from the previous step. As described previously, LOAM first
computes the map-optimized transform, before inserting the LiDAR scan into the map with
this transform. LOAM voxelizes the map after each scan insertion, effectively merging the
new scan points into the voxels. Hence, a correction in the sense of individually correcting
the already inserted scan points with their respective PG-optimized poses is not possible.
Instead, a map rebuilding algorithm is proposed. It takes the map snapshot of the previous
TMO at time t − x and re-inserts buffered LiDAR scans with their new PG-optimized poses
until the most recent TMO at time t.

Algorithm 4 shows the pseudo-code of the map correction module. As input serve on one
hand the buffered corner and surface features of each LiDAR scan PDt−x:t+n

E and PDt−x:t+n

H ,
respectively. On the other hand, the PG-optimized poses W T̄Dt−x:t are required. The pro-
posed reference object-based TMO is a parallelized and possibly offloaded process on an
Edge Cloud. Hence, the LOAM algorithm on the robotic platform continues processing Li-
DAR scans while the proposed extension attempts to find a good candidate pose for TMO. In
other words, one TMO attempt may take several seconds on the Edge Cloud, during which
time the conventional LOAM algorithm continues pose estimation and map insertion. The
computed map-optimized poses after the TMO candidate are denoted as WTDt+1:t+n and
also serve as input to the algorithm.

It first creates new feature maps and, if existing, inserts the feature map snapshots taken
in the previous map rebuilding iteration (lines 4+5). The scan features captured at a time ti
are first downsampled (line 8), transformed to the world frame with the PG-optimized pose
(line 9), and then inserted into the new feature maps (lines 11+12). The parameters e = 0.2 m

and h = 0.4 m are resolution parameters for the voxelization. It was empirically determined
that it is best to voxelize the new feature maps after each scan insertion instead of once after
all insertions (line 13). This increases the computational load but has shown the best perfor-
mance by means of APE and RE. Snapshots of the new feature maps are taken, once all scans
between the time t− x and t are inserted (lines 15+16), which are then used as base maps for
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Algorithm 4: Pseudo-code for map rebuilding adapted to the LOAM algorithm [12]

Input: PDt−x:t+n

E , PDt−x:t+n

H , W T̄Dt−x:t ,
WTDt+1:t+n

Output:
−→
PW
E ,
−→
PW
H

1 foreach TMO at time t do
2 if not the first TMO then
3 /* Use map snapshot from previous TMO as a base for the new feature maps

*/
4

−→
PW
E ← snap−→PW

E
5

−→
PW
H ← snap−→PW

H

6 /* Insert scan features with the PG-optimized poses */
7 foreach ti in t− x : t do
8 PDti

E , PDti
H ← downsample(PDti

E , PDti
H , e, h)

9 PWti
E , PWti

H ← transform( PDti
E , PDti

H , W T̄Dti
)

10 /* Add scan to new feature maps */

11
−→
PW
E ←

−→
PW
E + PWti

E

12
−→
PW
H ←

−→
PW
H + PWti

H
13

−→
PW
E ,
−→
PW
H ← downsample(

−→
PW
E ,
−→
PW
H , e, h)

14 /* Take snapshot of new feature maps */
15 snap−→PW

E ←
−→
PW
E

16 snap−→PW
H ←

−→
PW
H

17 W T̂Dt+1:t+n ← rebase(WTDt+1:t+n , W T̄Dt)
18 /* Repeat (7-13) for t+ 1 : t+ n with W T̂Dti

∈ W T̂Dt+1:t+n */
19 /* Request mapping lock */
20 /* Update new map in the mapping module */
21 updateMap(

−→
PW
E ,
−→
PW
H )

22 /* Adjust current pose in mapping module */
23 updateCurrentPose(W T̂Dt+n)
24 /* Request mapping unlock */

the next map rebuilding iteration. It is important to note that the scan mapping process in
the mapping module continues even while the new map is being created. In this notation,
we assume that since the TMO pose at time t, several scans were processed in the mapping
module until time t + n, producing the map-optimized transforms WTDt+1:t+n . These poses
are also called the tail of the current subgraph. Since these poses are still based on the old
map-optimized pose WTDt , they need to be adapted to the TMO pose W T̄Dt (line 17) yield-
ing the new tail poses W T̂Dt+1:t+n . The scans of the tail are then inserted with these poses into
the new map (line 18). The poses of the tail have not been PG-optimized yet and are just in-
serted to keep up with the online mapping process. For this reason, the snapshots of the new
feature maps were created previously, which only contain scans inserted with PG-optimized
poses. Once the new map is fully built, the mapping module is locked, its feature maps are
replaced (line 21), and the latest robot pose WTDt+N

is updated to W T̂Dt+N
(line 23). While
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the lock, no LiDAR scans are processed in the mapping module. However, the odometry
module of the LOAM framework still provides pose estimates, see Section 2.2.1 for more de-
tails. If implemented efficiently, only memory pointers need to be exchanged when replacing
the maps. This will lock the mapping process for only a few milliseconds, which is negligi-
ble assuming a LiDAR rate of 10 Hz. The mapping module is then unlocked and it continues
map-optimization of new scans with the new feature maps.

The map correction module is the only module in the pipeline shown in Fig. 5.1, which is
tightly coupled to the LiDAR-SLAM algorithm. This is due to the unique way maps are built
in each algorithm. Therefore, the map correction module needs to be adapted correspond-
ingly.

5.3 Experimental setup

5.3.1 Ground-truth (GT)

One of the biggest challenges for method evaluation is the generation of GT data in real-
world scenarios. The proposed method utilizes the known pose and geometry of a reference
object to improve LOAM accuracy. Hence, three requirements must be fulfilled to establish
a reliable GT:

1. The 3D model of the reference object must be available, preferably with nearly perfect
geometry.

2. The pose of the reference object must be known in a global or map coordinate frame.

3. The GT system should be mobile, easy to set up and generate highly accurate measure-
ments at a high update rate.

The first requirement expects a highly accurate point cloud or triangular mesh of the refer-
ence object. Unless the manufacturer of the reference object provides a 3D CAD model, a
triangular mesh is not straightforward to obtain. Commonly, a stationary 3D scanning de-
vice, e.g., from BIM is used to generate a dense point cloud of the environment or reference
object. It can then be converted to a triangular mesh, see Section 2.1.3.2. This is, typically,
highly dependent on the correct estimation of point normals.

The second requirement can be achieved by performing scan-to-model alignments with
the LiDAR sensor prior to the exploration when the robotic platform is still static. If single
scans are insufficient, an accumulated scan with the actuator transforms can be used.

The third requirement demands a GT system, which can be easily transported and moved
to another location. At the same time, it should be easy to set up. Often, an infrared camera
system is used to establish GT in robotic applications, e.g., "Vicon". However, such a system
is fixed to a specific room, has limited area coverage, is expensive, and requires an extrinsic
calibration of the cameras.

To evaluate the proposed approach in a large-scale indoor environment with time-limited
access (e.g., in an airplane maintenance hangar), a prism tracking system was found to be the
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(a) Ground-truth system during 3D model
generation

(b) Generated highly accurate 3D model of a B737 airplane

Figure 5.4: Illustration of the Leica GT system during 3D model generation (a). With its selective
scanning functionality, a highly accurate 3D model of the airplane as a reference object could be gen-
erated (b).

most suitable solution. Specifically, a Leica Nova MS60 MultiStation is able to track the 3-
DoF position of a prism with an update rate of up to 20 Hz. It is easy to set up within a
few minutes at arbitrary locations inside an environment with extrinsically calibrated land-
marks. When initializing the Leica coordinate system, the landmarks (e.g., Leica tapes or
surface landmarks) are measured and calibrated.

5.3.2 3D model generation

Besides recording the GT position of the prism on the UAV, the system can also create point
clouds with selective scanning. With this functionality, a highly accurate 3D model of an
airplane as a reference object was created. Figure 5.4(a) shows the Leica system during the
3D model generation. In (b), the point cloud of the final 3D model can be seen. The Leica
system had to be re-positioned several times to acquire a complete representation. It uses a
triangulation method with at least three calibrated markers in the environment to relocalize
itself after a position change. Repositioning can be performed with submillimeter accuracy.
Since all acquired scans are in the same Leica coordinate frame, no further point cloud merg-
ing or registration is required. However, manual isolation of the points is necessary, since
some parts of the environment are also included in the selective scanning. The 3D model
consists of 2.9M points with an average nearest neighbor distance of 0.88 cm. Due to varying
sampling densities, the model is downsampled with a 1 cm voxel filter. The resulting point
cloud has 1.6M points and an average nearest neighbor distance of 1.4 cm. This point cloud
of the B737 airplane is used as a reference model for the following experiments.

5.3.3 Dataset recording

As a robotic platform, an octocopter UAV is equipped with a Velodyne VLP-16 LiDAR sen-
sor mounted on a gimbal. It is continuously actuated back and forth between ±40◦ around
the roll axis. Figure 5.5(a) shows the octocopter UAV with its components and (b) shows the
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(a) Octocopter UAV (b) Leica GT system

Figure 5.5: Illustration of the UAV platform (a) and the Leica GT system during dataset recording (b).
The octocopter UAV is equipped with an actuated VLP-16 LiDAR and a low-weight Leica 360◦ mini
prism. The highly accurate 3-DoF position of the prism is tracked with a Leica MS60 MultiStation
displayed in (b). Adapted from [2], ©2022 IEEE.

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Figure 5.6: Illustration of the trajectories for each dataset along a B737 airplane used as a reference
object. The colors indicate the number of scan points on the reference object captured with the LiDAR
sensor at the corresponding position. Adapted from [2], ©2022 IEEE.

Leica GT tracking system during a dataset recording. An Intel NUC stores captured LiDAR
data on an SSD drive. A low-weight Leica 360◦ mini prism is mounted on a rod on top of the
UAV. The high mount ensures permanent direct sight to the tracking system even during the
flight. The UAV is manually controlled by an operator.

Three datasets were recorded in a visual airplane inspection scenario. Figure 5.6 shows
the trajectories of the generated datasets on one side of the B737 airplane used as a reference
object. Depending on the position of the UAV, and the LiDAR rotation, the airplane is not vis-
ible at all times in the LiDAR scans. To illustrate this, the number of points belonging to the
reference object is color-coded and mapped onto the trajectories. Dark blue color indicates
few points and dark red color many points, respectively. It can be seen that the reference
object is mostly visible from the side. At the front of the airplane, few to no points remain
after the scan isolation.

Table 5.1 shows the metadata of each dataset. The recording time ranges from 8 minutes
to over 11 minutes, limited by the battery capacity of the UAV. The average velocity amounts
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Table 5.1: Metadata for the three generated datasets.

dataset #scans avg. vel. length duration

1 5076 0.33 m/s 162 m 8m 32s

2 7034 0.30 m/s 211 m 11m 49s

3 5712 0.39 m/s 196 m 9m 36s

+

(a) First 20 accumulated LiDAR scans (red) before the
airplane pose estimation

(b) LiDAR scans (red) after the pose estimation with
scan-to-model alignment

Figure 5.7: Illustration of the reference object pose estimation process. In (a), the first 20 accumulated
LiDAR scans at the starting position of the UAV can be seen. The point cloud of the airplane (colored)
is in the world coordinate frame {W} (= origin) and the LiDAR scans (red) are in the robot frame
{D}, which is also at the origin initially. To estimate the real relative pose between the LiDAR on
the UAV with frame {D} and the airplane model in frame {W}, a scan-to-model alignment is per-
formed. The result can be seen in (b). The LiDAR scans converged towards the model surface. After
the convergence, the relative pose of {D} in {W} is known.

to 0.3 m/s to 0.4 m/s. The major differences between the datasets are the inspection of the
vertical stabilizer in Dataset 1 (Fig. 5.6(a)), the inspection of the right wing of the airplane in
Dataset 2 (Fig. 5.6(b)), and the partial exploration of the other side of the airplane in Dataset 3
(Fig. 5.6(c)).

5.3.4 Trajectory alignment

In order to evaluate the error of the SLAM trajectory, the estimated poses need to be trans-
formed to the same coordinate frame as the GT. Methods for trajectory alignment were de-
scribed in Section 2.1.5.1. Umeyama alignment, for example, registers the poses of the SLAM
algorithm to the GT by estimating a transform. However, this might remove drift. Origin
alignment first computes the relative transform of the first timestamp-aligned 6-DoF poses
between the SLAM and GT trajectory. This transform is then applied to all poses. The Leica
system, however, only provides the 3-DoF position and no orientation information. Hence,
origin alignment can not be applied.
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Instead, it is leveraged that the 3D model’s point cloud is already recorded in the GT
coordinate system. By estimating the initial relative pose between the LiDAR and the air-
plane model, the resulting transform can also be used to align the SLAM trajectory to the
GT. However, this can only be leveraged because the airplane point cloud is in the Leica/GT
coordinate system.

To estimate the relative pose to the reference object, the following procedure is followed:
The first LiDAR scans captured at the starting position of the UAV can be aligned to the 3D
model with the scan-to-model formulation described in Eq. 5.2. Figure 5.7 illustrates the pro-
cess of relative pose estimation using scan-to-model alignment. By default, all points of the
reference model are in a coordinate system at the origin, e.g., world {W} in this example (see
Fig. 5.7(a)). Captured LiDAR scans in the robot frame {D} are also at the origin by default,
hence {W} ≡ {D}. However, the robot may not be positioned exactly at the origin of the
reference model as can be seen in the offset between the scans and the airplane point cloud.
By performing scan-to-model alignment with a suitable initial guess, the relative transform
between the UAV and the airplane can be estimated. After the alignment, this transform
is then essentially {W} → {D}. With the transform WTD and the model point cloud, R-
LOAM (Chapter 4) and the proposed method (RO-LOAM) are initialized and operational.
One should note, that the LiDAR scan in Fig. 5.7(a) is already relatively close to the reference
point cloud due to a good initial guess. If it is completely off, the initial guess before the
scan-to-model alignment needs to be adjusted manually or a global registration method is
required beforehand to yield a coarse alignment.

The resulting relative transform WTD is used in the following experiments to align the
GT and SLAM trajectories.

5.3.5 Timestamp synchronization

In Section 2.1.5.2, the APE and RE evaluation metrics were explained and used in the pre-
vious chapters with simulated data. These metrics assume that for each LiDAR scan, a GT
transform/pose exists, i.e., the LiDAR scan and GT pose have the same timestamps. In prac-
tice, however, the clocks of the GT system and the robot may not be synchronized or run at
a different frame rate. Hence, exactly identical timestamps do not exist.

To find the timestamp offset between the Leica GT system and each of the datasets, a slid-
ing window approach based on the MSE between the GT and SLAM trajectories is followed:
R-LOAM in offline mode with 35 iterations is assumed to have the best overall performance,
and is used to compute the SLAM trajectory. Then, the relative transform WTD computed
in the previous step is applied to transform the R-LOAM trajectory to the world/Leica GT
frame. The Leica and R-LOAM trajectories are now in the same coordinate frame but still
have mismatching timestamps. Figure 5.8 shows the Z-profiles of R-LOAM and the GT us-
ing Dataset 1. The profiles are coarsely aligned, but the timeline is still a bit shifted.

Now, an empirically determined time offset is added to either of the trajectories and the
nearest neighbors in the time domain are found for all poses. Subsequently, the MSE is com-
puted for all poses. The time offset is then adjusted within the sliding window range, and
the process is repeated. Hence, for each time offset, an MSE value is retrieved. Figure 5.9(a)
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Figure 5.8: Z-profiles of the coarsely timestamp-aligned R-LOAM and GT trajectories using Dataset 1.
Still, a time offset can be seen when comparing the profiles, which needs to be determined and cor-
rected before the APE and RE computation.
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(b) Final MSE curve after the fine timestamp synchro-
nization and adjusting the time offset

Figure 5.9: Illustration of the MSE curves for coarse (a) and fine (b) timestamp synchronization. By
narrowing down the time window and step size, a highly accurate timestamp synchronization can be
achieved. The step size in (b) is 50 ms and the global minimum is at the time offset 0. This means that
the R-LOAM and GT trajectories have fully synchronized timestamps.

shows the MSE curve of a coarse timestamp synchronization using all axes. The current time
offset is still not at the global minimum and hence, still needs to be further adjusted. After
reducing the time window and step size, the global minimum is found with an accuracy of
50 ms (Fig. 5.9(b)). The VLP-16 LiDAR sensor has an update rate of 10 Hz, which amounts to
an incoming scan every 100 ms. Hence, the accuracy in timestamp synchronization of 50 ms

is already below the update rate of the LiDAR sensor and can be considered optimal for the
respective dataset.
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Another intuitive explanation for the timestamp synchronization is as follows: The GT
profile in Fig. 5.8 is shifted along the timeline and each time the MSE between the SLAM and
GT trajectories is computed. This essentially generates the curve as displayed in Fig. 5.9.

The time offset retrieved with this sliding window approach can be applied to all exper-
iments of the same dataset. Due to varying time offsets, the process of timestamp synchro-
nization may need to be repeated for each dataset.

5.4 Experimental results

With the correct transformation between the SLAM and GT system and the correct time syn-
chronization, the trajectory error can be evaluated by means of APE. Since there is still no
exact matching timestamp of a GT pose to a LiDAR scan, the GT pose is linearly interpolated
for the corresponding LiDAR scan to achieve an even higher quality comparison.

For the following results, the experiments are performed in online mode. The experiments
from the previous chapters were presented in offline mode for reproducibility. However, the
proposed method in this chapter is supposed to run in a fully parallelized manner on an
Edge Cloud, and hence, the operation in online mode is desirable. Here, LiDAR scans are
inserted into the pipeline with 10 Hz corresponding to the frequency of the LiDAR sensor.
To cope with the amount of data and to avoid buffer overflow, frames are dropped in the
mapping module of LOAM and only the latest scan features in the buffer are processed. The
results are not fully reproducible in online mode due to the parallelized manner and random
frame drops. Hence, each parameter configuration is repeated five times and the average re-
sults are presented. All experiments in this section were conducted on a server with 32 Intel
Xeon CPUs E5-2690 @ 2.90 GHz and 132 GB memory. The server can be considered suitable
as an Edge Cloud.

Also, the convergence time in the scan-to-model alignment module is limited to 2000 ms.
This avoids that time-consuming, bad convergences block the pipeline for too long. Instead,
the scan-to-model aligned poses converged until this time limit are evaluated by the candi-
date evaluation module. Wrongly converged poses will not pass the motion prior test and
the next scan sequence is processed. Usually, a well-fitting scan on the reference object with
low residuals converges quickly and does not reach this time limit.

5.4.1 Parameter determination

The proposed pipeline has a variety of parameters, which are listed below:

• #points: Scan downsampling parameter. The points remaining after scan isolation are
uniformly downsampled to this number before the scan-to-model alignment.

• #iter: Number of iterations for scan-to-model alignment. A higher number may result
in better converged and refined poses but requires more time. A lower number may
be sufficient depending on the accuracy of the map-optimized pose used as an initial
guess.
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#points
APE mapping (cm)

#TMOs
max mean median RMSE

500 84.2 8.9 6.5 13.6 62

1000 80.3 10.4 7.2 15.8 49

5000 78.2 12.6 8.6 18.7 38

10000 75.4 11.7 8.0 17.7 41

Table 5.2: APE for varying #points using
Dataset 1. After scan isolation and before scan-to-
model alignment, the scans are downsampled to
#points. The other parameters are set to L = 15,
M = 9, #iter = 100. The map-optimized poses of
LOAM are used as initial guesses. The best results
are marked in bold.

#iter
APE mapping (cm)

#TMOs
max mean median RMSE

50 167 39.0 25.6 55.1 50

100 84.2 8.9 6.5 13.6 62

200 81.2 10.3 7.1 15.6 48

Table 5.3: APE for varying #iter using Dataset 1.
The parameter controls the number of scan-to-
model alignment iterations. The other parame-
ters are set to L = 15, M = 9, #points = 500. The
map-optimized poses of LOAM are used as initial
guesses. The best results are marked in bold.

• M: Sequence length of map-optimized poses for scan-to-model alignment and candi-
date evaluation. M map-optimized poses previous to the candidate pose for TMO are
refined with scan-to-model alignment. Hence, M + 1 map-optimized poses are used
for scan-to-model alignment.

• L: Buffer size of map-optimized poses from LOAM. After it has been filled, a TMO
attempt of the proposed extension is triggered. Lower values result in more attempts
and higher values in fewer attempts.

The first experiments investigate suitable values for these parameters.

#points First, it is investigated, if it is harmful to reduce the number of isolated points
on the reference object’s surface. For this, a uniform downsampling operation is applied
to each of the isolated scans in the sequence with length M + 1. The results for #points
= {500, 1000, 5000, 10000} using Dataset 1 are presented in Table 5.2. The other parameters
are set to L = 15, M = 9, #iter = 100. It should be noted that the scan-to-model convergence
time is limited to 2000 ms as described above. Hence, isolated scans with many points on the
surface may not reach the 100 iterations. The results show that 500 points are sufficient for
the visual airplane inspection scenario. Map-optimized poses can be refined with scan-to-
model alignments to a very low APE. Also, more TMOs are successful compared to higher
#points. This is also the reason for the lower median APE when using #points = 500. For the
following experiments, #points is set to 500.

#iter The next experiment investigates the influence of #iter on the APE and #TMOs using
Dataset 1. Table 5.3 shows the average results of five runs for #iter = {50, 100, 200}. The
other parameters are set to L = 15, M = 9, #points = 500. 50 iterations show the worst
performance. One of the five runs failed to correct drift on time and therefore resulted in the
same performance as conventional LOAM. The reason is that 50 iterations may not always
result in a fully model-converged pose, failing the candidate evaluation step. Once the drift
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M
APE mapping (cm)

#TMOs
max mean median RMSE

4 79.5 11.7 9.0 16.8 18

9 94.9 9.9 6.3 16.6 25

19 96.7 13.7 9.1 20.4 19

29 58.5 11.5 8.9 15.7 20

Table 5.4: Experimental results for variations of
the parameter M on Dataset 1. M + 1 scans are
used for the scan-to-model alignment and can-
didate evaluation. The other parameters are set
to L = 50, #points = 500, #iter = 100. The
map-optimized poses of LOAM are used as ini-
tial guesses. The best results are marked in bold.
Adapted from [2], ©2022 IEEE.

L
APE mapping (cm)

#TMOs
max mean median RMSE

15 84.2 8.9 6.5 13.7 62

100 96.3 17.0 11.6 24.4 12

200 91.9 17.3 13.3 23.0 6

300 92.6 24.4 17.4 31.0 4

Table 5.5: Experimental results for variations of
the parameter L on Dataset 1. A scan-to-model
alignment is triggered every L scans. The other
parameters are set to M = 9, #points = 500,
#iter = 100. The map-optimized poses of LOAM
are used as initial guesses. The best results are
marked in bold. Adapted from [2], ©2022 IEEE.

is too large, the ICP-based scan-to-model alignment can not converge anymore. 100 itera-
tions show the lowest mean and median APE with the highest #TMOs. 200 iterations do
not further improve scan-to-model alignment, but instead, take more time to converge. This
results in fewer #TMOs. For all following experiments, #iter is set to 100.

M - Sequence length The length of the scan-to-model aligned sequence determines the
quality of the motion model in the EKF during the candidate evaluation step. The parame-
ter M controls the length of the sequence. Table 5.4 shows the results for M = {4, 9, 19, 29}
using Dataset 1. The other parameters are set to L = 50, #points = 500, #iter = 100. L is set
to 50 because the length of the sequence M can not be longer than the number of buffered
map-optimized poses L. The results show that a short sequence with M = 4 is sufficient to
establish the motion model and to achieve 18 TMOs. Longer sequences with M ≥ 19 do nei-
ther improve the APE nor yield more TMOs. The reason is that there is a higher risk for scans
in the sequence converging to wrong poses and hence fail the candidate evaluation. Also,
a longer sequence requires more CPUs. Essentially, #CPUs = M + 1 are required for fully
parallelized scan-to-model alignment. To summarize, M = 9 results in the lowest median
APE and the highest #TMOs. This sequence length is applied to the following experiments.

L - Buffer size The proposed pipeline buffers map-optimized poses from the mapping
module of LOAM and the corresponding isolated scans. Once L poses and scans have been
buffered, a TMO attempt is triggered. This effectively controls the maximum frequency of
TMOs. Table 5.5 shows the results for L = {15, 100, 200, 300} using Dataset 1 and the map-
optimized poses of LOAM as initial guesses. The other parameters are set to M = 9, #points
= 500, #iter = 100. It can be seen that a higher value for L significantly reduces the frequency
of TMOs and also increases the median and mean APE as well as RMSE. On the other hand,
even L = 300 with four TMOs results in only 17 cm median APE compared to 71 cm of con-
ventional LOAM. The results for LOAM and R-LOAM without the proposed TMO extension
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APE
scan-to-model aligned poses (%)

Dataset 1 Dataset 2 Dataset 3

< 10 cm 9 16 7

< 50 cm 32 41 25

< 100 cm 50 59 39

Table 5.6: Percentage of scan-to-model aligned
poses below a certain APE. The map-optimized
poses of the LOAM algorithm [12] were used as
initial guesses. Adapted from [2], ©2022 IEEE.

Figure 5.10: Model-aligned poses colored accord-
ing to their APE(m) using the map-optimized
poses of the LOAM algorithm [12] of Dataset 1
as initial guesses. The task of the candidate eval-
uation module is to find the poses, which have a
low translational error.

are presented later on. The best results can be seen for L = 15 with only 7 cm median APE
and over 60 successful TMOs. For the following experiments, L is set to 15.

5.4.2 Localization-only approach

As Fig. 5.6 showed, the airplane is not visible at all times in the isolated LiDAR scans.
Even if it is visible, alignment ambiguities may not result in a low APE despite a low final
MSE. Hence, a localization-only approach leveraging the reference object without a SLAM
algorithm is not possible. This is demonstrated by the results in Table 5.6 for the three
datasets. It shows the percentage of scan-to-model aligned poses below certain APE thresh-
olds. Dataset 3 is the most challenging with less than 40% model-aligned poses with APE
< 100 cm. A large part of the trajectory was in the front of the airplane with limited refer-
ence object visibility (see Fig. 5.6(c)). Scan-to-model aligned poses with APE < 10 cm are
considered suitable for TMO. Less than 10% of the scan-to-model aligned poses fulfill this
criterion. To find out, if a TMO candidate pose is in this range, the EKF-based evaluation
step is performed. Ideally, a candidate passing this step has an APE < 10 cm.

Figure 5.10 illustrates all scan-to-model aligned poses for Dataset 1. The trajectory is
color-coded according to the APE. The map-optimized poses of the LOAM algorithm were
used as initial guesses. It should be noted that no TMO was actually performed. The jumps
in the trajectory are due to alignment ambiguities or failed convergences.

5.4.3 Benchmark against LOAM and R-LOAM

The proposed extension is enabled for the LOAM and R-LOAM algorithms, denoted as
LOAM + RO and R-LOAM + RO, respectively. For R-LOAM, the same 3D model as for
the proposed TMO extension is leveraged. The results for all three datasets are presented in
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Table 5.7: Experimental results for the three datasets. The best results are marked in bold. Adapted
from [2], ©2022 IEEE.

method
APE mapping (cm) freq. (Hz)

mapping

APE TMO (cm)
#TMOs

max mean median RMSE max mean median RMSE

D
at

as
et

1

LOAM 466.3 134.6 71.1 182.7 3.3 - - - - -

LOAM + RO 84.2 8.9 6.5 13.6 3.0 20.3 5.2 4.2 6.4 62

R-LOAM 50.7 12.6 11.5 14.4 3.1 - - - - -

R-LOAM + RO 57.8 8.1 5.9 10.5 3.1 22.9 5.2 4.1 6.7 62

D
at

as
et

2

LOAM 423.2 117.1 67.2 164.7 2.9 - - - - -

LOAM + RO 89.7 9.6 6.4 15.7 2.6 18.2 4.0 3.3 5.2 62

R-LOAM 58.4 10.3 9.6 12.4 2.8 - - - - -

R-LOAM + RO 65.0 7.2 5.2 10.4 2.6 16.8 4.1 3.6 5.1 64

D
at

as
et

3

LOAM 354.8 123.8 80.6 154.8 3.2 - - - - -

LOAM + RO 88.4 13.2 6.8 21.8 2.9 28.1 4.6 3.6 6.5 54

R-LOAM 69.7 16.9 15.3 19.4 3.0 - - - - -

R-LOAM + RO 54.8 9.3 6.7 12.2 3.0 23.9 5.3 3.9 7.2 58

Table 5.7 by means of APE. Two types of APE are presented: APE mapping is computed using
the map-optimized poses of the LOAM algorithm. The results of APE mapping are not from
the PG-optimized poses. It is important to note that the improvement when enabling the
extension solely comes from the improved map quality and drift correction after successful
TMOs. The map and drift are corrected by the map correction module (see Fig. 5.1). The rea-
son to show the APE of map-optimized poses is simply that these poses are available online
and can be used for real-time robot control. The PG-optimized poses are only used to correct
drift in the map but have no immediate advantage for real-time robot control. APE TMO
shows the average error of the poses used for TMO, i.e., the confirmed candidate poses in
the sequences, which are added to the pose graph with a high-confidence constraint. Hence,
these poses survived the candidate evaluation step and should have a low error.

In each of the three datasets, over 50 TMOs were performed. The median and mean APE
TMO amounts to < 6 cm, which is desirable as constraints for PGO. However, when looking
at the max. APE TMO, one notices that the error is much higher than the median or mean
APE TMO. Nevertheless, it barely influences the performance. If the number of successful
TMOs is high and regular, the drift introduced by a (slightly) wrong TMO can be corrected
with the next one. However, in this short sequence between the TMOs, the map quality may
suffer. This is due to the subgraph approach, where only the trajectory since the previous
TMO is corrected during PGO. The table also shows that R-LOAM consistently performs bet-
ter than LOAM. The latter suffers from early wrong scan matches, resulting in heavy drift.
The proposed extension improves LOAM and R-LOAM performance for all datasets. The
median APE of LOAM + RO amounts to less than 10% compared to state-of-the-art LOAM.



116 Chapter 5. 3D reference object-based trajectory and map optimization for LOAM

(a) R-LOAM (b) R-LOAM + RO

Figure 5.11: APE mapped onto the trajectory of Dataset 1 using R-LOAM (a) and R-LOAM + RO (b).
The green circles in (b) mark the poses of the TMOs. The left red circles highlight a reduction in APE
for R-LOAM + RO due to the TMOs. The zoomed-in red circle highlights a small part where R-LOAM
performs better.

Despite the significantly lower APE of R-LOAM compared to LOAM, activating the exten-
sion for R-LOAM even further reduces the APE. Generally, it can be seen that the average
mapping frequency is 3 Hz. This means that 3 out of 10 LiDAR scans are map-optimized and
inserted into the map. Activating the extension slightly reduces the mapping frequency. This
is due to the higher CPU load since the LOAM algorithm was executed on the same server
as the extension. In a remote SLAM setup, the LOAM algorithm can run on the robotic plat-
form and the proposed reference object-based TMO extension can run on a high-performance
Edge Cloud server.

To summarize the findings, activating the reference object-based TMO extension can sig-
nificantly increase localization and mapping accuracy. The results on three datasets in a
visual airplane inspection scenario showed an improvement for LOAM and R-LOAM. The
proposed EKF-based motion prior filtering step successfully filtered out unsuitable scan-to-
model aligned poses for TMO.

Figure 5.11 visualizes the APE mapped onto the trajectory of R-LOAM (a) and R-LOAM
+ RO (b). It can be seen that especially in the rear of the airplane R-LOAM has an increased
error, as marked by the red circle. R-LOAM + RO is able to perform TMOs in that region
(green circles) and corrects accumulated drift.

However, the zoomed-in version in the right red circle of R-LOAM + RO shows an in-
creased error compared to R-LOAM. Let’s first take as an example the conventional LOAM
algorithm, which builds a fully tilted map of a building, e.g., a vertical instead of a hori-
zontal map due to early wrong scan matches. Now assume that all following scans of the
dataset perfectly fit into this tilted map. This will create a nearly perfect, but tilted 3D rep-
resentation. However, the APE will be very high, since an actual forward trajectory would
be estimated as upward or downward. Now consider a trajectory, which is continuously
improved by reference object-based TMOs. Due to the knowledge about the absolute pose of
the reference object, the PG-optimized trajectory will have a low APE. However, correcting
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(a) LOAM (b) LOAM + RO

Figure 5.12: Final feature maps of Dataset 1 using LOAM (a) and LOAM + RO (b). The feature maps
are color-coded according to the Z-value. The airplane as a reference object is shown at the same
initially estimated position in both figures. A wall and parts of the roof are removed for illustrative
purposes.

a map with PG-optimized poses is not trivial. The PGO optimizes the pose graph accord-
ing to the constraints. In the proposed approach, all graph nodes were added with edges of
equal confidence in the information matrix. While this generally may decrease the APE, re-
inserting or correcting the scans into the feature maps with these PG-optimized poses may
lead to a lower cohesion. The cohesion of a point cloud can be understood as a measure of
its compactness or integrity. By the map optimization process with a nonlinear least-squares
method, the scan is fit into the map in the best possible way. This essentially also maximizes
the cohesion of the feature maps. The PGO, however, aims at minimizing the cost as defined
by the graph constraints. This mainly focuses on minimizing the APE but may neglect how
well the scans actually fit into the map. Exactly this is the reason why the cohesion of the
feature maps may decrease when correcting the scans with the PG-optimized poses. The
map correction module as described in Section 5.2.5 implements a naïve approach. All scans
are re-inserted into the map with the PG-optimized poses. Future work may improve map
cohesion after TMOs, e.g., by scan rejection methods or additional scan-to-map optimization.

In fact, Razlaw et al. [69] experienced the inverse of the phenomenon. They found that
by further refining poses from visual odometry with scan registration methods, i.e., ICP, the
pose error is not further reduced. Instead, the map integrity is increased and the Mean Map
Entropy (MME) is reduced.

The final feature maps of the conventional LOAM and LOAM + RO algorithms using
Dataset 1 can be seen in Figure 5.12. The 3D model of the airplane is shown at the exact
same position in both figures. In (b) it can be seen, that the final feature maps overlay very
well with the 3D model. This would not be the case without the proper relative pose estima-
tion between the UAV and the airplane before the exploration as explained in Section 5.3.4.
In comparison, the map of LOAM in (a) appears tilted. Also, the mapped airplane does not
overlay well with the actual position of the 3D model. LOAM + RO takes the reference model
into account and performs regular TMOs whenever possible.
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5.5 Chapter summary

This chapter proposed a novel extension to the LOAM algorithm leveraging an a priori
known reference object to perform trajectory and map optimization (TMO) for 3D LiDAR-
SLAM. For this, the geometry and pose of the reference object need to be known. The latter
can be estimated from the starting position of the robot. The proposed approach was termed
RO-LOAM.

The basic idea of the proposed extension is to trigger regular scan-to-model alignments
for trajectory and map optimization. For this, isolated scans are used, containing mainly
points of the reference object. The corresponding map-optimized poses of the LOAM algo-
rithm are used as initial guesses. An iterative ICP-based method refines these poses with
scan-to-model alignments. Due to alignment ambiguities, the MSE metric can not be used
to verify if the alignments resulted in a low pose error. Hence, an EKF-based motion prior
filtering step was proposed. A sequence of model-aligned poses is used as input to the EKF.
If the last model-aligned pose (= candidate for TMO) is close to the motion prior of the EKF,
it follows the motion model of the previous model-aligned poses. Therefore, it is considered
a successful model convergence with low APE. The candidate pose is then used to perform
Pose Graph Optimization (PGO) of the latest subgraph, which essentially corrects the trajec-
tory since the last TMO. A map correction module then re-inserts the scan features with the
corrected PG-optimized poses to correct drift and improve map quality. While all other mod-
ules of the extension are independent of the SLAM algorithm, the map correction module is
highly dependent on the map structure and needs to be adapted accordingly.

The core advantage in comparison to R-LOAM is that the proposed extension can run in
a remote SLAM setup, e.g., on an Edge Cloud. This allows for an increased number of scan-
to-model alignment iterations. In contrast, R-LOAM tightly couples the 3D model into the
map optimization process, which limits the number of iterations to a minimum for online
performance. Most of the modules of RO-LOAM are decoupled from the LOAM algorithm,
which makes it suitable to attach to other LiDAR-SLAM algorithms.

For the experiments, a visual airplane inspection scenario inside a hangar was selected.
An octocopter UAV was equipped with an actuated VLP-16 LiDAR sensor, which was con-
tinuously rotated back and forth around the roll axis. LiDAR data was stored on an Intel
NUC. Three datasets were recorded while the UAV was manually controlled by an operator.
A Leica Total Station was employed to generate a highly detailed 3D model of the airplane as
a reference object. The same system was used to track a prism on the UAV for GT compari-
son. By relatively estimating the pose between the start position of the UAV and the airplane,
the SLAM and GT trajectories could be aligned. The same relative pose was used as the a pri-
ori position of the reference object for the proposed extension. A detailed description of the
timestamp synchronization between the SLAM and GT system using an MSE-based sliding
window approach was given.

The first experiments dealt with the calibration of the parameters, such as scan-to-model
sequence length M , the buffer size L, #points used for the alignment, and #iter defining the
number of model alignment iterations. The proposed extension has shown improvements
for LOAM and R-LOAM on all three datasets by means of Absolute Pose Error (APE). In the
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experiments, the EKF-based filtering step ensured that only poses of well-converged scans
were used for TMOs. The median APE of all TMOs amounted to < 5 cm.

To summarize, the proposed reference object-based trajectory and map optimization ex-
tension can improve 3D LiDAR-SLAM performance and even further reduce the APE when
combined with R-LOAM. Future work can even further robustify the motion prior filtering
step and map correction process.





Chapter 6

Conclusion

This chapter concludes this thesis by first summarizing the proposed methods. Finally, pos-
sibilities are discussed to achieve further improvements in future work.

6.1 Summary

Robotic platforms are increasingly used for search and rescue, disaster recovery, or surveil-
lance operations, which might be dangerous for human beings. But they are also used to
speed up or simplify tasks, such as manipulation or maintenance operations. Especially for
visual inspection services, air-born robotic platforms have received increasing attention. In-
spections of bridges, buildings, and also airplanes require accurate planning to access and in-
spect even hard-to-reach areas. Often, scaffolding is needed. In recent years, UAVs have be-
come increasingly popular for inspection services. Improvements in battery capacity, weight
reduction, and more efficient rotors have contributed to their rising success. However, GPS-
based localization close to buildings may be inaccurate or, inside a building, no GPS may
be available. Hence, UAVs are typically equipped with LiDAR sensors to detect obstacles,
avoid collision and at the same time localize themselves with SLAM algorithms. To take
high-resolution images of potential damages, UAVs have to get as close as possible to the
object. For autonomous UAVs, this requires highly accurate localization and navigation. A
crash into the inspection object may cause severe costs, especially in the case of airplane
inspection.

To this end, three approaches have been proposed to improve localization accuracy
and mapping quality for 3D LiDAR-SLAM. To achieve this, the well-known LOAM frame-
work [12] was modified and extended. Prior knowledge has been leveraged in related work
in the form of a priori known maps, 2D architectural floor plans or emergency maps, 3D CAD
models of a building and workpiece, or also aerial images. However, previous work either
uses prior knowledge only for 2D LiDAR-SLAM or converts 3D CAD models to a point-
sampled initial map for LiDAR-SLAM. The latter is equivalent to having a high-accuracy
map available before the exploration. In practice, this can also be achieved with a separate
exploration run, mapping the environment with high accuracy sensors.

Chapter 3 introduced a modification of the LOAM framework to enable immutable ini-

121



122 Chapter 6. Conclusion

tial map creation, termed Init-LOAM. The core idea is to create an initial map at the starting
position of the robot with an actuated 3D LiDAR sensor. This initial map remains unmodi-
fied during the exploration. The motivation is that an initial map can be created with much
higher accuracy at the starting position of the robot and that a modification of the initial
map during the exploration increases localization error. The method assumes a static envi-
ronment. To create the initial map, an initialization phase is added to the LOAM pipeline.
In this phase, captured LiDAR scans are transformed to the map frame with the actuator
readings. A method was proposed to keep the voxelized features of the initial map separate
from the features of the dynamic map. The latter includes the scan features acquired during
exploration. Detailed algorithm descriptions were given to implement Init-LOAM as a modi-
fication of the A-LOAM open-source framework. In a simulated environment, three datasets
of one indoor and two outdoor scenarios were generated. A virtual 3D LiDAR sensor was
mounted on a quadcopter UAV and continuously rotated back and forth with an actuator
during the initialization and exploration phases. The first experimental results investigated
the effect of voxelization and measurement imprecision on surface representations. As mea-
surement imprecision, ranging errors and actuator reading errors were considered. Results
were presented for a planar and curved surface. It has been shown that with realistic errors,
a higher number of sampled points on a planar surface lets the voxel centroid of the dis-
torted points converge towards the real centroid. However, for a curved surface not even the
real centroid lies on the surface itself. Using a triangular mesh, a higher number of LiDAR
sweeps showed an increased RMSE. However, no significant influence on the APE using a
dataset could be found. The proposed method has proven robust against actuator impreci-
sion up to σ ≤ 3.0 degrees. Using all three datasets, Init-LOAM with the immutable initial
map showed superior performance over Init-LOAM with a variable initial map, and over
conventional LOAM. Hence, it can be concluded that in a static environment, leaving the
initial map unmodified during the exploration can improve localization and mapping per-
formance.

The other proposed methods do not require a separate exploration and seamlessly inte-
grate prior knowledge. In contrast to related work, only a reference object in the environ-
ment is leveraged, which does not need to be sufficient for a localization-only approach. No
assumptions about the environment are made. Also, related work directly integrates point-
sampled CAD models into the map for localization. Many SLAM algorithms use down-
sampled or voxelized map representations to overcome growing map sizes and to maintain
real-time performance. The proposed methods in this thesis aim at using highly dense point
clouds or directly integrating a CAD triangular mesh of the reference object into the LOAM
pipeline, which is operating internally with a voxelized map.

Chapter 4 proposed R-LOAM, a modification of the conventional LOAM algorithm to
tightly couple a 3D triangular mesh into the map optimization process. For this, point-to-
mesh correspondences are used in addition to conventional point-to-point correspondences.
The method assumes the geometry and 6-DoF pose of the reference object in a global coor-
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dinate frame to be known. To form point-to-mesh correspondences, virtual points on the
reference object’s surface are computed. For this, the use of an AABB tree was proposed to
accelerate closest-point computation. A map optimization formulation was presented, which
jointly optimizes conventional point-to-point and point-to-mesh correspondences. Two in-
door and one outdoor visual inspection scenarios were simulated, using an airplane, a small
van, and the Eiffel Tower as reference objects. A virtual VLP-16 and OS1-128 were used to
generate LiDAR data. Results have shown that a logarithmic weight increase for mesh fea-
tures with the number of map optimization iterations shows the best performance. For all
three datasets, R-LOAM resulted in a reduced APE and RE. Using the OS1-128 was essential
to detect sufficient points on the surface of the van as a reference object. Due to the higher
number of extracted features, the OS1-128 resulted in consistently reduced APE compared to
the VLP-16. R-LOAM was able to achieve a subcentimeter median APE at the Eiffel Tower
with the VLP-16 at 35 iterations, whereas conventional LOAM failed. Generally, a higher
number of map optimization iterations has proven beneficial for R-LOAM. The map and
dense 3D reconstruction quality are tightly coupled to the localization error. Illustrations
have demonstrated the improved reconstruction accuracy of the proposed R-LOAM algo-
rithm. To summarize, taking the reference object into account can significantly reduce the
localization error and at the same time improve the map and reconstruction quality.

Chapter 5 proposed an extension to LiDAR-SLAM algorithms termed RO-LOAM. It
leverages a 3D reference object for trajectory and map optimization (TMO). Instead of tightly
coupling the reference object into the LOAM pipeline as in R-LOAM, a fully parallelized ex-
tension was proposed with the possibility to Edge Cloud processing. The core idea is to
register a sequence of scans to the 3D model with a high number of iterations, refining the
map-optimized poses, which are used as initial guesses. However, the MSE metric is not suit-
able to determine if the alignment is successful. Hence, an EKF-based motion prior filtering
step is employed to determine if the last pose in the sequence is suitable for TMO. If success-
ful, the pose is added to a pose graph with a high-confidence constraint, followed by a Pose
Graph Optimization (PGO). The corrected poses are then used to rebuild the map, effectively
reducing drift and improving map quality. Only the map correction module is tightly cou-
pled to the LOAM algorithm, which makes the rest of the proposed extension suitable to
attach to other LiDAR-SLAM algorithms. For the experimental setup, a Leica MultiStation
was used to generate a highly accurate 3D model of a B737 airplane as a reference object. An
octocopter UAV carried an actuated VLP-16 LiDAR. A Leica prism was mounted on a rod
to be tracked by the Leica system for ground-truth measurements. The UAV was manually
controlled by an operator inside a hangar, following three trajectories for potential visual in-
spection along one side of the airplane. A scan-to-model alignment approach for the relative
pose estimation between the starting position of the UAV and the airplane as a reference ob-
ject was explained. Also, a detailed description of the timestamp synchronization between
the SLAM and the ground-truth system was given. The results have shown an improvement
when enabling the proposed extension for LOAM and R-LOAM on all three datasets. Even
for R-LOAM, which uses the same 3D model, a further improvement could be seen with
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the extension. A major advantage of the proposed method is the possibility for offloaded
processing to an Edge Cloud and the higher number of iterations compared to R-LOAM. Ul-
timately, LOAM + RO reduced the median APE to < 10% compared to LOAM. R-LOAM +
RO has shown a reduction to < 55% compared to R-LOAM. To summarize, despite the con-
ceptual similarity of R-LOAM and the proposed TMO extension, the parallelized offloaded
processing allows for a more accurate scan-to-model convergence and a lower APE.

6.2 Outlook

The proposed methods in this thesis have shown that leveraging a known 3D reference ob-
ject can indeed improve LOAM accuracy. However, certain assumptions were made, which
could be addressed by future work:

The position of the reference object is known or can be estimated from the starting
position. In the experimental setups presented in this thesis, the position of the reference
object was exactly known in a global coordinate frame or could be estimated from the start-
ing position of the robotic platform. In practice, the exact relative pose is never known,
since the robot can be placed arbitrarily. Hence, global relocalization or registration meth-
ods are required to get a first coarse estimate of the relative pose. This can be treated as a
"kidnapped robot" problem. After the coarse relocalization, fine registration, e.g., with the
proposed scan-to-model alignments can be conducted. However, this still assumes that at
least some parts of the reference object are visible from the starting position of the robot.
Future work could further develop the proposed methods to not make the assumption of an
initially known position of the reference object. For example, the knowledge that in the next
hangar a known airplane is placed could be already leveraged to improve LOAM accuracy.
The robot starts in another hangar with conventional LOAM. Once the known airplane is
detected, the position in the map is determined and the reference object is integrated into
the localization and mapping process. This may not improve the APE, since drift may have
already occurred until the robot has entered the next hangar and started leveraging the ref-
erence object. Nevertheless, additional drift can be corrected for as long as the robot is in the
vicinity of the reference object.

The environment is static. The environments used in this thesis were mostly static. Inside
a hangar, usually, multiple airplanes are maintained at the same time. Also, maintenance en-
gineers may drive vehicles or ground staff walks between the airplanes. Airplanes may be
moved out of or into the hangar. All these situations introduce dynamics into the inspec-
tion scenario. Especially large changes in the scenery, i.e., opening large hangar doors may
affect LOAM accuracy during an airplane inspection with a UAV. However, the proposed
R-LOAM and RO-LOAM algorithms only assume an isolated reference object. Big changes
in the environment far from the reference object only affect the conventional LOAM pipeline.
However, dynamic objects close to the reference object may indeed influence the proposed
approaches. Specifically, the scan isolation method employed a naïve bounding box crop-
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ping method. More advanced isolated methods, e.g., convex hull cropping could be applied
instead. Alternatively, future work could investigate correspondence rejection methods to
identify wrong point-to-mesh correspondences.

There is only low drift to be compensated by R-LOAM and RO-LOAM. One certain lim-
itation of the proposed approaches is the capability of correcting low drift only. This is due to
the nature of the point-to-model correspondences using the map-optimized transform as an
initial guess. If a larger drift exists, wrong correspondences may let the optimization diverge
from the correct solution. Also, with a large drift, the scan isolation module would remove
many points actually belonging to the reference model. The proposed methods assume a
significant Intersection over Union (IoU) between the estimated and actual bounding boxes
of the reference object. Future work could investigate if the scan isolation module can be
replaced with smarter maximum correspondence thresholds or outlier rejection methods.

Before the estimation of correspondences, global relocalization methods could be em-
ployed to find a good initial estimate for the ICP-based scan-to-model alignment method.
Since for global registration/relocalization one can not make any assumption about the ini-
tial guess, the current scan would need to be matched against the map. Global relocalization
with the use of the reference object is challenging because it is fully unknown which scan
points belong to the reference object and which belong to the surrounding environment.

The 3D geometry of the reference object is known. The proposed methods either as-
sume an exact 3D CAD mesh (R-LOAM), or a highly accurate 3D point cloud (RO-LOAM)
of the reference object. In airplane inspections, scenarios may exist where the reference ob-
ject temporarily changes its appearance. For example, maintenance engineers may have set
up scaffolding partially around the airplane, the flaps are lowered or cables/pipes are con-
nected. These close-by objects or changes in appearance may have a significant effect on the
proposed methods.

Let’s assume a visual inspection scenario of a building, which suffered damage on parts
of the outer structure. With an accurate 3D model, the proposed methods can be employed
until the damages on the facade appear in the scans. Future works could investigate how
to correctly identify the deviations, e.g., in the correspondences, or even to update the 3D
model. However, the latter may lead to inaccurate 3D models, which even result in a de-
creased performance compared to conventional 3D LiDAR-SLAM algorithms. Here, future
work could investigate, if already proposed methods for map maintenance in long-term lo-
calization and mapping can be applied.
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5.6 Percentage of scan-to-model aligned poses below a certain APE. The map-optimized
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5.7 Experimental results for the three datasets. The best results are marked in bold. Adapted
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