

TECHNISCHE UNIVERSITÄT MÜNCHEN

TUM School of Engineering and Design

Metabolische Kontrollanalysen von *Escherichia coli* Mutanten zur Herstellung von L-Tryptophan im Zulaufverfahren

Kristin Schoppel

Vollständiger Abdruck der von der TUM School of Engineering and Design der Technischen Universität München zur Erlangung einer

Doktorin der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prüfer der Dissertation: Prof. Dr.-Ing. Andreas Kremling1. Prof. Dr.-Ing. Dirk Weuster-Botz2. Prof. Dr. rer. nat. Georg Sprenger

Die Dissertation wurde am 22.06.2022 bei der Technischen Universität München eingereicht und durch die TUM School of Engineering and Design am 21.10.2022 angenommen.

Danksagung

Diese Arbeit entstand im Rahmen meiner Tätigkeit als wissenschaftliche Mitarbeiterin am Lehrstuhl für Bioverfahrenstechnik der Technischen Universität München. Danken möchte ich allen, die auf verschiedenste Art und Weise zum Gelingen beigetragen haben:

Zuallererst Herrn Prof. Weuster-Botz, der diese Arbeit ermöglichte und mich während der gesamten Zeit begleitete. Ich danke Ihnen für die hervorragende Betreuung, das entgegengebrachte Vertrauen, Ihren kritischen Blick und die stete Unterstützung.

Herrn Prof. Dr. Sprenger, dem Zweitprüfer, und Herrn Prof. Dr. Kremling, dem Vorsitzenden der Prüfungskommission für die Übernahme der jeweiligen Aufgabe.

Unseren Projektpartnern der Universität Stuttgart: Herrn Prof. Dr. Sprenger, Dr. Natalie Trachtmann und Erik Eppinger für die sehr gute, vertrauensvolle und ehrliche Zusammenarbeit. Natalie ganz besonders für die unkomplizierte Kommunikation, spontane Einsätze und die Zuverlässigkeit.

Der deutschen Forschungsgemeinschaft für die Finanzierung dieser Forschungsarbeit.

All denen, die mich während meiner Ausbildung begleitet haben: Alexander Mayer, Alex Toftgaard Nielsen, Anna Scharl, Dirk Holtmann, Elleke Fenna Bosma, Ilka Sührer und Magdalena Hümmer. Julia Tröndle führte mich bereits 2015 in die Thematik des Projektes ein, über die Jahre lernte ich viel von ihr und letztendlich bestärkte sie mich darin, das Projekt zu übernehmen, dafür bin ich ihr sehr dankbar.

Angelina Tzanavari, Emil Korzin, Fabian Mittermeier, Johanna Gaubatz, Nikolas von den Eichen, Olga Milinovic, Philipp Benner und Veronika Burgmeier für die Unterstützung im Labor und allen, die mir bei der Durchführung von metabolischen Analysen im Labor zur Seite standen.

Allen Kolleginnen und Kollegen vom Lehrstuhl für Bioverfahrenstechnik für die gute Zusammenarbeit, den Zusammenhalt und den Beistand: "Alles wird am Ende klappen!!". Im Besonderen: Anna-Lena Heins, Anton Rückel, Daniel Caballero, Dominik Schäfer, Emil Korzin, Ingmar Polte, Jacqueline Wagner, Karl Behler und Lara Wolf.

Holger Leutung nicht nur für seine erstklassigen Massenspektrometrie-Reparatureinsätze, sondern auch für die gemeinsamen Mittagessen und Kaffeepausen.

Markus Amann und Norbert Werth für ihre spontane Hilfsbereitschaft und die Unterstützung in technischen Belangen. Patrick Meins, Markus Amann und Marlene Schocher für die Hilfe mit der Bürokratie und den organisatorischen Beistand.

Anna-Lena Heins und Rinus für das gründliche Korrekturlesen meiner Arbeit und die hilfreichen Verbesserungsvorschläge.

Meiner Familie für die Unterstützung in allen Lebenslagen und den bedingungslosen Rückhalt

...und Rinus, für einfach alles.

Inhaltsverzeichnis

1	Ein	Einleitung				
2	Pro	blemstellung und Zielsetzung	2			
3	Theoretische Grundlagen					
	3.1	Biologische Grundlagen – Escherichia coli	8			
	3.2	Kohlenstoffmetabolismus	9			
		3.2.1 Stofftransportprozesse	16			
		3.2.2 Metabolitentoxizität	18			
	3.3	L-Tryptophan	20			
		3.3.1 Industrielle Bedeutung	20			
		3.3.2 Produktion mit Escherichia coli	21			
	3.4	Bioprozesstechnik	26			
		3.4.1 Mikrobielles Wachstum	26			
		3.4.2 Betrieb von Bioreaktoren	28			
		3.4.3 Bestimmung biomassespezifischer Reaktionsraten	30			
	3.5	Metabolische Analysen	31			
		3.5.1 Dynamischer Betrieb	33			
		3.5.2 Stationärer Betrieb	33			
	3.6	Metabolomanalyse	34			
		3.6.1 Probenahme und -aufarbeitung	35			
		3.6.2 Analytik	35			
	3.7	Genomweite Stoffflussanalysen	37			
		3.7.1 Flussbilanzanalyse	38			
		3.7.2 Flussvarianzanalyse	39			
		3.7.3 Loopless-Methoden	39			
		3.7.4 Thermodynamische Flussanalyse	41			
	3.8	Metabolische Kontrollanalyse	43			
		3.8.1 Abschätzung von Elastizitäten	44			
		3.8.2 Abschätzung von Flusskontrollkoeffizienten	45			
		3.8.3 Metabolische Kontrollanalyse des Metabolismus von $Escherichia\ coli$	47			
1	Ma	terial und Methoden	18			
Ŧ	1 VIA	1 Milmonganigmon und Diagnide				
	ч.1 Д 9	Kulturmedien				
	4.2	Kultivierung von Escherichia coli	50			
	1.0	4.3.1 Stammhaltung	52			
		4.3.2 Gewinnung kompetenter Zellen und Transformation	52			
		4.3.3 Kultivierung in Schüttelkolben	52			
			00			

		4.3.4	Zulaufkultivierung im 15 L-Maßstab	53
	4.4	Parall	elisierte Kurzzeitanalysen im Zulaufverfahren	55
	4.5	Gewin	nung von Uniform- ¹³ C-markiertem Zellextrakt	58
	4.6	Probe	nnahme und -aufarbeitung	60
		4.6.1	Probenbehandlung zur Analyse extrazellulärer Metabolite	60
		4.6.2	Probenbehandlung zur Analyse intrazellulärer Metabolite $\ .\ .\ .\ .$.	60
	4.7	Analy	tische Methoden	60
		4.7.1	Bestimmung der optischen Dichte und Biotrockenmasse $\ . \ . \ . \ .$	60
		4.7.2	HPLC-Analytik zur Quantifizierung von Aminosäuren	61
		4.7.3	HPLC-Analytik zur Quantifizierung von Säuren, Alkoholen und	
			Zuckern	62
		4.7.4	Enzymatische Quantifizierung von Ammoniak	62
		4.7.5	Enzymatische Quantifizierung von Methylglyoxal	62
		4.7.6	Massenspektrometrische Analytik zur Quantifizierung intrazellulärer Me-	
			tabolite \ldots	63
	4.8	Comp	utergestützte Analyse von Stoffwechselnetzwerken	63
5	\mathbf{Erg}	ebniss	e und Diskussion	65
	5.1	Validi	erung der Methodik zur Abschätzung von Stoffflussverteilungen	65
	5.2	oolische Analyse der L-Tryptophansynthese mittels des Shikimattranspor-		
		terstar	mmes NT1259 $shiA_{Cg}$	75
		5.2.1	Aufnahme von Shikimat durch Integration eines $\mathit{shiA}_{\mathit{Cg}} extsf{-}$ Transportergens .	75
		5.2.2	15 L-Zulaufprozess zur L-Tryptophanproduktion	77
		5.2.3	Parallelisierte Kurzzeitanalyse im Zulaufbetrieb	82
		5.2.4	Quantifizierung intrazellulärer Metabolite	90
		5.2.5	Thermodynamische Stoffflussabschätzungen und Netzwerkanalyse	102
		5.2.6	Metabolische Kontrollanalyse der L-Tryptophan produktion $\ . \ . \ . \ .$	112
		5.2.7	Expressions analyse ausgewählter Gene	120
		5.2.8	Vorschläge zur Stammmodifikation basierend auf den Ergebnissen der me-	
			tabolischen Kontrollanalyse \hdots	123
	5.3	Prozes	ssleistung modifizierter Stämme	126
	5.4	Metab	oolische Analyse des modifizierten Stammes NT1446	130
		5.4.1	15 L-Zulaufprozess zur L-Tryptophanproduktion	130
		5.4.2	Parallelisierte Kurzzeitanalyse im Zulaufbetrieb	136
		5.4.3	Quantifizierung intrazellulärer Metabolite	143
		5.4.4	Stoffflussabschätzungen und thermodynamische Netzwerkanalyse $\ .\ .\ .$	153
		5.4.5	Metabolische Kontrollanalyse der L-Tryptophan produktion $\ . \ . \ . \ .$	161
		5.4.6	Expressions analyse ausgewählter Gene	166
	5.5	Vergle	ich der Metabolischen Kontrollanalysen und Vorschläge zur weiteren Stamm-	
		modifi	kation	171

7	Ausblick Literaturverzeichnis				
8					
9	Abkiirzungsverzeichnis	217			
10	10 Symbolverzeichnis				
\mathbf{A}	Anhang	228			
	A.1 Verwendete Chemikalien, Geräte und Methoden	228			
	A.2 Stoffflussberechnungen	236			
	A.3 Modelle für die metabolische Kontrollanalyse	263			
	A.4 Elastizitäten	267			
Ta	Tabellenverzeichnis				
Ał	Abbildungsverzeichnis				

1 Einleitung

Der moderne menschliche Alltag ist abhängig von einer Vielzahl industrieller Produkte. Über Jahrzehnte ermöglichte die chemische Synthese eine stetig verbesserte Bereitstellung unterschiedlichster Wertstoffe, die in allen Industriezweigen und Lebensbereichen zum Einsatz kommen. Die fortschreitende Umweltbelastung und der Mangel an fossilen Rohstoffen fordern jedoch nachhaltige Alternativen (Becker & Wittmann, 2015).

Mit den ersten Erfolgen rekombinanter DNA-Technologien in den späten 1980er Jahren entwickelte sich die Idee, Substrate mithilfe des Reaktionsnetzwerks von Mikroben in gewünschte Zielprodukte umzusetzen (Bailey *et al.*, 1990; Johnson, 1983). Seitdem arbeitet die Wissenschaft stetig daran, mit sogenannten "Zellfabriken" effiziente industrielle Produktionsprozesse zu etablieren (Nielsen *et al.*, 2014). Hierbei sind sowohl native Stoffwechselwege, wie beispielsweise die Synthese von Aminosäuren oder Vitaminen, als auch die Produktion nicht-natürlicher Produkte, durch das Einbringen organismusfremder Gene, von Interesse. Vorteile, die sich aus der Nutzung von Mikroben ergeben, sind die Möglichkeit zur Produktion komplex aufgebauter Moleküle und die hohe Selektivität der Synthesen, die innerhalb eines Reaktionssystems ablaufen. Außerdem wird durch die primäre Nutzung nachwachsender Rohstoffe als Ausgangssubstrate die Schließung von Rohstoffkreisläufen erreicht.

Die Effizienz und Robustheit dieser mikrobiellen Produktionsprozesse ist jedoch stark abhängig vom Design der mikrobiellen Produktionswirte. Wie auch in der chemischen Synthese unterliegen die Reaktionsschritte mikrobieller Stoffwechselwege physikalisch-thermodynamischen Gesetzen, die die Stoffflüsse in ihrer Richtung und Stärke beeinflussen. Für eine Wirtschaftlichkeit der Prozesse ist es notwendig, die limitierenden Schritte in den Synthesewegen zu identifizieren und die Engstellen durch zielgerichtete Maßnahmen aufzulösen. Für die Anpassung der Produktionswirte stehen verschiedene molekularbiologische Methoden zur Verfügung, die eine gezielte Stammmodifikation ermöglichen. Allerdings ist deren spezifischer Einsatz durch die Komplexität der zellulären Stoffwechselwege erschwert (Stephanopoulos *et al.*, 1998). Frühe Versuche, die Wirte gezielt im Interesse der Wertstoffproduktion zu manipulieren, konzentrierten sich lediglich auf die Betrachtung der Reaktionsschritte, die unmittelbar in die spezifischen Produktbiosynthesewege involviert sind. Die Erfolgsaussicht dieser Herangehensweise ist jedoch bei komplexen, vielschrittigen Biosynthesewegen begrenzt. Deshalb sind computergestützte Methoden, welche die "globalen" zellulären Zusammenhänge betrachten, notwendig (Bailey, 1991; Simão *et al.*, 2005).

Schon früh wurde von Kacser und Burns (1973) das Konzept der metabolischen Kontrollanalyse erarbeitet. Die mathematische Methode analysiert quantitativ die Einflüsse von Enzymen auf die Stoffflüsse im metabolischen Netzwerk und ermöglicht die Identifikation von kontrollierenden Reaktionsschritten im Metabolismus. Die der metabolischen Kontrollanalyse zugrundeliegenden Daten sollten den *in vivo*-Zustand des Stoffwechsels möglichst realitätsnah abbilden. Hierfür eignet sich eine prozessnahe empirische Datenerhebung in Form metabolischer Analysen.

2 Problemstellung und Zielsetzung

Die industrielle Herstellung komplex aufgebauter Moleküle, deren Synthese eine Kaskade biokatalytischer Schritte erfordert, wird durch die Verwendung von lebenden Mikroorganismen ermöglicht. Vorteile dieser Produktionsweise sind die Vereinigung aller notwendigen Reaktionsschritte in einem System sowie die bereits in die Zellen integrierte Bereitstellung von Reduktionsäquivalenten. Durch die Einbettung der spezifischen Biosynthesewege in den Stoffwechsel der Wirtszellen entstehen jedoch auch Nachteile. Denn in der Regel wird eine Überproduktion eines Zielmoleküls durch zelluläre Regulationsstrategien unterdrückt und eventuelle Nebenproduktbildungen schmälern die Produktivität (Wiechert & Noack, 2011). Aufgrund dessen sind natürlich vorkommende Mikroorganismen in der Regel für Produktbiosynthesen nicht ideal, vielmehr bedarf es genetischer Eingriffe (Woolston *et al.*, 2013).

Zur genetischen Anpassung der Produktionsstämme kommen rationale Methoden des *Metabolic Engineering* zum Einsatz. Dabei erschweren die komplexen Zusammenhänge aufeinander aufbauender und zueinander in Konkurrenz stehender Stoffwechselwege die zielgerichtete Verbesserung der Zellen erheblich. Eine umfassende Betrachtung des gesamten Metabolismus ist daher zur Effizienzsteigerung mikrobieller Produktionsprozesse unumgänglich. Weiterhin können Enzymeigenschaften durch Analysen von isolierten Enzymen nur unzureichend beschrieben werden, aufgrund dessen ist eine Übertragung der Ergebnisse von *in vitro*-Charakterisierungen auf Prozesse mit ganzen Zellen nicht gegeben (Teusink *et al.*, 2000; Visser *et al.*, 2004). Stattdessen müssen detaillierte Informationen zum Metabolismus direkt aus lebenden Zellen gewonnen werden (Chassagnole *et al.*, 2002).

Sogenannte "metabolische Analysen" werden eingesetzt, um detaillierte Informationen über den metabolischen Zustand der Zellen unter definierten Prozessbedingungen zu erfassen. Hierbei wird das metabolische Gleichgewicht der Stoffwechselvorgänge durch äußere Einflüsse ausgelenkt und die Reaktion der Zellen anhand gemessener Fluxom- und Metabolomdaten quantifiziert. Mögliche Verfahrensweisen sind einerseits dynamische Analysen, welche die unmittelbare Reaktion der Zellen auf die Auslenkung mittels zeitlich hochauflösenden Probenahmen analysieren und andererseits stationäre Analysen, die sich auf die Charakterisierung des aus der Auslenkung resultierenden neuen metabolischen Gleichgewichts fokussieren (Oldiges & Takors, 2005; Weiner *et al.*, 2016). Eine räumliche Trennung der ausgelenkten Zustände (metabolische Gleichgewichte bei geänderter Substratverfügbarkeit) vom Referenzzustand (metabolisches Gleichgewicht im Produktionsprozess zum Zeitpunkt der metabolischen Analyse) vermeidet die Störung des Prozessverlaufs und ist daher in beiden Verfahren vorteilhaft (Aboka *et al.*, 2006). Im stationären Modus gelingt dies beispielsweise mit der Methode des schnellen Medienwechsels; *"rapid media transition"* (RMT) (Link *et al.*, 2010), die auch in parallelen Ansätzen durchgeführt werden kann, um eine Vervielfachung der Datenmenge zu erreichen (Weiner *et al.*, 2016).

Für metabolische Kurzzeitanalysen werden dafür zu interessanten Prozesszeitpunkten Zellsuspensionen aus dem zu analysierenden Produktionsprozess entnommen. Dabei sind ausreichende Biomassekonzentrationen und spezifische Produktbildungsraten für die nachfolgenden metaboli-

3

schen Analysen wichtig. Nach der Entnahme werden die Zellen durch Zentrifugation abgetrennt, in frischem Medium resuspendiert und anschließend in separate Analysenreaktoren überführt, in welchen die Auslenkung der Stoffwechselwege durch eine geänderte Substratzufuhr herbeigeführt wird. Geeignete Probenahmen ermöglichen die quantitative Erfassung der intra- und extrazellulären Metabolitkonzentrationen. Voraussetzung für die Vergleichbarkeit der erhobenen Daten ist ein unverändertes Proteom im Zeitraum der metabolischen Kurzzeitanalyse. Diese Bedingung ist für eine Zeitspanne von bis zu 30 Minuten unter wachstumskontrollierten Prozessbedingungen für *Escherichia coli* (*E. coli*) erfüllt (Link *et al.*, 2010; Tröndle *et al.*, 2020; Weiner *et al.*, 2016).

Um aus den erhobenen Daten der metabolischen Analysen Informationen über Limitierungen im Stoffwechselnetzwerk zu gewinnen, ist eine mathematische Betrachtung der Zusammenhänge notwendig. Die metabolische Kontrollanalyse (MCA) erlaubt es, basierend auf den Datensätzen der metabolischen Analyse, die kontrollierenden enzymatischen Schritte im Stoffwechsel der Zellen zu bestimmen (Kacser *et al.*, 1995). Eine mechanistische Beschreibung der beteiligten Reaktionen ist hierfür nicht notwendig. Voraussetzung für die Bestimmung der kontrollierenden Reaktionsschritte ist ein vollständiger Datensatz der nicht messbaren intrazellulären Stoffflüsse sowie eine thermodynamische Analyse des metabolischen Netzwerks. Die Abschätzung der experimentell nicht zugänglichen Daten wie intrazelluläre Stoffflussverteilungen, Metabolitkonzentrationen und Gibbs'sche Reaktionsenergien gelingt mittels computergestützten simulativen Methoden. Die Wahl der verwendeten Algorithmen ist von der Verfügbarkeit der erhobenen Daten abhängig und beeinflusst maßgeblich die Qualität der Resultate (Ataman & Hatzimanikatis, 2015).

Die aromatische Aminosäure L-Tryptophan ist aufgrund ihres mehrstufigen Biosynthesewegs für die mikrobielle Produktion prädestiniert, da bereits eine natürliche Stoffwechselroute im Modellorganismus *E. coli* existiert und der Wertstoff vielfältige Anwendungen in der Nahrungs- und Futtermittel- sowie der pharmazeutischen Industrie findet (Ikeda, 2006; Sprenger, 2006). Allerdings verbraucht die Biosynthese von L-Tryptophan in Mikroorganismen wie *E. coli* viele Ressourcen. Es sind viele Enzyme beteiligt, mehrere Vorläufermetabolite werden benötigt und der gesamte Biosyntheseprozess ist energetisch aufwendig (Simão *et al.*, 2005). Aus dem Zentralstoffwechsel müssen die Vorläufermoleküle Phosphoenolpyruvat (pep), Erythrose-4-Phosphat (e4p), L-Glutamin (L-gln), Phosphoribosyl-Pyrophosphat (prpp) und L-Serin (L-ser) bereitgestellt werden, zudem muss der L-Tryptophanbiosynthese Energie in Form von Adenosintriphosphat (atp) zugeführt werden und es werden Reduktionsäquivalente benötigt. Die Stöchiometrie der L-Tryptophanbiosynthese ist in Gleichung 2.1 beschrieben (Karp *et al.*, 2018) ¹:

$$e4p + 2 pep + prpp + L-gln + L-ser + atp + nadph + 2 H^{+} + H_2O \rightarrow L-trp + pyr + L-glu + g3p + adp + nadp + 4 p_i + pp_i + 3 H_2O + CO_2 + 2 H^{+}$$
(2.1)

Um unnötige Energieverluste durch die Produktion überschüssigen L-Tryptophans zu vermeiden, wird der spezifische Biosyntheseweg auf den zellulären Ebenen der Genexpression und Translation sowie durch Rückkopplungsmechanismen von Enzymen in *E. coli*-Wildtypen streng reguliert

¹ Die Bedeutungen der verwendeten Abkürzungen sind dem Abkürzungsverzeichnis (Kapitel 9) zu entnehmen.

(S. Liu *et al.*, 2022; Niu *et al.*, 2019; Panichkin *et al.*, 2016; Simão *et al.*, 2005; Sprenger, 2006; Yanofsky, 2003). Diese Regulationen müssen überwunden werden, um L-Tryptophan wirtschaftlich rentabel in mikrobiellen Prozessen herstellen zu können.

Durch rationales Stammdesign wurden mit *E. coli* bereits hohe L-Tryptophanausbeuten von 0,227 g g_{Glucose} erreicht, was beinahe 50 % der theoretischen Ausbeute bei Verwendung von Glucose als Substrat entspricht (Xiong *et al.*, 2021).

Als alternative Kohlenstoffquelle kann Glycerin für die Produktion von Wertstoffen wie beispielsweise L-Tryptophan mit *E. coli*-Zellen verwendet werden. Neben theoretischen Vorteilen wie dem erhöhten Reduktionsgrad verglichen mit Glucose gewinnt Glycerin als Reststoff der Biodieselherstellung als Substrat an Attraktivität, da es günstig und reichlich verfügbar ist (Stichnothe, 2019). Die praktische Verwendung von Glycerin zur mikrobiellen Herstellung von L-Tryptophan zeigte jedoch, dass die Produktbildung gegenüber der Nutzung von Glucose deutlich verringert ist (Tröndle *et al.*, 2018b).

Um die Gründe der verringerten Produktbildung bei Nutzung von Glycerin aufzuzeigen und die limitierenden Reaktionsschritte der L-Tryptophanbiosynthese ausgehend von Glycerin zu identifizieren, wurden in vorangegangenen Arbeiten die Stoffwechselleistungen des genetisch modifizierten E. coli-Stammes NT1259 pF $aroFBL_{kan}$ in einem etablierten Zulaufverfahren mittels metabolischer Analysen charakterisiert und die Stoffwechsellimitierungen durch eine MCA bestimmt (Tröndle et al., 2020). Neben zusätzlichen Insertionen von Genen, deren Proteine an den spezifischen Stoffwechselwegen zur L-Tryptophanbiosynthese beteiligt sind, wurde im verwendeten Stamm die Expression für Proteine aus dem Pentosephosphatweg und der L-Serinbiosynthese verstärkt, um eine erhöhte Bereitstellung von Vorläufermolekülen zu gewährleisten. Das Gen des L-Tryptophan spaltenden Enzyms Tryptophanase (TRPAS2) wurde zudem deletiert, sodass der enzymatische Abbau des Produktes verhindert wurde. Darüber hinaus wurden Rückkopplungsinhibierungen von Zwischen- und Endprodukten auf Produkt bereitstellende Reaktionsschritte entfernt. Die genetischen Modifikationen ermöglichten im Glycerin basierten Zulaufprozess im 15 L-Maßstab eine maximale extrazelluläre L-Tryptophankonzentration von 14,3 g L⁻¹ (Tröndle et al., 2020). Mittels MCA wurden enzymatische Schritte bestimmt, die den Stofffluss in Richtung der L-Tryptophanbildung kontrollieren. Hierbei wurden Limitierungen in der Bereitstellung der Vorläufermetabolite prpp und L-Serin aufgedeckt und kontrollierende Schritte unmittelbar im spezifischen L-Tryptophanbiosyntheseweg ermittelt. Letztere waren besonders ausgeprägt und deuten auf starke Limitierungen in diesen Teilen des Stoffwechsels hin.

Die Präzision und Genauigkeit der MCA-Ergebnisse sind jedoch unter anderem auch abhängig vom Grad der Auslenkung, der in den spezifischen Produktbiosynthesewegen während metabolischer Analysen erreicht wird. Um eine unmittelbare und starke Auslenkung des Stoffwechsels zu bewirken, müssen die Substrate spontan und in ausreichend hohen Raten von den Zellen aufgenommen und metabolisiert werden. Für *E. coli* steht daher nur eine eingeschränkte Auswahl an Substraten für metabolische Analysen zur Verfügung. Für den L-Tryptophan spezifischen Biosyntheseweg gibt es keine Substrate, die natürlicherweise von *E. coli* in ausreichend hohen Raten aufgenommen werden können. Da sich der Effekt der Auslenkung des Stoffwechsels mit zunehmendem Abstand vom Aufnahmeort reduziert, ist die Beeinflussung der weiter entfernt liegenden Stoffwechselwege stark vermindert (Schmitz *et al.*, 2002). Es ist anzunehmen, dass durch eine verstärkte Auslenkung in den spezifischen Produktbiosynthesewegen die Genauigkeit der Vorhersagen hinsichtlich der kontrollierenden enzymatischen Reaktionen in diesen Stoffwechselbereichen erhöht werden kann. Eine Möglichkeit, das Substratspektrum für metabolische Analysen zur Auslenkung des Stoffwechsels zu erweitern, ist der Einsatz sogenannter "Transporterstämme". Dabei handelt es sich um Produktionsstämme mit gentechnisch integrierten spezifischen Transportern. Diese methodische Vorgehensweise konnte beispielsweise für die pep-Aufnahme bei der metabolischen Analyse der L-Phenylalaninproduktion mit $E. \ coli$ erfolgreich eingesetzt werden (Tröndle $et \ al.$, 2018a). Die zusätzliche Expression der Gene für einen pep-Transporter ermöglichte während metabolischer Analysen eine Aufnahme von pep in ausreichend hohen Raten, wohingegen der Prozessverlauf durch die genetische Modifikation unverändert blieb (Tröndle $et \ al.$, 2018a).

Aufgrund fehlender Möglichkeiten von *E. coli* Metabolite des Aromatenbiosynthesewegs aus dem extrazellulären Raum aufnehmen zu können, waren die hervorgerufenen Unterschiede in den Stoffflüssen und Metabolitkonzentrationen in bisherigen metabolischen Analysen der L-Tryptophanbiosynthese in den spezifischen Produktsynthesewegen nur sehr gering (Tröndle, 2019). Deshalb ist ein Ziel dieser Arbeit auch mithilfe eines spezifischen Transporterstammes weitere limitierende Schritte in der L-Tryptophanproduktion mit *E. coli*, ausgehend von Glycerin als Substrat, durch eine verstärkte Auslenkung in den produktspezifischen Synthesewegen zu bestimmen. Mittels MCA können die Enzyme identifiziert werden, die positive oder negative Kontrollen auf die Stoffflüsse in der L-Tryptophanbiosynthese ausüben. Durch molekulargenetische Maßnahmen soll versucht werden, die festgestellten kontrollierenden Effekte zu beheben (Projektpartner der Universität Stuttgart). Für positive Kontrollen (verstärkende Wirkung) werden Überexpressionen der entsprechenden Enzyme angestrebt, zur Behebung negativer Kontrollen (inhibierende Wirkung) können beispielsweise Deletionen eingeführt oder die Enzymaktivität anderweitig abgeschwächt werden.

Shikimat ist ein Zwischenprodukt des allgemeinen Biosynthesewegs aromatischer Aminosäuren und aufgrund der Nähe zum Produkt L-Tryptophan ein geeignetes Substrat für die Auslenkung der produktspezifischen Stoffwechselwege. Mithilfe eines vom Projektpartner der Universität Stuttgart bereitgestellten Transporterstammes zur Aufnahme von Shikimat in die Zellen sind metabolische Analysen im Zulaufverfahren mit Shikimat als Substrat zur verstärkten Auslenkung der produktspezifischen Biosynthesewege möglich. Das zugrundeliegende 15 L-Zulaufverfahren zur Herstellung von L-Tryptophan basierend auf den Substraten Glycerin und Ammoniak wird dazu aus vorherigen Arbeiten übernommen (Tröndle *et al.*, 2020; Tröndle *et al.*, 2018b).

Ausreichende Biomassekonzentrationen und messbare spezifische Produktbildungsraten sind entscheidend für die Wahl des Analysezeitpunkts. Die metabolische Kurzzeitanalyse erfolgt in vier parallelen Ansätzen mit unterschiedlichen Kohlenstoffquellen. Die dabei verwendeten Substrate und Zulaufraten müssen darauf ausgerichtet sein, das metabolische Gleichgewicht der Zellen aus dem Produktionsprozess gezielt und messtechnisch nachweisbar auszulenken. Durch die Zuführung der Substrate in drei konstanten, ansteigenden Stufen wird die Einstellung von 12 neuen metabolischen Gleichgewichten angestrebt und die Gesamtmenge an Informationen über den metabolischen Zustand der Zellen vervielfacht. Basierend auf den gewonnenen Fluxom- und Metabolomdaten können mittels computergestützten Methoden die intrazellulären Stoffflussverteilungen abgeschätzt werden und eine thermodynamische Netzwerkanalyse erfolgen. Darauf aufbauend lassen sich mittels der MCA-Methodik die kontrollierenden Enzyme in den Zellen identifizieren und Handlungsmaßnahmen zur Verbesserung der Stämme ableiten.

Anhand von Prozesscharakterisierungen der nachfolgend vom Projektpartner (Universität Stuttgart) gezielt genetisch modifizierten *E. coli*-Stämme im standardisierten Prozessverfahren zur L-Tryptophanherstellung kann die Produktbildung der erhaltenen Stämme evaluiert werden und ein Vergleich der Produktionsleistungen erfolgen. Eine erneute metabolische Analyse mit anschließender MCA mit einem ausgewählten verbesserten *E. coli*-Stamm ermöglicht die Überprüfung, ob Limitierungen im Stoffwechselnetzwerk tatsächlich aufgehoben wurden und, ob neu kontrollierende Stoffwechselreaktionen im verbesserten Produktionsstamm auftreten.

Aus ungeklärten Gründen tritt das Produktionsende in Prozessen zur L-Tryptophanproduktion mit *E. coli* ausgehend von der Kohlenstoffquelle Glycerin abrupt und auffallend früh ein (Tröndle *et al.*, 2020; Tröndle *et al.*, 2018b). Nach der Induktion werden zunächst hohe Produktbildungsraten erreicht und weiteres Zellwachstum beobachtet, bis nach etwa 65 h bis 70 h die Produktion unvermittelt stoppt, die Zellatmung rapide zurückgeht und das Zellwachstum abnimmt. In der Folge kommt es zu einer Abnahme der Produktkonzentration aufgrund weiterer Zugabe von Zulaufmedien und Titrationsmitteln. Ein ähnliches Verhalten wurde auch für Produktionsprozesse der aromatischen Aminosäure L-Phenylalanin ausgehend von Glycerin beobachtet (Weiner *et al.*, 2017).

Da die Produktionsdauer die Effizienz der Prozesse beeinflusst und ein früher Produktionsabbruch die Produktionsleistung stark beeinträchtigt, ist ein weiteres Ziel dieser Arbeit, mögliche Gründe für das frühe Produktionsende Glycerin basierter Produktionsprozesse aromatischer Aminosäuren aufzuzeigen (Tröndle *et al.*, 2020; Tröndle *et al.*, 2018b; Weiner *et al.*, 2016). Anhand von Literaturdaten und Modellbetrachtungen ist zunächst das Aufstellen von möglichen Hypothesen, die den verfrühten Produktionsabbruch erklären, sinnvoll. Basierend auf diesen Arbeitshypothesen werden Konzepte erarbeitet, die den Nachweis der potenziellen Ursachen ermöglichen. Dies kann am sinnvollsten durch eine Erweiterung der Prozessanalysen beziehungsweise die Identifikation von bisher unbekannten Metaboliten im Reaktionsmedium erfolgen. Expressionsanalysen ausgewählter Gene, die vom Projektpartner der Universität Stuttgart durchgeführt werden, können zur Aufklärung der Ursachen unterstützend hinzugezogen werden. Abschließend werden die entwickelten analytischen Verfahren in die Probenanalyse standardisierter Produktionsprozesse und metabolischer Analysen integriert.

Die folgende Vorgehensweise ist daher geplant, um diese Zielstellungen zu erreichen:

- Etablierung und Evaluierung von neuen Methoden zur thermodynamischen Stoffflussanalyse
- Parallelisierte metabolische Analyse der L-Tryptophanproduktion mit erweitertem Substratspektrum
 - Prozesscharakterisierung mit Transporterstämmen
 - Gezielte Auslenkung durch angepasste Zulaufprofile mit neuen Substraten
 - Quantifizierung extra- und intrazellulärer Metabolite

- Thermodynamische Stoffflussanalyse
- Metabolische Kontrollanalyse der L-Tryptophanproduktion
- Vorschläge zur genetischen Modifikation des Produktionsstamms
- Prozesscharakterisierung der L-Tryptophanproduktion mit gezielt modifizierten Stämmen im standardisierten Zulaufverfahren im 15 L-Maßstab
 - Beurteilung und Vergleich der Prozessleistungen
 - Auswahl eines Stammes für weitere metabolische Analysen
- Parallelisierte metabolische Analyse der L-Tryptophanproduktion mit gezielt genetisch modifiziertem Produktionsstamm
 - Prozesscharakterisierung des angepassten Produktionsstammes
 - Gezielte Auslenkung durch angepasste Zulaufprofile mit natürlichen Substraten
 - Quantifizierung extra- und intrazellulärer Metabolite
 - Thermodynamische Stoffflussanalyse
 - Metabolische Kontrollanalyse
- Vergleichende Gegenüberstellung der Ergebnisse des metabolischen Zustands vor und nach der genetischen Modifikation
- Identifikation von Ursachen für den verfrühten Produktionsabbruch
 - Aufstellen von Hypothesen anhand von Literatur und Modellergebnissen
 - Erweiterung der Metabolitanalysen und Anpassung der analytischen Methoden
 - Integration der entwickelten analytischen Methoden in die Probenanalyse
 - Genexpressions analysen

3 Theoretische Grundlagen

3.1 Biologische Grundlagen – Escherichia coli

E. coli ist ein Gram-negatives und peritrich begeißeltes Bakterium, das im Jahr 1885 erstmals vom Kinderarzt und Bakteriologen Theodor Escherich aus dem gastrointestinentalen Trakt von Säuglingen isoliert wurde (Blattner *et al.*, 1997). Zwar ist *E. coli* ein harmloses und natürliches Darmbakterium von Säugetieren, dennoch können pathogene Varianten schwere Infektionskrankheiten des Urinal- und Intestinaltraktes hervorrufen (Braz *et al.*, 2020). Das fakultativ anaerobe Bakterium ist unter variablen Umweltbedingungen zur Vermehrung und zu schnellem Wachstum befähigt, weshalb die Anzucht der Zellen und die Kultivierung im Labor praktikabel und einfach zu kontrollieren ist.

Als in den frühen 1990er Jahren Methoden des *metabolic engineering* an Bedeutung gewannen, wurde *E. coli* aufgrund seiner günstigen Eigenschaften häufig als Wirt ausgewählt und entwickelte sich zum wichtigsten Modellorganismus der Molekularbiologie und Biotechnologie (Pontrelli *et al.*, 2018). Über die Jahre wurden große Mengen an qualitativen und quantitativen Informationen über *E. coli* gesammelt und zahlreiche genetische Werkzeuge zur genetischen Modifikation der Wildtypen entwickelt (Baneyx, 1999). Methoden wie das λ -Red-Rekombinationsoder CRISPR/CAS-System ermöglichen eine effiziente, flexible und zielgerichtete Modifikation des *E. coli*-Genotyps (Jiang *et al.*, 2015). Experimentelle Datensätze des Transkriptoms, Proteoms und Metaboloms trugen zu den großen Erfolgen des *metabolic engineering* von *E. coli* bei (Adamczyk & Reed, 2017).

Aufgrund des großen Interesses an *E. coli* als Modellorganismus und Produktionswirt wurde das Genom bereits im Jahr 1997 erfolgreich sequenziert (Blattner *et al.*, 1997) und das erste genomweite stöchiometrische *E. coli*-Modell im Jahr 2000 veröffentlicht (Edwards & Palsson, 2000). Verbesserungen und Erweiterungen durch Reed *et al.* (2003), Feist *et al.* (2007) und Orth *et al.* (2011) führten zur Verfeinerung und Optimierung des ursprünglichen Modells.

Das große Wissen über *E. coli* und die damit einhergehende methodische Expertise ermöglichten die industrielle Produktion verschiedenster natürlicher Stoffwechselprodukte sowie neuer, organismusfremder Moleküle (Pontrelli *et al.*, 2018). Hierzu zählen kleine Moleküle wie proteinogene Aminosäuren oder Ethanol, Proteine, wie das humane Insulin (Johnson, 1983) und Ribonukleinsäuren, wie beispielsweise mRNA-Impfstoffe (T. Liu *et al.*, 2021).

3.2 Kohlenstoffmetabolismus¹

Der Kohlenstoffmetabolismus der Zelle besteht aus einem Netzwerk an seriell vernetzten enzymatisch katalysierten Reaktionen. Dabei wandelt ein Stoffwechselweg, welcher aus einer Reihe von aufeinander folgenden Reaktionen besteht, ein Molekül in ein anderes Molekül oder mehrere Moleküle um. Diese Stoffwechselwege sind miteinander verknüpft und ihre Aktivitäten werden durch unterschiedliche Regulationsmechanismen und zelleigene Kommunikationsmittel koordiniert.

Zu den wesentlichen Aufgaben des Metabolismus zählen einerseits der Abbau von Substraten (wie beispielsweise Stickstoff- oder Kohlenstoffquellen) zur zellulären Energiegewinnung und andererseits der simultane Aufbau von komplexen Molekülen wie Speichermolekülen, Zellstrukturmolekülen oder Nukleotiden, die zum Zellwachstum und zum Erhalt der zelleigenen Funktionen benötigt werden. Dabei werden Prozesse, die zur Energiegewinnung der Zelle beitragen als katabole Reaktionen bezeichnet und Reaktionen, die Energie zur Synthese von Molekülen benötigen, werden dem Anabolismus zugeordnet. Durch energiespeichernde Moleküle wie atp oder Adenosindiphosphat (adp) und sogenannte Cofaktoren sind anabole an katabole Reaktionen gekoppelt, sodass thermodynamisch ungünstige Reaktionen durch energiefreisetzende Reaktionen ermöglicht werden.

Die für diese Arbeit relevanten Stoffwechselwege des Kohlenstoffmetabolismus von *E. coli* werden im Folgenden dargestellt und erläutert. Betrachtet werden die zentralen Bereiche Glykolyse, Gluconeogenese, Pentosephosphatweg und Citratzyklus. Darüber hinaus werden die Reaktionen zur Aufnahme von Glycerin, die Synthese aromatischer Aminosäuren, die L-Serinbiosynthese, die oxidative Phosphorylierung, die Bildung von Nebenprodukten sowie der Methylglyoxal-Bypass beschrieben. Die ausgewählten Stoffwechselwege sind in Abbildung 3.1 schematisch vereinfacht dargestellt. Falls nicht anderweitig angegeben, wurden die Informationen der Online-Datenbank EcoCyc (Karp *et al.*, 2018) oder allgemeiner biochemischer Literatur (Berg *et al.*, 2018) entnommen.

¹ Die Abkürzungen für Protein- und Metabolitnamen wurden gemäß den Angaben des in dieser Arbeit verwendeten genomweiten stöchiometrischen *E. coli*-Modell *i*JO1366 vergeben. Abkürzungen der Proteine sind in Varsalien geschrieben, die der Metabolite in Gemeinen. Genbezeichnungen werden klein und kursiv geschrieben.

Abbildung 3.1: Vereinfachte Darstellung des zentralen Kohlenstoffmetabolismus von *E. coli* mit den Stoffwechselbereichen Glykolyse, Gluconeogenese, L-Serinbiosynthese, Citratzyklus, Pentosephosphatweg sowie dem Biosyntheseweg aromatischer Aminosäuren und oxidativer Phosphorylierung. Die Abkürzungen der Enzyme und Metabolite sind gemäß den Bezeichnungen im genomweiten Modell *i*JO1366. Die Pfeilrichtungen geben Reaktionsrichtungen an, Doppelpfeile symbolisieren reversible Reaktionen.

Glykolyse und Gluconeogenese

Die Glykolyse ist ein alter, hochkonservierter Stoffwechselweg, der in nahezu allen Zellen sowohl prokaryotischer als auch eukaryotischer Art vorkommt. Die Glykolyse dient zum Abbau von Hexosen zu Pyruvat und in ihrem Verlauf werden entscheidende Vorläufermoleküle für die Biosynthese von Makromolekülen sowie Energiespeichermolekülen gebildet.

Glucose, das Ausgangsmolekül der Glykolyse, tritt durch spezifische Transporter wie das Phosphotransferase-System (PTS) in die Zelle ein und wird durch die gleichzeitige Übertragung einer Phosphatgruppe von pep zu Glucose-6-Phosphat (g6p) phosphoryliert, wodurch Pyruvat entsteht. Die zusätzliche Phosphatgruppe stabilisiert die Hexose und verhindert den Rückfluss aus der Zelle, da g6p kein Substrat des Glucosetransporters ist. Der Transport von der Zellaußenseite in das Zellinnere ist somit irreversibel (Postma *et al.*, 1993).

Im darauffolgenden Schritt wird g6p durch die Phosphoglucose-Isomerase (PGI) zu Fructose-6-Phosphat (f6p) umgelagert. Dieses wird unter Verbrauch von atp durch eine weitere Phosphorylierung, katalysiert durch die Phosphofructo-Kinase (PFK), zu Fructose-1,6-Bisphosphat (fbp) umgesetzt. Mittels der Fructose-1,6-Bisphosphat-Aldolase (FBA) wird fbp in die Triosen Dihydroxyacetonphosphat (dhap) und Glycerinaldehydphosphat (g3p) gespalten. Die beiden Produkte der FBA werden durch die Triosephosphat-Isomerase (TPI) reversibel ineinander umgewandelt. Im Gleichgewicht liegt ein Großteil der Triosephosphate als dhap vor. Das g3p wird schnell durch die nachfolgenden Reaktionen der Glykolyse entfernt. Den Anfang bildet hierbei die Reaktion der Glyceraldehyd-3-Phosphat-Dehydrogenase (GAPD), sie katalysiert unter Phosphatverbrauch und Reduktion von oxidiertem Nikotinamidadeninnukleotid (nad) zu reduziertem Nikotinamidadeninnukleotid (nadh) die Bildung von 1,3-Bisphosphoglycerat (13DPG). Im darauffolgenden Schritt wird 13DPG durch die Phosphoglycerat-Kinase (PGK) zu 3-Phosphoglycerat (3pg) umgesetzt. Das hohe Phosphorylgruppenübertragungspotenzial ermöglicht die energieliefernde Phosphorylierung von adp zu atp im selben Schritt. Die reversible Gleichgewichtsreaktion zwischen 3pg und 2-Phosphoglycerat (2pg) wird durch die Phosphoglycerat-Mutase (PGM) katalysiert. 2pg wird in der darauffolgenden Reaktion durch Dehydrierung, katalysiert durch die Enolase (ENO), in pep überführt. Schließlich wird im letzten Schritt der Glykolyse, mittels des Enzyms Pyruvat-Kinase (PYK), pep irreversibel zu Pyruvat dephosphoryliert. Die frei werdende Phosphatgruppe dient zum Energiegewinn in Form von atp aus adp. In der Bilanz werden im Verlauf der Glykolyse aus einem Molekül Glucose zwei Moleküle Pyruvat generiert und dabei zwei atp-Moleküle sowie zwei Moleküle des reduzierten Reduktionsäquivalents Nicotinamidadenindinukleotid (nadh) gewonnen.

Wird die Glykolyse in entgegengesetzter Richtung durchlaufen, spricht man von Gluconeogenese. Es handelt sich dabei jedoch nicht um die genaue Umkehr der Glykolyse, da einige zusätzliche Enzyme notwendig sind, um das Gleichgewicht in die entgegengesetzte Richtung zu verschieben. Die Umsetzung von Pyruvat zu pep erfolgt in gluconeogener Richtung durch die Phosphoenolpyruvat-Synthase (PPS), hierbei wird atp verbraucht. Alle weiteren Reaktionen sind reversibel und werden durch die Enzyme der Glykolyse katalysiert, mit Ausnahme der PFK. Die Rückreaktion von Fructose-1,6-Bisphosphatase (FBP) zu f6p wird durch das zusätzliche Enzym FBP katalysiert.

Glycerinmetabolismus

Im Gegensatz zu Glucose erfolgt die Aufnahme von extrazellulär vorliegendem Glycerin (glyc) in die Zelle durch passive Diffusion, die durch die Permease GlpF (*glycerol facilitator*) erleichtert stattfinden kann (Hayashi & Lin, 1965; Heller *et al.*, 1980). Ist Glycerin in die Zelle gelangt, wird es unter aeroben Bedingungen durch die Glycerin-Kinase (GLYK) bei Verbrauch von atp zu Glycerin-3-Phosphat (gly3p) phosphoryliert. gly3p reagiert unter katalytischer Wirkung der Glycerin-Phosphat-Dehydrogenase (GLY3PD) weiter zu dhap. Dabei werden zwei frei werdende Elektronen auf Ubiquinol (q8) übertragen und reduziertes Ubiquinol (q8H₂) wird freigesetzt. Über dhap ist der Glycerinmetabolismus reversibel mit der Glykolyse und Gluconeogenese verknüpft. Herrschen anaerobe Bedingungen vor, wird Glycerin zunächst durch die Glycerin-Dehydrogenase (GLYCDx) zu Dihydroxyaceton (dha) umgesetzt und anschließend durch die Dihydroxyacetonphosphat-Transferase (DHAPT) zu dhap phosphoryliert. Dazu wird pep zu Pyruvat dephosphoryliert.

L-Serinbiosynthese

Die Aminosäure L-Serin (L-ser) wird in einem Nebenzweig der Glykolyse bzw. Gluconeogenese gebildet. Ausgehend von 3pg wird durch dessen Oxidation, katalysiert durch die 3-Phosphoglycerat-Dehydrogenase (PGCD), unter Reduktion von oxidiertem Nikotinamidadeninnukleotid (nad) zu reduziertem Nikotinamidadeninnukleotid (nadh), 3-Phosphohydroxypyruvat (3php) gebildet. Die 3-Phosphoserin-Aminotransferase (PSERT) katalysiert die Übertragung einer Aminogruppe von L-Glutamat (L-glu) auf 3php, wodurch Phospho-L-Serin (L-pser) und α -Ketoglutarat (akg) entstehen. Die L-Serinbildung wird schließlich durch Dephosphorylierung von L-pser unter Verbrauch von H₂O, katalysiert durch die Phosphoserin-Phosphatase (PSP L), realisiert. L-Serin ist nicht nur wichtiger Bestandteil von Proteinen, sondern es dient auch als Vorläufermolekül zur Bildung der Aminosäuren L-Glycin, L-Cystein, L-Tryptophan und Phospholipiden, weshalb der Bedarf an L-Serin groß ist (Pizer & Potochny, 1964; Stauffer, 2004). Die Regulation des Biosynthesewegs wird hauptsächlich durch eine Rückkopplungsinhibierung des ersten Enzyms, der PGCD erreicht (Grant et al., 1996). Drei verschiedene L-Serin-Deaminasen katalysieren den Abbau von L-Serin zu Pyruvat und Ammonium, zwei der drei Enzyme werden nur in Abwesenheit von Glucose exprimiert (Selvarasu et al., 2009). Durch einen H⁺-Symporter kann L-Serin in die Zelle und aus ihr heraus transportiert werden (Hagewood et al., 1994).

Citratzyklus und Glyoxylat-Bypass

Unter aeroben Bedingungen wird das gebildete Pyruvat im Citratzyklus vollständig oxidiert. Die katabolen Prozesse dieses Stoffwechselweges dienen dem Aufbau von Vorläufermolekülen für die Biosynthese zahlreicher Makromoleküle und ermöglichen die Maximierung der atp-Ausbeute. Zur Einschleusung in den Stoffwechselweg wird Pyruvat unter Verbrauch eines Moleküls CoenzymA (coA) und Reduktion von nad zu nadh, katalysiert durch die Pyruvat-Dehydrogenase (PDH), zu Acetyl-CoenzymA (acCoA) umgewandelt. Bei der oxidativen Carboxylierung des Pyruvats wird CO₂ freigesetzt. In der Eingangsreaktion des Citratzyklus reagiert acCoA mit Oxalacetat (oaa), unter katalytischer Einwirkung der Citrat-Synthase (CS), in einer Aldoladdition und anschließender Hydrolyse zu Citrat (cit). Dabei wird das coA wieder freigesetzt. Das entstehende cit wird durch den (Iso-)Citrat-Hydrolase-Komplex (ACONT) zu Isocitrat (icit) isomerisiert. Es folgen zwei Decarboxylierungsschritte. Der erste wird katalysiert durch die Isocitrat-Dehydrogenase (ICDH), dabei entsteht als und es wird das erste reduzierte Nikotinamidadenindinukleotidphosphat (nadph) gebildet. In der zweiten oxidativen Decarboxylierung, realisiert durch die α-Ketoglutarat-Dehydrogenase (AKGDH), wird Succinyl-CoenzymA (succCoA) gebildet und nad zu nadh reduziert. Es folgt die Umsetzung zu Succinat (suc) mittels der Succinyl-CoenzymA-Synthase (SUCOAS), wodurch ein Molekül atp generiert und coA freigesetzt wird. In der nachfolgenden Oxidation von suc zu Fumarat (fum), katalysiert durch die Succinat-Dehydrogenase (SUCD), dient oxidiertes Ubiquinol (q8) als Elektronenakzeptor, wodurch energiereiches reduziertes Ubiquinol (q8H₂) gewonnen wird. Im weiteren Verlauf wird fum mittels der Fumarase (FUM) zu Malat (mal) hydratisiert. Der Citratzyklus wird durch die Oxidation von mal zu oaa geschlossen, hierbei wird ein weiteres Molekül nadh gewonnen. Diese Reaktion wird durch die Malat-Dehydrogenase (MDH) katalysiert. mal kann alternativ durch die Malat-Enzyme; malic enzymes (ME) zu Pyruvat umgesetzt werden. CO₂ und ein Molekül reduziertes Nikotinamidadenindinukleotidphosphat (nadph) werden dabei frei.

Der Citratzyklus erfüllt nicht nur den Zweck der Energiegewinnung, sondern er stellt auch den Ausgangspunkt für die Synthese von Aminosäuren wie unter anderem L-glu und L-Aspartat sowie anderer Makromoleküle dar. Anaplerotische Reaktionen, wie beispielsweise die Decarboxylierung von Pyruvat zur Bereitstellung von oaa mittels der Oxalacetat-Dehydrogenase (OAADC), füllen die Zwischenmetabolite des Citratzyklus wieder auf und erhalten den Kreislauf aufrecht (U. Sauer & Eikmanns, 2005). Zu den anaplerotischen Reaktionen zählen außerdem die Carboxylierung von pep zu oaa durch die Phosphoenolpyruvat-Carboxylase (PPC) sowie die umgekehrte Reaktion der Phosphoenolpyruvat-Carboxykinase (PPCK). Möglich ist das Wiederauffüllen der Metabolitpools auch durch die Aufnahme der Zwischenprodukte wie zum Beispiel Succinat oder Malat aus dem extrazellulären Raum.

Alternativ kann in einer abgekürzten Variante des Citratzyklus, auch genannt Glyoxal-Bypass, aus zwei Molekülen acCoA suc und mal gebildet werden. Dieser Stoffwechselweg ermöglicht das Wachstum auf niedermolekularen Kohlenstoffquellen wie Acetat oder Pyruvat. Wie im Citratzyklus wird mit der Kondensation von oaa zu eit und der darauffolgenden Isomerisierung zu icit begonnen. Es folgt die Spaltung des icit in suc und Glyoxylat (glx) mittels der Isocitrat-Lyase (ICL). Darauffolgend reagiert glx unter katalytischer Wirkung der Malat-Synthase (MALS) und Verbrauch eines weiteren Moleküls acCoA zu mal.

Pyruvatmetabolismus und angrenzende Reaktionen

Herrschen anaerobe Bedingungen vor, betreiben Enterobakterien wie *E. coli* anaerobe Atmung (Valley, 1988) und gemischte Säuregärung (Fuchs, 2014). Zur anaeroben Atmung zählen beispielsweise die Fumaratatmung zur Succinatbildung (Guest, 1979) sowie die Nitratatmung (Valley, 1988). Die gemischte Säuregärung ermöglicht den *E. coli*-Zellen die Nutzung von Pyruvat zur Bildung der Produkte Acetat, Formiat (for) und Ethanol (etoh). Das zentrale Enzym hierbei ist die Pyruvat-Formiat-Kinase (PFL), die unter Abspaltung von for, die Bildung von acCoA katalysiert. In der Folge kann entweder, katalysiert durch die Alkohol-Dehydrogenase (ADH),

etoh oder durch die katalytische Wirkung der Phosphat-Acetyl-Transferase (PTAr) und Acetat-Kinase (ACKr), Acetat gebildet werden. Alternativ kann Acetat durch Decarboxylierung von Pyruvat, katalysiert durch die Pyruvat-Oxidase (POX), entstehen. Bei der Oxidation von for durch die Formiat-Hydrogen-Lyase (FHL) wird zudem CO_2 und Wasserstoff gebildet.

Laktatmetabolismus und Methylglyoxal-Bypass

Extrazelluläres D-Laktat kann als Substrat in die Zelle aufgenommen und durch die Laktat-Dehydrogenase Laktat-Dehydrogenase (LDH) zu Pyruvat umgesetzt werden, ausgehend von welchem der Übergang in den Citratzyklus und die Gluconeogenese erfolgen kann. Außerdem kann D-Laktat im sogenannten Methylglyoxal-Bypass entstehen (Ozyamak *et al.*, 2010). Ausgehend von dhap wird in diesem zur Glykolyse parallel verlaufenden Stoffwechselweg durch die katalytische Wirkung der Methylglyoxal-Synthase (MGSA), unter Abspaltung eines Phosphatrests, Methylglyoxal (mgo) gebildet. Über diverse Glyoxylasen (GLYOX) kann mgo in D-Laktat umgesetzt werden und durch die katalytische Aktivität der LDH kann es weiter in Pyruvat überführt werden. Es kann auch zur Ausscheidung von mgo kommen.

Pentosephosphatweg

Der Pentosephosphatweg ist der entscheidende Stoffwechselweg für die Bereitstellung von nadph, das in reduktiven Biosynthesen benötigt wird. Die nadph-Gewinnung erfolgt im oxidativen Teil des Pentosephosphatwegs, im nicht-oxidativen Teil werden diverse Zuckermoleküle ineinander umgewandelt und Vorläufermoleküle unter anderem für die Biosynthese aromatischer Aminosäuren generiert (Sprenger, 1995).

Der oxidative Teil beginnt mit der Umsetzung von g6p zu 6-Phosphogluconat (6pg) mittels der Enzyme Glucose-6-Phosphat-Dehydrogenase (G6PDH) und 6-phosphogluconolactonase (PGL), dabei wird ein erstes nadph-Molekül gebildet. Die 6-Phosphogluconat-Dehydrogenase (GND) katalysiert die Decarboxylierung zu Ribulose-5-Phosphat (ru5p), wobei ein weiteres Molekül nadph entsteht.

Im nicht-oxidativen Teil kann die Umsetzung von ru5p durch die Ribulose-5-Phosphat (RPI) zu Ribose-5-Phosphat (r5p) erfolgen oder es reagiert unter katalytischer Wirkung der Ribulose-5-Phosphat-Epimerase (RPE) zu Xylulose-5-Phosphat (x5p). Die beiden Pentosephosphate können durch die Transketolase 1 (TKT1) in g3p und Sedoheptulose-7-Phosphat (s7p) überführt werden, wodurch eine reversible Verknüpfung mit der Glykolyse entsteht. In einer durch die Transketolase 2 (TKT2) katalysierten Reaktion findet die reversible Umwandlung der Metabolite f6p und g3p in e4p und x5p statt. Die Transaldolase (TALA) ermöglicht die Bildung von e4p und f6p aus s7p und g3p. Auch diese Reaktion ist in beide Richtungen offen und verbindet die Glykolyse und Gluconeogenese mit dem Pentosephosphatweg.

Eine weitere Möglichkeit zur Verwertung von r5p ist die Synthese von prpp, katalysiert durch die Phosphoribosyl-Pyrophosphat-Synthetase (PRPPS). Das prpp ist an verschiedenen Stoffwechselwegen beteiligt und wird unter anderem als Vorläufermetabolit in der Aminosäure- und Purinbiosynthese benötigt.

Biosynthese aromatischer Aminosäuren

Die Synthese der drei aromatischen proteinogenen Aminosäuren L-Phenylalanin, L-Tyrosin und L-Tryptophan beginnt mit dem sogenannten Shikimatstoffwechselweg. Die erste Reaktion in der Biosynthese der aromatischen Aminosäuren wird durch drei Isoenzyme der 3-Deoxy-D-Arabino-Heptulosonat-7-Phosphat-Synthase (DDPA), unter Verbrauch von pep und e4p, katalysiert. Dabei entsteht 3-Deoxy-D-Arabino-Heptulosonat-7-Phosphat (dahp) und ein Phosphatrest wird freigesetzt. Die Isoformen des Enzyms werden jeweils durch eine der drei aromatischen Aminosäuren inhibiert (McCandliss et al., 1978; Ray et al., 1988; Schoner & Herrmann, 1976). Die Rückkloppungsinhibierung ist entscheidend für die Regulation des Stoffwechselwegs und verhindert in natürlichen Stämmen die Überproduktion dieser Aminosäuren (Smith et al., 1962). dahp wird durch die 3-Dehydroquinat-Synthase (DHQS) oxidiert und zu 3-Dehydroquinat (3dhq) zyklisiert. Im weiteren Verlauf dehydriert die 3-Dehydroquinat-Dehydratatse (DHQTi), 3dhq zu 3-Dehydroshikimat (3dhs), welches durch die an nadph gekoppelte Reduktion der Shikimat-Dehydrogenase (SHK3Dr) zu Shikimat (shk) umgesetzt wird. shk wird im nächsten Schritt, katalysiert durch die Shikimat-Kinase (SHIKK), unter atp-Verbrauch zu Shikimat-3-Phosphat (s3p) phosphoryliert. Durch Kondensation von jeweils einem Molekül pep und s3p, wird 5-Enolpyruvoylshikimat-3-Phosphat (3psme) synthetisiert. Diese Reaktion wird durch die Katalyse der 5-Enolpyruvoylshikimat-3-Phosphat-Synthase (PSCVT) realisiert. Im letzten Schritt des gemeinsamen Teils der Synthese aromatischer Aminosäuren wird unter katalytischer Wirkung der Chorismat-Synthase (CHORS), 3psme in Chorismat (chor) überführt. chor ist die Zweigstelle, an der sich die Synthesewege von L-Phenylalanin und L-Tyrosin von der L-Tryptophanbiosynthese trennen.

Die Chorismat-Mutase (CHORM) katalysiert den letzten gemeinsamen Schritt der Synthese von L-Tyrosin und L-Phenylalanin. Ausgehend vom entstehenden Produkt Prephenat (pphn) erfolgt die Biosynthese der beiden Aminosäuren in unterschiedlichen Reaktionen. Für die Bildung von L-Tyrosin wird pphn zunächst durch die Prephenat-Dehydrogenase (PPND), bei Reduktion von nad, oxidativ zu 4-Hydroxyphenylpyruvat (hpp) decarboxyliert und dieses anschließend durch die L-Tyrosin-Aminotransferase (TYRTA) zu L-Tyrosin transaminiert. Die Aminogruppe liefert dabei L-glu, sodass akg entsteht.

Die Vorstufe von L-Phenylalanin, Phenylpyruvat (phpyr), wird durch die Dehydrierung und Decarboxylierung von pphn durch die Prephenat-Dehydratase (PPNDH) synthetisiert. Diese Reaktion wird durch die PPNDH katalysiert. Analog zur L-Tyrosinsynthese wird L-Phenylalanin durch Transaminierung von phpyr, katalysiert durch die L-Phenylalanin-Transaminase (PHETA), gebildet. Die Aminogruppe wird auch in dieser Reaktion von L-glu übertragen, wodurch akg entsteht.

Die L-Tryptophansynthese erfolgt über die Zwischenstufe Anthranilat (anth), welches durch die Übertragung einer Aminogruppe von L-gln auf chor gebildet wird. In der durch die Anthranilat-Synthase (ANS) katalysierten Reaktion werden Pyruvat und L-glu freigesetzt. anth wird im darauffolgenden Schritt mit dem Vorläufermolekül prpp, das im Pentosephosphatweg generiert wird, unter katalytischer Wirkung der Anthranilat-Phosphoribosyl-Transferase (ANPRT) zu Phosphoribosylanthranilat (pran) kondensiert. Dabei wird Pyrophosphat (pp_i) freigesetzt. Durch die Phosphoribosyl-Anthranilat-Isomerase (PRALI) wird die Umsetzung von

pran zu Carboxyphenylamino-Desoxyribulose-5-Phosphat (2cdr5p) ermöglicht. Es folgt, katalysiert durch die Indol-3-Glycerin-Phosphat-Synthase (IGPS), die Ringbildung zu Indol-3-Glycerinphosphat (3ig3p), wobei H₂O und CO₂ abgegeben werden. Die Katalyse der letzten beiden Schritte der L-Tryptophanbiosynthese werden durch einen gemeinsamen Enzymkomplex ermöglicht. In der ersten Reaktion wird durch die Indol-Glycerin-Phosphat-Aldolase (TRPS3) 3ig3p in g3p und Indol gespalten. In der letzten Reaktion, realisiert durch die Tryptophan-Synthase (TRPS2), reagiert Indol mit dem Vorläufermolekül L-Serin, das aus einem Nebenzweig der Glykolyse bereitgestellt wird, zu L-Tryptophan. Dabei wird H₂O abgespalten.

Energiestoffwechsel und oxidative Phosphorylierung

atp ist ein an vielen Prozessen der Zelle beteiligter Energieträger, der in den verschiedenen Stoffwechselwegen verbraucht wird. Dementsprechend muss an anderer Stelle für die atp-Gewinnung Energie aufgewendet werden. Die oxidative Phosphorylierung ist ein aerober Prozess, der die atp-Generierung bei gleichzeitiger H₂O-Bildung ermöglicht. Dabei gewährleistet die Elektronentransportkette den Transfer von Elektronen von Reduktionsäquivalenten wie nadh oder reduziertem Flavinadenindinukleotid (fadh₂) auf den terminalen Elektronenakzeptor Sauerstoff. Die Elektronen-Donatoren werden in Oxidationsreaktionen der Glykolyse, dem Citratzyklus oder dem Pentosephosphatweg gewonnen.

Die Reaktionen der Elektronentransportkette sind stark exergon und durch einen Protonengradient an der Cytoplasmamembran wird erreicht, dass die Energie portionsweise freigesetzt wird. Die Protonenpumpen NADH-Ubiquinon-Oxidoreduktase (NADH5), NAD-Transhydrogenase (THD2) und Cytochrom-Terminal-Oxidase (CYTBO) erhalten den Gradienten aufrecht und katalysieren die Übertragung der Elektronen auf Sauerstoff. Die Energie des Gradienten wird von der Adenosintriphosphat-Synthase (ATPS4rpp) für die Phosphorylierung von adp zu atp genutzt.

Die Menge an metabolisch verfügbarer Energie ergibt sich aus den intrazellulären Konzentrationen der Energieäquivalente Adenosinmonophosphat (amp), adp und atp. Anhand dieser kann der energetische Zustand der Zellen bewertet werden (Chapman *et al.*, 1971). Hierfür wird der sogenannte *"energy charge"* berechnet:

$$EC = \frac{1}{2} \frac{[atp] + [adp]}{[atp] + [adp] + [amp]}$$
(3.1)

Befinden sich Zellen im Wachstum, liegt der *energy charge* oberhalb von 0,8. Für vitale, aber nicht wachsende Zellen ergeben sich Werte von 0,5 bis 0,8. Bei Werten unterhalb von 0,5 sterben die Zellen ab.

3.2.1 Stofftransportprozesse

Durch zwei Membranen und eine dazwischen liegende Zellwand grenzt sich eine E. coli-Zelle von ihrer Umgebung ab. Die amphiphilen Eigenschaften der in den Membranen enthaltenen Lipide

ermöglichen den Aufbau einer Doppelschicht. Durch sie entsteht ein nach außen abgegrenzter Raum, der alle zur Erhaltung und Wachstum der Zelle notwendigen Bestandteile vereint und zusammenhält. In der Kompartimentierung und Abgrenzung liegt die Hauptaufgabe der Zellmembran, jedoch ist ein Stoffaustausch der Zelle mit ihrer Umgebung für die Erhaltung des Stoffwechsels essenziell. Das Vorhandensein von Barrieren bedingt somit auch die Notwendigkeit von Transportmechanismen, die einen Austausch von Ionen und Molekülen zwischen dem Zellinneren und dem extrazellulären Raum ermöglichen. Aus diesem Grund arbeiten in jeder Zelle zahlreiche Transportsysteme zusammen, um einen homöostatischen Zustand des intrazellulären Milieus aufrechtzuerhalten (Schuldiner, 2018). Etwa 40 - 50 % aller bakterieller Membranproteine üben Transportfunktionen aus (Boujard *et al.*, 2014), deren Interaktion und Aktivität durch verschiedene Mechanismen wie thermodynamische Kräfte, äußerliche Reize und Bedürfnisse der Zelle gesteuert werden. Zur Aufrechterhaltung der intrazellulären Prozesse existiert in *E. coli* eine Vielzahl an verschiedenen Transportern, durch die diverse Moleküle und Ionen unterschiedlicher Ladung die Zellmembran passieren können. Dabei ist eine Unterscheidung in aktive und passive Transportphänomene üblich (Voet *et al.*, 2010).

Die Membranen weisen einen hohen hydrophoben Anteil auf, sodass kleine lipophile Moleküle, Gase und auch manche ungeladene Moleküle ungehindert hindurchdiffundieren (Boujard *et al.*, 2014). Der passive Stoffaustausch dieser Moleküle wird angetrieben durch ein Konzentrationsgefälle, das auch die Transportrichtung bestimmt. Polaren Molekülen wird die Diffusion durch sehr spezifische Membranproteine ermöglicht, hierzu zählt beispielsweise der nach innen gerichtete Transport von H₂O (Agre *et al.*, 2002; Hénin *et al.*, 2008). Durch spezifische Interaktionen im Innern eines Ionenkanals kann die hochselektive Diffusion von Ionen erleichtert werden. Beispielsweise diffundieren Kaliumionen durch spezifische K⁺-Kanalproteine, während Na⁺-Ionen zurückgehalten werden (D. B. Sauer *et al.*, 2013). Dies trägt zur Aufrechterhaltung des Membranpotentials bei. Für Glycerin besitzt *E. coli* das Facilitator-Protein GlpF, welches einen Kanal für die erleichterte Diffusion von Glycerin bildet (Heller *et al.*, 1980; Stroud *et al.*, 2003).

Erfolgt der Transport entgegen der thermodynamisch begünstigten Richtung des elektrochemischen Gradienten oder ist der Austausch an eine Substratumsetzung gekoppelt, so sind strukturell spezifische und energiebereitstellende Hilfsproteine notwendig. Eine Möglichkeit zur Überwindung der Energiebarriere ist die Kopplung der Transportreaktion an die Spaltung eines energiereichen Moleküls. ABC (atp *binding cassette*)-Transporter generieren durch die Hydrolyse von atp Energie, um die Konformationsänderung zur Bindung und Freisetzung des Moleküls zu bewirken (Moussatova *et al.*, 2008; Oldham *et al.*, 2008). Der Import von Glucose erfolgt via des PTS, das in einer Enzymkaskade zugleich pep zu Pyruvat dephosphoryliert und Glucose zu g6p phosphoryliert. Die chemische Modifikation des transportierten Moleküls verhindert einen Rücktransport nach außen und sichert den Verbleib in der Zelle (Postma *et al.*, 1993).

Eine weitere Möglichkeit, die für den Transport nötige Energie aufzubringen, ist die Ausnutzung eines Konzentrationsgradienten einer zweiten Spezies. Ist der Transport des Zielmoleküls und der Hilfsspezies dabei gleichgerichtet, so wird der Transporter als Symporter bezeichnet. Sind die Richtungen entgegengesetzt, handelt es sich um einen Antiporter. Zur Erweiterung des Substratspektrums können spezifische Transportproteine anderer Organismen in das *E. coli*-Genom integriert oder native Transporter zur verstärkten Aufnahme überexprimiert werden (Kubota *et al.*, 2015; Tröndle *et al.*, 2018a). Für den Transport von Shikimat, ein Zwischenprodukt der Chorismatbiosynthese, besitzt *E. coli* einen spezifischen H⁺-Symporter, codiert durch das *shiA*-Gen. Dieser weist jedoch eine sehr geringe Transportkapazität für Shikimat auf (Brown & Doy, 1976). Whipp *et al.* (1998) klonierten das bereits identifizierte *shiA*-Gen auf einem *multicopy*-Plasmid und erreichten damit eine gesteigerte Aufnahme, sodass *E. coli* mit Shikimat als alleiniger Kohlenstoffquelle zum Wachstum befähigt war. Kubota *et al.* (2015) identifizierten ein *shiA*-Gen in *Corynebacterium glutamicum* (*C. glutamicum*), welches dem Bakterium die Aufnahme des Shikimats und Wachstum mit dieser Kohlenstoffquelle ermöglichte.

Obwohl viele Transportmechanismen bekannt und die zugrundeliegenden Proteine strukturell untersucht sind, gibt es weiterhin zahlreiche Moleküle, deren Transportwege nicht aufgeklärt sind. Beispielsweise lagen lange Zeit keine Informationen zu Austauschprozessen von Pyruvat vor. Erst im Jahr 2018 wurde ein Gen, codierend für einen spezifischen H⁺-Symporter, von Kristoficova *et al.* identifiziert und bekannt gegeben. Die Arbeiten legten jedoch die Existenz weiterer Pyruvat-Transportmechanismen nahe, die weiterhin nicht im Detail aufgeklärt sind (Kristoficova *et al.*, 2018).

3.2.2 Metabolitentoxizität

Durch die Entwicklung von Methoden des metabolic engineering kann gezielt in den Stoffwechsel von *E. coli* eingegriffen werden, um beispielsweise Produktbiosynthesen zu optimieren. Hierfür können Teile des Stoffwechsels ausgeschaltet oder neue Enzyme für die Biosynthese neuer Moleküle eingeführt werden. Es können erwünschte Reaktionen verstärkt und unerwünschte abgeschwächt und dadurch Stoffflüsse effektiv umgeleitet werden. Jede Veränderung des Stoffwechsels kann jedoch auch unbeabsichtigte Nebeneffekte oder Nebenreaktionen auslösen und in der Folge kann es zur Akkumulation toxischer Nebenprodukte, Intermediate oder auch zur toxischen Wirkung der Produkte auf die Zelle kommen. Die Toxizität von Metaboliten ist ein komplexes Phänomen, das durch verschiedene Mechanismen wie eine allgemeine Stressantwort, enzymatische Inhibierung, Schädigung von DNA oder durch Proteininaktivierung und -schädigung verursacht werden kann (Pontrelli *et al.*, 2018). Die auftretenden Effekte können das Wachstum, aber auch die Produktbildung hemmen und zuletzt auch den Zelltod herbeiführen. Prinzipiell kommen zur Linderung toxischer Effekte molekulargenetische Eingriffe oder bioprozesstechnische Maßnahmen infrage.

Viele der Moleküle, die potenziell als Biotreibstoffe eingesetzt werden können, wirken schon in sehr niedrigen Konzentrationen toxisch auf die Zelle (Dunlop *et al.*, 2011). Beispielsweise dringen hydrophobe Produkte wie Capronsäure oder Caprylsäure in die Zellmembran ein, erhöhen deren Permeabilität und Fluidität, behindern den Energietransfer und beeinträchtigen die Funktion der Membranproteine (Dunlop *et al.*, 2011; Pontrelli *et al.*, 2018). Um für diese Prozesse wirtschaftliche Produktivitäten zu erreichen, muss die Toxizität der Produkte auf die Zellen verringert werden (Alper *et al.*, 2006). Eine Möglichkeit die Problematik zu beheben und die Zelle vor der eigenen Produktion zu schützen, ist die Expression von Exportern, die die Abgabe von toxischen Endprodukten an das Medium beschleunigen (Dunlop *et al.*, 2011; Mundhada *et al.*, 2016). Für einige Produkte wie beispielsweise L-Serin und Isobutanol konnte durch adaptive Laborevolution die Toleranz der Zellen gegenüber den entstehenden Metaboliten gesteigert werden (Atsumi *et al.*, 2010; Mundhada *et al.*, 2016; Mundhada *et al.*, 2017; Royce *et al.*, 2015). Zur Abschwächung dieser Effekte können auch prozesstechnische Maßnahmen, die eine simultane Entfernung der Produkte aus den Kultivierungen ermöglicht, angewandt werden. Beispielsweise konnte die Isobutanol-Produktivität durch *in situ*-Produktentfernung via Gas-Stripping gesteigert werden (Baez *et al.*, 2011).

Toxische Wirkung kann jedoch nicht nur unmittelbar in den Produktbiosynthesewegen entstehen, sondern sie kann allgemein durch Verschiebungen im Metabolismus und durch Änderungen in der Substratzufuhr hervorgerufen werden. Als Beispiel soll im Folgenden die Methylglyoxal (mgo)-Bildung angeführt werden. Beginnend von dhap wird in einem zur Glykolyse parallel verlaufenden Stoffwechselweg durch die MGSA mgo gebildet und ein Phosphatrest abgespalten (Hopper & Cooper, 1971). Die Synthese von mgo endet nicht in einer Sackgasse, sondern es kann in zwei Glutathion abhängigen Reaktionen zu Laktat und über die LDH weiter zu Pyruvat umgesetzt werden (Hofmann & Babel, 1983).

Im Metabolismus von *E. coli* tritt die mgo-Bildung bei akutem intrazellulärem Phosphatmangel oder erhöhten dhap-Konzentrationen auf (Booth, 2005). Die enzymatische Aktivität der MGSA dient einerseits dem Abbau des hochtoxischen dhaps und andererseits der Rückgewinnung von Phosphat zur Aufrechterhaltung der Glykolyse (Booth, 2005). Die gesteigerte Bildung des Triosephosphats dhap kann durch die Assimilation von Glycerin oder auch durch die unkontrollierte Aufnahme von Glucose und g6p ausgelöst werden, dies kann auch zur Ausscheidung von mgo in das Medium führen (Freedberg *et al.*, 1971; Hofmann & Babel, 1983). Eine Inhibition der GAPD durch eine geringe Phosphatverfügbarkeit veranlasst die Zelle zur Akkumulation von dhap und infolgedessen wird der mgo-Stoffwechselweg zur Rückgewinnung von Phosphat aktiviert (Cooper, 1984; Ferguson *et al.*, 1998).

mgo wirkt dabei als potentes Elektrophil, es reagiert kovalent mit den Aminosäuren Lysin, Arginin und Cystein, was zur Dysfunktion von Proteinen führt und mit der Base Guanin in Nukleinsäuren bildet es Imidazolderivate beziehungsweise Imidazopurinon-Addukte und schädigt so die DNA (T. Fleming *et al.*, 2009; Lee & Park, 2017; MacLean *et al.*, 1998; Ozyamak *et al.*, 2010; Weber *et al.*, 2005). Die Schädigungen der Zelle durch mgo können sehr vielfältig sein (McCloskey *et al.*, 2018). Bereits in niedrigen extrazellulären Konzentrationen von 0,3 mM wirkt mgo stark wachstumsinhibierend, 0,6 mM induzieren den Zelltod (Ozyamak *et al.*, 2010; Tötemeyer *et al.*, 1998). Nichtsdestotrotz ist die Bildung von mgo ein Schutzmechanismus der Zelle, paradoxerweise wird zumindest für kurze Zeitspannen, in denen der Metabolismus aus dem Gleichgewicht geraten ist, der Zelltod durch die Produktion dieses Zellgiftes vermieden (Booth, 2005). Es wird vermutet, dass die Nutzung des mgo-Stoffwechselwegs dazu beiträgt, den durch Zuckerphosphate verursachten Stress zu lindern (Cooper & Anderson, 1970; Kadner *et al.*, 1992; Tötemeyer *et al.*, 1998; Weber *et al.*, 2005).

Während *E. coli*-Mutanten mit induzierbaren Überexpressionen des *mgsA*-Gens bei Vorlage von Glucose normales Wachstum und keine vermehrte mgo-Bildung zeigten, wurde bei Verwendung von Glycerin eine verstärkte Akkumulation von mgo und vermindertes Wachstum beobachtet

(Tötemeyer *et al.*, 1998). Dies deutet auf eine strengere Kontrolle der Synthese von mgo bei Wachstum mit Glucose im Vergleich zu Glycerin hin (Booth, 2005). Für in der Literatur beschriebene Satzprozesse zur Herstellung von Biochemikalien wie Laktat oder Ethanol aus Glycerin wurde die Aktivität des mgo-Stoffwechselweges nicht beobachtet (Mazumdar *et al.*, 2010; Trinh & Srienc, 2009), hierbei gilt es jedoch die schwierige Detektion des mgo-Moleküls aufgrund seiner hohen Reaktivität, geringen molekularen Masse und das Fehlen ultravioletter Chromophoren zu berücksichtigen (Donarski *et al.*, 2010).

Der Hauptteil des mgos in der Zelle wird in *E. coli* durch das Glutathion abhängige Glyoxylase I-II System über die Intermediate Hemithiolacetal und S-Lactoglutathion zu Laktat abgebaut (Hofmann & Babel, 1983). Weiterhin existiert das Glutathion unabhängige Glyoxylase III System und eine Oxidoreduktase, die geringfügig zur Detoxifizierung von mgo beitragen (Booth, 2005; MacLean et al., 1998). Eine Überexpression der Gene gloA und gloB, codierend für das Glyoxylase I-II System, hilft den Zellen einen zusätzlichen Schutz gegenüber mgo aufzubauen (MacLean et al., 1998). Die im mgo-Abbauweg des Glyoxylase I-II Systems entstehenden Glutathionaddukte aktivieren zudem die KefB K⁺ und KefC K⁺-Exportsysteme. Durch sie gibt die Zelle K⁺-Ionen an das Medium ab und tauscht sie gegen Na⁺ und H⁺-Ionen aus. Es wird eine Absenkung des cytoplasmatischen pH erreicht und ein erhöhter Schutz gegenüber Elektrophilen aufgebaut, bis die Detoxifizierung des mgos abgeschlossen ist (MacLean et al., 1998). Der zugrundeliegende Mechanismus ist jedoch nicht im Detail aufgeklärt (Weber et al., 2005). Der erreichte pH im Cytoplasma ist dabei kritisch für das Überleben der Zellen (Booth, 2005). Es existieren weitere Mechanismen, die im Verdacht stehen, die Zelle vor mgo zu schützen, viele der zugrundeliegenden Prozesse sind jedoch nicht vollständig aufgeklärt (McCloskey et al., 2018; Weber et al., 2005). Es wurden auch Reparaturenzyme entdeckt und charakterisiert, die in der Lage sind, den durch mgo angerichteten Schaden an Proteinen, einschließlich der GAPD, rückgängig zu machen (Abdallah et al., 2016; Weber et al., 2005).

3.3 L-Tryptophan

3.3.1 Industrielle Bedeutung

In der L-Form gehört Tryptophan gemeinsam mit L-Phenylalanin und L-Tyrosin der Gruppe der proteinogenen, aromatischen Aminosäuren an. Es trägt ein aromatisches Indol-Ringsystem und bedingt durch die hydrophobe Seitenkette ist es schlecht wasserlöslich (13,4 g L⁻¹ bei 25 °C (ChemIDplus, 2021)). In Abbildung 3.2 ist die Strukturformel von L-Tryptophan gezeigt.

Abbildung 3.2: Strukturformel der aromatischen Aminosäure L-Tryptophan.

Für Mensch und Tier ist L-Tryptophan essenziell, das heißt sie können das Molekül nicht selbst synthetisieren und sind auf die Aufnahme über die Nahrung angewiesen (Leuchtenberger *et al.*, 2005). Der durchschnittliche L-Tryptophangehalt in Proteinen liegt jedoch bei nur etwa 1-2%, wohingegen der Anteil für die meisten anderen Aminosäuren bei etwa 5% liegt (Joint WHO/FAO/UNU Expert Consultation., 2007). Aufgrund dieses Defizits wird L-Tryptophan als Nahrungsmittelzusatz sowohl in der Futtermittel- als auch Nahrungsmittelindustrie zur Anreicherung eingesetzt (Bongaerts *et al.*, 2001; S. Liu *et al.*, 2022). Neben der Funktion als Proteinbaustein wird L-Tryptophan im menschlichen Organismus über Chinolinsäure zu Nicotinsäure metabolisiert. Außerdem dient L-Tryptophan im menschlichen Körper als Vorläufermolekül für den Neurotransmitter Serotonin, weshalb L-Tryptophan auch in der Behandlung von nervlichen und depressiven Krankheiten Anwendung findet (Leuchtenberger, 2008).

Für das Jahr 2018 wurde ein Marktvolumen von 41.000 Jahrestonnen beschrieben, ein stetiges Wachstum wird aufgrund des hohen Bedarfs durch die Futter- und Nahrungsmittel- sowie die Pharmaindustrie erwartet (Ajinomoto Co., 2019; Rodriguez *et al.*, 2014). Ein Großteil der Herstellung von L-Tryptophan erfolgt durch mikrobielle Fermentation mit *C. glutamicum* und *E. coli* (Ikeda, 2006). Die biotechnologische Produktion wird durch gentechnische Anpassungen der Wirte, die zur Überproduktion des natürlichen Stoffwechselproduktes führen, erreicht.

3.3.2 Produktion mit Escherichia coli

Aufgrund der hohen und steigenden Nachfrage werden fortwährend neue Lösungsansätze zur mikrobiellen L-Tryptophanproduktion entwickelt und bestehende Produktionsprozesse optimiert. Da die Synthese von L-Tryptophan mit großem Energieaufwand für die Zellen verbunden ist, wird sie durch strikte Regulation auf verschiedenen Ebenen kontrolliert und eine Überproduktion und der damit einhergehende Energieverlust effizient verhindert (Simão *et al.*, 2005). Die Optimierung von L-Tryptophanproduktionsstämmen ist durch die Komplexität des Biosynthesewegs und die strengen Regulationsmechanismen erschwert (S. Liu *et al.*, 2022). Neben Methoden der Zufallsmutagenese mit anschließender Selektion ermöglichten auch Methoden des rationalen Stammdesigns durch gezielte Gendeletionen und das Einführen von Überexpressionen und Fremdgenen die Konstruktion von Stämmen, die L-Tryptophan in größeren Mengen exportieren (Y. Liu *et al.*, 2021; Niu *et al.*, 2019).

Es existieren unterschiedliche Ansatzpunkte zur Optimierung der L-Tryptophanproduktion. An erster Stelle zu nennen sind Überexpressionen unmittelbar im L-Tryptophanbiosyntheseweg oder in den Synthesewegen, die der Bereitstellung von Vorläufermolekülen dienen. Weiterhin kann durch eine reduzierte Nebenproduktbildung und eine verminderte Ausscheidung von stressinduzierenden Metaboliten eine verstärkte L-Tryptophanproduktion angestrebt werden. Eine Beschleunigung des Produktexports und das Verhindern des Abbaus sowie eine optimierte Substratnutzung sind ebenfalls Ansatzpunkte zur Optimierung der mikrobiellen L-Tryptophanherstellung.

In der Literatur sind zahlreiche Prozesse mit verbesserten Produktionseigenschaften beschrieben. Für die verbesserten Produktionsleistungen werden meist verschiedene gentechnische Modifikationen und prozesstechnische Eingriffe in Kombination verwendet. Hohe L-Tryptophankonzentrationen von 48,68 g L⁻¹ mit Glucose als Kohlenstoffquelle wurden beispielsweise durch rational genetisch veränderte *E. coli* im Zulaufprozess erreicht (J. Wang *et al.*, 2013). Durch Adaption des pH und Anpassung der Gelöstsauerstoffkonzentration im Medium wurden erhöhte Konzentrationen von 52,57 g L⁻¹ in Glucose basierten Zulaufprozessen erzielt (C. Zhao *et al.*, 2020). Die höchste L-Tryptophanausbeute von 0,227 g g⁻¹_{Glucose} wurde mit vielfach gentechnisch modifizierten Stämmen, die unter anderem organismusfremde Gene trugen, erreicht (Xiong *et al.*, 2021).

Im Folgenden werden die möglichen Ansatzpunkte zur Verbesserung der L-Tryptophan produzierenden Stämme erläutert und beispielhaft dargelegt.

Repression, Attenuation und Rückkopplungsinhibierungen

Die Regulation der L-Tryptophanbiosynthese in *E. coli* beruht auf unterschiedlichen Mechanismen, dazu gehören die transkriptionelle Attenuation und Repression sowie Rückkopplungsinhibierungen von Enzymen (S. Liu *et al.*, 2022; Niu *et al.*, 2019; Panichkin *et al.*, 2016; Simão *et al.*, 2005; Yanofsky, 2003). Vorrangig wird die Transkription des trp-Operons (trpLEDCBA) durch Repression reguliert. Ein Repressorprotein, welches durch das trpR-Gen codiert wird, bindet reversibel an den Promotor und verhindert das Ablesen des Operons (Yanofsky *et al.*, 1981). Die Bindung des trp-Repressors wird veranlasst, wenn das Repressorprotein mit L-Tryptophan (= Corepressor) assoziiert ist. Auf diese Art wird die Transkription der Gene mit ansteigendem intrazellulären L-Tryptophanspiegel unterdrückt. Wird dennoch die Transkription eingeleitet, können durch Attenuation die Transkription und Translation abgeschwächt werden. Bei hohen intrazellulären L-Tryptophankonzentrationen führt die Ausbildung einer bestimmten Haarnadelschleifenstruktur der von der Leader-Sequenz codierten RNA zu einem vorzeitigen Abbruch (Termination) der Transkription (Yanofsky, 2003).

Die Leader-Sequenz weist vier Sequenzabschnitte (1, 2, 3 und 4) auf, deren mRNA durch intramolekulare Wasserstoffbrücken alternative Sekundärstrukturen (Haarnadelschleifen) ausbildet. Zudem beinhaltet die Leader-Sequenz im ersten Abschnitt zwei aufeinanderfolgende Codons für L-Tryptophan. Liegen in der Zelle hohe L-Tryptophankonzentrationen vor, ist auch eine ausreichende Versorgung mit beladener Trp-tRNA gegeben und die Leader-Sequenz wird effizient translatiert. In diesem Zustand wird die mRNA entsprechend schnell in das Ribosom eingeführt, sodass die Ausbildung einer Haarnadelschleife zwischen den Abschnitten 2 und 3 verhindert wird. Stattdessen entsteht eine Haarnadelschleife zwischen den Abschnitten 3 und 4, welche zur Termination der Transkription führt. Ist die L-Tryptophankonzentration hingegen gering, steht auch entsprechend weniger beladene Trp-tRNA zur Verfügung, dies führt an den Stellen der Trp-Codons zur Verzögerung der Translation. Aufgrund dessen kommt es zur Paarung der mRNA-Bereiche 2 und 3, wodurch die Transkription nicht beeinträchtigt und daher fortgesetzt wird. (Fuchs, 2014; Janning & Knust, 2004)

Die Deletion der Gene trpR und des Leitpeptids trpL sind daher gängige Maßnahmen, die Regulation auf transkriptioneller Ebene auszuschalten (Aiba *et al.*, 1980; Azuma *et al.*, 1993; Chan *et al.*, 1993; Y. Chen *et al.*, 2018; Gu *et al.*, 2013; Jing *et al.*, 2018). Chorismat (chor), das gemeinsame Vorläufermolekül aller proteinogenen aromatischen Aminosäuren wird durch den Shikimatstoffwechselweg synthetisiert. Das Eingangs- und Schlüsselenzym dieses Stoffwechselwegs ist die DDPA, welche die Aldoladdition von e4p und pep katalysiert. Es existieren drei Isoformen dieses Enzyms, welche durch die Gene *aroF*, *aroG* und *aroH* codiert werden. Jedes der Isoenzyme unterliegt einer allosterischen Inhibition durch jeweils eines der aromatischen Endprodukte (Ikeda, 2006). Starke inhibierende Effekte treten bereits ab einer Konzentration von 0,1 mM der jeweiligen Aminosäure ein (Sprenger, 2006). Da *aroG* mit 80% und *aroF* mit 20% zur gesamten enzymatischen Aktivität der DDPA beitragen, ist die Modifikation dieser Enzymvarianten entscheidend (Niu *et al.*, 2019). Das Einführen rückkopplungsresistenter DDPA-Enzymvarianten und deren Überexpression ermöglichen eine gesteigerte Produktion aromatischer Aminosäuren (Báez-Viveros *et al.*, 2004; Hu *et al.*, 2003; Ray *et al.*, 1988; Tribe & Pittard, 1979; Weaver & Herrmann, 1990).

Auch der erste vom chor abzweigende Schritt in Richtung der L-Tryptophanbiosynthese unterliegt einer Feedback-Kontrolle durch das Endprodukt des Stoffwechselwegs (Pabst *et al.*, 1973). Durch Punktmutationen im Genabschnitt codierend für den Anthranilatsynthase-Phosphoribosyl-Transferase Komplex konnte die inhibierende Wirkung von L-Tryptophan aufgehoben werden (Caligiuri & Bauerle, 1991).

Die vorwärtsgerichtete nicht-kompetitive Inhibierung der IGPS durch anth konnte durch den Einsatz einer heterologen vorwärtsaktivierten Variante aus Aspergillus niger umgangen werden (L. Chen *et al.*, 2018).

Die enzymatische Rückkopplungsinhibierung stellt auch in der Bereitstellung des L-Tryptophan-Vorläufermoleküls L-Serin eine Rolle. Für die Reaktion der PGCD ist eine allosterische Inhibierung durch das Endprodukt L-Serin bekannt, die durch das Einführen einer rückkopplungsresistenten Enzymvariante behoben werden kann (Y. Chen *et al.*, 2018; Sugimoto & Pizer, 1968; Winicov, 1975).

Bereitstellung von Vorläufermolekülen

Generell kann durch eine verbesserte Vorläufermolekülbereitstellung die L-Tryptophanproduktion positiv beeinflusst werden. Wie bereits erwähnt, ist hierbei eine Maßnahme, die L-Serinbiosynthese zu steigern. Neben der Aufhebung von enzymatischen Inhibierungen können Abbauwege des wichtigen Vorläufermoleküls deletiert werden, um eine verbesserte L-Serinverfügbarkeit für die L-Tryptophanbiosynthese zu erreichen (Ikeda *et al.*, 1994; Panichkin *et al.*, 2016).

Neben L-Serin werden die Moleküle e4p, pep, prpp und L-Glutamin für die Synthese von L-Tryptophan benötigt. Da die Versorgung mit diesen Molekülen vorrangig durch Reaktionen des Zentralstoffwechsels gewährleistet wird, finden sich auch hier zahlreiche genetische Angriffspunkte.

pep agiert als zentraler Metabolit und ist an zahlreichen Reaktionen im Stoffwechsel von *E. coli* beteiligt. Ein großer Verlust von pep ist bei Verwendung von Glucose als Kohlenstoffquelle durch die Aktivität des Glucose spezifischen Transporters, dem PTS gegeben. Bei Deletion aller Enzymvarianten des PTS ist das Wachstumsverhalten gestört, da die Glucoseaufnahme durch die

Zellen stark beeinträchtigt ist. Jedoch konnte, durch Deletion des *ptsHIcrr*-Operons mit anschließender adaptiver Laborevolution, ein Stamm mit verbesserter pep-Verfügbarkeit und stabilem Wachstumsverhalten generiert werden, welcher häufig zur Produktion aromatischer Metabolite eingesetzt wurde (Carmona et al., 2015; Escalante et al., 2010; N. Flores et al., 1996; S. Flores et al., 2002). Alternativ kann das PTS durch andere E. coli eigene oder durch Glucosetransporter anderer Organismen ersetzt werden (Báez-Viveros et al., 2007; Báez-Viveros et al., 2004). Um eine Erhöhung des intrazellulären pep-Pools zu erreichen, kann durch Deletion der Gene pykA oder pykF der Abfluss durch die PYK in Richtung des Citratzyklus reguliert werden (Berry, 1996; Y. Chen et al., 2018; L. Liu et al., 2019; Meza et al., 2012; Sabido et al., 2014; Weiner et al., 2014a). Miller et al. (1987) deletierten das Gen ppc, codierend für die PPC, um die Umsetzung von pep zu oaa zu unterbinden. Zwar wurde die gewünschte erhöhte L-Phenylalaninproduktion beobachtet, es kam jedoch gleichzeitig zu einer gesteigerten Produktion von organischen Säuren. Eine Anhebung der Expression des Gens ppsA, codierend für das Enzym PPS, das die Phosphorylierung von Pyruvat zu pep katalysiert, führte ebenfalls eine erhöhte pep-Verfügbarkeit herbei (Berry, 1996; S. C. Kim et al., 2015; Patnaik & Liao, 1994; Shen et al., 2012; Yi et al., 2002). Auch die Überexpression von pckA zur verstärkten Rückgewinnung von pep aus oaa kann sich positiv auf die L-Tryptophanproduktion auswirken (Gulevich et al., 2004).

Es konnte gezeigt werden, dass der pep-Spiegel in der Zelle auch über die Änderung regulatorischer Proteine wie crsA und crsB (Tatarko & Romeo, 2001; Yakandawala *et al.*, 2008) und globale Regulatoren wie fruR (L. Liu *et al.*, 2016b) beeinflusst werden kann.

In der ersten Reaktion des Shikimatstoffwechselwegs wird außer pep auch e4p als Substrat benötigt. Der Phosphorsäureester wird im Pentosephosphatweg durch die Enzyme TKT2 oder TALA gebildet. Eine verbesserte e4p-Verfügbarkeit kann durch eine verstärkte Aktivität der Transketolase erreicht werden (Báez-Viveros *et al.*, 2007; Berry, 1996; Shen *et al.*, 2012).

Nebenproduktbildung

Um die Produktionseffizienz zu erhöhen, ist es vorteilhaft, den Verlust von Kohlenstoff durch Nebenproduktbildungen zu minimieren. Im Fall einer gesteigerten L-Tryptophanbildung ist eine vermehrte Produktion der beiden weiteren aromatischen Aminosäuren L-Phenylalanin und L-Tyrosin eine unerwünschte Begleiterscheinung. Um die Bildung der beiden Nebenprodukte effektiv zu verhindern, können die entsprechenden Gene *pheA* und *tyrA* deletiert werden (Tribe & Pittard, 1979; Z. J. Zhao *et al.*, 2011). Allerdings werden die beiden Aminosäuren zum Wachstum benötigt und müssen bei Deletion der entsprechenden Gene dem Medium zugesetzt werden, um die entstehenden Auxotrophien auszugleichen (Backman *et al.*, 1990; Gerigk *et al.*, 2002; Sprenger, 2007).

Ein in L-Tryptophanproduktionsprozessen häufig auftretendes Nebenprodukt ist Acetat. Um die Bildung von Acetat zu reduzieren oder zu unterbinden, können verschiedene genetische Stammmodifikationen vorgenommen oder prozesstechnische Maßnahmen ergriffen werden (Y. Chen *et al.*, 2018; Cheng *et al.*, 2012; Cheng *et al.*, 2013; Jing *et al.*, 2018; L. Liu *et al.*, 2016a; N. Lu *et al.*, 2017; J. Wang *et al.*, 2013). L. Liu *et al.* (2016a) zeigten, dass die Deletion des *pta*-Gens, welches die Phosphat-Acetyltransferase codiert, zu Wachstumsdefiziten führt. Durch die Einfüh-

25

rung einer PTAr-Enzymvariante mit verringerter enzymatischer Aktivität und Substrataffinität konnte die Acetatbildung jedoch signifikant gesenkt und die L-Tryptophanbildung um 95 % gesteigert werden. Prozesstechnisch kann über die pH-Kontrolle, die Sauerstoffversorgung und die Zulaufstrategie Einfluss auf die Acetatbildung genommen und damit die Produktion verbessert werden (Cheng *et al.*, 2012; Cheng *et al.*, 2013; C. Zhao *et al.*, 2020). Auch die Kombination gentechnischer Modifikationen und prozesstechnischer Eingriffe wurden erfolgreich zur Senkung der Acetatakkumulation in L-Tryptophanproduktionsprozessen angewendet (J. Wang *et al.*, 2013).

L-Tryptophantransport und -abbau

Der Abbau von L-Tryptophan wird durch die Tryptophanase katalysiert, die Expression des Enzyms wird durch Katabolitrepression reguliert (Botsford & DeMoss, 1971). Die Tryptophanase spaltet L-Tryptophan in Indol, Pyruvat und NH₄⁺ und macht es für die Zelle als Kohlenstoffund Stickstoffquelle nutzbar. Wird eine Überproduktion von L-Tryptophan mit E. coli angestrebt, ist es daher eine wichtige Maßnahme, das Gen *tnaA* codierend für die Tryptophanase zu deletieren (Lim & Mateles, 1963). Eine weitere Strategie ist es, durch eine Verstärkung des L-Tryptophanexports die Abgabe an das Medium zu beschleunigen und damit regulatorische und toxische Effekte innerhalb der Zelle zu vermeiden (Doroshenko et al., 2007; B. Kim et al., 2018; Q. Liu et al., 2012; J. J. Wang et al., 2013). Den Transport von L-Tryptophan übernehmen in E. coli die Permeasen, codiert durch die Gene tnaB, aroP und mtr. Während die TnaBund Mtr-Permeasen ausschließlich L-Tryptophan transportieren, ist die AroP-Permease auch für den Transport von L-Tyrosin und L-Phenylalanin verantwortlich. Durch die Modifikation des tna(C)AB-Operons wurde der Transport von extrazellulär vorliegendem L-Tryptophan in die Zelle erfolgreich verringert (Tribe & Pittard, 1979). Durch Inaktivierung der drei Permeasen (TnaB, AroP und Mtr) und gleichzeitiger Überexpression des yddG-Gens, codierend für einen alternativen L-Tryptophantransporter, konnte der Produktexport verstärkt und die Wiederaufnahme in die Zelle weitestgehend verhindert werden (Doroshenko et al., 2007).

Substratnutzung

Neben der Verwendung des üblichen Substrats Glucose können auch alternative Kohlenstoffquellen für die Produktion von L-Tryptophan sinnvoll und vorteilhaft sein. Der oben bereits genannte negative Effekt des hohen pep-Verbrauchs bei Nutzung von Glucose kann beispielsweise auch durch die Verwendung von Glycerin als Substrat umgangen werden (Sprenger, 2017). Da Glycerin als Abfallprodukt der Biodieselherstellung gut und günstig verfügbar ist, können die Rohstoffkosten somit gering gehalten werden (Almeida *et al.*, 2012). Auf diese Weise steigt nicht nur die ökonomische Effizienz, sondern es wird auch die Nachhaltigkeit der Prozesse verbessert (Pagliaro & Rossi, 2008; Poblete-Castro *et al.*, 2020; Sprenger, 2017). Für mikrobielle Produktionsprozesse ist außerdem der erhöhte Reduktionsgrad κ von Glycerin verglichen mit Glucose vorteilhaft (Glucose: $\kappa = 4,00$; Glycerin: $\kappa = 4,67$), da die theoretisch möglichen Ausbeuten für L-Tryptophan dadurch höher liegen (Nikel *et al.*, 2008; Poblete-Castro *et al.*, 2020; Sprenger, 2017). Trotz der theoretischen Vorteile der Nutzung von Glycerin als Kohlenstoffquelle, sind nur wenige Produktionsprozesse zur Produktion aromatischer Aminosäuren aus Glycerin beschrieben und die erreichten Produktausbeuten bleiben relativ gering (Gottlieb *et al.*, 2014; Tröndle *et al.*, 2018b; Weiner *et al.*, 2014a).

3.4 Bioprozesstechnik

Zur optimalen Nutzung mikrobieller Stoffwechselleistungen kann die Kultivierung von Mikroorganismen im Labor durch verschiedene Techniken beeinflusst und optimiert werden (Storhas, 2013). Biologische Grundlagen und in dieser Arbeit verwendete Bioprozesstechniken werden in diesem Kapitel dargelegt. Die verwendeten mathematischen Beschreibungen sind vorwiegend aus Chmiel *et al.* (2018) und Antranikian (2005) entnommen.

3.4.1 Mikrobielles Wachstum

Die Phasen des mikrobiellen Wachstums lassen sich anschaulich anhand einer Satzkultivierung erläutern. Eine schematische semi-logarithmische Darstellung nach Monod (1949) ist in Abbildung 3.3 gezeigt. Im Allgemeinen wird ein sterilisiertes, ideal durchmischtes Reaktionssystem (z. B. Schüttelkolben, Rührkesselreaktor) mit einem definierten Volumen an Medium, das alle zum Wachstum benötigten Substrate enthält, mit Zellen angeimpft und bei optimalen Bedingungen (pH, Temperatur...) inkubiert. Es liegen somit unlimitierte Wachstumsbedingungen vor, die jedoch durch die Menge an vorgelegten Substraten zeitlich begrenzt sind. Nach Inokulation des Reaktionssystems erfolgt zunächst die Anpassung der Zellen an die neuen Umgebungsbedingungen. In dieser sogenannten Verzögerungsphase wird keine Zunahme der Biomasse beobachtet. Sobald der Zellstoffwechsel an die Aufnahme der vorliegenden Substrate angepasst ist, treten die Zellen in eine erste Wachstumsphase (Übergangsphase I) ein, in der die Zellteilung mit zunehmender Geschwindigkeit erfolgt, bis schließlich in der exponentiellen Wachstumsphase maximale Wachstumsraten erreicht werden. Gleichzeitig werden in dieser Phase Stoffwechselnebenprodukte gebildet, die im Reaktionsmedium akkumulieren. Eine unzureichende Substratversorgung, die Anhäufung toxischer Stoffwechselprodukte oder auch veränderte Umgebungsbedingungen, wie beispielsweise ein gesunkener pH, leiten in eine zweite Übergangsphase (Übergangsphase II) mit abnehmenden Wachstumsraten über. Wird kein weiteres Wachstum beobachtet, spricht man von der stationären Phase. Überwiegt letztendlich die Sterberate, ist die Absterbephase erreicht und die Zellkonzentration sinkt.

Abbildung 3.3: Phasen des mikrobiellen Wachstums im Satzprozess. Logarithmische Auftragung der Biomassekonzentration über der Zeit. Abbildung nach Munk (2001).

Zur kinetischen Beschreibung des Wachstums wird in der Regel ein unstrukturiertes und unsegregiertes Modell verwendet. Hierin werden vereinfachend Subpopulationen und Zellheterogenitäten nicht berücksichtigt und die Eigenschaften der Zellen als Mittelwerte betrachtet. Darüber hinaus wird die Zellkompartimentierung vernachlässigt. Unter Annahme konstanten Zellvolumens wird die Vermehrung (Zunahme der Zellzahl) der Zunahme der Biomasse gleichgesetzt (Bergter, 1985). Die Zunahme der Biomassekonzentration c_x lässt sich durch die Wachstumsrate r_x in Abhängigkeit von der Zeit t beschreiben. Unter unlimitierten Bedingungen besteht eine direkte Proportionalität zwischen der Wachstumsgeschwindigkeit und der Zellkonzentration:

$$r_x = \frac{dc_x}{dt} = \mu \cdot c_x \tag{3.2}$$

 r_x Wachstumsrate, g L⁻¹ h⁻¹ c_x Biomassekonzentration, g L⁻¹tZeit, h μ spezifische Wachstumsrate, h⁻¹

Daraus ergibt sich die Definition für die zellspezifische Wachstumsrate μ :

$$\mu \equiv \frac{1}{c_x} \cdot \frac{dc_x}{dt} \tag{3.3}$$

Für den Zeitraum der exponentiellen Wachstumsphase kann μ als konstant angenommen werden ($\mu = \mu_{max}$) und durch Integration über die Zeit wird die exponentielle Wachstumskinetik in Abhängigkeit der initialen Biomassekonzentration c_x^0 wie folgt beschrieben:

$$c_x = c_x^0 \cdot e^{\mu_{max} \cdot t} \tag{3.4}$$

 c_x^0 initiale Biomassekonzentration, g L⁻¹

Das Zellwachstum setzt die Aufnahme des limitierenden und aller weiteren notwendigen Substrate voraus. In Analogie zur spezifischen Wachstumsrate werden die spezifischen Aufnahmeund Bildungsraten aller Komponenten i im zeitlichen Verlauf wie folgt definiert:

$$q_i \equiv \frac{1}{c_x} \cdot \frac{dc_i}{dt} \tag{3.5}$$

 q_i zellspezifische Aufnahme- und Bildungsrate der Komponente i, g g⁻¹ h⁻¹

Die Verknüpfung der zellspezifischen Raten erfolgt durch die jeweiligen Ausbeutekoeffizienten. Das Verhältnis beschreibt dabei den Ausbeutekoeffizient $Y_{i/j}$ der Komponente *i* bezogen auf die Komponente *j*.

$$Y_{i/j} = \frac{q_i}{q_j} \tag{3.6}$$

Dementsprechend ergibt sich der Biomasseausbeutekoeffizient als Quotient aus der Wachstumsgeschwindigkeit und dem Substratverbrauch und gibt die gebildete Biomasse pro aufgenommenem Substrat an.

3.4.2 Betrieb von Bioreaktoren

Für biotechnologische Produktionsprozesse ist neben der Wahl des Reaktorsystems auch die Betriebsweise beziehungsweise die Art der Prozessführung relevant. Für die im Folgenden dargestellten Prozesse gilt die Annahme einer idealen homogenen Durchmischung und die der räumlichen Konstanz hinsichtlich aller Reaktionskomponenten und physikalischen Eigenschaften. In der Biotechnologie werden vorwiegend Rührkesselreaktoren verwendet (Weuster-Botz, 2006). Durch meist radial fördernde Scheibenblattrührer kann in diesen Reaktoren im Labormaßstab bei hohem Leistungseintrag eine hinreichend ideale homogene Durchmischung erreicht werden. Unter der Annahme eines ideal durchmischten Rührkesselreaktors ergibt sich folgende allgemeine Stoffbilanz (Schügerl, 1997):

$$\frac{d(V_R \cdot c_i)}{dt} = F_{ein} \cdot c_{i,ein} - F_{aus} \cdot c_{i,aus} + r_i \cdot V_r \tag{3.7}$$

 F_{ein} Zulaufstrom, L h⁻¹

 F_{aus} Ablaufstrom, L h⁻¹

 c_i Konzentration von Komponente i im Reaktor, g L⁻¹

 $c_{i,ein}$ Konzentration von Komponente i im Zulauf, g L⁻¹

 $c_{i,aus}$ Konzentration von Komponente i im Ablauf, g L⁻¹

 r_i Reaktionsgeschwindigkeit der Komponente i, gL⁻¹ h⁻¹

 V_R Volumen des Reaktionsansatzes, L
Kultivierung im Satzverfahren

Wird ein idealer Rührkesselreaktor im Satzverfahren betrieben, werden, wie unter 3.4.1 beschrieben, alle Reaktionskomponenten zu Beginn vorgelegt und die Kultivierung erfolgt in einem geschlossenen System ohne Zu- und Abläufe. Davon ausgenommen sind die Sauerstoffversorgung der Zellen durch Begasung, sowie die Zugabe von Titrationsmitteln zur Regelung des pH. Die Volumenänderung ist daher für die zugrundeliegende Stoffbilanz zu vernachlässigen und vereinfacht sich bei konstantem Volumen und nach Wegfall des Terms für Zu- und Ablauf zu:

$$\frac{dc_i}{dt} = r_i \tag{3.8}$$

Nachteilig an der Prozessführung im Satzverfahren ist häufig eine gesteigerte Nebenproduktbildung, induziert durch hohe Substratkonzentrationen zu Beginn des Prozesses. Dies kann sich negativ auf die Zellvitalität auswirken, wodurch die Prozesszeiten verkürzt sind und Produktausbeuten auf niedrigem Niveau bleiben.

Kultivierung im Zulaufverfahren

Die Problematik hoher Substratkonzentrationen kann durch die Betriebsweise im halbkontinuierlichen Zulaufprozess vermieden werden. Hierbei wird dem Reaktor über die Prozesszeit kontinuierlich Medium mit enthaltener Kohlenstoffquelle sowie optional weiteren Nährstoffen wie Stickstoffquellen und Spurenelementen zugeführt. Im Unterschied zur kontinuierlichen Prozessführung wird auf einen Ablauf verzichtet, weshalb das Reaktorvolumen mit fortschreitender Prozesszeit zunimmt. Eine Anpassung der allgemeinen Stoffbilanz (3.7) führt zu:

$$\frac{d(V_R \cdot c_i)}{dt} = F_{ein} \cdot c_{i,ein} + V_R \cdot r_i \tag{3.9}$$

Durch den stetigen Zufluss an Medium muss die zeitliche Änderung des Reaktionsvolumens V_R berücksichtigt werden. Dadurch werden auch die Konzentrationen der Komponenten zu zeitlich abhängigen Größen.

$$V_R \cdot \frac{dc_i}{dt} + c_i \cdot \frac{V_R}{dt} = F_{ein} \cdot c_{i,ein} + r_i \cdot V_R \tag{3.10}$$

Die Volumenänderung durch den Zulauf wird mit

$$\frac{dV_R}{dt} = F_{ein} \tag{3.11}$$

beschrieben und durch Anwendung der Produktregel auf Gleichung 3.9 ergibt sich:

$$\frac{dc_i}{dt} = \frac{F_{ein}}{V_R} \cdot (c_{i,ein} - c_i) + r_i \tag{3.12}$$

Durch adäquate Anpassung der Zulaufrate soll eine limitierte Substratversorgung erreicht werden. Substratüberschusshemmung kann somit vermieden und eine ausreichende Sauerstoffversorgung auch bei hohen Biomassekonzentrationen gewährleistet werden. Während exponentielle Zulaufraten die Einstellung einer konstanten Wachstumsrate während der Biomassebildungsphase ermöglichen, können durch konstante Zulaufprofile stetige Produktbildungsraten bei gleichbleibenden Biomassekonzentrationen erzielt werden. Zur Vermeidung von Substratakkumulation sollte die eingestellte unter der maximalen Wachstumsrate liegen (Jenzsch *et al.*, 2006; Riesenberg *et al.*, 1991). Für beide Zulaufstrategien wird eine zeitlich konstante Substratkonzentration angestrebt ($dc_i/dt = 0$). Daraus ergibt sich die Gleichung für den Zulaufvolumenstrom wie folgt:

$$F_{ein} = \frac{-V_R \cdot r_s}{c_{s,ein} - c_s} \qquad mit \quad -r_s = q_s \cdot c_x \tag{3.13}$$

 q_s biomassespezifische Substrataufnahmerate, g g⁻¹ h⁻¹

Berücksichtigt man die Substrataufnahme für das Wachstum und vernachlässigt sie für den Erhaltungsstoffwechsel und die Produktbildung, kann der Zulaufstrom mithilfe von Gleichung 3.4 in zeitlicher Abhängigkeit auch wie folgt ausgedrückt werden:

$$F_{ein}(t) = \frac{V_R^0 \cdot c_x^0 \cdot \mu_{soll}}{(c_{s,ein} - c_s) \cdot Y_{x/s}} \cdot e^{\mu_{soll} \cdot t}$$
(3.14)

 V_R^0 initiales Reaktorvolumen, L

 $Y_{x/s}$ Biomasseertragskoeffizient, g g⁻¹

3.4.3 Bestimmung biomassespezifischer Reaktionsraten

Die Ermittlung spezifischer Prozessraten für Substrate, Produkte und Nebenprodukte erfolgt aus gemessenen Konzentrationsraten. Befindet sich das System im betrachteten Zeitraum im metabolischen Gleichgewicht, kann hierzu eine lineare Regressionsanalyse des zeitlichen Verlaufs der Konzentrationen durchgeführt werden. Wenn sich die Biomassekonzentration während des beobachteten Zeitraums nicht signifikant ändert, wird die Zeitabhängigkeit der Konzentration durch Gleichung 3.15 approximiert, wobei eine gemittelte Biomassekonzentration $\overline{c_x}$ verwendet wird (Link, 2009):

$$c_i(t) = c_i^0 + q_i \cdot \overline{c_x} \cdot t \tag{3.15}$$

Für aerobe Prozesse ist eine optimale Sauerstoffzufuhr wichtig, um eine Maximierung der Wachstums- und Produktbildungsraten zu erreichen (Garcia-Ochoa *et al.*, 2010). Die quantitative Erfassung der Abgaszusammensetzung kann daher zur Charakterisierung des physiologischen Zustands der Zelle erfolgen (Kirk *et al.*, 2016). Durch Bilanzierung der Zusammensetzungen des Eingangs- und Ausgangsgasvolumenstroms erfolgt die Abschätzung der Raten für die Sauerstoffaufnahme (aus dem Englischen "*oxygen uptake rate"* (OUR)) und die Kohlenstoffdioxidbildung (aus dem Englischen "*carbondioxide evolution rate"* (CER)). Die Grundlage der Bilanzierung bildet der Sauerstoffeintrag ins Medium (aus dem Englischen "*oxygen transfer rate"* (OTR)), der mittels Massenbilanzierung in der Gasphase wie folgt bestimmt wird:

$$OTR = \frac{\dot{V}_{Gas}^{ein} \cdot x_{O_2}^{ein} - \dot{V}_{Gas}^{aus} \cdot x_{O_2}^{aus}}{V_R \cdot V_M}$$
(3.16)

\dot{V}_{Gas}^{ein}	Gasvolumenstrom in der Zuluft, L ${\rm h}^{-1}$
\dot{V}_{Gas}^{aus}	Gas volumens trom in der Abluft, L ${\rm h}^{-1}$
$x_{O_2}^{ein}$	Molanteil Sauerstoff in der Zuluft, -
$x_{O_2}^{aus}$	Molanteil Sauerstoff in der Abluft, -
V_M	ideales molares Volumen (22,414 L mol ^{-1})

Der Gasvolumenstrom am Auslass lässt sich wie in Gleichung 3.17 beschreiben, hierfür werden der Eingangsgasvolumenstrom und die inerten Gasanteile bilanziert:

$$\dot{V}_{Gas}^{ein} \cdot x_{Inert}^{ein} = \dot{V}_{Gas}^{aus} \cdot x_{Inert}^{aus} \qquad \text{mit} \qquad x_{Inert} + x_{O_2} + x_{CO_2} = 1 \tag{3.17}$$

Durch Umformung ergibt sich:

$$\dot{V}_{Gas}^{ein} \cdot K = \dot{V}_{Gas}^{aus} \quad \text{mit} \quad K = \frac{1 - x_{O_2}^{ein} - x_{CO_2}^{ein}}{1 - x_{O_2}^{aus} - x_{CO_2}^{aus}}$$
(3.18)

K Gleichgewichtskonstante, -

Unter Annahme von OTR = OUR gilt:

$$OUR = \frac{\dot{V}_{Gas}^{ein}}{V_R \cdot V_M} \cdot (x_{O_2}^{ein} - K \cdot x_{O_2}^{aus})$$
(3.19)

Die CER wird analog zur OUR mit Gleichung 3.20 berechnet.

$$CER = \frac{V_{Gas}^{ein}}{V_R \cdot V_M} \cdot \left(x_{CO_2}^{ein} - K \cdot x_{CO_2}^{aus}\right)$$
(3.20)

Die Rate für die biomassespezifische Sauerstoffaufnahme (qOUR) und Kohlenstoffdioxidbildung (qCER) werden durch Division der errechneten OUR und CER durch die zum Messzeitpunkt vorliegende Biomassekonzentration erhalten (Link, 2009). Der Quotient aus der ermittelten CER und OUR, genannt Respirationskoeffizient (ohne Einheit) (RQ), gibt das Verhältnis von gebildetem CO_2 zu verbrauchtem O_2 an.

3.5 Metabolische Analysen

Um Mikroorganismen gentechnisch auf die Produktion einer bestimmten Substanz auszurichten, existieren verschiedene Herangehensweisen. Zufallsbasierte Methoden beruhen auf wiederholten Zyklen der randomisierten Mutagenese, beispielsweise durch UV-Strahlung, und anschließender Durchmusterung der erhaltenen Mutanten nach der gewünschten Eigenschaft. Durch aufwändige und zeitintensive Methoden zur Selektion geeigneter Mutanten können häufig verbesserte Produktionsstämme isoliert werden. Die Methode des *"random screening"* gilt als zuverlässig und kosteneffizient (Rowlands, 1984). Nachteilig ist jedoch das unvermeidbare Auftreten von Begleitmutationen, die beispielsweise das Wachstum beeinträchtigen oder die weitere Stammoptimierung behindern (Dong *et al.*, 2011; Foster & Cairnst, 1982; Ikeda, 2006).

Eine alternative Methodik zur Generierung verbesserter Stämme ist die adaptive Laborevolution, die auch durch die stetige Verbesserung von Hochdurchsatz-Sequenziermethoden vorangetrieben wird (Sandberg et al., 2019; Shendure et al., 2017). Bei dieser Methode werden Mikroorganismen unter definierten Bedingungen über einen längeren Zeitraum kultiviert und der natürliche Selektionsdruck hinsichtlich einer gewünschten Eigenschaft erhöht, um fittere Varianten diesbezüglich zu erhalten. Beispielsweise kann die Temperatur der Kultivierungen schrittweise gesteigert werden, um die Entstehung von Mutanten mit einer erhöhten Hitzeresistenz zu begünstigen (Mavrommati et al., 2022). Gute Ergebnisse lassen sich für alle relevanten Eigenschaften hinsichtlich der Fitness der Mikroorganismen, wie Wachstum, Substratnutzung oder Resistenz gegenüber inhibitorischer Substanzen, erzielen (Sandberg et al., 2019). Die Effizienz der Methodik kann durch Hochdurchsatzmethoden und Automatisierung erheblich gesteigert werden (Fong et al., 2005). In diesen Fällen fördert der Selektionsdruck die Entstehung und Durchsetzung fitterer Varianten. Die Schwierigkeit liegt allerdings in der Anwendung zur Steigerung der Produktivitäten, da eine Konkurrenzsituation zwischen robustem, schnellem Wachstum und der metabolisch gesehen kontraproduktiven Überproduktion einer Zielsubstanz entsteht (Sandberg et al., 2019). Ein Weg diese Problematik zu überwinden, ist die Kopplung der Produktion an zelluläre Energiegewinnung und Wachstum. Dies kann in einigen Fällen durch gentechnische Methoden gelingen, jedoch ist das Versuchsdesign für unterschiedliche Zielprodukte fallspezifisch und die genetischen Eingriffe sind mitunter nicht trivial, was die Anwendbarkeit der Methodik stark einschränkt (Sandberg et al., 2019).

Rationale Vorgehensweisen beziehen Kenntnisse über die intrazellulären Vorgänge in die Entwicklung neuer Stämme mit ein, um potenzielle Ansatzpunkte für genetische Eingriffe auszumachen. Die identifizierten metabolischen Schwachstellen können auf diese Weise gezielt durch genetische Eingriffe adressiert und behoben werden (Nielsen, 2001; Woolston et al., 2013). Die Auswahl an molekularbiologischen Methoden zur gezielten Stammmodifikation nimmt stetig zu, ebenso wie auch deren Effizienz und Spezifität ständig verbessert wird (Pontrelli et al., 2018). Rationale Methoden setzen ein detailliertes Verständnis intrazellulärer Abläufe des zu verbessernden Prozesses voraus (Adamczyk & Reed, 2017; Feist & Palsson, 2010). Da sich in vitro und in vivo erzeugte Daten teilweise stark voneinander unterscheiden, ist eine prozessnahe Datenerhebung separaten in vitro Enzymcharakterisierungen vorzuziehen (Blank & Ebert, 2013; Davidi & Milo, 2017). Unter dem Begriff "Metabolische Analysen" werden Methoden zusammengefasst, die den Datengewinn während der mikrobiellen Produktionsprozesse erlauben (Weiner et al., 2016). Grundsätzlich wird in diesen Analysen das metabolische Gleichgewicht der Zellen gestört und die daraus resultierende Reaktion der Zellen analytisch erfasst. Metabolische Analysen können auch angewendet werden, um zugrundeliegende Mechanismen von Phänotypen, die durch adaptive Laborevolution entstanden sind, zu verstehen und aufzuklären. Im Folgenden sollen die

stationären und dynamischen metabolischen Analysen betrachtet werden.

3.5.1 Dynamischer Betrieb

In dynamischen metabolischen Analysen wird zumeist eine Auslenkung des Metabolismus durch eine pulsartige Änderung in der Substratzufuhr erreicht. Dies kann durch einen abrupten Wechsel der Kohlenstoffquelle (Visser *et al.*, 2004), Substratpulse (Chassagnole *et al.*, 2002; Mashego *et al.*, 2007b; Nasution *et al.*, 2006; Visser *et al.*, 2004; Wu *et al.*, 2006) oder auch eine Variation anderer Prozessgrößen wie der Sauerstoffversorgung (Mashego *et al.*, 2007b) erfolgen. Durch hochfrequente Probenahmen und eine anschließende Metabolom-Quantifizierung wird die dynamische Reaktion der Zellen auf die vorübergehende Störung charakterisiert. Von Interesse ist hierbei der relativ kurze Zeitraum zwischen dem Zustand unmittelbar vor der Auslenkung bis zur Wiedereinstellung eines metabolischen Gleichgewichts. Häufig findet die dynamische Analyse direkt im Prozessreaktor der zu analysierenden Kultivierung statt (Mashego *et al.*, 2007b; Nasution *et al.*, 2006; Taymaz-Nikerel *et al.*, 2011; Wu *et al.*, 2006). Die Referenzprozesse, die zumeist kontinuierliche Zulaufkultivierungen sind, werden dabei gestört und da die Rückkehr zum initialen Zustand teils lange Zeiten in Anspruch nimmt, kann im ungünstigen Fall nur eine dynamische Analyse pro Referenzprozess durchgeführt werden (Aboka *et al.*, 2006).

Alternativ können die dynamischen Analysen in räumlich abgetrennten Reaktionssystemen erfolgen. Eine hierzu verwendete Technik ist der "*Bioscope*-Reaktor", ein Strömungsreaktor, welcher über ein Ventil mit dem Prozessreaktor verbunden ist (Visser & Heijnen, 2002; Wu *et al.*, 2006). Der *Bioscope*-Reaktor wird mit einer konstanten Flussrate an Zellsuspension aus dem Referenzreaktor durchströmt und die dynamische Analyse durch Zugabe von Substrat am Einlass des Rohrreaktors initiiert. Probenahmeventile an verschiedenen Positionen des Rohrreaktors erlauben eine zeitlich hochauflösende Probenahme. Die Methode wurde erfolgreich für Prozesse mit unterschiedlichen Organismen angewendet (Lara *et al.*, 2009; Mashego *et al.*, 2007b; Nasution *et al.*, 2006; Visser *et al.*, 2004).

3.5.2 Stationärer Betrieb

Im Unterschied zum dynamischen Betrieb werden in stationären metabolischen Analysen andauernde Auslenkungen des metabolischen Zustands im Referenzprozess erzeugt und die in der Folge entstehenden metabolischen Gleichgewichte charakterisiert. Die zugrundeliegenden Prozesse sind zumeist kontinuierliche oder halbkontinuierliche Zulaufprozesse, deren Störung durch Änderungen der Substrate oder der Substratverfügbarkeit erreicht wird (Link *et al.*, 2010; Nasution *et al.*, 2008; Weiner *et al.*, 2017). Auch die Änderung anderer Prozessparameter wie des pH können zur Auslenkung des Metabolismus verwendet werden (Kresnowati *et al.*, 2008). Die Charakterisierung der ausgebildeten Gleichgewichte erfolgt anhand gemessener intra- und extrazellulärer Metabolitkonzentrationen (Kresnowati *et al.*, 2008; Link *et al.*, 2010). Die Frequenz der Probenahmen ist im Fall der stationären metabolischen Analyse verglichen mit der dynamischen verringert, da die Gleichgewichtseinstellung einige wenige Minuten Zeit in Anspruch nimmt (Link *et al.*, 2010). Eine Vergleichbarkeit der metabolischen Gleichgewichte ist nur bei unverändertem Proteom gegeben, für einen Zeitraum von 30 min während metabolischer Analysen wurde dies für *E. coli* nachgewiesen (Link *et al.*, 2010; Tröndle *et al.*, 2020; Weiner *et al.*, 2017). Um eine andauernde Störung des Prozessreaktors zu vermeiden, ist eine räumlich getrennte Analyse in separaten Analysenreaktoren vorteilhaft (Aboka *et al.*, 2006; Weiner *et al.*, 2017). Möglich wird dies beispielsweise durch den Einsatz eines sogenannten "*Biocurve*-Rohrreaktors" (Aboka *et al.*, 2006). Hierbei wird die Zellsuspension aus dem Referenzprozess direkt in die Analyse geleitet und eine Substratänderung herbeigeführt. Durch eine interne Medienrückführung wird eine ideale Durchmischung und damit die Einstellung eines neuen metabolischen Gleichgewichts ermöglicht. Eine weitere Alternative zur räumlich abgetrennten Analyse stellt die Methode des schnellen Medienwechsels; *"rapid media transition"* (RMT) dar (Link *et al.*, 2010). Hierfür wird Zellsuspension aus dem Referenzprozess entnommen, schnell zentrifugiert und die Zellen resuspendiert in frischem Medium in das Analysereaktorsystem überführt. Auf diese Weise ist die sequentielle Durchführung mehrerer metabolischer Analysen ohne Störung des Referenzprozesses möglich (Link *et al.*, 2010; Weiner *et al.*, 2017). Durch Parallelisierung der Analysen kann die erhobene Datenmenge vervielfacht werden (Weiner *et al.*, 2017).

3.6 Metabolomanalyse

Entscheidend für das Verständnis intrazellulärer Abläufe ist die Erfassung von Veränderungen im Stoffwechsel eines Organismus. Hierfür muss das Metabolom untersucht werden, da sich hierin die Reaktion der Zellen auf Umwelteinflüsse zeigt. Das Metabolom bezeichnet die Gesamtheit aller in der Zelle vorliegenden nicht polymeren Stoffe, die am Metabolismus beteiligt sind (Goodacre *et al.*, 2004). Der englische Begriff *"Metabolomics"* fasst die Methoden der systematischen Analyse, der durch zelluläre Prozesse entstandenen kleinen Moleküle, zusammen (Vinayavekhin *et al.*, 2009).

Die quantitative Analyse ist erschwert durch die heterogene Zusammensetzung des Metaboloms und die Verteilung von Molekülgrößen und Konzentrationen (pico- bis millimolar) über mehrere Dimensionen. Die in etwa 2700 Metabolite, die am Stoffwechsel des in dieser Arbeit betrachteten *E. coli* beteiligt sind (Keseler *et al.*, 2017), weisen unterschiedliche physikochemische Eigenschaften hinsichtlich Polarität, Ladung und Stabilität auf. Hinzukommt, dass deren Umsetzungsprozesse in den Zellen teilweise schnell ablaufen, wodurch die umfassende und zeitlich präzise Quantifizierung zu einer komplexen Aufgabe wird (van Gulik, 2010).

Eine ideale und allumfassende Methode zur Metabolit-Quantifizierung ist bis heute nicht etabliert, jedoch inspirierte das gesteigerte Interesse für die Metabolom-Wissenschaften der letzten Jahre zur Entwicklung zahlreicher Technologien zur Analyse des Metabolismus (Zamboni *et al.*, 2015). In der Regel werden spezielle Methoden zur Probenahme, Inaktivierung des Metabolismus und Aufschluss der Zellen mit analytischen Methoden zur Quantifizierung kombiniert. Eine Auswahl methodischer Ansätze wird im folgenden Kapitel beschrieben.

3.6.1 Probenahme und -aufarbeitung

Um eine aussagekräftige Momentaufnahme des Metaboloms zu erhalten, ist die sofortige und vollständige Inaktivierung metabolischer Prozesse erforderlich (van Gulik, 2010). Extreme Temperaturen oder pH können genutzt werden, den Zellstoffwechsel im Moment der Probenahme zu stoppen (Mashego *et al.*, 2007a; Weuster-Botz, 1997). Eine weit verbreitete Methode ist das Vermischen der Zellsuspension mit einem Lösungsmittel, das zuvor auf sehr niedrige Temperaturen herabgekühlt wurde. Für Prokaryoten hat sich die Verwendung von auf -40 bis -50 °C gekühlter Methanol-Puffer-Mischung bewährt (Koning & Dam, 1992; Winder *et al.*, 2008). Durch die Verwendung spezieller Probenahmesysteme kann die Zellsuspension im Moment der Probenahme in der Inaktivierungslösung dispergiert werden, wodurch der Metabolismus unverzüglich zum Stillstand kommt (Hiller *et al.*, 2007a).

Nachdem der Zellstoffwechsel gestoppt wurde, müssen die Metabolite aus dem Zellinneren gewonnen werden. Hierfür können die Zellen zunächst durch Filtration oder Zentrifugation von der flüssigen Phase abgetrennt oder aber in einem "whole broth-Ansatz" gemeinsam mit dem Medium weiteren Behandlungen unterzogen werden (Bolten et al., 2007; Link et al., 2008). Prokaryotische Zellmembranen werden in der Regel durch die harschen Bedingungen während der Inaktivierung beschädigt. In der Folge kommt es zum Austritt von intrazellulären Metaboliten in den extrazellulären Raum. Wird nun vor der weiteren Behandlung das Zellpellet von der flüssigen Phase getrennt, kommt es zu erheblichen Verfälschungen der Messergebnisse. Die durch sogenanntes "cell leakage" entstehenden Nachteile, können durch das Verfahren im whole broth-Ansatz vermieden werden (Taymaz-Nikerel et al., 2009). Hierbei wird die Probe ohne vorherige Zellabtrennung weiterbehandelt. Anschließend erfolgt die separate Quantifizierung extra- und intrazellulärer Metabolite und deren rechnerische Korrektur (Bolten et al., 2007; Weiner et al., 2015). Allerdings entsteht ein erhöhter Messaufwand und oftmals führen hohe extrazelluläre Metabolitkonzentrationen zur Maskierung niedriger intrazellulärer Konzentrationen, aufgrund des vervielfachten extrazellulären Volumens (Taymaz-Nikerel et al., 2009). Werden Zellpellet und Flüssigphase vor der Inaktivierung voneinander getrennt, wird zwar das *cell leakage* verhindert, aber die zeitliche Verzögerung führt dennoch zur Verfälschung der Ergebnisse.

Zur Extraktion der intrazellulär vorliegenden Metabolite liegen eine Vielzahl an möglichen Protokollen vor. Zumeist erfolgt der Zellaufschluss durch die Anwendung hoher Temperaturen, extremer pH oder die Zugabe von Lösemitteln (Hiller *et al.*, 2007b; Mashego *et al.*, 2007a).

3.6.2 Analytik

Die komplexe Zusammensetzung der Proben und die Natur der Metabolite, insbesondere deren Vielfalt hinsichtlich physikochemischer Eigenschaften sowie deren stark gestreute Konzentrationen, stellen große Herausforderungen für die quantitative Metabolomanalyse dar (Alseekh *et al.*, 2021).

Um die heterogene Menge an Metaboliten spezifisch erfassen zu können, erfolgt in der Regel zunächst eine chromatographische Auftrennung. Da die Trennleistung der Gaschromatographie hinsichtlich größerer Metabolite, wie beispielsweise Cofaktoren, nicht ausreichend ist, wird die Flüssigchromatographie für viele Anwendungen bevorzugt (Buescher *et al.*, 2010).

Messmethoden wie Kernspinresonanz; "nuclear magnetic resonance" (NMR) und die Massenspektrometrie erlauben die zuverlässige Detektion der aufgetrennten Metabolite bis in sehr niedrige Konzentrationsbereiche (Alseekh *et al.*, 2021; Wishart, 2008). Aufgrund deutlich kürzerer Messzeiten bei hoher Sensitivität werden Massenspektrometrie-Methoden jedoch oft den NMR-Methoden vorgezogen (Lindon & Nicholson, 2008).

Für den Erfolg massenspektrometrischer Analysen ist auch die Ionisierung der Metabolite entscheidend. Die Elektronenspray-Ionisation wird häufig zur Analyse von Biomolekülen verwendet, da sie kaum Fragmentierungen erzeugt und schonend für die Analyten ist (Dunn, 2011). Stark flüchtige Stoffe können in salzhaltigen Lösungen hierbei Ionenunterdrückungseffekte hervorrufen und die Ionisierung anderer Moleküle erschweren (Annesley, 2003; Buescher et al., 2010). Durch hohe Salzgehalte können Probenmatrixeffekte insbesondere bei whole broth-Extraktionsansätzen zu Problemen führen (Noack & Wiechert, 2014). Verringerte Signalstärken und im schlechtesten Fall vollständig unterdrückte Signale können die Folge sein (Annesley, 2003). Auch häufig eingesetzte Ionenpaarreagenzien, die eine chromatographische Trennung sehr ähnlicher Stoffe wie beispielsweise von Isomeren ermöglicht, können die Ionensuppressionseffekte auslösen (Annesley, 2003). Die Wahl des Polaritätsmodus kann hier ausschlaggebend sein. Beispielsweise tritt die Ionensuppression für das Ionenpaarreagenz Tributylamin (TBA) nur im positiven Messmodus auf, durch die Analyse im negativen Modus werden die Effekte vermieden (W. Lu et al., 2010). Mit einer Methode nach Buescher et al. (2010) können auf diese Weise durch Flüssigchromatographie mit Massenspektrometrie-Kopplung (LC-MS) insgesamt 138 Metabolite diverser Mikroorganismen und Probenmatrices detektiert werden.

Die Diskriminierung oder Beschädigung von Molekülen bei der Probenaufarbeitung und Ionisierung kann durch den Einsatz von internen Standards berücksichtigt werden (Bennett *et al.*, 2008). Dazu wird die Probe mit einer Standardlösung, die Substanzen von hoher chemischer Ähnlichkeit zu den Analyten enthält, versetzt und zur Korrektur der entstandenen Defizite verwendet (Wu *et al.*, 2005). Als interne Standardlösung eignen sich insbesondere Uniform-¹³C (U-¹³C) Varianten der zu analysierenden Substanzen (Link *et al.*, 2012; Wu *et al.*, 2005). Die Zusammensetzung des internen Standards kann durch die Herstellung mit spezifischen Stämmen und Mikroorganismen an die Proben angepasst werden (Weiner *et al.*, 2015). Erfolgt die Zugabe des internen Standards vor dem Zellaufschluss werden alle kritischen Schritte der Aufarbeitung und Analyse mit durchlaufen. Die nachfolgende LC-MS-Analytik unterscheidet zwischen den markierten und nicht markierten äquivalenten und kann zur Erfassung des Metabolitverlustes eingesetzt werden. Durch die Kalibrierung mit externen Standards wird schließlich die Bestimmung der absoluten Konzentrationen ermöglicht (Weiner *et al.*, 2015).

3.7 Genomweite Stoffflussanalysen

Für eine rationale Vorgehensweise bei der Entwicklung von Produktionsstämmen ist ein detailliertes Verständnis der intrazellulären Abläufe erforderlich. Neben quantitativen Metabolomanalysen werden zunehmend auch theoretische, computergestützte Methoden eingesetzt. Unter vielen möglichen Modellansätzen zur Abbildung intrazellulärer Prozesse werden sogenannte "constraint-basierte" Modellierungen, die auf stöchiometrischen Rekonstruktionen des Metabolismus beruhen, am häufigsten genutzt (Schellenberger et al., 2011). Die Wahl des Modellansatzes muss auf die biologische Fragestellung ausgerichtet sein und je nach Verfügbarkeit an die erhobenen Daten angepasst werden. Zwar enthalten stöchiometrische Modelle keine kinetische Information und sind daher zur mechanistischen Beschreibung enzymatischer Reaktionen ungeeignet, indessen erlauben sie eine quantitative Analyse metabolischer Netzwerke bis in den genomweiten Maßstab (Krömer et al., 2014). Relativ einfach in der Konstruktion, können diese Modelle genutzt werden, um die zelluläre Biochemie mathematisch zu beschreiben. Ein erstes genomweites stöchiometrisches Modell (GEM) des weit verbreiteten Laborstamms E. coli MG1655 wurde im Jahr 2000 veröffentlicht (Edwards & Palsson, 2000) und seit dem kontinuierlich erweitert und verbessert (Feist et al., 2007; Orth et al., 2011). Stetig werden den Modellen neue gewonnene Informationen aus biochemischer Literatur, Gen- und Metabolomdaten hinzugefügt, wodurch eine zunehmend präzisere Modellierung der Stoffwechselabläufe möglich ist (Reed et al., 2003: Schellenberger et al., 2011).

Da diese Art von Modellen generell unterbestimmt ist, wird die Abschätzung der Flussverteilungen durch die Einführung von Systembeschränkungen und durch Optimierung einer Zielfunktion realisiert (Feist & Palsson, 2010; Price *et al.*, 2004; Schuetz *et al.*, 2007). Oft angewendete Systembeschränkungen sind die Annahme eines metabolischen Gleichgewichtes und die Vorgabe gemessener extrazellulärer Raten.

Die stöchiometrische Beschreibung dieser metabolischen Netzwerke basiert auf einer stöchiometrischen Matrix N in der jede Reaktion als lineare Gleichung beschrieben ist. Jede Spalte n der Matrix N repräsentiert eine Reaktion des betrachteten Netzwerks, der Fluss durch alle Reaktionen, inklusive intrazellulärer und extrazellulärer Raten, wird durch den Vektor v mit der Länge n dargestellt. Alle beteiligten Metabolite sind als Zeile m dargestellt. Die Einträge der Matrix beschreiben die stöchiometrischen Koeffizienten der Reaktionsgleichungen. Gilt die Annahme des metabolischen Gleichgewichts (Schilling *et al.*, 2000), tritt also bei konstanten Reaktionsraten keine Akkumulation von Metaboliten auf, so kann das Stoffwechselnetzwerk mathematisch wie folgt dargestellt werden:

$$\mathbf{N} \cdot \mathbf{v} = \mathbf{0} \tag{3.21}$$

N stöchiometrische Matrix (m x n)

v Flussvektor aller Reaktionen im Netzwerk (1 x n)

Stöchiometrische Modelle und insbesondere Modelle mit über 1000 biochemischen Reaktionen sind fast immer unterbestimmt, da die Anzahl der unbekannten Variablen die Zahl der linearen und unabhängigen Massenbilanzgleichungen (m < n) im Netzwerk deutlich übersteigt (Krömer *et al.*, 2014). Die sich ergebenden Freiheitsgrade sind dementsprechend groß, weshalb die Berechnung intrazellulärer Stoffflussverteilungen für Modelle dieser Art durch die Anwendung linearer Optimierungsmethoden realisiert wird. Für die Einschränkung des Lösungsraumes genauso wie für die Optimierung wurden seit 1980 verschiedene Methoden entwickelt. Im Folgenden soll eine Auswahl, der für diese Arbeiten relevanten Ansätze dargelegt werden.

3.7.1 Flussbilanzanalyse

Die Flussbilanzanalyse (FBA) ist eine Möglichkeit zur quantitativen Beschreibung der intrazellulären Flüsse durch die Optimierung einer Zielfunktion. Die Lösung der FBA ist eine bestimmte Flussverteilung v, die die Zielfunktion maximiert oder gegebenenfalls minimiert (Orth *et al.*, 2010). Für die lineare Optimierung gelten die folgenden Bedingungen:

Max
$$Z = c^T v$$

unter Berücksichtigung von $N \cdot v = 0$ (3.22)
 $v_{min} \le v \le v_{max}$

Z Zielfunktion

c Gewichtungsvektor

Mit der Vorgabe von oberen (v_{max}) und unteren (v_{min}) Grenzen für die experimentell bestimmten Aufnahme- und Bildungsraten kann das Modell weiter eingeschränkt werden und das Optimierungsproblem ohne detaillierte Kenntnisse von Mechanismen oder Kinetiken gelöst werden (Orth *et al.*, 2010).

Die meist verwendete Zielfunktion Z ist die Maximierung der Biomassebildung, alternativ wird auch die Minimierung der atp-Bildung zur Optimierung verwendet (Schilling *et al.*, 2000; Schuetz *et al.*, 2007). Ein Vergleich von simulierten und experimentell durch U-¹³C-Markierung ermittelten Flussverteilungen zeigte, dass die Eignung der Zielfunktion stark von Faktoren wie der Medienzusammensetzung oder der Betriebsweise zur Kultivierung abhängt und auch zwischen verschiedenen Mikroorganismen variieren kann (García Sánchez & Torres Sáez, 2014; Schuetz *et al.*, 2007). Gute Übereinstimmung der Biomassemaximierung wurde von Schuetz *et al.* (2007) beispielsweise für *E. coli* unter substratlimitierten Bedingungen in kontinuierlich betriebenen Prozessen gefunden. Für Zustände im Überflussmetabolismus, der während Satzprozessen auftrat, war die Maximierung der Biomassebildung nicht geeignet.

Das Ergebnis der FBA ist immer eine explizite Losung, Varianzen in Form von redundanten Lösungswegen werden nicht berücksichtigt.

3.7.2 Flussvarianzanalyse

Für reale zelluläre Systeme existiert in der Regel jedoch keine eindeutige Lösung für die intrazelluläre Stoffflussverteilung. Die Stoffwechselwege sind verzweigt und verlaufen nicht selten auch parallel, sodass die Zelle in vielen Bereichen des Metabolismus redundante Möglichkeiten zur Verteilung der Flüsse aufweist (Thiele *et al.*, 2010). Diese redundanten Wege dienen der Zelle zur metabolischen Ausrichtung und ermöglichen ihr auf verschiedene Umwelteinflüsse zu reagieren.

Da in der Regel für Betrachtungen des Stoffwechsels alle möglichen Stoffflussverteilungen relevant sind, müssen die Variabilitäten bei der Abschätzung berücksichtigt werden. Dies wird durch die Methode der Flussvarianzanalyse (FVA) ermöglicht (Mahadevan & Schilling, 2003). Zusätzlich zu den unter Gleichung 3.22 angegeben Randbedingungen wird hierfür ein Varianzkriterium γ eingeführt. Durch lineare Programmierung wird anschließend für jede Reaktion im Netzwerk ermittelt, für welchen Bereich der durch das Varianzkriterium γ vorgegebene Anteil der optimalen Lösung noch erreicht werden kann. Abhängig von der Wahl des Varianzkriteriums wird die optimale Lösung vollständig ($\gamma = 1$) oder annähernd erfüllt ($0 \leq \gamma < 1$) (Thiele *et al.*, 2010). Das Optimierungsproblem stellt sich wie folgt dar:

Max/ Min
unter Berücksichtigung von

$$c^T v \ge \gamma \cdot Z$$
 für $\gamma \epsilon[0; 1]$
 $v_{min} \le v \le v_{max}$ für $i = 1...n$

$$(3.23)$$

γ Varianzkriterium

Für jeden Fluss des Stoffwechselnetzwerks ergeben sich somit zwei lineare Optimierungsprobleme, die als Ergebnis einen Lösungsraum aufspannen (Mahadevan & Schilling, 2003). Der Lösungsbereich beinhaltet alle minimalen und maximalen Flüsse, für die der Anteil γ der optimalen Lösung noch erreicht werden kann. Verzichtet wird hierbei auf die Ermittlung konkreter Flussverteilungen, wodurch der Rechenaufwand minimiert wird.

3.7.3 Loopless-Methoden

Eine Problematik der klassischen FBA und FVA ist das Auftreten thermodynamisch nicht sinnvoller interner Stoffflussschleifen, auch genannt "Loops", deren Nettofluss keinen Einfluss auf die Austauschreaktionen des Modells nimmt (De Martino *et al.*, 2013; Desouki *et al.*, 2015; Palsson *et al.*, 2002; Schellenberger *et al.*, 2011).

Während interne Loops keine weiteren Reaktionen des Systems beeinflussen, gibt es auch Schleifenformen, in denen beispielsweise energieliefernde Reaktionen involviert sind und so eine unendliche Energiebereitstellung generieren (Energie erzeugende Schleife; *"Energy Generating Cycle"* (EGC)) (Noor, 2018). Erstere können als metabolische *Perpetuum mobile* betrachtet werden, man bezeichnet sie auch als biochemische Loops, da die Änderung der freien Reaktionsenergie innerhalb der Schleife null ergibt. In Analogie zum zweiten Kirchhoff'schen Gesetz für elektrische Schaltkreise sagt das Loop-Gesetz aus, dass die thermodynamischen Triebkräfte in einem metabolischen Loop null ergeben, biochemische Loops widersprechen damit auch dem ersten Hauptsatz der Thermodynamik (Noor, 2018; Palsson *et al.*, 2002).

Anders verhält es sich mit EGCs, die keinen vollständigen biochemischen Loop bilden, da sie an eine energieliefernde oder -verbrauchende Reaktion gekoppelt sind und somit nicht gegen den ersten Hauptsatz der Thermodynamik verstoßen (Noor, 2018). Allerdings stehen diese Art von Loops im Widerspruch zum zweiten thermodynamischen Hauptsatz, denn sie verringern insgesamt die Entropie des Systems (Noor, 2018). Beide Loop-Varianten sind damit thermodynamisch widersprüchlich und biologisch nicht sinnvoll, was deren Entfernung aus berechneten intrazellulären Stoffflussverteilungen notwendig macht (Desouki *et al.*, 2015).

Die Lösungen der vorgestellten Methoden FBA und FVA nehmen keine Eliminierung solcher Loops vor, was insbesondere bei der Berechnung der FVA zu sehr hohen, unrealistischen Flussbereichen einzelner Reaktionen führt (Mahadevan & Schilling, 2003). Für die Bereinigung der Flüsse von Loops wurden in der Vergangenheit einige Methoden etabliert (De Martino *et al.*, 2013; Desouki *et al.*, 2015; Schellenberger *et al.*, 2011; J. Wright & Wagner, 2008). Diese Methoden sind teilweise kompliziert, unflexibel und vor allem rechenintensiv, was ihre Anwendung für Optimierungsprobleme erschwert (Schellenberger *et al.*, 2011). Der von Desouki *et al.* (2015) entwickelte Algorithmus "CycleFreeFlux" ermöglicht die Entfernung aller thermodynamisch widersprüchlichen Loops aus intrazellulären Flussverteilungen innerhalb eines linearen Optimierungsschrittes. Der CycleFreeFlux-Algorithmus minimiert dazu die Summe aller Flüsse, während die Austauschflüsse konstant gehalten werden und kein intrazellulärer Fluss die Richtung ändern oder größer werden darf. Die Zielfunktion wird zudem mit der optimalen Lösung beschränkt. Das lineare Optimierungsproblem stellt sich wie folgt dar.

Min

$$\sum_{i} |\mathbf{v}_i|$$

unter Berücksichtigung von $N \cdot v = 0$

$$0 \leq \mathbf{v}_{i} \leq \mathbf{v}_{i}^{(0)} \qquad \text{für } i \text{ mit } \mathbf{v}_{i}^{(0)} \geq 0 \tag{3.24}$$
$$\mathbf{v}_{i}^{(0)} \leq \mathbf{v}_{i} \leq 0 \qquad \text{für } i \text{ mit } \mathbf{v}_{i}^{(0)} < 0$$
$$\mathbf{v}_{j} = \mathbf{v}_{j}^{(0)} \qquad \text{für alle Austauschflüsse } \mathbf{v}_{j}$$
$$c^{T}\mathbf{v} = c^{T}\mathbf{v}^{(0)}$$

Abbildung 3.4 zeigt anhand eines Modellschemas die Funktion des CycleFreeFlux-Algorithmus. Die dargestellten Flussverteilungen im metabolischen Gleichgewicht können als positive Linearkombinationen der Flüsse e_1 , e_2 und e_3 dargestellt werden (Schuster & Hilgetag, 1994). Die Reaktionen v_1 und v_3 sind unidirektional, v_2 kann hingegen in beide Richtungen ablaufen. An Loop e_3 sind nur intrazelluläre Flüsse beteiligt, er ist daher thermodynamisch unzulässig. In dieser Ausgangslage fixiert der Algorithmus die Werte der extrazellulären Raten und minimiert unter diesen Bedingungen den Fluss durch den Loop e_3 , bis v_2 den Wert 0 annimmt. Infolgedessen wird $v = e_2$ als thermodynamisch zulässiger Teil der Flussverteilung erkannt und die untere Flusswertgrenze von v_2 zu 0 gesetzt (Desouki *et al.*, 2015).

Abbildung 3.4: Modellschema zur Illustration des CycleFreeFlux-Algorithmus nach Desouki *et al.* (2015). Die drei dargestellten Metabolite A, B und C können durch die drei Reaktionen v_1 , v_2 , v_3 in der Zelle ineinander umgewandelt werden. A wird durch v_1 in die Zelle aufgenommen und C durch v_3 in den extrazellulären Raum abgegeben. Alle Reaktionen außer v_2 sind unidirektional, die nominale Flussrichtung von v_2 ist von A nach C, beide Richtungen sind jedoch zulässig. Die Flussverteilungen im metabolischen Gleichgewicht können durch positive Linearkombinationen der Flüsse e_1 , e_2 und e_3 (unterbrochene Linie) dargestellt werden. Dabei beschreibt e_3 einen internen biochemischen Loop, der thermodynamisch nicht zulässig ist.

3.7.4 Thermodynamische Flussanalyse

Methoden wie der CycleFreeFlux-Algorithmus ermöglichen zwar die Eliminierung thermodynamisch unzulässiger Loops, sie führen jedoch trotzdem zu Stoffflussverteilungen, die der Zellphysiologie und Bioenergetik widersprechen, da thermodynamische Größen und Gesetze in der Berechnung nicht berücksichtigt werden (Ataman & Hatzimanikatis, 2015; Soh & Hatzimaikatis, 2010). Grund hierfür sind erneut die zulässigen Reaktionsrichtungen im Modell, welche meist anhand von Informationen aus der Literatur abgeleitet oder durch Ergebnisse von U-¹³C Markierungsexperimenten ermittelt und festgelegt wurden (Soh & Hatzimanikatis, 2014). Jedoch entscheidet nicht nur die enzymatische Kapazität über die Richtung der biochemischen Reaktion, sondern es müssen auch die thermodynamischen Voraussetzungen zum Ablauf der Reaktionsrichtung unterschieden werden. Während erstere durch die Eigenschaft der Enzyme festgelegt ist und daher häufig durch in *in vitro* Analysen bekannt ist, liegen selten Informationen zur Reaktionsrichtung *in vivo* für die jeweils vorliegenden Bedingungen vor (Soh & Hatzimanikatis, 2014). Gemäß dem zweiten thermodynamischen Hauptsatz kann eine Reaktion nur in der Richtung ablaufen, für die die Gibbs'sche Reaktionsenergie $\Delta rG'$ einen negativen Wert annimmt.

Ein von Salvy *et al.* (2019) in MATLAB und Python implementierter Algorithmus ermöglicht eine Thermodynamische Flussanalyse (TFA) nach Soh und Hatzimanikatis (2014) und Henry *et al.* (2007). Durch die zusätzliche Beschränkung der Modelle durch thermodynamische Vorgaben und intrazelluläre Metabolomdaten können die Lösungsräume der berechneten FVA reduziert, thermodynamisch unzulässige Reaktionsrichtungen eliminiert und damit die Vorhersagegenauigkeit der Modelle verbessert werden (Salvy et al., 2019). Zwar wurden bereits andere Methoden zur Verknüpfung von GEMs mit thermodynamischen Daten entwickelt, jedoch waren für diese Berechnungen entweder zusätzliche Annahmen erforderlich (R. M. Fleming et al., 2009; R. M. T. Fleming & Thiele, 2011) oder die thermodynamische Analyse erfolgte entkoppelt vom Optimierungsproblem der FBA (Zamboni et al., 2008).

Die TFA löst beide Zielstellungen kombiniert in einem Schritt durch gemischt-ganzzahlige lineare Optimierung (MILP) (Salvy et al., 2019). Das zugrundeliegende Optimierungsproblem wird folgendermaßen beschrieben:

Massenbilanz		$\mathbf{N} \cdot v = 0$	(a)	
Flusskapazität		$\mathbf{v}_{min} \leq \mathbf{v} \leq \mathbf{v}_{max}$	(b)	
Gibbs	s'sche Reaktionsenergie	$\Delta_r G'_i = \Delta_{r,tpt} G'_i + \sum_{j=1}^m n_{i,j} \mu_j$	(c)	(3.25)
chem	isches Potential	$\mu_j = \Delta_f G'_j{}^o + \Delta_{f,err} G'_j{}^o + RT \ln \left(x_j \right)$	(d)	
thern	nodynamische Lösbarkeit	$\Delta_r G'_i - K + K z_i < 0$	(e)	
$\Delta_r G'_i$	transformierte Gibbs'sch	e Reaktionsenergie, J mol ⁻¹		
$\Delta_{r,tpt}G'_i$	Transportenergie, J mol ⁻¹			
$n_{i,j}$	Menge n der Reaktanten	j am Stofffluss i, -		
μ_j	chemisches Potenzial der Reaktanten j, J mol ⁻¹			
$\Delta_f G_i^{\prime o}$	$f_i^{\prime o}$ Standard Gibbs'sche Bildungsenthalpie, J mol ⁻¹			
$\Delta_{f,err} G_i^{\prime o}$	Fehler der Standard Gibbs'schen Bildungsenthalpie, J mol ⁻¹			
R	universelle Gaskonstante, 8,314 J mol $^{-1}$ K $^{-1}$			
Т	Temperatur, K			
x_j	Metabolitkonzentration des Reaktant j, mol ⁻¹			
Ň	Konstante, J mol ⁻¹			

Flussnutzungsvariable, z_i

Das TFA-Optimierungsproblem kombiniert die thermodynamischen Beschränkungen (c, d und e) mit den Randbedingungen der FBA (a, b). Dementsprechend wird die Richtung der Reaktion i bei einem festgelegten pH und festgelegter Ionenstärke durch den Wert der transformierten $\Delta_r G'_i$ der Gleichung (c) bestimmt. Das chemische Potenzial der Reaktanten ist eine Funktion der Standard Gibbs'schen Bildungsenergie $\Delta_f G'_j$ mit Fehler $(\Delta_{f,err} G'_j)$ und der Aktivität der Metabolite, die wiederum von der Reaktionstemperatur T, der universellen Gaskonstante R und den Metabolitkonzentrationen x_i abhängt (vgl. 3.25 (d)). Durch Kombination der Gleichungen (c) und (d) ergibt sich die vollständige Formulierung der Gibbs'schen Reaktionsenergie (Soh & Hatzimanikatis, 2014):

$$\Delta_r G'_i = \sum_{j=1}^m n_i \Delta_f G'^0_i + RT \ln\left(\prod_{j=1}^m x_j^{n_{i,j}}\right)$$
(3.26)

Damit die Gibbs'sche Reaktionsenergie zur Bestimmung der Reaktionsrichtung verwendet werden kann, wurde in Gleichung (e) eine binäre "Flussnutzungsvariable" z_i eingeführt. Die Variable K ist eine Konstante (Henry *et al.*, 2007). Somit enthält Gleichung (e) sowohl kontinuierliche Variablen ($\Delta_r G'_i$) als auch diskrete Variablen (z_i), womit die TFA zum gemischt-ganzzahligen linearen Optimierungsproblem wird (Soh & Hatzimanikatis, 2014). Die nötigen zugrundeliegenden Daten für die Standard Gibbs'schen Bildungsenergien der Metabolite können der Literatur entnommen oder beispielsweise durch Gruppenbeitragsmethoden abgeschätzt werden (Jankowski *et al.*, 2008). Im TFA-Algorithmus implementiert ist die Korrektur der erhaltenen Werte nach Debye und Hückel (1923) an den verwendeten pH und die vorherrschende Ionenstärke (Salvy *et al.*, 2019).

Durch Anwendung der TFA werden zudem für alle Reaktionen im Netzwerk minimale und maximale Werte für die Gibbs'schen Reaktionsenergien sowie Konzentrationsbereiche für nichtgemessene Metabolite ermittelt.

3.8 Metabolische Kontrollanalyse²

Die stöchiometrische Modellierung zellulärer Prozesse ist in der Entwicklung neuer Produktionsstämme bereits ein unabkömmliches Werkzeug und auch andere mathematische Methoden gewinnen im Bereich des Stammdesigns zunehmend an Bedeutung. Umfangreiche Datenbanken für Modellorganismen wie *E. coli* stellen detaillierte Informationen zu Reaktionen, Genen und den zugehörigen Enzymen bereit und ermöglichen die mathematische Beschreibung der intrazellulären Vorgänge und Interaktionen, woraus Strategien zur Verbesserung der Stämme abgeleitet werden können (Gombert & Nielsen, 2000).

Die Metabolische Kontrollanalyse (MCA) ist ein mathematischer Formalismus, der ohne Kenntnis einzelner Reaktionskinetiken die Berechnung der Kontrollverteilung innerhalb der Zelle ermöglicht. Die grundlegenden mathematischen Überlegungen gehen auf Kacser und Burns (1973) und Heinrich und Rapoport (1974) zurück. Die erarbeiteten Ideen wurden etwas später im Konzept der MCA zusammengefasst (Burns *et al.*, 1985). Der Ansatz basiert auf der Auslenkung eines Systems durch die Änderung äußerlicher Einflüsse und er ermöglicht die quantitative Beschreibung der Kontrolle eines bestimmten Stoffflusses oder Metaboliten im metabolischen Netzwerk. Die erhaltenen quantitativen Kennzahlen sind dimensionslos, da sie auf einen Referenzzustand bezogen werden. Sie beschreiben quantitativ, inwiefern eine Änderung einer bestimmten Enzymkonzentration e_j einen bestimmten Stofffluss J_i oder eine bestimmte Metabolitkonzentration x_i beeinflusst (Visser & Heijnen, 2002). Mögliche äußerliche Einflüsse werden als Effektoren c_i berücksichtigt. Entsprechend wird die metabolische Kontrolle durch die sogenannten Flusskontrollkoeffizienten C_{ij}^{J0} und Konzentrationskontrollkoeffizienten $C_{ij}^{x_0}$ beschrieben. Das Suffix 0 verweist auf den Referenzzustand.

² Die verwendeten Symbole sind im Symbolverzeichnis (Kapitel 10) erläutert.

$$C_{ij}^{J0} = \frac{\frac{dJ_i}{J_i^0}}{\frac{de_j}{e_j^0}}$$
(3.27)
$$C_{ij}^{x0} = \frac{\frac{dx_i}{x_i^0}}{\frac{de_j}{e_j^0}}$$
(3.28)

3.8.1 Abschätzung von Elastizitäten

Die Berechnung der globalen Kontrollkoeffizienten basiert auf der Kenntnis von lokalen Variablen des sich im Gleichgewicht befindlichen Systems (Stoffflüsse, Metabolitkonzentrationen). Diese lokalen, sogenannten "Elastizitäten" $\varepsilon_{x_i}^{J_i}$, beschreiben die spezifische Flexibilität einer einzelnen Reaktion und quantifizieren damit die Änderung eines Stoffflusses als Reaktion auf eine veränderte Metabolitkonzentration.

$$\varepsilon_{x_i}^{v_j} = \frac{\frac{\delta v_j}{v_j^0}}{\frac{\delta x_i}{x_i^0}} \tag{3.29}$$

Die Abschätzung der Elastizitäten beruht auf mechanistischen Modellen zur Darstellung der Reaktionskinetiken. Die notwendige, korrekte Beschreibung der mechanistischen Geschwindigkeitsgleichung jeder einzelnen Reaktion gestaltet sich jedoch schwierig, da *in vitro* ermittelte kinetische Parameter nicht die *in vivo* vorherrschenden Bedingungen widerspiegeln (Teusink *et al.*, 2000; B. E. Wright & Kelly, 1981). Als Alternative zur experimentell und mathematisch aufwändigen dynamischen *in vivo* Bestimmung können nicht-mechanistische linear logarithmische (lin-log)-Modelle zur Beschreibung verwendet werden (Visser & Heijnen, 2003; Wu *et al.*, 2004). Die Reaktionsgeschwindigkeit einer beliebigen Reaktion *j* lautet nach dem lin-log-Ansatz folgendermaßen:

$$v_j = e_j(a_j + p_{j,1}lnx_1 + p_{j,2}lnx_2 + \dots + p_{j,m}lnx_m)$$
(3.30)

Daraus ergibt sich eine Proportionalität der Reaktionsgeschwindigkeit v zur Konzentration des katalysierenden Enzyms e und der Linearkombination der logarithmierten Konzentrationen der Metabolite x_i . Durch Normierung auf einen Referenzzustand erhält man:

$$\frac{v_j}{v_j^0} = \frac{e_j}{e_j^0} (1 + \varepsilon_{x_1}^{v_j} ln \frac{x_1}{x_1^0} + \varepsilon_{x_2}^{v_j} ln \frac{x_2}{x_2^0} + \dots + \varepsilon_{x_m}^{v_j} ln \frac{x_m}{x_m^0})$$
(3.31)

Überführt man 3.31 in Matrixschreibweise, ergibt sich:

$$\left[\frac{v}{v^0}\frac{e^0}{e}\right] - 1 = \left[ln\frac{x}{x^0}\right]\left[\varepsilon_x^v\right]$$
(3.32)

Analog zu Gleichung 3.29 beschreiben die Elastizitätskoeffizienten in folgender Form die kinetischen Modellparameter p und geben die Auslenkbarkeit der jeweiligen Reaktion an:

$$\varepsilon_{x_i}^{v_j} \equiv \frac{x_i}{v_j} \frac{\delta v_j}{\delta x_i} = \frac{\delta ln v_j}{\delta ln x_i}$$
(3.33)

Alternativ dazu bietet sich für Reaktionen, die nahe am thermodynamischen Gleichgewicht ablaufen, die Abschätzung von Elastizitäten durch thermokinetische Modelle an (Nielsen, 1997):

$$\varepsilon_{x_i}^{v_j} = -\frac{n_{i,j} \cdot R \cdot T}{A_j - A_j^{\#}} \tag{3.34}$$

Für reversible Reaktionen nahe am thermodynamischen Gleichgewicht nimmt $A_j^{\#}$ den Wert 0 an, wodurch die direkte Bestimmung der Elastizitäten aus den Affinitäten möglich wird. Die Affinität entspricht der negativen Gibbs'schen Reaktionsenergie.

3.8.2 Abschätzung von Flusskontrollkoeffizienten

Die Beziehung der lokalen Elastizitäten und globalen Kontrollkoeffizienten ist beschrieben durch die Summations- und Konnektivitätstheoreme (Heinrich & Rapoport, 1974; Kacser & Burns, 1973). Kacser *et al.* (1995) konnten mithilfe dieser zeigen, dass die Kontrolle innerhalb eines Stoffwechselwegs auf unterschiedliche Enzyme verteilt ist und etablierten damit den Begriff des "geschwindigkeitsbestimmenden Schrittes". Gemäß dem Summationstheorem ergibt die Summe aller Flusskontrollkoeffizienten eines Stoffwechsels 1 und die Summe aller Konzentrationskontrollkoeffizienten 0. Für die Abschätzung der Kontrollkoeffizienten sind in der Literatur eine Reihe an Methoden beschrieben, einen Überblick geben Visser und Heijnen (2002). Darüber hinaus stellen sie einen weiteren Ansatz vor, der auf der Massenbilanz des Gleichgewichtszustands beruht (Visser & Heijnen, 2002). Analog zu 3.21 wird die Massenbilanz im Gleichgewichtszustand gleich null gesetzt, die Grundlage liefert auch in diesem Fall die stöchiometrische Matrix N. Die Reaktionsraten werden hierbei in Abhängigkeit von den Enzymkonzentrationen e, den intrazellulären Metabolitkonzentrationen x und den extrazellulären Metabolitkonzentrationen c wie folgt beschrieben:

$$\frac{dx}{dt} = \mathbf{N} \cdot \mathbf{v} \qquad mit \qquad \mathbf{v} = f(\mathbf{e}, \mathbf{x}, \mathbf{c}) \tag{3.35}$$

Um die Skalierbarkeit der Koeffizienten zu erreichen, erfolgt die Normierung auf den Referenzzustand (Enzymkonzentrationen e^0 , Stoffflüsse v^0 , Metabolitkonzentrationen x^0 und c^0), daraus ergeben sich die Gleichungen 3.36 und 3.37:

$$\left[\mathbf{X}^{0}\right]\frac{d\frac{\mathbf{x}}{\mathbf{x}^{0}}}{dt} = \mathbf{N} \cdot \left[\mathbf{J}^{0}\right] \cdot \frac{\mathbf{v}}{\mathbf{J}_{0}}$$
(3.36)

$$\frac{\mathbf{v}}{\mathbf{J}^0} = f\left(\frac{\mathbf{e}}{\mathbf{e}^0, \mathbf{x}^0, \mathbf{c}^0}\right) \tag{3.37}$$

In diesen Gleichungen steht $[X^0]$ für eine Diagonalmatrix mit den Elementen $[X^0]_{ii} = x_i^0$. Der Vektor x/x⁰ hat *m* Einträge mit den Elementen x_i/x_i^0 und v/J₀ ist ein Vektor der Länge *n* mit

den Elementen v_i/J_i^0 . Weiterhin ist e/e^0 ein Vektor der Länge n mit den Elementen e_i/e_i^0 und c/c^0 ein Vektor der Länge m_c mit den Einträgen c_i/c_i^0 .

Durch Bestimmung des Ranges über die Zeilenstufenform von N wird die Anzahl der unabhängigen Reaktionen festgelegt. Durch Umformung wird eine Darstellung anhand der unabhängigen Reaktionen (ind) und der Link-Matrix L^x erreicht.

$$N = L^{x} \cdot N_{ind} \qquad mit \qquad L^{x} = N \cdot N_{ind}^{\#}$$
(3.38)

Zur Lösung der Massenbilanz müssen zunächst die noch verbleibenden Abhängigkeiten (Einheiten) entfernt werden. Dies wird erreicht durch die Einführung einer modifizierten Link-Matrix:

$$\left(\frac{\mathbf{x}}{\mathbf{x}^{0}} - \mathbf{i}\right) = \mathbf{L}^{\mathbf{x}} \left(\frac{\mathbf{x}_{\text{ind}}}{\mathbf{x}_{\text{ind}}^{0}} - \mathbf{i}\right) \qquad mit \qquad \mathbf{L}^{\mathbf{x}} = \left[\mathbf{X}^{0}\right]^{-1} \cdot \mathbf{N} \cdot \mathbf{N}_{\text{ind}}^{\#} \cdot \left[\mathbf{X}_{\text{ind}}^{0}\right] \tag{3.39}$$

Durch Umformung von Gleichung 3.39 ergibt sich die unabhängige, normierte Massenbilanz wie folgt:

$$\left[\mathbf{X}_{\text{ind}}^{0}\right] \frac{d\left(\frac{\mathbf{x}}{\mathbf{x}^{0}}\right)_{\text{ind}}}{dt} = \mathbf{N}_{\text{ind}} \cdot \left[\mathbf{J}^{0}\right] \cdot \frac{\mathbf{v}}{\mathbf{J}^{0}}$$
(3.40)

Die in 3.37 dargestellte Ratengleichung kann unter Zuhilfenahme der Elastizitäten (Matrizen E^{x0} und E^{c0}) linearisiert werden. Unter der Annahme, dass die Reaktionsrate proportional zur Enzymaktivität ist, folgt:

$$\frac{v}{J^0} = \frac{e}{e^0} + E^{x0} \left(\frac{x}{x_0} - i\right) + E^{c0} \left(\frac{c}{c_0} - i\right)$$
(3.41)

Das Einsetzen der Gleichung 3.41 in die unabhängige normierte Massenbilanz 3.40 führt zu:

$$\left[\mathbf{X}_{\text{ind}}^{0}\right] \frac{d\left(\frac{\mathbf{x}}{\mathbf{x}^{0}}\right)_{\text{ind}}}{dt} = \mathbf{N}_{\text{ind}} \cdot \left[\mathbf{J}^{0}\right] \cdot \left(\frac{\mathbf{e}}{\mathbf{e}^{0}} + \mathbf{E}^{\mathbf{x}0} \cdot \mathbf{L}^{\mathbf{x}} \cdot \left(\left(\frac{\mathbf{x}}{\mathbf{x}^{0}}\right)_{\text{ind}} - \mathbf{i}\right) + \mathbf{E}^{\mathbf{c}0} \cdot \left(\frac{\mathbf{c}}{\mathbf{c}^{0}} - \mathbf{i}\right)\right)$$
(3.42)

Im metabolischen Gleichgewicht kann die linke Seite der Gleichung 3.42 zu 0 gesetzt werden. Die Lösung des Systems wird nun durch Einsetzen der Gleichung 3.39 erreicht. Die Lösung des linearen Gleichungssystems lautet somit:

$$\frac{\mathbf{x}}{\mathbf{x}^{0}} - 1 = -\Psi \cdot \frac{\mathbf{e}}{\mathbf{e}^{0}} - \Psi \cdot \mathbf{E}^{c0} \left(\frac{\mathbf{c}}{\mathbf{c}^{0}} - \mathbf{i}\right)$$
mit
$$\Psi = \mathbf{L}^{\mathbf{x}} \cdot \left(\mathbf{N}_{ind} \cdot \left[\mathbf{J}^{0}\right] \cdot \mathbf{E}^{\mathbf{x}0} \cdot \mathbf{L}^{\mathbf{x}}\right)^{-1} \cdot \mathbf{N}_{ind} \cdot \left[\mathbf{J}^{0}\right]$$
(3.43)

Die Konzentrationskontrollkoeffizienten können nun mit Gleichung 3.43 direkt aus deren Definition in Gleichung 3.28 abgeleitet werden:

$$C^{x0} = \frac{e^0}{x^0} \frac{dx}{de} = \frac{d\left(\frac{x}{x^0} - 1\right)}{d\frac{e}{e^0}} = -L^x \cdot \left(N_{ind} \cdot \left[J^0\right] \cdot E^{x0} \cdot L^x\right)^{-1} \cdot N_{ind} \cdot \left[J^0\right]$$
(3.44)

Die Kombination der Metabolitkonzentrationen im Gleichgewicht 3.43 und linearisierten Systemgleichung 3.41 führen zu:

$$\frac{v}{J^0} = \frac{J}{J^0} = \frac{e}{e^0} + E^{x0} \left(C^{x0} \cdot \frac{e}{e^0} + R^{x0} \left(\frac{c}{c^0} - i \right) \right) + E^{c0} \left(\frac{c}{c^0} - i \right)$$
(3.45)

$$= \left(E^{x0}C^{x0} + i \right) \cdot \frac{e}{e^{0}} + \left(E^{x0}R^{x0} + E^{c0} \right) \cdot \left(\frac{c}{c^{0}} - i \right)$$
(3.46)

Aus 3.45 leitet sich die Definition der Flusskontrollkoeffizienten ab.

$$C^{J0} = \frac{e^0}{J^0} \frac{dJ}{de} = \frac{d\frac{J}{J^0}}{d\frac{e}{e^0}} = E^{x0}C^{x0} + i$$
(3.47)

3.8.3 Metabolische Kontrollanalyse des Metabolismus von Escherichia coli

Aufgrund des hohen experimentellen und analytischen Aufwands zur Erhebung der nötigen Fluxom- und Metabolomdaten existieren nur wenige Arbeiten zu empirischen MCAs von *E. coli*. Link *et al.* (2010) entwickelten einen methodischen Ansatz, durch die eine Datengenerierung *in vivo* möglich wird. Mittels der metabolischen Analyse nach schnellem Medienwechsel wurde so zunächst der Metabolismus des Wildtypstammes *E. coli* K12 während konstanter Wachstumsraten im Zulaufprozess untersucht (Link, 2009). Die Kontrolle war insbesondere für Reaktionen des Energiemetabolismus und der Glykolyse und Gluconeogenese stark ausgeprägt (Link, 2009).

In der anknüpfenden Arbeit von Weiner *et al.* (2017) wurde die metabolische Analyse nach der Methodik des schnellen Medienwechsels in einem Vierfach-Bioreaktorsystem in parallelen Ansätzen durchgeführt und auf diese Weise die Anzahl an erreichten metabolischen Gleichgewichten vervielfacht. Mittels dieser Methodik wurde der Metabolismus eines Produktionsstammes während einer Zulaufkultivierung zur Herstellung von L-Phenylalanin untersucht. Limitierende enzymatische Schritte, insbesondere hinsichtlich der L-Phenylalaninproduktion, wurden identifiziert (Weiner *et al.*, 2017). Zudem zeigte sich durch die sequentielle Durchführung zweier metabolischer Analysen im Prozess die Verschiebung der Kontrolle im zeitlichen Verlauf der Kultivierung.

Die Methodik wurde anschließend auf die Analyse von L-Tryptophanproduzenten übertragen. Auf diese Weise konnten für die Produktion von L-Tryptophan mit Glycerin als Kohlenstoffquelle kontrollierende Schritte bestimmt werden. Die Maßnahmen zur Überexpression der Gene trpB, trpC, serB und prsA wurden aus den Ergebnissen der MCA abgeleitet (Tröndle *et al.*, 2020).

Eine Weiterentwicklung der klassischen MCA wurde kürzlich von Tsouka *et al.* (2021) publiziert. In dieser Arbeit erfolgte die Lösung der MCA kombiniert mit *constraint*-basierten Modellberechnungen innerhalb eines MILP-Problems. Berücksichtigt wurden biologisch relevante, genombasierte sowie thermodynamische Beschränkungen. Bisher wurde die Methodik nur rein theoretisch zur Identifikation kontrollierender Schritte der Pyruvatsynthese angewendet (Tsouka *et al.*, 2021).

4 Material und Methoden

Alle in dieser Arbeit eingesetzten Chemikalien und Einzelgeräte sind den Tabellen A.1 und A.2 im Anhang zu entnehmen. Alle weiteren Materialien und Methoden, die in der vorliegenden Arbeit verwendet wurden, werden in diesem Kapitel beschrieben.

4.1 Mikroorganismen und Plasmide

Die in dieser Arbeit verwendeten Stämme und das Plasmid wurden von den Projektpartnern der Universität Stuttgart zur Verfügung gestellt. Die Modifikation der Stämme erfolgte entweder mit der CRISPR-Cas Methode nach Jiang *et al.* (2015) oder durch λ -Red-Rekombinationsmethoden nach Datsenko und Wanner (2000). Zur L-Tryptophanproduktion wurden sie mit dem Plasmid pF112*aroFBL*_{Kan} transformiert (Tröndle *et al.*, 2018b). Das Plasmid trägt die induzierbaren Gene *aroF*, *aroB* und *aroL* sowie eine Kanamycinresistenz. Im Ergebnisteil wird zur Vereinfachung auf die Nennung der Plasmidbezeichnung verzichtet, da in allen gezeigten Kultivierungen die Stämme das Plasmid pF112*aroFBL*_{kan} trugen.

Alle Stämme basieren auf dem Grundstamm TRP5a (Tröndle *et al.*, 2020). Dieser Stamm trägt vier Punktmutationen im Strukturgen trpE, die zur Expression einer gegen L-Tryptophan rückkopplungsresistenten Variante der Anthranilat-Synthase (ANS) führen, sowie eine Mutation im trp-Promotor, die für eine Überexpression der Gene im trp-Operon verantwortlich ist. Weiterhin wurden das Gen des Leitpeptids trpL sowie das Repressorgen trpR zur Regulation der L-Tryptophanbildung deletiert. Die Gene tnaA, codierend für die Tryptophanase, sowie das Gen sdaB, codierend für die L-Serin-Deaminase, wurden ebenfalls ausgeschaltet. Die Stämme tragen weiterhin zusätzliche Kopien der Gene aroF, aroB und aroL im lac-Operon.

Außerdem verfügen alle verwendeten Stämme über eine zusätzliche Genkopie von serA, welche für eine rückkopplungsresistente Enzymvariante der 3-Phosphoglycerat-Dehydrogenase (PGCD) codiert. Zudem wurden genomische Insertionen der Gene tktA, codierend für die Transketolase 1 und trpB-trpA, codierend für die beiden Untereinheiten der Tryptophan-Synthase in die gezeigten Stämme eingebracht.

Einzelne Stämme wurden weiter modifiziert, sodass zusätzliche genomische Insertionen der Gene *aroB*, codierend für die 3-Dehydroquinat-Synthase (DHQS), *serB*, codierend für die Phosphoserin-Phosphatase (PSP_L), *prsA*, codierend für die Phosphoribosyl-Pyrophosphat-Synthetase (PRPPS) sowie eine weitere Genkopie von *trpBA* vorlagen.

Eine weitere verwendete Modifikation war die Insertion eines trpC-Gens aus Mycobacterium tuberculosis (M. tuberculosis), codierend für eine monofunktionale Indol-3-Glycerin-Phosphat-Synthase (IGPS). Einer der Stämme trug eine zusätzlich inserierte Kopie des shiA-Gens aus C. glutamicum (Schoppel et al., 2021). Alle Überexpressionen, die gemeinsam mit dem P_{tac}-Promotor integriert wurden, sind durch die Zugabe von Isopropyl- β -D-thiogalactopyranosid

(IPTG) induzierbar. Die Informationen zum Plasmid, die Stammbezeichnungen, die dazugehörigen genotypischen Eigenschaften, sowie die Quellen sind in Tabelle 4.1 zusammengefasst.

Stammbezeichnung	Empfänger	Modifikationen	Quelle
NT1259	TRP5a	fuc:: P_{tac} -tktA xyl:: P_{tac} -serA ^{FBR} rib:: P_{tac} -trpB-trpA	Tröndle <i>et al.</i> , 2020
NT1259 $shiA_{Cg}$	NT1259	mal:: P_{tac} -shiA (aus C. glutamicum)	für diese Arbeit vom Projektpartner bereitgestellt
NT1438	NT1259	$rib::P_{tac}-trpB-trpA$	für diese Arbeit vom Projektpartner bereitgestellt
NT1405	NT1259	ara:: P_{tac} -trpC (aus M. tuberculosis)	für diese Arbeit vom Projektpartner bereitgestellt
NT1439	NT1405	${\rm rib}{::}{\rm P}_{\rm tac}{\text -}trpB{\text -}trpA$	für diese Arbeit vom Projektpartner bereitgestellt
NT1445	NT1439	$\operatorname{rec::P_{tac}}$ -aroB	für diese Arbeit vom Projektpartner bereitgestellt
NT1444	NT1439	mtl:: P_{tac} -serB	für diese Arbeit vom Projektpartner bereitgestellt
NT1446	NT1445	mtl:: P_{tac} -serB	für diese Arbeit vom Projektpartner bereitgestellt
NT1448	NT1446	man::P _{tac} - $prsA$	für diese Arbeit vom Projektpartner bereitgestellt
Plasmidbezeichnung	Empfänger	Modifikationen	Quelle
pF112 <i>aroFBL</i> kan	pJF119EH	P _{tac} - <i>aroF</i> - <i>aroB</i> - <i>aroL</i> Kanamycinresistenz	Tröndle <i>et al.</i> , 2018b

Tabelle 4.1: Verwendete Escherichia coli-Stämme und Plasmide (bereitgestellt durch die Projektpartner der Universität Stuttgart).

4.2 Kulturmedien

LB-Medium (Lysogeny Broth)

Zur Vorbereitung der Zellen für die Plasmidtransformation sowie zur Herstellung von Glycerin-Stocks erfolgte die Kultivierung in LB-Medium, das 10 g L⁻¹ Pepton aus Casein, 5 g L⁻¹ Hefeextrakt und 10 g L⁻¹ NaCl enthielt. Der pH wurde vor dem Autoklavieren (120 °C, 20 min) auf 7 eingestellt.

Minimalmedium

Ein adaptiertes Minimalmedium nach Albermann *et al.* (2008) wurde zur Kultivierung der *E. coli*-Stämme in Schüttelkolben, im 42 L-Rührkesselreaktor, für die Durchführung von metabolischen Analysen im Vierfach-Parallelbioreaktorsystem sowie für die Herstellung von U-¹³Cmarkiertem Zellextrakt verwendet. Das Grundmedium mit den Bestandteilen Kaliumdihydrogenphosphat, Di-Kaliumhydrogenphosphat, Ammoniumsulfat und Natriumchlorid (pH 7 für die Kultivierung im Schüttelkolben) wurde ebenso wie eine $1000 \,\mathrm{g \, L^{-1}}$ Glycerinlösung separat autoklaviert. Alle restlichen Komponenten wurden in Stocklösungen sterilfiltriert. Nach dem Abkühlen aller autoklavierbaren Bestandteile wurden die sterilfiltrierten Komponenten und das Glycerin unter aseptischen Bedingungen dem Grundmedium hinzugefügt. Für die Kultivierung im Schüttelkolben betrug die Glycerinkonzentration 7 g L⁻¹, für die Satzphase im 15 L-Zulaufprozess wurden 4 g L⁻¹ zugegeben. Für die Herstellung des U-¹³C-markierten Zellextrakts diente U-¹³Cmarkierte Glucose anstatt des Glycerins als alleinige Kohlenstoffquelle. Für die metabolischen Analysen erfolgte die Zubereitung des Minimalmedium ohne Zugabe von Kohlenstoffquellen und Kanamycin. Die Zusammensetzung des Minimalmediums ist in Tabelle 4.2 angegeben.

Das Medium zur Kultivierung im 15 L-Zulaufprozess wurde zudem um 1 mL L⁻¹ einer sterilfiltrierten Spurenelementlösung nach Pan *et al.* (1987), bestehend aus $11,20 \,\mathrm{g \, L^{-1}}$ Mangansulfat-Monohydrat, $10,00 \,\mathrm{g \, L^{-1}}$ Aluminium(III)chlorid-Hexahydrat, $7,33 \,\mathrm{g \, L^{-1}}$ Cobaltchlorid-Hexahydrat, $2,00 \,\mathrm{g \, L^{-1}}$ Zinksulfat-Heptahydrat, $2,00 \,\mathrm{g \, L^{-1}}$ Natriummolybdat-Dihydrat, $1,00 \,\mathrm{g \, L^{-1}}$ Kupferchlorid-Dihydrat und $0,50 \,\mathrm{g \, L^{-1}}$ Borsäure, ergänzt. Zur Lösung der Spurenelemente wurde HCl zugegeben.

Komponente	Endkonzentration, g L^{-1}	Sterilisation	$\begin{array}{l} {\rm Stockkonzentration},\\ {\rm g}{\rm L}^{\text{-}1} \end{array}$			
Grundmedium						
Kaliumdihydrogenphosphat	3,00	autoklaviert	-			
Di-Kaliumhydrogenphosphat	12,00	autoklaviert	-			
Ammoniumsulfat	$5,\!00$	autoklaviert	-			
Natriumclorid	$5,\!00$	autoklaviert	-			
Sterile Zugabe nach dem Autoklavieren						
Magnesiumsulfat-Heptahydrat	0,3000	steril filtriert	300,00			
Calciumchlorid Dihydrat	0,0150	steril filtriert	15,00			
Eisensulfat-Heptahydrat/	$0,\!1125$	steril filtriert	22,50/			
Natriumcitrat			200,00			
Thiamin	0,0075	steril filtriert	7,50			
Glycerin	4,00/ 7,00	autoklaviert	1000,00			
Kanamycin	0,050	steril filtriert	50,00			

Tabelle 4.2: Zusammensetzung des Minimalmediums nach Albermann et al. (2008).

Zulaufmedien

Im Verlauf einer Kultivierung im 15 L-Maßstab zur L-Tryptophanproduktion, untergliedert in eine Satzphase, zwei exponentielle Zulaufphasen und eine konstante Zulaufphase, wurden drei Zulaufmedien in Sequenz verwendet. Die Kanamycin-Stocklösung wurde sterilfiltriert, alle weiteren Stocklösungen wurden separat autoklaviert und das Medium anschließend unter sterilen Bedingungen komplementiert. Das Volumen wurde nach Zugabe aller Komponenten mit Minimalmedium ohne Ammoniumsulfat aufgefüllt.

Komponente	$Endkonzentration, gL^{\text{-}1}$			Stockkonzentration, $g L^{-1}$
	Zulauf 1	Zulauf 2	Zulauf 3	
	(1,0 L)	(4,5 L)	(5,0 L)	
Glycerin	120,00	400,00	800,00	1000,00
Ammoniumsulfat	60,00	$25,\!00$	8,00	400,00
Di-Ammoniumphosphat	-	-	8,00	400,00
Kanamycin	$0,\!10$	$0,\!10$	0,10	$50,\!00$

Tabelle 4.3: Zusammensetzung der Zulaufmedien für die Kultivierung im 15 L-Maßstab. Die Zulaufmedien 1 und 2 wurden exponentiell, Zulaufmedium 3 wurde konstant zugeführt.

Phosphatpuffer; "phosphate buffered saline" (PBS)

Zur Herstellung von Verdünnungsreihen zur Bestimmung der optischen Dichte und zum Resuspendieren der Zellen vor der Inokulation wurde ein PBS-Puffer aus $8,00 \,\mathrm{g \, L^{-1}}$ Natriumchlorid, $0,20 \,\mathrm{g \, L^{-1}}$ Kaliumchlorid, $1,44 \,\mathrm{g \, L^{-1}}$ Di-Natriumhydrogenphosphat und $0,24 \,\mathrm{g \, L^{-1}}$ Kaliumdihydrogenphosphat verwendet.

Kalium-Phosphat–Puffer

Während der Herstellung von U-¹³C-markiertem Zellextrakt wurde im letzten Schritt zur Reduktion der Salzkonzentration ein Kalium-Phosphatpuffer, zusammengesetzt aus $1,36 \text{ g L}^{-1}$ Kaliumdihydrogenphosphat und $1,74 \text{ g L}^{-1}$ Di-Kaliumhydrogenphosphat und mit eingestelltem pH 7, verwendet.

Transformationspuffer

Bei der Herstellung transformationskompetenter *E. coli*-Zellen wurden die Transformationspuffer TfbI und TfbII verwendet. Der TfbI-Puffer bestand aus $2,95 \text{ g L}^{-1}$ Kaliumacetat, $12,10 \text{ g L}^{-1}$ Rubidiumchlorid, $1,45 \text{ g L}^{-1}$ Calciumchlorid, $10,00 \text{ g L}^{-1}$ Manganchlorid-Tetrahydrat und 150 mL L⁻¹ Glycerin. Der TfbII-Puffer enthielt $2,10 \text{ g L}^{-1}$ MOPS, $1,20 \text{ g L}^{-1}$ Rubidiumchlorid, $11,00 \text{ g L}^{-1}$ Glycerin. Der TfbII-Puffer enthielt $2,10 \text{ g L}^{-1}$ MOPS, $1,20 \text{ g L}^{-1}$ Rubidiumchlorid, $11,00 \text{ g L}^{-1}$ Calciumchlorid und 150 mL L⁻¹ Glycerin. Der pH des TfbI-Puffers wurde mit 20 %iger Essigsäure auf 5,8 und der des TfbII-Puffers mit 6 M NaOH-Lösung auf 6,5 eingestellt. Beide Puffer wurden vor Verwendung sterilfiltriert.

4.3 Kultivierung von Escherichia coli

4.3.1 Stammhaltung

Die langfristige Lagerung der *E. coli*-Stämme erfolgte in Kryokulturen bei -80 °C. Zur Herstellung der Kryokulturen wurden die Stämme in einem 500 mL-Schüttelkolben mit 100 mL LB-Medium bei 37 °C kultiviert. Im Stadium des exponentiellen Wachstums wurde Glycerin zu 20 % (v/v) zugegeben und die Mischung in sterile 1,5 mL Gefäße aliquotiert und bei -80 °C gelagert.

Für die kurzfristige Lagerung und vor jeder Kultivierung wurden Einzelkolonieausstriche auf Agarplatten mit LB-Medium hergestellt. Hierfür wurde das LB-Medium mit $20 \,\mathrm{g} \,\mathrm{L}^{-1}$ Agar und bei vorhandener Antibiotikaresistenz mit 50 mg L⁻¹ Kanamycin versetzt. Die Lagerung der Platten erfolgte bei 4 °C.

4.3.2 Gewinnung kompetenter Zellen und Transformation

Die Herstellung transformationskompetenter Zellen erfolgte nach der Rubidiumchlorid-Methode. Hierzu wurden die unter Kapitel 4.2 aufgeführten Transformationspuffer sterilfiltriert und auf Eis gekühlt. Zunächst wurden 10 mL LB-Medium in einem 100 mL-Schüttelkolben mit einer Einzelkolonie angeimpft und über Nacht bei 37 °C und 100 min⁻¹ inkubiert. 1,5 mL dieser Kultur wurden in 100 mL LB-Medium in einen 500 mL-Schüttelkolben überführt und bei 37 °C und 250 min⁻¹ bis zu einer Optische Dichte, gemessen bei 600 nm (OD₆₀₀), von circa 0,5 kultiviert. Anschließend wurde die Zellsuspension zentrifugiert (10 min, 3200 g) und das Zellpellet in 40 mL TfbI-Puffer resuspendiert. Nach 15-minütiger Inkubation auf Eis wurde erneut zentrifugiert und das Zellpellet in 4 mL TfbII-Puffer resuspendiert. Nach erneuter Inkubation auf Eis für 15 min, wurden je 200 µL der transformationskompetenten Zellen in 1,5 mL Gefäße aliquotiert. Die Lagerung erfolgte bei -80 °C.

Für die Transformation von Plasmid-DNA wurden 2 μ L Plasmidlösung zu 200 μ L der kompetenten *E. coli*-Zellen gegeben. Nach 30-minütiger Inkubation auf Eis erfolgte ein 45-sekündiger Hitzeschock bei 42 °C im Wasserbad. Nach kurzer Inkubation auf Eis (3 min) wurden 600 μ L steriles LB-Medium hinzugegeben. Danach erfolgte die Inkubation der Zellen für 45 min bei 37 °C und 600 min ⁻¹. Jeweils 200 μ L der Zellsuspension wurden auf einer Agarplatte mit Kanamycin ausplattiert und für 24 h bei 37 °C inkubiert.

4.3.3 Kultivierung in Schüttelkolben

Die Kultivierung in Schüttelkolben erfolgte grundsätzlich in zwei Schritten. Zunächst wurden 20 mL Minimalmedium in einem 100 mL-Schüttelkolben mit einer Einzelkolonie angeimpft und für 42 h kultiviert (37 °C, 100 min⁻¹). 3,5 mL dieser Zellkultur wurden in einen 500 mL-Schüttelkolben mit 100 mL Minimalmedium überführt und es erfolgte eine weitere Inkubation für etwa 24 h (37 °C, 250 min⁻¹).

Auf diese Weise wurde auch die Vorkultur zur Inokulation des 15 L-Zulaufprozesses gewonnen. Hierfür wurden je zwei 100 mL Kolben, befüllt mit je 20 mL Minimalmedium, inokuliert und zum Animpfen von insgesamt 10 500 mL-Kolben verwendet. Nach etwa 24 h Inkubation wurde der gesamte Inhalt der 10 Schüttelkolben als Inokulum für den 42 L-Reaktor verwendet.

4.3.4 Zulaufkultivierung im 15 L-Maßstab

Die L-Tryptophanproduktion wurde in einem halbkontinuierlichen Zulaufverfahren im 15 L-Maßstab durchgeführt. Die Kultivierung erfolgte in einem Edelstahlreaktor mit einem Absolutvolumen von 42 L und einem maximalen Arbeitsvolumen von 30 L. Alle zugehörigen Anlagenbestandteile sind Tabelle A.3 im Anhang zu entnehmen. Abbildung 4.1 zeigt die Anlage im Betrieb. Die Prozessstrategie wurde von (Tröndle *et al.*, 2018b) übernommen, die Zusammensetzung der verwendeten Medien und Zulaufmedien sind in den Tabellen 4.2 und 4.3 angegeben.

Die Temperierung des Rührkesselreaktors erfolgt durch einen Doppelmantel, der mit Kühlwasser und Dampf zum Wärmeübertrag gefüllt werden kann. Zur Homogenisierung und Gasblasendispergierung ist vom Boden des Reaktors eine Rührwelle mit drei Sechsblattscheibenrührern eingelassen. Die Rührwelle ist durch eine kondensatgeschmierte Graphitgleitringdichtung gelagert. Die Begasung des Reaktors erfolgt über ein Begasungsrohr, das an der Innenwand des Reaktors bis zum Boden führt, wo die zugeführte Druckluft durch Löcher im Begasungsrohr im Medium dispergiert wird. Vier äquidistante Strömungsbrecher, die an der Reaktorwand angebracht sind, sorgen für eine erhöhte Durchmischung des Reaktorinhalts. In Öffnungen im unteren Reaktorbereich erfolgt der Einbau von Sonden zur Messung des pH, der Temperatur und Gelöstsauerstoffkonzentration sowie eines speziell nach Hiller *et al.* (2007a) angefertigten Probenahmesystems. Am Reaktorboden befindet sich weiterhin ein Probenahmeventil zur Entnahme großer Volumina und zum Entleeren des Reaktors. Am Deckel des Reaktors sind Sonden zur Detektion von Schaum und zur Druckmessung eingelassen. Des Weiteren sind am Deckel des Reaktors fünf Durchführungen vorhanden, die mit Septen dicht und steril verschlossen werden können und durch die die Zugabe von Inokulum, Medienkomponenten und Zulaufmedien erfolgt. Die sterile Zugabe von Medienzusätzen mit Spritzen und Kanülen während des laufenden Prozesses erfolgte ebenfalls durch diese Septen. Weiterhin befindet sich am Deckel des Reaktors ein Kondensatrückflusskühler zur Kühlung der Abluft. Die Regelung und Steuerung der Prozessgrößen erfolgt über die angeschlossene Steuereinheit, die mit einem Computer und der verwendeten IRIS V5.3-Software verbunden ist.

Abbildung 4.1: Versuchsaufbau für Zulaufkultivierungen im 15 L-Maßstab. 1: 42 L-Edelstahlreaktor; 2: Probenahmesystem nach Hiller *et al.* (2007a); 3: Steuereinheit; 4: Schlauchpumpen für Titrations- und Antischaummittel; 5: Schlauchpumpe zur Förderung der Zulaufmedien; 6: Vorlageflaschen für Titrations- und Antischaummittel; 7: Abgasanalytik; 8: Zulaufmedium auf Rührplatte und Analysenwaage; 9: Computer mit IRIS Software.

Zur Vorbereitung des 42 L-Rührkesselreaktors wurden zunächst alle separat gelagerten Komponenten montiert und alle Sonden (pH, pO₂, Schaum, Druck) sowie das Probenahmesystem angeschlossen. Die pH-Sonde wurde zuvor mittels zweier Kalibrierlösungen (pH 7 und pH 4) kalibriert. Anschließend wurde der Reaktor mit einem Konzentrat des Grundmediums befüllt und mit vollentsalztem VE-Wasser auf das Startvolumen, abzüglich des Volumens des Inokulums und der hitzelabilen Medienzusätze (13,79 L), aufgefüllt. Der Reaktor mit enthaltenem Grundmedium wurde automatisiert durch ein Programm der Steuereinheit für 20 min bei 121 °C sterilisiert. Zusätzlich wurde eine manuelle Dampfsterilisation der Gleitringdichtung sowie des Boden- und Seitenventils durchgeführt. Nach Abkühlen des Reaktors auf die Kultivierungstemperatur von

37 °C wurden die separat sterilisierten Medienbestandteile aus einer sterilen Flasche über ein Septum in den Reaktor gefördert. Vor der Inokulation wurden weiterhin die Sonde zur Messung der Gelöstsauerstoffkonzentration und die Abgasanalytik kalibriert. Die aus der Vorkultur gewonnene Zellsuspension (1 L) wurde steril aus dem Vorlagebehälter in den Reaktor gepumpt. Inklusive des Inokulums betrug das Initialvolumen der Kultivierung 15 L.

Während des Prozesses wurde der pH durch Zugabe von 42 % (v/v) ortho-Phosphorsäure und 25 % Ammoniak auf 7,0 geregelt. Bei starker Schaumbildung und Detektion durch die Sonde, wurde automatisiert eine 10 % ige Lösung eines Antischaummittels (AF204) zugegeben. Während des gesamten Prozesses wurde die Sauerstoffsättigung über 40 % gehalten. Der Sauerstoffeintrag wurde zunächst durch eine schrittweise Steigerung der Rührerdrehzahl (50 min⁻¹) bis auf 1000 min⁻¹ erhöht. Nach Erreichen der maximalen Rührerdrehzahl wurde die Begasungsrate in Schritten von 5 L min⁻¹ gesteigert, um die Sauerstoffsättigung zusätzlich erhöht. Die Zufuhr der Zulaufmedien wurde gravimetrisch bestimmt, die Volumenänderung im Reaktor konnte so nachträglich ermittelt werden.

Der Prozess begann mit einer Satzphase und nach Verbrauch des Satzsubstrates (4 g L⁻¹ Glycerin), wurde die exponentielle Zulaufphase mit einer eingestellten Wachstumsrate von μ_{Soll} 0,1 h⁻¹ eingeleitet. Während der exponentiellen Zulaufphase wurden die Zulaufmedien 1 und 2 (siehe Tabelle 4.3) dem Reaktor zugeführt. Für die darauffolgende Zulaufphase wurde das Zulaufmedium 3 angeschlossen und mit einer volumetrisch konstanten Zulaufrate von 0,2 g_{Gly} g_{BTM}⁻¹ h⁻¹ in den Reaktor gepumpt. Zu Beginn der konstanten Zulaufphase wurden 0,3 mM IPTG sowie die anfänglichen Mengen der Zusätze CaCl₂, MgSO₄, FeSO₄ und Thiamin zugegeben.

4.4 Parallelisierte Kurzzeitanalysen im Zulaufverfahren

Zur Durchführung parallelisierter Kurzzeitanalysen im Zulaufverfahren wurde das in Tabelle A.4 spezifizierte Vierfach-Parallelbioreaktorsystem verwendet. Der Versuchsaufbau ist in Abbildung 4.2 gezeigt. Das Reaktorsystem verfügt über vier parallele 1 L-Rührkesselreaktoren aus Glas mit jeweils zwei Seitenarmen, die durch Schraubverschlüsse und Septen verschlossen und durch die bei Bedarf mit Spritzen und Kanülen Zugaben erfolgen können. Für die Temperierung sind die Reaktorgefäße in einen elektrischen Heiz- und Kühlblock eingebettet. Die Rührwelle wird durch einen Elektromotor betrieben, der am Deckel des Reaktors befestigt wird. An der Rührwelle sind jeweils 2 Sechsblatt-Scheibenblattrührer zur Dispersion von Gasblasen befestigt. Über Durchführungen am Reaktordeckel werden zudem Sonden zur Messung von pH, Temperatur und der Gelöstsauerstoffkonzentration sowie zur Detektion von Schaumbildung in den Reaktor eingelassen. In weitere Öffnungen erfolgt der Einbau des Begasungsrohrs, des Rückflusskühlers und des speziell nach Hiller *et al.* (2007a) angefertigten Probenahmesystems. Für die Zuführung von Säure, Base, Zulaufmedium und Antischaum stehen pro Reaktor vier Schlauchpumpen zur Verfügung. Die Zugabe erfolgt über Luerlock-Anschlüsse am Deckel der Reaktoren. Die Gasversorgung erfolgt durch vier separate Gasmischstationen mit sauerstoffangereicherter Druckluft. Vier Feinwaagen, die jeweils unterhalb des Reaktorsystems positioniert sind (nicht abgebildet), ermöglichen die gravimetrische Verfolgung der Zulaufzufuhr. Die Systemsteuerung, Regelung und Dokumentation erfolgt mithilfe der DASGIP Control Software.

Abbildung 4.2: Versuchsaufbau des Vierfach-Parallelbioreaktorsystems zur Durchführung von Kurzzeitanalysen. 1: 1 L-Rührkesselreaktor, 2: Heizblock, 3: Pumpeneinheit mit jeweils vier Schlauchpumpen zur Förderung von Säure, Base, Zulaufmedium und Antischaummittel, 4: Kontrolleinheit für Rührerdrehzahl und Temperatur, 5: Kontrolleinheit für pH und Gelöstsauerstoffkonzentration, 6: Gasmischstationen, 7: Monitor des Prozesscomputers.

Die Sonden wurden vor dem Einbau bei pH 7,0 und pH 4,0 kalibriert. Anschließend wurden die Reaktoren zusammengebaut und mit 400 mL Medium ohne Kohlenstoffquelle und Kanamycin befüllt. 0,3 mM IPTG und 0,1 % (v/v) Antischaumlösung wurden zusätzlich in die Reaktoren gegeben. Nachdem die Kultivierungstemperatur von 37 °C im Medium der Reaktoren erreicht war, wurde der pH auf 7 eingestellt. Anschließend erfolgte die Kalibrierung der Sonden für die Gelöstsauerstoffkonzentrationsmessung und der Abgasanalytikeinheiten durch Begasung mit Druckluft und Stickstoff. Für die Dauer der Kurzzeitanalyse wurden die Reaktoren mit einer Begasung von 240 L h⁻¹ (mit 40 - 50 % Sauerstoff angereicherter Druckluft) und einer Rührerdrehzahl von 1200 min ⁻¹ betrieben.

Zur Durchführung der parallelisierten Kurzzeitanalysen wurde die Methodik des schnellen Medienwechsels angewendet (Link *et al.*, 2010; Weiner *et al.*, 2016). Hierfür wurde zu einem interessanten Prozesszeitpunkt während der Kultivierung im 15 L-Zulaufverfahren, 3,6 L Zellsuspension über das Bodenventil entnommen. Die Zellsupension wurde zentrifugiert (37 °C, 3500 g, 7,5 min) und das Zellpellet in 400 mL frischem, vortemperiertem Medium ohne Kohlenstoffquellen resuspendiert. Anschließend wurde die Zellsuspension in gleichen volumetrischen Anteilen in die vier vorbereiteten Analysenreaktoren überführt und die 21-minütige Kurzzeitanalyse im Zulaufbetrieb gestartet. Die Zufuhr von Substratlösungen erfolgte über dreistufige Zulaufprofile. Die Zulaufraten wurden jeweils nach 9 min und 15 min Analysezeit erhöht. Eine schematische Darstellung des Zulaufprofils ist in Abbildung 4.3 gezeigt. Die verwendeten Substratlösungen und Zulaufraten der Kurzzeitanalysen mit *E. coli* NT1259 $shiA_{Cg}$ und *E. coli* NT1446 sind den Tabellen 4.4 und 4.5 zu entnehmen.

			5	
Zulaufsubstrate	Glyc	Gluc	Glyc & Shik	Gluc & Shik
Konz. Haupt substrat, ${\rm g}{\rm L}^{-1}$	100	80	100	80
Konz. Shikimat, $g L^{-1}$	-	-	12	9
Zulaufstufe 1, mL h^{-1}	22	24	22	24
Zulaufstufe 2, mL h^{-1}	44	45	44	45
Zulaufstufe 3, mL h^{-1}	66	66	66	66

Tabelle 4.4: Zulaufmedien und -raten in den vier Analysenreaktoren mit den Substraten Glycerin (Glyc), Glucose (Gluc), Glycerin und Shikimat (Glyc & Shik) sowie Glucose und Shikimat (Gluc & Shik) während der parallelisierten Kurzzeitanalyse im Zulaufbetrieb mit *E. coli* NT1259 $shiA_{Cg}$.

Tabelle 4.5: Zulaufmedien und -raten in den vier Analysenreaktoren mit den Substraten Glycerin (Glyc), Glucose (Gluc), Pyruvat (Pyr) und Succinat (Suc) während der parallelisierten Kurzzeitanalyse im Zulaufbetrieb mit *E. coli* NT1446.

Zulaufsubstrate Konzentration, $g L^{-1}$	Glyc 87	Gluc 63	Pyr 90	Suc 79
Zulaufstufe 1, mL h^{-1}	32	29	30	32
Zulaufstufe 2, mL h^{-1}	64	58	59	63
Zulaufstufe 3, mL h^{-1}	97	88	89	95

Für die Analyse mit *E. coli* NT1259 $shiA_{Cg}$ wurden die Substrate Glycerin, Glucose, Glycerin und Shikimat sowie Glucose und Shikimat zur Auslenkung des Stoffwechsels verwendet. Die Substrate Glycerin, Glucose, Pyruvat und Succinat wurden in der Kurzzeitanalyse mit *E. coli* NT1446 eingesetzt. Aus jedem Reaktor wurden nach 1 min, 9 min, 15 min und 21 min Proben zur Quantifizierung extrazellulärer Metabolite entnommen. Nach 8 min, 14 min und 20 min erfolgten jeweils Probenahmen zur Quantifizierung intrazellulärer Metabolite. Die Probenahme und -behandlung sind in Kapitel 4.6 beschrieben. Die Zeitpunkte der Probenahmen sind in Abbildung 4.3 gekennzeichnet.

Abbildung 4.3: Schematische Darstellung des Zulaufprofils der Substratlösungen während der metabolischen Kurzzeitanalysen im Zulaufbetrieb. Kennzeichnung der Probenahmezeitpunkte zur Analyse extrazellulärer Metabolite (E1 - E4) in grau, Probenahmezeitpunkte zur Analyse intrazellulärer Metabolite (II - I3) sind in Schwarz markiert.

4.5 Gewinnung von Uniform-¹³C-markiertem Zellextrakt

Die Herstellung eines U-¹³C-markierten Zellextrakts zur Verwendung als internem Standard für die Quantifizierung intrazellulärer Metabolite, erfolgte gemäß der von Weiner *et al.* (2015) beschriebenen Vorgehensweise. Hierfür werden sequenzielle Kultivierungen im Schüttelkolben, in einem Reaktor des Vierfach-Parallelbioreaktorsystems und abschließend im 48fach-Parallelbioreaktorsystem durchgeführt. Das 48fach-Parallelbioreaktorsystem ist in Tabelle A.5 im Anhang spezifiziert.

Zunächst wurde der Reaktor des Vierfach-Parallelbioreaktorsystems zusammengebaut und befüllt mit VE-Wasser autoklaviert (121 °C, 20 min). Unter aseptischen Bedingungen wurde das VE-Wasser gegen steriles Minimalmedium ausgetauscht. Die Zulaufleitungen für die Zuführung von Säure, Base und Antischaummittel wurden vor Anschluss des Reaktors chemisch mit 70 % Ethanol, 2 M NaOH und sterilem VE-Wasser desinfiziert.

Der Prozessschritt im 48fach-Parallelbioreaktorsystem fand unter unsterilen Bedingungen statt.

Das Betriebsvolumen der Einwegreaktoren liegt zwischen 8 und 16 mL. Die Temperierung wird durch einen elektrisch betriebenen Temperierblock, in den die Einwegreaktoren eingesetzt werden, gewährleistet. Über den Deckel des Reaktorblocks werden, befestigt an einer Hohlachse, die magnetisch betriebenen Rührer in die Reaktoren eingeführt. Der Gaseintrag erfolgt durch die Rührwelle. Die pH-Korrektur wurde durch den Pipettierroboter mit 21 % H_3PO_4 und 2 M NaOH durchgeführt. Am Boden der Reaktoren sind chemische Sensoren zur Messung des pH und der Gelöstsauerstoffkonzentration angebracht. Die optischen Messsignale werden durch Sensorriegel unterhalb der Reaktoren ausgelesen und mit der Software Fedbatch XP 1.0.213 verarbeitet. Zur Kultivierung im Schüttelkolben und im 1 L-Bioreaktor wurde Minimalmedium (siehe Tabelle 4.2) verwendet. Im 48fach-Parallelbioreaktorsystem wurde zur Reduktion der Salzkonzentration ein Kalium-Phosphat-Puffer mit pH 7 verwendet. In allen Prozessschritten wurde ausschließlich U-¹³C-markierte Glucose als Kohlenstoffquelle eingesetzt. Die 330 g L⁻¹ U-¹³C-Glucoselösung wurde autoklaviert und jeweils unmittelbar vor Inokulation in die Reaktionssysteme zugegeben.

Begonnen wurde das Prozedere mit der Inokulation von zwei 500 mL-Schüttelkolben mit je 100 mL Minimalmedium und 5 g L^{-1} U-¹³C-Glucose mit *E. coli* NT1259. Die Inkubation erfolgte für etwa 14 h bei 37 °C und 250 min⁻¹. Der Verbrauch der U-¹³C-Glucose wurde mittels eines Blutzuckermessgerätes überprüft und anschließend die Zellsuspension zunächst zentrifugiert (10 min, 3200 g) und die Zellen in sterilem PBS resuspendiert. Die Resuspension wurde unter sterilen Bedingungen auf Spritzen aufgezogen und in den mit 500 mL Minimalmedium befüllten Reaktor des Vierfach-Parallelbioreaktorsystem überführt. Die U-¹³C-Glucose-Konzentration im Medium des 1 L-Rührkesselreaktors betrug 7 g L⁻¹. Die Satzkultivierung dauerte an, bis das Substrat vollständig aufgebraucht war. Die Sauerstoffkonzentration wurde durch Anpassung der Rührerdrehzahl bei minimal 40 % Luftsättigung gehalten. Anschließend wurde die Zellsuspension entnommen und erneut zentrifugiert (10 min, 3200 g). Auf Sterilität wurde ab diesem Prozessschritt nicht mehr geachtet. Die Zellen wurden in Kalium-Phosphat-Puffer resuspendiert und gleichmäßig auf acht Reaktoren des Vierfach-Parallelbioreaktorsystems aufgeteilt. Diese waren bereits mit 10 mL Kalium-Phosphat-Puffer (pH 7) und 0,1 % Antischaumlösung befüllt, außerdem wurden 200 µL U-¹³C-Glucose zugegeben. Das Medium wurde mit 30 %igem Sauerstoff (4,8 L h⁻¹) begast, die Rührerdrehzahl war dauerhaft auf 2800 min⁻¹ eingestellt und die Temperatur wurde auf 37 °C geregelt. Der pH wurde durch Zugabe von Säure (12.5 % (v/v) ortho-Phosphorsäure) und Base (2 M NaOH) auf 7 geregelt. Bei vollständigem Verbrauch der $U^{-13}C$ -Glucose wurde der Inhalt jeweils eines Einwegreaktores in ein Probengefäß mit auf 95 °C vortemperiertem Triethanolamin (TEA)-Extraktionspuffer (30 mM TEA, pH 7,5) überführt und für 5 min in einem Wasserbad bei 95 °C inkubiert. Unmittelbar nach der Entnahme wurden die Probengefäße mit der extrahierten Lösung auf Eis abgekühlt und anschließend für 20 min bei 4 °C zentrifugiert. Der Überstand wurde aliquotiert, für 36 h gefriergetrocknet und in hochreinem Wasser resuspendiert. Über Standardaddition wurden die Metabolitkonzentrationen in der Extraktlösung mit der in Kapitel 4.7.6 beschriebenen massenspektrometrischen Methode ermittelt.

4.6 Probennahme und -aufarbeitung

Proben aus dem 15 L-Zulaufprozess und den Analysenreaktoren der parallelisierten Kurzzeitanalysen wurden über das Probenahmesystem nach Hiller *et al.* (2007a) entnommen. Aus Schüttelkolben erfolgte die Probenahme unter aseptischen Bedingungen mit der Pipette. Alle Proben wurden auf Eis gelagert.

4.6.1 Probenbehandlung zur Analyse extrazellulärer Metabolite

Die Probenahme erfolgte durch die nach Hiller *et al.* (2007a) angefertigten Probenahmerohre (Druck 0,7 bar). Bei der Durchführung metabolischer Analysen wurde die Zellsuspension nach der Entnahme unverzüglich in vorgekühlte, mit Glasperlen befüllte, 50 mL-Probengefäße überführt und auf Eis gekühlt. Das entnommene Probenvolumen diente zur Bestimmung der OD_{600} und der Biotrockenmassekonzentration. Außerdem wurden die Proben zur Quantifizierung extrazellulärer Metabolite mittels Flüssigkeitschromatographie; *"high performance liquid chromatography"* (HPLC)-Methoden und zur enzymatischen Analyse der Ammonium- und Methylglyoxal-Konzentration verwendet.

4.6.2 Probenbehandlung zur Analyse intrazellulärer Metabolite

Für Probenahmen zur Quantifizierung intrazellulärer Metabolite wurden Probenahmerohre, die mit Innenrohren ausgestattet wurden, verwendet (Hiller *et al.*, 2007a). Vor Verwendung wurden diese mit 22,5 mL Inaktivierungslösung befüllt (30 mM TEA in MeOH/VE 60:40 (v/v)) und in einem Kryostaten auf -70 °C gekühlt. Unmittelbar vor der Entnahme der Probe wurde mittels einer Vakuumpumpe ein Unterdruck von 0,15 bar in den Rohren erzeugt. Bei Kopplung an den Reaktor wurden die Zellen durch Bohrlöcher in den Innenrohren fein in der Inaktivierungslösung dispergiert und somit der Stoffwechsel im Moment der Entnahme gestoppt. Die Mischung aus entzogener Probe und Inaktivierungslösung wurde unmittelbar in vorgekühlte 50 mL-Probengefäße überführt und bei -50 °C kurzzeitig gelagert. Nach Ablauf der Analysenzeit (21 min) wurde je 1 mL Probe in 2 mL Extraktionspuffer (30 mM Triethanolamin, pH 7, 95 °C) gegeben und die Mischung für 5 min bei 95 °C extrahiert. Die Extraktion erfolgte im Dreifachansatz. In zwei der Ansätze wurden jeweils 350 µL U-¹³C-Zellextrakt in unterschiedlicher Verdünnung (unverdünnt und 1:9 (v/v) verdünnt) zugegeben, dem dritten Ansatz wurde keine Zellextraktlösung hinzugefügt. Anschließend wurden die Proben auf Eis abgekühlt, abzentrifugiert (20 min, 4 °C, 3200 g) und der Probenüberstand bei -80 °C bis zur massenspektrometrischen Analyse aufbewahrt.

4.7 Analytische Methoden

4.7.1 Bestimmung der optischen Dichte und Biotrockenmasse

Zur Überwachung des Zellwachstums während der Kultivierungen wurde die OD_{600} in 1 mL-Küvetten im Dreifachansatz bei 600 nm in einem Einstrahlphotometer bestimmt. Bei Zelldichten oberhalb des linearen Messbereichs zwischen 0,050 und 0,300, wurden die Proben entsprechend mit PBS-Puffer verdünnt. Als Referenzwert zum Nullabgleich wurde reiner PBS-Puffer verwendet.

Die Biotrockenmasse (BTM) wurde ebenfalls von jeder Probe im Dreifachansatz bestimmt. Hierzu wurden 2 mL-Reaktionsgefäßen verwendet, die zuvor leer bei 80 °C getrocknet und anschließend gewogen wurden. In jedes Reaktionsgefäß wurden 2 mL der Zellsuspension pipettiert, der Feststoff durch Zentrifugation abgetrennt (20 min, 1300 min⁻¹) und der Überstand verworfen. Nach Trocknung des Zellpellets wurde das Reaktionsgefäß erneut gewogen und die BTM aus der Massendifferenz bestimmt.

4.7.2 HPLC-Analytik zur Quantifizierung von Aminosäuren

Aufgrund hoher erreichter L-Tryptophankonzentrationen wurde die Löslichkeit in der Zellsuspension und im Probenüberstand teilweise überschritten. Um sowohl gelöstes als auch präzipitiertes L-Tryptophan erfassen zu können, erfolgte eine Probenbehandlung wie folgt. Nach Entnahme der Zellsuspension wurde die Probe für exakt 10 min auf Eis gekühlt, anschließend wurde 1 mL Probenvolumen in einem 2 mL-Reaktionsgefäß zentrifugiert (19.000 g, 10 min). Der Überstand wurde abgenommen und das verbleibende Pellet in einem Gesamtvolumen von 2 mL resuspendiert (10 min in einem Vortexer), es folgte ein weiterer Zentrifugationsschritt (19.000 g, 10 min). Der erhaltene Überstand wurde 1:1 (v/v) für die HPLC-Messung verdünnt. Der nach dem ersten Zentrifugationsschritt erhaltene Probenüberstand wurde 1:9 (v/v) verdünnt und ebenfalls zur Analyse bereitgestellt. Für die Probenanalyse der Experimente im Schüttelkolben und der metabolischen Analyse des Shikimattransporterstammes NT1259 $shiA_{Cg}$ wurde nur der Probenüberstand analysiert.

Die Quantifizierung erfolgte mit einer HPLC-Anlage mit Fluoreszenzdetektor, bei einer Anregung mit 340 nm und Emission bei 450 nm. Die Anlagenbestandteile sind Tabelle A.8 im Anhang zu entnehmen. Vor der Probeninjektion durch den Probengeber erfolgte eine Derivatisierung mit ortho-Phtaldialdehyd (OPA), Mercaptopropionsäure (MCS) und Iodessigsäure (IES), die in 40 mM Bicin-Puffer (pH 10,2) vorlagen. Hierfür wurden in einem ersten Schritt 10 μ L Probe in ein Zielprobengefäß mit 658 μ L einer 0,3 mM MCS-Lösung überführt und durch mehrmaliges Aufziehen mit der Probennadel vermischt. Es folgte die Zugabe von 20 μ L IES-Lösung (3,5 mM) in das Zielprobengefäß und ein weiterer Mischvorgang. Anschließend wurden 70 μ L OPA-Lösung (11 mM in Bicin/ MeOH/ MCS 92,8 : 7,1 : 0,1 (v/v/v)) zugegeben und erneut gemischt. Schließlich wurden 20 μ L der Lösung im Zielprobengefäß auf eine Gemini-C18-Säule injiziert. Die chromatografische Trennung erfolgte für 43 min bei 40 °C mit einer Flussrate von 1 mL L⁻¹. Hierbei wurde ein Gradient aus Laufmittel A (20 mM NaH₂PO₄, pH 7,6) und Laufmittel B (MeOH/ Acetonitril/ VE 45:45:10 (v/v/v)) angewandt. Das Profil des Gradienten ist in Tabelle A.9 im Anhang dargestellt.

4.7.3 HPLC-Analytik zur Quantifizierung von Säuren, Alkoholen und Zuckern

Die extrazellulär vorliegenden organischen Säuren, Alkohole und Zucker wurden mittels HPLC-Methoden quantifiziert. Die hierfür verwendeten Anlagen sind in den Tabellen A.6 und A.7 spezifiziert. Die Auftrennung der Analytprobenlösung erfolgte mit einem isokratischen Fluss von 0,6 mL min⁻¹ 5 mM H₂SO₄ für 32 min. Die verwendete Aminex HPX-87H Säule (BioRad) wurde auf 60 °C temperiert. Das Injektionsvolumen betrug 20 μ L und die Detektion erfolgte mittels eines Brechungsindexdetektors bei 950 nm.

4.7.4 Enzymatische Quantifizierung von Ammoniak

Die Quantifizierung der Ammoniumkonzentrationen erfolgte mittels eines Enzymassays der Firma Boehringer Mannheim (Art.-Nr. 11112732035), gemäß den Herstellerangaben. Allerdings wurde die Analyse in nur 10 % des angegebenen Volumens in Vertiefungen einer Mikrotiterplatte durchgeführt. Die Enzymlösung des Präparats wurde 1:3 (v/v) mit Triethanolaminpuffer verdünnt und für die nadh-Lösung wurden die bereitgestellten Tabletten ebenfalls in Triethanolaminpuffer aufgelöst. Die Bestimmung des Ammoniakgehalts erfolgte mithilfe einer Verdünnungsreihe der im Präparat enthaltenen Standardlösung. Standards und Leerwerte (VE-Wasser) wurden doppelt, Probenüberstände wurden einfach gemessen. Die Pipettierschritte sowie die photometrische Messung bei 340 nm wurden automatisiert durch einen Pipettierroboter mit integriertem Mikrotiterplatten-Photometer durchgeführt.

4.7.5 Enzymatische Quantifizierung von Methylglyoxal

Die Methylglyoxal (mgo)-Konzentrationen wurden mittels eines enzymatischen Assays der Firma BioVision Inc. (Milpitas, USA) bestimmt. Der Nachweis des mgos erfolgt durch dessen Umsetzung mittels einer Reihe von Enzymen. Das Endprodukt der enzymatischen Reaktionen, ein reduziertes Chromophor, erzeugt ein stabiles Signal, dessen Absorption mittels eines Mikrotiterplatten-Photometer bei 450 nm quantifiziert werden kann. Das Signal ist dabei direkt proportional zur Menge des mgo in den Proben. Vor der Analyse wurden die Proben durch einen Filter der Porengröße $0.22 \ \mu M$ sterilfiltriert und eine 1:1 (v/v) Probenverdünnung in VE-Wasser hergestellt. Es folgte die Deproteinisierung der Proben durch ein Probenvorbereitungspräparat (II) der Firma BioVision Inc. (Milpitas, USA), um Interferenzen der Enzyme des Assays mit Enzymen der Probenüberstände zu vermeiden. Es folgte die Verdünnung der Proben, sodass die Konzentrationen im Messbereich von 0,1 bis 0,5 mM lagen. In Abweichung zur vom Hersteller bereitgestellten Anleitung, wurde der Hintergrundmesswert nicht mit Wasser und Enzymkomponenten ermittelt, sondern es wurden Probenüberstand und nur zwei statt drei Enzymkomponenten zugegeben, um das Ablaufen der Reaktion zu verhindern. Der Grund für diese Vorgehensweise ist die hohe Absorption des Mediums im Wellenlängenbereich der Messung. Die Standards und Proben wurden jeweils in einer Einzelbestimmung gemessen, dabei wurden die Probenmesswerte mit den Werten der Hintergrundmessungen korrigiert.

4.7.6 Massenspektrometrische Analytik zur Quantifizierung intrazellulärer Metabolite

Intrazelluläre Metabolitkonzentrationen wurden mit einer Hochleistungsflüssigkeitschromatographie; "ultrahigh performance liquid chromatography" (UHPLC)-Massenspektrometer (MS)-Methode quantifiziert. Die Spezifikation der Anlagenbestandteile ist in Tabelle A.10 im Anhang angegeben. 20 µL der Probe wurden durch den Probengeber (temperiert auf 8 °C) auf die Acquity HSS T3 Säule injiziiert und bei 40 °C durch einen Gradienten aus Laufmittel A (10 mM Tributylyamin, 15 mM Essigsäure, 5 % (v/v) Methanol (MeOH)) und Laufmittel B (2-Propanol) für 36 min aufgetrennt. Das Pumpenprofil des Laufmittelgradienten ist in Tabelle A.11 aufgeführt. Für die Herstellung der Laufmittel wurden ausschließlich Lösemittel hochreiner MS-Qualität verwendet, für Laufmittel A wurde gemäß den Angaben in Link et al. (2012) vorgegangen. Die Elektronenspray-Ionisation der Probe erfolgte bei Eintritt in den TSQ Vantage Massenspektrometer bei einer Spray-Voltage von 2,0 kV und einer Vaporizer-Temperatur von 400 °C. Der Sheath-Gasdruck betrug 5,0, der Aux-Gasdruck 20,0 und die Kapillare wurde auf 380 °C geheizt. Die Aufteilung in zwei Messsegmente ermöglichte die Optimierung der S-Lens-Einstellungen für die unterschiedlichen Metabolite. Die Messung erfolgte im Modus zur Detektion negativer Ionen. Die Datenaufzeichnung und -auswertung erfolgte mithilfe der Xcalibur 2.2-Software. Zur Konzentrationsbestimmung wurde ein externer Standard sowie falls der entsprechende Analyt im eigens hergestellten U-¹³C-markierten Zellextrakt enthalten war, zusätzlich durch den U-¹³Cmarkierten internen Standard.

4.8 Computergestützte Analyse von Stoffwechselnetzwerken

Die Abschätzung der intrazellulären Stoffflussverteilungen basierte auf der "Constraint-Based Reconstruction and Analysis-Methode" (COBRAPy) nach Ebrahim et al. (2013). Die Berechnungen erfolgten in Python 3.8.5 und für die Anwendung wurde in der webbasierten Jupyter Notebook-Umgebung gearbeitet. Neben klassischen Flussanalysen (FBA und FVA) wurden der CycleFreeFlux-Algorithmus von Desouki et al. (2015) und die PyTFA-Methodik von Salvy et al. (2019) zur thermodynamischen Flussanalyse verwendet. Die Optimierungsprobleme wurden durch lineare Programmierung beziehungsweise MILP mit dem Gurobi Solver (Version 9.1.1) der Firma Gurobi Optimization (Houston, USA) gelöst. Das verwendete genomweite Modell iJO1366 wurde der BIGG-Datenbank entnommen und basierte auf dem E. coli-Stamm K12 MG1655. Es wurde an die spezifischen Eigenschaften der Stämme und die vorherrschenden Kultivierungsbedingungen angepasst. Aufgrund der Deletion des L-Tryptophan spaltenden Enzyms TRPAS2 in den verwendeten Stämmen wurde die entsprechende Reaktion aus dem Modell entfernt. Die doppelte Anlage der L-Tryptophan bereitstellenden Reaktion der Tryptophan-Synthase (TRPS1) wurde zur Vermeidung interner Schleifen ebenfalls aus dem Modell entfernt. Auch die Reaktionen des Stoffwechselwegs zum Glycerinabbau unter anaeroben Bedingungen wurden aufgrund der aeroben Kultivierungsbedingungen mit Nullflüssen versehen. Da für die Fructose-6-phosphat-Aldolase (F6PA) bei Aufnahme von Glycerin (Schurmann & Sprenger, 2001), und für die malic *enzymes* (ME1, ME2) bei der Produktion aromatischer Aminosäuren (Weiner *et al.*, 2014b) keine Aktivitäten festgestellt werden konnten, wurden diese Reaktionen im Modell ebenfalls zu Null gesetzt. Für alle nicht gemessenen Austauschreaktionen wurde ebenfalls ein Wert von Null angenommen.

Für die Simulationen, basierend auf den Daten, die während der metabolischen Analyse mit dem Shikimattransporterstamm NT1259 $shiA_{Cg}$ erhoben wurden, wurden Reaktionen zur Aufnahme von Shikimat in die Zelle in das Modell integriert. Für Berechnungen mit dem gezielt genetisch modifizierten Stamm *E. coli* NT1446 wurde aufgrund gemessener mgo-Bildungsraten ein Transportmechanismus zur Abgabe des Metabolits in das Modell integriert.

Für alle Abschätzungen wurden die experimentell ermittelten extrazellulären Raten sowie die gemessenen intrazellulären Metabolitkonzentration zur Beschränkung des Lösungsraums verwendet. Als Kriterium zur Optimierung wurde die Maximierung der Biomassebildung gewählt. Um für alle Modelle Lösbarkeit zu erreichen, wurden in einigen Fällen die unteren Grenzen der gemessenen Nebenproduktbildungsraten herabgesetzt.

Für eine effiziente Entfernung von Schleifen aus den Lösungen wurde zunächst eine Flussvarianzanalyse mit der CycleFreeFlux-Methodik durchgeführt, die berechneten Nullflüsse wurden als Lösungsraumbeschränkung für die Berechnungen mit der pyTFA-Methodik übernommen. Falls nach Anwendung des CycleFreeFlux-Algorithmus weiterhin Schleifen auftraten, wurden diese manuell entfernt.

Für die Berechnungen wurden die physikalischen Bedingungen, wie von Kümmel *et al.* (2006) beschrieben, angenommen. Es erfolgte die Anpassung des extrazellulären pH auf 7, der Ionenstärke auf 0,15 mM und der Temperatur auf 37 °C. Die Lösungsgrenzen für berechnete intrazelluläre Metabolitkonzentrationen lagen bei 0,001 mM am unteren Rand und 50 mM am oberen. Das Varianzkriterium für die Flussvarianzanalysen betrug 99 % der optimalen Lösung. Der Lösungsraum wurde weiterhin durch eine Abtastfunktion (OptGpSampler) nach Megchelenbrink *et al.* (2014) statistisch untersucht, dabei wurden 10.000 Rechenzyklen durchlaufen.
5 Ergebnisse und Diskussion

5.1 Validierung der Methodik zur Abschätzung von Stoffflussverteilungen

In der vorliegenden Arbeit wurden zur Modellierung intrazellulärer Stoffwechselabläufe Methoden der Flussbilanzanalyse und Flussvarianzanalyse eingesetzt. Klassischerweise dienen zur Schätzung intrazellulärer Stoffflussverteilungen gemessene extrazelluläre Raten wie die der Produkt- und Nebenproduktbildung, der Substrataufnahme sowie die der Atmung zur Begrenzung des Lösungsraumes. Da thermodynamische Gesetze in diesen Berechnungsmethoden nicht berücksichtigt sind, werden auf diese Weise auch Flussverteilungen in den Lösungen mit eingeschlossen, die der Physiologie und Thermodynamik widersprechen. Eine Weiterentwicklung der klassischen Flussanalyse ermöglicht die Integration von Metabolomdaten und ermittelt unter Berücksichtigung thermodynamischer Gesetze Stoffflussverteilungen, Gibbs'sche Reaktionsenergien und mögliche Konzentrationsbereiche nicht gemessener intrazellulärer Metabolite (Salvy et al., 2019). Da die in dieser Arbeit durchgeführten metabolischen Analysen neben Daten zum extrazellulären Fluxom auch Informationen zum intrazellulären Metabolom liefern, eignet sich die TFA grundsätzlich sehr gut zur Abschätzung intrazellulärer Stoffflussverteilungen für diese Zwecke. Insbesondere, da für die Methodik der MCA neben intrazellulären Stoffflussverteilungen auch thermodynamische Größen bekannt sein müssen und diese mit der TFA-Methode innerhalb eines Optimierungsproblems abgeschätzt werden können.

Mit zunehmender Größe der verwendeten genomweiten Modelle steigt auch die Wahrscheinlichkeit für das Auftreten metabolischer Schleifen und deren Einschluss in die abgeschätzten Lösungsbereiche. Dies stellt insbesondere in der praktischen Anwendung dieser Methoden eine große Herausforderung dar, da die metabolischen Schleifen biologisch höchst unwahrscheinlich sind und deshalb für eine sinnvolle Ergebnisdarstellung aus den Lösungen entfernt werden müssen. Da eine manuelle Beseitigung zeitaufwändig und unzuverlässig ist, wurden in den letzten Jahren verschiedene Methoden zur systematischen Entfernung von Schleifen entwickelt. Auch die TFA soll thermodynamisch nicht sinnvolle Schleifen unterbinden, jedoch zeigte sich in der praktischen Anwendung, dass dies nicht für alle internen Schleifen zuverlässig geschieht.

Im Folgenden soll die Verwendung und Kombination der klassischen Flussbilanz-/ und Flussvarianzanalyse, der TFA-Methode sowie der von Desouki *et al.* (2015) entwickelte Algorithmus CycleFreeFlux für die Abschätzung der Stoffflussverteilungen für die Zwecke in dieser Arbeit evaluiert werden. Im Fokus der Analysen stehen die Effektivität bei der Auffindung von Schleifen sowie die Übereinstimmung der Schätzungen mit Messwerten.

Für die Abschätzungen wurde das genomweite *E. coli* Modell *i*JO1366 verwendet. Zur Lösungsraumbeschränkung dienten extrazelluläre Raten, die während einer Zulaufkultivierung des L-Tryptophanproduktionsstammes NT1446 mit der Kohlenstoffquelle Glycerin erhoben wurde. Die vorgegebenen Aufnahme- und Bildungsraten sind in Tabelle 5.1 angegeben.

Tabelle 5.1: Vorgegebene Grenzen (Einheit: mmol $g_{BTM}^{-1} h^{-1}$), basierend auf experimentell ermittelten zellspezifischen Raten während der Kultivierung von *E. coli* NT1446 im 15 L-Zulaufverfahren, zur Beschränkung des Lösungsraumes bei der Abschätzung von Stoffflussverteilungen.

Reaktion	minimale Rate	maximale Rate
Glycerinaufnahme	2,797	2,874
Tryptophan-Bildung	0,111	$0,\!112$
Sauerstoffaufnahme	6,645	6,928
Kohlenstoffdioxidbildung	$4,\!653$	4,937

Nebenproduktbildungen traten im betrachteten Prozesszeitraum nicht auf und wurden im Modell mit Nullflüssen versehen. Des Weiteren wurden zur Anpassung des Modells an den Genotyp und die aeroben Kultivierungsbedingunen die Reaktionen der Tryptophanase (TRPAS2), der Malat-Enzyme (ME1 und ME2), sowie die Reaktionen der Dihydroxyaceton Phosphotransferase (DAHPT) und die der Glycerin-Dehydrogenase (GLYCDx) zu Null gesetzt. Die für die L-Tryptophanbiosynthese redundante Reaktion der Tryptophan Synthase (TRPS1) wurde ebenfalls aus dem Modell ausgeschlossen. Es wurden keine weiteren manuellen Änderungen vorgenommen, um die Leistung der Methoden nicht zu verfälschen. Die Biomassebildungsfunktion wurde als Zielfunktion der Optimierungsprobleme eingesetzt. Für die TFA wurden insgesamt 32 gemessene intrazelluläre Metabolitkonzentrationsbereiche vorgegeben. Die Temperatur wurde mit 37 °C, der extrazelluläre pH mit 7 und die Ionenstärke mit 0,15 M festgelegt. Abbildung 5.1 zeigt die durch verschiedene Methoden der Flussvarianzanalyse erhaltenen Flussbereiche für beispielhaft ausgewählte Reaktionen des genomweiten Modells. In Tabelle 5.2 sind die angewandten Methoden und die verwendeten Abkürzungen für eine bessere Übersichtlichkeit zusammengefasst.

Bezeichnung	Methoden	Quelle
FBA	klassische Flussbilanzanalyse	(Hyduke <i>et al.</i> , 2011) (Ebrahim <i>et al.</i> , 2013)
FVA	klassische Flussvarianzanalyse	(Hyduke <i>et al.</i> , 2011) (Ebrahim <i>et al.</i> , 2013)
FVA ll	CycleFreeFlux-Algorithmus	(Desouki et al., 2015)
TFA	thermodynamische Flussbilanzanalyse	(Salvy <i>et al.</i> , 2019)
TVA	thermodynamische Flussvarianzanalyse	(Salvy <i>et al.</i> , 2019)
TVA & Met	thermodynamische Flussvarianzanalyse Vorgabe von Metabolitkonzentrationen	(Salvy <i>et al.</i> , 2019)
FVA ll & TFA & Met	CycleFreeFlux -Algorithmus Vorgabe der Reaktionsrichtungen thermodynamische Flussbilanzanalyse Vorgabe von Metabolitkonzentrationen	(Desouki <i>et al.</i> , 2015) (Salvy <i>et al.</i> , 2019)
FVA ll & TVA & Met	CycleFreeFlux -Algorithmus Vorgabe der Reaktionsrichtungen thermodynamische Flussvarianzanalyse Vorgabe von Metabolitkonzentrationen	(Desouki <i>et al.</i> , 2015) (Salvy <i>et al.</i> , 2019)

Tabelle 5.2: Bei der Evaluation verwendete Methoden zur Schätzung von Stoffflussverteilungen.

Für die FBA ergab sich bei Nutzung der klassischen FVA ein möglicher Flussbereich von -17,63 mmol $g_{BTM}^{-1} h^{-1}$ bis -0,18 mmol $g_{BTM}^{-1} h^{-1}$. Bei Substrataufnahmeraten von über -3 mmol $g_{BTM}^{-1} h^{-1}$ sind derart negative Werte nicht sinnvoll und müssen die Folge von Schleifenbildungen sein. Durch Anwendung des CycleFreeFlux-Algorithmus (FVA ll) konnte der Lösungsbereich der FBA auf -5,52 mmol $g_{BTM}^{-1} h^{-1}$ bis -0,19 mmol $g_{BTM}^{-1} h^{-1}$ eingeschränkt werden. Die Anwendung der thermodynamischen Flussvarianzanalyse (TVA) ohne Vorgabe intrazellulärer Metabolitkonzentrationen führte zu einem theoretisch möglichen Flussbereich von -17,15 mmol $g_{BTM}^{-1} h^{-1}$ bis -0,18 mmol $g_{BTM}^{-1} h^{-1}$ und der Lösungsbereich verringerte sich durch die Vorgabe der intrazellulären Metabolitkonzentrationen auf -14,18 mmol $g_{BTM}^{-1} h^{-1}$ bis -0,18 mmol $g_{BTM}^{-1} h^{-1}$ bis -0,18 mmol $g_{BTM}^{-1} h^{-1}$ bis -0,18 mmol $g_{BTM}^{-1} h^{-1}$ kombination der *loopless*-Flussvarianzanalyse (FVA ll) Methode mit der TVA, indem die internen und EGC Loops zunächst mit der FVA ll identifiziert, die Reaktionsrichtungen dann in der berechneten Orientierung für die TVA festgelegt und anschließend die Flussverteilungen mittels der TVA abgeschätzt wurden, erhielt man einen deutlich eingeschränkten und sinnvollen Lösungsbereich von -0,33 mmol $g_{BTM}^{-1} h^{-1}$ bis -0,19 mmol $g_{BTM}^{-1} h^{-1}$

Abbildung 5.1: Mittels klassischer Flussvarianzanalyse (FVA), loopfreier Flussvarianzanalyse (FVA ll), thermodynamischer Flussvarianzanalyse (TVA), thermodynamischer Flussvarianzanalyse mit Vorgabe der gemessenen intrazellulären Metabolitkonzentrationen (TVA & Met) und thermodynamischer Flussvarianzanalyse mit vorheriger Beschränkung der Reaktionsrichtungen durch die loopfreie FVA und Vorgabe der gemessenen intrazellulären Metabolitkonzentrationen (FVA ll & TVA & Met) geschätzte Lösungsbereiche (Einheit: mmol g_{BTM}^{-1} h⁻¹) für die Reaktionen Fructose-1,6-Bisphosphat-Aldolase (FBA), Transketolase 1 (TKT1), Fumarase (FUM) und 3-Deoxy-D-Arabino-Heptulosonat-7-Phosphat-Synthase (DDPA).

Für die Reaktion der TKT1 im Pentosephosphatweg wurden mit der klassischen FVA, der TVA und TVA mit Vorgabe von Metabolomdaten (TVA & Met) mögliche positive und negative Lösungsbereiche berechnet. Durch die Verwendung des CycleFreeFlux-Algorithmus konnten die Lösungsbereiche der FVA II und der kombinierten Methode (FVA II & TVA & Met) auf einen Bereich von 0 mmol g_{BTM}^{-1} h⁻¹ bis 0,14 mmol g_{BTM}^{-1} h⁻¹ eingeschränkt werden.

Für die dem Citratzyklus angehörende Reaktion der FUM wurden mit den Methoden FVA, TVA sowie der TVA & Met-Methode sehr hohe Stoffflüsse von bis über 35 mmol $g_{BTM}^{-1} h^{-1}$ berechnet. Erst durch die Anwendung der FVA ll wurde ein sinnvoller Stoffflussbereich von $0,26 \text{ mmol } g_{BTM}^{-1} h^{-1}$ bis $6,19 \text{ mmol } g_{BTM}^{-1} h^{-1}$ ermittelt, der durch die FVA ll & TVA & Met-Methode weiter auf 1,34 mmol $g_{BTM}^{-1} h^{-1}$ bis $1.55 \text{ mmol } g_{BTM}^{-1} h^{-1}$ eingeschränkt wurde.

Für die Reaktion der DDPA ergaben sich mit der FVA und FVA II geringfügig größere Stoffflussbereiche als mit den TVA-basierten Methoden ermittelt wurden. Durch die Vorgabe der L-Tryptophanbildungsrate und der Linearität dieses Stoffwechselwegs ist die Varianz der Flussverteilung in der Chorismatbiosynthese für alle Berechnungsmethoden nur sehr gering.

Abbildung 5.2 gibt einen Überblick über die Anzahl an aktiven Reaktionen und Reaktionsrichtungen des gesamten Modells bei Verwendung der verschiedenen Methoden.

Abbildung 5.2: Anzahl an aktiven Reaktionen und Reaktionsrichungen bei der Abschätzung von Stoffflussverteilungen mit den Methoden klassischer Flussvarianzanalyse (FVA), loopfreier Flussvarianzanalyse (FVA II), thermodynamischer Flussvarianzanalyse (TVA), thermodynamischer Flussvarianzanalyse mit Vorgabe der gemessenen intrazellulären Metabolitkonzentrationen (TVA & Met) und thermodynamischer Flussvarianzanalyse mit vorheriger Beschränkung der Reaktionsrichtungen durch die loopfreie FVA und Vorgabe der gemessenen intrazellulären Metabolitkonzentrationen (FVA II & TVA & Met).

Für die klassische FVA ergaben sich insgesamt 1607 aktive Reaktionen mit 2098 aktiven Reaktionsrichtungen. Durch Anwendung des CycleFreeFlux-Algorithmus (FVA ll) reduzierte sich die Anzahl aller aktiven Reaktionen auf 831 und die Anzahl der aktiven Reaktionsrichtungen auf 1284. Für die reine TVA-Methodik betrug die Anzahl aktiver Reaktionen 1262 und die der aktiven Reaktionsrichtungen 1721. Durch Vorgabe der Metabolitkonzentrationen (TVA & Met) verringerte sich die Anzahl der Reaktionen um 14 und die der Reaktionsrichtungen um zehn. Durch die FVA ll & TVA & Met-Methode wurde die Anzahl der Reaktionen deutlich auf 664 und die Anzahl der aktiven Reaktionsrichtungen auf 1150 reduziert. Damit waren im Vergleich zur klassischen FVA nur noch etwa 41% der Reaktionen und 54% der Reaktionsrichtungen aktiv. Insbesondere die Anwendung des CycleFreeAlgorithmus führte zur deutlichen Reduktion der aktiven Reaktionen und Reaktionsrichtungen.

Für weitere Betrachtungen wurde der Vergleich der klassischen FVA- und der kombinierten Methode FVA ll & TVA & Met fokussiert. Für die Teilbereiche des im Modell abgebildeten Metabolismus sollte der Einfluss der gewählten Methode auf die Lösungswerte der Flussbilanzanalysen (FBA beziehungsweise FVA ll & TFA & Met) und die durch die Flussvarianzanalysen (FVA beziehungsweise FVA ll & TVA & Met) ermittelten "Lösungsspannen" erfasst werden. Die Lösungsspanne bezeichnet hierbei die Differenz des höchsten und niedrigsten Wert, der durch die Methoden der Flussvarianzanalysen ermittelt wurde. Hierfür wurden alle Reaktionen des verwendeten Modells iJO1366, die bereits in Subsystemen organisiert sind, den acht Teilbereichen Kohlenstoffmetabolismus, Energie- und Erhaltungsstoffwechsel, Aminosäuremetabolismus, Cofaktor- und Vitaminsynthese, Lipidstoffwechsel, Nukleotidmetabolismus, Zellwandbiosynthese und Transport zugeordnet. Abbildung 5.3 zeigt im Vergleich die Ergebnisse für die Teilbereiche des Kohlenstoffmetabolismus, Energie- und Erhaltungsstoffwechsels und des Aminosäuremetabolismus für die Methoden FVA und FVA ll & TVA & Met sowie für die Ergebnisse der FBA beziehungsweise der FVA ll & TFA & Met-Methodik.

Dem Teilbereich des Kohlenstoffmetabolismus sind insgesamt 268 Reaktionen zugeordnet. Die Mehrheit der FBA-Lösungen aus diesem Bereich konzentrierten sich nahe 0 mmol g_{BTM}^{-1} h⁻¹, insgesamt erstreckten sich die FBA-Lösungen jedoch über einen Bereich von -1.5 mmol g_{BTM}^{-1} h⁻¹ bis 1.5 mmol g_{BTM}^{-1} h⁻¹. Für einzelne Reaktionen der Subsysteme Glykolyse/ Gluconeogenese und alternativer Kohlenstoffmetabolismus wurden auch FBA-Lösungen von unter -1,5 mmol g_{BTM}^{-1} h⁻¹ und über 1,5 mmol g_{BTM}^{-1} h⁻¹ berechnet.

Ein Großteil der durch die klassische FVA ermittelten Lösungsspannen lag zwischen 0 mmol g_{BTM}^{-1} h⁻¹ und 100 mmol g_{BTM}^{-1} h⁻¹, wobei für einen erheblichen Teil der Reaktionen, insbesondere aus dem Citratzyklus, der Glykolyse/ Gluconeogenese, dem alternativen Kohlenstoffmetabolismus und dem Pyruvatmetabolismus, Lösungspannen von über 10 mmol g_{BTM}^{-1} h⁻¹ abgeschätzt wurden, was auf Schleifenbildungen in diesen Stoffwechselwegen hindeutet. Für einzelne Reaktionen dieser Subsysteme wurden Lösungsspannen von bis zu 1000 mmol g_{BTM}^{-1} h⁻¹ ermittelt. Dieser Wert entspricht dem durch das Modell vorgegebenen Maximum für eine Reaktionsrichtung. Durch die Verwendung der kombinierten FVA ll & TFA & Met-Methodik rückten die Lösungen in den Bereich von -1,25 mmol g_{BTM}^{-1} h⁻¹, da diese durch die gemessene Glycerinaufnahmerate indirekt vorgegeben war. Die Lösungsspannen konnten für alle Reaktionen gesenkt werden, sodass keine Spanne von über 10 mmol g_{BTM}^{-1} h⁻¹ ausgegeben wurde. Für den Großteil der Reaktionen mit der kombinierten FVA ll & TVA & Met-Methodik Lösungsspannen zwischen 0 mmol g_{BTM}^{-1} h⁻¹ ausgeschätzt.

Gerade in diesen zentralen Bereichen des Kohlenstoffmetabolismus besitzt die Zelle viele redundante und stark verzweigte Stoffwechselwege, um auf geänderte Umwelteinflüsse reagieren zu können. Dies führt bei Nutzung der FVA häufig zur Schleifenbildung und damit einhergehenden großen Lösungsspannen. Durch die Verwendung der kombinierten Methodik, in der der CycleFreeFlux-Algorithmus sowie thermodynamische Gesetze und Metabolitkonzentrationen zur Beschränkung des Lösungsraumes eingesetzt wurden, konnten hohe Lösungsspannen deutlich auf sinnvolle Werte von unter 10 mmol g_{BTM}^{-1} h⁻¹ reduziert werden.

Für den Teilbereich Energiemetabolismus wurden mit der klassischen FBA-Methode vorwiegend Werte nahe 0 mmol g_{BTM}^{-1} h⁻¹ ermittelt. Für zentrale Reaktionen der oxidativen Phosphorylierung wie die atp-Synthase (ATPS4rpp), einzelne nadh-Dehydrogenasen (NADH10) oder nad-Transhydrogenasen ergaben sich Stoffflüsse von über 5 mmol g_{BTM}^{-1} h⁻¹. Ein negativer Wert wurde nur für die Reaktion der Polyphosphat-Kinase (PPKr) ermittelt. Die Lösungsspannen für die meisten Reaktionen lagen zwischen 1 mmol g_{BTM}^{-1} h⁻¹ und 50 mmol g_{BTM}^{-1} h⁻¹. Nur für die Polyphosphat-Kinase (PPKr) war die Lösungsspanne größer als 1000 mmol g_{BTM}^{-1} h⁻¹. Bei der Verwendung der kombinierten FVA II & TFA & Met-Methodik wurden Stoffflüsse von bis 9 mmol g_{BTM}^{-1} h⁻¹ für einzelne Reaktionen der oxidativen Phosphorylierung ermittelt. Im Vergleich zur FVA ging die Anzahl der aktiven Reaktionen zurück und die Lösungsspannen konnten auf unter $10 \text{ mmol } g_{\text{BTM}}^{-1} \text{ h}^{-1}$ beschränkt werden. Der Stofffluss der Polyphosphat-Kinase (PPKr) wurde durch den CycleFreeFlux-Algorithmus als interne Schleife erkannt und bei Verwendung der kombinierten Methode zu null gesetzt.

Im Teilbereich des Aminosäurestoffwechsels wurden die Lösungen durch die Art der Methodik kaum beeinflusst. Für die dem Histidinmetabolismus angehörige Reaktion PRPPS, wurde mit der FBA ein negativer Stofffluss von -0,99 mmol $g_{BTM}^{-1} h^{-1}$ und mit der FVA eine hohe Lösungsspanne von 1017 mmol $g_{BTM}^{-1} h^{-1}$ abgeschätzt. Durch die kombinierte Methodik wurde hierin ein EGC identifiziert und sowohl die TFA-Lösung als auch die Flussspanne auf 0,17 mmol $g_{BTM}^{-1} h^{-1}$ herabgesetzt. Während mit der klassischen FVA-Methodik die Mehrzahl der Lösungsspannen oberhalb von 1 mmol $g_{BTM}^{-1} h^{-1}$ lagen, wurden für die kombinierte FVA ll & TVA & Met-Methodik keine Lösungsspannen größer als 1 mmol $g_{BTM}^{-1} h^{-1}$ abgeschätzt. Für alle Subsysteme konnten die Lösungsspannen durch Verwendung der kombinierten Methode deutlich verringert werden.

Abbildung 5.3: Lösungen der FBA-Methodik (FBA: X-Achse, links) und der FVA ll & TFA & Met-Methode (TFA: X-Achse, rechts) sowie die Lösungsspannen der klassischen FVA (FVA: Y-Achse, links) und der FVA ll & TVA & Met-Methode (TVA: Y-Achse, rechts) für die Reaktionen des Kohlenstoffmetabolismuns (KM) mit den Subsystemen alternativer Kohlenstoffmetabolismus (Alt. Kohlenstoff) Citratzyklus (TCA), Glykolyse/Gluconeogenese (Glyk/ Gluc), Glyoxylat-Metabolismus (Glyoxylat), Pentosephosphatweg (PPP) und Pyruvatmetabolismus (Pyr), des Energiemetabolismus (EM) mit den Subsystemen anaplerotische Reaktionen, Stickstoffmetabolismus (Stickstoff) und oxidative Phosphorylierung, sowie des Aminosäurenmetabolismus (AAM) mit den Subsystemen der Stoffwechselwege von Alanin und Aspartat (Ala & Asp), Arginin und Prolin (Arg & Pro), Cystein (Cys), Glutamat (Glu), Glycerin und Serin (Gly & Ser), Histidin (His), Methionin (Met), Threonin und Lysin (Thr & Lys), Tyrosin, Tryptophan und Phenylalanin (Tyr, Trp & Phe) und Valin, Leucin und Isoleucin (Val, Leu & Ile).

Die geschätzten Stoffflussverteilungen sollen die intrazellulären metabolischen Vorgänge möglichst realitätsnah abbilden. Hierfür müssen nicht nur biologisch und thermodynamisch nicht sinnvolle Schleifen aus den erhaltenen Lösungen entfernt werden, sondern die Schätzungen sollten auch möglichst gut mit den Messungen übereinstimmen. Zudem wird die Modellpräzision durch die Wahl der Zielfunktion beeinflusst. In den meisten Fällen wird die Maximierung der Biomassebildung als Zielfunktion zur Lösung der Gleichungssysteme gewählt. Alternativ kann auch die Minimierung der atp-Bildung zur Optimierung verwendet werden. Da allerdings für keines der Modelle mit der FVA ll & TVA & Met-Methode und den in diesem Projekt erhobenen Messdaten bei Minimierung der atp-Bildung Konvergenz erreicht wurde, wurde die Maximierung der Biomassebildung für alle Modellierungen als Zielfunktion eingesetzt. Die Validierung der Modellschätzungen kann anhand nicht genutzter Messgrößen erfolgen. Abbildung 5.4 zeigt die gemessenen und mit der FVA ll & TVA & Met-Methode unter Maximierung der Biomassebildung geschätzten Raten für die Sauerstoffaufnahme, die Kohlenstoffdioxidbildung und das Wachstum im Vergleich bei Vorgabe der gemessenen Atmungsraten und ohne deren Vorgabe.

Abbildung 5.4: Gemessene und mit der FVA ll & TVA & Met-Methode geschätzte Sauerstoffaufnahmeraten (qOUR, Einheit: mmol $g_{BTM}^{-1} h^{-1}$), Kohlenstoffdioxidbildungsraten (qCER, Einheit: mmol $g_{BTM}^{-1} h^{-1}$) und Wachstumsraten (Einheit: h^{-1}) bei Vorgabe der gemessenen Atmungsraten (mit Atmung) und ohne die Vorgabe der gemessenen Atmungsraten (ohne Atmung) im Vergleich. Fehlerbalken mit Abschlusslinie zeigen Standardabweichungen der gemessenen Raten, Fehlerbalken ohne Abschlusslinie geben den minimalen und maximalen Wert für die geschätzte Rate an. Sterne markieren vorgegebene Raten.

Der Vergleich von gemessenen und ohne Berücksichtigung der Atmungsraten geschätzten Stoffflüsse zeigt, dass die geschätzten Lösungsbereiche der Atmungsraten und der Wachstumsrate nicht gut mit den realen Werten übereinstimmen. Die geschätzte Sauerstoffaufnahmerate erreichte nur etwa 43 % des gemessenen Wertes, für die Kohlenstoffdioxidbildungsrate wurden nur etwa 34 % des gemessenen Wertes theoretisch ermittelt. Die gemessene Wachstumsrate wurde in diesem Fall um das 5,6-fache überschätzt. Durch Nutzung der Atmungsraten als Randbedingungen für die Flussanalysen wurde eine bessere Übereinstimmung der Wachstumsraten gefunden, aber auch in diesem Fall lag die geschätzte Wachstumsrate noch um das 2,6-fache höher als die gemessene.

Diskussion

Die Evaluierung der Methoden in Hinblick auf eine effiziente Bereinigung der Stoffflussverteilungen von Schleifen und thermodynamisch widersprüchlichen Aktivitäten zeigte, dass dies mithilfe der kombinierten FVA ll & TVA & Met-Methode effizient und umfassend möglich ist. Insgesamt konnte die Anzahl aktiver Reaktionen im Vergleich zur klassischen FVA um 41 % und die Anzahl der Reaktionsrichtungen um 54 % verringert werden. Die Effekte wurden anhand signifikant reduzierter berechneter Stoffflussbereiche der Reaktionen im Modell ersichtlich. Die Betrachtung ganzer Teilbereiche des Modellmetabolismus zeigte eine deutliche Reduktion der Lösungsspannen für einen Großteil der Stoffflüsse bei Verwendung der kombinierten FVA ll & TVA & Met-Methodik im Vergleich zur klassischen FVA. Aufgrund der hohen Effizienz der kombinierten Methodik (FVA ll & TVA & Met) beim Ausschluss von internen Schleifen und thermodynamisch widersprüchlichen Stoffflussverteilungen soll diese Methode in der vorliegenden Arbeit verwendet werden.

Da für die Minimierung der atp-Bildung keine Konvergenz der Optimierungsprobleme bei Verwendung von in diesem Projekt erhobenen Daten erzielt werden konnte, wird für diese Arbeiten die Maximierung der Biomassebildung als Zielfunktion gewählt. Für substratlimitierte Prozessphasen mit *E. coli*-Zellen wurden von Schuetz *et al.* (2007) ebenfalls eine bessere Übereinstimmung der gemessenen und geschätzten Raten als bei Minimierung der atp-Bildung beobachtet. In diesem Fall lag jedoch keine Überproduktion spezifischer Produkte vor, weshalb kein direkter Vergleich möglich ist.

Trotz der Nutzung der Atmungsraten als Randbedingungen für die Stoffflussabschätzungen wurde die gemessene Wachstumsrate um das 2,6-fache überschätzt. Mögliche Gründe hierfür liegen in der verwendeten Biomassebildungsfunktion des Modells, welche die Menge aller bekannten zum Wachstum notwendigen Moleküle, deren Zusammensetzung unter bestimmten Bedingungen ermittelt wurde, berücksichtigt. Die Komposition der Biomasse ist allerdings stark von verschiedenen Faktoren wie der Wachstumsphase oder des Genotyps der verwendeten Mikroorganismen abhängig und somit nicht für alle *E. coli*-Stämme gleich (Beck *et al.*, 2018; Volkmer & Heinemann, 2011). Aufgrund dessen ist die Biomassefunktion in genomweiten stöchiometrischen Modelle eine kritische Komponente (Choi *et al.*, 2022) und Unterschiede in den Biomassezusammensetzungen ein möglicher Grund für die starken Abweichungen in den gemessenen und geschätzten Wachstumsraten. Zur Annäherung der berechneten Stoffflüsse an die gemessenen Ergebnisse werden die Sauerstoffaufnahme- und Kohlenstoffdioxidbildungsrate zur Lösungsraumbeschränkung mitaufgenommen.

5.2 Metabolische Analyse der L-Tryptophansynthese mittels des Shikimattransporterstammes NT1259 $shiA_{Cg}^{-1}$

Die Methodik der metabolischen Analysen basiert auf der Auslenkung des Metabolismus und der anschließenden Quantifizierung der provozierten Reaktion von Zellen aus dem Produktionsprozess in Kurzzeitanalysen anhand gemessener intra- sowie extrazellulärer Metabolitkonzentrationen und Atmungsraten. Die Auslenkung des Stoffwechsels wird durch eine veränderte Substratzufuhr oder einen Wechsel der Kohlenstoffquelle hervorgerufen. Dabei sind die Art und Intensität der erzeugten Auslenkung entscheidend für den Nutzen der erzeugten Daten für nachfolgende metabolische Kontrollanalysen.

In der Regel ist die Auswahl an Substraten für die Auslenkung des Stoffwechsels auf die natürlichen Kohlenstoffquellen des verwendeten Mikroorganismus begrenzt und zusätzlich limitiert, da hohe Aufnahmeraten für das verwendete Substrat erreicht werden müssen. Für *E. coli* stehen daher natürliche Kohlenstoffquellen wie Glucose, Glycerin, Pyruvat, Succinat, Acetat und Ethanol zur Verwendung in metabolischen Analysen zur Verfügung.

Zwar kann durch die Aufnahme dieser natürlichen Substrate eine Auslenkung im Bereich der Aromatenbiosynthese erzielt werden, aber aufgrund der großen Distanz zu den Eintrittpunkten natürlicher Substrate in den Metabolismus, sind die Veränderungen in den spezifischen Stoffwechselwegen abgeschwächt. Aus diesem Grund ist insbesondere die Nähe zum betrachteten Produktstoffwechselweg bei der Auswahl potenzieller Substrate entscheidend. Die Verwendung dieser spezifischen Substrate ist jedoch oft aufgrund fehlender natürlicher Aufnahmesysteme, solange keine speziellen Transporterstämme zur Verfügung stehen, nicht realisierbar.

Aufgrund der zentralen Lage in der Chorismatbiosynthese und der Nähe zum Produkt L-Tryptophan ist Shikimat ein vielversprechendes Substrat zur Auslenkung der L-Tryptophanbiosynthese. Obwohl *E. coli* ein natives *shiA*-Gen, codierend für ein Shikimat/ H⁺-Symporter-System trägt, zeigt es kaum Transportaktivität für Shikimat (Brown & Doy, 1976; Whipp *et al.*, 1998). Um dennoch eine Aufnahme des interessanten Intermediates zu erreichen, stellten die Projektpartner der Universität Stuttgart einen modifizierten Stamm zur Verfügung, in dessen Genom ein zusätzliches *shiA*-Gen aus *C. glutamicum* (*shiA*_{Cg}) integriert ist (Kubota *et al.*, 2015). Die Expression des eingebrachten Gens ist durch IPTG induzierbar.

5.2.1 Aufnahme von Shikimat durch Integration eines $shiA_{Cq}$ -Transportergens

Zum Nachweis der Aufnahme von Shikimat durch den modifizierten Transporterstamm wurden parallele Kultivierungen des L-Tryptophanproduktionsstammes ohne ($E. \ coli$ NT1259) und mit

Ein Teil der Ergebnisse dieses Ergebniskapitels ist bereits publiziert in: Schoppel K, Trachtmann N, Mittermeier F, Sprenger GA, Weuster-Botz D (2021): Metabolic control analysis of L-Tryptophan producing *Escherichia coli* applying targeted perturbation with shikimate. *Bioprocess and Biosystems Engineering* 44(12):2591–613.

integriertem Shikimattransporter (*E. coli* NT1259 $shiA_{Cg}$) in Schüttelkolben durchgeführt. Abbildung 5.5 zeigt die Konzentrationsverläufe der beiden Substrate Glycerin und Shikimat. Zur Induktion der Produktbildung und Expression des Transportergens wurden 0,3 mM IPTG hinzugegeben. Glycerin wurde ebenso wie Shikimat vor Inokulation in die Schüttelkolben vorgelegt.

Die Glycerinkonzentration nahm in beiden Schüttelkolben ab und nach 20 h konnte im Kolben mit *E. coli* NT1259 kein zurückgebliebenes Glycerin nachgewiesen werden, für *E. coli* NT1259 shi A_{Cg} lag noch eine geringe Glycerinkonzentration von 0,35 g L⁻¹ vor. Die Shikimatkonzentration blieb im Verlauf der Kultivierung von *E. coli* NT1259 konstant, während sie im Schüttelkolben mit *E. coli* NT1259 shi A_{Cg} stetig sank. Zuletzt wurden im Schüttelkolben des Transporterstammes nur 0,07 g L⁻¹ Shikimat gemessen. Die Optische Dichte, gemessen bei 600 nm (OD₆₀₀), stieg im Schüttelkolben mit *E. coli* NT1259 von 1,58 auf 3,70 und die im Schüttelkolben mit *E. coli* NT1259 shi A_{Cg} von 2,06 auf 3,80 an.

Parallel durchgeführte Experimente ohne die Vorlage einer weiteren Kohlenstoffquelle zeigten, dass beide Stämme nicht zum Wachstum oder zur L-Tryptophanproduktion mit Shikimat als alleiniger Kohlenstoffquelle befähigt sind. In diesem Fall blieb die Shikimatkonzentration auch im Schüttelkolben des Transporterstammes nahezu konstant.

Abbildung 5.5: Glycerin- (links) und Shikimatkonzentrationen (rechts) bei Satzkultivierungen von *E. coli* NT1259 (NT1259) und *E. coli* NT1259 $shiA_{Cg}$ (NT1259 shiA) in Schüttelkolben mit 100 mL Minimalmedium. Die Inkubation erfolgte bei 37 °C und 200 min⁻¹.

Durch Integration des *shiA*-Gens aus *C. glutamicum* wurde das Substrat Shikimat bei Vorlage einer zusätzlichen Kohlenstoffquelle, wie in diesem Fall Glycerin, erfolgreich in die Zellen aufgenommen. Die erzielten Aufnahmeraten von etwa 0,26 $g_{Shik} g_{BTM}^{-1} h^{-1}$ wurden als ausreichend hoch für metabolische Analysen eingeschätzt. Die Verwendung von Shikimat für metabolische Analysen erfordert die Zugabe weiterer Kohlenstoffquellen. Für diese Arbeit wurden die Kohlenstoffquellen Glucose und Glycerin zur simultanen Metabolisierung mit Shikimat während metabolischer Analysen ausgewählt.

5.2.2 15 L-Zulaufprozess zur L-Tryptophanproduktion

Das Zulaufverfahren zur Kultivierung des Shikimattransporterstammes *E. coli* NT1259 $shiA_{Cg}$ wich nicht vom standardisierten Verfahren des Produktionsstammes ohne Transporter, welches in vorherigen Arbeiten etabliert wurde, ab (Tröndle *et al.*, 2020; Tröndle *et al.*, 2018b). Abbildung 5.6 zeigt den Prozessverlauf anhand gemessener Konzentrationen.

Abbildung 5.6: 15 L-Zulaufverfahren zur L-Tryptophanproduktion im Rührkesselreaktor mit *E. coli* NT1259 *shiA*_{Cg} mit Glycerin als Kohlenstoffquelle. Konzentrationsverläufe (Einheit: g L⁻¹) (A) Biotrockenmasse (BTM) und L-Tryptophan (L-Trp), (B) Glycerin und Ammonium, (C) Acetat, Laktat, Malat, Succinat und (D) L-Phenylalanin (L-Phe), L-Tyrosin (L-Tyr) und L-Glutamat (L-Glu). Die vertikalen durchgezogenen Linien markieren das Ende der Satzphase (10,4 h) und den Beginn der konstanten Zulaufphase mit Zugabe von IPTG (45,1 h). Die rote gestrichelte Linie markiert den Zeitpunkt der Zellentnahme für die Durchführung der metabolischen Analyse (48,8 h).

Die initiale Satzphase mit 4 g L^{-1} Glycerin endete nach 10,4 h und die exponentielle Zulaufphase wurde automatisch eingeleitet, bis zu deren Ende die Biotrockenmassekonzentration auf $19,28 \pm 0,20 \text{ g L}^{-1}$ anstieg. In der Zeit des exponentiellen Zulaufs wurde eine durchschnittliche Wachstumsrate von 0,07 h⁻¹ erreicht. Die maximale Biotrockenmassekonzentration von $26,13 \pm 0,83 \text{ g L}^{-1}$ lag nach 66,8 h Prozesszeit vor. Im weiteren Verlauf der Kultivierung blieb die Biotrockenmassekonzentration annähernd konstant.

Die L-Tryptophanbildung setzte zu Prozessbeginn ein und im Verlauf der Satz- und exponentiellen Zulaufphase erhöhte sich die Konzentration auf $10,26 \,\mathrm{g \, L^{-1}}$. Nach Induktion durch die Zugabe von $0,3 \,\mathrm{mM}$ IPTG und Beginn des konstanten Zulaufs mit einer Substratzulaufrate von $0,2 \,\mathrm{g_{Glycerin}} \,\mathrm{g_{BTM}^{-1}} \,\mathrm{h^{-1}}$, stieg die L-Tryptophankonzentration weiter auf einen maximalen Wert von 14,60 g L⁻¹ nach 66,8 h Prozesszeit an. Bis zum Ende des Prozesses sank die Produktkonzentration auf 13,28 g L⁻¹ ab. Der Konzentrationsverlust kann zu 95 % auf die Verdünnung durch die weitere Zufuhr des Zulaufmediums und die Zugabe von Titrationsmitteln zurückgeführt werden. Zu Beginn der Satzphase lagen 4 g L⁻¹ des Glycerins im Medium vor. Während der gesamten Zeit des exponentiellen Zulaufs konnte kein Glycerin nachgewiesen werden, erst nach etwa 65,2 h wurden ansteigende Glycerinkonzentrationen gemessen. Bis zum Prozessende waren 26,9 g L⁻¹ des Substrates akkumuliert. Während der gesamten Prozesszeit wurden Ammoniumkonzentrationen von 2-4 g L⁻¹ gemessen. Ab einer Prozesszeit von 65 h stieg die Konzentration aufgrund stetiger Zugabe und verringerter Aufnahme durch die Zellen auf maximal 7,1 g L⁻¹ bei Prozessende an. Die Akkumulation von organischen Säuren setzte während der zweiten Hälfte der Kultivierung ein. Zuvor wurden nur geringe Konzentrationen von unter 0,4 g L⁻¹ an Succinat, Malat und Laktat gemessen. Ab einer Prozesszeit von 49,5 h stieg die Acetatkonzentration zunächst leicht an, ab 65,2 h Prozesszeit beschleunigte sich die Acetatbildung, sodass bis zum finalen Probezeitpunkt 9,7 g L⁻¹ Acetat vorlagen. Weiterhin wurde eine Zunahme der Konzentrationen an Laktat, Succinat und Malat auf maximale Werte von 1,28 g L⁻¹, 0,58 g L⁻¹ und 0,43 g L⁻¹ gemessen.

Außer organischen Säuren wurden die aromatischen Nebenprodukte L-Phenylalanin und L-Tyrosin gebildet. Ab einer Prozesszeit von 52,7 h stieg die Konzentration von L-Phenylalanin auf maximal $0,38 \text{ g L}^{-1}$ an. Eine Akkumulation von L-Tyrosin im Medium setzte erst etwas später nach etwa 65,2 h Prozesszeit ein. Die maximale L-Tyrosinkonzentration von $0,18 \text{ g L}^{-1}$ wurde in der letzten Probe nachgewiesen. L-Glutamat wurde im gesamten Prozessverlauf detektiert. Bereits während der exponentiellen Zulaufphase stiegen die Konzentrationen der Aminosäure auf $0,16 \text{ g L}^{-1}$ an. Nach 54,1 h Prozesszeit wurde die maximale L-Glutamatkonzentration von $0,2 \text{ g L}^{-1}$ gemessen.

Abbildung 5.7 zeigt die integrale Kohlenstoffbilanz der 15 L-Zulaufkultivierung mit *E. coli* NT1259 $shiA_{Cg}$, die den Verlauf des Prozesses widerspiegelt. Zu Beginn des Prozesses lagen 77,6 % des im System enthaltenen Kohlenstoffs in Form des Substrates Glycerin vor. Der Anteil des L-Tryptophans lag nach 17,5 h bei 6,5 % und erhöhte sich mit Fortschreiten der Prozesszeit auf maximal 19,4 % nach 47,3 h. Zum Zeitpunkt der maximalen erreichten L-Tryptophankonzentration lag der Produktanteil bei 12,21 %. Dieser verringerte sich bis zum Prozessende auf 9,73 %.

Während der konstanten Zulaufphase lag ein hoher Kohlenstoffanteil (15-25%) in Biotrockenmasse vor, der größte Anteil entfiel in dieser Prozessphase mit 53-61% auf gebildetes CO_2 . Gegen Ende des Prozesses spiegelt sich auch die zunehmende Akkumulation organischer Säuren, insbesondere von Acetat, in der integralen Kohlenstoffbilanz wider. In der finalen Probe nach 75,2 h lagen anteilig 4,37% Acetat im System vor. Malat und Laktat machten zu diesem Prozesszeitpunkt zusammen 0,8% des gesamten Kohlenstoffs aus.

Abbildung 5.7: Integrale Kohlenstoffbilanz des L-Tryptophanproduktionsprozesses mit *E. coli* NT1259 $shiA_{Cg}$ im 15 L-Zulaufbetrieb. Die Balken repräsentieren die Anteile der jeweiligen Komponenten am Gesamtkohlenstoff im System, die Zeitpunkte der jeweiligen Probenahme sind an der X-Achse abzulesen. Der Beginn der konstanten Zulaufphase und die Zugabe von IPTG erfolgte nach 45,1 h, dieser Zeitpunkt ist mit einer unterbrochenen schwarzen Linie markiert.

Während des beschriebenen Prozesses wurde eine metabolische Analyse durchgeführt. Die Entnahme der Zellsuspension für den Transfer in das parallele Reaktorsystem zur metabolischen Analyse erfolgte 48,8 h nach Inokulation. Entscheidend für die Auswahl des Entnahmezeitpunktes waren ausreichend hohe Biomassekonzentrationen und das Erreichen hoher Produkbildungsraten.

Anhand von Stoffwechselauslenkungen sollte der metabolische Zustand der Zellen im Prozess analysiert werden. Als Vergleichspunkt dient ein etwa 30-minütiges Zeitfenster des Produktionsprozesses. Der Bezug der Auslenkungen auf den Referenzzustand setzt ein ungestörtes Prozessgleichgewicht nach der Entnahme der Zellen voraus, welches anhand der Einstellung eines metabolischen Gleichgewichtes unmittelbar nach dem Entnahmezeitpunkt festgestellt werden kann. Abbildung 5.8 zeigt die qOUR und qCER im Zeitraum nach der Entnahme. Anhand konstanter Raten bereits wenige min nach der Probenahme konnte das bestehende metabolische Gleichgewicht nachgewiesen werden.

Abbildung 5.8: Biomassespezifische Sauerstoffaufnahmeraten (qOUR) und Kohlenstoffdioxidbildungsraten (qCER) im Referenzprozess mit *E. coli* NT1259 $shiA_{Cq}$ im Zeitraum der metabolischen Analyse.

Die Atmungsraten dienten zusammen mit den für den Zeitraum der metabolischen Analyse ermittelten Substrataufnahme-, Produkt- und Nebenproduktbildungsraten zur Beschreibung des Referenzzustandes. Tabelle 5.3 fasst alle gemessenen Raten zusammen.

Tabelle 5.3: Experimentell ermittelte zellspezifische Raten für die Glycerinaufnahme, L-Tryptophanbildung, Sauerstoffaufnahme, Kohlenstoffdioxidbildung (Einheit: mmolg_{BTM}⁻¹ h⁻¹) und die Biomassebildung (Einheit: h⁻¹) im Referenzprozess während der metabolischen Analyse im Zulaufbetrieb mit *E. coli* NT1259 $shiA_{Cg}$.

Reaktion	Rate
Wachstum	$\sim 0,01$
Glycerinaufnahme	$2,\!40\pm0,\!06$
L-Tryptophanbildung	$0,\!14\pm\!0,\!00$
Sauerstoffaufnahme (qOUR)	$6{,}36\pm0{,}07$
Kohlenstoffbildung (qCER)	$5{,}08{\pm}0{,}13$

Diskussion

Der Vergleich der Prozessdaten von *E. coli* NT1259 $shiA_{Cg}$ und *E. coli* NT1259 (Tröndle *et al.*, 2020) zeigte keine signifikanten Abweichungen der beiden Prozesse. Die auftretenden geringfügigen Unterschiede liegen innerhalb der Beobachtungsvarianz. So wurde für *E. coli* NT1259 eine maximale L-Tryptophankonzentration von $14,3 \text{ g L}^{-1}$ und eine gegenüber dem Transporterstamm leicht erhöhte Biotrockenmassekonzentration von $31,8 \text{ g L}^{-1}$ gemessen (Tröndle *et al.*, 2020). Eine Beeinflussung der Prozessleistung durch die Expression des Shikimattransporters wurde nicht beobachtet.

Im Zulaufverfahren zur Herstellung von L-Tryptophan mit *E. coli* NT1259 $shiA_{Cg}$ verringerte sich die Produktkonzentration nach Produktionsende. Dabei können 95 % des Verlustes auf die Verdünnung durch weitere Zufuhr des Zulaufmediums und die Zugabe von Titrationsmitteln

zurückgeführt werden. Da der Abbauweg des L-Tryptophans zu Ammonium und Pyruvat durch Deletion des entsprechenden tnaA-Gens aus diesem Stamm entfernt wurde, ist der enzymatische Abbau unwahrscheinlich. Eine mögliche Erklärung für den 5 % igen L-Tryptophanverlust bis zum Prozessende sind die Wiederaufnahme des Produktes in die Zellen und eine Schädigung oder der Abbau des Produktes durch spontane Reaktionen oder Oxidation (Bellmaine *et al.*, 2020). Abfallende L-Tryptophankonzentrationen nach dem Ende der Produktion wurden trotz Deletion des tnaA-Gens auch in anderen Produktionsprozessen der aromatischen Aminosäure ausgehend von Glycerin beobachtet (Tröndle *et al.*, 2020; Tröndle *et al.*, 2018b).

5.2.3 Parallelisierte Kurzzeitanalyse im Zulaufbetrieb

Nach 47,7 h Prozesszeit wurden 3,6 L Zellsuspension aus dem Prozessreaktor entnommen, um eine metabolische Analyse nach dem Prinzip des schnellen Medienwechsels in parallelisierten Analysenreaktoren durchzuführen. Nach der Entnahme erfolgte die Abtrennung der Zellen durch Zentrifugation und die Resuspension in vortemperiertem frischem Minimalmedium ohne Kohlenstoffquellen. Anschließend wurde die resuspendierte Zellsuspension in gleichen Teilen auf vier 1 L-Analysenreaktoren verteilt.

Die gezielte Auslenkung des Stoffwechsels, der aus dem Prozessreaktor entnommenen Zellen, erfolgt durch die Zufuhr unterschiedlicher Substrate in dreistufigen Zulaufprofilen in jeden der vier Analysenreaktoren. Auf diese Weise werden in jedem Analysenreaktor drei Substrataufnahmeraten eingestellt. Die ersten beiden Zulaufraten ermöglichen dabei eine vollständige Substratlimitierung, während in der letzten Zulaufstufe annähernd die maximale Substrataufnahmerate erreicht wird. Die maximalen Aufnahmeraten für die verwendeten Substrate und Substratkombinationen wurden zuvor in metabolischen Analysen im Satzverfahren ermittelt, anhand derer die Anpassung der dreistufigen Zulaufsequenz erfolgte (Daten nicht gezeigt).

Für die Kurzzeitanalyse mit dem Shikimattransporterstamm *E. coli* NT1259 $shiA_{Cg}$ wurden die Substrate Glycerin und Glucose für jeweils einen Analysenreaktor und die Kombination der Substrate Glycerin und Shikimat sowie Glucose und Shikimat für die beiden weiteren Reaktoren ausgewählt und durch individuelle Zulaufprofile den Analysenreaktoren separat zugeführt. Die Zulaufraten wurden in allen Reaktoren simultan nach 9 und 15 min erhöht, womit die Ausbildung von insgesamt 12 unterschiedlichen metabolischen Zuständen angestrebt wurde. Der Analysenzeitraum ist aufgrund von Proteomänderungen auf etwa 20 min begrenzt. Aufgrund dessen wurde das Zulaufprofil an diese Zeitspanne angepasst. Die Konzentrationen und Zulaufraten der gewählten Zulaufmedien sind in Tabelle 4.4 in Kapitel 4.4 angegeben.

Wie auch für den Zeitraum der metabolischen Analyse im Referenzprozess wurde die Einstellung der metabolischen Gleichgewichte anhand der biomassespezifischen Atmungsraten (qOUR und qCER) überprüft. Die Ergebnisse sind in Abbildung 5.9 gezeigt.

Abbildung 5.9: Biomassespezifische Sauerstoffaufnahmeraten (qOUR) und Kohlenstoffdioxidbildungsraten (qCER) während der metabolischen Analyse der L-Tryptophanproduktion im Zulaufverfahren von *E. coli* NT1259 *shiA*_{Cg} in vier Analysenreaktoren mit den Kohlenstoffquellen Glycerin, Glycerin und Shikimat, Glucose sowie Glucose und Shikimat. Die vertikalen, durchgezogenen Linien markieren die Erhöhung der Zulaufraten nach 9 und 15 min.

In etwa 6 min nach Inokulation der Analysenreaktoren ist im Ansatz mit der Kohlenstoffquelle Glycerin die Einstellung eines metabolischen Gleichgewichtes anhand der Atmungsraten ersichtlich. Es wurden konstante qOUR von $-4,32 \pm 0,10 \text{ mmol}_{O_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ und konstante qCER von $3,74 \pm 0,15 \text{ mmol}_{\text{CO}_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ gemessen. Nach der ersten Erhöhung der Zulaufrate nach 9 min wurde eine erneute Einstellung des metabolischen Gleichgewichts nach circa 2,5 min anhand konstanter qOUR beobachtet. Die qCER stabilisierten sich mit einer zeitlichen Verzögerung von etwa 2,5 min, was auf die erhöhte Löslichkeit des Kohlenstoffdioxids im Medium zurückzuführen ist. Die gemessenen konstanten Atmungsraten beliefen sich auf $-7,85 \pm 0,22 \text{ mmol}_{O_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ und $6,09 \pm 0,00 \text{ mmol}_{\text{CO}_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$. Auch nach der zweiten Erhöhung der Zulaufrate wurden konstante qOUR nach etwa 3 min gemessen, die Stabilisierung der qCER folgte etwas verzögert. Die konstanten Atmungsraten betrugen $-11,16 \pm 0,23 \text{ mmol}_{O_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ und $9,09 \pm 0,20 \text{ mmol}_{\text{CO}_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$.

Die Einstellung der metabolischen Gleichgewichte im Reaktor mit den zugeführten Kohlenstoffquellen Glycerin und Shikimat verlief ähnlich wie im Reaktor mit Glycerin als einziger Kohlenstoffquelle. Lediglich in der ersten Zulaufstufe kam es nach 6 min zu stärkeren Schwankungen in den qOUR. Die Atmungsraten lagen nach 6 min bei $-4,23 \pm 0,41 \text{ mmol}_{O_2} \text{ g}_{\text{BTM}}^{-1} \text{ h}^{-1}$ und $3,42 \pm 0,06 \text{ mmol}_{\text{CO}_2} \text{ g}_{\text{BTM}}^{-1} \text{ h}^{-1}$. Das Erreichen eines metabolischen Gleichgewichts nach der ersten Zulauferhöhung war etwas früher an den qOUR zu erkennen als im Reaktor mit Glycerin. Die erreichten konstanten Atmungsraten lagen in dieser Zulaufstufe bei $-7,52 \pm 0,11 \text{ mmol}_{O_2} \text{ g}_{\text{BTM}}^{-1} \text{ h}^{-1}$. Die qOUR und qCER während der letzten Zulaufstufe waren ähnlich hoch wie im Reaktor mit Glycerin als einziger Kohlenstoffquelle und wurden zu $-10,94 \pm 0,16 \text{ mmol}_{O_2} \text{ g}_{\text{BTM}}^{-1} \text{ h}^{-1}$ und $8,62 \pm 0,17 \text{ mmol}_{\text{CO}_2} \text{ g}_{\text{BTM}}^{-1} \text{ h}^{-1}$

Im Analysenreaktor mit zugeführter Glucose erfolgte die Einstellung des metabolischen Gleichgewichts während der ersten Zulaufstufe etwas später als in den Analyseansätzen mit Glycerin. Erst nach etwa 7 min wurde eine Stabilisierung der qOUR bei $-4,07 \pm 0,22 \text{ mmol}_{O_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ und der qCER bei $3,48 \pm 0,17 \text{ mmol}_{\text{CO}_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ beobachtet. Nach Erhöhung der Zulaufrate wurden nach etwa 3 min konstante qOUR von $-5,48 \pm 0,14 \text{ mmol}_{O_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ und, mit einer zeitlichen Verzögerung von weiteren 2 min, konstante qCER von $4,47 \pm 0,03 \text{ mmol}_{\text{CO}_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ gemessen. Die zweite Erhöhung der Zulaufrate löste nur einen geringfügigen Anstieg der Atmungsraten auf konstante qOUR von $-6,08 \pm 0,10 \text{ mmol}_{O_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ nach weiteren 3 min und konstante qCER von $5,19 \pm 0,11 \text{ mmol}_{\text{CO}_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ nach etwa 5 min aus.

Für den Analysenreaktor mit den zugeführten Substraten Glucose und Shikimat sind deutliche Parallelen zum Analysenreaktor mit Glucose als einziger Kohlenstoffquelle hinsichtlich der Einstellung metabolischer Gleichgewichte erkennbar. In der ersten Zulaufstufe wurde zunächst ein Anstieg der Atmungsraten und darauffolgend absinkende und sich stabilisierende qOUR von $-4,38 \pm 0,09 \text{ mmol}_{O_2} \text{ g}_{\text{BTM}}^{-1} \text{ h}^{-1}$ und qCER von $3,89 \pm 0,14 \text{ mmol}_{\text{CO}_2} \text{ g}_{\text{BTM}}^{-1} \text{ h}^{-1}$ gemessen. In den beiden darauffolgenden Zulaufstufen lagen die Atmungsraten etwas höher als im Reaktor mit Glucose als einziger Kohlenstoffquelle. Auch hier war der durch die Erhöhung der Zulaufrate ausgelöste Anstieg der Atmungsraten geringer als zwischen der ersten und zweiten Zulaufstufe. Zum Ende der zweiten Zulaufstufe wurden qOUR von $-6,51 \pm 0,15 \text{ mmol}_{O_2} \text{ g}_{\text{BTM}}^{-1} \text{ h}^{-1}$ und qCER von $5,19 \pm 0,13 \text{ mmol}_{\text{CO}_2} \text{ g}_{\text{BTM}}^{-1} \text{ h}^{-1}$ ermittelt. Nach etwa 18 min Analysezeit wurde das dritte metabolische Gleichgewicht anhand konstanter qOUR von $-7,13 \pm 0,11 \text{ mmol}_{O_2} \text{ g}_{\text{BTM}}^{-1} \text{ h}^{-1}$ und konstanter qCER von $5,79 \pm 0,09 \text{ mmol}_{\text{CO}_2} \text{ g}_{\text{BTM}}^{-1} \text{ h}^{-1}$ festgestellt.

Der RQ war für alle Reaktoren und Zulaufstufen, bis auf wenige Ausnahmezeitpunkte, zu denen die qOUR die qCER aufgrund von Schwankungen unterschritten, größer als 1.

Wie auch für den Referenzprozess wurden für alle Analysenreaktoren neben den Atmungsraten die biomassespezifischen Raten für die Substrataufnahme sowie Produkt- und Nebenproduktbildungen ermittelt. Die Proben zur Quantifizierung extrazellulärer Metabolite wurden jeweils zu Beginn und am Ende jeder Zulaufstufe aus den Reaktoren entnommen. Abbildung 5.10 zeigt die gemessenen Raten für die Atmung, die Substrataufnahme und die Produktbildung. Des weiteren sind die Raten des Referenzprozesses während der Zeit der metabolischen Analyse im Abbildungsteil des Analysenreaktors mit Glycerin angegeben. Für die Atmungsraten sind die Mittelwerte ab dem Erreichen eines metabolischen Gleichgewichts gezeigt. Alle Raten, einschließlich die der Nebenproduktbildung, sind den Tabellen 5.4 - 5.7 zu entnehmen.

Abbildung 5.10: Gemessene biomassespezifische extrazelluläre Aufnahme- und Bildungsraten (Substrataufnahme, Produktbildung, Atmung) (Einheit: mmol $g_{BTM}^{-1} h^{-1}$) während der parallelisierten Kurzzeitanalyse im Zulaufverfahren von *E. coli* NT1259 *shiA*_{Cg} in vier Analysenreaktoren mit den Kohlenstoffquellen Glycerin, Glycerin und Shikimat, Glucose sowie Glucose und Shikimat für die Substrate Glycerin (Glyc), Glucose (Gluc) und Shikimat (Shik), das Produkt L-Tryptophan (L-Trp), die Sauerstoffaufnahmeraten (qOUR) und die Kohlenstoffdioxidbildungraten (qCER). 1-3: Zulaufstufen 1 bis 3; Ref: Extrazelluläre Raten des 15 L-Produktionsprozesses während der metabolischen Analyse.

In den Substrataufnahme- und Atmungsraten aller Reaktoren spiegelte sich das angewandte dreistufige Zulaufprofil wider. Die Raten für den Analysenreaktor mit der zugeführten Kohlenstoffquelle Glycerin sind in Tabelle 5.4 zusammengefasst. Durch die dreischrittige Zulaufsequenz wurde die Glycerinaufnahmerate in diesem Reaktor von $2,05 \pm 0,07$ mmol g_{BTM}^{-1} während der ersten Zulaufstufe auf $4,32 \pm 0,15$ mmol g_{BTM}^{-1} h⁻¹ während der letzten Zulaufstufe erhöht.

Als Folge der sukzessiv erhöhten Substrataufnahmerate stiegen auch die Atmungsraten in drei Stufen an. Die Produktbildung verringerte sich indessen mit Zunahme der Substrataufnahme. Während der ersten Zulaufstufe wurde in diesem Reaktor die höchste L-Tryptophanbildungsrate von $0.32 \pm 0.03 \text{ mmol g}_{\text{BTM}}^{-1} \text{ h}^{-1}$ gemessen, diese fiel während der zweiten Zulaufstufe stufe auf $0.29 \pm 0.05 \text{ mmol g}_{\text{BTM}}^{-1} \text{ h}^{-1}$ ab und reduzierte sich während der dritten Zulaufstufe nochmals deutlich auf einen Wert von $0.17 \pm 0.07 \text{ mmol g}_{\text{BTM}}^{-1} \text{ h}^{-1}$.

Acetat, welches bei der Zentrifugation der Zellsupension nach der Entnahme aus dem Prozessreaktor im Zellpellet zurückblieb und auf diese Weise in die Analysenreaktoren übertragen wurde, nahmen die Zellen aufgrund der vorherrschenden starken Substratlimitierung während der ersten Zulaufstufe auf. In der zweiten und dritten Zulaufstufe akkumulierten im Reaktor mit Glycerin zudem die Nebenprodukte Acetat und Succinat mit zunehmenden Raten. Die Glycerinaufnahmerate und die Atmungsraten des Referenzprozesses im Zeitraum der metabolischen Analyse lagen jeweils zwischen den Werten der entsprechenden Raten aus dem Analysenreaktor mit zugeführtem Glycerin während der ersten und zweiten Zulaufstufe. Hieraus kann geschlussfolgert werden, dass eine Auslenkung des Referenzzustandes in beide Richtungen erfolgt war.

Tabelle 5.4: Experimentell ermittelte zellspezifische Raten für die Glycerinaufnahme, L-Tryptophanbildung, Succinatbildung, Acetataufnahme/-bildung, Sauerstoffaufnahme, Kohlenstoffdioxidbildung (Einheit: mmolg_{BTM}⁻¹ h⁻¹) und die Biomassebildung (Einheit: h⁻¹) während der metabolischen Analyse im Zulaufbetrieb von *E. coli* NT1259 *shiA*_{Cg} im Analysenreaktor mit der Kohlenstoffquelle Glycerin.

Glycerin		Zulaufstufe 1		Zulaufstufe 2		Zulaufstufe 3
Biomasse	\sim	0,00	\sim	0,00	\sim	0,00
Glycerin	-	$2,\!05\pm0,\!07$	-	$3{,}04\pm0{,}12$	-	$4,\!32\pm0,\!15$
L-Tryptophan		$0,\!32\pm0,\!03$		$0,\!29\pm0,\!05$		$0,\!17\pm0,\!07$
Succinat		_		$0,\!13\pm0,\!10$		$0,\!17\pm0,\!10$
Acetat	-	$0,\!55\pm0,\!00$		$0,\!25\pm0,\!08$		$0,\!80\pm0,\!39$
Sauerstoff	-	$4,\!32\pm0,\!10$	-	$7,\!85\pm0,\!22$	-	$11,\!16\pm0,\!23$
Kohlenstoffdioxid		$3{,}74\pm0{,}15$		$6{,}09\pm0{,}00$		$9{,}09\pm0{,}20$

Im Analysenreaktor mit Glycerin und Shikimat als weiterer Kohlenstoffquelle lag die Substrataufnahmerate für Glycerin während der ersten Zulaufstufe bei $1.93 \pm 0.12 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{ h}^{-1}$ und die für Shikimat bei $0.12 \pm 0.01 \text{ mmol g}_{BTM}^{-1} \text{ h}^{-1}$. Die Substrataufnahmeraten erhöhten sich in zwei Schritten gleichen Abstands auf $3,75 \pm 0,21 \text{ mmol}_{\text{Glycerin}} \text{ g}_{\text{BTM}}^{-1} \text{ h}^{-1} \text{ und } 0,24 \pm 0,02 \text{ mmol}_{\text{Shikimat}}$ g_{BTM}⁻¹ h⁻¹ während der letzten Zulaufstufe. Auch für diesen Reaktor wurden, entsprechend der eingestellten Substrataufnahmeraten, gleichmäßig abgestufte Atmungsraten gemessen. Allerdings fielen sie etwas niedriger als im Reaktor mit Glycerin als einziger Kohlenstoffquelle aus. Es wurden konstante L-Tryptophanbildungsraten von circa $0.2 \,\mathrm{mmol}\,\mathrm{g_{BTM}}^{-1}\,\mathrm{h}^{-1}$ während allen Zulaufstufen gemessen. Durch die Erhöhung der Substrataufnahmeraten konnte keine deutliche Varianz in der Produktbildung hervorgerufen werden. Succinatbildung wurde während der letzten Zulaufstufe gemessen, Acetat wurde wie auch im Reaktor mit Glycerin als einziger Kohlenstoffquelle während der ersten Zulaufstufe aufgenommen und während der zweiten und dritten Zulaufstufe gebildet. Die Rate nahm dabei von $0.78 \pm 0.03 \,\mathrm{mmol}\,\mathrm{g_{BTM}}^{-1}\,\mathrm{h}^{-1}$ während der zweiten Zulaufstufe auf $0.39 \pm 0.16 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{ h}^{-1}$ während der letzten Zulaufstufe ab. Alle Raten des Reaktors mit den zugeführten Kohlenstoffquellen Glycerin und Shikimat sind in Tabelle 5.5 angegeben.

Tabelle 5.5: Experimentell ermittelte zellspezifische Raten für die Glycerin- und Shikimataufnahme, L-Tryptophanbildung, Succinatbildung, Acetataufnahme/ -bildung, Sauerstoffaufnahme, Kohlenstoffdioxidbildung (Einheit: mmol g_{BTM}^{-1} h⁻¹) und die Biomassebildung (Einheit: h⁻¹) während der metabolischen Analyse im Zulaufbetrieb von *E. coli* NT1259 $shiA_{Cg}$ im Analysenreaktor mit den Kohlenstoffquellen Glycerin und Shikimat.

Glycerin & Shikimat		Zulaufstufe 1		Zulaufstufe 2		Zulaufstufe 3
Biomasse	~	0,00	\sim	0,00	2	0,00
Glycerin	-	$1,\!93\pm0,\!12$	-	$2,\!77\pm0,\!15$	-	$3,\!75\pm0,\!21$
Shikimat	-	$0,\!12\pm0,\!01$	-	$0,\!18\pm0,\!02$	-	$0,\!24\pm0,\!02$
L-Tryptophan		$0,\!19\pm0,\!05$		$0,\!25\pm0,\!06$		$0,\!19\pm0,\!05$
Succinat		_		_		$0,\!34\pm0,\!07$
Acetat	-	$0,\!04\pm0,\!01$		$0,\!78\pm0,\!03$		$0,\!39\pm0,\!16$
Sauerstoff	-	$4,\!23\pm0,\!41$	-	$7{,}52\pm0{,}11$	-	$10,\!94\pm0,\!16$
Kohlenstoffdioxid		$3{,}42{\pm}0{,}06$		$5{,}49{\pm}0{,}17$		$8{,}62{\pm}0{,}17$

Im Analysenreaktor mit der Kohlenstoffquelle Glucose erhöhte sich die Substrataufnahmerate von $0.68 \pm 0.01 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ während der ersten Zulaufstufe auf $1.35 \pm 0.02 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ während der letzten. Auch durch das dreistufige Zulaufprofil mit Glucose wurden drei sichtbare Stufen in den Atmungsraten hervorgerufen, allerdings fielen die Abstände zwischen den Raten geringer aus als in den Reaktoren mit zugeführtem Glycerin. Insbesondere die Erhöhung der Raten zwischen der zweiten und dritten Zulaufstufe fiel deutlich schwächer aus. Während der ersten Zulaufstufe lag die Produktbildungsrate bei $0.31 \pm 0.02 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$, woraufhin sie während der zweiten auf $0.16 \pm 0.02 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ abfiel. In der letzten Zulaufstufe wurde eine leicht erhöhte Produktbildungsrate von $0.23 \pm 0.01 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ gemessen. In der letzten Zulaufstufe akkumulierten die Nebenprodukte Succinat, Acetat und Ethanol im Medium. Während der ersten Zulaufstufe wurde wie auch in den anderen Reaktoren Acetat aufgenommen. Tabelle 5.6 fasst alle Raten des Reaktors mit dem Analysesubstrat Glucose zusammen.

Tabelle 5.6: Experimentell ermittelte zellspezifische Raten für die Glucoseaufnahme, L-Tryptophanbildung, Succinatbildung, Acetataufnahme/-bildung, Ethanolbildung, Sauerstoffaufnahme, Kohlenstoffdioxidbildung (Einheit: mmol $g_{BTM}^{-1} h^{-1}$) und die Biomassebildung (Einheit: h^{-1}) während der metabolischen Analyse im Zulaufbetrieb von *E. coli* NT1259 *shiA*_{Cg} im Analysenreaktor mit der Kohlenstoffquelle Glucose.

Glucose		Zulaufstufe 1		Zulaufstufe 2		Zulaufstufe 3
Biomasse	\sim	0,00	\sim	0,00	\sim	0,00
Glucose	-	$0,\!68\pm0,\!01$	-	$1,\!05\pm0,\!01$	-	$1,\!35\pm0,\!02$
L-Tryptophan		$0,\!31\pm0,\!02$		$0,\!16\pm0,\!02$		$0,\!23\pm0,\!03$
Succinat		_		_		$0,\!16\pm0,\!06$
Acetat	-	$0,\!61\pm0,\!06$		_		$0,\!23\pm0,\!01$
Ethanol		_		_		$0,\!37\pm0,\!25$
Sauerstoff	-	$4,\!07\pm\!0,\!22$	-	$5,\!48\pm0,\!14$	-	$6{,}08{\pm}0{,}10$
Kohlenstoffdioxid		$3,\!48\pm0,\!17$		$4,\!47\pm0,\!03$		$5,\!19\pm0,\!11$

Im Ansatz mit Glucose und zusätzlich zugeführtem Shikimat stieg die Glucoseaufnahmerate von $0.89 \pm 0.03 \,\mathrm{mmol}\,\mathrm{g_{BTM}}^{-1}\,\mathrm{h}^{-1}$ während der ersten Zulaufstufe auf $1.53 \pm 0.06 \,\mathrm{mmol}\,\mathrm{g_{BTM}}^{-1}\,\mathrm{h}^{-1}$ während der letzten Zulaufstufe an. Die Shikimataufnahmerate nahm von $0.11 \pm 0.00 \,\mathrm{mmol}\,\mathrm{g_{BTM}}^{-1}\,\mathrm{h}^{-1}$ während der geringsten Zulaufstufe auf $0.20 \pm 0.01 \,\mathrm{mmol}\,\mathrm{g_{BTM}}^{-1}\,\mathrm{h}^{-1}$ während der höchsten zu.

Die L-Tryptophanbildung war in den ersten beiden Zulaufstufen zunächst nahezu konstant $(0.27 \pm 0.07 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1} \text{ und } 0.29 \pm 0.07 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1})$ und sank während der letzten Zulaufstufe auf einen Wert von $0.09 \pm 0.05 \text{mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ ab. Auch in diesem Reaktor bewirkte eine erhöhte Substrataufnahme keinen Anstieg in der Produktbildung. Acetat und Formiat wurden während der letzten Zulaufstufe gebildet, Ethanol mit zunehmenden Raten in allen Zulaufstufen. Einen Überblick über alle gemessenen Raten gibt Tabelle 5.7.

Tabelle 5.7: Experimentell ermittelte zellspezifische Raten für die Glucose- und Shikimataufnahme, L-Tryptophanbildung, Acetatbildung, Ethanolbildung, Sauerstoffaufnahme, Kohlenstoffdioxidbildung (Einheit: mmol g_{BTM}^{-1} h⁻¹) und die Biomassebildung (Einheit: h⁻¹) während der metabolischen Analyse im Zulaufbetrieb von *E. coli* NT1259 *shiA*_{Cg} im Analysenreaktor mit den Kohlenstoffquellen Glucose und Shikimat.

Glucose & Shikimat		Zulaufstufe 1		Zulaufstufe 2		Zulaufstufe 3
Biomasse	2	0,00	\sim	0,00	~	0,00
Glucose	-	$0,\!89\pm0,\!03$	-	$1,\!29\pm0,\!05$	-	$1,\!53\pm0,\!06$
Shikimat	-	$0,\!11\pm0,\!00$	-	$0,\!15\pm0,\!01$	-	$0,\!20\pm0,\!01$
L-Tryptophan		$0,\!27\pm0,\!07$		$0,\!29\pm0,\!07$		$0,\!09\pm0,\!05$
Acetat	-	_		_		$0,\!25\pm0,\!08$
Ethanol		$0,\!09\pm0,\!04$		$0,\!76\pm0,\!07$		$1,\!05\pm0,\!26$
Formiat		_		_		$0,\!89\pm0,\!26$
Sauerstoff	-	$4,\!38\pm0,\!09$	-	$6{,}51\pm0{,}15$	-	$7,\!13\pm0,\!11$
Kohlenstoffdioxid		$3{,}89\pm0{,}14$		$5{,}19{\pm}0{,}13$		$5{,}79\pm0{,}09$

Diskussion

Der Einsatz des Shikimattransporterstammes für die gezeigte Kurzzeitanalyse im Zulaufverfahren ermöglichte die gezielte Auslenkung des Stoffwechsels durch die natürlichen Substrate Glycerin und Glucose in Kombination mit dem neuen Substrat Shikimat.

Durch Anwendung dreistufiger Zulaufprofile konnten in jedem der vier parallelen Analysenreaktoren drei metabolische Zustände innerhalb von 21 min herbeigeführt werden. Insgesamt ergaben sich somit inklusive des Referenzzustandes 13 metabolische Gleichgewichtszustände, deren Einstellung anhand der Stufenprofile der Atmungsraten erfolgreich nachgewiesen wurde. Auch die gemessenen Substrataufnahmeraten spiegelten die Auslenkung des Referenzzustands in zwei Richtungen wider.

Trotz der Substratzufuhr unterhalb der maximalen Aufnahmeraten trat insbesondere während der letzten beiden Zulaufstufen eine verstärkte Nebenproduktbildung auf. Folglich konnte der unerwünschte Überschussmetabolismus nicht vollständig verhindert werden. Anhand der gemessenen biomassespezifischen extrazellulären Raten wurde ersichtlich, dass eine erhöhte Substratzufuhr in keinem der vier Analysenreaktoren zur gesteigerten Produktbildung führte. Auch die zusätzliche Gabe von Shikimat verursachte keine erhöhte Produktion, was bereits auf Limitierungen im Chorismatbiosyntheseweg unterhalb von Shikimat beziehungsweise in den Reaktionsschritten des für die L-Tryptophanbildung spezifischen Biosynthesewegs hinweist.

5.2.4 Quantifizierung intrazellulärer Metabolite

Neben den gemessenen extrazellulären Raten liefern auch die Konzentrationen intrazellulärer Metabolite detaillierte Informationen zum metabolischen Zustand der Zellen. Da diese auf veränderte Umgebungsbedingungen zunächst durch Anpassung der Stoffflüsse reagieren, ist die Auslenkung des Metabolismus zuallererst anhand der Metabolitkonzentrationen zu erkennen. Zur Quantifizierung des intrazellulären Metaboloms wurden separate Probenahmen mit sofortiger Inaktivierung des Stoffwechsels und anschließender Extraktion der Zellsuspension jeweils am Ende jeder Gleichgewichtsstufe durchgeführt. Darüber hinaus wurde während der 20-minütigen Analyse eine Probe zur Metabolomanalyse aus dem Prozessreaktor entnommen. Die Methodik der Probeentnahme und -aufarbeitung ist in Kapitel 4.6.2 genau beschrieben. Im Folgenden werden Ausschnitte der gemessenen Metabolitkonzentrationen gezeigt und diskutiert. Die angegebenen Konzentrationen beziehen sich dabei auf ein durchschnittliches intrazelluläres Volumen einer *E. coli*-Zelle von $1.3 \,\mu\text{L g}_{\text{BTM}}^{-1}$, wie von Link (2009) ermittelt. Es werden jeweils die Konzentrationen der drei Zulaufstufen aus jedem Analysenreaktor sowie die Ergebnisse der Referenzprobe gezeigt.

Abbildung 5.11 gibt einen Überblick der gemessenen Metabolitkonzentrationen aus der Glykolyse, welche elementar für den Abbau von Kohlenhydraten zu zentralen Stoffwechselmetaboliten ist und die Integration aufgenommener Zucker in den Stoffwechsel gewährleistet. Bei Eintritt von Glucose durch das PTS wird das Substrat zu g6p phosphoryliert und auf diese Weise wird auch der Verbleib des Hexosephosphats in der Zelle gesichert, da g6p nicht durch das PTS transportiert werden kann. Den Erwartungen entsprechend, wurde in den Reaktoren mit zugeführter Glucose ein deutlicher Anstieg der intrazellulären Konzentration des phosphorylierten Zuckers gemessen. Lagen die Konzentrationen während der ersten Zulaufstufe noch bei $1,54 \pm 0,02 \,\mathrm{mM}$ im Ansatz mit Glucose und bei $1,21 \pm 0,02 \,\mathrm{mM}$ im Reaktor mit zusätzlichem Shikimat, wurden in der letzten Stufe deutlich höhere Konzentrationen von $3,40 \pm 0,23 \,\mathrm{mM}$ und $2,79 \pm 0.38 \,\mathrm{mM}$ gemessen. In den Reaktoren, in die Glycerin zugeführt wurde, lagen die Konzentrationen insgesamt etwas niedriger und bei Erhöhung der Zulaufraten wurden keine signifikanten Änderungen der intrazellulären g6p-Konzentrationen gemessen.

Ansteigende f6p-Konzentrationen mit Erhöhung der Zulaufraten wurden in allen Analysenreaktoren gemessen. In den Reaktoren, in denen Glucose als Substrat zum Einsatz kam, lagen die f6p-Konzentrationen etwas höher als in den Reaktoren mit Glycerin.

Abbildung 5.11: Intrazelluläre Konzentrationen der Glykolyse-Metabolite Glucose-6-Phosphat (g6p), Fructose-6-Phosphat (f6p), Fructose-1,6-Bisphosphat (fbp), 3-Phosphoglycerat (3pg), Phosphoenolpyruvat (pep) und Pyruvat (pyr) während der metabolischen Kurzzeitanalyse in drei Zulaufphasen (1-3) von *E. coli* NT1259 $shiA_{Cg}$ mit den Kohlenstoffquellen Glycerin (Glyc), Glucose (Gluc), Glycerin und Shikimat (Glyc & Shik) sowie Glucose und Shikimat (Gluc & Shik), in schraffiert dargestellt sind die Konzentrationen der Probe aus dem Referenzprozess im Analysezeitraum (Ref).

Auch in den fbp-Konzentrationen spiegelte sich die Auslenkung in ansteigenden Konzentrationen in allen Analysenreaktoren wider. Die höchste fbp-Konzentration von $3,23 \pm 0,11$ mM wurde während der letzten Zulaufstufe im Reaktor mit Glycerin und Shikimat gemessen. fbp ist als zentraler Metabolit an der Glykolyse beteiligt, verbindet aber auch die Stoffwechselwege des Glycerinabbaus mit den Reaktionen der oberen Gluconeogenese.

Für 3pg wurden abfallende intrazelluläre Konzentrationen mit Zunahme der Zulaufraten in allen Analysenreaktoren beobachtet. 3pg bildet die Zweigstelle zur L-Serinbiosynthese und wird daher nicht nur in glykolytischer Richtung abgebaut, sondern auch zur Synthese von L-Serin, welches wiederum in der L-Tryptophanbiosynthese zum Einsatz kommt.

Auch die Metabolitpools der zentralen Moleküle pep und pyr wurden durch die geänderte Substratzufuhr beeinflusst. Tendenziell sinkende Konzentrationen wurden für pep gemessen, nur im Reaktor mit Glucose und Shikimat wurde keine deutliche Änderung der Konzentration erfasst. pep ist ebenfalls als wichtiges Vorläufermolekül in die L-Tryptophanbiosynthese involviert.

In dieser metabolischen Analyse stiegen die pyr-Konzentrationen zwischen der zweiten und dritten Zulaufstufe in beiden Reaktoren mit Glycerin stark auf über 1 mM an. In den Reaktoren mit Glucose blieben die pyr-Konzentrationen hingegen vergleichsweise konstant. Da pyr ein sehr zentrales Molekül im *E. coli*-Stoffwechsel ist und Zu- und Abflüsse aus vielen Richtungen erfolgen, können hieraus keine konkreten Schlussfolgerungen gezogen werden.

Für alle gezeigten Metabolite der Glykolyse lagen die Konzentrationen der Referenzprobe etwa im Bereich der gemessenen Konzentrationen des Analysenreaktors mit Glycerin als alleiniger Kohlenstoffquelle. Lediglich für pep lag die Konzentration in der Referenzprobe deutlich höher.

Abbildung 5.12: Intrazelluläre Konzentrationen Metabolite Glycerin-3-Phosphat (gly3p) und Dihydroxyacetonphosphat (dhap) aus dem aeroben Glycerinabbauweg während der metabolischen Kurzzeitanalyse in drei Zulaufphasen (1-3) von *E. coli* NT1259 $shiA_{Cg}$ mit den Kohlenstoffquellen Glycerin (Glyc), Glucose (Gluc), Glycerin und Shikimat (Glyc & Shik) sowie Glucose und Shikimat (Gluc & Shik), in schraftiert dargestellt sind die Konzentrationen der Probe aus dem Referenzprozess im Analysezeitraum (Ref).

Die Metabolite des spezifischen Glycerinabbauweges sind in Abbildung 5.12 gezeigt. gly3p ist das erste intrazelluläre Produkt nach dem Import von extrazellulär vorliegendem Glycerin. Erwartungsgemäß stiegen die Konzentrationen dieses Metabolits bei erhöhter Aufnahme von Glycerin stark an. Die intrazellulären Konzentrationen lagen in den Proben des Reaktors mit den Kohlenstoffquellen Glycerin und Shikimat höher als in den Proben des Reaktors mit Glycerin als einzigem Substrat. Die maximale gly3p-Konzentration von 3.91 ± 0.75 mM wurde somit in der Probe der letzten Zulaufstufe dieses Reaktors gemessen. Die intrazellulären gly3p-Konzentrationen in beiden Reaktoren mit zugeführter Glucose blieben durch die Änderung der Zulaufrate beinahe unbeeinflusst und lagen in allen Proben unterhalb von 0.3 mM.

Für dhap, welches die Schnittstelle zwischen der Glykolyse und dem Glycerinabbauweg darstellt

und damit auch zu den Metaboliten der Glykolyse zählt, wurden steigende Konzentrationsprofile in allen Reaktoren gemessen. Während die Konzentrationen für alle Reaktoren in der untersten Zulaufstufe unterhalb von 0,15 mM lagen, war der dhap-Konzentrationsanstieg in den Reaktoren mit Glycerin deutlich ausgeprägter als bei Zufuhr von Glucose. Die Konzentrationen beider Metabolite des Glycerinabbaus lagen in der Referenzprobe im Bereich der gemessenen Konzentrationen des Analysenreaktors mit Glycerin als einziger Kohlenstoffquelle.

Die Quantifizierung intrazellulärer Konzentrationen von Metaboliten des Citratzyklus gestaltete sich aufgrund der Maskierung durch hohe extrazellulär vorliegende Konzentrationen schwierig, sodass sich durch die Bilanzierung teils negative Werte ergaben. Eine gute Quantifizierung war für die beiden Metabolite acCoA und succCoA möglich, deren intrazellulären Konzentrationen in Abbildung 5.13 gezeigt sind.

Abbildung 5.13: Intrazelluläre Konzentrationen der Metabolite Acetyl-CoenzymA (acCoA) und Succinyl-CoenzymA (succCoA) aus dem Citratzyklus während der metabolischen Kurzzeitanalyse in drei Zulaufphasen (1-3) von *E. coli* NT1259 $shiA_{Cg}$ mit den Kohlenstoffquellen Glycerin (Glyc), Glucose (Gluc), Glycerin und Shikimat (Glyc & Shik) sowie Glucose und Shikimat (Gluc & Shik), in schraffiert dargestellt sind die Konzentrationen der Probe aus dem Referenzprozess im Analysezeitraum (Ref).

Das Molekül acCoA bildet den Eintrittspunkt in den Citratzyklus und stellt die Verbindung zur Glykolyse her. Es ist zudem an vielen Reaktionen des Stoffwechsels beteiligt und fungiert als Zwischenprodukt der Ethanol- und Acetatbiosynthese. Im Ansatz mit Glycerin wurden steigende Konzentrationen mit zunehmender Substratzufuhr gemessen, im Reaktor mit Shikimat als zusätzlicher Kohlenstoffquelle lagen die Konzentrationen etwas höher und es wurde zunächst ein Anstieg der acCoA-Konzentration zwischen der ersten und zweiten Zulaufstufe gemessen. Zwischen der zweiten und dritten Zulaufstufe verringerte sich die acCoA-Konzentration. Gleiches wurde für die acCoA-Konzentrationen in den Reaktoren mit zugeführter Glucose beobachtet. Die absoluten Konzentrationen lagen für die Ansätze mit Glucose allerdings etwas unter den Konzentrationen der Reaktoren mit Glycerin als Kohlenstoffquelle.

Die gemessenen succCoA-Konzentrationen sind teils mit hohen Standardabweichungen behaftet. In den Reaktoren mit Shikimat als zusätzlicher Kohlenstoffquelle sind abnehmende Tenden-

Abbildung 5.14: Intrazelluläre Konzentrationen der Metabolite 6-Phosphogluconat (6pg), Sedoheptulose-7-Phosphat (s7p), Ribose-5-Phosphat (r5p) und Ribulose-5-Phosphat (ru5p) aus dem Pentosephosphatweg während der metabolischen Kurzzeitanalyse in drei Zulaufphasen (1-3) von *E. coli* NT1259 $shiA_{Cg}$ mit den Kohlenstoffquellen Glycerin (Glyc), Glucose (Gluc), Glycerin und Shikimat (Glyc & Shik) sowie Glucose und Shikimat (Gluc & Shik), in schraffiert dargestellt sind die Konzentrationen der Probe aus dem Referenzprozess im Analysezeitraum (Ref).

In Abbildung sind 5.14 sind Konzentrationen der messbaren Metabolite des Pentosephosphatwegs gezeigt. Aus diesem Bereich des Stoffwechsels werden die Vorläufermoleküle e4p und prpp für die L-Tryptophanbildung gewonnen. Es bestehen zahlreiche Verknüpfungspunkte des Pentosephophatwegs mit der Glykolyse, die den Austausch von Kohlenstoff in Form unterschiedlicher Metabolite ermöglicht. Beispielsweise wird 6pg direkt aus g6p synthetisiert.

6pg wie auch ru5p gehören dem oxidativen Teil des Pentosephosphatwegs an. Die veränderten Konzentrationen beider Metabolite sprechen für eine Aktivität dieses Stoffwechselwegs. Für die beiden Reaktoren ohne Shikimat wurde eine Erhöhung der 6pg-Konzentration zwischen der ersten und zweiten Zulaufstufe gemessen. Vergleicht man die Zulaufstufen 2 und 3 ist keine signifikante Änderung in den Konzentrationen zu erkennen. In den Reaktoren mit zusätzlich zugeführtem Shikimat lagen die intrazellulären 6pg-Konzentrationen deutlich höher. Zudem ist in beiden Reaktoren ein Anstieg der intrazellulären 6pg-Konzentrationen mit Zunahme der Zulaufrate gemessen worden. Die höchsten 6pg-Konzentrationen von $1,01 \pm 0,10 \,\mathrm{mM}$ und $0,96 \pm 0,05 \,\mathrm{mM}$ wurden jeweils während der letzten Zulaufstufe in den Reaktoren mit Glycerin und Shikimat sowie Glucose und Shikimat beobachtet.

Für die Metabolite s7p und r5p sind abfallende Konzentrationen in den Reaktoren mit Glycerin und ansteigende Konzentrationen in den Reaktoren mit Glucose erkennbar. Die r5p-Konzentration stieg in beiden Reaktoren mit zugeführtem Glycerin an. Im Ansatz mit Glucose blieb die r5p-Konzentration konstant, während sie im Reaktor mit Glucose und zusätzlichem Shikimat zwischen der ersten und zweiten Zulaufstufe zunächst anstieg und während der dritten Zulaufstufe beinahe auf den Wert der ersten Zulaufstufe herabfiel.

Auch die intrazellulären Konzentrationen des Pentosephosphatwegs wurden durch die Verwendung der verschiedenen Substrate beeinflusst. Für 6pg wurde eine Erhöhung der intrazellulären Konzentration bei Zugabe von Shikimat beobachtet. Die intrazellulären Konzentrationen der Metabolite aus dem Pentosephosphatweg lagen in der Probe aus dem Referenzprozess etwas höher als im Analysenreaktor mit Glycerin als alleiniger Kohlenstoffquelle.

Die Synthese des L-Tryptophan-Vorläufermoleküls L-Serin erfolgt ausgehend von 3pg in einem von der Glykolyse abzweigenden Stoffwechselweg. In Abbildung 5.15 ist die intrazelluläre Konzentration des direkten L-Serin-Vorgängermoleküls L-pser gezeigt.

Die Konzentration des L-pser im Reaktor mit Glycerin als einziger Kohlenstoffquelle nahm zwischen der ersten und zweiten Zulaufstufe zu und blieb während der dritten Zulaufstufe, verglichen mit der zweiten, nahezu konstant. Für den Analysenreaktor mit den beiden Kohlenstoffquellen Glycerin und Shikimat wurden mit steigender Zulaufrate abfallende L-pser-Konzentrationen gemessen. In beiden Reaktoren mit zugeführter Glucose wurde ein Anstieg der intrazellulären L-pser-Konzentrationen beobachtet. Die Konzentration in der Probe des Referenzprozesses fiel verglichen mit den Konzentrationen in den Proben der Analysenreaktoren etwas geringer aus.

Abbildung 5.15: Intrazelluläre Konzentration von Phospho-L-Serin (L-pser) aus der L-Serinbiosynthese während der metabolischen Kurzzeitanalyse in drei Zulaufphasen (1-3) von *E. coli* NT1259 $shiA_{Cg}$ mit den Kohlenstoffquellen Glycerin (Glyc), Glucose (Gluc), Glycerin und Shikimat (Glyc & Shik) sowie Glucose und Shikimat (Gluc & Shik), in schraffiert dargestellt sind die Konzentrationen der Probe aus dem Referenzprozess im Analysezeitraum (Ref).

Die Darstellung der analytisch erfassten Metabolitkonzentrationen aus der Biosynthese aromatischer Aminosäuren kann Abbildung 5.16 entnommen werden. Die intrazellulären Konzentrationen des zentralen Metabolits der Chorismatbiosynthese 3dhs stiegen in den Reaktoren mit Glycerin bei Erhöhung der Zulaufrate stark an. Im Reaktor mit Glycerin und Shikimat wurde in der dritten Zulaufstufe eine maximale Konzentration von $51,89 \pm 7,28$ mM gemessen. In beiden Reaktoren, in denen Glucose als Substrat eingesetzt wurde, blieben die Konzentrationen während der gesamten Analysezeit unterhalb von 2 mM. Nur geringfügig ansteigende Tendenzen sind erkennbar.

Auch für s3p wurden in allen Reaktoren steigende Konzentrationsprofile gemessen. Bei Zugabe von Shikimat fiel die Erhöhung deutlich stärker aus. Die Konzentration im Reaktor mit den zugeführten Substraten Glycerin und Shikimat stieg in der letzten Stufe auf $28,30 \pm 1,51$ mM und im Reaktor mit Glucose und Shikimat auf $19,06 \pm 0,97$ mM an. Die Konzentration in der Referenzprobe lag bei $0,27 \pm 0,00$ mM und damit im Konzentrationsbereich, der im Analysenreaktor mit Glycerin als Kohlenstoffquelle gemessen wurden.

Bis Chorismat verläuft die Biosynthese der aromatischen Aminosäuren L-Phenylalanin, L-Tyrosin und L-Tryptophan gemeinsam. Ab Chorismat trennen sich die Stoffwechselwege der L-Phenylalanin und L-Tyrosinsynthese von der L-Tryptophanbiosynthese. Steigende Tendenzen der Chorismatkonzentrationen ergaben sich in beiden Reaktoren mit zugeführtem Glycerin. In den Analysenreaktoren mit Glucose wurden nur geringfügige Schwankungen gemessen.

Abbildung 5.16: Intrazelluläre Konzentrationen der Metabolite 3-Dehydroshikimat (3dhs), Shikimat-3-Phosphat (s3p), Chorismat (chor), Prephenat (pphn), Phenylpyruvat (phpyr), Anthranilat (anth), Carboxyphenylamino-Desoxyribulose-5-Phosphat (2cdr5p) und Indol-3-Glycerinphosphat (3ig3p) aus dem Biosyntheseweg aromatischer Aminosäuren während der metabolischen Kurzzeitanalyse in drei Zulaufphasen (1-3) von *E. coli* NT1259 $shiA_{Cg}$ mit den Kohlenstoffquellen Glycerin (Glyc), Glucose (Gluc), Glycerin und Shikimat (Glyc & Shik) sowie Glucose und Shikimat (Gluc & Shik), in schraffiert dargestellt sind die Konzentrationen der Probe aus dem Referenzprozess im Analysezeitraum (Ref).

Die Synthese der beiden zur L-Tryptophanbildung in Konkurrenz stehenden Aminosäuren L-Phenylalanin und L-Tyrosin beginnt mit der Umsetzung von Chorismat zu pphn. Für dieses gemeinsame Vorläufermolekül wurden geringe Konzentrationen von unter 0,2 mM gemessen. Lediglich im Reaktor mit Glycerin und Shikimat stieg die Konzentration während der letzten Zulaufstufe auf $0,44 \pm 0,09$ mM an und auch im Reaktor mit Glycerin als einziger Kohlenstoffquelle wurde während der letzten Zulaufstufe ein leichter Anstieg der intrazellulären pphn-Konzentration auf $0,17 \pm 0,03$ mM beobachtet. Die Konzentrationsprofile von phpyr, dem direkten Vorläufermetabolit von L-Phenylalanin, waren in allen Reaktoren tendenziell ansteigend. Nur im Reaktor mit Glucose als einziger Kohlenstoffquelle fiel die Konzentration während der dritten Zulaufstufe auf einen Wert unterhalb der gemessenen Konzentration während der ersten Zulaufstufe ab.

Für anth, den ersten Metabolit der spezifischen L-Tryptophanbiosynthese, wurden steigende intrazelluläre Konzentrationen in allen Analysenreaktoren gemessen. Bei Zugabe von Shikimat zu Glycerin wurde ein starker Anstieg auf $8,67 \pm 0,44$ mM während der letzten Zulaufstufe gemessen. Bei Verwendung von Glucose und Shikimat als Kohlenstoffquellen wurde ein Anstieg diesen Ausmaßes nicht beobachtet.

Die 2cdr5p-Konzentrationen zeigten ansteigende Tendenzen in allen Reaktoren. Die Konzentrationen in den Proben des Reaktors mit den Substraten Glycerin und Shikimat lagen etwas höher als in den Proben aller weiteren Analysenreaktoren. Die quantitative Erfassung des 3ig3ps gestaltete sich aufgrund großer Standardabweichungen schwierig. Tendenziell sinkende Konzentrationen wurden für die Reaktoren mit Glycerin gemessen, während die Konzentrationen in den Reaktoren mit Glucose schwankten beziehungsweise einen leichten Anstieg erkennen ließen.

Für alle gezeigten Metabolite der Aromatenbiosynthese, ausgenommen der Metabolite 3dhs und s3p, lagen die Messwerte der Probe aus dem Referenzprozess etwas oberhalb des Messbereichs der Ergebnisse aus dem Analysenreaktor mit Glycerin als einziger Kohlenstoffquelle.

Abbildung 5.17 fasst die gemessenen Metabolite aus dem Energiestoffwechsel zusammen. Für alle Metabolite waren kaum Veränderungen oder gerichtete Tendenzen in den Konzentrationsprofilen erkennbar. In allen Proben der Analysenreaktoren lag die atp-Konzentration über den amp- und adp-Konzentrationen. Die atp-Konzentration in der Referenzprobe ist stark fehlerbehaftet und liegt im Mittel etwas unter der gemessenen mittleren adp-Konzentration und etwas oberhalb der gemessenen amp-Konzentration. Für oxidiertes Flavinadenindinukleotid (fad) wurden beinahe gleichbleibende und sehr geringe Konzentrationen von etwa 0,1 mM in allen Proben gemessen.

Abbildung 5.17: Intrazelluläre Konzentrationen der Energieäquivalente Adenosinmonophosphat (amp), Adenosindiphosphat (adp), Adenosintriphosphat (atp) und Flavinadenindinukleotid oxidiert (fad) während der metabolischen Kurzzeitanalyse in drei Zulaufphasen (1-3) von *E. coli* NT1259 $shiA_{Cg}$ mit den Kohlenstoffquellen Glycerin (Glyc), Glucose (Gluc), Glycerin und Shikimat (Glyc & Shik) sowie Glucose und Shikimat (Gluc & Shik), in schraffiert dargestellt sind die Konzentrationen der Probe aus dem Referenzprozess im Analysezeitraum (Ref).

Weiterhin wurden die Redox-Cofaktoren nad, nadh, oxidiertes Nikotinamidadenindinukleotidphosphat (nadp) und nadph gemessen. Die Ergebnisse sind in Abbildung 5.17 dargestellt. Wie auch die Energieäquivalente sind die Cofaktoren an einer Vielzahl an Reaktionen im gesamten Stoffwechsel beteiligt. Da die Nukleotide nur in katalytischen Mengen im Stoffwechsel verfügbar sind, ist ein Gleichgewicht in der Reduktion und Oxidation dieser Moleküle entscheidend für die Aufrechterhaltung kataboler sowie anaboler Reaktionen. Auch für die Chorismatbiosynthese ist die Bereitstellung von nadph notwendig und damit von Relevanz für die L-Tryptophanbiosynthese. Die katabole Reduktionskraft (nadh/(nadh + nad)) lag in allen Proben bei etwa 0,05, die anabole Reduktionskraft (nadph/(nadph + (nadp)) bei circa 0,3.

Abbildung 5.18: Intrazelluläre Konzentrationen der Cofaktoren Nikotinamidadeninnukleotid oxidiert (nad), Nikotinamidadeninnukleotid reduziert (nadh), Nikotinamidadenindinukleotidphosphat oxidiert (nadp) und Nikotinamidadenindinukleotidphosphat reduziert (nadph) während der metabolischen Kurzzeitanalyse in drei Zulaufphasen (1-3) von *E. coli* NT1259 $shiA_{Cg}$ mit den Kohlenstoffquellen Glycerin (Glyc), Glucose (Gluc), Glycerin und Shikimat (Glyc & Shik) sowie Glucose und Shikimat (Gluc & Shik), in schraffiert dargestellt sind die Konzentrationen der Probe aus dem Referenzprozess im Analysezeitraum (Ref).

Diskussion

Das gemessene intrazelluläre Metabolom während der metabolischen Analyse mit E. coli NT1259shi A_{Cg} zeigte eine deutliche Reaktion der Zellen auf die geänderte Substratzufuhr und ermöglichte eine quantitative Erfassung der Auslenkungen. Es wurden nicht nur Variationen im Bereich der Substrataufnahme wie beispielsweise in den Konzentrationen von g6p, gly3p, dhap oder s3p beobachtet, sondern es traten auch stark variierende Konzentrationen in zentraleren Bereichen des Stoffwechsels wie dem Pentosephosphatweg oder den Metabolitpools von pep und pyr auf. Insbesondere in der Chorismatbiosynthese und dem spezifischen Stoffwechselweg zur L-Tryptophanbiosynthese wurden große Variationen in den Metabolitkonzentrationen durch die Zugabe des neuen Substrates Shikimat hervorgerufen. Die stark ansteigenden anth-Konzentrationen im Analysenreaktor mit Glycerin und Shikimat als Kohlenstoffquellen deuten auf eine für die Glycerinaufnahme spezifisch auftretende Limitierung in der Umsetzung von anth hin. Mögliche Gründe sind eine Limitierung in der enzymatischen Kapazität der ANPRT oder ein Mangel am zusätzlich nötigen Vorläufermolekül prpp. Auffallend ist weiterhin der Anstieg der fbp-Konzentration
in den Reaktoren, in welchen Glycerin als Substrat verwendet wurde. Die starke Erhöhung bei Aufnahme von Glycerin wurde auch in vorherigen Arbeiten beobachtet (Tröndle, 2019; Weiner *et al.*, 2017).

Die Metabolitkonzentrationen der zentralen Energieäquivalente atp, adp und amp werden durch zahlreiche Reaktionen des Stoffwechsels gespeist und abgebaut. Die vielfältigen Zufluss- und Abbaumöglichkeiten stabilisieren die Metabolitpools dieser Moleküle, weshalb eine Auslenkung des Stoffwechsels an dieser Stelle nicht direkt sichtbar wurde. Aus den Konzentrationen wurden *energy charges* von 0,5 bis 0,65 berechnet. Demnach befinden sich die Zellen in einem vitalen Zustand, aber nicht im exponentiellen Wachstum (Chapman *et al.*, 1971). Die katabole Reduktionskraft lag in allen Proben bei etwa 0,05. Hierin stimmen die Ergebnisse gut mit vorherigen metabolischen Analysen, in denen Glycerin als Kohlenstoffquelle verwendet wurde, überein (Andersen & Von Meyenburg, 1977; Tröndle, 2019). Die anabole Reduktionskraft war jedoch aufgrund verhältnismäßig hoher nadp-Konzentrationen mit circa 0,3 etwas geringer als erwartet (Andersen & Von Meyenburg, 1977; Tröndle, 2019).

Die erzeugten Auslenkungen, insbesondere in den produktspezifischen Stoffwechselwegen, bestätigen den Nutzen von Transporterstämmen für die gezielte Auslenkung von Produktbiosynthesewegen. Insgesamt spiegeln die intrazellulären Metabolomdaten die erfolgreiche Auslenkung der Zellen durch die Verwendung der Substrate Glycerin, Glucose und der Substratkombinationen aus Glycerin und Shikimat sowie Glucose und Shikimat wider.

5.2.5 Thermodynamische Stoffflussabschätzungen und Netzwerkanalyse

Die gezeigten Daten des extrazellulären Fluxoms und des intrazellulären Metaboloms erlaubten eine quantitative Erfassung des metabolischen Zustands der Zellen. Bereits durch die Vorgabe der gemessenen extrazellulären Raten ist die computergestützte Abschätzung der intrazellulären Stoffflussverteilungen innerhalb eines genomweiten stöchiometrischen Modells mittels Methoden der klassischen FBA und FVA möglich. Um die Präzision dieser Abschätzungen zu erhöhen, können mithilfe der pyTFA-Methode thermodynamische Gesetze in den Berechnungen berücksichtigt und intrazelluläre Metabolitkonzentrationen zur weiteren Beschränkung des Lösungsraumes mitaufgenommen werden. Auf diese Weise werden Stoffflüsse, die der Zellphysiologie und thermodynamischen Gesetzen widersprechen, aus den Ergebnissen entfernt. Durch Hinzufügen der intrazellulären Metabolitkonzentrationen werden thermodynamisch unzulässige Reaktionsrichtungen unterbunden und somit die Genauigkeit der abgeschätzten intrazellulären Stoffflussverteilungen zusätzlich erhöht. Darüber hinaus wird mittels der pyTFA-Methodik die Ermittlung thermodynamischer Netzwerkgrößen wie Gibbs'scher Reaktionsenergien und nicht messbarer Metabolitkonzentrationen im selben Optimierungsproblem mit der Schätzung von Stoffflussverteilungen möglich. Aufgrund verbesserter Eigenschaften bei der Eliminierung von Netzwerkschleifen wurde der thermodynamischen Stoffflussanalyse der CycleFreeFlux-Algorithmus vorgeschaltet (siehe Kapitel 5.1). Die Modellierungen erfolgten im Modell *i*JO1366, die Maximierung der Biomassefunktion wurde als Optimierungskriterium gewählt und die Beschränkung des Lösungsraumes erfolgte durch die Vorgabe der gemessenen extrazellulären Raten, inklusive der Atmungsraten (siehe Tabellen 5.4, 5.6, 5.5 und 5.7) sowie der gemessenen intrazellulären Metabolitkonzentrationen. Für die thermodynamische Analyse wurde eine Temperatur von 37 °C, ein extrazellulärer pH von 7 und eine Ionenstärke von 0,15 M festgelegt.

Stoffflussverteilungen

In Abbildung 5.19 sind die Mittelwerte der durch die kombinierte Methodik aus TVA mit vorgeschalteter FVA II sowie der Vorgabe intrazellulärer Metabolitkonzentrationen (FVA II & TVA & Met) geschätzten Lösungsbereiche für alle Zulaufstufen in den Analysenreaktoren und den Referenzzustand gezeigt. Für die Darstellung wurden Bereiche des Metabolismus mit großer Relevanz für die L-Tryptophanbiosynthese ausgewählt und für eine bessere Übersichtlichkeit auf zwei *Heatmaps* mit unterschiedlicher Skalierung aufgeteilt. Im oberen Diagramm sind die Stoffflüsse mit hohen Raten von -5 mmol g_{BTM}^{-1} h⁻¹ bis 5 mmol g_{BTM}^{-1} h⁻¹ der Stoffwechselbereiche Glykolyse/ Gluconeogenese, Glycerinstoffwechsel, L-Serinbiosynthese, mgo-Stoffwechselweg und Citratzyklus zusammengefasst. Im unteren Diagramm wird ein Überblick über die Stoffflüsse mit geringen Raten von -0,4 mmol g_{BTM}^{-1} h⁻¹ bis 0,4 mmol g_{BTM}^{-1} h⁻¹ der Stoffwechselwege Pentosephosphatweg, Chorismatbiosynthese, L-Phenylalanin- und L-Tyrosinbiosynthese sowie der L-Tryptophanbiosynthese gegeben.

Die Aktivitäten des PTS zur Aufnahme von Glucose und die Reaktionen des Glycerinabbaus (GLYK und GLY3PD) waren durch die Vorgabe der gemessenen Aufnahmeraten der primären

Kohlenstoffquellen (Glycerin oder Glucose) indirekt vorbestimmt. Die Stofffüsse des PTS erhöhten sich bei steigenden Glucoseaufnahmeraten und waren inaktiv, wenn Glycerin als Substrat verwendet wurde. Bei Erhöhung der Glycerinaufnahme stiegen dementsprechend die Aktivitäten der aeroben Abbaureaktionen von Glycerin und das PTS war den Schätzungen zufolge inaktiv. Für die Reaktionen des oberen Teils der Glykolyse (PGI, FBP und FBA) ergaben sich bei Aufnahme von Glycerin Flüsse in gluconeogener Richtung. Die geschätzten glykolytischen Stoffflüsse unterhalb von g3p waren mit Glycerin als primärer Kohlenstoffquelle höher als mit Glucose. Für den Ansatz mit Glycerin und zusätzlichem Shikimat reichten die Flussraten in der dritten Zulaufstufe bis maximal 3,6 mmol g_{BTM}⁻¹ h⁻¹, für Glucose und Shikimat wurden in der dritten Zulaufstufe maximale Stoffflüsse von $1,5 \,\mathrm{mmol}\,\mathrm{g_{BTM}^{-1}}\,\mathrm{h^{-1}}$ abgeschätzt. Für Glucose wurden anstatt dessen höhere Flüsse im oxidativen Teil des Pentosephosphatwegs ermittelt. Für die PYK wurden nur bei Aufnahme von Glycerin als Primärsubstrat Aktivitäten abgeschätzt, da die Umsetzung von pep zu Pyruvat, katalysiert durch das PTS, bei der Aufnahme und Phosphorylierung von Glucose erfolgt. Hohe Varianzen im Bereich der Glykolyse ergaben sich für alle Gleichgewichtsstufen aufgrund vorhergesagter möglicher Aktivitäten des mgo-Stoffwechselweges. Die Stoffflüsse in der L-Serinbiosynthese waren durch die vorgegebene L-Tryptophanbildungsrate indirekt vorbestimmt. Hohe L-Tryptophanbildungsraten führten auch zu höheren Raten in der L-Serinbiosynthese, da L-Serin ein Vorläufermolekül des Produktes L-Tryptophan ist.

Im Citratzyklus wurden für alle metabolischen Gleichgewichtszustände ähnliche Stoffflussverteilungen ermittelt. Mit Zunahme der Substrataufnahmen stiegen auch die Aktivitäten im Citratzyklus für alle Substrate und Substratkombinationen an. Mögliche Aktivitäten des Glyoxal-Bypass (ICL und MALS) wurden sowohl für die Reaktoren mit Glucose als auch die Ansätze mit Glycerin abgeschätzt. Durch diese Redundanz und die vielfältigen Zu- und Abflüsse des Citratzyklus wurden für diesen Bereich hohe Varianzen ermittelt.

Auch die Stoffflüsse des Pentosephosphatwegs waren aufgrund starker Verzweigung, Redundanz und Reversibilität mit Unsicherheiten behaftet. Die Beschränkung mit extrazellulären Raten und Metabolitkonzentrationen führten zur deutlichen Reduktion der möglichen Reaktionsrichtungen und es wurde letztlich nur für die Reaktionen der Transketolase (TKT1 und TKT2), RPE und TALA die Möglichkeit zur Reversibilität abgeschätzt. Für alle Gleichgewichtsstufen wurden Aktivitäten im oxidativen und nicht-oxidativen Teil des Pentosephosphatwegs ermittelt, was sich mit den gemessenen intrazellulären Metabolitkonzentrationen deckt. Der Stofffluss durch die PRPPS wurde hauptsächlich durch die gemessene und vorgegebene Produktbildungsrate beeinflusst.

Gleichermaßen waren auch die Flussverteilungen im Bereich der Aromatenbiosynthese weitestgehend durch die gemessenen Bildungsraten für L-Tryptophan, L-Phenylalanin und L-Tyrosin festgelegt. Aufgrund der Linearität dieser Stoffwechselwege traten in diesen Bereichen kaum Varianzen auf.

Insbesondere in den Stoffflussverteilungen der Chorismatbiosynthese wurden starke Auslenkungen durch die Zugabe des sekundären Substrates Shikimat sichtbar. Während die Stoffflüsse der L-Phenylalanin- und L-Tyrosinbiosynthese unterhalb von 0,04 mmol g_{BTM}^{-1} h⁻¹ blieben und kaum zwischen den verschiedenen metabolischen Gleichgewichten variierten, sind die gemessenen Auslenkungen in der L-Tryptophanbiosynthese sehr deutlich. Wie auch an den gemessenen

extrazellulären Raten abzulesen war, führten höhere Substrataufnahmeraten und auch die zusätzliche Zufuhr von Shikimat in keinem der Reaktoren zu einer gesteigerten Produktbildung. Würde alles aufgenommene Shikimat zusätzlich zu der Menge an gebildetem Chorismat mit Glycerin als alleiniger Kohlenstoffquelle ungehindert in die L-Tryptophanbiosynthese fließen, wäre theoretisch gesehen durch die Zufuhr von Shikimat eine maximale Steigerung der Produktbildung um 108 % möglich.

Für alle in Abbildung 5.19 betrachteten Bereiche stimmten die geschätzten Stoffflussraten des Referenzzustands gut mit den ermittelten Flussverteilungen der Analysenreaktoren mit zugeführtem Glycerin überein. Insgesamt wurde auch anhand der Ergebnisse der Stoffflussabschätzungen aller Gleichgewichtszustände die Auslenkung des Metabolismus durch die veränderte Substratzufuhr deutlich. Die Zugabe von Shikimat löste insbesondere im Bereich der Chorismatbiosynthese große Veränderungen aus. Die Ergebnisse der theoretisch ermittelten Stoffflussverteilungen sind den Tabellen 5.4, 5.6, 5.5 und 5.7 im Anhang zu entnehmen.

Abbildung 5.19: *Heatmaps* der Mittelwerte der mittels thermodynamischer Flussvarianzanalyse mit vorgeschaltetem CycleFreeFlux-Algorithmus und Vorgabe intrazellulärer Metabolitkonzentrationen (FVA ll & TVA & Met) abgeschätzten intrazellulären Stoffflussverteilungen (Einheit: mmol g_{BTM}^{-1} h⁻¹) der Glykolyse/ Gluconeogenese und des Glycerinmetabolismus (GLUC/ GLYK), der L-Serinbiosynthese (L-Ser), des Methylglyoxal-Stoffwechselwegs (MGO) und des Citratzyklus (TCA) (oberes Diagramm) sowie des Pentosephosphatwegs (PPP), der Chorismatbiosynthese (CHOR), der L-Phenylalanin- und L-Tyrosinbiosynthese (L-Phe/ L-Tyr) sowie des L-Tryptophanbiosynthesewegs (L-Trp) (unteres Diagramm) während der Kurzzeitanalyse von *E. coli* NT1259 *shiA*_{Cg} in den Analysenreaktoren mit den Kohlenstoffquellen Glycerin (Glyc), Glucose (Gluc), Glycerin und Shikimat (Glyc & Shik) sowie Glucose und Shikimat (Gluc & Shik) und im Referenzprozess (Ref). Zur Beschränkung des Lösungsraums dienten die gemessenen extrazellulären Raten und analytisch erfasste intrazelluläre Metabolitkonzentrationen. Die Reaktionsnamen und Flussrichtungen sind entsprechend den Vorgaben des Modells *i*JO1366.

Gibbs'sche Reaktionsenergien

Durch die pyTFA-Methodik erfolgt die thermodynamische Netzwerkanalyse mit der Abschätzung intrazellulärer Stoffflussverteilungen in einem Schritt. Neben Stoffflussbereichen für alle im Modell enthaltenen Reaktionen werden ebenfalls für alle Reaktionen des Modells Lösungsbereiche für Gibbs'sche Reaktionsenergien abgeschätzt und nicht messbare Metabolitkonzentrationen in ihren möglichen Konzentrationsbereichen thermodynamisch beschränkt. Ein Vorteil, der sich aus der Kombination der Methoden ergibt, ist, dass die thermodynamische Analyse für alle theoretisch möglichen Stoffflussverteilungen erfolgt und mögliche entgegengesetzte Reaktionsrichtungen nicht von der Analyse ausgeschlossen werden müssen.

Die Konvergenz der Modelle ist durch die thermodynamische Beschränkung zusätzlich von den ermittelten Gibbs'schen Reaktionsenergien abhängig und die Aktivität einer Flussrichtung ist bedingt durch eine negative Gibbs'sche Energie. Je nach Definition der Reaktionsrichtungen können sich aufgrund der Reversibilität einiger Reaktionen auch positive Reaktionsenergien ergeben.

Wie in Kapitel 3.8 beschrieben, ist die thermodynamische Lage der Reaktionen für die Abschätzung von Elastizitäten ausschlaggebend. Daher erfolgt anhand der Gibbs'schen Reaktionsenergien eine Klassifizierung der Reaktionen in zwei Gruppen. Reaktionen, deren Energien größer als -10 kJ mol⁻¹ sind, werden als nahe am thermodynamischen Gleichgewicht operierende Reaktionen betrachtet, während Reaktionsenergien von bis zu maximal -10 kJ mol⁻¹ eine Zuordnung zur Gruppe der Reaktionen fern dem thermodynamischen Gleichgewicht bedeuten. Die Klassifizierung der Reaktionen erfolgte anhand der ermittelten Reaktionsenergien des Referenzprozesses im Zeitraum der metabolischen Analyse. Die Ergebnisse für den in dieser metabolischen Kontrollanalyse betrachteten Teil des Stoffwechsels sind in Abbildung 5.20 gezeigt. Die ermittelten Lösungsbereiche wurden zusätzlich durch eine Abtastfunktion mit 10.000 Abtastpunkten statistisch genauer analysiert.

In der Glykolyse und im Glycerinmetabolismus wurden Gibbs'sche Reaktionsenergien nahe dem thermodynamischen Gleichgewicht für die Reaktionen PGI, FBA, TPI, GAPD, PGK, PGM und ENO abgeschätzt. Niedrige Reaktionsenergien von -24 kJ mol⁻¹ bis -5 kJ mol⁻¹ ergaben sich für die GLY3PD. Die Gibbs'schen Reaktionsenergien der Reaktionen der Enzyme GLYK, FBP, PYK und PDH lagen unterhalb von -10 kJ mol⁻¹, daher werden diese Reaktionen als fern dem thermodynamischen Gleichgewicht zugeordnet.

Im Citratzyklus wurde für die Reaktion der SUCOAS mögliche Reversibilität vorhergesagt, es wurde jedoch nur für verhältnismäßig wenige Abtastpunkte eine Umkehr der Reaktionsrichtung ermittelt. Für die Reaktionen der Aconitase A und B (ACONT), die FUM und MDH ergaben sich Gibbs'sche Reaktionsenergien von weitestgehend über -10 kJ mol⁻¹.

Für die Reaktionen TKT1, TKT2, TALA, RPE und RPI des Pentosephosphatwegs wurden ebenfalls Reaktionsenergien nahe 0 kJ mol⁻¹ abgeschätzt, Reversibilität zeigte sich für die Reaktionen der TKT1, TKT2, TALA und RPE. Für die PGL im oxidativen Teil des Pentosephosphatwegs genauso wie für die PRPPS, die die Bereitstellung des L-Tryptophan-Vorläufermoleküls prpp aus Metaboliten des Pentosephosphatwegs katalysiert, wurden Gibbs'sche Reaktionsenergien kleiner als -10 kJ mol⁻¹ abgeschätzt, weshalb diese Reaktionen als fern dem thermodynamischen Gleichgewicht klassifiziert werden.

Die PGCD katalysiert den ersten Schritt der von der Glykolyse abzweigenden L-Serinbiosynthese. Für diese Reaktion wurden Gibbs'sche Reaktionsenergien von beinahe 0 kJ mol⁻¹ ermittelt, eine Operation nahe dem thermodynamischen Gleichgewicht ist daher anzunehmen. Für die beiden weiteren Reaktionen der L-Serinbiosynthese, die PSERT und PSP_L, wurden deutlich negativere Reaktionsenergien abgeschätzt.

In der Aromatenbiosynthese reichten abgeschätzten Reaktionsenergien von nahe 0 kJ mol⁻¹ bis beinahe -300 kJ mol⁻¹, die Zuordnung zur Gruppe, der am thermodynamischen Gleichgewicht ablaufenden Reaktionen, war nur für wenige Reaktionen möglich. Für keine der Reaktionen der Aromatenbiosynthese wurde eine Richtungsumkehr vorhergesagt, was durch die Vorgabe der Produkt- und Nebenproduktbildungsraten bedingt ist. Auffällig negative Werte ergaben sich für die Reaktionen der DDPA, DHQS, CHORS, CHORM, PPNDH, ANS, ANPRT, IGPS und TRPS2.

Abbildung 5.20: Mittels thermodynamischer Flussvarianzanalyse mit vorgeschaltetem CycleFreeFlux-Algorithmus und Vorgabe intrazellulärer Metabolitkonzentrationen (FVA ll & TVA & Met) abgeschätzte Bereiche der möglichen Gibbs'schen Reaktionsenergien (Einheit: kJ mol⁻¹) für die L-Tryptophanproduktion im Referenzprozess mit *E. coli* NT1259 $shiA_{Cg}$ im Zeitraum der metabolischen Kurzzeitanalyse. Gezeigt sind die Energien der Reaktionen der Stoffwechselbereiche Glykolyse/ Gluconeogenese, Glycerinmetabolismus (GLUC/ GLYK), L-Serinbiosynthese (L-Ser), Citratzyklus (TCA), Pentosephosphatwegs (PPP), Chorismatbiosynthese (CHOR), L-Phenylalanin- und L-Tyrosinbiosynthese (L-Phe/ L-Tyr) sowie L-Tryptophanbiosynthese (L-Trp). Die Reaktionsnamen sind entsprechend den Namen im Modell *i*JO1366.

Intrazelluläre Metabolitkonzentrationen

In der thermodynamischen Analyse des Stoffwechselnetzwerks wurden auch Bereiche für die analytisch nicht erfassten Metabolitkonzentrationen ermittelt. Durch die Anwendung einer Abtastfunktion wurde der erhaltene Lösungsbereich in 10.000 Berechnungszyklen statistisch untersucht. Auf diese Weise wurden die Auftrittswahrscheinlichkeiten der zulässigen Konzentrationen genauer analysiert. Dies erfolgte für alle nicht gemessenen Metabolite des *E. coli*-Modells *i*JO1366. In Abbildung 5.21 sind die Häufigkeitsverteilungen für einige Metabolitkonzentrationsbereiche für den Referenzprozess im Zeitraum der metabolischen Analyse gezeigt. Der durch das Modell festgelegte maximal zulässige Konzentrationsbereich aller Metabolite reichte von 0,001 mM bis 50 mM.

Abbildung 5.21: Statistische Verteilung der mittels thermodynamischer Flussvarianzanalyse mit vorgeschaltetem CycleFreeFlux-Algorithmus und Vorgabe intrazellulärer Metabolitkonzentrationen (FVA ll & TVA & Met) abgeschätzten Konzentrationsbereiche während der L-Tryptophanproduktion im Referenzprozess mit *E. coli* NT1259 *shiA*_{Cg} der Metabolite 3-Phosphohydroxypyruvat (3php), L-Glutamat (L-glu), Erythrose-4-Phosphat (e4p), Xylulose-5-Phosphat (x5p), 3-Dehydroquinat (3dhq) und Phosphoribosylanthranilat (pran) über 10.000 Abtastpunkte.

3php ist der erste Metabolit des L-Serin spezifischen Biosynthesewegs. Es entsteht durch die katalytische Aktivität der PGCD, bei gleichzeitiger Reduktion von nad zu nadh, aus 3pg. Das Molekül ist nur an diesem Stoffwechselweg beteiligt und tritt an keiner anderen Stelle des Metabolismus auf. Da sowohl für das Vorläufermolekül 3pg als auch das nachfolgende Molekül L-pser Messdaten vorliegen, konnte der zulässige Konzentrationsbereich von 3php durch die thermodynamische Analyse stark eingeschränkt werden. Ermittelt wurden mögliche Konzentrationen von 1 μ M bis 2 μ M. Durch die Abtastfunktion wurde ein Maximum der Häufigkeitsverteilung bei etwa 1,4 μ M gefunden. Die Häufigkeit fiel sowohl in Richtung höherer als auch geringerer Konzentrationen ab, wodurch sich eine tendenziell rechtsschiefe Verteilung ergab.

Im Gegensatz zu 3php ist L-glu ein Metabolit, der an vielen Reaktionen des Modells beteiligt ist. Beispielsweise dient er in der L-Serinbiosynthese als Vorläufermolekül und wird im L-Tryptophan spezifischen Syntheseweg bei der Umsetzung von Chorismat freigesetzt. Zwar ist L-glu mit der verwendeten LC-MS-Methode messbar, aber es lag eine Maskierung der intrazellulären Konzentrationen durch hohe extrazelluläre Konzentrationen vor. Die computergestützte Einschränkung des Konzentrationsbereichs für diesen Metabolit ist aufgrund vieler Synthese- und Abbauwege ebenfalls schwierig und daher besonders in reduzierten Modellen sehr fehleranfällig. Mit der thermodynamischen Analyse des gesamten Modells gelang zwar keine Einschränkung des Ausgangsbereiches (0,001 mM - 50 mM), jedoch zeigte die Häufigkeitsverteilung eine zunehmende Wahrscheinlichkeit für Konzentrationen ab 12,5 mM. Ab einer Konzentration von etwa 25 mM war die Häufigkeit konstant, ab etwa 45 mM wurde eine sinkende Häufigkeit abgeschätzt.

Im Pentosephosphatweg wird e4p, ein wichtiges Vorläufermolekül der Aromatenbiosynthese, synthetisiert. Die Dimerisierung und Instabilität des e4ps erschweren dessen Messung, weshalb eine analytische Erfassung der Metabolitkonzentration mit der in dieser Arbeit verwendeten LC-MS-Methode nicht möglich war. Durch die thermodynamische Betrachtung wurde der zulässige Konzentrationsbereich auf 0,001 mM bis 0,564 mM eingeschränkt. Das Maximum der rechtsschiefen Häufigkeitsverteilung lag bei etwa 0,018 mM.

Ein weiterer nicht messbarer Metabolit des Pentosephosphatwegs ist x5p. Der geschätzte zulässige Konzentrationsbereich dieses Moleküls erstreckte sich von 0,001 mM bis 8,265 mM. Die Häufigkeitsverteilung zeigte ein globales Maximum bei etwa 5 mM.

Für einige Metabolite der Aromatenbiosynthese ist eine analytische Erfassung nicht möglich, so auch für 3dhq aus dem Chorismatbiosyntheseweg und pran aus dem für L-Tryptophan spezifischen Syntheseweg. Für 3dhq konnte der vorgegebene Konzentrationsbereich (0,001 mM -50 mM) durch die thermodynamische Netzwerkanalyse nicht weiter eingeschränkt werden. Die statistische Analyse des Lösungsbereiches zeigte jedoch, dass die Konzentrationen mit hoher Wahrscheinlichkeit im Bereich bis etwa 5 mM auftreten. Höhere Konzentrationen waren zwar zulässig, wurden aber in der statistischen Analyse kaum beobachtet.

Im L-Tryptophan spezifischen Biosyntheseweg tritt pran als Folgemetabolit von anth auf. Der zulässige Lösungsbereich von pran wurde durch die thermodynamische Analyse auf 0,305 mM bis 50 mM eingeschränkt. Für die linksschiefe Häufigkeitsverteilung ergab sich ein Maximum bei etwa 46 mM. Der statistischen Analyse zufolge lag die pran-Konzentration mit hoher Wahrscheinlichkeit im Bereich zwischen 37 mM und 50 mM.

Diskussion

Mittels der pyTFA-Toolbox wurden für die insgesamt 13 metabolischen Zustände während der metabolischen Kurzzeitanalyse von *E. coli* NT1259 $shiA_{Cg}$ Abschätzungen für die intrazellulären Stoffflussverteilungen vorgenommen. Die klassische Methode der FBA wurde durch die Anwendung thermodynamischer Gesetze und Einführung thermodynamischer Größen erweitert.

Durch die Verknüpfung der Stoffflussanalysen mit der thermodynamischen Netzwerkanalyse konnte die Genauigkeit der Stoffflussverteilungen erhöht und weiterhin die thermodynamische Analyse auf das gesamte genomweite Modell ausgeweitet werden. In einem Optimierungsproblem wurden die Stoffflussanalysen durchgeführt und Gibbs'sche Reaktionsenergien sowie nicht messbare Konzentrationsbereiche ermittelt.

Die theoretisch abgeschätzten Stoffflussverteilungen verdeutlichen die durch die Verwendung der Substrate Glycerin und Glucose sowie den Substratkombinationen Glycerin mit Shikimat und Glucose mit Shikimat hervorgerufene Auslenkung der intrazellulären Stoffflüsse. Die Gibbs'schen Reaktionsenergien ermöglichten die Klassifizierung aller Reaktionen im Modell hinsichtlich ihrer Lage zum thermodynamischen Gleichgewicht. Die Ergebnisse der Gibbs'schen Reaktionsenergien der Stoffwechselbereiche Glykolyse, Glycerinmetabolismus, Citratzyklus und L-Serinbiosyntheseweg zeigten zudem sehr gute Übereinstimmung mit bereits publizierten Daten (Canelas *et al.*, 2011; Henry *et al.*, 2007; Kümmel *et al.*, 2006; Tröndle, 2019). Auch die Nähe der Reaktionen aus dem Pentosephosphatweg (TKT1, TKT2, TALA, RPE und RPI) zum thermodynamischen Gleichgewicht wurde bereits mehrfach gezeigt (Canelas *et al.*, 2011; Kümmel *et al.*, 2006; Tröndle, 2019).

Stark negative Reaktionsenergien wurden für die Reaktionen der DDPA, DHQS, CHORS, CHORM, PPNDH, ANS, ANPRT, IGPS und TRPS2 abgeschätzt. Zu ähnlichen Ergebnissen kommen auch Henry et al. (2007). In dessen Arbeit wurden stark negative Reaktionsenergien für die Reaktionen DDPA, DHQS, CHORS, CHORM, PPNDH, ANS und IGPS ermittelt. Mit den Ergebnissen von Tröndle (2019) stimmen die Ergebnisse ebenfalls weitestgehend überein. Reaktionen mit $\Delta_r G'$ -Werten nahe 0 kJ mol⁻¹ unterliegen sehr wahrscheinlich keiner aktiven Regulation, da ihre Auslenkbarkeit durch die Änderungen ihrer Reaktanten sehr empfindlich ist (Henry et al., 2007). Die thermodynamische Lage der Reaktionen in der Aromatenbiosynthese weist daher auf eine starke aktive Regulation des Stoffwechselweges hin. Dieses Ergebnis wird durch die zahlreichen aus der Literatur bekannten Regulationsmechanismen bestätigt (S. Liu et al., 2022; Panichkin et al., 2016). Die theoretisch abgeschätzten Konzentrationsbereiche ergänzten die experimentell ermittelten intrazellulären Metabolitkonzentrationen, dabei ergaben sich keine thermodynamischen Widersprüche durch die vorgegebenen Metabolitkonzentrationen. Die thermodynamisch zulässigen Konzentrationsbereiche wurden zudem durch eine Abtastfunktion statistisch untersucht. Dies ermöglichte Aussagen über die Wahrscheinlichkeiten auftretender Metabolitkonzentrationen innerhalb der ermittelten zulässigen Konzentrationsbereiche.

Die abgeschätzten Stoffflussverteilungen, Reaktionsenergien und vollständigen Datensätze der Metabolitkonzentrationen, einschließlich gemessener und geschätzter Werte, bilden die Grundlage für die metabolische Kontrollanalyse.

5.2.6 Metabolische Kontrollanalyse der L-Tryptophanproduktion

Die während der metabolischen Analyse mit dem Transporterstamm E. coli NT1259 shiA_{Ca} erhobenen Daten gewährten einen detaillierten Einblick in die zellulären Abläufe und ermöglichten die Modellierung von nicht messbaren Stoffflüssen innerhalb der Zelle sowie die thermodynamische Analyse des metabolischen Netzwerks. Die Identifikation limitierender enzymatischer Schritte und Aussagen hinsichtlich möglicher Vorschläge zur Verbesserung des Stammes sind dennoch aufgrund der enormen Komplexität der zellulären Zusammenhänge ohne mathematische Betrachtung nicht möglich. Aus diesem Grund werden lokale und globale Koeffizienten zur mathematischen Beschreibung der Kontrolle innerhalb der Stoffwechselwege herangezogen. Die Methodik der MCA verwendet hierzu alle Daten der Zustände, die durch Auslenkung des Stoffwechsels erreicht wurden und normiert sie auf einen Referenzzustand, der in diesem Fall durch den Produktionsprozess im Zeitraum der metabolischen Analyse gegeben ist. Folglich können für die MCA nur Stoffflüsse beziehungsweise Reaktionen berücksichtigt werden, deren Stoffflüsse im Referenzzustand nicht 0 und damit aktiv sind. Die Normierung führt somit zum Ausschluss der Reaktionen, die spezifisch für die Assimilation von Glucose verwendet werden sowie aller Reaktionen der Nebenproduktbildungen, der gemischten Säuregärung und der Reaktionen PPC und PPCK. Zudem wurde der Glyoxylat-Bypass wie auch der Methylglyoxal-Stoffwechselweg in der MCA nicht berücksichtigt. Die Reaktion zur Aufnahme von Glycerin wurde nicht in das MCA-Modell aufgenommen, da aufgrund des diffussiven Aufnahmemechanismus keine kontrollierende Wirkung gegenüber anderen Reaktionen vorliegt. Der oxidative Teil des Pentosephosphatwegs konnte in die Betrachtungen integriert werden, hierin unterschied sich das Modell von vorherigen Arbeiten. Der Energiemetabolismus wird in vereinfachter Form durch die beiden Reaktionen NADH5 und ATPS4rpp repräsentiert. Das für die MCA verwendete Modell ist in Tabelle A.22 im Anhang beschrieben. Es umfasst insgesamt 50 Reaktionen und 57 Metabolite der Stoffwechselbereiche Glykolyse, Glycerinmetabolismus, Citratzyklus, Pentosephosphatweg, L-Serinbiosynthese und Aromatenbiosynthese. Daraus ergibt sich eine stöchiometrische Matrix N der Dimension 57×50 , deren Rang zu 49 bestimmt wurde. Als unabhängige Metabolite wurden L-Phenylalanin, L-Glutamat, coA, adp, nadh, nadph, amp und L-Glutamin festgelegt. Aus der reduzierten stöchiometrischen Matrix N_{ind} der Dimension (49 × 50) wurde die normierte Link-Matrix L^X abgeleitet.

Abschätzung von Elastizitäten

Die Herleitung der globalen Flusskontrollkoeffizienten, die zur Beschreibung der metabolischen Kontrolle innerhalb der Zelle verwendet wird, beruht auf der Abschätzung lokaler Parameter, den sogenannten Elastizitäten. Die Elastizitäten $\varepsilon_{x_i}^{v_j}$ beschreiben die Sensitivität einer einzelnen Reaktion gegenüber der Änderung einer bestimmten Metabolitkonzentration und geben somit die kinetischen Eigenschaften des metabolischen Netzwerks quantitativ wider. Positive Elastizitäten bedeuten dabei eine aktivierende Wirkung des Metabolits auf die Reaktion, ein negativer Wert steht entsprechend für einen inhibierenden Effekt.

Die Art der Berechnung der Elastizitäten ist abhängig von der thermodynamischen Lage der jeweiligen Reaktion. Operiert die Reaktion nahe am thermodynamischen Gleichgewicht, kann die Elastizität direkt aus der Gibbs'schen Reaktionsenergie abgeleitet werden. Die Klassifizierung erfolgte anhand von Abbildung 5.20. Wie in vorherigen Arbeiten wurde für Gibbs'sche Reaktionsenergien zwischen -1 kJ mol^{-1} und 0 kJ mol^{-1} ein Maximalwert von -1 kJ mol^{-1} angenommen, da ansonsten unrealistische Werte für die Elastizitäten ermittelt werden. Für sehr kleine Lösungsbereiche der Reaktionsenergien wurde ein Bereich von $-1,1 \text{ kJ mol}^{-1}$ bis $-1,0 \text{ kJ mol}^{-1}$ festgelegt. Sofern keine eindeutige Klassifizierung anhand der Randpunkte im Boxplot möglich war, wurde nach Lage des unteren Quartils der Verteilung über die Lage zum thermodynamischen Gleichgewicht entschieden. Bei Überschreiten der Grenze von -10 kJ mol^{-1} durch die unteren *Whisker*, wurde ein minimaler Wert von -10 kJ mol^{-1} angenommen. In Tabelle 5.8 sind alle 22 Reaktionen, deren Zustand als nahe dem thermodynamischen Gleichgewicht eingeordnet wurde, mit den festgelegten Gibbs'schen Reaktionsenergien angegeben.

Für die verbleibenden 28 Reaktionen, deren Zustand als fern dem thermodynamischen Gleichgewicht klassifiziert wurde, erfolgte die Berechnung der Elastizitäten mittels des in Kapitel 3.8 beschriebenen lin-log-Ansatzes. Da sowohl die intrazellulären gemessenen und geschätzten Metabolitkonzentrationen als auch die abgeschätzten Stoffflüsse und Reaktionsenergien durch experimentelle und analytische Fehler sowie theoretische Varianzen mit Unsicherheiten behaftet sind, erfolgte die Bestimmung der Elastizitäten im lin-log-Ansatz durch eine Monte-Carlo-Simulation in 10.000 Berechnungszyklen. Die Mittelwerte der ermittelten Elastizitäten sind Tabelle A.24 im Anhang zu entnehmen.

$shiA_{Cg}$ vorgegebene freie Gibbs'sche Reaktionsenergien $\Delta_r G'$ für Reaktionen nahe dem thermodynami-
schen Gleichgewicht. Die Einordnung erfolgte mittels der thermodynamischen Netzwerkanalyse durch
die pyTFA-Toolbox. Sofern keine eindeutigen Randpunkte ermittelt wurden, wurde nach Lage des un-
teren Quartils der Verteilung über die Lage zum thermodynamischen Gleichgewichts entschieden. Bei
Unterschreiten der -10 kJ mol ⁻¹ durch den unteren Whisker wurde ein minimaler Wert von -10 kJ mol ⁻¹
angenommen. Für sehr kleine Lösungsbereiche wurde ein unterer Wert von -1,1 kJ mol ⁻¹ festgelegt.

Reaction	$\Delta_r G'_{min}$, kJ mol ⁻¹	$\Delta_r G'_{max}$, kJ mol ⁻¹
PGI	-1,10	-1,00
FBA	-10,00	-1,00
TPI	-1,10	-1,00
GAPD	-1,10	-1,00
PGK	-1,10	-1,00
PGCD	-1,10	-1,00
PGM	-5,71	-1,00
ENO	-5,71	-1,00
ACONT	-10,00	-1,00
SUCOAS	-10,00	-1,00
FUM	-1,10	-1,00
MDH	-1,10	-1,00
G6PDH	-10,00	-1,00
RPE	-10,00	-1,00
RPI	-6,85	-1,00
TKT1	-10,00	-1,00
$\mathrm{TKT2}$	-10,00	-1,00
TALA	-10,00	-1,00
DHQTi	-10,00	-1,00
SHK3Dr	-10,00	-1,00
PRALI	-10,00	-1,00
TRPS3	-10,00	-1,00

Abschätzung von Flusskontrollkoeffizienten

Alle dargestellten Ergebnisse der parallelisierten metabolischen Analyse, einschließlich der Elastizitäten, flossen in die Abschätzung der globalen Flusskontrollkoeffizienten mit ein. Flusskontrollkoeffizienten geben an, wie sich eine einprozentige Erhöhung einer spezifischen Enzymaktivität auf jeweils einen Stofffluss im metabolischen Netzwerk auswirkt. Positive Werte sind als eine Aktivierung des jeweiligen Stoffflusses bei Erhöhung der Enzymaktivität zu interpretieren, negative Werte repräsentieren inhibierende Effekte. Die Flusskontrollkoeffizienten wurden gleichermaßen wie die Elastizitäten durch 10.000 Berechnungszyklen einer Monte-Carlo-Simulation ermittelt, um auftretende Unsicherheiten zu berücksichtigen. Abbildung 5.22 zeigt in Form einer *Heatmap* die mittels der MCA bestimmten Mittelwerte aller Flusskontrollkoeffizienten im Modell. Die Zusammenhänge werden im Folgenden schrittweise erläutert und diskutiert. Dabei stehen die

Ergebnisse mit besonderer Relevanz für die L-Tryptophanbiosynthese im Fokus.

Abbildung 5.22: Flusskontrollkoeffizienten (ohne Einheit) ermittelt durch die metabolische Kontrollanalyse der L-Tryptophanproduktion mit *E. coli* NT1259 $shiA_{Cg}$ im Zulaufverfahren. Die Spalten repräsentieren die Enzyme der jeweiligen Reaktion, die Zeilen beziehen sich auf die resultierenden Stoffflüsse. Es sind die Effekte einer einprozentigen Änderung der Enzymaktivität dargestellt. Die Enzymkapazitäten und Stoffflüsse sind untergliedert in die Stoffwechselbereiche: Glykolyse und Glycerinmetabolismus (GLYC & GLYK), L-Serinbiosynthese (L-Ser), Citratzyklus (TCA), Pentosephosphatweg (PPP), Chorismatbiosynthese (CHOR), L-Phenylalanin- und L-Tyrosinbiosynthese (L-Phe/L-Tyr), L-Tryptophanbiosynthese (L-Trp) und Energiemetabolismus (E).

Die beiden Enzyme GLYK und GLY3PD des aeroben Glycerinabbaus zeigten eine geringe negative Kontrolle gegenüber den Stoffflüssen der Glykolyse, Gluconeogenese und des Glycerinmetabolismus, ausgenommen des Stoffflusses der Reaktion PGI, gegenüber welchem eine positive Kontrolle ermittelt wurde. Darüber hinaus erstreckte sich die negative Kontrolle dieser beiden Enzyme in den Citratzyklus und weiter bis in die Chorismat- und L-Tryptophanbiosynthese. Auch die Stoffflüsse des Pentosephosphatwegs wurden durch die beiden Reaktionen stark kontrolliert, was auf die Konkurrenz der beiden Stoffwechselwege Glykolyse und Pentosephosphatweg um Kohlenstofffluss zurückzuführen ist. Die negative Kontrolle der beiden Reaktionen hinsichtlich der L-Tryptophanproduktion deckt sich mit den Ergebnissen der gemessenen extrazellulären Substrataufnahme und Produktbildungsraten. Denn eine höhere Substrataufnahme führte nicht zur gewünschten Steigerung der Produktbildungsraten, diese wurden sogar vermindert.

Die glykolytischen Enzyme FBA, PGM und ENO zeigten eine gering ausgeprägte positive Kontrolle gegenüber den Stoffflüssen der Glykolyse, des Citratzyklus sowie der Chorismat- und L-Tryptophanbiosynthese. Für die Stoffflüsse des Pentosephosphatwegs wurden indessen negative Flusskontrollkoeffizienten bestimmt, auch an dieser Stelle kam die Konkurrenz um Kohlenstoff zwischen den Reaktionen der unteren Glykolyse und dem Pentosephosphatweg zum Tragen. Die geringe positive Kontrolle der glykolytischen Reaktionen gegenüber der Chorismatund L-Tryptophanbiosynthese spricht für eine gesteigerte Produktbildung bei verstärkter glykolytischer Aktivität durch eine verbesserte pep-Bereitstellung. Die positive Kontrollwirkung der PDH gegenüber dem Citratzyklus ist mit einem potenziell verbesserten Zufluss in den Citratzyklus bei Erhöhung der enzymatischen Kapazität der PDH zu erklären.

In der L-Serinbiosynthese wurde nur für die PSP_L eine kontrollierende Wirkung auf Stoffflüsse des metabolischen Netzwerks ermittelt. Es ergaben sich positive Flusskontrollkoeffizienten des dephosphorylierenden Enzyms gegenüber allen Reaktionen, die direkt oder indirekt mit der L-Tryptophanbiosynthese verbunden sind. Stark negative Flusskontrollkoeffizienten wurden hingegen für die Stoffflüsse der L-Phenylalanin und L-Tyrosinbiosynthese ermittelt. Die stärkste positive Kontrollwirkung zeigte die PSP_L gegenüber dem Stofffluss der TRPS2, dem letzten Schritt in der spezifischen L-Tryptophanbiosynthese. Demnach würde eine erhöhte Aktivität der PSP_L eine gesteigerte Produktbildung hervorrufen und zeitgleich würde sich die Bildung der Nebenprodukte L-Phenylalanin und L-Tyrosin reduzieren. Dieser antagonistische Effekt ist auf den Verbrauch von L-Serin im L-Tryptophanbiosyntheseweg zurückzuführen. Da L-Serin für die Bildung von L-Phenylalanin und L-Tyrosin nicht benötigt wird, würde eine erhöhte L-Serinbereitstellung potenziell die Verstärkung der Stoffflüsse ausgehend von Chorismat in Richtung der L-Tryptophanbiosynthese begünstigen. Gleichzeitig würde dies zur Reduktion des Stoffflusses in Richtung der beiden Nebenprodukte L-Phenylalanin und L-Tyrosin führen.

Für die enzymatischen Kapazitäten des Citratzyklus wurden nur geringe kontrollierende Effekte bestimmt. Eine leichte Kontrolle übten die Enzyme CS, AKGDH, SUCD auf die Stoffflüsse der Glykolyse und Gluconeogenese aus. Für die Reaktionen in glykolytischer Richtung (TPI bis einschließlich der PDH) traten positiv kontrollierende Effekte auf. Für die Stoffflüsse, die während der Glycerinassimilation gluconeogen ausgerichtet sind, ergab sich eine negative Kontrollwirkung der Reaktionen aus dem Citratzyklus. Darüber hinaus wurde eine moderat ausgeprägte Kontrolle dieser Reaktionen auf Stoffflüsse des gesamten Citratzyklus und geringfügig negative Flusskontrollkoeffizienten gegenüber Stoffflüssen des Pentosephosphatwegs und der Aromatenbiosynthese abgeschätzt. Demzufolge kommt auch bei der Kontrollwirkung der Enzyme aus dem Citratzyklus die konkurrierende Situation um Kohlenstoff zwischen den unterschiedlichen Stoffwechselwegen zum Tragen. Würden die enzymatischen Kapazitäten im Citratzyklus verstärkt, würde dies auch zur Erhöhung der Stoffflüsse in diesem Stoffwechselweg zuungunsten anderer Stoffwechselwege, aufgrund des gesteigerten pep-Verbrauchs, führen.

Die Enzymaktivitäten des klassischen Pentosephosphatwegs einschließlich der Reaktionen G6PDH,

GND, RPE, RPI, TKT1, TKT2 und TALA übernahmen den Ergebnissen zufolge keine kontrollierenden Funktionen im betrachteten metabolischen Netzwerk. Dies erscheint plausibel, da diese Reaktionen nahe am thermodynamischen Gleichgewicht operieren. Lediglich für die aus dem Pentosephosphatweg abzweigende Reaktion PRPPS, die die Reaktion zur Bereitstellung von prpp aus r5p katalysiert, zeigte sich eine starke Kontrollwirkung über das gesamte metabolische Netzwerk hinweg. Im Bereich des Citratzyklus wurde insbesondere für die Stoffflüsse der AKGDH und SUCOAS eine starke kontrollierende Wirkung der PRPPS ermittelt. Möglicherweise besteht hier aufgrund der Beteiligung beider Reaktionen aus dem Citratzyklus sowie der PRPPS am Energiemetabolismus, ein Zusammenhang. Auch innerhalb des Pentosephosphatwegs wies die enzymatische Kapazität der PRPPS starke kontrollierende Wirkungen auf. Die positiven Kontrollen hinsichtlich der Stoffflüsse der TKT2, RPE und RPI weisen auf eine primäre prpp-Bereitstellung durch diese Reaktionen hin. Die negativen Kontrollen gegenüber des oxidativen Teils des Pentosephosphatwegs sprechen ebenfalls für die untergeordnete Rolle dieser Reaktionen bei der prpp-Synthese. Da prpp als Vorläufermolekül in die L-Tryptophanbiosynthese einfließt, waren alle mit diesem Syntheseweg verknüpften Stoffflüsse durch die PRPPS positiv kontrolliert. Ein gegenteiliger Effekt trat für die Stoffflüsse der Synthese der aromatischen Nebenprodukte L-Phenylalanin und L-Tyrosin, in der prpp nicht als Vorläufermetabolit zum Einsatz kommt, auf.

Unter den Enzymen des Chorismatbiosynthesewegs ergab sich nur für die DHQS eine Kontrollwirkung. Die Gibbs'sche Reaktionsenergie der DHQS lässt eine aktive Regulierung ihrer enzymatischen Aktivität vermuten und deutet auf ein kontrollierendes Potenzial dieser Reaktion hin. Im L-Tryptophanbiosyntheseweg reichte die Kontrolle der DHQS bis zum Stofffluss der TRPS3. Der kontrollierende Effekt gegenüber der TRPS2 wurde vermutlich durch die stärkere Kontrollwirkung der PSP_L abgeschwächt.

Die Enzyme zur Biosynthese der beiden aromatischen Nebenprodukte L-Phenylalanin und L-Tyrosin hatten keine weitreichende Kontrollwirkung im betrachteten metabolischen Netzwerk. Es wurde lediglich eine starke positive Kontrolle der Enzyme gegenüber den eigenen Stoffflüssen und eine sehr geringe Kontrolle gegenüber den Stoffflüssen der L-Tryptophanbiosynthese ermittelt. Zudem traten verstärkte und gegensätzliche Kontrollen gegenüber des Stoffflusses der SUCOAS auf. Dieser Effekt ist vermutlich auf die Verbindung durch den Effektor akg der Reaktion der PHETA zurückzuführen. Der kompetitive Verbrauch von Chorismat durch die Stoffflüsse zur L-Tryptophanbiosynthese einerseits und der Bildung der Nebenprodukte L-Phenylalanin und L-Tyrosin andererseits, rief die gegensätzlichen Kontrollwirkungen der beiden Stoffwechselwege hervor. Die negative Kontrolle gegenüber der L-Tryptophanbiosynthese war jedoch verschwindend gering, weshalb eine Verminderung der enzymatischen Aktivitäten im konkurrierenden Stoffwechselweg wahrscheinlich nicht maßgeblich zu einer verbesserten Produktbildung beitragen würde.

Auch die Enzyme des spezifischen L-Tryptophanbiosynthesewegs zeigten kontrollierende Effekte im betrachteten metabolischen Netzwerk. Die Wechselwirkungen mit anderen Stoffwechselwegen waren jedoch gering. Die ANS verübte eine sehr geringe negative Kontrolle auf die glykolytischen Reaktionen ausgehend von g3p und auf die Reaktionen des Citratzyklus. Leicht positiv von der ANS beeinflusst wurden die oberen gluconeogenen Stoffflüsse der FBA, FBP und PGI sowie die Reaktionen im Pentosephosphatweg. Auch die Chorismatbiosynthese wurde durch die ANS schwach positiv beeinflusst, wohingegen die Bildung der beiden Nebenprodukte L-Phenylalanin und L-Tyrosin leicht negativ durch die ANS kontrolliert war. Demzufolge führt eine erhöhte Aktivität der ANS zu einem erhöhten Stofffluss in Richtung der L-Tryptophanbiosynthese, wodurch die Stoffflüsse in der Chorismatbiosynthese verstärkt und die der Nebenproduktbildung abgeschwächt würden. Die positive Kontrolle der ANS erstreckte sich allerdings nur bis zum Stofffluss der ANPRT. Den Ergebnissen zufolge wirkt sich eine Erhöhung der ANS-Aktivität nicht unmittelbar positiv auf die L-Tryptophanbiosynthese aus. Diese wurde sogar leicht negativ durch die ANS kontrolliert. Der gegenteilige Effekt ergab sich für die IGPS, die eine geringe Kontrollwirkung gegenüber dem Citratzyklus, der Chorismatbiosynthese und im L-Tryptophanbiosyntheseweg bis zur ANPRT zeigte sowie eine geringfügig positive Kontrolle gegenüber den letzten Schritten der L-Tryptophanbiosynthese.

Die stärkste kontrollierende Wirkung unter den Reaktionen der L-Tryptophanbiosynthese zeigte sich in der TRPS2, die den letzten Schritt des spezifischen Stoffwechselweges katalysiert. Hier trat eine stark negative Kontrolle gegenüber der unteren Glykolyse, dem Citratzyklus sowie der Bildung der aromatischen Nebenprodukte hervor. Positiv kontrolliert wurden die Bereiche der oberen Gluconeogenese ab der FBA, die L-Serinbiosynthese und der Pentosephosphatweg. Auch die L-Tryptophanbiosynthese selbst wurde stark positiv durch die TRPS2 kontrolliert. Die höchsten Flusskontrollkoeffizienten im gesamten betrachteten metabolischen Netzwerk ergaben sich für die TRPS2 gegenüber des eigenen Stoffflusses. Insbesondere der letzte Schritt scheint eine starke Limitierung für die L-Tryptophanbiosynthese darzustellen. Es ist daher anzunehmen, dass ein Aufheben dieser Limitierung alle Stoffflüsse des metabolischen Netzwerks in diese Richtung verstärkt. Negativ beeinflusst durch die TRPS2 wurden Reaktionen, die nicht direkt mit der Bereitstellung limitierender Vorläufermoleküle in Verbindung stehen.

Ebenfalls stark kontrollierend wirkten sich die enzymatischen Kapazitäten des Energiemetabolismus auf weite Teile des metabolischen Netzwerks aus. Diese globale Kontrollwirkung ist aufgrund der Beteiligung der Energiemetabolite und Cofaktoren an vielen Reaktionen im Metabolismus erwartungsgemäß. Beide Reaktionen (NADH5 und ATPS4rpp) zeigten starke kontrollierende Effekte im Zentralstoffwechsel und weniger ausgeprägte Kontrollen in den spezifischen Biosynthesewegen. Besonders durch diese Reaktionen beeinflusst waren die Bereiche Citratzyklus und Pentosephosphatweg. Beide übernehmen wichtige Aufgaben für den Energiemetabolismus und stellen Energieträger und Cofaktoren bereit. Die berechneten Effekte im L-Tryptophanbiosyntheseweg waren vergleichsweise gering. Die leicht positive Kontrolle beider Reaktionen kann möglicherweise auf eine insgesamt erhöhte Aktivität der Stoffflüsse durch eine Stärkung des Energiemetabolismus erklärt werden. Allerdings gilt zu berücksichtigen, dass der Energiestoffwechsel im MCA-Modell nur stark vereinfacht dargestellt ist. Für eine detaillierte Analyse der metabolischen Kontrolle ausgehend von diesem Stoffwechselbereich sollte die MCA in einem genomweiten Modell erfolgen.

Diskussion

Die Ergebnisse der MCA zeigten keine in einem Enzym konzentrierte Kontrolle des metabolischen Netzwerks, sondern eine Verteilung der metabolischen Kontrolle über den gesamten Metabolismus hinweg. Dieser Effekt wurde bereits früh von Kacser und Burns (1973) beschrieben und durch die Konnektivitäts- und Summationstheoreme begründet.

Die MCA der L-Tryptophanproduktion mit dem Transporterstamm *E. coli* NT1259 $shiA_{Cg}$ legte etliche Kontrollpunkte von Relevanz für die L-Tryptophanbiosynthese offen. Die stärkste Limitierung lag den Berechnungen zufolge im Enzym zur Katalyse des letzten Schrittes der L-Tryptophanbiosynthese, der TRPS2. Im spezifischen Stoffwechselweg zur L-Tryptophanbiosynthese zeigte sich zudem eine geringe Kontrollwirkung der IGPS gegenüber den Reaktionen im L-Tryptophanbiosyntheseweg bis zur ANPRT und eine geringfügig positive Kontrolle gegenüber den letzten Schritten der L-Tryptophanbiosynthese. Dieser antagonistische Effekt kann durch die Vorwärtsinhibierung der IGPS durch das Produkt der ANS (anth) erklärt werden (L. Chen *et al.*, 2018). Positive Kontrollen der PSP_L in der L-Serinbiosynthese sowie der PRPPS deuten auf Defizite in der Bereitstellung der Vorläufermoleküle L-Serin und prpp hin. In den genannten Limitierungen stimmen die Ergebnisse dieser MCA mit der vorherigen MCA der L-Tryptophanbiosynthese überein (Tröndle *et al.*, 2020).

Die Verwendung von Shikimat als neuem Substrat zur gezielten Auslenkung der für die L-Tryptophanbiosynthese spezifischen Stoffwechselwege ermöglichte die Identifikation einer weiteren Limitierung in der DHQS. Die Gibbs'sche Reaktionsenergie der DHQS ließ bereits eine aktive Regulierung ihrer enzymatischen Aktivität vermuten und deutete auf das kontrollierende Potenzial dieser Reaktion hin. Die limitierende Wirkung der DHQS auf die Chorismatbiosynthese wurde in der Literatur bereits beschrieben (Snell *et al.*, 1996; Tröndle *et al.*, 2020; Yi *et al.*, 2002). Eine Kontrolle dieser Reaktion gegenüber der L-Tryptophanbiosynthese war bisher jedoch unbekannt.

Zudem wurde in dieser MCA eine Kontrolle der Glycerin abbauenden Enzyme GLYK und GLY3PD ermittelt. Die negativen Kontrollen stehen mit den reduzierten Produktbildungsraten bei erhöhter Zulaufrate in Verbindung und spiegeln wider, dass die Produktbildung durch eine verstärkte Glycerinaufnahme nicht gesteigert wurde. Auch Tröndle *et al.* (2020) berechnete eine geringfügig negative Kontrolle der GLY3PD gegenüber den genannten Stoffwechselwegen, wohingegen für die GLYK in dieser Arbeit positive Flusskontrollkoeffizienten abgeschätzt wurden. Die genaue Ursache für den negativen Einfluss dieser Enzyme auf die Produktbildung ist nicht bekannt. Möglicherweise besteht ein Zusammenhang mit der intrazellulären Akkumulation von dhap bei steigenden Glycerinaufnahmeraten, die eine Aktivierung der mgo-Synthese verursachen können. Die Klärung der Ursachen und Zusammenhänge erfordert jedoch weitere Analysen. Für den anaeroben Glycerinabbau wurden von Cintolesi *et al.* (2012) positive Fluss-kontrollkoeffizienten gegenüber den Stoffflüssen der Glykolyse berechnet.

5.2.7 Expressionsanalyse ausgewählter Gene

Die MCA lieferte detaillierte Informationen zu kontrollierenden Reaktionsschritten innerhalb der Zelle, die zur Limitierung der L-Tryptophanproduktion führten und zeigte potenzielle Ansatzpunkte zur Verbesserung des verwendeten $E.\ coli$ -Produktionsstammes auf. Letztendlich sollen hieraus konkrete Maßnahmen zur genetischen Modifikation des Produktionsstammes abgeleitet werden. Eine Expressionsanalyse ausgewählter Gene von Zellen aus dem Produktionsprozess soll zeigen, inwieweit die Limitierungen auf Transkriptomebene erkennbar sind, um diese möglichst zielgenau beheben zu können. Die Genexpression sagt jedoch zunächst nichts über die vorhandene Enzymmenge in den Zellen aus, Änderungen in der Expression deuten lediglich auf eine Reaktion der Zellen auf die Auslenkung hin. Die Proteinmengen werden erst mit zeitlicher Verzögerung (ca. 30 min) beeinflusst. In Abbildung 5.23 sind die Ergebnisse der Expressionsanalyse für die Gene prsA, serA, serB, aroF, aroB, trpC und trpB gezeigt. Die RT-qPCR-Analysen wurden von den Projektpartnern der Universität Stuttgart durchgeführt.

Die Ergebnisse der MCA deuteten auf eine Limitierung in der enzymatischen Kapazität des prpp bereitstellenden Enzyms PRPPS hin. Die Expressionsanalyse des entsprechenden Gens prsA zeigte einen signifikanten Rückgang der Expression nach der Induktion. Unmittelbar nach der Zugabe von IPTG (45 h, Ref) wurde die minimale prsA-Expression gemessen. Im weiteren Prozessverlauf stieg die Expression auf etwas über den Wert der Probe nach 28 h Prozesszeit an. Die niedrige Expression von prsA in der Referenzprobe deckt sich mit den Ergebnissen der MCA. Möglicherweise führte die Herunterregulierung der Expression von prsA zur Limitierung in der enzymatischen Kapazität der PRPPS und verursachte einen Mangel am Vorläufermolekül prpp.

Zudem legte die MCA eine ausgeprägte Kontrolle der PSP_L aus der L-Serinbiosynthese offen. Das entsprechende Gen serB ist im Gegensatz zum Gen serA, für welches bereits eine rückkopplungsresistente Genkopie in das Genom von *E. coli* NT1259 $shiA_{Cg}$ integriert wurde, nicht in zusätzlichen Genkopien im untersuchten Stamm vorhanden. Ein Vergleich zeigt, dass die Expression von serA nach der Induktion mit IPTG deutlich anstieg, wohingegen die serB-Expression nach der Induktion zurückging und anschließend konstant blieb. Die relative Expression von serA im Analysenreaktor mit Glycerin befand sich auf einem vergleichbaren Niveau wie in der Referenzprobe. Auffällig ist jedoch die erhöhte Expression im Analysenreaktor mit zusätzlichem Shikimat. Die Expression von serB war in den Analysenreaktoren verglichen mit der Referenzprobe etwas verringert. Möglicherweise verursachten die Differenzen in der Expression der beiden Gene nach Zugabe von IPTG ein Ungleichgewicht in den Stoffflüssen des spezifischen L-Serinbiosynthesewegs. Dies könnte ein Grund für die Limitierung in der enzymatischen Kapazität der PSP_L sein.

Abbildung 5.23: Relative Genexpression (ohne Einheit) der Gene prsA, serA, serB, aroF, aroB, trpC und trpB im Verhältnis zum ftsZ-Gen in Proben des Referenzprozesses zur L-Tryptophanproduktion mit *E. coli* NT1259 $shiA_{Cg}$ im Zulaufverfahren nach 28 h (R 28 h), 45 h (R 45 h), 50 h (R 50 h), 54 h (R 54 h) und 71 h (R 71 h) Prozesszeit (IPTG wurde 45h nach Inokulation zugegeben). Außerdem sind die Ergebnisse der Proben aus den Analysenreaktoren mit den Substraten Glycerin (MA Glyc), Glucose (MA Gluc), Glycerin und Shikimat (MA Glyc & Shik) sowie Glucose und Shikimat (MA Gluc & Shik) nach 21 min Analysezeit gezeigt. Der Referenzzustand im Produktionsprozess ist in rot markiert (Ref).

In der Chorismatbiosynthese wurde die DHQS als limitierendes Enzym identifiziert, obwohl das entsprechende Gen aroB bereits zusammen mit aroF auf einem Plasmid im verwendeten Stamm in zusätzlicher Kopie vorliegt. Die Genanalyse zeigte einen abrupten Anstieg der Expression von aroF von 6,6 vor der Induktion auf 556,8 unmittelbar nach der Induktion mit IPTG. Im weiteren Prozessverlauf blieb die relative Expression des aroF-Gens annähernd konstant. In den vier Analysenreaktoren war die Expression etwas geringer als in der Referenzprobe. Zum Prozesszeitpunkt nach 45 h lag die Expression von aroB noch unterhalb von 1, diese stieg nach der Induktion stetig bis auf einen Wert von 51,7 in der Probe nach 71 h Prozesszeit an. In den Analysenreaktoren wurden ähnliche Expressionsniveaus wie in der Referenzprobe gemessen. Auffällig ist die Diskrepanz in der Expression beider Gene (aroF und aroB) zum Zeitpunkt der metabolischen Analyse und in den Proben der Analysenreaktoren. In der Referenzprobe überstieg die aroF-Expression die Expression von aroB um das 20-Fache, in den Analysenreaktoren wurden Koren wurden Unterschiede um das 13- bis 26-Fache gemessen. Während für aroF direkt nach Induktoren wurden State is prozessen.

tion ein hohes, maximales Expressionsniveau erreicht war, stieg die Expression von aroB nach Induktion nur langsam an. Die verspätete Zunahme in der Expression von aroB und die verhältnismäßig geringen Expressionsniveaus dieses Gens könnten die Ursachen für Limitierungen in der Enzymkapazität der DHQS sein. Wahrscheinlich liegen die Unterschiede in der Expression in der Anordnung der Gene in der Expressionskassette begründet, aroF ist unmittelbar nach dem Promotor verortet.

Den Ergebnissen der MCA zufolge lag eine starke Limitierung der TRPS2 innerhalb der L-Tryptophanbiosynthese vor. Eine geringfügige Kontrolle wurde zudem für die IGPS ermittelt. Die entsprechenden Gene dieser Enzyme sind trpB und trpC, deren gemessene Expression ist ebenfalls in Abbildung 5.23 gezeigt. Die Expressionsniveaus beider Gene stiegen bis zum Zeitpunkt der Induktion zunächst an und verringerten sich nach Zugabe des Induktors stetig bis zum letzten Probenahmezeitpunkt. Die Expression von trpB war in allen Proben höher als die von trpC. Wie auch das Expressionsniveau von prsA, sank die Expression beider Gene der L-Tryptophanbiosynthese nach der Induktion durch IPTG ab. Aufgrund vieler zusätzlicher Genkopien und der starken Expression der Plasmid basierten Gene war die zelluläre Expressionsmaschinerie der Zellen während der Produktionsphase offenbar stark ausgelastet, was zu Einbußen in der Expression anderer Gene führte und möglicherweise die Limitierungen in den enzymatischen Kapazitäten hervorrief.

5.2.8 Vorschläge zur Stammmodifikation basierend auf den Ergebnissen der metabolischen Kontrollanalyse

Basierend auf den Ergebnissen der MCA können Handlungsmaßnahmen zur gentechnischen Modifikation des verwendeten Produktionsstammes hinsichtlich einer verbesserten Produktbildung abgeleitet werden. Die Vorschläge zur gezielten Modifikation des Produktionsstammes werden im Folgenden dargelegt und diskutiert. Die Enzyme für die Kontrollen mit Auswirkung auf die L-Tryptophanbiosynthese identifiziert wurden und deren Wirkungsorte im Metabolismus sind in Abbildung 5.24 schematisch gezeigt.

Positive Kontrollen:

Verstärkung von Reaktionsschritten im spezifischen L-Tryptophanbiosyntheseweg

Innerhalb des L-Tryptophanbiosynthesewegs wurden die Enzyme TRPS2 und IGPS als limitierend für den zum Produkt führenden Stofffluss identifiziert. Demnach sollten in einen modifizierten Stamm zusätzliche Kopien der entsprechenden Gene trpB und trpC eingebracht werden. Trotz der bereits vorliegenden Überexpression der Gene trpBA im analysierten Stamm werden für die zusätzliche Verstärkung des trpB-Gens positive Effekte erwartet, da die Kontrolle des zugehörigen Enzyms TRPS2 äußerst hoch war. Bei der Überexpression von trpC sollte die Vorwärtsinhibierung der *E. coli* eigenen IGPS durch anth berücksichtigt werden. Beispielsweise könnte die für die L-Tryptophanproduktion nachteilige Vorwärtsinhibierung durch eine nicht native Genvariante umgangen werden (L. Chen *et al.*, 2018).

Verstärkung der 3-Dehydroquinat-Synthase im Chorismatbiosyntheseweg

Durch Integration eines Shikimattransporters zur Aufnahme von extrazellulär vorliegendem Shikimat wurde eine verstärkte Auslenkung der für die Produktbiosynthese spezifischen Stoffwechselwege erzielt und eine positive metabolische Kontrolle des Enzyms DHQS festgestellt, die sich bis hin zu den letzten Schritten der L-Tryptophanbiosynthese auswirkte. Die Transkriptomanalyse der entsprechenden Gene zeigte eine große Diskrepanz in den Expressionsniveaus der bereits im Plasmid überexprimierten Gene *aroF* und *aroB*. Es ist wahrscheinlich, dass das Defizit in der Expression von *aroB* zur Limitierung in der enzymatischen Aktivität der DHQS führte. In Kombination mit anderen Überexpressionen (beispielsweise von TRPS2 und PRPPS) könnte durch weitere Überexpression von *aroB* ein positiver Effekt für die L-Tryptophanproduktion erzielt werden. Die genomische Insertion einer weiteren Genkopie erscheint an dieser Stelle sinnvoll.

Verbesserte Bereitstellung des Vorläufermetaboliten Phosphoribosyl-Pyrophosphat

Zwar existieren im analysierten Stamm *E. coli* NT1259 $shiA_{Cg}$ bereits zusätzliche Genkopien zur Erhöhung der enzymatischen Aktivitäten im Pentosephosphatweg, die Expression der PRPPS wurde bisher jedoch nicht künstlich durch das Einfügen zusätzlicher Genkopien erhöht. Der intrazelluläre Mangel an prpp erscheint sehr plausibel und wahrscheinlich, da der Metabolit in keiner der Proben nachgewiesen werden konnte. Die Expressionsanalyse des die PRPPS codierenden Gens deutete auf eine verminderte Expression nach der Induktion aufgrund der stark belasteten Expressionsmaschinerie hin. Eine Überexpression von *prsA* zur Anhebung des Expressionsniveaus könnte die Engstelle in der Bereitstellung des wichtigen Vorläufermoleküls abschwächen. Aufgrund der Beteiligung dieses Enzyms am Erhaltungs- und Energiestoffwechsel der Zelle birgt die Überexpression desselben jedoch vermutlich Schwierigkeiten, da eine Störung des Energiehaushalts nur schwer durch die Zellen kompensiert werden kann (Hove-Jensen, 1985).

Verbesserte Bereitstellung des Vorläufermetaboliten L-Serin

Den Ergebnissen der MCA zufolge wurde die L-Tryptophanbiosynthese durch einen Mangel am Vorläufermetabolit L-Serin limitiert, im Speziellen ergab sich eine kontrollierende Wirkung der PSP_L. Die Expressionsanalysen wiesen auf ein Ungleichgewicht zwischen der Expression des Eingangsenzyms der L-Serinbiosynthese (PGCD) und der Expression von PSP_L, dem letzten Enzym der L-Serinbiosynthese, hin. Um die Stoffflüsse des spezifischen Synthesewegs aneinander anzugleichen, sollte die bereits vorliegende zusätzliche genomisch integrierte Genkopie von $serA^{FBR}$ (codierend für eine rückkopplungsresistente Enzymvariante der PGCD) durch eine zusätzliche Genkopie von serB ergänzt werden.

Negative Kontrollen:

Negative Auswirkung erhöhter Substrataufnahmeraten

Die negativen Kontrollen der Glycerin abbauenden Enzyme GLYK und GLY3PD könnten mit der Aktivierung der mgo-Synthese bei hohen Glycerinaufnahmeraten zusammenhängen. Die Ursachen sind jedoch nicht abschließend geklärt und müssen weiter analysiert werden.

Verringerte Bildung aromatischer Nebenprodukte

Die Ergebnisse der MCA legten nahe, dass eine Verminderung der enzymatischen Aktivitäten der Enzyme zur Synthese von L-Phenylalanin und L-Tyrosin die Bildung dieser aromatischen Nebenprodukte weiter verringern könnte. Die Ergebnisse ließen aber auch erkennen, dass der positive Effekt auf die Produktbildung gering wäre. Da die Einführung von Auxotrophien für die beiden zum Wachstum benötigten Aminosäuren prozesstechnische Schwierigkeiten und höhere Prozesskosten mit sich zieht, überwiegen die Nachteile der Deletion oder Abschwächung der entsprechenden Gene.

Die aufgeführten Maßnahmen sollten in der gezeigten Abfolge priorisiert werden. Zunächst sollten die zum Teil starken Limitierungen innerhalb der spezifischen Produktbiosynthesewege (Chorismat- und L-Tryptophansynthese) behoben werden, damit sich eine anschließend verstärkte Vorläufermolekülbereitstellung wirksam zeigen kann.

Abbildung 5.24: Schematische Übersicht des Stoffwechsels mit farblich hervorgehobenen Enzymen, für die mittels MCA von *E. coli* NT1259 $shiA_{Cg}$ eine kontrollierende Wirkung auf die L-Tryptophanbiosynthese identifiziert wurde. Die für Enzyme und Reaktionen genutzten Abkürzungen sind in Kapitel 3.2 aufgeführt. In Blau sind Enzyme markiert, für die eine positive Kontrollwirkung hinsichtlich der L-Tryptophanproduktion ermittelt wurde, in Rot sind entsprechend negative Kontrollen gekennzeichnet.

5.3 Prozessleistung modifizierter Stämme

Basierend auf den Ergebnissen der durchgeführten MCA, wurden von den Projektpartnern der Universität Stuttgart gezielt genetische Veränderungen vorgenommen und neue Stämme zur Verfügung gestellt. Die erfolgreiche genomische Integration der Genkopien wurde ebenfalls vom Projektpartner mittels Sequenzierung überprüft und die Überexpression durch RT-qPCR-Analysen in Kultivierungen im Schüttelkolben nachgewiesen. In Kultivierungen im standardisierten 15 L-Zulaufprozess zur L-Tryptophanproduktion sollte die Produktionsleistung dieser Stämme charakterisiert werden. Da in den Kultivierungen der neuen Stämme die L-Tryptophan-Löslichkeitsgrenze im Kulturüberstand von $19, 0 \pm 0, 5 \text{ g L}^{-1}$ teilweise überschritten wurde, erfolgte eine Anpassung der Probenaufarbeitungsmethode, um auch präzipitiertes L-Tryptophan quantifizieren zu können. Da durch die veränderte Probenbehandlung auch an Zellen anhaftendes L-Tryptophan erfasst wurde, welches in der vorherigen Methode bei der Zentrifugation abgetrennt wurde, sind die Ergebnisse nicht direkt mit den Ergebnissen vorangegangener Kultivierungen vergleichbar.

Zur Charakterisierung der Produktionsleistung erfolgte die Kultivierung der gezielt genetisch modifizierten Stämme nach Transformation mit dem Plasmid pF112*aroFBL*_{Kan} im standardisierten 15 L-Zulaufverfahren zur Produktion von L-Tryptophan. Das etablierte Prozessverfahren wurde nicht verändert. Als Vergleich diente der zuvor analysierte Referenzstamm *E. coli* NT1259 (Tröndle *et al.*, 2020), welcher sich vom in dieser Arbeit verwendeten Transporterstamm *E. coli* NT1259 *shiA*_{Cg} nur durch den fehlenden Shikimattransporter unterscheidet. Für jeden *E. coli*-Stamm wurde eine einfache Kultivierung durchgeführt, nur für den Referenzstamm *E. coli* NT1259 und *E. coli* NT1446 liegen technische Triplikate der Produktionsprozesse vor.

Insgesamt wurde eine hohe Prozessvariabilität hinsichtlich des Zeitpunktes, zu dem die L-Tryptophanproduktion abbrach, beobachtet. Dieser Umstand führte zu großen Abweichungen in der Prozessleistung einzelner Stämme, da ein früheres Ende der Produktionsphase aufgrund der fortlaufenden Verdünnung durch die konstante Substratzufuhr und die unterschiedliche Zugabe von Titrationsmitteln zum Absinken der Produktkonzentration führte. Aufgrund dessen konnten die Produktivitäten nicht anhand der maximalen L-Tryptophankonzentrationen verglichen werden. Da die im Bioreaktor produzierte Gesamtmenge an L-Tryptophan am Ende eines jeden Fermentationsprozesses leicht zugänglich und unabhängig von stochastisch variierenden Produktionszeiten ist, wurden die finalen L-Tryptophan-Absolutmengen zur Bewertung und zum Vergleich der Produktivitäten herangezogen. Die absoluten L-Tryptophanmengen und Biotrockenmassen im zeitlichen Prozessverlauf sind für alle durchgeführten Kultivierungen in Abbildung A.1 im Anhang gezeigt. Abbildung 5.25 fasst die finalen Produktmengen aller Kultivierungen mit dem Referenzstamm und den gezielt modifizierten Stämmen zusammen. Diese werden im folgenden genauer ausgeführt.

Abbildung 5.25: Finale L-Tryptophan-Absolutmenge (Einheit: g) in standardisierten 15 L-Zulaufkultivierungen zur Produktion von L-Tryptophan (37 °C, pH 7,0, DO > 30 % Luftsättigung) mit den *E. coli*-Stämmen NT1259, NT1405, NT1438, NT1439, NT1445, NT1444, NT1446, NT1448. Die Fehlerbalken ohne Abschluss markieren die Standardabweichung unterschiedlicher Proben, Fehlerbalken mit Abschluss markieren die Abweichungen der dreifachen Prozessdurchführung (*E. coli* NT1259 und *E. coli* NT1446). Signifikanzniveau *: 0.01 .

In den Produktionsprozessen im 15 L-Zulaufverfahren mit dem Referenzstamm $E.\ coli$ NT1259 wurden finale L-Tryptophan-Absolutmengen von 313 ± 4 g erreicht. Zuvor wurden durch mittels MCA zwei limitierende enzymatische Schritte innerhalb des L-Tryptophanbiosynthesewegs identifiziert, die in diesem Stamm die Produktbildung kontrollieren. Dabei lag die stärkste positive Kontrolle des gesamten betrachteten metabolischen Netzwerks im enzymatischen Schritt der TRPS2, welche die Synthese von L-Tryptophan aus Indol und L-Serin katalysiert. Die von der IGPS ausgehende Kontrollwirkung war hingegen vergleichsweise gering. Aufgrund dieser Ergebnisse wurden von den Projektpartnern der Universität Stuttgart zunächst separate Stämme mit zusätzlichen genomisch integrierten Kopien der entsprechenden Gene erzeugt. Für die Steigerung der IGPS-Aktivität wurde ein trpC-Strukturgen aus $M.\ tuberculosis$, welches für eine monofunktionale IGPS ($trpC_{mt}$) codiert, verwendet. Für den resultierenden Stamm ($E.\ coli\ N1405$) ergab sich eine leicht erhöhte L-Tryptophan-Absolutmenge von $336, 5 \pm 0, 10$ g.

Die Integration einer zusätzlichen genomischen Genkopie von trpBA führte zu *E. coli* NT1438, mit welchem eine gesteigerte finale L-Tryptophan-Absolutmenge von 365, 2 ± 4 , 57 g erzielt wurde. Die Kombination der beiden Modifikationen (*E. coli* NT1439) führte zu einer weiter erhöhten finalen L-Tryptophan-Absolutmenge von 401, 0 ± 21 , 7 g.

Neben den Limitierungen innerhalb des für das Produkt L-Tryptophan spezifischen Synthesewegs wurde mittels der MCA bei Verwendung von Shikimat als zusätzlichem Substrat eine Kontrolle der DHQS auf die Chorismatbiosynthese und in Richtung des Produktbiosynthesewegs schwächer werdende Kontrollwirkung ermittelt. Als Maßnahme die Limitierung in der DHQS zu beheben, wurde eine zusätzliche Genkopie des entsprechenden Gens *aroB* in *E. coli* NT1439 eingefügt. Dies resultierte im dreifach genetisch modifizierte *E. coli*-Stamm NT1445 mit den zusätzlichen Genkopien $trpC_{mt}$, trpBA und *aroB*. Weiterhin wurde eine positive Kontrolle der PSP_L gegenüber der L-Tryptophanbiosynthese bestimmt, deren Elimination durch eine zusätzliche genomisch inserierte Genkopie von *serB* in *E. coli* NT1439 angestrebt wurde. Hieraus resultierte *E. coli* NT1444, der zusätzliche Genkopien der Gene $trpC_{mt}$, trpBA und *serB* trägt. Mit beiden Stämmen, NT1445 und NT1444, wurde eine finale L-Tryptophan-Absolutmenge von $381, 0 \pm 3, 0$ g, für NT1444 wurden $364, 6 \pm 0, 9$ g gemessen. Durch Kombination der beiden zusätzlichen Genkopien in *E. coli* NT1446 wurde eine finale L-Tryptophan-Absolutmenge von $340, 8 \pm 7, 8$ g erreicht, in diesem Produktionsstamm sind die Integrationen zusätzlicher Genkopien der Gene $trpC_{mt}, trpBA$, *serB* und *aroB* vereint.

Die Überexpression des Gens prsA zur Behebung der starken Limitierung in der enzymatischen Kapazität der PRPPS blieb zunächst erfolglos. Erst zu einem fortgeschrittenen Zeitpunkt im Projekt gelang den Projektpartnern der Universität Stuttgart die genomische Integration einer prsA-Genkopie. Diese Veränderung beeinflusste die Prozessleistung des erhaltenen $E. \ coli$ -Stammes NT1448 jedoch unerwartet stark negativ und es wurde lediglich eine finale L-Tryptophan-Absolutmenge von 195, 8 \pm 2,4 g erreicht. Die genauen Ursachen für die deutlich verschlechterten Prozesseigenschaften sind unbekannt. Augrund der Kopplung der PRPPS-Reaktion an den Verbrauch von atp und die Beteiligung des prpps am Erhaltungsstoffwechsel der Zelle erscheint es plausibel, dass die Überexpression des Enzyms andere sensibel regulierte Teile des Stoffwechsels negativ beeinflusste. Möglicherweise führte eine erhöhte Aktivität der PRPPS zur Auszehrung des intrazellulären atp-Pools. Dies kann nicht nur zur Störung des Energiestoffwechsels führen, sondern auch Limitierungen innerhalb der Aromatenbiosynthese können hierdurch hervorgerufen werden. Beispielsweise ist die Aktivität der SHIKK an den Verbrauch von atp gebunden.

Die Ergebnisse der Kultivierungen zeigen, dass nicht alle genetischen Veränderungen die Produktivität positiv beeinflussten. Der stärkste positive Effekt wurde durch die zusätzliche Genkopie von trpBA in Kombination mit der zusätzlichen Kopie von $trpC_{mt}$ hervorgerufen. Mit diesem Stamm (*E. coli* NT1439) erhöhte sich die finale Absolutmenge um 28 % gegenüber dem Referenzstamm. Für *E. coli* NT1446, der alle vorgeschlagenen genetischen Modifikationen, außer die Überexpression des *prsA*-Gens trägt, wurde eine signifikante Steigerung der finalen L-Tryptophan-Gesamtmenge von 9 % gegenüber dem Referenzstamm *E. coli* NT1259 erreicht. Da für diesen Stamm, aufgrund der hohen Anzahl an realisierten genetischen Modifikationen, der größtmögliche metabolische Unterschied zu *E. coli* NT1259 und *E. coli* NT1259 *shiA* zu erwarten ist, wurde er für weitere metabolische Analysen ausgewählt und die Kultivierung im standardisierten 15 L-Zulaufprozess zweifach reproduziert. Abbildung 5.26 zeigt die Absolutmengen der Biotrockenmasse und des Produktes L-Tryptophan im zeitlichen Prozessverlauf für die dreifach durchgeführten Kultivierungen von *E. coli* NT1259 und des modifizierten *E. coli*-Stammes NT1446, anhand derer die leichten Schwankungen in den Absolutmengen beider Prozessgrößen erkennbar sind. Nach Produktionsende wurde keine signifikante Änderung der L-TryptophanAbsolutmenge gemessen, die L-Tryptophankonzentration wurde durch die fortgeführte Zugabe des Zulaufmediums und der Titrationsmittel verdünnt, die Absolutmenge blieb jedoch konstant. Nach dem Produktionsende verringerte sich das Wachstum der Zellen, die Absolutmenge der Biomasse stieg aber weiter an.

Abbildung 5.26: Absolutmengen (Einheit: g) des L-Tryptophans und der Biotrockenmasse im zeitlichen Prozessverlauf dreier Kultivierungen (Lauf 1 -3) im 15 L-Zulaufprozess (37 °C, pH 7.0, DO > 30 % Luftsättigung) zur L-Tryptophanherstellung mit *E. coli* NT1259 und *E. coli* NT1446. Die vertikalen durchgezogenen Linien markieren das Ende der Satzphase (~ 10, 4 h für NT1259 und ~ 10, 1 h für NT1446) und Beginn der konstanten Zulaufphase/ Zugabe von IPTG (~ 45.1 h für NT1259 und ~ 45, 6 h für NT1446). Die rote, unterbrochene Linie markiert den Zeitpunkt der Zellentnahme (~ 48, 7 h für NT1259 und ~ 48, 3 h für NT1446).

5.4 Metabolische Analyse des modifizierten Stammes NT1446

Der für die erneute MCA ausgewählte Stamm E. coli NT1446 ist nicht mit einem zusätzlichen Shikimattransporter ausgestattet. Aufgrund dessen mussten zur Auslenkung während der metabolischen Analyse natürliche Substrate von E. coli verwendet werden, für die auch ausreichend hohe Aufnahmeraten erreicht werden können. Um dennoch in weiten Teilen des Metabolismus eine Auslenkung in verschiedene Richtungen zu erzielen, wurden Glycerin (Prozesskohlenstoffquelle), Glucose, Pyruvat und Succinat als Substrate für die metabolische Analyse im Zulaufverfahren eingesetzt. Für die metabolische Analyse wurde wie auch für die Analyse des Transporterstammes E. coli NT1259 $shiA_{Cg}$ ein Zeitpunkt ausgewählt, zu dem hohe Produktbildungsraten erreicht wurden und ausreichende Biotrockenmassekonzentrationen vorlagen. Circa 4 h nach Induktion mit IPTG und dem Wechsel in die konstante Zulaufphase wurde eine 21-minütige Analyse nach der Methode des schnellen Medienwechsels im Vierfach-Parallelbioreaktorsystem realisiert.

5.4.1 15 L-Zulaufprozess zur L-Tryptophanproduktion

Wie bereits geschildert, traten mit den gezielt genetisch modifizierten Stämmen auch Produktkonzentrationen oberhalb der Löslichkeitsgrenze von $19,0 \pm 0,5 \,\mathrm{g \, L^{-1}}$ auf, weshalb die Probenvorbereitung zur Produktanalyse verändert wurde. Aus diesem Grund sind die erhaltenen Konzentrationen nicht direkt mit den zuvor gezeigten Daten aus Kapitel 5.2 vergleichbar. Abbildung 5.27 zeigt den Prozessverlauf mit *E. coli* NT1446.

Nach etwa 9,8 h Prozesszeit war die Satzphase beendet und die exponentielle Zulaufphase wurde automatisch eingeleitet, bis zu deren Ende die Biotrockenmassekonzentration auf 18,10 $\pm 0,18 \,\mathrm{g \, L^{-1}}$ anstieg. Während dieser Prozessphase wurde eine mittlere Wachstumsrate von 0,07 h^{-1} beobachtet. Die maximale Biotrockenmassekonzentration von 27,00 $\pm 0,43$ g L^{-1} wurde nach 67,3 h Prozesszeit gemessen. Ab diesem Zeitpunkt verlangsamte sich das Wachstum. Die Konzentration des Produktes L-Tryptophan erhöhte sich stetig simultan zur Biotrockenmassekonzentration bis zu einer Prozesszeit von 65,9 h. Die Induktion und Umstellung auf den konstanten Substratzulauf mit 0,2 g_{Glycerin} g_{BTM}⁻¹ h⁻¹ erfolgte nach 43,9 h Prozesszeit bei einer bereits vorliegenden Produktkonzentration von 7,31 g L⁻¹. Die L-Tryptophanproduktion dauerte bis zum Erreichen der maximalen Produktkonzentration von 16,73 g L⁻¹ bei einer Prozesszeit von 65,9 h an. Zu diesem Zeitpunkt endete die Produktbildung abrupt, sodass im Anschluss keine weitere Zunahme der Produktkonzentration gemessen wurde. Bis zum Ende des Prozesses sank die L-Tryptophankonzentration auf 13,68 g L⁻¹ ab. Die Abnahme kann nur zu 86 % mit der Verdünnung durch den fortlaufenden Zulauf und die Zugabe von Titrationsmitteln erklärt werden. Möglicherweise wird L-Tryptophan durch spontane Reaktionen im Kulturüberstand zersetzt. Die Metabolisierung des L-Tryptophans durch die Zellen wird durch die Deletion des tnaA-Gens, codierend für die Tryptophanase, im verwendeten Stamm verhindert.

Abbildung 5.27: 15 L-Zulaufverfahren zur L-Tryptophanproduktion im Rührkesselreaktor mit *E. coli* NT1446 mit Glycerin als Kohlenstoffquelle. Konzentrationsverläufe (Einheit: gL^{-1}) (A) der Biotrockenmasse (BTM) und L-Tryptophan (L-Trp), (B) von Glycerin und Ammonium, (C) von Acetat, Laktat, Malat, Succinat und (D) von L-Phenylalanin (L-Phe), L-Tyrosin (L-Tyr) und L-Glutamat (L-Glu), in (E) von Methylglyoxal (Einheit: mg L⁻¹), und in (F) der Sauerstoffanteil im Abgas (Einheit: % Luftsättigung). Die vertikalen durchgezogenen Linien markieren das Ende der Satzphase (9,8 h) und den Beginn der konstanten Zulaufphase/ die Zugabe von IPTG (43,9 h). Die rote gestrichelte Linie markiert den Zeitpunkt der Zellentnahme für die Durchführung der metabolischen Analyse (47,9 h).

Die Prozesskohlenstoffquelle Glycerin wurde während der Satzphase im Medium nachgewiesen. In den sich anschließenden Zulaufphasen lag zunächst kein Glycerin im Medium, die Substratzufuhr erfolgte somit durchweg limitiert. Erst mit dem Produktionsende nach 70,2 h stieg die Glycerinkonzentration aufgrund weiterer Zufuhr und verringerter Aufnahme durch die Zellen auf final 7,22 g L⁻¹ an. Während des gesamten Prozesses lag die Konzentration von Ammonium, welches als Stickstoffquelle dem Medium und den Zulaufmedien zugesetzt war, oberhalb von 2 g L⁻¹. Ab einer Prozesszeit von 65,9 h setzte die Bildung der organischen Säuren Acetat, Laktat und Malat ein. Eine geringe Laktatbildung wurde bereits ab einer Prozesszeit von 53,3 h beobachtet. Für Succinat wurden keine steigenden Konzentrationen gemessen. Die Acetatbildung hielt bis zum Prozessende an, sodass final eine Konzentration von $8,76 \text{ g L}^{-1}$ gemessen wurde. Malat und Pyruvat wurden in nur geringen Konzentrationen von unter 1 g L^{-1} detektiert, die Laktatkonzentration stieg gegen Ende des Prozesses auf $2,20 \text{ g L}^{-1}$ an. Die Konzentrationen der aromatischen Nebenprodukte L-Phenylalanin und L-Tyrosin blieben während des gesamten Prozesses unterhalb von 0,5 g L⁻¹, für L-Phenylalanin wurde eine maximale Konzentration von $0,48 \text{ g L}^{-1}$ gemessen, die maximale L-Tyrosinkonzentration lag bei $0,12 \text{ g L}^{-1}$.

Ein weiteres Nebenprodukt, das während der Kultivierung von *E. coli* NT1446 auftrat, ist Methylglyoxal (mgo), ein toxisches Molekül, das in einem zur Glykolyse parallel verlaufenden Stoffwechselweg entsteht (Abbildung 5.27 E). Bis zu einer Prozesszeit von 41,7 h wurden nur sehr geringe mgo-Konzentrationen von unter 10 mg L⁻¹ nachgewiesen. Gegen Ende der exponentiellen Zulaufphase wurde jedoch bereits ein Anstieg der mgo-Konzentration auf 30 mg L⁻¹ gemessen. Nach dem Wechsel des Zulaufmediums blieb die mgo-Konzentration zunächst in etwa konstant, bis es ab einer Prozesszeit von 67,2 h zu einem starken Anstieg auf maximal 240 mg L⁻¹ nach 71,8 h kam. Bis zum Ende des Prozesses sank die mgo-Konzentration auf einen Wert von 173 mg L⁻¹ ab. Im F-Teil der Abbildung ist der Sauerstoffanteil im Abgas gezeigt. Es ist auffällig, dass dieser nur einige min nach dem Anstieg der mgo- und Acetatkonzentration ebenfalls schnell anstieg. Auch die Laktatbildung erhöhte sich zu diesem Prozesszeitpunkt. Die Daten lassen einen zeitlichen Zusammenhang zwischen dem Rückgang der zellulären Atmung (steigender Sauerstoffanteil im Abgas) und dem Anstieg der mgo-Konzentration erkennen.

Die integrale Kohlenstoffbilanz des beschriebenen Prozesses mit *E. coli* NT1446 ist in Abbildung 5.28 gezeigt. Auch anhand dieser ist der Prozessverlauf nachvollziehbar. Bis zur Induktion nach 43,9 h Prozesszeit stieg der Anteil des Produktes L-Tryptophan stetig auf 14,4 % an, der maximale Anteil von 15,5 % wurde nach 47,8 h Prozesszeit erreicht. Nach dem Wechsel des Zulaufmediums schwankte der L-Tryptophananteil zwischen 12,4 % und 14,0 % und bis zum Ende des Prozesses sank der L-Tryptophananteil, aufgrund der beendeten Produktion und der fortlaufenden Glycerinzufuhr, auf 10,6 % ab. Der größte Kohlenstoffanteil ging während der gesamten Kultivierung auf die gebildete Biomasse (15 % bis 46 %) und Kohlenstoffdioxid (36 % bis 57 %) zurück. Durch die Entnahme der Zellsuspension nach 47,8 h wurden circa 8,5 % des gesamten Kohlenstoffs aus dem System entnommen.

Abbildung 5.28: Integrale Kohlenstoffbilanz des L-Tryptophanproduktionsprozesses mit *E. coli* NT1446 im 15 L-Zulaufbetrieb. Die Balken repräsentieren die Anteile der jeweiligen Komponenten am Gesamtkohlenstoff im System, die Zeitpunkte der jeweiligen Probenahme sind an der X-Achse abzulesen. Der Beginn der konstanten Zulaufphase und die Zugabe von IPTG erfolgten nach 43,9 h und sind mit einer unterbrochenen schwarzen Linie markiert.

Der beschriebene Prozess diente als Grundlage für die Durchführung einer metabolischen Analyse des modifizierten Stammes *E. coli* NT1446. Um die Vergleichbarkeit zur vorherigen Analyse des Transporterstammes *E. coli* NT1259 $shiA_{Cg}$ gewährleisten zu können, wurde die Entnahme der Zellsuspension für die Analyse ebenfalls 4 h nach der Induktion mit IPTG durchgeführt. Auch für diesen Prozess wurde das Erreichen eines metabolischen Gleichgwichts anhand der gemessenen Atmungsraten überprüft. Konstante Werte sowohl für die qOUR als auch die qCER wurden einige min nach der Entnahme der Zellsuspension gemessen. Der zeitliche Verlauf der Atmungsraten ist in Abbildung 5.29 gezeigt.

Abbildung 5.29: Biomassespezifische Sauerstoffaufnahmeraten (qOUR) und Kohlenstoffdioxidbildungsraten (qCER) im Referenzprozess mit *E. coli* NT1446 im Zeitraum der metabolischen Analyse.

Der Zeitraum zwischen der Entnahme der Zellen aus dem Prozessreaktor und dem Ende der Kurzzeitanalyse diente als Referenzzustand für die Auswertung der erhobenen Daten aus dem Vierfach-Parallelbioreaktorsystem. Die gemessenen Raten für diesen Prozessabschnitt sind in Tabelle 5.9 zusammengefasst.

Tabelle 5.9: Experimentell ermittelte zellspezifische Raten für die Glycerinaufnahme, L-Tryptophanbildung, Sauerstoffaufnahme, Kohlenstoffdioxidbildung (Einheit: mmol $g_{BTM}^{-1} h^{-1}$) und die Biomassebildung (Einheit: h^{-1}) im Referenzprozess während der metabolischen Analyse im Zulaufbetrieb von *E. coli* NT1446.

Reaktion	Rate
Wachstum	~ 0.04
Glycerinaufnahme	$2,\!82\pm0,\!04$
Tryptophan-Bildung	$0,\!12\pm0,\!01$
Sauerstoffaufnahme (qOUR)	$6{,}79\pm0{,}14$
Kohlenstoffbildung (qCER)	$4{,}80\pm0{,}14$

Diskussion

Im Referenzprozesses zur Produktion von L-Tryptophan mit $E. \ coli$ NT1446 trat eine auffällige Bildung des toxischen Metabolits mgo auf. In der Literatur werden bereits mgo-Konzentrationen von über 20 mg L⁻¹ als wachstumshemmend beschrieben, Konzentrationen von über 40 mg L⁻¹ führen diesen Angaben zufolge bereits zum Zelltod (Freedberg *et al.*, 1971; MacLean *et al.*, 1998; Ozyamak *et al.*, 2010). Im vorliegenden Prozess wurden mgo-Konzentrationen von über 20 mg L⁻¹ bereits gegen Ende der exponentiellen Zulaufphase gemessen, nach einer Prozesszeit von 41,7 h fiel die Konzentration nicht mehr unter 20 mg L⁻¹. Möglicherweise verursachten die dauerhaft erhöhten mgo-Konzentrationen einen anhaltenden Stresszustand der Zellen. Je länger die Zellen durch hohes intra- und extrazellulär vorliegendes mgo belastet waren, desto größer wurde mutmaßlich auch die durch mgo-induzierte Schädigung von DNA und Proteinen. Mit Erreichen eines gewissen Stressniveaus stellte sich der Metabolismus durch die erhöhte mgo-Bildung um, woraufhin die Produktion abbrach und die Zellatmung abnahm. Nach dem Produktionseinbruch wurde nur noch geringfügiges Wachstum, steigende mgo-Konzentrationen sowie die Akkumulation organischer Säuren beobachtet.

Der Abbau von Glycerin zu dhap ist in den Wildtyp-*E. coli*-Zellen durch fbp reguliert (Zwaig & Lin, 1966). Eigentlich werden die unkontrollierte Aufnahme von Glycerin und die daraus resultierende Bildung von dhap durch ansteigende fbp-Konzentrationen verhindert, es sei denn, die GLYK wird unempfindlich gegenüber ihrem Effektor fbp (Freedberg *et al.*, 1971). Dies kann beispielsweise bei spontaner Mutation der GLYK-codierenden Gensequenz eintreten. Die Sequenzierung des glpK-Genabschnitts des verwendeten *E. coli*-Stammes NT1446 zeigte jedoch keine Abweichungen zur erwarteten Wildtypsequenz (Analyse wurde vom Projektpartner der Universität Stuttgart durchgeführt). Auch die Phosphatverfügbarkeit spielt bei der Aktivierung des mgo-Synthesewegs eine entscheidende Rolle, da die Zelle durch den alternativen Stoffwechselweg einerseits hohe dhap-Konzentrationen kompensiert und andererseits den Phosphathaushalt reguliert und auffüllt (Hopper & Cooper, 1971; MacLean *et al.*, 1998; Tötemeyer *et al.*, 1998). Bei Phosphatmangel kann daher die mgo-Synthese aktiviert werden. Die extrazellulären Phosphatkonzentrationen wurden im betrachteten Prozess gemessen, diese lagen während der gesamten Kultivierung über 6.5 g L^{-1} . Hieraus können jedoch keine Rückschlüsse auf die tatsächliche intrazelluläre Phosphatverfügbarkeit gezogen werden.

Auch mit anderen L-Tryptophanproduktionstämmen wurde eine mgo-Bildung zum Prozessende hin beobachtet. Es ist anzunehmen, dass das frühe und zeitlich variable Produktionsende der Kultivierungen von L-Tryptophanproduzenten mit der Bildung von mgo zusammenhängt.

Für in der Literatur beschriebene Satzprozesse zur Produktion von Laktat oder Ethanol ausgehend von Glycerin wurde keine mgo-Bildung beobachtet (Mazumdar *et al.*, 2010; Trinh & Srienc, 2009). Inwieweit eine Detektion des schwer zu messenden mgo-Moleküls in den betrachteten Prozessen mit den verwendeten Methoden möglich gewesen wäre, ist den Publikationen nicht zu entnehmen. Aufgrund seiner hohen Reaktivität, der geringen molekularen Masse und fehlender Chromophoren ist die Detektion von mgo mit konventionellen analytischen Messsystem wie UV-VIS Spektroskopie oder Brechungsindexdetektoren erschwert (Donarski *et al.*, 2010).

5.4.2 Parallelisierte Kurzzeitanalyse im Zulaufbetrieb

Die Entnahme der E. coli-Zellen zur metabolischen Analyse erfolgte nach 47,9h Prozesszeit. Nach Zentrifugation und Resuspension der Zellen in frischem Medium erfolgte die gleichmäßige Aufteilung der Zellsuspension auf die vier Reaktoren des parallelen Bioreaktorsystems. In den darauffolgenden 21 min wurde jeder Reaktor durch ein dreistufiges Zulaufprofil mit einem der Substrate (Glucose, Glycerin, Pyruvat oder Succinat) versorgt. Die Erhöhung der Zulaufrate erfolgte jeweils nach 9 und 15 min. Für die Anpassung der Zulaufraten wurden die maximalen Aufnahmeraten für die jeweiligen Substrate zuvor mithilfe von Satzanalysen ermittelt (Daten nicht gezeigt). Während der beiden ersten Zulaufstufen wurde eine Substratlimitierung angestrebt, in der letzten Zulaufstufe sollten annähernd die maximalen Substrataufnahmeraten eingestellt werden. Ziel war auch für diese Analyse das Erreichen dreier metabolischer Gleichgewichte in jedem Analysenreaktor, sodass insgesamt 13 metabolische Zustände (inklusive Referenzzustand des Produktionsprozesses) analysiert werden können. Die Konzentrationen und Raten der verwendeten Zulaufmedien sind in Kapitel 4.4 angegeben. Das Erreichen der metabolischen Gleichgewichte wurde wie zuvor beschrieben anhand der gemessenen qOUR und qCER überprüft. Abbildung 5.30 zeigt die Atmungsraten in den vier Analysenreaktoren im zeitlichen Verlauf der metabolischen Analyse.

Im Reaktor mit der Kohlenstoffquelle Glycerin ist die Ausbildung dreier Stufen sehr deutlich erkennbar. Während der ersten Zulaufstufe wurden etwa nach 6 min konstante qCER von $3, 30 \pm 0, 12 \text{ mmol}_{\text{CO}_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ gemessen. Die qOUR waren etwas stärker von Schwankungen betroffen, gegen Ende der Zulaufstufe wurden stabile Raten von $3, 81 \pm 0, 69 \text{ mmol}_{\text{O}_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ beobachtet. Etwa 2 min nach Erhöhung der Zulaufrate stabilisierten sich die Atmungsraten erneut bei etwa $6, 53 \pm 0, 22 \text{ mmol}_{\text{O}_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ und $5, 67 \pm 0, 14 \text{ mmol}_{\text{CO}_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$. Während der dritten Zulaufstufe wurden nach etwa 3 min konstante qOUR von $11, 92 \pm 0, 22 \text{ mmol}_{\text{O}_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ gemessen, etwas zeitverzögert wurden auch konstante qCER von $9, 14 \pm 0, 23 \text{ mmol}_{\text{CO}_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ beobachtet. Die erreichten metabolischen Gleichgewichte im Reaktor mit der Kohlenstoffquelle Glycerin waren anhand der Atmungsraten sehr gut nachvollziehbar und deckten einen großen Wertebereich ab. Es ist davon auszugehen, dass während den beiden ersten Zulaufstufen eine vollständige Substratlimitierung vorlag. Der RQ lag bei Aufnahme von Glycerin in allen Zulaufstufen weitestgehend oberhalb von 1.

Die Unterschiede in den Atmungsraten zwischen den metabolischen Gleichgewichten fielen im Analysenreaktor mit Glucose als Substrat deutlich geringer aus. Nach etwa 6 min wurden während der ersten Zulaufstufe qOUR von 3,08 \pm 0,10 mmol_{O2} g_{BTM}⁻¹ h⁻¹ und qCER von 3,20 \pm 0,06 mmol_{CO2} g_{BTM}⁻¹ h⁻¹ gemessen. Während der zweiten Stufe stiegen beide Atmungsraten an und stabilisierten sich bei 4, 28 \pm 0,20 mmol_{O2} g_{BTM}⁻¹ h⁻¹ und 4, 28 \pm 0,02 mmol_{CO2} g_{BTM}⁻¹ h⁻¹. Zwischen den Atmungsraten der zweiten und dritten Zulaufstufe waren in diesem Reaktor kaum Unterschiede erkennbar. Nach etwa 18 min Analysezeit lagen die qOUR bei 4,52 \pm 0,14 mmol_{O2} g_{BTM}⁻¹ h⁻¹ und die qCER bei 4,51 \pm 0,10 mmol_{CO2} g_{BTM}⁻¹ h⁻¹. Ein ähnliches Profil der Atmungsraten hatte sich auch bei der metabolischen Analyse mit *E. coli* NT1259 *shiA*_{Cg} gezeigt. Möglicherweise ist die Aufnahme von Glucose durch das aktive PTS limitiert und kann nicht so schnell angepasst werden wie beispielsweise bei der erleichterten Diffusion von Glycerin.
Grund für die geringen Unterschiede zwischen der zweiten und dritten Zulaufstufe könnte auch ein vorzeitiges Erreichen der maximalen Substrataufnahmerate bereits in der zweiten Zulaufstufe sein. Während der gesamten Analysezeit lag der RQ im Reaktor mit Glucose bei etwa 1.

Pyruvat als Kohlenstoffquelle führte zu deutlichen Unterschieden in den Atmungsraten. Nach etwa 6 min zeichnete sich ein erstes metabolischen Gleichgewicht anhand konstanter qOUR von $3, 86 \pm 0, 08 \text{ mmol}_{O_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ und qCER von $5, 07 \pm 0, 10 \text{ mmol}_{\text{CO}_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ ab. Während der zweiten Zulaufstufe stiegen die Atmungsraten auf $7, 61 \pm 0, 13 \text{ mmol}_{O_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ und $9, 20 \pm 0, 11 \text{ mmol}_{\text{CO}_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ an. Durch die letzte Steigerung der Zulaufrate veränderten sich die Atmungsraten kaum, möglicherweise war die maximale Substrataufnahmerate bereits während der zweiten Zulaufstufe beinahe ausgeschöpft. Im letzten Drittel der höchsten Zulaufstufe wurden $8, 30 \pm 0, 07 \text{ mmol}_{O_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ und $10, 08 \pm 0, 07 \text{ mmol}_{\text{CO}_2} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ gemessen. Im Gegensatz zum Analysenreaktor mit Glycerin lag der RQ für den Reaktor mit Pyruvat dauerhaft unterhalb von 1.

Abbildung 5.30: Biomassespezifische Sauerstoffaufnahmeraten (qOUR) und Kohlenstoffdioxidbildungsraten (qCER) während der metabolischen Analyse der L-Tryptophanproduktion im Zulaufverfahren von *E. coli* NT1446 in Analysenreaktoren mit den Kohlenstoffquellen Glycerin, Glucose, Pyruvat und Succinat. Die vertikalen, durchgezogenen Linien markieren die Erhöhung der Zulaufraten nach 9 und 15 min.

Im Reaktor mit der Kohlenstoffquelle Succinat war zwar ein Anstieg der Atmungsraten erkennbar, konstante Atmungsraten wurden jedoch insbesondere während der zweiten und dritten Zulaufstufe erst sehr spät gemessen. Während der ersten Zulaufstufe wurden nach etwa 4 min konstante Atmungsraten von 2,85 \pm 0,09 mmol_{O2} g_{BTM}⁻¹ h⁻¹ und 3,29 \pm 0,06 mmol_{CO2} g_{BTM}⁻¹ h⁻¹ beobachtet. Während der zweiten Zulaufstufe stiegen die Atmungsraten kontinuierlich an und erst zu Beginn der dritten Zulaufstufe war ein erneutes Plateau zu erkennen. Die Atmungsraten am Ende der zweiten Zulaufstufe betrugen 3,76 \pm 0,30 mmol_{O2} g_{BTM}⁻¹ h⁻¹ und 4,45 \pm 0,12 mmol_{CO2} g_{BTM}⁻¹ h⁻¹. Auch während der dritten Zulaufstufe stiegen die Atmungsraten zunächst stetig an, erst nach etwa 19 min Analysezeit war eine Stabilisierung zu erkennen. Es wurden 5,82 \pm 0,11 mmol_{O2} g_{BTM}⁻¹ h⁻¹ und 5,82 \pm 0,05 mmol_{CO2} g_{BTM}⁻¹ h⁻¹ gemessen. In den ersten beiden Zulaufstufen lag der RQ, wie im Reaktor mit der Kohlenstoffquelle Pyruvat, unterhalb von 1, während der dritten Zulaufstufe lag der RQ-Wert in etwa bei 1.

Jeweils zu Beginn und am Ende jeder Zulaufstufe wurden Proben zur Quantifizierung extrazellulärer Metabolite entnommen. Aus den gemessenen Konzentrationen der Substrate, Produkte und Nebenprodukte wurden biomassespezifische Aufnahme- und Bildungsraten für alle 13 metabolischen Gleichgewichte ermittelt. Abbildung 5.31 zeigt die gemessenen Substrataufnahme-, Produktbildungs- und Atmungsraten.

Abbildung 5.31: Gemessene biomassespezifische extrazelluläre Aufnahme- und Bildungsraten (Substrataufnahme, Produktbildung, Atmung) während der parallelisierten Kurzzeitanalyse im Zulaufverfahren von *E. coli* NT1446 in vier Analysenreaktoren mit den Kohlenstoffquellen Glycerin, Glucose, Pyruvat und Succinat für die Substrate Glycerin (Glyc), Glucose (Gluc), Pyruvat (Pyr) und Succinat (Suc), das Produkt L-Tryptophan (L-Trp), die Sauerstoffaufnahmeraten (qOUR) und die Kohlenstoffdioxidbildungraten (qCER). 1-3: Zulaufstufen 1 bis 3; Ref: Extrazelluläre Raten des 15 L-Produktionsprozesses während der metabolischen Analyse.

Im Reaktor mit der Kohlenstoffquelle Glycerin sind die drei Stufen des Zulaufprofils in allen

gezeigten Raten zu erkennen. Die Glycerinaufnahmerate stieg von $1.91 \pm 0.03 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{ h}^{-1}$ während der ersten Zulaufstufe auf $3,79 \pm 0,05 \,\mathrm{mmol}\,\mathrm{g_{BTM}}^{-1}\,\mathrm{h}^{-1}$ während der letzten an. Auch die Produktbildungsraten nahmen mit steigender Zulaufrate zu. Während der ersten Zulaufstufe lag die Produktbildungsrate bei $0,12\pm0,06\,\mathrm{mmol}\,\mathrm{g_{BTM}^{-1}}\,\mathrm{h^{-1}},$ in der letzten Zulaufstufe wurde die höchste Produktbildungsrate aller Gleichgewichtszustände von $0.29 \pm 0.09 \,\mathrm{mmol}\,\mathrm{g_{BTM}}^{-1}\,\mathrm{h}^{-1}$ beobachtet. Die Raten des Referenzprozesses im Zeitraum der metabolischen Analyse sind ebenfalls in diesem Abbildungsteil gezeigt. Die ermittelten Raten des Produktionsprozesses lagen zwischen den Raten der ersten und zweiten Zulaufstufe im Analysenreaktor mit Glycerin als Kohlenstoffquelle. Demzufolge gelang auch in dieser metabolischen Analyse die Auslenkung des Referenzzustandes in beide Richtungen. Nicht in Abbildung 5.31 gezeigt sind die Raten der Nebenproduktbildungen. Diese sind, wie auch alle weiteren Raten, Tabelle 5.10 zu entnehmen. Im Reaktor mit Glycerin wurde während der ersten Zulaufstufe aufgrund der starken Substratlimitierung neben der zugeführten Kohlenstoffquelle auch Acetat aufgenommen, welches durch die Zentrifugation der Zellen und Resuspension in frischem Medium nicht abgetrennt wurde. Die gemessene Acetataufnahmerate betrug $0.29 \pm 0.02 \text{ mmol g}_{BTM}^{-1} \text{ h}^{-1}$. Während der zweiten und dritten Zulaufstufe wurden die Nebenprodukte Ethanol und mgo gebildet. Ethanol wurde mit Raten von $0.28 \pm 0.02 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{ h}^{-1}$ während der zweiten und $0.07 \pm 0.04 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{ h}^{-1}$ während der dritten Zulaufstufe sekretiert. Auch das toxische Nebenprodukt mgo wurde detektiert. Die mgo-Bildung war während der zweiten Zulaufstufe zunächst gering $(0,002 \pm 0,000 \text{ mmol } g_{BTM}^{-1} \text{ h}^{-1})$ und stieg während der dritten Zulaufstufe deutlich auf $0.053 \pm 0.001 \text{ mmol} \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ an.

Tabelle 5.10: Experimentell ermittelte zellspezifische Raten für die Glycerinaufnahme, L-Tryptophanbildung, Acetataufnahme/ -bildung, Ethanolbildung, Methylglyoxalbildung, Sauerstoffaufnahme, Kohlenstoffdioxidbildung (Einheit: mmol $g_{BTM}^{-1} h^{-1}$) und die Biomassebildung (Einheit: h^{-1}) während der metabolischen Analyse im Zulaufbetrieb von *E. coli* NT1446 mit der Kohlenstoffquelle Glycerin.

Glycerin		Zulaufstufe 1		Zulaufstufe 2		Zulaufstufe 3
Biomasse	\sim	0,02	2	0,02	\sim	0,02
Glycerin	-	$1,\!91\pm0,\!03$	-	$2,\!88\pm0,\!04$	-	$3{,}79\pm0{,}05$
L-Tryptophan		$0,\!12\pm0,\!06$		$0,\!18\pm0,\!11$		$0,\!29\pm0,\!09$
Acetat	-	$0,\!29\pm0,\!02$		_		—
Ethanol		_		$0,\!28\pm0,\!02$		$0,\!07\pm0,\!04$
Methylglyoxal		_		$0,\!002\pm 0,\!000$		$0,\!053\pm0,\!001$
Sauerstoff	-	$4,\!81\pm0,\!69$	-	$6{,}53\pm0{,}22$	-	$11,\!92\pm0,\!21$
Kohlenstoffdioxid		$3{,}30{\pm}0{,}12$		$5{,}67{\pm}0{,}14$		$9{,}14\pm0{,}23$

Die Differenz der Substrataufnahmeraten im Analysenreaktor mit Glucose war zwischen der ersten und zweiten Zulaufstufe deutlicher als zwischen den letzten beiden Zulaufstufen. Dies spiegelte sich auch in den zuvor gezeigten Atmungsraten wider. Möglicherweise wurde bereits in der zweiten Zulaufstufe die maximale Substrataufnahmerate beinahe erreicht, weshalb die Steigerung während der dritten Zulaufstufe nur gering ausfiel. Die Produktbildungsraten stiegen zunächst zwischen der ersten und zweiten Zulaufstufe von $0.03 \pm 0.05 \,\mathrm{mmol}\,\mathrm{g_{BTM}^{-1}}\,\mathrm{h^{-1}}$ auf $0.20 \pm 0.05 \,\mathrm{mmol}\,\mathrm{g_{BTM}^{-1}}\,\mathrm{h^{-1}}$ an. In der letzten Zulaufstufe wurde jedoch eine verringerte Pro-

duktbildungsrate von $0,10 \pm 0,09 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ beobachtet. Auch in diesem Analysenreaktor wurde aufgrund der starken Substratlimitierung während der ersten Zulaufstufe Acetat mit einer Rate von $0,29 \pm 0,00 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ in die Zellen aufgenommen. In der letzten Zulaufstufe wurde Acetat mit $0,51 \pm 0,02 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ an das Medium abgegeben. Succinat wurde in allen Zulaufstufen in geringen Raten von unter $0,1 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ gebildet. Während der Zulaufstufen 2 und 3 wurden zudem die Nebenprodukte Ethanol, Formiat und mgo sekretiert. Die Bildungsrate von mgo lag während der zweiten Stufe mit $0,046 \pm 0,000 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ relativ hoch und ging während der letzten Stufe auf $0,018 \pm 0,000 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ zurück.

Tabelle 5.11: Experimentell ermittelte zellspezifische Raten für die Glucoseaufnahme, L-Tryptophanbildung, Succinatbildung, Acetataufnahme/ -bildung, Ethanolbildung, Formiatbildung, Methylglyoxalbildung, Sauerstoffaufnahme, Kohlenstoffdioxidbildung (Einheit: mmol $g_{BTM}^{-1} h^{-1}$) und die Biomassebildung (Einheit: h^{-1}) während der metabolischen Analyse im Zulaufbetrieb von *E. coli* NT1446 mit der Kohlenstoffquelle Glucose.

Glucose		Zulaufstufe 1		Zulaufstufe 2		Zulaufstufe 3
Biomasse	\sim	0,04	\sim	0,04	\sim	0,04
Glucose	-	$0,\!79\pm0,\!02$	-	$1,\!17\pm0,\!02$	-	$1{,}52\pm0{,}03$
L-Tryptophan		$0,\!03\pm0,\!05$		$0,\!20\pm0,\!05$		$0,\!10\pm0,\!09$
Succinat	-	$0,\!05\pm0,\!01$		$0,\!08\pm0,\!01$		$0,\!06\pm0,\!00$
Acetat	-	$0,\!29\pm0,\!00$		_		$0,\!51\pm0,\!02$
Ethanol		_		$0,\!51\pm0,\!08$		$0,\!21\pm0,\!04$
Formiat		_		$0,\!68\pm0,\!02$		$0,\!55\pm0,\!02$
Methylglyoxal		_		$0,\!046\pm0,\!000$		$0,\!018\pm0,\!000$
Sauerstoff	-	$3{,}08\pm0{,}10$	-	$4,\!28\pm0,\!20$	-	$4{,}52\pm0{,}14$
Kohlenstoffdioxid		$3{,}20\pm0{,}06$		$4{,}28\pm0{,}02$		$4{,}51\pm0{,}10$

Auch im Analysenreaktor mit der Kohlenstoffquelle Pyruvat war die Differenz in den Atmungsraten zwischen den ersten beiden Zulaufstufen größer als zwischen den letzten beiden. Dieses Muster war jedoch in den Substrataufnahmeraten nicht wiederzuerkennen. Die Pyruvataufnahme erfolgte in drei Stufen im etwa gleichen Abstand von $2,06 \pm 0,03 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ während der ersten Zulaufstufe auf $3,92 \pm 0,05 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ während der dritten. Die L-Tryptophanbildung in diesem Reaktor war in allen Zulaufstufen nur schwer detektierbar und stark fehlerbehaftet. Insgesamt konnte keine nennenswerte Produktion bei Aufnahme von Pyruvat festgestellt werden. Acetat wurde auch in diesem Reaktor während der ersten Zulaufstufe in die Zellen aufgenommen und während der beiden weiteren Zulaufstufen gebildet. Die maximale Acetatbildungsrate von $0,52 \pm 0,02 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ wurde während der letzten Zulaufstufe gemessen. Malat wurde mit steigenden Raten in der zweiten und dritten Zulaufstufe gebildet. Die maximale Malatbildungsrate betrug $0,89 \pm 0,02 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$. Darüber hinaus wurde Formiat während der letzten Zulaufstufe ausgeschieden. Die Formiatbildungsrate war mit $0,75 \pm 0,01 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ sehr hoch, mgo-Bildung wurde nicht gemessen.

Tabelle 5.12: Experimentell ermittelte zellspezifische Raten für die Pyruvataufnahme, L-Tryptophanbildung, Acetataufnahme/-bildung, Malatbildung, Formiatbildung, Methylglyoxalbildung, Sauerstoffaufnahme, Kohlenstoffdioxidbildung (Einheit: mmol g_{BTM}^{-1} h⁻¹) und die Biomassebildung (Einheit: h⁻¹) im Referenzprozess während der metabolischen Analyse im Zulaufbetrieb von *E. coli* NT1446 mit der Kohlenstoffquelle Pyruvat.

Pyruvat		Zulaufstufe 1		Zulaufstufe 2		Zulaufstufe 3
Biomasse	\sim	0,00	2	0,00	~	0,00
Pyruvat	-	$2,\!06\pm0,\!03$	-	$2,\!93\pm0,\!04$	-	$3,\!92\pm0,\!05$
L-Tryptophan		$0,\!09\pm0,\!07$		$0,\!02\pm0,\!10$		$0,\!04\pm0,\!05$
Acetat	-	$0,\!32\pm0,\!00$		$0,\!29\pm0,\!02$		$0,\!52\pm0,\!02$
Malat		_		$0,\!22\pm0,\!01$		$0,\!89\pm0,\!02$
Formiat		_		_		$0,\!75\pm0,\!01$
Sauerstoff	-	$3,\!86\pm0,\!08$	-	$7{,}61\pm0{,}13$	-	$8,\!30\pm0,\!07$
Kohlenstoffdioxid		$5{,}07{\pm}0{,}10$		$9{,}20{\pm}0{,}11$		$10,\!08\pm0,\!07$

Die Zufuhr von Succinat führte zu drei gleichmäßigen Stufen in den Atmungsraten und der Substrataufnahmerate. Auch in diesem Analysenreaktor wurde keine nennenswerte Produktbildung gemessen. Die höchste L-Tryptophanbildungsrate von $0.10 \pm 0.03 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ trat während der letzten Zulaufstufe auf. Wie auch für alle weiteren Analyseansätze wurde während des Transfers der Zellen vom Prozessreaktor in die Analysenreaktoren zurückgebliebenes Acetat während der ersten Zulaufstufe von den Zellen aufgenommen. Ethanol und Malat wurden in allen Zulaufstufen des Reaktors mit Succinat als Kohlenstoffquelle gebildet. Für Ethanol schwankten die Bildungsraten zwischen $0.41 \pm 0.03 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ und $2.60 \pm 0.07 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ Die Malatbildung war für alle Zulaufstufen in etwa konstant und lag bei rund $0.2 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ Die Raten aller Substrate, Produkte und Nebenprodukte für alle Analysenreaktoren sind in den Tabellen 5.10 bis 5.13 zusammengefasst.

Tabelle 5.13: Experimentell ermittelte zellspezifische Raten für die Succinataufnahme, L-Tryptophanbildung, Acetataufnahme, Ethanolbildung, Sauerstoffaufnahme, Kohlenstoffdioxidbildung (Einheit: mmol $g_{BTM}^{-1} h^{-1}$) und die Biomassebildung (Einheit: h^{-1}) während der metabolischen Analyse im Zulaufbetrieb von *E. coli* NT1446 im Analysenreaktor mit der Kohlenstoffquelle Succinat.

Succinat		Zulaufstufe 1		Zulaufstufe 2		Zulaufstufe 3
Biomasse	\sim	0,00	\sim	0,00	~	0,00
Succinat	-	$1,\!36\pm0,\!01$	-	$2,\!04\pm\!0,\!01$	-	$2,\!71\pm0,\!02$
L-Tryptophan		$0,\!07\pm0,\!10$		$0,\!00\pm0,\!13$		$0,\!10\pm0,\!03$
Acetat	-	$0,\!25\pm0,\!00$		_		_
Ethanol		$0,\!82\pm0,\!01$		$0,\!41\pm0,\!03$		$2,\!60\pm0,\!07$
Malat		$0,\!26\pm0,\!00$		$0,\!21\pm0,\!00$		$0,\!25\pm0,\!01$
Sauerstoff	-	$2,\!85\pm0,\!09$	-	$3,\!76\pm0,\!30$	-	$5{,}82\pm0{,}12$
Kohlenstoffdioxid		$3,\!29\pm0,\!06$		$4,\!45\pm0,\!12$		$5{,}82\pm0{,}05$

Diskussion

Insgesamt wurden während der metabolischen Analyse von *E. coli* NT1446 durch die Verwendung von vier dreistufigen Zulaufprofilen 12 metabolische Zustände erreicht. Sowohl für die Substrataufnahmeraten als auch für die Atmungsraten ergaben sich Stufenprofile, anhand derer die Ausbildung metabolischer Gleichgewichte nachgewiesen werden konnte.

Eine deutliche Steigerung der Produktbildungsraten wurde nur im Analysenreaktor mit Glycerin beobachtet. Hier führten höhere Substrataufnahmeraten auch zur gesteigerten Produktbildung. Ein gegenteiliger Effekt wurde für die metabolische Analyse mit den Vorgängerstammen NT1259 $shiA_{Cg}$ (siehe Kapitel 5.2) und NT1259 (Tröndle *et al.*, 2020) beobachtet. Für diese Stämme reduzierte sich die Produktbildung bei steigender Glycerinaufnahme. In allen weiteren Reaktoren dieser Analyse wurde keine erhöhte Produktbildung bei Zunahme der Substrataufnahmeraten beobachtet. Insbesondere in den Analysenreaktoren mit den Kohlenstoffquellen Pyruvat und Succinat wurde kaum nennenswerte Produktbildung gemessen. Ein Grund könnte der große Abstand dieser Substrate zum Pentosephosphatweg sein, möglicherweise ist die Synthese der Vorläufermoleküle e4p und prpp dadurch erschwert.

Trotz angepasster Zulaufraten wurden auch in dieser metabolischen Analyse Nebenproduktbildungen beobachtet. Der Überschussmetabolismus konnte demzufolge nicht vollständig vermieden werden. Die in der dritten Zulaufstufe im Analysenreaktor mit Glucose abgeschwächten Substrataufnahme- und Atmungsraten deuten darauf hin, dass die maximale Substrataufnahme für die Kohlenstoffquelle Glucose leicht überschätzt wurde, sodass bereits während der mittleren Zulaufstufe beinahe die maximale Substrataufnahmerate erreicht war. In den Analysenreaktoren mit Glucose und Glycerin wurde zudem eine vermehrte Bildung des toxischen Nebenproduktes mgo gemessen. Im Reaktor mit Glucose lag die mgo-Bildungsrate während der zweiten Zulaufstufe höher als während der letzten. Bei Verwendung von Glycerin erhöhte sich die mgo-Bildung mit Zunahme der Zulaufrate. Die hohen mgo-Bildungsraten deuten auf einen Zusammenhang hoher Aufnahmeraten von Glucose und Glycerin mit der Aktivität des mgo-Stoffwechselweges hin. Ähnliche Ergebnisse aus Pulsexperimenten mit Glucose wurden auch von Weber et al. (2005) publiziert. Diese Ergebnisse sind auch im Hinblick auf die gemessenen mgo-Konzentrationen im Produktionsprozess interessant. Aufgrund ausschließlich gluconeogenem Wachstum bei Aufnahme der Substrate Pyruvat und Succinat ist das Ausbleiben der mgo-Bildung in diesen Reaktoren erwartungsgemäß.

5.4.3 Quantifizierung intrazellulärer Metabolite

Auch während dieser metabolischen Analyse wurden separate Proben zur Quantifizierung intrazellulärer Metabolite entnommen. Neben Proben aus den vier Analysenreaktoren erfolgte auch eine Probenahme aus dem Referenzprozess zum Zeitpunkt der Kurzzeitanalyse. Im Folgenden werden Ausschnitte der gemessenen Metabolitkonzentrationen für die verschiedenen Teilbereiche des Metabolismus gezeigt und diskutiert. Wie auch für die in Kapitel 5.2.4 gezeigten Metabolomdaten beziehen sich die intrazellulären Konzentrationen auf ein Zellvolumen von 1,3 µL g_{BTM}^{-1} . Abbildung 5.32 zeigt gemessene Metabolitkonzentrationen aus der Glykolyse beziehungsweise der Gluconeogenese.

Abbildung 5.32: Intrazelluläre Konzentrationen (Einheit: mM) der Glykolyse-Metabolite Glucose-6-Phosphat (g6p), Fructose-6-Phosphat (f6p), Phosphoenolpyruvat (pep) und Pyruvat (pyr) während der metabolischen Kurzzeitanalyse in drei Zulaufphasen (1-3) von *E. coli* NT1446 mit den Kohlenstoffquellen Glycerin (Glyc), Glucose (Gluc), Pyruvat (Pyr) und Succinat (Suc), in schraffiert dargestellt sind die Konzentrationen der Probe aus dem Referenzprozess im Analysezeitraum (Ref).

In allen Analysenreaktoren wurde zwischen der ersten und mittleren Zulaufstufe ein Anstieg der intrazellulären g6p-Konzentrationen gemessen, woraufhin ein Abfall der Konzentration zwischen der mittleren und letzten Stufe folgte. Für den Analysenreaktor mit Glucose wurde die stärkste Veränderung der intrazellulären g6p-Konzentration gemessen. Sie stieg in diesem Reaktor von $2,95 \pm 0,04 \,\mathrm{mM}$ während der ersten auf $6,21 \pm 0,19 \,\mathrm{mM}$ während der zweiten Zulaufstufe an. In der dritten Zulaufstufe wurde im Analysenreaktor mit Glucose eine etwas geringere Konzentration von $5,06 \pm 0,22 \,\mathrm{mM}$ gemessen. g6p ist nicht nur der erste intrazelluläre Metabolit bei der Aufnahme von Glucose, sondern es stellt auch einen Verzweigungspunkt der Glykolyse beziehungsweise Gluconeogenese mit dem Pentosephosphatweg dar. Erhöhte Konzentrationen, wie im Reaktor mit Glycerin als Kohlenstoffquelle, deuten also auch auf Aktivitäten der oberen Gluconeogenese am Übergang zum oxidativen Teil des Pentosephosphatwegs hin. In den Reaktoren mit Pyruvat und Succinat wurden hingegen vergleichsweise geringe Konzentrationen gemessen. Daher ist anzunehmen, dass die Aktivitäten im oberen der Teil der Gluconeogenese bei Aufnahme dieser Substrate geringer ist.

Die f6p-Konzentrationen stiegen ebenfalls verstärkt in den Analysenreaktoren mit Glycerin und Glucose an. Ein Abfall der intrazellulären Konzentration wurde für die dritte Zulaufstufe im Reaktor mit Glucose gemessen. Auch die f6p-Konzentrationen waren bei Aufnahme von Pyruvat und Succinat mit unter 0,8 mM geringer als in den Reaktoren der Substrate Glucose und Glycerin. Bei gestiegener Pyruvatzulaufrate wurde eine sinkende Tendenz der intrazellulären f6p-Konzentration gemessen, im Analysenreaktor mit Succinat wurden in etwa konstante Werte von rund 0,6 mM in allen Zulaufstufen beobachtet.

Das Molekül fbp ist an der Glykolyse und Gluconeogenese beteiligt, entsteht aber auch beim Glycerinabbau in gluconeogener Richtung als Nachfolgemetabolit von dhap. Besonders auffällig in den Konzentrationsprofilen von fbp ist der starke Anstieg der intrazellulären Konzentration bei Aufnahme von Glycerin auf eine Konzentration von 58, 24 ± 3 , 70 mM während der letzten Zulaufstufe. In keinem weiteren Analysenreaktor wurde ein derart ausgeprägter Anstieg der intrazellulären fbp-Konzentrationen gemessen. Bei Aufnahme von Glucose stieg die fbp-Konzentration von 0, $44\pm0,03$ mM während der ersten Zulaufstufe auf 1, $65\pm0,02$ mM während der mittleren Zulaufstufe an. In etwa bei diesem Wert stabilisierte sich die Konzentration bis zum Ende der metabolischen Analyse. Die Konzentrationen in den Reaktoren mit den Kohlenstoffquellen Succinat und Pyruvat lagen unterhalb von 0,5 mM für alle Zulaufstufen.

Der Metabolit 3pg liegt zentral in den Stoffwechselwegen Glykolyse und Gluconeogenese und bildet den Ausgangspunkt für die L-Serinbiosynthese. Die gemessenen Konzentrationen deckten einen Bereich von circa 0,9 mM bis 7,2 mM ab. In den Reaktoren mit den Substraten Glycerin und Succinat wurden steigende Konzentrationen mit Erhöhung der Zulaufrate gemessen. Die höchsten Konzentrationen lagen bei Aufnahme von Succinat vor. Im Reaktor mit Glycerin stieg die 3pg-Konzentration von 1,71 \pm 0,27 mM während der ersten auf 5,35 \pm 0,43 mM während der letzten Zulaufstufe an. Im Reaktor mit Glucose als Kohlenstoffquelle blieb die intrazelluläre 3pg-Konzentration während den ersten beiden Zulaufstufen konstant bei etwa 3,6 mM, während der letzten Zulaufstufe fiel die Konzentration auf unter die Hälfte der anfänglichen Konzentration ab. Im Analysenreaktor mit Pyruvat wurde ein Absinken der 3pg-Konzentration bereits zwischen der ersten und zweiten Zulaufstufe gemessen, anschließend stabilisierte sich die Konzentration stabilisierte sich die Konzentration stabilisierte sich die Konzentration bereits zwischen der ersten und zweiten Zulaufstufe gemessen, anschließend stabilisierte sich die Konzentration bereits

zentration bei etwas über 1 mM.

Die pep-Konzentration im Ansatz mit Glycerin war während der gesamten Analysenzeit in etwa stabil und lag bei Werten von etwas über 0,5 mM. In den Reaktoren mit Glucose und Pyruvat fielen die pep-Konzentrationen mit steigendem Substratzulauf stark ab, sodass in der letzten Stufe nur sehr geringe Konzentrationen von 0,11 \pm 0,16 mM im Reaktor mit Glucose und 0,09 \pm 0,04 mM im Reaktor mit Pyruvat vorlagen. Für Succinat wurden insgesamt die höchsten und ansteigende pep-Konzentrationen von über 1,0 mM gemessen.

Die Pyruvatkonzentrationen nahmen im Reaktor mit steigender Glycerinzulaufrate im Verlauf der Analyse zu. Während der letzten Zulaufstufe wurde eine intrazelluläre Pyruvatkonzentration von 3,96 \pm 0,23 mM gemessen. Im Reaktor, für den Pyruvat als Substrat verwendet wurde, traten stark steigende Pyruvatkonzentration als Folge der Aufnahme aus dem extrazellulären Raum auf.

Für alle gezeigten Metabolite aus der Glykolyse beziehungsweise der Gluconeogenese lagen die gemessenen Konzentrationen in der Referenzprobe in etwa im Bereich der gemessenen Konzentrationen des Glycerinansatzes. Lediglich die 3pg- und pep-Konzentration waren etwas erhöht.

In Abbildung 5.33 sind die gemessenen intrazellulären Konzentrationen zweier Metabolite aus dem Stoffwechselweg zum Abbau von Glycerin gezeigt. In der letzten Zulaufstufe im Analysenreaktor mit Glycerin wurde ein starker Anstieg von gly3p auf über 4 mM gemessen. Die Konzentrationen in allen weiteren Reaktoren schwankten nur leicht und blieben unterhalb von 1 mM. Die intrazelluläre Konzentration in der Referenzprobe lag mit 4,59 \pm 0,22 mM vergleichsweise hoch und im Bereich der gemessenen Konzentration während der dritten Zulaufstufe im Analysenreaktor mit Glycerin. Wie auch in vorherigen Analysen (siehe Kapitel 5.2.4) stieg die dhap-Konzentration mit Erhöhung der Glycerinzulaufrate stark an. Zudem wurde auch im Analysenreaktor mit Pyruvatzufuhr eine stark ansteigende dhap-Konzentration auf beinahe 15 mM gemessen. Die dhap-Konzentration in der Referenzprobe lag mit 0, 36 \pm 0.02 mM zwischen den gemessenen Konzentrationen der zweiten und dritten Zulaufstufe im Reaktor mit Glycerin.

Abbildung 5.33: Intrazelluläre Konzentrationen (Einheit: mM) Metabolite Glycerin-3-Phosphat (gly3p) und Dihydroxyacetonphosphat (dhap) aus dem aeroben Glycerinabbauweg während der metabolischen Kurzzeitanalyse in drei Zulaufphasen (1-3) von *E. coli* NT11446 mit den Kohlenstoffquellen Glycerin (Glyc), Glucose (Gluc), Pyruvat (Pyr) und Succinat (Suc), in schraffiert dargestellt sind die Konzentrationen der Probe aus dem Referenzprozess im Analysezeitraum (Ref).

In Abbildung 5.34 sind die intrazellulären Konzentrationen der dem Citratzyklus angehörenden Metabolite acCoA und succCoA gezeigt. Wie auch für die Analyse mit dem Shikimattransporterstamm wurde im Analysenreaktor mit Glycerin ein Anstieg der acCoA-Konzentration mit zunehmender Zulaufrate gemessen. Auch für die Analyse mit Succinat wurden steigende, aber etwas geringere acCoA-Konzentrationen gemessen. Sowohl im Ansatz mit Glucose als auch bei Verwendung von Pyruvat stieg die intrazelluläre acCoA-Konzentration zwischen der ersten und zweiten Zulaufstufe zunächst an und fiel während der dritten Zulaufstufe wieder ab. Die höchsten acCoA-Konzentrationen wurden im Analysenreaktor mit Pyruvat gemessen, vermutlich aufgrund der Nähe des acCoA zum Eintrittspunkt des verwendeten Substrats. Die Konzentration in der Referenzprobe war gegenüber den Konzentrationen im Analysenreaktor mit Glycerin leicht erhöht. Für succCoA wurden in allen Analysenreaktoren abnehmende Tendenzen bei Erhöhung der Zulaufraten beobachtet.

Abbildung 5.34: Intrazelluläre Konzentrationen (Einheit: mM) der Metabolite Acetyl-CoenzymA (acCoA) und Succinyl-CoenzymA (succCoA) aus dem Citratzyklus während der metabolischen Kurzzeitanalyse in drei Zulaufphasen (1-3) von *E. coli* NT1446 mit den Kohlenstoffquellen Glycerin (Glyc), Glucose (Gluc), Pyruvat (Pyr) und Succinat (Suc), in schraffiert dargestellt sind die Konzentrationen der Probe aus dem Referenzprozess im Analysezeitraum (Ref).

Die messbaren Metabolite des Pentosephosphatwegs sind in Abbildung 5.35 dargestellt. Für 6pg, der erste Metabolit im oxidativen Teil dieses Stoffwechselwegs ausgehend von g6p, wurden in der Analyse mit Glycerin als Kohlenstoffquelle leicht steigende intrazelluläre Konzentrationen von $0,55 \pm 0,04$ mM während der ersten auf $0,73 \pm 0,05$ mM während der letzten Zulaufstufe gemessen. Für alle weiteren Reaktoren sind keine eindeutigen Tendenzen zu erkennen. Im Reaktor mit Glucose waren die Konzentrationen verglichen mit den anderen Analysenreaktoren leicht erhöht. Die 6pg-Konzentration in der Referenzprobe überstieg die Konzentrationen aller Analysenreaktoren deutlich, dies war in der vorherigen Analyse des Shikimattransporterstammes nicht der Fall.

Sinkende s7p-Konzentrationen wurden bei Aufnahme von Glycerin und Pyruvat beobachtet, für Glucose und Succinat wurden schwankende Werte gemessen. Auch für s7p waren die intrazellulären Konzentrationen im Reaktor mit Glucose als Substrat im Vergleich mit allen weiteren Messwerten leicht erhöht. Für die Probe des Referenzprozesses wurde die geringste s7p-Konzentration ermittelt.

Für r5p, der direkte Vorläufer des in die L-Tryptophanbiosynthese miteinfließenden Metaboliten prpp, zeigten sich leicht steigende Konzentrationen im Reaktor mit Glycerin als Kohlenstoffquelle. Bei Verwendung von Pyruvat als Substrat sanken die r5p-Konzentrationen mit steigender Zulaufrate. Die Konzentrationen in den Analysenreaktoren wiesen keine eindeutige Tendenz auf. Auch für r5p wurden leicht erhöhte Konzentrationen im Reaktor mit zugeführter Glucose beobachtet. Auf ru5p traf dies ebenfalls zu. Die gemessenen ru5p-Konzentrationen lagen im Bereich von 0,08 mM bis 0,35 mM, ähnliche Konzentrationen wurden auch in der vorherigen Analyse gemessen (siehe Kapitel 5.2.4). Für r5p sowie für ru5p lagen die gemessenen Konzentrationen in der Referenzprobe etwas oberhalb der Konzentrationsbereiche des Analysenreaktors mit Glycerin.

Abbildung 5.35: Intrazelluläre Konzentrationen (Einheit: mM) der Metabolite 6-Phosphogluconat (6pg), Sedoheptulose-7-Phosphat (s7p), Ribose-5-Phosphat (r5p) und Ribulose-5-Phosphat (ru5p) aus dem Pentosephosphatweg während der metabolischen Kurzzeitanalyse in drei Zulaufphasen (1-3) von *E. coli* NT1446 mit den Kohlenstoffquellen Glycerin (Glyc), Glucose (Gluc), Pyruvat (Pyr) und Succinat (Suc), in schraffiert dargestellt sind die Konzentrationen der Probe aus dem Referenzprozess im Analyse-zeitraum (Ref).

In der L-Serinbiosynthese konnte neben 3pg, dem Ausgangsmolekül des spezifischen Synthesewegs, L-pser, das direkte Vorläufermolekül von L-Serin, quantifiziert werden. Die gemessenen intrazellulären L-pser-Konzentrationen sind in Abbildung 5.36 gezeigt. Insgesamt sind die Konzentrationen verglichen mit der vorherigen Analyse von *E. coli* NT1259 $shiA_{Cg}$ deutlich verringert (siehe Kapitel 5.2.4). In den Analysenreaktoren mit Glycerin und Pyruvat wurden tendenziell sinkende Konzentrationen mit steigender Zulaufrate gemessen. In den Analysen mit Glucose und Succinat wurden schwankende Werte zwischen den Zulaufstufen beobachtet. Im Reaktor mit Glucose sind die Konzentrationen mit einem maximalen Wert von $0, 43 \pm 0, 02 \text{ mM}$ während der zweiten Zulaufstufe gegenüber den Konzentrationen der anderen Proben leicht erhöht. Die Konzentration in der Referenzprobe lag auf selbem Niveau wie die Konzentration im Analysenreaktor mit Glycerin während der zweiten Zulaufstufe.

Abbildung 5.36: Intrazelluläre Konzentration (Einheit: mM) von Phospho-L-Serin (L-pser) aus der L-Serinbiosynthese während der metabolischen Kurzzeitanalyse in drei Zulaufphasen (1-3), von *E. coli* NT1446 mit den Kohlenstoffquellen Glycerin (Glyc), Glucose (Gluc), Pyruvat (Pyr) und Succinat (Suc), in schraffiert dargestellt sind die Konzentrationen der Probe aus dem Referenzprozess im Analysezeitraum (Ref).

In Abbildung 5.37 sind die analytisch erfassten Konzentrationen der Metabolite aus dem Biosyntheseweg aromatischer Aminosäuren gezeigt. Für 3dhs wurden in der metabolischen Analyse mit dem Shikimattransporterstamm (siehe Kapitel 5.2.4) bei Aufnahme von Glycerin steigende und teilweise sehr hohe Konzentrationen gemessen. Diese Analysen ergaben hingegen nur geringe Konzentrationen des Metaboliten von unter 0,1 mM und sinkende Konzentrationen bei steigenden Zulaufraten. Stattdessen wurden stark ansteigende s3p-Konzentrationen von bis zu über 5 mM bei Aufnahme von Glycerin und Glucose beobachtet. Dieser Anstieg blieb in Analysen vorheriger L-Tryptophanproduzenten aus (siehe Kapitel 5.2.4).

Die Chorismatkonzentrationen stiegen in den Analysenreaktoren mit Glucose und Glycerin als Kohlenstoffquellen an. Die höchsten Konzentrationen von maximal $0,75 \pm 0,04$ mM wurden im Reaktor mit Glycerin gemessen. Wie auch in der vorherigen Analyse (siehe Kapitel 5.2.4) überstieg die pphn-Konzentration in der Referenzprobe die Konzentrationen in den Proben der Analysenreaktoren um ein Vielfaches. Für phpyr wurden nur geringfügige Veränderungen in den Konzentrationen bei Erhöhung der Zulaufraten beobachtet. Die Konzentration in der Referenzprobe war auch für phpyr leicht erhöht.

Die Konzentrationen anth, des ersten Metaboliten im spezifischen L-Tryptophanbiosyntheseweg lagen in allen Zulaufstufen aller Reaktoren und in der Referenzprobe unterhalb von 0,1 mM. Die Änderung der Zulaufraten führte zu keiner signifikanten Änderung der anth-Konzentrationen. Die Zugabe von Shikimat als zusätzlichem Substrat in der Analyse des Shikimattransporterstammes hatte zu einem starken Anstieg der intrazellulären anth-Konzentration bei Aufnahme von Glycerin geführt (siehe Kapitel 5.2.4).

Abbildung 5.37: Intrazelluläre Konzentrationen (Einheit: mM) der Metabolite 3-Dehydroshikimat (3dhs), Shikimat-3-Phosphat (s3p), Chorismat (chor), Prephenat (pphn), Phenylpyruvat (phpyr), Anthranilat (anth), Carboxyphenylamino-Desoxyribulose-5-Phosphat (2cdr5p) und Indol-3-Glycerinphosphat (3ig3p) aus dem Biosyntheseweg aromatischer Aminosäuren während der metabolischen Kurzzeitanalyse in drei Zulaufphasen (1-3) mit *E. coli* NT1446 mit den Kohlenstoffquellen Glycerin (Glyc), Glucose (Gluc), Pyruvat (Pyr) und Succinat (Suc), in schraffiert dargestellt sind die Konzentrationen der Probe aus dem Referenzprozess im Analysezeitraum (Ref).

Weitere analytisch erfasste Metabolite des spezifischen L-Tryptophanbiosynthesewegs sind 3ig3p und 2cdr5p. Die 2cdr5p-Konzentrationen wiesen keine starken Veränderungen bei Erhöhung der Zulaufraten auf. Für 3ig3p wurden sinkende Konzentrationen in den Analysenreaktoren mit Pyruvat und Succinat gemessen, in den mit Glucose und Glycerin versorgten Reaktoren kam es zu Schwankungen der 3ig3p-Konzentrationen im Bereich von 8 mM bis 12 mM.

Die Zelle speichert Energie in Form phosphorylierter Energiemetabolite und durch Abspaltung der Phosphatreste stellt sie Energie für die Katalyse von energetisch ungünstigen biokatalytischen Reaktionen bereit. Die Konzentrationen der Energieäquivalente geben daher auch Auskunft über den energetischen Zustand der Zellen. Abbildung 5.38 zeigt die Konzentrationen der Metabolite atp, adp, amp und fad aus dem Energiemetabolismus. Insgesamt waren die Konzentrationen dieser zentralen Moleküle starken Schwankungen unterworfen. Für adp wurden sinkende Konzentrationen in den Analysenreaktoren mit den Kohlenstoffquellen Glycerin und Pyruvat gemessen. Die adp und atp-Konzentrationen waren mit Ausnahme der ersten Zulaufstufe im Analysenreaktor mit Glucose höher als die amp-Konzentrationen. Die *energy charges* lagen bei Aufnahme von Glucose und Glycerin bei 0,54 bis 0,64, in den Analysenreaktoren mit Pyruvat und Succinat ergaben sich etwas erhöhte Werte von 0,67 bis 0,75. Im Referenzprozess lag der *energy charge* bei 0,72 und damit höher als im Analysenreaktor mit zugeführtem Glycerin.

Abbildung 5.38: Intrazelluläre Konzentrationen (Einheit: mM) der Energieäquivalente Adenosinmonophosphat (amp), Adenosindiphosphat (adp), Adenosintriphosphat (atp) und Flavinadenindinukleotid oxidiert (fad) während der metabolischen Kurzzeitanalyse in drei Zulaufphasen (1-3) von *E. coli* NT1446 mit den Kohlenstoffquellen Glycerin (Glyc), Glucose (Gluc), Pyruvat (Pyr) und Succinat (Suc) in schraffiert dargestellt sind die Konzentrationen der Probe aus dem Referenzprozess im Analysezeitraum (Ref).

Abbildung 5.39 zeigt die Konzentrationen der gemessenen wasserstoffübertragenden Cofaktoren in reduziertem und oxidiertem Zustand. Für alle gemessenen Metabolitpools (nad, nadh, nadp und nadph) wurden kaum signifikante Änderungen in den Konzentrationen durch die Zulaufänderungen festgestellt. Die nad-Konzentrationen lagen um ein Vielfaches höher als die des reduzierten nadhs. Für das phosphorylierte Coenzym war die Konzentration des oxidierten nadps etwas geringer als die des nadphs. Sowohl die anabole als auch die katabole Reduktionskraft lagen mit durchschnittlich 0,15 und 0,64 etwas höher als in der vorherigen Analyse des Shikimattransporterstammes. Für die Konzentrationen der Referenzprobe wurde jeweils eine gute Übereinstimmung mit den Werten der Analysenreaktoren gefunden.

Abbildung 5.39: Intrazelluläre Konzentrationen (Einheit: mM) der Cofaktoren Nikotinamidadeninnukleotid oxidiert (nad), Nikotinamidadeninnukleotid reduziert (nadh), Nikotinamidadenindinukleotidphosphat oxidiert (nadp) und Nikotinamidadenindinukleotidphosphat reduziert (nadph) während der metabolischen Kurzzeitanalyse in drei Zulaufphasen (1-3) von *E. coli* NT1446 mit den Kohlenstoffquellen Glycerin (Glyc), Glucose (Gluc), Pyruvat (Pyr) und Succinat (Suc), in schraffiert dargestellt sind die Konzentrationen der Probe aus dem Referenzprozess im Analysezeitraum (Ref).

Diskussion

Die erhobenen Daten boten einen detaillierten Einblick in das Metabolom der Zellen bei geänderter Substratzufuhr des modifizierten *E. coli*-Stammes NT1446. Auch durch die Verwendung der natürlichen Substrate Glycerin, Glucose, Pyruvat und Succinat ergaben sich verteilt über das gesamte analytisch erfasste Metabolom signifikante Veränderungen in den intrazellulären Metabolitkonzentrationen. Besonders große Varianzen im Metabolom zeigten sich jeweils in den Konzentrationen der Metabolite in der Nähe der verwendeten Substrate. Dies verdeutlicht auch nochmals die Wichtigkeit der Auswahl an Substraten, um eine gezielte Auslenkung des Metabolismus zu erreichen. Anhand der gemessenen intrazellulären Metabolitkonzentrationen bei Nutzung von Glycerin und Glucose wurden bereits Abweichungen zur vorherigen metabolischen Analyse mit *E. coli* NT1259 $shiA_{Cg}$ festgestellt. Auf die Unterschiede zwischen den metabolischen Analysen beider *E. coli*-Stämme wird in einem der folgenden Kapitel (5.5) im Detail eingegangen.

Die gemessenen Konzentrationsbereiche vieler Metabolite sind vergleichbar mit gemessenen Konzentrationen vorheriger metabolischer Analysen von *E. coli* L-Tryptophanproduzenten (Tröndle *et al.*, 2020). Für intrazelluläres atp sind in der Literatur vergleichbare Konzentrationen von 0,31 mM bis 8,98 mM beschrieben, die gemessenen Konzentrationsbereiche für amp und adp lagen im Vergleich zu Literaturdaten (0,10 mM bis 2,51 mM für amp und 0,15 mM bis 0,56 für adp) etwas niedriger aber im erwartbaren Bereich (Guo *et al.*, 2013).

Anstiege der fbp-Konzentrationen mit Erhöhung der Glucose- und Glycerinzulaufrate wurden auch in den metabolischen Analysen der Vorgängerstämme *E. coli* NT1259 und NT1259 $shiA_{Cg}$ (siehe Kapitel 5.2.4) beobachtet und auch in metabolischen Analysen mit *E. coli*-Stämmen zur L-Phenylalaninproduktion trat dieser Effekt auf (Tröndle *et al.*, 2020; Weiner *et al.*, 2017). Allerdings lagen die maximalen Werte dieser Analysen bei etwas unter 4 mM. Weber *et al.* (2005) maßen ebenfalls ansteigende intrazelluläre fbp-Konzentrationen bei pulsartig erhöhter Zufuhr von Glucose. Ein möglicher Grund für den starken Anstieg der fbp-Konzentration bei Aufnahme von Glycerin könnte eine Limitierung in den Reaktionen der oberen Gluconeogenese sein. Die ansteigenden Konzentrationen sind auch deshalb interessant, weil eine negative Regulierung der GLYK durch fbp bekannt ist und steigende Konzentrationen demzufolge zur Drosselung des Glycerinabbaus führen können (Thorner & Paulus, 1973). Weber *et al.* (2005) folgern, dass die stark ansteigenden dhap und fbp-Konzentrationen bei erhöhter Glucosezufuhr zur Aktivierung des mgo-Stoffwechselwegs führen. Ansteigende dhap-Konzentrationen bei Erhöhen der Glycerinzufuhr wurden in dieser wie auch in vorherigen metabolischen Analysen glycerinbasierter L-Tryptophanproduktionsprozesse gemessen (siehe Kapitel 5.2 und Tröndle *et al.* (2020)).

Zusammenfassend wurde auch in dieser metabolischen Analyse eine starke Reaktion der Zellen, in Form geänderter intrazellulärer Metabolitkonzentrationen, durch die abweichenden Substratzugaben hervorgerufen. Anhand dieser Konzentrationsprofile sind bereits erste Veränderungen in den zellulären Prozessen wie beispielsweise der Chorismat- und L-Serinbiosynthese gegenüber den ursprünglichen L-Tryptophanproduzenten (NT1259 und NT1259 $shiA_{Cg}$) zu erkennen. Diese intrazellulären Verschiebungen sollten mittels einer weiteren MCA quantifiziert werden.

5.4.4 Stoffflussabschätzungen und thermodynamische Netzwerkanalyse

In Vorbereitung auf die MCA wurde eine thermodynamische Stoffflussanalyse für alle 13 metabolischen Zustände durchgeführt. Wie unter 5.2.5 beschrieben, wurde der pyTFA-Methodik der CycleFreeFlux-Algorithmus zur Eliminierung von Schleifen vorgeschaltet. Die Ergebnisse umfassen Stoffflussverteilungen für alle 13 metabolischen Gleichgewichte, die während der Kurzzeitanalyse erreicht wurden, Lösungsbereiche für die zugehörigen Gibbs'schen Reaktionsenergien sowie die Konzentrationen nicht messbarer Metabolite. Der Lösungsraum wurde weiterhin durch eine Abtastfunktion mit 10.000 durchlaufenen Berechnungszyklen statistisch untersucht. Wie zuvor für die thermodynamische Analyse des Transporterstammes erfolgten die Abschätzungen im E. coli-Modell *i*JO1366. Die Maximierung der Biomassebildung wurde als Zielfunktion gewählt und die gemessenen extrazellulären Raten und Metabolomdaten dienten zur Beschränkung des Lösungsraumes. Für die thermodynamischen Abschätzungen wurde eine Temperatur von 37 °C, ein pH von 7 und eine Ionenstärke von 0,15 M vorgegeben.

Stoffflussverteilungen

In Abbildung 5.40 sind die Mittelwerte der durch die kombinierte Methodik (FVA ll & TVA & Met) abgeschätzten Lösungsbereiche für alle Zulaufstufen in den Analysenreaktoren und den Referenzzustand gezeigt. Für eine bessere Übersichtlichkeit wurde eine Darstellung in zwei *Heatmaps* mit unterschiedlicher Skalierung gewählt. Das obere Diagramm umfasst die Stoffflüsse des Glycerinmetabolismus, des mgo-Stoffwechselwegs und des Citratzyklus im Bereich von $-5 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ bis $5 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$, im unteren sind die Stoffflüsse mit geringen Raten von $-0.4 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ bis $0.4 \text{ mmol } \text{g}_{\text{BTM}}^{-1} \text{h}^{-1}$ für die Bereiche L-Serinbiosynthese, Pentosephosphatweg, Chorismatbiosynthese, L-Phenylalanin und L-Tyrosinbiosynthese sowie die L-Tryptophanbiosynthese gezeigt. Es folgt eine kurze Zusammenfassung der Ergebnisse, dabei stehen die relevanten Unterschiede zu den Ergebnissen der Analyse des Shikimattransporterstammes und Auffälligkeiten im Fokus.

Die Stoffflüsse der Reaktionen zur Aufnahme der Substrate Glycerin und Glucose zeigten folgerichtig nur Aktivitäten bei Aufnahme des jeweiligen Substrats. Im Bereich der Glykolyse und Gluconeogenese wurden stark variierende Aktivitäten, auch hinsichtlich der Reaktionsrichtungen, abgeschätzt. Bei Aufnahme von Glycerin wurden für den Großteil der Reaktionen im Bereich der Glykolyse beziehungsweise der Gluconeogenese die höchsten Stoffflüsse ermittelt, nicht jedoch in den oberen Reaktionen der Gluconeogenese (PGI, FBP, FBA). In glykolytischer Ausrichtung waren die Stoffflussaktivitäten bei Aufnahme von Glucose in diesem Bereich stärker ausgeprägt. Für die Aufnahme von Glucose ergaben sich ausschließlich Stoffflüsse in glykolytischer Ausrichtung, für Glycerin wurden unterhalb von g3p glykolytische Stoffflüsse und oberhalb desselben gluconeogene Stoffflüsse ermittelt. Für die beiden Substrate Pyruvat und Succinat erfolgte die Umkehr der Glykolyse zum Ablauf der vollständigen Gluconeogenese. Für Succinat wurden ähnliche Stoffflüsse wie bei Aufnahme von Glucose abgeschätzt, für Pyruvat waren die Aktivitäten in diesem Teil des Metabolismus äußerst gering. Lediglich der Stofffluss der PDH war bei der Verstoffwechslung von Pyruvat sehr hoch, da diese Reaktion den Übergang des Stoffflusses von Pyruvat in den Citratzyklus ermöglicht. Eine Aktivität der PYK war nur bei Aufnahme von Glycerin vorhanden, im Fall von Glucose wird dieser Schritt durch das PTS bei der Aufnahme des Substrates übernommen. Bei Zufuhr von Pyruvat waren anstatt dessen die Reaktionen PPS und PPCK in entgegengesetzter Richtung aktiv. Für die allermeisten Reaktionen der Glykolyse und Gluconeogenese nahmen die Stoffflüsse mit Erhöhung der Zulaufrate zu.

Im mgo-Stoffwechselweg wurden jeweils für die Substrate Glycerin und Glucose hohe Stoffflüsse in Redundanz zur untereren Glykolyse vorhergesagt. Mit Zunahme der Substrataufnahme stiegen auch die möglichen Werte der Stoffflüsse in diesem zur Glykolyse parallel verlaufenden Stoffwechselweg an. Für die Substrate Pyruvat und Succinat wurden aufgrund des ausschließlich gluconeogenem Wachstum keine Aktivitäten in diesem Bereich ermittelt. Dies deckt sich auch mit den gemessenen mgo-Bildungsraten, denn in den Reaktoren mit Pyruvat und Succinat wurde keine mgo-Bildung nachgewiesen.

Die Reaktionsrichtungen im Citratzyklus waren für alle Substrate und Zulaufstufen gleichgerichtet. Zudem nahmen die Stoffflüsse im Citratzyklus allgemein mit steigender Zulaufrate zu. Bei Verwendung von Pyruvat wurden die höchsten Aktivitäten im Citratzyklus abgeschätzt. Bei Succinat wurden erhöhte Aktivitäten erst ab dem Eintrittspunkt desselben in den Citratzyklus ermittelt. Für den Glyoxylat-Bypass wurden für die Zufuhr von Pyruvat die höchsten Aktivitäten ermittelt. Aber auch bei Nutzung von Succinat als Substrat ergab sich die Möglichkeit zu hohen Aktivitäten von maximal $0,53 \,\mathrm{mmol}\,\mathrm{g_{BTM}^{-1}}\,\mathrm{h^{-1}}$ während der letzten Zulaufstufe. Für die Kohlenstoffquellen Glycerin und Glucose wurden ebenfalls mögliche Stoffflussaktivitäten im Glyoxylat-Bypass, jedoch von geringerem Ausmaß, vorhergesagt.

Im Bereich der L-Serinbiosynthese wurden verstärkte Aktivitäten bei Aufnahme von Glycerin und Glucose abgeschätzt. Für Pyruvat und Succinat wurden hingegen nur sehr geringe Stoffflüsse in der L-Serinbiosynthese ermittelt. L-Serin wird nicht nur für die Biomassebildung der Zellen benötigt, sondern es fließt auch als Vorläufermolekül in die L-Tryptophanbiosynthese ein. Dementsprechend sind die Aktivitäten im Stoffwechselweg zur Synthese von L-Serin unmittelbar mit der L-Tryptophanproduktion verknüpft und wurden indirekt durch die gemessene L-Tryptophanbildungsrate vorgegeben. Die beinahe ausgebliebene L-Tryptophanproduktion bei Aufnahme von Pyruvat und Succinat erklärt die niedrigen theoretisch ermittelten Stoffflüsse in der L-Serinbiosynthese.

Abbildung 5.40: *Heatmaps* der Mittelwerte der mittels thermodynamischer Flussvarianzanalyse mit vorgeschaltetem CycleFreeFlux-Algorithmus und Vorgabe intrazellulärer Metabolitkonzentrationen (FVA ll & TVA & Met) abgeschätzten intrazellulären Flussverteilungen (Einheit: mmol $g_{BTM}^{-1} h^{-1}$) der Glykolyse/ Gluconeogenese und des Glycerinmetabolismus (GLUC/ GLYK), des Methylglyoxal-Stoffwechselwegs (MGO) und des Citratzyklus (TCA) (oberes Diagramm) sowie der L-Serinbiosynthese (L-Ser), des Pentosephosphatwegs (PPP), der Chorismatbiosynthese (CHOR), der L-Phenylalanin und L-Tyrosinbiosynthese (L-Phe/ L-Tyr) sowie des L-Tryptophanbiosynthesewegs (L-Trp) (unteres Diagramm) während der Kurzzeitanalyse von *E. coli* NT446 in den Analysenreaktoren mit den Kohlenstoffquellen Glycerin (Glyc), Glucose (Gluc), Glycerin und Shikimat (Glyc & Shik) sowie Glucose und Shikimat (Gluc & Shik) und im Referenzprozess (Ref). Zur Beschränkung des Lösungsraums dienten die gemessenen extrazellulären Raten und intrazelluläre Metabolitkonzentrationen. Die Reaktionsnamen und Flussrichtungen sind entsprechend den Vorgaben des Modells *i*JO1366.

Im Pentosephosphatweg wurde für die Reaktionen RPE, TKT1 und TALA Reversibilität vorhergesagt. In diesem Teil des Stoffwechsels findet neben der Biosynthese von Coenzymen (nadph), auch die Herstellung von Vorstufen anderer Coenzyme (fad, nadh) und wichtiger Vorläufermoleküle der L-Tryptophanbiosynthese statt. Aufgrund dessen wurden die abgeschätzten Stoffflüsse im Pentosephosphatweg maßgeblich auch durch die Vorgabe der L-Tryptophanproduktionsraten beeinflusst. In den Stoffflussanalysen ergaben sich hohe Raten bei Aufnahme der Substrate Glycerin, Glucose und Succinat. Ausgehend von Pyruvat war die Versorgung des Pentosephosphatwegs mit Kohlenstofffluss den Schätzungen zufolge deutlich verringert. Trotz niedriger gemessener Produktbildungsraten bei Verwendung von Succinat waren die Aktivitäten im Pentosephosphatweg dennoch vergleichsweise hoch. Die erhöhten Flüsse stellen eine Möglichkeit zur Kompensation der geringen Aktivitäten im vorderen Teil des Citratzyklus dar, da dieser wie auch der Pentosephosphatweg eigentlich zur Bereitstellung von nadph und nadh dient.

Die Stoffflüsse im Bereich der Biosynthese aromatischer Aminosäuren waren fast aussschließlich durch die Vorgabe der gemessenen Bildungsraten der aromatischen Aminosäuren L-Tryptophan, L-Phenylalanin und L-Tyrosin vorbestimmt. Lediglich ein geringer Anteil der erzeugten Aminosäuren wurde für die Biomassebildung benötigt. Aufgrund der Linearität dieser Stoffwechselwege folgten die geschätzten Aktivitäten den Vorgaben durch die gemessenen Raten.

Die Ergebnisse der Stoffflussabschätzungen, inklusive der Werte der TFA und TVA für alle Substrate und Zulaufstufen, sind den Tabellen A.17, A.18, A.19, A.20 und A.21 im Anhang zu entnehmen.

Gibbs'sche Reaktionsenergien

Mittels der in die Stoffflussanalysen integrierten thermodynamischen Netzwerkanalyse wurden auch für diese metabolische Kurzzeitanalyse Gibbs'sche Reaktionsenergien abgeschätzt und anhand dieser die thermodynamische Klassifizierung der Reaktionen vorgenommen. Die ermittelten Lösungsbereiche der Gibbs'schen Reaktionsenergien wurden durch die Verwendung einer Abtastfunktion in 10.000 Berechnungszyklen statistisch analysiert. Die Ergebnisse für den Referenzzustand sind in Abbildung 5.41 dargestellt. Auf die detaillierte Beschreibung aller Reaktionsenergien wird an dieser Stelle verzichtet, da dies bereits in Kapitel 5.2.5 erfolgt ist. Für die meisten Reaktionen deckten sich die Lösungsbereiche der Gibbs'schen Reaktionsenergien dieser Analyse mit den Ergebnissen der Analyse mit *E. coli* NT1259 $shiA_{Cg}$. Im Folgenden werden die Unterschiede in den Lösungsbereichen der Energien zur vorherigen thermodynamischen Analyse mit dem Transporterstamm hervorgehoben.

In der Glycerinaufnahme ergab sich für *E. coli* NT1446 eine Verschiebung der möglichen Reaktionsenergien. Für die GLYK wurde ein möglicher Lösungsbereich von -6,84 kJ mol⁻¹ bis -2,30 kJ mol⁻¹ ermittelt, für die Analyse des Transporterstammes erstreckte sich der Lösungsbereich von -20,94 kJ mol⁻¹ bis -11,06 kJ mol⁻¹. Für die Reaktion der FBA wurden in dieser metabolischen Analyse Gibb'sche Reaktionsenergien im Bereich von -21,81 kJ mol⁻¹ bis -11,24 kJ mol⁻¹ abgeschätzt, aufgrund dessen wurde die Reaktion im Unterschied zur MCA mit dem Shikimattransporterstamm *E. coli* NT1259 $shiA_{Cg}$ als fern dem thermodynamischen Gleichgewicht klassifiziert. Für alle weiteren Reaktionen der Glykolyse und Gluconeogenese wurden keine auffälligen Unterschiede zur Analyse des Transporterstammes festgestellt. Für die MCA des modifizierten *E. coli*-Stammes NT1446 wurde das Modell um die Reaktionen des mgo-Stoffwechselwegs erweitert, weshalb auch die thermodynamische Betrachtung dieser Reaktionen relevant ist. Sowohl für die Reaktion zur Bildung von mgo (MGSA) als auch für die mgo-abbauenden Reaktionen GLYOX und LDH wurden Gibbs'sche Reaktionsenergien kleiner als -50 kJ mol^{-1} abgeschätzt. Damit können die Reaktionen alle als fern dem thermodynamischen Gleichgewicht zugeordnet werden. Im Citratzyklus rückte die AKGDH etwas weiter weg vom thermodynamischen Gleichgewicht und für die SUCOAS wurde der Lösungsbereich deutlich auf $-4,28 \text{ kJ mol}^{-1}$ bis 0 kJ mol^{-1} eingeschränkt. Für alle weiteren Reaktionen des Citratzyklus stimmten die Lösungsbereiche weitestgehend mit den Ergebnissen der Analyse des Shikimattransporterstammes überein. Auch für die Gibbs'schen Reaktionsenergien der L-Serinbiosynthese wurden keine großen Veränderungen festgestellt.

In der Chorismatsynthese wurde für die DDPA ein Lösungsbereich von -103,33 kJ mol⁻¹ bis -38,61 kJ mol⁻¹ abgeschätzt, in der thermodynamischen Analyse des Shikimattransporterstammes hatte sich ein Lösungsbereich von -21,68 kJ mol⁻¹ bis -9,40 kJ mol⁻¹ ergeben. Des Weiteren rückte die DHQTi mit Gibbs'schen Reaktionsenergien im Bereich von -13,34 kJ mol⁻¹ bis -4,65 kJ mol⁻¹ etwas näher an das thermodynamische Gleichgewicht. Für alle weiteren Reaktionen der Chorismatsynthese deckten sich die Lösungsbereiche in etwa mit den Ergebnissen aus der ersten metabolischen Analyse von *E. coli* NT1259 $shiA_{Cg}$. Die Reaktionsenergien der L-Phenylalanin und L-Tyrosinsynthese unterschieden sich ebenfalls nicht signifikant von den für *E. coli* NT1259 $shiA_{Cg}$ ermittelten Reaktionsenergien.

Innerhalb der L-Tryptophanbiosynthese wurden unveränderte Reaktionsenergien für die Reaktionen der ANS, IGPS und TRPS3 abgeschätzt. Die Reaktionsenergien der ANPRT und TRPS2 lagen mit minimal -67,36 kJ mol⁻¹ und -72,12 kJ mol⁻¹ etwas näher am thermodynamischen Gleichgewicht.

Abbildung 5.41: Mittels thermodynamischer Flussvarianzanalyse mit vorgeschaltetem CycleFreeFlux-Algorithmus und Vorgabe intrazellulärer Metabolitkonzentrationen (FVA ll & TVA & Met) abgeschätzte Bereiche der möglichen Gibbs'schen Reaktionsenergien (Einheit: kJ mol⁻¹) für die L-Tryptophanproduktion im Referenzprozess mit *E. coli* NT1446 im Zeitraum der metabolischen Kurzzeitanalyse. Gezeigt sind die Energien der Reaktionen der Glykolyse/ Gluconeogenese und des Glycerinmetabolismus (GLUC/ GLYK), des Methylglyoxal-Stoffwechselwegs (MGO), der L-Serinbiosynthese (L-Ser), des Citratzyklus (TCA), des Pentosephosphatwegs (PPP), der Chorismatbiosynthese (CHOR), der L-Phenylalanin und L-Tyrosinbiosynthese (L-Phe/ L-Tyr) sowie des L-Tryptophanbiosynthesewegs (L-Trp). Die Reaktionsnamen sind entsprechend den Bezeichnungen im Modell *i*JO1366.

Intrazelluläre Metabolitkonzentrationen

Auch in dieser thermodynamischen Netzwerkanalyse wurden Konzentrationsbereiche für alle nicht messbaren Metabolite des genomweiten stöchiometrischen Modells *i*JO1366 abgeschätzt. Die erhaltenen Lösungsbereiche wurden wiederum zusätzlich mit einer Abtastfunktion in 10.000 Abtastzyklen untersucht, woraus sich Häufigkeitsverteilungen über die ermittelten Konzentrationsbereiche ergaben. Für ausgewählte Metabolite sind die Ergebnisse für den Zustand im Referenzprozess im Zeitraum der metabolischen Kurzzeitanalyse in Abbildung 5.42 gezeigt. Für alle Metabolite wurde ein maximaler Konzentrationsbereich von 0.001 mM bis 50 mM vorgegeben.

Abbildung 5.42: Verteilung der mittels thermodynamischer Flussvarianzanalyse mit vorgeschaltetem CycleFreeFlux-Algorithmus und Vorgabe intrazellulärer Metabolitkonzentrationen (FVA ll & TVA & Met) abgeschätzten Konzentrationsbereiche (Einheit: mM) während der L-Tryptophanproduktion im Referenzprozess mit *E. coli* NT1446 der Metabolite 3-Phosphohydroxypyruvat (3php), L-Glutamat (L-glu), Erythrose-4-Phosphat (e4p), Xylulose-5-Phosphat (x5p), 3-Dehydroquinat (3dhq) und Phosphoribosyl-anthranilat (pran) über 10.000 Abtastpunkte.

Für 3php im spezifischen Synthesewegs von L-Serin wurde ein Konzentrationsbereich von 0,001 mM bis 0,44 mM ermittelt. Die statistische Analyse zeigte eine rechtsschiefe Verteilung mit einem Maximum bei 0,12 mM. Für 3php war eine gute Einschränkung des Lösungsraumes möglich, da im betreffenden Stoffwechselweg sowohl die Konzentration des Vorgängermetabolits 3pg sowie die des nachfolgenden Moleküls L-pser analytisch erfasst wurden.

Das ebenfalls an der L-Serinbiosynthese, aber auch an vielen anderen Reaktionen des Metabolismus beteiligte L-Glutamat, konnte messtechnisch nicht quantifiziert werden, da die intrazellulären Konzentrationen durch extrazellulär vorliegendes L-Glutamat maskiert wurden. Aufgrund seines globalen Auftretens im Metabolismus gelang auch durch den Einsatz computergestützter Methoden keine Einschränkung des Lösungsraumes. Der durch die Abschätzung erhaltene Konzentrationsbereich reichte von 0,001 mM bis 50 mM, ein Maximum wurde bei 9 mM ermittelt. Die sich ergebende Verteilung fällt nur sehr langsam hin zu größeren Konzentrationen ab. Insgesamt sind demnach Konzentrationen von über 9 mM deutlich wahrscheinlicher als Konzentrationen von unter 9 mM.

Für den Referenzzustand in dieser metabolischen Analyse konnten auch für e4p und x5p aus dem Pentosephosphatweg die Lösungsbereiche nicht weiter eingeschränkt werden. Für e4p ergab sich ein Maximum bei etwa 1 mM, die Verteilung fiel bis zu 50 mM hin auf eine Häufigkeit von unter 50 ab. Für x5p konnte kein eindeutiges Maximum ermittelt werden. Konzentrationen von 5 mM bis 20 mM waren den Schätzungen zufolge am wahrscheinlichsten.

Für 3dhq wurde zwar keine Einschränkung des Lösungsbereiches erzielt, die Häufigkeiten ab einer Konzentration von 10 mM waren jedoch nur sehr gering. Ein Maximum wurde für Konzentrationen nahe 0,001 mM ermittelt, ausgehend vom Maximum nahmen die Häufigkeiten hin zu höheren Konzentrationen schnell ab.

Für pran wurde ein möglicher Konzentrationsbereich von 20 mM bis 50 mM ermittelt. Es ergab sich eine glockenförmige Verteilung für den Bereich zwischen 32 mM und 50 mM. Bei etwa 41 mM liegt das Maximum der Häufigkeitsverteilung.

Diskussion

Die pyTFA-Methodik ermöglichte für alle 13 metabolischen Gleichgewichte die Abschätzung theoretischer Stoffflussverteilungen und eine thermodynamische Netzwerkanalyse, in der Lösungsbereiche sowohl für die Gibbs'schen Reaktionsenergien als auch für nicht gemessene Metabolitkonzentrationen ermittelt wurden. Die Stoffflussabschätzungen zeigen, dass die Anwendung der dreistufigen Zulaufprofile mit den Substraten Glycerin, Glucose, Pyruvat und Succinat den Stoffwechsel erfolgreich verschiedentlich auslenkt. Varianzen traten hauptsächlich in Bereichen des Metabolismus auf, für die alternative Stoffwechselwege existieren. Dies trifft beispielsweise auf die untere Glykolyse und den parallel verlaufenden mgo-Stoffwechselweg oder den Glyoxylatweg im Citratzyklus zu. Mittels der in die Stoffflussanalysen integrierten thermodynamischen Netzwerkanalyse wurden Gibbs'sche Reaktionsenergien für alle Reaktionen des genomweiten Modells iJO1366 ermittelt. In der Betrachtung dieser zeigten sich bereits Unterschiede zur metabolischen Analyse des zuvor analysierten Transporterstammes *E. coli* NT1259 $shiA_{Cg}$.

5.4.5 Metabolische Kontrollanalyse der L-Tryptophanproduktion

Basierend auf den experimentell erhobenen und theoretisch abgeschätzten Datensätzen der metabolischen Analyse mit *E. coli* NT1446 erfolgte eine MCA. Da im Prozess und in den Analysenreaktoren mit Glycerin und Glucose mgo-Bildung gemessen wurde, erfolgte die Erweiterung des MCA-Modells um die Reaktionen des mgo-Stoffwechselwegs. Zuzüglich zu den Reaktionen der MCA mit dem Shikimattransporterstamm enthielt das Modell die Reaktionen MGSA, GLYOX und LDH. Somit umfasste das in der MCA betrachtete Reaktionsnetzwerk insgesamt 53 Reaktionen und 59 Metabolite, der Rang der stöchiometrischen Matrix wurde zu 51 bestimmt. Die unabhängigen Metabolite wurden gemäß der MCA mit dem Shikimattransporterstamm gewählt, diese waren L-Phenylalanin, L-Glutamin, coA, adp, nadh, nadph, amp und L-Glutamat. Das verwendete Modell ist Tabelle A.23 im Anhang zu entnehmen.

Abschätzung von Elastizitäten

Für Reaktionen, deren thermodynamische Lage als nahe dem Gleichgewicht klassifiziert wurde, erfolgte die Schätzung der Elastizitäten direkt aus der Gibbs'schen Reaktionsenergien. Für Reaktionen fern des thermodynamischen Gleichgewichts wurde der lin-log-Ansatz gewählt. Die Klassifizierung erfolgte anhand der Gibbs'schen Reaktionsenergien mithilfe von Abbildung 5.41. Die Kriterien zur Einordnung der Reaktionen wurden von der ersten MCA mit dem Shikimattransporterstamm übernommen (siehe Kapitel 5.2). Alle Reaktionen, die als nahe dem thermodynamischen Gleichgewicht klassifiziert wurden, sind mit den zugehörigen Lösungsbereichen der Gibbs'schen Reaktionsenergien in Tabelle 5.14 angegeben. Für die Reaktionen fern des thermodynamischen Gleichgewichts wurden, basierend auf Literaturdaten, Effektoren festgelegt und mittels des lin-log-Ansatzes durch eine Monte-Carlo-Simulation mit 10.000 Berechnungszyklen statistische Verteilungen für die Elastizitäten ermittelt. Die Mittelwerte aller geschätzten Elastizitäten sind Tabelle A.25 im Anhang zu entnehmen.

Reaction	$\Delta_r G'_{min}$, kJ mol ⁻¹	$\Delta_r G'_{max}$, kJ mol ⁻¹			
GLYK	-6,84	-2,30			
PGI	-1,10	-1,00			
TPI	-1,10	-1,00			
GAPD	-1,10	-1,00			
PGK	-1,10	-1,00			
PGCD	-1,10	-1,00			
PGM	-10,00	-1,00			
ENO	-10,00	-1,00			
ACONT	-10,00	-1,00			
SUCOAS	-4,28	-1,00			
FUM	-10.00	-1,00			
MDH	-10,00	-1,00			
G6PDH	-10,00	-1,00			
RPE	-10,00	-1,00			
RPI	-9,26	-1,00			
TKT1	-10,00	-1,00			
$\mathrm{TKT2}$	-10,00	-1,00			
TALA	-10,00	-1,00			
SHK3Dr	-10,00	-1,00			
PHETA	-10,00	-1,00			
PRALI	-10,00	-1,00			
TRPS3	-10,00	-1,00			

Tabelle 5.14: Für die metabolische Kontrollanalyse der L-Tryptophanproduktion mit *E. coli* NT1446 vorgegebenen freien Gibbs'schen Reaktionsenergien $\Delta_r G'$ für Reaktionen nahe dem thermodynamischen Gleichgewicht. Die Einordnung erfolgte mittels der thermodynamischen Netzwerkanalyse durch die pyTFA-Toolbox. Sofern keine eindeutigen Randpunkte ermittelt wurden, wurde nach Lage des unteren Quartils der Verteilung über die Lage zum thermodynamischen Gleichgewichts entschieden. Bei Unterschreiten der -10 kJ mol⁻¹ durch den unteren *Whisker* wurde ein minimaler Wert von -10 kJ mol⁻¹ angenommen. Für sehr kleine Lösungsbereiche wurde ein unterer Wert von -1,1 kJ mol⁻¹ festgelegt.

Abschätzung von Flusskontrollkoeffizienten

Basierend auf den abgeschätzten Elastizitäten wurden Flusskontrollkoeffizienten bestimmt. Diese geben Aufschluss über die Kontrollverteilung im metabolischen Netzwerk. Wird ein positiver Flusskontrollkoeffizient ermittelt, wird für einen bestimmten Stofffluss bei Erhöhung der jeweiligen enzymatischen Aktivität eine gesteigerte Rate erwartet. Bei negativen Flusskontrollkoeffizienten wird von einer Inhibierung des Stoffflusses durch eine erhöhte Enzymkapazität ausgegangen. Dabei bezieht sich der Flusskontrollkoeffizient auf eine einprozentige Erhöhung der jeweiligen Enzymaktivität. In Abbildung 5.43 sind die Flusskontrollkoeffizienten dargestellt, es handelt sich dabei um Mittelwerte, die aus einer Monte-Carlo-Simulation mit 10.000 Berechnungszyklen gewonnen wurden.

Abbildung 5.43: Flusskontrollkoeffizienten (ohne Einheit) ermittelt durch die metabolische Kontrollanalyse der L-Tryptophanproduktion mit *E. coli* NT1446 im Zulaufverfahren. Die Spalten repräsentieren die Enzyme der jeweiligen Reaktion, die Zeilen beziehen sich auf die resultierenden Flüsse. Es sind die Effekte einer einprozentigen Änderung der Enzymaktivität dargestellt. Die Enzymkapazitäten und Stoffflüsse sind untergliedert in die Stoffwechsel-Bereiche: Glykolyse und Glycerinmetabolismus (GLYC & GLYK), Methylglyoxal-Stoffwechselweg (MGO), L-Serinbiosynthese (L-Ser), Citratzyklus (TCA), Pentosephosphatweg (PPP), Chorismatbiosynthese (CHOR), L-Phenylalanin und L-Tyrosinbiosynthese (L-Phe/ L-Tyr), L-Tryptophan (L-Trp) und Energiemetabolismus (E).

Eine erste kontrollierende Wirkung trat im Biosyntheseweg zum Glycerinabbau auf. Die GLY3PD zeigte eine geringe negative Kontrolle gegenüber den Stoffflüssen der unteren Glykolyse ab der TPI, des Citratzyklus und der Chorismatsynthese. Ein gegenteiliger Effekt ergab sich für die Stoffflüsse der oberen Gluconeogenese (PGI, FBP und FBA) sowie des Pentosephosphatwegs. Die negative Kontrollwirkung gegenüber der Chorismatsynthese deutet darauf hin, dass eine verstärkte Aufnahme nicht zu erhöhten Stoffflüssen in der Chorismatbereitstellung führen würde. Für die L-Tryptophanbiosynthese wurde keine kontrollierende Wirkung der GLY3PD ermittelt. Die glykolytischen Enzyme PGM und ENO übten eine negative Kontrolle auf die obere Gluconeogenese und Teile des Pentosephosphatwegs aus, gegenüber den Stoffflüssen der unteren Glykolyse ab TPI sowie dem Citratzyklus wurden hingegen positive Flusskontrollkoeffizienten abgeschätzt. Die gegensätzliche Kontrollwirkung trat aufgrund der kompetitiven Verteilung des Kohlenstoffs in gluconeogener Richtung in den Pentosephosphatweg und in glykolytischer Rich-

tung hin zum Citratzyklus auf.

In der L-Serinbiosynthese wurde eine positive Kontrolle der PSP_L auf alle Stoffflüsse des L-Serinbiosynthesewegs ermittelt. Demnach würde die Erhöhung der enzymatischen Kapazität der PSP_L die Stoffflüsse in der L-Serinbiosynthese steigern und damit die Bereitstellung von L-Serin verbessern. Weiterhin übte die PSP_L eine negative Kontrolle auf die Stoffflüsse zur Bildung der aromatischen Nebenprodukte L-Phenylalanin und L-Tyrosin aus. Demzufolge könnte eine verbesserte L-Serinbereitstellung zur weiteren Unterdrückung der Nebenproduktbildung führen. Da jedoch keine positive Kontrolle für die L-Tryptophanbiosynthese vorhanden war, würde sich daraus vermutlich kein signifikant positiver Effekt für die Produktbildung ergeben.

Für die Enzyme MGSA und LDH aus dem mgo-Stoffwechselweg wurden negative Flusskontrollkoeffizienten gegenüber den Stoffflüssen der Glykolyse abgeschätzt, die GLYOX beeinflusste die Glykolyse hingegen leicht positiv. Alle drei Enzyme des mgo-Stoffwechselwegs kontrollierten die eigenen Stoffflüsse stark. Außerdem wurde der Pentosephosphatweg von den Enzymaktivitäten im mgo-Stoffwechselweg beeinflusst, da die beiden Stoffwechselbereiche in direkter Konkurrenz um Kohlenstoff stehen.

Die Reaktionen des Citratzyklus wiesen keine Kontrollwirkung gegenüber den im Netzwerk repräsentierten Stoffflüssen auf. Unter den Enzymen des Pentosephosphatwegs traten lediglich leichte Kontrollen gegenüber den eigenen Stoffflüssen auf. Eine ausgeprägte Kontrolle wurde jedoch für die PRPPS, welche die Synthese von prpp aus r5p katalysiert, ermittelt. Die positive Kontrollwirkung der PRPPS erstreckte sich beinahe über das gesamte metabolische Netzwerk, nur der mgo-Stoffwechselweg, der Citratzyklus und der Energiestoffwechsel waren von den kontrollierenden Effekten der PRPPS nicht betroffen. Die Stoffflüsse zur Bildung der Nebenprodukte L-Phenylalanin und L-Tyrosin wurden hingegen negativ durch die PRPPS kontrolliert. prpp dient als wichtiger Vorläufermetabolit im L-Tryptophanbiosyntheseweg und wird daher in großen Mengen benötigt. Die weitreichende Kontrolle der PRPPS über das gesamte metabolische Netzwerk kann auf die Schlüsselrolle von PRPP in der L-Tryptophanbiosynthese zurückgeführt werden. Die Flusskontrollkoeffizienten der PRPPS gegenüber der L-Tryptophanbiosynthese waren sehr hoch, kein weiteres Enzym übte eine solch starke Kontrolle gegenüber der Produktbildung aus.

In der Chorismatbiosynthese traten für mehrere Enzyme kontrollierende Effekte auf. Die erste Kontrolle ging von der DDPA, dem Eingangsenzym des spezifischen Stoffwechselwegs, aus. Moderat positive Flusskontrollkoeffizienten ergaben sich für dieses Enzym gegenüber den Reaktionen des Pentosephosphatwegs und der Chorismatbiosynthese. Die gleichen Stoffflüsse wurden auch durch die DHQS leicht positiv kontrolliert. Auch die PSCVT übte eine geringe positive Kontrolle auf den Pentosephosphatweg aus, außerdem wurde die Chorismatbiosynthese stark positiv durch dieses Enzym beeinflusst. Die PSCVT-Kontrollwirkung reichte bis zur Nebenproduktbildung der aromatischen Aminosäuren L-Phenylalanin und L-Tyrosin sowie bis in den L-Tryptophan spezifischen Stoffwechselweg hinein. Die CHORS wies eine geringfügige negative Kontrollwirkung gegenüber der Chorismatbiosynthese und eine leicht positive Kontrolle gegenüber den Stoffflüssen der L-Tryptophanbiosynthese auf.

Im Syntheseweg der beiden Nebenprodukte L-Phenylalanin und L-Tyrosin zeigte die PPNDH eine ausgeprägte positive Kontrolle gegenüber allen Stoffflüsse in diesem spezifischen Stoffwechselweg und eine leicht negative Kontrolle gegenüber den Stoffflüssen der L-Tryptophanbiosynthese. Eine Reduktion der enzymatischen Aktivität der PPNDH könnte demnach dazu beitragen, den Kohlenstofffluss weiter in Richtung des L-Tryptophanstoffwechselzweigs zu verschieben. Unter den Enzymen der L-Tryptophanbiosynthese wurde eine leicht positive Kontrollwirkung der ANS gegenüber der Chorismatsynthese, dem eigenen Stofffluss und der ANPRT festgestellt. Ausgehend von der IGPS bis zum Produkt L-Tryptophan wurden hingegen negative Kontrollen der ANS ermittelt. Dieser entgegengesetzte Effekt wurde wahrscheinlich durch die vorwärtsgerichtete Inhibierung der IGPS durch anth hervorgerufen (L. Chen *et al.*, 2018). Für das Enzym IGPS traten die entgegengesetzten Effekte auf, was vermutlich ebenfalls auf den Einfluss des anths auf die IGPS zurückgeführt werden kann. Weiterhin zeigte sich ein geringfügig positiver Einfluss des letzten Enzyms der L-Tryptophanbiosynthese, der TRPS2, gegenüber den Stoffflüssen zur Produktsynthese. Dieses Enzym kontrollierte zudem die L-Serinbiosynthese negativ. Eine weitere Erhöhung der enzymatischen Kapazität der TRPS2 könnte demnach die Produktivität des Stammes positiv beeinflussen.

Diskussion

Wie von Kacser und Burns (1973) postuliert, zeigten auch die Ergebnisse dieser MCA eine Verteilung der Kontrolle über das gesamte metabolische Netzwerk. Die stärkste Kontrollwirkung bezogen auf die L-Tryptophanbiosynthese ergab sich für die PRPPS. Stark positive Flusskontrollkoeffizienten deuten auf eine weitreichende Limitierung der L-Tryptophanbiosynthese durch die PRPPS hin. An dieser Stelle führt wahrscheinlich ein Mangel am Vorläufermetabolit prpp zur Drosselung der Produktsynthese. Die PRPPS wurde bereits in den Analysen der E. coli-Stämme NT1259 (Tröndle et al., 2020) und NT1259 $shiA_{Cg}$ (siehe Kapitel 5.2) als starke Limitierung für die L-Tryptophanbiosynthese identifiziert. Die genomische Insertion einer zusätzlichen Kopie des entsprechenden prsA-Gens führte jedoch zu einer signifikant verschlechterten Prozessleistung (siehe Kapitel 5.3), weswegen die genetische Modifikation nicht im analysierten Produktionsstamm E. coli NT1446 vorliegt. Den MCA-Ergebnissen zufolge führen zudem die geringfügigen positiven Kontrollen der PSCVT und CHORS gegenüber den Stoffflüssen der L-Tryptophanbiosynthese zu einer weiteren Limitierung der Produktbiosynthese. Im spezifischen L-Tryptophanbiosyntheseweg wurde darüber hinaus eine geringe positive Kontrollwirkung für die Enzyme IGPS und TRPS2 ermittelt, auch hier scheint eine eingeschränkte enzymatische Kapazität eine Limitierung in der Produktbildung zu verursachen.

Bei der Interpretation der Ergebnisse bezüglich des mgo-Stoffwechselwegs werden jedoch die Limitierungen dieser Methodik deutlich. Zwar werden inhibitorische und aktivierende Wirkungen der Enzyme auf einzelne Stoffflüsse im Modell durch die Vorgabe von Effektoren berücksichtigt, die globale toxische Wirkung des mgos auf Proteine und DNA im Allgemeinen kann jedoch vom Modell nicht erfasst werden. Aufgrund dessen können aus den Ergebnissen der MCA keine Aussagen zur Rolle des mgo-Stoffwechselwegs für die L-Tryptophanbiosynthese abgeleitet werden. Ein detaillierter Vergleich der MCA-Ergebnisse mit vorherigen Resultaten erfolgt in Kapitel 5.5.

5.4.6 Expressionsanalyse ausgewählter Gene

Die MCA lieferte Hinweise darauf, welche Enzyme die L-Tryptophanbiosynthese kontrollieren und eine höhere Produktivität verhindern. Die Expressionsanalyse ausgewählter Gene wird angewandt, um die berechneten Limitierungen und deren Ursachen besser verstehen zu können und zielgerichtete Modifikationen am Stamm vornehmen zu können. Abbildung 5.44 zeigt die Ergebnisse der Expressionsanalyse für die Gene *prsA*, *aroA*, *aroC*, *trpC* und *trpB* sowie das aus *M. tuberculosis* entnommene und in den Produktionsstamm inserierte Gen $trpC_{Mt}$. Die RTqPCR-Analysen wurden von den Projektpartnern der Universität Stuttgart durchgeführt.

Abbildung 5.44: Relative Genexpression (ohne Einheit) der Gene prsA, aroA, aroC, trpC und $trpC_{Mt}$ im Verhältnis zum ftsZ-Gen in Proben des Referenzprozesses zur L-Tryptophanproduktion mit *E. coli* NT1446 im Zulaufverfahren nach 27 h (R 27 h), 43 h (R 43 h), 50 h (R 50 h), 55 h (R 55 h) und 70 h (R 70 h) Prozesszeit (IPTG wurde 44h nach Inokulation zugegeben). Außerdem sind die Ergebnisse der Proben aus den Analysenreaktoren mit den Substraten Glycerin (MA Glyc), Glucose (MA Gluc), Pyruvat (MA Pyr) und Succinat (MA Suc) nach 21 min Analysezeit gezeigt. Der Referenzzustand im Produktionsprozess ist in rot markiert (Ref).

Die Ergebnisse der MCA legten eine starke Limitierung in der enzymatischen Kapazität der PRPPS offen. Die PRPPS katalysiert die prpp-Bereitstellung aus r5p und übernimmt daher eine wichtige Rolle für die L-Tryptophanbiosynthese. Bereits in vorherigen Produktionsstämmen wurde die potenzielle Limitierung dieses Enzyms gezeigt. Auf die Integration einer zusätzlichen Kopie des entsprechenden Gens prsA in den aktuellen Produktionsstamm *E. coli* NT1446 wurde jedoch aufgrund starker Einbußen in der Produktivität verzichtet.

Die Expressionsanalyse des entsprechenden Gens *prsA* zeigte eine Reduktion der Expression nach der Induktion mit IPTG. Im weiteren Prozessverlauf fiel die Expression zunächst weiter ab und nahm zum Prozessende hin wieder zu. Die Expression im Analysenreaktor mit Glycerin als Kohlenstoffquelle überstieg die Expression in der Referenzprobe und in allen weiteren Analysenreaktoren deutlich. Die starke Limitierung der PRPPS verursachte wahrscheinlich einen prpp-Mangel, der zur Drosselung der L-Tryptophanbiosynthese führte. Aufgrund fehlender Gegenmaßnahmen trat diese Limitierung auch in diesem Produktionsstamm auf. Das Abfallen der Expression nach der Induktion trug vermutlich zur Verstärkung der Limitierung bei.

Mittels der MCA wurden weiterhin Limitierungen in den enzymatischen Kapazitäten der PSCVT und CHORS mit geringem negativen Einfluss auf die L-Tryptophanbiosynthese ermittelt. Die entsprechenden Gene sind aroA und aroC. Die PSCVT (aroA) katalysiert die Synthese von 3psme aus s3p, dazu benötigt sie zusätzlich ein Molekül pep. Die Expression des aroA-Gens war während des Produktionsprozesses weitestgehend konstant und mit Werten von unter 1 vergleichsweise gering. Nur in der letzten Probe nach 70 h wurde eine stark erhöhte Expression von $3,54 \pm 0.76$ gemessen. Die Expression in den Analysenreaktoren lag ebenfalls unter 1. Der höchste gemessene Wert während der metabolischen Analyse von 0.92 ± 0.09 lag im Analysenreaktor mit Glycerin vor. Im Ansatz mit Pyruvat war die Expression mit 0.31 ± 0.03 am niedrigsten. Auch für das Gen aroC, codierend für die CHORS, welche den letzten Schritt der Chorismatsynthese katalysiert, wurde zu Beginn des Prozesses eine geringe Expression von unter 1 gemessen. Im weiteren Prozessverlauf stieg die *aroC*-Expression kontinuierlich auf einen maximalen Wert von $23,59 \pm 5,09$ nach 70 h Prozesszeit an. Die Expression in den Analysenreaktoren lag zwischen 1 und 4. In den Reaktoren mit den Substraten Glycerin und Pyruvat wurden geringere Expressionen gemessen als in den Reaktoren mit Glucose und Succinat. Für beide limitierenden Schritte des Chorismatsynthesewegs ist das Potenzial der Genexpression zum Zeitpunkt der metabolischen Analyse nicht voll ausgeschöpft, eine Steigerung der Expression erscheint daher für beide Gene möglich und sinnvoll.

Um die zuvor festgestellte Limitierung in der Aktivität der IGPS zu beheben, wurde eine nicht native trpC-Genkopie aus M. tuberculosis in den analysierten Produktionsstamm E. coli NT1446 eingebracht. Die Expression des nativen trpC-Gens und der E. coli fremden trpC-Kopie ($trpC_{Mt}$) sind in Abbildung 5.44 gestaffelt dargestellt. Vor der Induktion nach 44 h Prozesszeit lag eine konstante Expression des nativen trpC-Gens von etwa 20 vor. Nach Zugabe von IPTG und Umstellung auf die konstante Zulaufphase stieg die Expression des trpC-Gens bis nach 50 h Prozesszeit auf etwa 30 an. Zudem lag eine Expression von $6,82 \pm 0,53$ für die E. coli fremde Genkopie $trpC_{Mt}$ vor. Beide Werte fielen bis 55 h Prozesszeit signifikant ab und die Gesamtexpression beider Gene stabilisierte sich bis zum Prozessende bei einem Wert von etwas über 20. Insgesamt war die Expression des Gens aus M. tuberculosis relativ gering, was ein möglicher Grund für die weiter bestehende Limitierung in der enzymatischen Aktivität der IGPS sein könnte. Möglicherweise wurde auch die Vorwärtsinhibierung der IGPS durch anth mit der verwendeten Genvariante nicht erfolgreich umgangen.

Auch die TRPS2 wurde bereits in den vorherigen Produktionsstämmen als limitierend für die L-Tryptophanbiosynthese identifiziert und durch die genomische Integration einer zusätzlichen

Kopie des entsprechenden Gens trpB sollte die Limitierung in *E. coli* NT1446 behoben werden. Die Expression von trpB war bis zum Zeitpunkt der Induktion in etwa bei 30 konstant. Nach Induktion stieg die Expression auf über 60 an und nahm im weiteren Prozessverlauf zunächst etwas ab und stieg bis zur letzten Probe nach 70 h auf einen maximalen Wert von $75,42 \pm 0,65$ an. Mit Ausnahme des Analysenreaktors mit der Kohlenstoffquelle Pyruvat lag die Expression während der metabolischen Analyse bei etwa 60, für Pyruvat wurde eine Expression von nur $24,28 \pm 2,17$ ermittelt.

Aufgrund der verstärkten mgo-Bildung gegen Ende des Produktionsprozesses und in den Analysenreaktoren mit den Substraten Glycerin und Glucose war auch die Expression der Gene des mgo-Stoffwechselweges von Interesse. Die relative Expression der Gene, deren Proteine an der Bildung und dem Abbau von mgo beteiligt sind, sowie die Gene zweier Proteine, die zur Reparatur mgo-bedingter Proteinschäden beitragen, sind in Abbildung 5.45 gezeigt.

In *E. coli* erfolgt die mgo-Synthese hauptsächlich aus dhap, katalysiert durch die MGSA. Für die Expression des entsprechenden Gens mgsA wurden im Prozessverlauf relativ stabile Werte gemessen. Lediglich nach Induktion mit IPTG sowie gegen Ende des Prozesses wurde eine erhöhte mgsA-Expression gemessen. Die maximale Expression von $0,64 \pm 0,01$ lag in der letzten Probe nach 70 h Prozesszeit vor. Die Prozesszeitpunkte, zu denen einen erhöhte mgsA-Expression gemessen wurde, korrelieren mit dem Anstieg der mgo-Konzentrationen nach der Induktion und gegen Ende des Prozesses. In den Analysenreaktoren lag die mgsA-Expression mit $0,32 \pm 0,04$ bei Zufuhr von Glycerin am niedrigsten. Im Analysenreaktor mit Pyruvat wurde die höchste Expression von $0,79 \pm 0,03$ gemessen. Die Expression des mgsA-Gens war in der Probe, die aus dem Analysenreaktor mit Glucose entnommen wurde, um 65% höher als im Analysenreaktor mit zugeführtem Glycerin.

Der Abbau von toxischem mgo erfolgt in E. coli primär über die Zwischenprodukte Lactoylglutathion und D-Laktat. Der erste Schritt der Detoxifizierung wird durch die Lactoylglutathion-Lyase katalysiert, die durch das Gen gloA codiert ist. Die weitere Umsetzung zu D-Laktat wird durch die Enzyme, codiert durch die Gene gloB, gloC und yeiG, gewährleistet. Im letzten Schritt wird D-Laktat mittels der D-Laktat-Dehydrogenase zu Pyruvat umgesetzt. Dieses Enzym ist codiert durch das Gen *dld*. Während aller Zulaufphasen ist die Expression der genannten Gene, die für den Abbau des mgos verantwortlich sind, nahezu konstant. Erst gegen Ende des Produktionsprozesses stieg die Expression der Gene an. Die Expression der Gene gloA und gloB, die für die Enzyme des zweiten Detoxifizierungsschritt codieren, erhöhte sich bereits ab einer Prozesszeit von 55 h. Der Anstieg der Expression von yeiG, das ebenfalls zum zweiten Abbauschritt beiträgt und *dld*, das für die Umwandlung von D-Laktat in Pyruvat verantwortlich ist, erfolgte einige Stunden verzögert. Außer für *qloB* wurde für alle analysierten Gene, die am Abbau von mgo beteiligt sind, gegen Ende des Prozesses ein deutlicher Anstieg in der Expression gemessen. Die Expression des gloA-Gens war im Analysenreaktor mit Glucose im Vergleich zur Expression im Analysenreaktor mit Glycerin etwas verringert. Die Expression aller weiteren am mgo-Abbau beteiligten Gene war jedoch im Reaktor mit Glucose als Substrat deutlich höher als bei Verwendung von Glycerin. Für gloB um 89%, 75% für gloC, 94% für yeiG und 30% für dld.

Abbildung 5.45: Relative Genexpression (ohne Einheit) der Gene *mgsA*, *gloA*, *gloB*, *gloC*, *yeiG*, *dld*, *yajL* und *dld* im Verhältnis zum *ftsZ*-Gen in Proben des Referenzprozesses zur L-Tryptophanproduktion mit *E. coli* NT1446 pF112*aroFBL*_{Kan} im Zulaufverfahren nach 27 h (R 27 h), 43 h (R 43 h), 47 h (R 47 h), 50 h (R 50 h), 55 h (R 55 h), 65 h (R 65 h) und 70 h (R 70 h) Prozesszeit (IPTG wurde 44h nach Inokulation zugegeben). Außerdem sind die Ergebnisse der Proben aus den Analysenreaktoren mit den Substraten Glycerin (MA Glyc), Glucose (MA Gluc), Pyruvat (MA Pyr) und Succinat (MA Suc) nach 21 min Analysezeit gezeigt.

Darüber hinaus wurde die Expression der Gene yajL und yhbO analysiert. Die aus den Genen resultierenden Enzyme besitzen die katalytische Fähigkeit durch mgo induzierte Glykierungsschäden rückgängig machen zu können (Abdallah *et al.*, 2016). Die Expression von yajL war im Vergleich zu yhbO während des gesamten Prozesses relativ gering. Erst in den letzten beiden Prozessproben nach 65 h wurde ein leichter Anstieg der Expression von yajL gemessen. Interessanterweise stieg die Expression von yhbO bis zu einer Prozesszeit von 51 h zunächst geringfügig und ab 47 h stark an. In den folgenden Stunden bis 55 h Prozesszeit fiel die Expression jedoch abrupt auf ein geringeres Expressionsniveau als zu Beginn der Kultivierung ab, obwohl die mgo-Konzentration im letzten Drittel der Kultivierung drastisch anstieg. Die gemessene Expression des yhbO-Gens war mit 2,41 im Analysenreaktor mit Glucose auffallend hoch im Vergleich zur Expression im Analysenreaktor mit der Kohlenstoffquelle Glycerin (0,73). Die Expression lag damit bei Aufnahme von Glucose um 230% signifikant höher. Die Expression des *yajL*-Gens war im Reaktor mit Glucose verglichen mit dem Analysenreaktor in den Glycerin zugeführt wurde, nur um etwa 20\% erhöht.

Die verringerte Expression der mgo abbauenden Enzyme und Reparaturenzyme bei Assimilation von Glycerin im Vergleich zur Glucosenutzung korreliert auch mit den gemessenen mgo-Bildungsraten während der metabolischen Analyse. Während bei steigenden Glycerinaufnahmeraten auch die mgo-Bildung stetig zunahm, wurde bei Verwendung von Glucose kein weiterer Anstieg der extrazellulären mgo-Konzentration in der dritten Zulaufstufe gemessen. Diese Beobachtungen stimmen auch mit den Ergebnissen von Tötemeyer *et al.* (1998) überein und unterstützen die Hypothese, dass die Aktivität des mgo-Stoffwechselwegs während der Glucose- und Glycerinassimilation verschieden reguliert ist.

5.5 Vergleich der Metabolischen Kontrollanalysen und Vorschläge zur weiteren Stammmodifikation

Die metabolische Analyse des weiterentwickelten Produktionsstammes NT1446 lieferte detaillierte Datensätze zum Metabolom, Fluxom und Transkriptom der Zellen während der Produktion von L-Tryptophan. Diese Daten ermöglichten in Kombination mit der MCA-Methodik die Abschätzung der metabolischen Kontrollverteilung und legten Informationen zu Limitierungen innerhalb der Zellen, die die Produktion betreffen, offen.

Ziel der gezielten genetischen Modifikationen, welche in *E. coli* NT1446 resultierten, war es, die metabolische Kontrolle und die damit einhergehenden Limitierungen der L-Tryptophanbiosynthese aufzuheben, beziehungsweise eine Kontrollverschiebung hin zu einer erhöhten Produktbildung zu erreichen. Aus den Produktivitätseigenschaften wurde eine geringfügige, aber signifikante Verbesserung des weiterentwickelten Stammes NT1446 gegenüber dem Vorgängerstamm ersichtlich. Die finale L-Tryptophan-Absolutmenge wurde um 9% gesteigert. Anhand des Vergleichs der Daten aus den Analysen des Shikimattransporterstammes *E. coli* NT1259 $shiA_{Cg}$ und des gezielt genetisch modifizierten *E. coli*-Stammes NT1446 können die Verschiebungen in den zellulären Abläufen genau analysiert und die Effektivität der eingeführten genetischen Modifikationen überprüft werden. Als idealer Vergleichspunkt eignen sich die metabolischen Zustände im Produktionsprozess sowie die jeweils erreichten Zustände in den Analysenreaktoren mit den Kohlenstoffquellen Glycerin und Glucose, da diese Substrate in beiden metabolischen Analysen verwendet wurden.

Veränderungen in den Stoffflüssen der Zellen werden zunächst anhand eines veränderten Metaboloms sichtbar. Abbildung 5.46 zeigt die gemessenen intrazellulären Konzentrationen einer Auswahl an Metaboliten aus den Analysen der L-Tryptophan produzierenden *E. coli*-Stämme NT1259 $shiA_{Cg}$ und NT1446 im Vergleich.

Abbildung 5.46: Intrazelluläre Konzentrationen (Einheit: mM) der Metabolite Dihydroxyacetonphosphat (dhap), Pyruvat (pyr), Phospho-L-Serin (L-pser), 3-Dehydroshikimat (3dhs), Shikimat-3-Phosphat (s3p), Chorismat (chor), Anthranilat (anth) und Carboxyphenylamino-Desoxyribulose-5-Phosphat (2cdr5p) während der metabolischen Kurzzeitanalysen in drei Zulaufphasen (1-3) von *E. coli* NT1259 $shiA_{Cg}$ (NT1259 shiA) und *E. coli* NT1446 (NT1446) mit den Kohlenstoffquellen Glycerin (Glyc) und Glucose (Gluc), in schraffiert dargestellt sind die Konzentrationen der Proben aus dem Referenzprozess im Analysezeitraum (Ref).

Die dhap-Konzentrationen während beider Kurzzeitanalysen unterschieden sich kaum voneinander. Bei erhöhter Glycerinzufuhr wurden sowohl für *E. coli* NT1259 $shiA_{Cg}$ als auch für *E. coli*
NT1446 stark ansteigende dhap-Konzentrationen gemessen. Auch in beiden Referenzproben lagen relativ hohe dhap-Konzentrationen vor. Bei Nutzung von Glucose als Kohlenstoffquelle wurden im Vergleich dazu in beiden Analysen geringe dhap-Konzentrationen von unter 0,25 mM detektiert. Steigende dhap-Konzentrationen traten wahrscheinlich als direkte Folge der erhöhten Glycerinaufnahme auf und spielen auch für die Aktivierung des mgo-Stoffwechselwegs eine

entscheidende Rolle. Die gemessenen ansteigenden intrazellulären Pyruvatkonzentrationen können ebenfalls im Zusammenhang mit der Aktivität des mgo-Stoffwechselwegs stehen, da mgo intrazellulär zu D-Laktat abgebaut werden kann und der Kohlenstofffluss auf diese Weise über Pyruvat zurück in den Zentralstoffwechsel gelangt. Für intrazelluläres Pyruvat wurde ebenfalls in beiden Analysen ein Anstieg der Konzentration bei Erhöhung der Glycerinzulaufrate beobachtet. Bei Verwendung von Glucose als Kohlenstoffquelle blieb der starke Anstieg hingegen aus. Sowohl für die Konzentrationen von dhap als auch von Pyruvat wurden keine signifikanten Unterschiede zwischen den beiden Stämmen festgestellt. Dies deckt sich mit den Erwartungen, da sich die Stämme genetisch hinsichtlich dieser Stoffwechselbereiche (Glycerinabbau, Zentralstoffwechsel und mgo-Stoffwechselweg) nicht voneinander unterschieden.

Durch die MCA des Transporterstammes *E. coli* NT1259 $shiA_{Cg}$ zeigte sich eine Limitierung der L-Tryptophanproduktion in der enzymatischen Kapazität der PSP_L, die durch eine weitere Genkopie des entsprechenden Gens serB im Genom des weiterentwickelten Stammes *E. coli* NT1446 behoben werden sollte. Abbildung 5.46 zeigt, dass die intrazellulären L-pser-Konzentrationen in den Proben des weiterentwickelten Stammes *E. coli* NT1446 um etwas mehr als die Hälfte reduziert sind, verglichen mit den Konzentrationen des *E. coli*-Stammes NT1259 $shiA_{Cg}$. Die zusätzliche genetische Modifikation im L-Serinbiosyntheseweg scheint sich deutlich auf die Metabolitkonzentrationen auszuwirken. Die Ergebnisse indizieren eine verbesserte Umsetzung des L-psers zu L-Serin im weiterentwickelten *E. coli*-Stamm NT1446.

Mittels MCA des Shikimattransporterstammes E. coli NT1259 $shiA_{Cg}$ wurde eine geringfügige Kontrolle der DHQS aus dem Chorismatbiosyntheseweg gegenüber der L-Tryptophanproduktion identifiziert. Um diese Limitierung zu eliminieren, wurde eine weitere Kopie des codierenden aroB-Gens in E. coli NT1446 eingefügt. Der Vergleich intrazellulärer Konzentrationen messbarer Metabolite aus dem Chorismatbiosyntheseweg beider Kurzzeitanalysen legt eine deutliche Verschiebung der zellulären Prozesse in diesem Teil des Stoffwechsels offen. Die 3dhs-Konzentrationen während der metabolischen Analyse des E. coli-Stammes NT1259 $shiA_{Cg}$ lagen in allen Proben oberhalb von 0,4 mM, im Analysenreaktor mit Glycerin und in der Referenzprobe dieses Stammes stieg die 3dhs-Konzentration bis auf über 10 mM an. In den Proben der Analyse des gezielt genetisch modifizierten Stammes E. coli NT1446 blieben die 3dhs-Konzentrationen hingegen unterhalb von 0,1 mM. Der gegenteilige Effekt wurde für die intrazellulären s3p- und Chorismatkonzentrationen beobachtet. Die Konzentrationsniveaus dieser Metabolite lagen in allen Proben des modifizierten E. coli-Stammes NT1446 höher als für E. coli NT1259 $shiA_{Cs}$. Die s3p-Konzentrationen stiegen bei Aufnahme von Glycerin in der Kurzzeitanalyse mit E. coli NT1446 auf über 7,0 mM an, während sie in der Analyse mit E. coli NT1259 $shiA_{Cg}$ unterhalb von 1,4 mM blieben. Für die Chorismatkonzentrationen wurde ein ähnlicher Effekt beobachtet. In den Proben der Kurzzeitanalyse des E. coli-Stammes NT1259 $shiA_{Cg}$ wurden ausschließlich Chorismatkonzentrationen von unter 0,2 mM gemessen, die Chorismatkonzentrationen in der

Analyse des *E. coli*-Stammes NT1446 lagen mit bis zu 0,75 mM deutlich höher. Die direkte Gegenüberstellung der Konzentrationen analytisch erfassbarer Metabolite aus dem Chorismatbiosyntheseweg zeigt, dass eine Verschiebung in diesem Teil des Stoffwechsels induziert wurde. Es ist naheliegend, dass die Veränderungen durch die Überexpression des *aroB*-Gens im weiterentwickelten Stamm *E. coli* NT1446 hervorgerufen wurden. Insgesamt führten die Modifikationen zu erhöhten intrazellulären Chorismatkonzentrationen.

In den MCAs der *E. coli*-Stämme NT1259 (Tröndle *et al.*, 2020) und NT1259 $shiA_{Cg}$ wurde zudem eine positive Kontrolle der PRPPS aus dem Pentosephosphatweg mit einer stark limitierenden Wirkung hinsichtlich der L-Tryptophanproduktion identifiziert. Während der metabolischen Analyse mit dem Transporterstamm *E. coli* NT1259 $shiA_{Cg}$ wurde als Folge der Limitierung in der prpp-Bereitstellung, bei Zugabe von Shikimat, eine starke Akkumulation des im L-Tryptophanbiosyntheseweg vorkommenden anths beobachtet. Da die geplante genomische Überexpression des verantwortlichen *prsA*-Gens in *E. coli* NT1446 nicht realisiert werden konnte, wurden in den anth-Konzentrationen des Transporterstammes NT1259 $shiA_{Cg}$ und des gezielt genetisch modifizierten Stammes NT1446 keine Unterschiede gemessen. Lediglich die anth-Konzentrationen in den Referenzproben wichen voneinander ab.

Darüber hinaus wurden eine weitere trpC- $(trpC_{Mt})$ und trpBA-Genkopie in das Genom von *E. coli* NT1446 eingebracht, um die in *E. coli* NT1259 $shiA_{Cg}$ aufgetretenen Limitierungen in den enzymatischen Kapazitäten der IGPS und TRPS2 aufzulösen. Da die Metabolomquantifizierung in diesem Stoffwechselbereich problematisch ist, können für den Vergleich beider Stämme nur die 2cdr5p-Konzentrationen betrachtet werden. Diese blieben in beiden Kurzzeitanalysen in etwa bei 0,6 mM konstant und auch in den Referenzproben wurden ähnliche Konzentrationen von 0,9 mM gemessen. Zwischen den beiden Stämmen wurden im Metabolom des produktspezifischen Synthesewegs keine Unterschiede ersichtlich.

Insgesamt zeigten sich im direkten Vergleich der ausgewählten Metabolitkonzentrationen bereits deutliche Unterschiede zwischen den L-Tryptophan produzierenden *E. coli*-Stämmen vor und nach der genetischen Anpassung. Zur Beurteilung der Kontrollverschiebung zwischen den beiden Stämmen wurden die berechneten Flusskontrollkoeffizienten für Stoffflüsse der Chorismatund L-Tryptophanbiosynthese für ausgewählte Enzyme beider MCAs in Abbildung 5.47 vergleichend dargestellt.

Die in *E. coli* NT1259 $shiA_{Cg}$ identifizierte Limitierung der PSP_L wurde, wie anhand von Abbildung 5.47 zu erkennen ist, in *E. coli* NT1446 vollständig aufgelöst. Die zusätzlichen Modifikationen des Stammes, inklusive der genomischen Insertion einer Kopie des entsprechenden Gens *serB*, scheinen die aufgetretene Engstelle hinsichtlich der L-Serinbereitstellung für die L-Tryptophanbiosynthese effektiv zu beheben, sodass an dieser Stelle keine weiteren Eingriffe notwendig sind.

Wie aufgrund der nicht erfolgten prsA-Überexpression zu erwarten war, wurde keine Reduktion der metabolischen Kontrolle der PRPPS hinsichtlich der Produktsynthese erreicht. Die Kontrolle der PRPPS gegenüber der L-Tryptophanbiosynthese erhöhte sich in *E. coli* NT1446 verglichen mit *E. coli* NT1259 *shiA*_{Cg} signifikant, sodass die enzymatische Kapazität der PRPPS im weiterentwickelten Stamm die stärkste Limitierung für die L-Tryptophanproduktion darstellte.

Abbildung 5.47: Ausgewählte mittels MCA abgeschätzte Flusskontrollkoeffizienten des Chorismat- und L-Tryptophanbiosynthesewegs (ohne Einheit) der *E. coli*-Stämme NT1259 $shiA_{Cg}$ (NT1259 shiA) und NT1446 (NT1446), dargestellt für die Enzyme Phosphoserin-Phosphatase (PSP_L), Phosphoribosyl-Pyrophosphat-Synthetase (PRPPS), Indol-3-Glycerin-Phosphat-Synthase (IGPS), Tryptophan-Synthase (TRPS2), 3-Deoxy-D-Arabino-Heptulosonat-7-Phosphat-Synthase (DDPA), 3-Dehydroquinat-Synthase (DHQS), 5-Enolpyruvoylshikimat-3-Phosphat-Synthase (PSCVT) und Chorismat-Synthase (CHORS). Die Stoffflüsse des Chorismat- und L-Tryptophanbiosynthesewegs sind auf der Y-Achse gezeigt. Es sind die Effekte einer einprozentigen Änderung der Enzymaktivität dargestellt (positiver Wert: erhöhter Stofffluss; negativer Wert: reduzierter Stofffluss).

Den MCA-Ergebnissen zufolge blieb die Limitierung der IGPS gegenüber der Chorismat- und L-Tryptophanbiosynthese auch im modifizierten *E. coli*-Stamm bestehen. Trotz der zusätzlichen Integration der trpC-Genkopie aus *M. tuberculosis* ($trpC_{Mt}$) wurde keine veränderte Kontrolle der IGPS festgestellt.

Die stärkste Limitierung in NT1259 $shiA_{Cg}$ lag den Berechnungen zufolge in der enzymatischen Kapazität der TRPS2. Die Kontrollwirkung dieses Enzyms hinsichtlich der Chorismat- und L-Tryptophanbiosynthese war in *E. coli* NT1446 um etwa 75% reduziert. Wahrscheinlich ist die verringerte Kontrollwirkung der TRPS2 auf die in *E. coli* eingeführte zusätzliche *trpBA*-Genkopie zurückzuführen.

Verglichen mit *E. coli* NT1259 $shiA_{Cg}$ traten im Chorismatbiosyntheseweg in *E. coli* NT1446 etliche Verschiebungen der metabolischen Kontrolle auf. Naheliegend ist, dass diese durch die zusätzliche genetische Insertion einer *aroB*-Genkopie zur Behebung der Limitierung in der enzymatischen Kapazität der DHQS hervorgerufen wurde. Eine neue geringfügige positive Kontrolle lag für *E. coli* NT1446 in der enzymatischen Kapazität der DDPA mit Auswirkung auf die Stoffflüsse der Chorismatbiosynthese vor. Die Kontrollwirkung der DHQS war in *E. coli* NT1446 hingegen verringert. Außerdem trat im gezielt genetisch modifizierten Stamm *E. coli* NT1446 eine neue starke Kontrolle mit Flusskontrollkoeffizienten von bis zu 0,8 in der enzymatischen Aktivität der PSCVT auf, deren limitierende Wirkung bis hin zu den Stoffflüssen der L-Tryptophanbiosynthese reichte. Weiterhin wurde eine neue geringfügige Kontrolle der CHORS in *E. coli* NT1446 identifiziert. Diese war gegenüber den Stoffflüssen der Chorismatsynthese negativ ausgerichtet, gegenüber den Stoffflüssen der L-Tryptophanbiosynthese zeigte sie sich in entgegengesetzter Orientierung.

Zur Aktivitätssteigerung der kontrollierenden Enzyme wurden für ausgewählte Gene zusätzliche Kopien in das Genom von *E. coli* NT1446 eingebracht. Die Unterschiede zwischen *E. coli* NT1259 $shiA_{Cg}$ und *E. coli* NT1446 in der relativen Expression dieser Gene werden im Folgenden anhand von Abbildung 5.48 erläutert.

Da Versuche, das *prsA*-Gen, welches für das die L-Tryptophanproduktion limitierende Enzym PRPPS codiert, fehlschlugen, lagen zwischen *E. coli* NT1259 $shiA_{Cg}$ und *E. coli* NT1446 diesbezüglich genotypisch keine Unterschiede vor. Dementsprechend wurde auch keine erhöhte *prsA*-Expression in den Proben des gezielt genetisch modifizierten *E. coli* NT1446 gemessen. Die *prsA*-Expression lag in beinahe allen Proben sogar unterhalb des Expressionsniveaus von *E. coli* NT1259 $shiA_{Cg}$. Möglicherweise ist dies auch der Grund für die stärkere Kontrollwirkung der PRPPS in *E. coli* NT1446 verglichen mit *E. coli* NT1259 $shiA_{Cg}$. Die Expression des *serB*-Gens ist im gezielt genetisch modifizierten Stamm NT1446 hingegen deutlich erhöht. Dieses Ergebnis stimmt gut mit den abgesenkten intrazellulären L-pser-Konzentrationen und der reduzierten Kontrolle der PSP_L in Bezug auf die L-Tryptophanbiosynthese überein. Sehr wahrscheinlich trug die zusätzliche integrierte *serB*-Genkopie maßgeblich zur Behebung der kontrollierenden Effekte bei.

Innerhalb des Chorismatbiosynthesewegs wurden sowohl anhand der Metabolomdaten als auch anhand der MCA-Ergebnisse Unterschiede zwischen den beiden Stämmen ersichtlich. Die genomische Insertion einer zusätzlichen *aroB*-Genkopie führte zu einem signifikant erhöhten Expressionsniveau in *E. coli* NT1446 verglichen mit *E. coli* NT1259 $shiA_{Cg}$. Der Anstieg in der Expression nach Induktion mit IPTG trat für *E. coli* NT1446 allerdings verspätet ein. Im Zeitraum der metabolischen Analysen lag dennoch ein erhöhtes Expressionsniveau vor, das wahrscheinlich für den Rückgang der Kontrollwirkung der DHQS verantwortlich ist.

Die trpC-Überexpression wurde durch die Integration einer trpC-Genkopie aus M. tuberculosis realisiert. Der eingefügte nicht native Genabschnitt codiert für eine monofunktionale IGPS. In Abbildung 5.48 ist die Expression der nicht nativen trpC-Variante $(trpC_{Mt})$ gestaffelt mit der Expression des E. coli eigenen trpC-Gens dargestellt. Insgesamt wurde bei Summation beider Expressionsniveaus nach der Induktion in E. coli NT1446 verglichen mit E. coli NT1259 $shiA_{Cg}$ eine erhöhte Expression gemessen. Die Expression des neu eingefügten Genabschnitts machte dabei jedoch nur einen geringen Anteil der gesamten trpC-Expression aus. Die MCA-Ergebnisse legten offen, dass das erhöhte Expressionsniveau in E. coli NT1446 keinen Einfluss auf die Kontrollwirkung der IGPS nahm und die Limitierung gegenüber der L-Tryptophanbiosynthese weiterhin bestand. Gründe hierfür könnten sein, dass die kürzlich festgestellte Vorwärtsinhibierung der IGPS durch anth (L. Chen *et al.*, 2018) mit der verwendeten Genvariante aus *M. tuberculosis* nicht umgangen werden konnte. Möglicherweise war auch das Expressionsniveau der *E. coli* fremden Genkopie nicht ausreichend oder die Funktion des durch das $trpC_{Mt}$ -Gen codierten Enzyms eingeschränkt.

Abbildung 5.48: Relative Genexpression (ohne Einheit) der Gene prsA, serB, aroB, trpC, $trpC_{Mt}$ und trpB im Verhältnis zum ftsZ-Gen in Proben der Referenzprozesse zur L-Tryptophanproduktion mit den E. coli-Stämmen NT1259 $shiA_{Cg}$ (NT1259 shiA) und E. coli NT1446 (NT1446) im Zulaufverfahren nach 27 h (R 27 h), 43 h (R 43 h), 50 h (R 50 h), 55 h (R 55 h) und 70 h (R 70 h) Prozesszeit. Außerdem sind die Ergebnisse der Proben aus den Analysenreaktoren mit den Substraten Glycerin (MA Glyc) und Glucose (MA Gluc) nach 21 min Analysezeit gezeigt.

Die Expression von trpB in *E. coli* NT1446 war etwa ab dem Zeitpunkt der Induktion verglichen mit *E. coli* NT1259 $shiA_{Cg}$ um etwa das 2-Fache erhöht. Anhand der MCA-Ergebnisse wird deut-

lich, dass die *trpBA*-Überexpression zu einem 75 %igen Rückgang der Kontrolle ausgehend von TRPS2 gegenüber der L-Tryptophanbiosynthese führte. Jedoch reichte die gesteigerte Aktivität nicht zur vollständigen Eliminierung der Limitierung aus.

Diskussion

Der direkte Vergleich der metabolischen Analysen vor und nach der genetischen Stammmodifikation trug zu einem besseren Verständnis der kontrollierenden Funktionen im metabolischen Netzwerk bei und ermöglicht eine präzisere Formulierung der potenziellen Handlungsmaßnahmen zur Verbesserung der L-Tryptophanproduktion. Diese werden im folgenden Abschnitt dargelegt. Die Enzyme für die Kontrollen mit Auswirkung auf die L-Tryptophanbiosynthese ermittelt wurden und deren Wirkungsorte im Stoffwechsel der Zellen sind in Abbildung 5.49 gezeigt.

Positive Kontrollen:

Verbesserte Bereitstellung von Vorläufermetaboliten

Die Limitierung der PSP_L hinsichtlich der L-Tryptophanproduktion wurde im gezielt genetisch modifizierten Stamm *E. coli* NT1446 vollständig aufgelöst, vermutlich spielte hierbei die Überexpression des codierenden Gens *serB* eine entscheidende Rolle. Der Erfolg dieser Maßnahme zeigte sich überdies in den abgesenkten intrazellulären L-pser-Konzentrationen und anhand der stark erhöhten Expression des *serB*-Gens in *E. coli* NT1446. Demzufolge müssen in Bezug auf die L-Serinbereitstellung keine weiteren Maßnahmen zur Stammverbesserung ergriffen werden.

Die Limitierung der PRPPS blieb im modifizierten Stamm $E. \ coli$ NT1446 bestehen, da die angestrebte Überexpression des entsprechenden prsA-Gens in diesem Stamm nicht realisiert werden konnte. Da die enzymatische Kapazität der PRPPS in $E. \ coli$ NT1446 die stärkste Limitierung für die L-Tryptophanbildung darstellt, sollte an der Aktivitätssteigerung dieses Enzyms mit hoher Priorität gearbeitet werden. Hierfür sind möglicherweise auch weitere Analysen notwendig, um die verschlechterten Prozesseigenschaften bei Insertion des prsA-Gens zu verstehen. Die Eingriffe zur verbesserten prpp-Bereitstellung gestalten sich voraussichtlich schwierig, da das Molekül einerseits am Erhaltungsstoffwechsel beteiligt und die Reaktion andererseits durch die simultan ablaufende atp-Dephosphorylierung eng mit dem Energiemetabolismus verbunden ist (Hove-Jensen, 1985). An dieser Stelle sollte auch die Nutzung alternativer Promotoren und $E. \ coli$ fremder Genvarianten in Betracht gezogen werden. Möglicherweise kann auch durch die Deletion oder Abschwächung konkurrierender Verbrauchsreaktionen eine verbesserte prpp-Bereitstellung erreicht werden.

Verstärkung von Reaktionsschritten innerhalb der L-Tryptophanbiosynthese

Anhand des Vergleichs der Ergebnisse beider metabolischer Analysen wird ersichtlich, dass die trpC-Genkopie aus *M. tuberculosis* keinerlei Einfluss auf die kontrollierende Wirkung der IGPS hinsichtlich der Chorismat- und L-Tryptophanbiosynthese nahm. Da das Expressionsniveau der beiden trpC-Gene insgesamt in *E. coli* NT1446 angehoben wurde, ist es naheliegend, dass die vorherrschende Vorwärtsinhibierung der IGPS durch anth mittels der verwendeten Genvariante $trpC_{Mt}$ nicht umgangen wurde. In zukünftigen Versuchen, die Engstelle in der enzymatischen

Kapazität der IGPS zu beheben, sollte wie von L. Chen *et al.* (2018) vorgeschlagen auf die vorwärtsaktivierte IGPS-Variante aus *Aspergillus niger* ausgewichen werden.

Die Gegenüberstellung der Flusskontrollkoeffizienten zeigte zudem einen deutlichen Rückgang der limitierenden Wirkung der TRPS2, welche in *E. coli* NT1259 $shiA_{Cg}$ die stärkste Kontrolle hinsichtlich der L-Tryptophanbiosynthese dargestellt hatte. Der Vergleich der trpB-Expressionsniveaus beider Stämme legt nahe, dass die Aktivitätssteigerung der TRPS2 auf die zusätzlich eingebrachte trpBA-Kopie in *E. coli* NT1446 zurückzuführen ist. Offenbar reichte die genomisch inserierte Genkopie allerdings nicht zur vollständigen Eliminierung der Limitierung aus. Aus diesem Grund sollte für eine verbesserte Produktionsleistung des Stammes eine weitere Überexpression des trpB-Gens erfolgen. Auch die Nutzung alternativer, stärkerer Promotoren erscheint an dieser Stelle sinnvoll.

Verstärkung von Reaktionsschritten im Chorismatbiosyntheseweg

Die Ergebnisse der MCA zeigen, dass die kontrollierende Funktion der DHQS in E. coli NT1446 reduziert wurde, anstatt dessen traten andere Limitierungen ausgehend von den Enzymen DDPA, PSCVT und CHORS im Chorismatbiosyntheseweg auf. Während sich die Kontrolle der DDPA kaum auf die L-Tryptophanbiosynthese auswirkte, stellte die PSCVT eine deutliche Limitierung für die Produktbiosynthese dar. Die Kontrollwirkung der CHORS war ebenfalls gering. In zukünftigen Produktionsstämmen sollten Überexpressionen der Gene *aroA* und *aroC* für eine verbesserte Chorismatsynthese angestrebt werden.

Abbildung 5.49: Schematische Übersicht des Stoffwechsels mit farblich hervorgehobenen Enzymen für die mittels MCA von *E. coli* NT1446 eine kontrollierende Wirkung auf die L-Tryptophanbiosynthese identifiziert wurde. Die für Enzyme und Reaktionen genutzten Abkürzungen sind in Kapitel 3.2 aufgeführt. In Blau sind Enzyme markiert, für die eine positive Kontrollwirkung hinsichtlich der L-Tryptophanproduktion ermittelt wurde, in Rot sind entsprechend negative Kontrollen gekennzeichnet.

Negative Kontrollen:

Verringerte Bildung aromatischer Nebenprodukte

Auch im weiterentwickelten Stamm *E. coli* NT1446 traten negative Flusskontrollkoeffizienten der Enzyme zur Synthese der Nebenprodukte L-Phenylalanin und L-Tyrosin auf. Der positive Einfluss auf die Stoffflüsse der L-Tryptophanbiosynthese ist jedoch sehr gering. Aufgrund pro-

zesstechnischer Nachteile, die durch die Deletion der entsprechenden Gene entstehen, ist diese Modifikation nicht unbedingt vorteilhaft und wird daher nicht angeraten.

Unterdrückung der Methylglyoxalsynthese und Verstärkung der Reaktionen zum Abbau von Methylglyoxal

Die globale toxische Wirkung des mgos auf DNA, Proteine und deren enzymatische Aktivität konnten im Modell der MCA nicht berücksichtigt werden, weshalb aus den Flusskontrollkoeffizienten kein negativer Einfluss des mgo-Stoffwechselwegs auf die Produktbildung hervorging. Somit konnten direkt aus den Ergebnissen der MCA keine Handlungsmaßnahmen diesbezüglich abgeleitet werden. Eine genauere Betrachtung der mgo-Produktion und die Expressionsanalyse von Genen, die am mgo-Stoffwechselweg beteiligt sind, deuteten jedoch darauf hin, dass der Stoffwechsel von *E. coli* NT1446 bereits einige Stunden nach der Induktion aus unbekannten Gründen aus dem Gleichgewicht geriet und auf die mgo-Bildung umstellte. Nach einer gewissen Zeitspanne überwog die mgo-Produktion und die Expression der für den mgo-Abbau und die Entgiftung erforderlichen Gene setzte erst verspätet ein. Die metabolischen Gegenreaktionen der Zellen erfolgten daher zu spät und es kam zum raschen Abbruch der L-Tryptophanproduktion und zur verminderten Zellatmung. Die Ergebnisse der Expressionsanalyse der betreffenden Abbau- und Reperaturenzyme deuteten darauf hin, dass die mgo-Detoxifizierung bei Assimilation von Glucose und Glycerin verschieden reguliert ist.

Es erscheint plausibel, dass das abrupte Ende der Produktion im betrachteten Zulaufprozess mit der mgo-Bildung zusammenhing. Möglicherweise trifft dies auch auf alle weiteren Prozesse dieser Arbeit sowie vorheriger Studien zu (Tröndle *et al.*, 2020; Tröndle *et al.*, 2018b). Die zwar mäßigen, aber persistent vorherrschenden mgo-Konzentrationen hoben das Stressniveau der Zellen während der Produktionsphase vermutlich deutlich an und sind eine mögliche Erklärung für die Unterschiede in den Produktionszeiten und der damit einhergehenden hohen Variabilität der Gesamtproduktivität.

Als Maßnahme zur Vermeidung des frühen Produktionsabbruchs bei der Herstellung aromatischer Verbindungen mit *E. coli* ausgehend von Glycerin sollte daher eine Steigerung der Aktivität der Enzyme zum Abbau von mgo in Betracht gezogen werden. Überexpressionen des Glyoxylase I-II-Systems helfen den Zellen einen zusätzlichen Schutz gegenüber mgo aufzubauen (MacLean *et al.*, 1998). Darüber hinaus erscheint es aus bioprozesstechnischer Perspektive sinnvoll, die Glycerinzufuhr im letzten Drittel des Produktionsprozesses zu verringern, um hohe intrazelluläre dhap-Konzentrationen zu vermeiden und auf diese Weise die mgo-Synthese möglichst lange zu unterdrücken.

6 Zusammenfassung

Im Allgemeinen wird *Metabolic Engineering* verwendet, um den Metabolismus von Zellen in Richtung einer Überproduktion eines gewünschten Zielmoleküls zu lenken. Das rationale Design von Produktionsstämmen wie *Escherichia coli* (*E. coli*) ist jedoch durch die Komplexität der Biosynthesewege erschwert. L-Tryptophan ist ein industriell relevanter Wertstoff, der primär in der Nahrungs- und Futtermittelindustrie, aber auch als pharmazeutisches Produkt zum Einsatz kommt und dessen Biosynthese zahlreichen regulativen Mechanismen auf verschiedenen molekularen Ebenen von Zellen unterworfen ist. Üblicherweise wird für die industrielle mikrobielle Herstellung von L-Tryptophan mit *E. coli* Glucose verwendet. Aufgrund verschiedener Vorteile wie des höheren Reduktionsgrades und der Verfügbarkeit als Reststoff der Biodieselherstellung ist auch der Einsatz von Glycerin als Kohlenstoffquelle sinnvoll. Jedoch bleiben die ersten bereits etablierten L-Tryptophanproduktionsprozesse mit *E. coli* ausgehend von Glycerin in ihrer Produktivität weit hinter Produktionsprozessen basierend auf Glucose zurück und der Produktionsabbruch tritt aus unbekannten Gründen bereits unerwartet früh und abrupt ein (Tröndle *et al.*, 2020; Tröndle *et al.*, 2018b).

Metabolische Analysen stellen eine Möglichkeit dar, die zellulären Abläufe in vivo während mikrobieller Produktionsprozesse zu charakterisieren. Diese Art der Analysen beruht auf der Auslenkung des Stoffwechsels ausgehend von einem Referenzzustand im metabolischen Gleichgewicht. Mittels der Methode des schnellen Medienwechsels (Link, 2009) werden Zellen aus einem Referenzprozess entnommen, vom Probenüberstand durch schnelle Zentrifugation abgetrennt und in frischem Medium resuspendiert. In separaten Analysenreaktoren wird eine Auslenkung des Stoffwechsels durch die Zufuhr unterschiedlicher Substrate herbeigeführt. Durch Probenahmen während der 21 min Analysezeit werden Daten zu intra- und extrazellulären Metabolitkonzentrationen und Austauschstoffflüssen generiert und die Reaktion der Zellen auf die Auslenkung quantitativ abgebildet. Nicht messbare intrazelluläre Stoffflussverteilungen und thermodynamische Größen werden mithilfe der Messdaten theoretisch abgeschätzt. Eine Methode, die eine Identifikation kontrollierender enzymatischer Schritte hinsichtlich der Produktbildung basierend auf den erhobenen Datensätzen ermöglicht, ist die Metabolische Kontrollanalyse (MCA). Mittels dieser können Ansatzpunkte für Prozess- und Stammverbesserungen abgeleitet und Handlungsanweisungen zur gezielten Modifikation der Produktionsstämme formuliert werden. Resultate erster metabolischer Analysen der L-Tryptophanproduktion mit Glycerin als Kohlenstoffquelle ermöglichten die Anwendung der MCA-Methodik und legten verschiedene kontrollierende Effekte hinsichtlich der L-Tryptophanproduktion offen, starke Limitierungen traten unter anderem im spezifischen Stoffwechselweg zur L-Tryptophanbiosynthese auf (Tröndle et al., 2020).

Allerdings waren die hervorgerufenen Unterschiede in den Stoffflüssen und Metabolitkonzentrationen in den spezifischen Produktsynthesewegen aufgrund fehlender natürlicher Transportmechanismen von *E. coli* für Metabolite der Aromatenbiosynthese in bisherigen metabolischen Analysen nur sehr gering (Tröndle, 2019). Es wurde angenommen, dass durch eine verstärkte Auslenkung in den spezifischen Produktbiosynthesewegen die Genauigkeit der Vorhersagen hinsichtlich der kontrollierenden enzymatischen Reaktionen in diesen Stoffwechselbereichen erhöht werden kann. Daher war ein Ziel dieser Forschungsarbeit, mithilfe von sogenannten "Transporterstämmen", welche vom Projektpartner der Universität Stuttgart molekulargenetisch verändert wurden, um den Import neuer, nicht natürlicher Substrate zu ermöglichen, die Auslenkung in den spezifischen Produktsynthesewegen zu erhöhen. Mittels einer MCA wurde auf Grundlage der Ergebnisse mit verstärkter Auslenkung in den Produktsynthesewegen die Identifikation weiterer kontrollierender Reaktionsschritte der L-Tryptophanbiosynthese ausgehend von der Kohlenstoffquelle Glycerin angestrebt, um basierend darauf eine gezielte genetische Stammmodifikation durch den Projektpartner der Universität Stuttgart zu ermöglichen.

Des Weiteren sind die Ursachen für das frühe Produktionsende Glycerin basierter L-Tryptophanherstellungsprozesse mit *E. coli* nicht bekannt (Tröndle *et al.*, 2020; Tröndle *et al.*, 2018b). Da die Produktionsdauer maßgeblich die Effizienz der Prozesse beeinflusst und ein früher Produktionsabbruch die Produktionsleistung stark beeinträchtigt, lag ein weiteres Ziel dieser Arbeit darin, mögliche Gründe für das frühe Produktionsende bei Nutzung von Glycerin als Kohlenstoffquelle aufzuzeigen und entsprechende Gegenmaßnahmen zu erarbeiten.

Aufgrund seiner zentralen Lage im Chorismatbiosyntheseweg und der Nähe zum spezifischen L-Tryptophanbiosyntheseweg wurde Shikimat als interessantes Effektorsubstrat zur gezielten Auslenkung der Aromatenbiosynthese ausgewählt. Obwohl E. coli natürlicherweise ein shiA-Gen codierend für ein Shikimattransportprotein trägt, ist die Shikimataufnahme in Wildtypstämmen äußerst gering. Um dennoch ausreichend hohe Aufnahmeraten zur Auslenkung des Metabolismus während metabolischer Analysen zu erreichen, wurde vom Projektpartner der Universität Stuttgart ein entsprechender Transporterstamm zur Verfügung gestellt. E. coli NT1259 $shiA_{Cq}$ trägt neben zahlreichen genetischen Modifikationen für eine gesteigerte L-Tryptophanbildung eine genomisch integrierte shiA-Genkopie aus Corynebacterium glutamicum für eine erhöhte Transportkapazität von Shikimat. Die Aufnahme des Shikimats mit Raten von bis zu $0.26 \text{ mmol } g_{\text{BTM}}^{-1}$ h⁻¹ bei Aufnahme einer weiteren Kohlenstoffquelle wurde in Kultivierungen im Schüttelkolben gezeigt. Bei der Übertragung des von Tröndle et al. (2018b) etablierten 15 L-Zulaufprozesses zur L-Tryptophanproduktion auf den Transporterstamm E. coli NT1259 $shiA_{Cq}$ wurden keine prozessrelevanten Unterschiede zur Kultivierung des äquivalenten Stammes ohne Shikimattransporter festgestellt. Die Eignung des modifizierten E. coli-Stammes für die Anwendung in metabolischen Analysen zur Auslenkung mit Shikimat konnte somit gezeigt werden.

Auf dieser Grundlage wurde eine parallelisierte Kurzzeitanalyse der L-Tryptophanproduktion im Zulaufverfahren durchgeführt. Hierzu wurden als Effektoren zur Auslenkung des Metabolismus in jeweils einen Reaktor Glycerin beziehungsweise Glucose zugeführt, ein weiterer Analysenreaktor wurde mit Glycerin und Shikimat als zusätzlichem Substrat versorgt und im vierten Reaktor erfolgte die Auslenkung mittels der Substrate Glucose und Shikimat. Zur metabolischen Analyse der *E. coli*-Zellen im 15 L-Zulaufprozess wurden 4 h nach der Induktion mit IPTG, also bei Erreichen hoher L-Tryptophanbildungsraten, 3,6 L Zellprobe entnommen. Anschließend wurde die Zellsuspension nach der Methodik des schnellen Medienwechsels zentrifugiert, die Zellen in frischem Medium resuspendiert und auf vier Reaktoren eines Parallelbioreaktorsystems gleichmäßig verteilt. Die Auslenkung des Stoffwechsels erfolgte mittels dreistufiger, konstanter Zulaufprofile der Substrate innerhalb von 21 min, die anhand zuvor empirisch bestimmter maximaler Aufnahmeraten festgelegt wurden.

Die Ergebnisse der gemessenen extrazellulären Stoffflussraten und Metabolitkonzentrationen bildeten eine schnelle Reaktion der Zellen auf die geänderte Substratzufuhr ab und insbesondere in den spezifischen Stoffwechselwegen der Aromatenbiosynthese wurden durch die Zugabe von Shikimat starke Veränderungen ausgelöst. Die Ausbildung neuer metabolischer Gleichgewichte konnte anhand der ermittelten Sauerstoffaufnahme- und Kohlenstoffdioxidbildungsraten nachgewiesen werden. Für alle Analysenreaktoren zeichneten sich drei Stufen in den gemessenen Atmungsraten ab, und auch alle gemessenen Substrataufnahmeraten spiegelten das dreistufige Zulaufprofil wider. Produktbildung wurde in allen Ansätzen gemessen, die Raten nahmen jedoch in keinem Reaktor mit Erhöhung der Zulaufraten zu. Eine gestiegene Kohlenstoffverfügbarkeit ermöglichte somit keine verbesserte Produktbildung.

Auch im intrazellulären Metabolom zeichnete sich eine starke Reaktion der Zellen auf die Substratzugaben ab. Große Änderungen wurden insbesondere in der Nähe der Substrateintrittspunkte in den Stoffwechsel gemessen, aber auch weiter entfernt liegende Teile im Stoffwechsel wurden durch die geänderte Substratzufuhr beeinflusst. Im Stoffwechselweg zur Aromatenbiosynthese zeigten sich stark variierende Metabolitkonzentrationen, vorwiegend in den Analysenreaktoren mit zusätzlich zugeführtem Shikimat.

12 neue metabolische Gleichgewichte, hohe Substrataufnahmeraten sowie analytisch nachvollziehbare Produktbildungen und Veränderungen im Metabolom wurden im Zeitrahmen der metabolischen Analyse von 21 Minuten erreicht. Die erhobenen Daten bildeten die Grundlage für die theoretischen Stoffflussabschätzungen und die thermodynamische Netzwerkanalyse. Hierzu wurde eine kombinierte Methodik aus dem CycleFreeFlux-Algorithmus (Desouki *et al.*, 2015) und der thermodynamischen pyTFA-Analyse (Salvy *et al.*, 2019) für die Anwendung in dieser Arbeit etabliert. Sowohl die gemessenen Fluxom- als auch Metabolomdaten flossen als Lösungsraumbeschränkung in die Berechnungen der Flussanalysen mit ein. Auf diese Weise gelang eine systematische Bereinigung der abgeschätzten Stoffflussverteilungen von biologisch nicht sinnvollen metabolischen Schleifen. Zudem stimmten die erhaltenen Ergebnisse mit der Thermodynamik und Physiologie der Zellen überein. Durch Vorgabe der gemessenen intrazellulären Metabolitkonzentrationen für die Abschätzung der Stoffflussverteilungen wurden die möglichen Reaktionsrichtungen zusätzlich beschränkt.

Die theoretisch ermittelten Stoffflussverteilungen bestätigten die deutliche Auslenkung des Metabolismus während der im Zeitraum der Kurzzeitanalyse erreichten metabolischen Zustände. Insbesondere im Chorismatbiosyntheseweg wurde der starke Einfluss der Shikimatzugabe in variierenden Stoffflüssen ersichtlich. In den zentralen Teilen des Stoffwechsels wurden die Stoffflüsse vor allem durch die primären Kohlenstoffquellen Glycerin und Glucose beeinflusst. Die im selben Optimierungsschritt erfolgte thermodynamische Netzwerkanalyse lieferte weiterhin Lösungsbereiche von Gibbs'schen Reaktionsenergien und zulässige Konzentrationsbereiche nicht messbarer Metabolite. Anhand der abgeschätzten Lösungsbereiche der Reaktionsenergien für den Referenzzustand erfolgte die Klassifizierung der für die MCA relevanten Reaktionen hinsichtlich ihrer Lage zum thermodynamischen Gleichgewicht. Die abgeschätzten Konzentrationsbereiche nicht messbarer Metabolite vervollständigten die Datensätze des analytisch erfassten Metaboloms. Eine statistische Analyse der thermodynamisch zulässigen Konzentrationsbereiche ermöglichte darüber hinaus Aussagen über die Wahrscheinlichkeiten auftretender Metabolitkonzentrationen.

Der vollständige Satz gemessener und berechneter Daten bildete die Grundlage für die MCA. Das zugrundeliegende Modell für die MCA bestand aus einem metabolischen Netzwerk mit insgesamt 50 Reaktionen und 57 Metaboliten aus der Glykolyse, Gluconeogenese, dem Glycerinmetabolismus, Citratzyklus, Pentosephosphatweg, Energiemetabolismus und der Aromatenbiosynthese. Zunächst erfolgte die Abschätzung lokaler Elastizitäten, die Berechnungsmethode hing dabei vom thermodynamischen Zustand der Reaktion ab. Für Reaktionen nahe dem thermodynamischen Gleichgewicht erfolgte die Abschätzung der Elastizitäten direkt aus den Gibbs'schen Reaktionsenergien. Für Reaktionen fern vom thermodynamischen Gleichgewicht wurde das lin-log-Verfahren angewandt. Daraufhin wurden die Flusskontrollkoeffizienten ermittelt, welche eine quantitative Aussage über die Verknüpfung von Enzymaktivitäten und Stoffflüssen ermöglichte. Positive Kontrollen deuteten auf eine den Stofffluss verstärkende Wirkung der entsprechenden Enzyme hin, negative Kontrollen zeigten inhibierende Effekte der Enzyme auf. Es zeigte sich eine Verteilung der metabolischen Kontrolle über alle Bereiche des Stoffwechsels. Die mit der L-Tryptophanbiosynthese in Zusammenhang stehenden Kontrollen gaben Hinweise auf Limitierungen in der Produktbildung. Eine zusätzliche Expressionsanalyse ausgewählter Gene, durchgeführt vom Projektpartner der Universität Stuttgart, wurde ergänzend eingesetzt, um die Ursachen der identifizierten Limitierungen genauer zu analysieren und, um die Handlungsmaßnahmen zur Stammverbesserung zu präzisieren. Die ermittelten Flusskontrollkoeffizienten sind in Abbildung 6.1 A gezeigt. Die Ergebnisse führten zu folgenden Schlussfolgerungen:

• Limitierungen innerhalb des spezifischen L-Tryptophanbiosynthesewegs:

Unmittelbar im Stoffwechselweg zur Synthese des L-Tryptophans wurden für die enzymatischen Reaktionsschritte der Indol-3-Glycerin-Phosphat-Synthase (IGPS) und Tryptophan-Synthase (TRPS2) positive Kontrollen bestimmt. Die stärkste positive Kontrolle hinsichtlich der L-Tryptophanproduktion wurde für die TRPS2 berechnet. Dementsprechend sollte in neuen Stämmen eine weitere Überexpression des codierenden trpB-Gens erfolgen. Die Expressionanalyse zeigte einen Rückgang der Expressionsstärke des für die IGPS codierenden Gens trpC zu Beginn der konstanten Zulaufphase. Eine Verstärkung der Expression des trpC-Gens wurde zur Anpassung vorgeschlagen.

• Mangel an Vorläufermolekülen:

Die kontrollierenden Effekte in der Bereitstellung von Vorläufermolekülen gingen von den Enzymen Phosphoserin-Phosphatase (PSP_L) in der L-Serinbiosynthese und der Phosphoribosyl-Pyrophosphat-Synthetase (PRPPS) im Pentosephosphatweg aus. Die Expressionsanalyse der entsprechenden Gene *serB* und *prsA* deutete auf eine reduzierte Expression beider Gene nach Induktion mit IPTG hin. Eine Überexpression beider Gene wurde für eine weitere Stammverbesserung vorgeschlagen.

• Limitierungen im allgemeinen Teil der Aromatenbiosynthese:

Die Zufuhr des neu verfügbaren Substrates Shikimat führte zu starken Auslenkungen im Bereich der Aromatenbiosynthese und ermöglichte die Identifikation einer weiteren Limitierung hinsichtlich der L-Tryptophanproduktion in der enzymatischen Aktivität der 3-Dehydroquinat-Synthase (DHQS). Die Expressionsanalyse zeigte starke Diskrepanzen in der Expressionsstärke von Genen der Enzyme in der Chorismatbiosynthese. Diese sollten in zukünftigen Stämmen durch eine verstärkte Expression des *aroB*-Gens, codierend für die 3-Dehydroquinat-Synthase (DHQS), ausgeglichen werden.

Basierend auf diesen neuen Erkenntnissen wurden *E. coli*-Produktionsstämme vom Projektpartner der Universität Stuttgart genetisch angepasst und zur Verfügung gestellt. Da durch die teilweise erhöhte Produktion die L-Tryptophan-Löslichkeit von etwa 19,0 \pm 0,5 g L⁻¹ überschritten wurde, erfolgte eine Anpassung Probenaufarbeitungsmethode, sodass auch präzipitiertes L-Tryptophan erfasst werden konnte. Die daraufhin erhaltenen Ergebnisse waren durch die veränderte Messmethode nicht direkt mit Resultaten vorheriger Kultivierungen vergleichbar. Zur Charakterisierung der Produktionsleistung erfolgte die Kultivierung der modifizierten Stämme im standardisierten 15 L-Zulaufprozess zur Produktion von L-Tryptophan. Hierbei trat eine hohe Prozessvariabilität hinsichtlich des Produktionsleistung der Stämme entstanden.

Um die Limitierung der Indol-3-Glycerin-Phosphat-Synthase (IGPS) aufzuheben, wurde eine genomische Insertion einer trpC-Genkopie aus $Mycobacterium tuberculosis (trpC_{Mt})$ in den Ausgangs- und in dieser Arbeit als Referenzstamm bezeichneten E. coli-Stamm NT1259 (Tröndle et al., 2020) eingebracht. Dies führte zu keiner signifikant verbesserten Produktivität verglichen mit dem Referenzstamm E. coli NT1259, die Produktionsleistung wurde jedoch auch nicht beeinträchtigt. Die Kombination der genomischen Überexpressionen von $trpC_{Mt}$ und trpBA führte zu einer Steigerung der finalen L-Tryptophan-Absolutmenge um 28%. Die zusätzliche Integration der Genkopien von aroB und serB in E. coli NT1446 führten jeweils zu einer geringen, aber nicht signifikanten Verschlechterung der Produktionsmerkmale. Bis auf die Integration einer zusätzlichen Kopie des prsA-Gens wurden im weiterentwickelten E. coli-Stamm NT1446 alle vorgeschlagenen Stammmodifikationen realisiert. Aufgrund dessen wurde für den Metabolismus dieses Stammes der maximale Unterschied zum Ausgangsstamm E. coli NT1259 erwartet, weshalb E. coli NT1446 für eine erneute metabolische Analyse ausgewählt wurde.

Auch diese Kurzzeitanalyse basierte auf einem 15 L-Zulaufprozess zur Herstellung von L-Tryptophan. Die maximale im Prozessverlauf gemessene Produktkonzentration lag bei 16,73 g L⁻¹, die maximale Biotrockenmassekonzentration betrug 27,00 \pm 0,43 g L⁻¹. Für die Proben dieses Produktionsprozesses und der währenddessen erfolgten Kurzzeitanalyse wurden zudem die Konzentrationen von Methylglyoxal (mgo) quantifiziert, da dieser Metabolit zuvor anhand von Modell- und Literaturdaten als möglicher Grund für den rapiden Produktionseinbruch erkannt wurde. mgo ist ein toxisches Nebenprodukt, das in *E. coli* in einem zur Glykolyse parallel verlaufenden Stoffwechselweg entsteht (Hopper & Cooper, 1971). Die mgo-Synthese spielt bei der intrazellulären Rückgewinnung von Phosphat und im Abbau von dhap eine wichtige Rolle. Zur quantitativen Erfassung des schwer messbaren Metabolits wurde ein enzymatisches Messverfahren angewendet. Potenziell inhibitorische mgo-Konzentrationen von über 20 mg L⁻¹ wurden im Produktionsprozess bereits gegen Ende der exponentiellen Zulaufphase gemessen. Ab einer Prozesszeit von circa 65 h stieg die mgo-Konzentration rapide auf maximal 240 mg L⁻¹ an. Aus den Messdaten ergab sich ein auffälliger zeitlicher Zusammenhang zwischen dem rapiden Anstieg der mgo-Konzentration und dem abrupten Produktionsende.

Die Entnahme der Zellsuspension zur Überführung in die vier Analysenreaktoren erfolgte wie auch bei der metabolischen Analyse des Transporterstammes *E. coli* NT1259 $shiA_{Cg}$ zu einem Zeitpunkt hoher Produktbildungsraten im Produktionsprozess. Die Auslenkung des Stoffwechsels wurde durch die Zufuhr der natürlichen *E. coli*-Substrate Glycerin, Glucose, Pyruvat und Succinat in drei gleichmäßigen Stufen herbeigeführt. Insgesamt wurden auf diese Weise 12 metabolische Gleichgewichtszustände im Zeitrahmen der Kurzzeitanalyse erreicht und anhand der gemessenen Atmungsraten konnte deren Einstellung nachgewiesen werden. Die ermittelten Substrataufnahme- und Atmungsraten spiegelten für alle Analysenreaktoren die dreistufigen Zulaufprofile wider. Eine Zunahme der Produktbildungsraten mit gesteigerter Zulaufrate wurde nur im Analysenreaktor mit Glycerin beobachtet. Die signifikante Auslenkung des Stoffwechsels zeigte sich auch in den gemessenen intrazellulären Metabolitkonzentrationen. Die auf der Grundlage der erhobenen Daten erfolgten Stoffflussabschätzungen mit thermodynamischen Beschränkungen und integrierter thermodynamischer Netzwerkanalyse bildeten die hervorgerufenen Stoffwechselauslenkungen ab und lieferten zusätzliche Informationen zu Gibbs'schen Reaktionsenergien und Konzentrationsbereichen analytisch nicht erfasster intrazellulärer Metabolite.

Alle experimentell erhobenen und rechnerisch ermittelten Informationen flossen in eine erneute MCA ein. Da sowohl im Produktionsprozess als auch in den Analysenreaktoren mgo-Bildung gemessen wurde, erfolgte die Erweiterung des MCA-Modells um die Reaktionen des mgo-Stoffwechselwegs. Insgesamt umfasste das MCA-Modell somit 53 Reaktionen und 59 Metabolite. Die Abschätzung der Elastizitäten erfolgte analog zur MCA des Shikimattransporterstammes, worauf aufbauend die Flusskontrollkoeffizienten bestimmt wurden. Auch für diese Analyse wurde vom Projektpartner der Universität Stuttgart eine Expressionsanalyse für ausgewählte, interessante Gene durchgeführt, um die den Limitierungen zugrundeliegenden Ursachen besser verstehen zu können. Aufgrund der gemessenen mgo-Bildung während des Produktionsprozesses und der metabolischen Analyse wurde auch die relative Expression der Gene analysiert, deren Proteine an der Bildung (mgsa) und am Abbau (gloA, gloB, gloC, yeiG, dld) von mgo beteiligt sind sowie zweier Enzyme (yajL, yhbO), die zur Reparatur mgo-bedingter Proteinschäden beitragen. Die Ergebnisse der Expressionsanalyse deuteten darauf hin, dass die Aktivität des mgo-Stoffwechselweges bei Nutzung der unterschiedlichen Substrate (Glycerin und Glucose) verschieden reguliert ist. Im Verlauf des 15 L-Zulaufprozesses zur Herstellung von L-Tryptophan mit E. coli NT1446 wurde erst eine sehr späte Hochregulation der Gene, deren Enzyme zum Abbau von mgo beitragen, gemessen. Es erschien plausibel, dass die Zellen zu spät auf die schnell zunehmende mgo-Bildung reagierten und die Produktion deshalb frühzeitig zum Erliegen kam. Anhand der direkten Gegenüberstellung der Ergebnisse der metabolischen Analysen des ursprünglichen Produktionsstammes mit integriertem Shikimattransporter E. coli NT1259 shiA_{Ca}

und des weiterentwickelten Stammes *E. coli* NT1446 wurden die metabolischen Unterschiede zwischen beiden Stämmen genauer analysiert und die Effektivität der eingeführten genetischen Modifikationen diskutiert. Abbildung 6.1 zeigt den Vergleich relevanter Flusskontrollkoeffizienten sowie eine Zusammenfassung von deren Wirkungsort im Stoffwechsel von *E. coli*.

Abbildung 6.1: Zusammenfassung der metabolischen Kontrollanalysen von $E. \ coli$ NT1259 $shiA_{Cg}$ (NT1259 shiA) und $E. \ coli$ NT1446 (NT1446). A: Ermittelte Flusskontrollkoeffizienten für die Stoffflüsse der Chorismat- und L-Tryptophanbiosynthese für eine Auswahl relevanter Enzyme. Die Spalten beschreiben die Enzyme des jeweiligen Stammes (NT1259 shiA und NT1446), die Reihen geben die resultierenden ausgelenkten Stoffflüsse wieder. Die für Enzyme und Reaktionen genutzten Abkürzungen sind in Kapitel 3.2 aufgeführt. Die Flusskontrollkoeffizienten zeigen, inwiefern sich die metabolische Kontrolle eines Enzyms hinsichtlich eines Stoffflusses verändert hat. In grüner Schriftfarbe sind Enzyme abgebildet, für die in $E. \ coli$ NT1446 zusätzliche genomische Genkopien zur Außerkraftsetzung der limitierenden Wirkung eingebracht wurden. Für Enzyme in oranger Schriftfarbe wurde keine genetische Modifikation in $E. \ coli$ NT1446 realisiert. In Blau dargestellt sind Enzyme, deren Kontrollwirkung erst im weiterentwickelten Stamm $E. \ coli$ NT1446 ersichtlich wurden. B: Übersicht über den Stoffwechsel von $E. \ coli$ mit spezifisch farblich hervorgehobenen Enzymen, die in den metabolischen Kontrollanalysen als kontrollierend für die L-Tryptophanproduktion identifiziert wurden.

Die wesentlichen Ergebnisse und Schlussfolgerungen lassen sich wie folgt untergliedern:

• Mangel an Vorläufermolekülen:

Die stärkste Kontrollwirkung hinsichtlich der L-Tryptophanproduktion im weiterentwickelten Stamm *E. coli* NT1446 zeigte sich in der enzymatischen Aktivität der PRPPS. Dieser kontrollierende Effekt trat auch im zuvor analysierten Transporterstamm *E. coli* NT1259 *shiA*_{Cg} auf. Die Limitierung in der enzymatischen Aktivität der prpp bereitstellenden Reaktion führte wahrscheinlich zu einem Mangel des Vorläufermetabolits und infolgedessen zur Drosselung der L-Tryptophanproduktion. Die Expressionsanalyse des die PRPPS codierenden Gens *prsA* zeigte eine verminderte Expression in *E. coli* NT1446 verglichen mit dem Transporterstamm *E. coli* NT1259 *shiA*_{Cg}. Diese Auffälligkeit wurde als mögliche Ursache für die gestiegene Kontrollwirkung der PRPPS in *E. coli* NT1446 gegenüber dem Vorgängerstamm *E. coli* NT1259 *shiA*_{Cg} angesehen. Neue Versuche, die enzymatische Aktivität der PRPPS zu steigern, sollten demzufolge unternommen werden.

Im L-Serinbiosyntheseweg zeigten sich verringerte intrazelluläre L-pser-Konzentrationen im modifizierten Stamm *E. coli* NT1446 im Vergleich zum zuvor analysierten Transporterstamm NT1259 $shiA_{Cg}$. Zudem war die Kontrolle der PSP_L im Hinblick auf die L-Tryptophanbiosynthese in *E. coli* NT1446 vollständig aufgehoben. Der Rückgang der Kontrollwirkung dieses Enzyms konnte mit dem deutlich erhöhten Expressionsniveau des zugrundeliegenden Gens *serB* im weiterentwickelten Stamm *E. coli* NT1446 erklärt werden. An dieser Stelle sind keine weiteren Eingriffe notwendig.

• Limitierungen innerhalb des spezifischen L-Tryptophanbiosynthesewegs:

Offengelegt wurden zudem geringe positive Kontrollen der L-Tryptophanproduktion durch die Enzyme IGPS und TRPS2. Die Kontrollwirkung der TRPS2 gegenüber der Chorismatund L-Tryptophanbiosynthese war jedoch in *E. coli* NT1446 im Vergleich zu *E. coli* NT1259 $shiA_{Cg}$ um 75% reduziert. Dies konnte durch die gestiegene trpB-Expression begründet werden. Die weiterhin bestehende Kontrollwirkung der TRPS2 sollte durch eine Verstärkung der trpB-Expression behoben werden.

In der Kontrolle der IGPS hinsichtlich der Aromatenbiosynthese wurden keine Veränderungen zwischen den beiden analysierten Stämmen festgestellt. Vermutlich konnte die vorherrschende Vorwärtsinhibierung der IGPS durch anth mit der verwendeten Genvariante aus *M. tuberculosis* nicht verhindert werden. In zukünftige Produktionsstämme sollte eine vorwärtsaktivierte IGPS-Variante eingebracht werden.

• Limitierungen im allgemeinen Teil der Aromatenbiosynthese:

Im Chorismatbiosyntheseweg trat für *E. coli* NT1259 $shiA_{Cg}$ eine Kontrolle in der enzymatischen Aktivität der DHQS auf, die Auswirkungen auf die L-Tryptophanbiosynthese zeigte. Zur Behebung dieser Limitierung wurde eine zusätzliche Genkopie des codierenden Gens *aroB* in *E. coli* NT1446 eingeführt. Dies resultierte in einem angehobenen Expressionsniveau des *aroB*-Gens, stark veränderten Metabolitkonzentrationen im Chorismatbiosyntheseweg und in einer Reduktion der kontrollierenden Wirkung der DHQS gegenüber der Chorismat- und L-Tryptophanbiosynthese. Den neu aufgetretenen Kontrollen der Enzyme 5-Enolpyruvoylshikimat-3-Phosphat-Synthase (PSCVT) und Chorismat-Synthase (CHORS) könnte mit Überexpressionen der entsprechenden Gene aroA und aroC entgegengewirkt werden.

• Vermeidung der Methylglyoxalbildung:

Zur Vermeidung des frühen Produktionsabbruchs im Zulaufverfahren zur Herstellung von L-Tryptophan sollte eine Aktivitätssteigerung von Enzymen, die am Abbau von mgo beteiligt sind, in Betracht gezogen werden. Zudem kann eine Reduktion der Glycerinzulaufrate im letzten Drittel der Kultivierung hilfreich sein, um die mgo-Produktion nicht vorzeitig zu aktivieren.

In der vorliegenden Arbeit wurde die Methodik der parallelisierten Kurzzeitanalysen in Verbindung mit der MCA erfolgreich angewandt, um die limitierenden enzymatischen Schritte hinsichtlich der L-Tryptophanbildung ausgehend von Glycerin zu identifizieren. Durch die gezielte genetische Modifikation der Produktionsstämme (Projektpartner der Universität Stuttgart) wurde eine Kontrollverschiebung und damit einhergehend eine Stammverbesserung erzielt. Zudem wurde ein zeitlicher Zusammenhang zwischen dem frühen Produktionseinbruch und ansteigenden mgo-Konzentrationen im Zulaufverfahren zur L-Tryptophanproduktion festgestellt und entsprechende Maßnahmen zur Verlängerung der Produktionsphase vorgeschlagen.

7 Ausblick

Die gewonnenen Informationen bezüglich der L-Tryptophanproduktion in *E. coli* NT1446 sollten zunächst dazu genutzt werden, den Produktionsstamm gemäß den formulierten Handlungsanweisungen genetisch anzupassen. Anschließend bedarf es neuer Prozesscharakterisierungen, um die Effektivität der eingeführten Modifikationen zu analysieren und verifizieren.

Die gemessene mgo-Bildung im Prozess wirkt sich mit hoher Wahrscheinlichkeit negativ auf die Prozessstabilität aus, möglicherweise kann hier durch bioprozesstechnische Eingriffe, wie das Absenken der Glycerinzulaufrate gegen Ende des Prozesses, ein positiver Effekt erzielt werden. Dementsprechend wäre eine Anpassung des Produktionsverfahrens in zukünftigen Arbeiten sinnvoll.

Die schnell fortschreitenden Entwicklungen im Bereich simulativer Methoden zur Abschätzung intrazellulärer Stoffflussverteilungen sollten genutzt und in die MCA-Methodik integriert werden. Beispielsweise könnten zukünftig die Methoden zur thermodynamischen Flussanalyse durch Integration neuer Datenebenen wie Proteom- oder Transkriptominformationen weiter verfeinert und ergänzt werden (Lloyd *et al.*, 2018). Eine mathematische Verknüpfung der Fluxom- und Metabolom- mit Transkriptom- oder Proteomdaten könnte zu einer Vereinfachung der Dateninterpretation beitragen (Tsouka *et al.*, 2021). Um weitere Teile des Stoffwechsels, die nicht direkt mit der Produktbiosynthese verknüpft sind, in die Abschätzungen der MCA miteinbeziehen zu können, sollte eine systematische Erweiterung des Modells angestrebt werden. Moderne Methoden zur systematischen Modellreduktion könnten für diese Zwecke verwendet werden (Ataman & Hatzimanikatis, 2017; Ataman *et al.*, 2017; Tsouka *et al.*, 2021). Mit der Ausweitung und Verfeinerung der computergestützten theoretischen Methoden wird der Bedarf an benötigten Rechenkapazitäten ansteigen.

Aufgrund der großen Relevanz der Daten, die zur Berechnung der Elastizitäten verwendet werden, sollte die Weiterentwicklung in diesem Bereich fokussiert werden. Für die Verfügbarkeit von Informationen zu Metabolit-Enzym-Interaktionen wird aufgrund neuer, fortschrittlicher Methoden in Zukunft eine stetige Verbesserung erwartet (Link *et al.*, 2013; Nikolaev *et al.*, 2016; Piazza *et al.*, 2018; Reznik *et al.*, 2017). Die resultierenden Daten sollten für die Anwendung in der MCA-Methodik gesichtet und genutzt werden.

Die in dieser Arbeit gezeigte Methodik zur systematischen und zielgerichteten Verbesserung mikrobieller Produktionsprozesse könnte weiterhin auf die Herstellung neuer, industriell relevanter Wertstoffe wie beispielsweise anderer Aminosäuren übertragen werden, auch die Analyse nicht nativer, biosynthetischer Stoffwechselwege ist mit der gezeigten Methode möglich.

8 Literaturverzeichnis

- Abdallah, J., Mihoub, M., Gautier, V. & Richarme, G. (2016). The DJ-1 superfamily members YhbO and YajL from *Escherichia coli* repair proteins from glycation by methylglyoxal and glyoxal. *Biochemical and Biophysical Research Communications*, 470(2), 282–286. https://doi.org/10.1016/J.BBRC.2016.01.068
- Aboka, F. O., Yang, H., de Jonge, L. P., Kerste, R., van Winden, W. A., van Gulik, W. M., Hoogendijk, R., Oudshoorn, A. & Heijnen, J. J. (2006). Characterization of an experimental miniature bioreactor for cellular perturbation studies. *Biotechnology and Bioengineering*, 95(6), 1032–1042. https://doi.org/10.1002/bit.21003
- Adamczyk, P. A. & Reed, J. L. (2017). Escherichia coli as a model organism for systems metabolic engineering. Current Opinion in Systems Biology, 6, 80–88. https://doi.org/10.10 16/J.COISB.2017.11.001
- Agre, P., King, L. S., Yasui, M., Guggino, W. B., Ottersen, O. P., Fujiyoshi, Y., Engel, A. & Nielsen, S. (2002). Aquaporin water channels – from atomic structure to clinical medicine. *The Journal of Physiology*, 542(1), 3–16. https://doi.org/10.1113/JPHYSIOL.2002.020 818
- Aiba, S., Imanaka, T. & Tsunekawa, H. (1980). Enhancement of tryptophan production by *Escherichia coli* as an application of genetic engineering. *Biotechnology Letters 1979* 2:12, 2(12), 525–530. https://doi.org/10.1007/BF00134901
- Ajinomoto Co ., I. (2019). Consolidated Results for the third Quarter Ended December 31 2019, 1-2.
- Albermann, C., Ghanegaonkar, S., Lemuth, K., Vallon, T., Reuss, M., Armbruster, W. & Sprenger, G. A. (2008). Biosynthesis of the vitamin E compound δ-tocotrienol in recombinant *Escherichia coli* cells. *ChemBioChem*, 9(15), 2524–2533. https://doi.org/10.1002/cbic.2 00800242
- Almeida, J. R. M., Fávaro, L. C. L. & Quirino, B. F. (2012). Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. *Biotechnology for Biofuels*, 5(1), 48. https://doi.org/10.1186/1754-6834-5-48
- Alper, H., Moxley, J., Nevoigt, E., Fink, G. R. & Stephanopoulos, G. (2006). Engineering yeast transcription machinery for improved ethanol tolerance and production. *Science*, 314(5805), 1565–1568. https://doi.org/10.1126/science.1131969
- Alseekh, S., Aharoni, A., Brotman, Y., Contrepois, K., D'Auria, J., Ewald, J., C. Ewald, J., Fraser, P. D., Giavalisco, P., Hall, R. D., Heinemann, M., Link, H., Luo, J., Neumann, S., Nielsen, J., Perez de Souza, L., Saito, K., Sauer, U., Schroeder, F. C., ... Fernie, A. R. (2021). Mass spectrometry-based metabolomics: a guide for annotation, quantification

and best reporting practices. Nature Methods, 18(7), 747–756. https://doi.org/10.1038/s41592-021-01197-1

- Andersen, B. K. & Von Meyenburg, K. (1977). Charges of Nicotinamide Adenine Nucleotides and Adenylate Energy Charge as Regulatory Parameters of the Metabolism in *Escherichia* coli. The Journal of Biological Chemistry, 252(12), 4151–4156. https://doi.org/10.1016 /S0021-9258(17)40245-6
- Annesley, T. M. (2003). Ion suppression in mass spectrometry. *Clinical chemistry*, 49(7), 1041–4. https://doi.org/10.1373/49.7.1041
- Antranikian, G. (2005). Angewandte Mikrobiologie. Springer-Verlag.
- Ataman, M. & Hatzimanikatis, V. (2015). Heading in the right direction : thermodynamicsbased network analysis and pathway engineering. *Current Opinion in Biotechnology*, 36, 176–182. https://doi.org/10.1016/j.copbio.2015.08.021
- Ataman, M. & Hatzimanikatis, V. (2017). lumpGEM: Systematic generation of subnetworks and elementally balanced lumped reactions for the biosynthesis of target metabolites. *PLoS Computational Biology*, 13(7), 1–21. https://doi.org/10.1371/journal.pcbi.1005513
- Ataman, M., Hernandez Gardiol, D. F., Fengos, G. & Hatzimanikatis, V. (2017). redGEM: Systematic reduction and analysis of genome-scale metabolic reconstructions for development of consistent core metabolic models. *PLoS Computational Biology*, 13(7), 1–22. https://doi.org/10.1371/journal.pcbi.1005444
- Atsumi, S., Wu, T. Y., MacHado, I. M., Huang, W. C., Chen, P. Y., Pellegrini, M. & Liao, J. C. (2010). Evolution, genomic analysis, and reconstruction of isobutanol tolerance in *Escherichia coli. Molecular Systems Biology*, 11(1), 449. https://doi.org/10.1038/MSB .2010.98
- Azuma, S., Tsunekawa, H., Okabe, M., Okamoto, R. & Aiba, S. (1993). Applied Microbiology Biotechnology Hyper-production of L-tryptophan via fermentation with crystallization, 471–476.
- Backman, K., O'Connor, M. J., Maruya, A., Rudd, E., McKay, D., Balakrishnan, R., Radjai, M., Dipasquantonio, V., Shoda, D., Hatch, R. & Venkatasubramanian, K. (1990). Genetic Engineering of Metabolic Pathways Applied to the Production of Phenylalanine. Annals of the New York Academy of Sciences, 589(1), 16–24. https://doi.org/10.1111/J.1749-6 632.1990.TB24231.X
- Baez, A., Cho, K. M. & Liao, J. C. (2011). High-flux isobutanol production using engineered Escherichia coli: A bioreactor study with in situ product removal. Applied Microbiology and Biotechnology, 90(5), 1681–1690. https://doi.org/10.1007/s00253-011-3173-y
- Báez-Viveros, J. L., Flores, N., Juárez, K., Castillo-España, P., Bolivar, F. & Gosset, G. (2007). Metabolic transcription analysis of engineered *Escherichia coli* strains that overproduce

L-phenylalanine. Microbial Cell Factories, 6(1), 1–20. https://doi.org/10.1186/1475-28 59-6-30

- Báez-Viveros, J. L., Osuna, J., Hernández-Chávez, G., Soberón, X., Bolívar, F. & Gosset, G. (2004). Metabolic engineering and protein directed evolution increase the yield of Lphenylalanine synthesized from glucose in *Escherichia coli*. *Biotechnology and Bioengineering*, 87(4), 516–524. https://doi.org/10.1002/bit.20159
- Bailey, J. E., Birnbaum, S., Galazzo, J. L., Khosla, C. & Shanks, J. V. (1990). Strategies and Challenges in Metabolic Engineeringa. Annals of the New York Academy of Sciences, 589(1), 1–15. https://doi.org/10.1111/J.1749-6632.1990.TB24230.X
- Bailey, J. E. (1991). Toward a science of metabolic engineering. *Science*, 252(5013), 1668–1675. https://doi.org/10.1126/science.2047876
- Baneyx, F. (1999). Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology, 60, 411–421. https://doi.org/10.1016/S0958-1669(99)00003-8
- Beck, A. E., Hunt, K. A. & Carlson, R. P. (2018). Measuring Cellular Biomass Composition for Computational Biology Applications. Processes 2018, Vol. 6, Page 38, 6(5), 38. https: //doi.org/10.3390/PR6050038
- Becker, J. & Wittmann, C. (2015). Biotechnologie von Morgen: metabolisch optimierte Zellen für die bio-basierte Produktion von Chemikalien und Treibstoffen, Materialien und Gesundheitsprodukten. Angewandte Chemie, 127(11), 3383–3407. https://doi.org/10.1002 /ange.201409033
- Bellmaine, S., Schnellbaecher, A. & Zimmer, A. (2020). Reactivity and degradation products of tryptophan in solution and proteins. *Free Radical Biology and Medicine*, 160(August), 696–718. https://doi.org/10.1016/j.freeradbiomed.2020.09.002
- Bennett, B. D., Yuan, J., Kimball, E. H. & Rabinowitz, J. D. (2008). Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. *Nature Protocols*, 3(8), 1299–1311. https://doi.org/10.1038/nprot.2008.107
- Berg, J. M., Tymoczko, J. L., Gatto, G. J. & Stryer, L. (2018). Stryer Biochemie. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-54620-8
- Bergter, F. (1985). Wachstum von Mikroorganismen Experimente und Modelle (2. überarbeitete Auflage) (Bd. 25). Gustav Fischer Verlag. https://doi.org/10.1002/JOBM.3620250106
- Berry, A. (1996). Improving production of aromatic compounds in *Escherichia coli* by metabolic engineering. *Trends in Biotechnology*, 14(7), 250–256. https://doi.org/10.1016/0167-77 99(96)10033-0
- Blank, L. M. & Ebert, B. E. (2013). From measurement to implementation of metabolic fluxes. Current Opinion in Biotechnology, 24(1), 13–21. https://doi.org/10.1016/J.COPBIO.20 12.10.019

- Blattner, F. R., Plunkett, G., Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B. & Shao, Y. (1997). The complete genome sequence of *Escherichia coli* K-12. *Science (New York, N.Y.)*, 277(5331), 1453–1462. https://doi.org/10.1126/SCIENCE.277.5331.1453
- Bolten, C. J., Kiefer, P., Letisse, F., Portais, J.-C. & Wittmann, C. (2007). Sampling for Metabolome Analysis of Microorganisms. Analytical Chemistry, 79(10), 3843–3849. https://d oi.org/10.1021/ac0623888
- Bongaerts, J., Raeven, L. & Wubbolts, M. (2001). Metabolic Engineering for Microbial Production of Aromatic Amino. *Metabolic Engineering*, 300, 289–300. https://doi.org/10.1006 /mben.2001.0196
- Booth, I. R. (2005). Glycerol and Methylglyoxal Metabolism. *EcoSal Plus*, 1(2). https://doi.or g/10.1128/ecosalplus.3.4.3
- Botsford, J. L. & DeMoss, R. D. (1971). Catabolite Repression of Tryptophanase in Escherichia coli. Journal of Bacteriology, 105(1), 303–312. https://doi.org/10.1128/JB.105.1.303-31 2.1971
- Boujard, D., Anselme, B., Cullin, C. & Raguénès-Nicol, C. (2014). Zell- und Molekularbiologie im Überblick. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-41761-0
- Braz, V. S., Melchior, K. & Moreira, C. G. (2020). Escherichia coli as a Multifaceted Pathogenic and Versatile Bacterium. Frontiers in Cellular and Infection Microbiology, 10(December), 1–9. https://doi.org/10.3389/fcimb.2020.548492
- Brown, K. D. & Doy, C. H. (1976). Transport and Utilization of the Biosynthetic Intermediate Shikimic Acid in *Escherichia coli.* 428, 550–562.
- Buescher, J. M., Moco, S. & Zamboni, N. (2010). Ultrahigh performance liquid chromatographytandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal Chem., 82(11), 4403–4412. https://doi.org/10.1021/ac1001 01d
- Burns, J. A., Cornish-Bowden, A., Groen, A. K., Heinrich, R., Kacser, H., Porteous, J. W., Rapoport, S. M., Rapoport, T. A., Stucki, J. W., Tager, J. M., Wanders, R. J. & Westerhoff, H. V. (1985). Control analysis of metabolic systems. *Trends in Biochemical Sciences*, 10(1), 16. https://doi.org/10.1016/0968-0004(85)90008-8
- Caligiuri, M. G. & Bauerle, R. (1991). Identification of amino acid residues involved in feedback regulation of the anthranilate synthase complex from *Salmonella typhimurium*. Evidence for an amino-terminal regulatory site. *Journal of Biological Chemistry*, 266(13), 8328– 8335. https://doi.org/10.1016/S0021-9258(18)92979-0
- Canelas, B., Ras, C., Pierick, A., Gulik, W. M. V., Heijnen, J. J., Canelas, A. B., Ras, C., ten Pierick, A., van Gulik, W. M. & Heijnen, J. J. (2011). An in vivo data-driven framework

for classification and quantification of enzyme kinetics and determination of apparent thermodynamic data. *Metabolic Engineering*, 13(3), 294–306. https://doi.org/10.1016/j .ymben.2011.02.005

- Carmona, S. B., Moreno, F., Bolívar, F., Gosset, G. & Escalante, A. (2015). Inactivation of the PTS as a Strategy to Engineer the Production of Aromatic Metabolites in *Escherichia* coli. Journal of molecular microbiology and biotechnology, 25(2-3), 195–208. https://doi .org/10.1159/000380854
- Chan, E.-C., Tsai, H.-L., Chen, S.-L. & Mou, D.-G. (1993). Amplification of the tryptophan operon gene in *Escherichia coli* chromosome to increase l-tryptophan biosynthesis. *Applied Microbiology and Biotechnology*, 40(2-3), 301–305. https://doi.org/10.1007/BF00170384
- Chapman, A. G., Fall, L. & Atkinson, D. E. (1971). Adenylate Energy Charge in Escherichia coli During Growth and Starvation. Journal of Bacteriology, 108(3), 1072–1086.
- Chassagnole, C., Noisommit-Rizzi, N., Schmid, J. W., Mauch, K. & Reuss, M. (2002). Dynamic modeling of the central carbon metabolism of *Escherichia coli*. Biotechnology and Bioengineering, 79(1), 53–73. https://doi.org/10.1002/BIT.10288
- ChemIDplus. (2021). Eintrag zu Tryptophan in der ChemIDplus-Datenbank der United States National Library of Medicine (NLM).
- Chen, L., Chen, M., Ma, C. & Zeng, A. P. (2018). Discovery of feed-forward regulation in L-tryptophan biosynthesis and its use in metabolic engineering of *E. coli* for efficient tryptophan bioproduction. *Metabolic Engineering*, 47, 434–444. https://doi.org/10.1016 /j.ymben.2018.05.001
- Chen, Y., Liu, Y., Ding, D., Cong, L. & Zhang, D. (2018). Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production. Journal of Industrial Microbiology and Biotechnology, 45(5), 357–367. https://doi.org/10.1007/s10295-018-2 020-x
- Cheng, L. K., Wang, J., Xu, Q. Y., Xie, X. X., Zhang, Y. J., Zhao, C. G. & Chen, N. (2012). Effect of feeding strategy on L-tryptophan production by recombinant *Escherichia coli*. Annals of Microbiology, 62(4), 1625–1634. https://doi.org/10.1007/s13213-012-0419-6
- Cheng, L. K., Wang, J., Xu, Q. Y., Zhao, C. G., Shen, Z. Q., Xie, X. X. & Chen, N. (2013). Strategy for pH control and pH feedback-controlled substrate feeding for high-level production of L-tryptophan by *Escherichia coli*. World journal of microbiology {\&} biotechnology, 29(5), 883–890. https://doi.org/10.1007/S11274-012-1243-7
- Chmiel, H., Takors, R. & Weuster-Botz, D. (2018). *Bioprozesstechnik* (4. Auflage). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-54042-8
- Choi, Y.-M., Choi, D.-H., Lee, Y. Q., Koduru, L., Lewis, N. E., Lakshmanan, M. & Lee, D.-Y. (2022). Mitigating biomass composition uncertainties in flux balance analysis using ensemble representations. *bioRxiv*, 652040. https://doi.org/10.1101/652040

- Cintolesi, A., Clomburg, J. M., Rigou, V., Zygourakis, K. & Gonzalez, R. (2012). Quantitative analysis of the fermentative metabolism of glycerol in *Escherichia coli*. *Biotechnology* and *Bioengineering*, 109(1), 187–198. https://doi.org/10.1002/bit.23309
- Cooper, R. A. (1984). Metabolism of methylglyoxal in microorganisms. Annual Review of Microbiology, 38, 49–68. https://doi.org/10.1146/ANNUREV.MI.38.100184.000405
- Cooper, R. A. & Anderson, A. (1970). The Formation and Catabolism of Methylglyoxal during Glycolysis in *Escherichia coli. FEBS Letters*, 11(4).
- Datsenko, K. A. & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences, 97(12), 6640–6645. https://doi.org/10.1073/PNAS.120163297
- Davidi, D. & Milo, R. (2017). Lessons on enzyme kinetics from quantitative proteomics. Current Opinion in Biotechnology, 46, 81–89. https://doi.org/10.1016/J.COPBIO.2017.02.007
- De Martino, D., Capuani, F., Mori, M., De Martino, A. & Marinari, E. (2013). Counting and correcting thermodynamically infeasible flux cycles in genome-scale metabolic networks. *Metabolites*, 3(4), 946–966. https://doi.org/10.3390/METABO3040946
- Debye, P. & Hückel, E. (1923). Zur Theorie der Elektrolyte. *Physikalische Zeitschrift*, 9(11), 185–206.
- Desouki, A. A., Jarre, F., Gelius-Dietrich, G. & Lercher, M. J. (2015). CycleFreeFlux: efficient removal of thermodynamically infeasible loops from flux distributions. *Bioinformatics*, 31(13), 2159–2165. https://doi.org/10.1093/BIOINFORMATICS/BTV096
- Donarski, J. A., Roberts, D. P. & Charlton, A. J. (2010). Quantitative NMR spectroscopy for the rapid measurement of methylglyoxal in manuka honey. *Analytical Methods*, 2(10), 1479–1483. https://doi.org/10.1039/C0AY00125B
- Dong, X., Quinn, P. J. & Wang, X. (2011). Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of l-threonine. Biotechnology Advances, 29(1), 11–23. https://doi.org/10.1016/J.BIOTECHADV.2010.07.009
- Doroshenko, V., Airich, L., Vitushkina, M., Kolokolova, A., Livshits, V. & Mashko, S. (2007). YddG from *Escherichia coli* promotes export of aromatic amino acids. *FEMS microbio-logy letters*, 275(2), 312–318. https://doi.org/10.1111/J.1574-6968.2007.00894.X
- Dunlop, M. J., Dossani, Z. Y., Szmidt, H. L., Chu, H. C., Lee, T. S., Keasling, J. D., Hadi, M. Z. & Mukhopadhyay, A. (2011). Engineering microbial biofuel tolerance and export using efflux pumps. *Molecular Systems Biology*, 7(1), 487. https://doi.org/10.1038/MSB.2011 .21
- Dunn, W. B. (2011). Mass Spectrometry in Systems Biology: An Introduction. Methods in Enzymology, 500, 15–35. https://doi.org/10.1016/B978-0-12-385118-5.00002-5

- Ebrahim, A., Lerman, J. A., Palsson, B. O. & Hyduke, D. R. (2013). COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Systems Biology, 7. https://doi.o rg/10.1186/1752-0509-7-74
- Edwards, J. S. & Palsson, B. O. (2000). The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proceedings of the National Academy of Sciences of the United States of America, 97(10), 5528–5533. https://doi.org/10.107 3/PNAS.97.10.5528
- Escalante, A., Calderón, R., Valdivia, A., de Anda, R., Hernández, G., Ramírez, O. T., Gosset, G. & Bolívar, F. (2010). Metabolic engineering for the production of shikimic acid in an evolved *Escherichia coli* strain lacking the phosphoenolpyruvate: Carbohydrate phosphotransferase system. *Microbial Cell Factories*, 9(1), 1–12. https://doi.org/10.1186/14 75-2859-9-21
- Feist, A. M., Henry, C. S., Reed, J. L., Krummenacker, M., Joyce, A. R., Karp, P. D., Broadbelt, L. J., Hatzimanikatis, V. & Palsson, B. Ø. (2007). A genome-scale metabolic reconstruction for *Escherichia coli* K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. *Molecular systems biology*, 1990(121), 1–18. https://doi.org/10.1038/msb4 100155
- Feist, A. M. & Palsson, B. O. (2010). The biomass objective function. Current Opinion in Microbiology, 13(3), 344–349. https://doi.org/10.1016/J.MIB.2010.03.003
- Ferguson, G. P., Tötemeyer, S., MacLean, M. J. & Booth, I. R. (1998). Methylglyoxal production in bacteria: suicide or survival? Archives of microbiology, 170(4), 209–218. https://doi.o rg/10.1007/S002030050635
- Fleming, R. M., Thiele, I. & Nasheuer, H. P. (2009). Quantitative assignment of reaction directionality in constraint-based models of metabolism: application to *Escherichia coli*. *Biophysical chemistry*, 145(2-3), 47–56. https://doi.org/10.1016/J.BPC.2009.08.007
- Fleming, R. M. T. & Thiele, I. (2011). von Bertalanffy 1.0: a COBRA toolbox extension to thermodynamically constrain metabolic models. *Bioinformatics*, 27(1), 142. https://do i.org/10.1093/BIOINFORMATICS/BTQ607
- Fleming, T., Rabbani, N. & Thornalley, P. J. (2009). Preparation of Nucleotide Advanced Glycation Endproducts—Imidazopurinone Adducts Formed by Glycation of Deoxyguanosine with Glyoxal and Methylglyoxal. (1126), 280–282. https://doi.org/10.1196/annals.1433 .037
- Flores, N., Xiao, J., Berry, A., Bolivar, F. & Valle, F. (1996). Pathway engineering for the production of aromatic compounds in *Escherichia coli*. Nature biotechnology, 14(5). htt ps://doi.org/10.1038/NBT0596-620
- Flores, S., Gosset, G., Flores, N., De Graaf, A. A. & Bolívar, F. (2002). Analysis of carbon metabolism in *Escherichia coli* strains with an inactive phosphotransferase system by

(13)C labeling and NMR spectroscopy. *Metabolic engineering*, 4(2), 124–137. https://do i.org/10.1006/MBEN.2001.0209

- Fong, S. S., Joyce, A. R. & Palsson, B. (2005). Parallel adaptive evolution cultures of *Escherichia coli* lead to convergent growth phenotypes with different gene expression states. *Genome Research*, 15(10), 1365–1372. https://doi.org/10.1101/gr.3832305
- Foster, P. L. & Cairnst, J. (1982). Random components in mutagenesis. 299(September).
- Freedberg, W. B., Kistler, W. S. & Lin, E. C. (1971). Lethal synthesis of methylglyoxal by *Escherichia coli* during unregulated glycerol metabolism. *Journal of Bacteriology*, 108(1), 137–144. https://doi.org/10.1128/jb.108.1.137-144.1971
- Fuchs, G. (2014). Allgemeine Mikrobiologie. Georg Thieme Verlag.
- García Sánchez, C. E. & Torres Sáez, R. G. (2014). Comparison and analysis of objective functions in flux balance analysis. *Biotechnology Progress*, 30(5), 985–991. https://doi.org/1 0.1002/btpr.1949
- Garcia-Ochoa, F., Gomez, E., Santos, V. E. & Merchuk, J. C. (2010). Oxygen uptake rate in microbial processes: An overview. *Biochemical Engineering Journal*, 49(3), 289–307. https://doi.org/10.1016/J.BEJ.2010.01.011
- Gerigk, M. R., Maass, D., Kreutzer, A., Sprenger, G., Bongaerts, J., Wubbolts, M. & Takors, R. (2002). Enhanced pilot-scale fed-batch L-phenylalanine production with recombinant *Escherichia coli* by fully integrated reactive extraction. *Bioprocess and Biosystems En*gineering 2002 25:1, 25(1), 43–52. https://doi.org/10.1007/S00449-002-0280-2
- Gombert, A. K. & Nielsen, J. (2000). Mathematical modelling of metabolism. Current opinion in biotechnology, 11(2), 180–186. https://doi.org/10.1016/S0958-1669(00)00079-3
- Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G. & Kell, D. B. (2004). Metabolomics by numbers: acquiring and understanding global metabolite data. *Trends in Biotechnology*, 22(5), 245–252. https://doi.org/10.1016/J.TIBTECH.2004.03.007
- Gottlieb, K., Albermann, C. & Sprenger, G. A. (2014). Improvement of L-phenylalanine production from glycerol by recombinant *Escherichia coli* strains: The role of extra copies of glpK, glpX, and tktA genes. Microbial Cell Factories, 13(1), 1–16. https://doi.org/10.11 86/s12934-014-0096-1
- Grant, G. A., Schuller, D. J., Banaszak, L. J. & Louis, S. (1996). A model for the regulation of D-3-phosphoglycerate dehydrogenase, a Vmox-type allosteric enzyme, 34–41.
- Gu, P., Yang, F., Li, F., Liang, Q. & Qi, Q. (2013). Knocking out analysis of tryptophan permeases in *Escherichia coli* for improving L-tryptophan production. *Applied Microbiology* and Biotechnology, 97(15), 6677–6683. https://doi.org/10.1007/S00253-013-4988-5/FI GURES/3

- Guest, J. R. (1979). Anaerobic growth of EEscherichia coli K12 with fumarate as terminal electron acceptor. Genetic studies with menaquinone and fluoroacetate-resistant mutants. Journal of general microbiology, 115(2), 259–271. https://doi.org/10.1099/00221287-11 5-2-259
- Gulevich, A. Y., Biryukova, I., Zimenkov, D., Skorokhodova, A. & Kivero, A. (2004). Method for producing L-amino acids using bacteria of the Enterobacteriaceae family. *Patent*.
- Guo, A. C., Jewison, T., Wilson, M., Liu, Y., Knox, C., Djoumbou, Y., Lo, P., Mandal, R., Krishnamurthy, R. & Wishart, D. S. (2013). ECMDB: The *E. coli* Metabolome Database. *Nucleic Acids Research*, 41(D1), D625–D630. https://doi.org/10.1093/NAR/GKS992
- Hagewood, B. T., Ganduri, Y. L. & Datta, P. (1994). Functional analysis of the tdcABC promoter of *Escherichia coli*: roles of TdcA and TdcR. *Journal of bacteriology*, 176(20), 6214–6220. https://doi.org/10.1128/JB.176.20.6214-6220.1994
- Hayashi, S. & Lin, E. C. C. (1965). Capture of glycerol by cells of Escherichia coli. Biochimica et Biophysica Acta (BBA) - Biophysics including Photosynthesis, 94(2), 479–487. https: //doi.org/10.1016/0926-6585(65)90056-7
- Heinrich, R. & Rapoport, T. A. (1974). A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. *European journal of biochemistry*, 42(1), 89–95. https://doi.org/10.1111/J.1432-1033.1974.TB03318.X
- Heller, K. B., Lin, E. C. C. & Hastings Wilson, T. (1980). Substrate specificity and transport properties of the glycerol facilitator of *Escherichia coli. Journal of Bacteriology*, 144(1), 274–278.
- Hénin, J., Tajkhorshid, E., Schulten, K. & Chipot, C. (2008). Diffusion of Glycerol through Escherichia coli Aquaglyceroporin GlpF. Biophysical Journal, 94(3), 832–839. https://d oi.org/10.1529/BIOPHYSJ.107.115105
- Henry, C. S., Broadbelt, L. J. & Hatzimanikatis, V. (2007). Thermodynamics-based metabolic flux analysis. *Biophysical Journal*, 92(5), 1792–1805. https://doi.org/10.1529/biophysj .106.093138
- Hiller, J., Franco-Lara, E., Papaioannou, V. & Weuster-Botz, D. (2007a). Fast sampling and quenching procedures for microbial metabolic profiling. *Biotechnology Letters*, 29(8), 1161–1167. https://doi.org/10.1007/s10529-007-9383-9
- Hiller, J., Franco-Lara, E. & Weuster-Botz, D. (2007b). Metabolic profiling of *Escherichia coli* cultivations: Evaluation of extraction and metabolite analysis procedures. *Biotechnology Letters*, 29(8), 1169–1178. https://doi.org/10.1007/S10529-007-9384-8/FIGURES/8
- Hofmann, K. H. & Babel, W. (1983). Methylglyoxal ein toxisches Fermentationsprodukt. Acta Biotechnologica, 3(1), 21–25. https://doi.org/10.1002/abio.370030105

- Hopper, D. J. & Cooper, R. A. (1971). The regulation of *Escherichia coli* methylglyoxal synthase; a new control site in glycolysis? *FEBS Letters*, 13(4), 213–216. https://doi.org/10.1016 /0014-5793(71)80538-0
- Hove-Jensen, B. (1985). Cloning and characterization of the prs gene encoding phosphoribosylpyrophosphate synthetase of Escherichia coli. MGG Molecular General Genetics, 201(2), 269–276. https://doi.org/10.1007/BF00425670
- Hu, C., Jiang, P., Xu, J., Wu, Y. & Huang, W. (2003). Mutation analysis of the feedback inhibition site of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of *Escherichia coli. Journal of Basic Microbiology*, 43(5), 399–406. https://doi .org/10.1002/jobm.200310244
- Hyduke, D., Hyduke, D., Schellenberger, J., Que, R., Fleming, R., Thiele, I., Orth, J., Feist, A., Zielinski, D., Bordbar, A., Lewis, N., Rahmanian, S., Kang, J. & Palsson, B. (2011). COBRA Toolbox 2.0. Protocol Exchange, (October). https://doi.org/10.1038/protex.20 11.234
- Ikeda, M. (2006). Towards bacterial strains overproducing L -tryptophan and other aromatics by metabolic engineering. Applied Microbiology and Biotechnology, 69(6), 615–626. http s://doi.org/10.1007/s00253-005-0252-y
- Ikeda, M., Nakanishi, K., Kino, K. & Katsumata, R. (1994). Fermentative Production of Tryptophan by a Stable Recombinant Strain of Corynebacterium glutamicum with a Modified Serine-biosynthetic Pathway. Bioscience, Biotechnology, and Biochemistry, 58(4), 674– 678. https://doi.org/10.1271/bbb.58.674
- Jankowski, M. D., Henry, C. S., Broadbelt, L. J. & Hatzimanikatis, V. (2008). Group contribution method for thermodynamic analysis of complex metabolic networks. *Biophysical journal*, 95(3), 1487–1499. https://doi.org/10.1529/BIOPHYSJ.107.124784
- Janning, W. & Knust, E. (2004). Genetik (Allgemeine Genetik Molekulare Genetik Entwicklungsgenetik) (1. Auflage). Georg Thieme Verlag.
- Jenzsch, M., Gnoth, S., Beck, M., Kleinschmidt, M., Simutis, R. & Lübbert, A. (2006). Openloop control of the biomass concentration within the growth phase of recombinant protein production processes. *Journal of Biotechnology*, 127(1), 84–94. https://doi.org/10.1016 /J.JBIOTEC.2006.06.004
- Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J. & Yang, S. (2015). Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Applied and Environmental Microbiology, 81(7), 2506–2514. https://doi.org/10.1128/AEM.04023-14
- Jing, K., Tang, Y., Yao, C., del Rio-Chanona, E. A., Ling, X. & Zhang, D. (2018). Overproduction of L-tryptophan via simultaneous feed of glucose and anthranilic acid from recombinant *Escherichia coli* W3110: Kinetic modeling and process scale-up. *Biotechnology and Bioengineering*, 115(2), 371–381. https://doi.org/10.1002/bit.26398

- Johnson, I. S. (1983). Human Insulin from Recombinant DNA Technology. Science, 219, 632– 637. https://doi.org/10.2307/1690508
- Joint WHO/FAO/UNU Expert Consultation. (2007). Protein and amino acid requirements in human nutrition: report of a joint (Techn. Ber.).
- Kacser, H. & Burns, J. A. (1973). The control of flux.
- Kacser, H., Burns, J. A. & Fell, D. A. (1995). The Control of Flux: 21 Years On The control of flux. *Pharmaceuticals*, 23(1995), 341–366.
- Kadner, R. J., Murphy, G. P. & Stephens, C. M. (1992). Two mechanisms for growth inhibition by elevated transport of sugar phosphates in *Escherichia coli. Journal of General Microbiology*, 138(10), 2007–2014. https://doi.org/10.1099/00221287-138-10-2007/CITE/RE FWORKS
- Karp, P. D., Ong, W. K., Paley, S., Billington, R., Caspi, R., Fulcher, C., Kothari, A., Krummenacker, M., Latendresse, M., Midford, P. E., Subhraveti, P., Gama-Castro, S., Muñiz-Rascado, L., Bonavides-Martinez, C., Santos-Zavaleta, A., Mackie, A., Collado-Vides, J., Keseler, I. M. & Paulsen, I. (2018). The EcoCyc Database. *EcoSal Plus*, 8(1). https://d oi.org/10.1128/ECOSALPLUS.ESP-0006-2018
- Keseler, I. M., Mackie, A., Santos-Zavaleta, A., Billington, R., Bonavides-Martínez, C., Caspi, R., Fulcher, C., Gama-Castro, S., Kothari, A., Krummenacker, M., Latendresse, M., Muñiz-Rascado, L., Ong, Q., Paley, S., Peralta-Gil, M., Subhraveti, P., Velázquez-Ramírez, D. A., Weaver, D., Collado-Vides, J., ... Karp, P. D. (2017). The Ecocyc database: reflecting new knowledge about *Escherichia coli* K-12. *Nucleic Acids Research*, 45(D1), D543–D550. https://doi.org/10.1093/NAR/GKW1003
- Kim, B., Binkley, R., Kim, H. U. & Lee, S. Y. (2018). Metabolic engineering of Escherichia coli for the enhanced production of l-tyrosine. Biotechnology and Bioengineering, 115(10), 2554–2564. https://doi.org/10.1002/BIT.26797
- Kim, S. C., Min, B. E., Hwang, H. G., Seo, S. W. & Jung, G. Y. (2015). Pathway optimization by re-design of untranslated regions for L-tyrosine production in *Escherichia coli. Scientific Reports 2015 5:1*, 5(1), 1–8. https://doi.org/10.1038/srep13853
- Kirk, T. V., Marques, M. P., Radhakrishnan, A. N. P. & Szita, N. (2016). Quantification of the oxygen uptake rate in a dissolved oxygen controlled oscillating jet-driven microbioreactor. Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986), 91(3), 823–831. https://doi.org/10.1002/jctb.4833
- Koning, W. d. & Dam, K. v. (1992). A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Analytical Biochemistry, 204(1), 118–123. https://doi.org/10.1016/0003-2697(92)90149-2
- Kresnowati, M. T., Suarez-Mendez, C. M., van Winden, W. A., van Gulik, W. M. & Heijnen, J. J. (2008). Quantitative physiological study of the fast dynamics in the intracellular

pH of Saccharomyces cerevisiae in response to glucose and ethanol pulses. Metabolic Engineering, 10(1), 39–54. https://doi.org/10.1016/j.ymben.2007.10.001

- Kristoficova, I., Vilhena, C., Behr, S. & Jung, K. (2018). BtsT, a novel and specific pyruvate/H + symporter in *Escherichia coli. Journal of Bacteriology*, 200(2). https://doi.org/10.11 28/JB.00599-17
- Krömer, J. O., Nielsen, L. K. & Blank, L. M. (2014). Metabolic Flux Analysis Methods and Protocols (Bd. 1191). Springer New York. https://doi.org/10.1007/978-1-4939-1170-7
- Kubota, T., Tanaka, Y., Takemoto, N., Hiraga, K., Yukawa, H. & Inui, M. (2015). Identification and expression analysis of a gene encoding a shikimate transporter of *Corynebacterium* glutamicum. Microbiology (United Kingdom), 161(2), 254–263. https://doi.org/10.1099 /mic.0.083733-0
- Kümmel, A., Panke, S. & Heinemann, M. (2006). Putative regulatory sites unraveled by networkembedded thermodynamic analysis of metabolome data. *Molecular Systems Biology*, 2, 1–10. https://doi.org/10.1038/msb4100074
- Lara, A. R., Taymaz-Nikerel, H., Mashego, M. R., Van Gulik, W. M., Heijnen, J. J., Ramírez, O. T. & Van Winden, W. A. (2009). Fast dynamic response of the fermentative metabolism of *Escherichia coli* to aerobic and anaerobic glucose pulses. *Biotechnology and Bioengineering*, 104(6), 1153–1161. https://doi.org/10.1002/BIT.22503
- Lee, C. & Park, C. (2017). Bacterial responses to glyoxal and methylglyoxal: Reactive electrophilic species. International Journal of Molecular Sciences, 18(1). https://doi.org/10.3 390/ijms18010169
- Leuchtenberger, W. (2008). Amino Acids– Technical Production and Use. *Biotechnology* (S. 465–502). Wiley-VCH Verlag GmbH. https://doi.org/10.1002/9783527620883.ch14a
- Leuchtenberger, W., Huthmacher, K. & Drauz, K. (2005). Biotechnological production of amino acids and derivatives: current status and prospects. Applied Microbiology and Biotechnology, 69(1), 1–8. https://doi.org/10.1007/s00253-005-0155-y
- Lim, P. G. & Mateles, R. I. (1963). Tryptophan- and indole-excreting bacterial mutants. Science (New York, N.Y.), 140(3565), 388–389. https://doi.org/10.1126/SCIENCE.140.3565.388
- Lindon, J. C. & Nicholson, J. K. (2008). Analytical technologies for metabonomics and metabolomics, and multi-omic information recovery. TrAC - Trends in Analytical Chemistry, 27(3), 194–204. https://doi.org/10.1016/j.trac.2007.08.009
- Link, H. (2009). Rapid Media Transition for Metabolic Control Analysis of Fed-Batch Fermentation Processes (Diss.). Technische Universität München.
- Link, H., Anselment, B. & Weuster-Botz, D. (2008). Leakage of adenylates during cold methanol/glycerol quenching of *Escherichia coli*. Metabolomics, 4(3), 240–247. https://doi.or g/10.1007/S11306-008-0114-6

- Link, H., Anselment, B. & Weuster-Botz, D. (2010). Rapid media transition: An experimental approach for steady state analysis of metabolic pathways. *Biotechnology Progress*, 26(1), 1–10. https://doi.org/10.1002/btpr.290
- Link, H., Buescher, J. M. & Sauer, U. (2012). Targeted and quantitative metabolomics in bacteria. Methods in Microbiology, 39, 127–150. https://doi.org/10.1016/B978-0-08-099387 -4.00005-3
- Link, H., Kochanowski, K. & Sauer, U. (2013). Systematic identification of allosteric proteinmetabolite interactions that control enzyme activity in vivo. Nature Biotechnology, 31(4), 357–361. https://doi.org/10.1038/nbt.2489
- Liu, L., Bilal, M., Luo, H., Zhao, Y. & Iqbal, H. M. N. (2019). Metabolic engineering and fermentation process strategies for L-tryptophan production by *Escherichia coli*. Processes, 7(4). https://doi.org/10.3390/pr7040213
- Liu, L., Duan, X. & Wu, J. (2016a). L-Tryptophan Production in *Escherichia coli* Improved by Weakening the Pta-AckA Pathway. *PLOS ONE*, 11(6), e0158200. https://doi.org/10.13 71/JOURNAL.PONE.0158200
- Liu, L., Duan, X. & Wu, J. (2016b). Modulating the direction of carbon flow in *Escherichia coli* to improve l-tryptophan production by inactivating the global regulator FruR. *Journal* of biotechnology, 231, 141–148. https://doi.org/10.1016/J.JBIOTEC.2016.06.008
- Liu, Q., Cheng, Y., Xie, X., Xu, Q. & Chen, N. (2012). Modification of tryptophan transport system and its impact on production of l-tryptophan in *Escherichia coli*. Bioresource Technology, 114, 549–554. https://doi.org/10.1016/J.BIORTECH.2012.02.088
- Liu, S., Xu, J. Z. & Zhang, W. G. (2022). Advances and prospects in metabolic engineering of *Escherichia coli* for L-tryptophan production. World Journal of Microbiology and Biotechnology 2021 38:2, 38(2), 1–16. https://doi.org/10.1007/S11274-021-03212-1
- Liu, T., Liang, Y. & Huang, L. (2021). Development and Delivery Systems of mRNA Vaccines. Frontiers in Bioengineering and Biotechnology, 9(July), 1–10. https://doi.org/10.3389/f bioe.2021.718753
- Liu, Y., Yuan, H., Ding, D., Dong, H., Wang, Q. & Zhang, D. (2021). Establishment of a Biosensor-based High-Throughput Screening Platform for Tryptophan Overproduction. ACS Synthetic Biology, 10(6), 1373–1383. https://doi.org/10.1021/acssynbio.0C00647
- Lloyd, C. J., Ebrahim, A., Yang, L., King, Z. A., Catoiu, E., O'Brien, E. J., Liu, J. K. & Palsson, B. O. (2018). COBRAme: A computational framework for genome-scale models of metabolism and gene expression. *PLoS Computational Biology*, 14(7), 1–14. https://d oi.org/10.1371/journal.pcbi.1006302
- Lu, N., Zhang, B., Cheng, L., Wang, J., Zhang, S., Fu, S., Xiao, Y. & Liu, H. (2017). Gene modification of *Escherichia coli* and incorporation of process control to decrease acetate

accumulation and increase L-tryptophan production. Annals of Microbiology, 67(8), 567–576. https://doi.org/10.1007/S13213-017-1289-8

- Lu, W., Clasquin, M. F., Melamud, E., Amador-Noguez, D., Caudy, A. A. & Rabinowitz, J. D. (2010). Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer. *Analytical chemistry*, 82(8), 3212. https://doi.org/10.1021/AC902837X
- MacLean, M. J., Ness, L. S., Ferguson, G. P. & Booth, I. R. (1998). The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in *Escherichia coli. Molecular Microbiology*, 27(3), 563–571. https://doi.org/10.1046/J .1365-2958.1998.00701.X
- Mahadevan, R. A. & Schilling, C. H. (2003). The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. *Metabolic Engineering*, 5(4), 264–276. https://doi.org/10.1016/J.YMBEN.2003.09.002
- Mashego, M. R., Rumbold, K., De Mey, M., Vandamme, E., Soetaert, W. & Heijnen, J. J. (2007a). Microbial metabolomics: past, present and future methodologies. *Biotechnology Letters*, 29(1), 1–16. https://doi.org/10.1007/s10529-006-9218-0
- Mashego, M. R., Van Gulik, W. M. & Heijnen, J. J. (2007b). Metabolome dynamic responses of Saccharomyces cerevisiae to simultaneous rapid perturbations in external electron acceptor and electron donor. FEMS Yeast Research, 7(1), 48–66. https://doi.org/10.11 11/J.1567-1364.2006.00144.X
- Mavrommati, M., Daskalaki, A., Papanikolaou, S. & Aggelis, G. (2022). Adaptive laboratory evolution principles and applications in industrial biotechnology. *Biotechnology Advances*, 54(July), 107795. https://doi.org/10.1016/j.biotechadv.2021.107795
- Mazumdar, S., Clomburg, J. M. & Gonzalez, R. (2010). Escherichia coli Strains Engineered for Homofermentative Production of D-Lactic Acid from Glycerol. Applied and Environmental Microbiology, 76(13), 4327–4336. https://doi.org/10.1128/AEM.00664-10
- McCandliss, R. J., Poling, M. D. & Herrmann, K. M. (1978). 3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase. Purification and molecular characterization of the phenylalaninesensitive isoenzyme from *Escherichia coli. Journal of Biological Chemistry*, 253(12), 4259–4265. https://doi.org/10.1016/s0021-9258(17)34713-0
- McCloskey, D., Xu, S., Sandberg, T. E., Brunk, E., Hefner, Y., Szubin, R., Feist, A. M. & Palsson, B. O. (2018). Adaptation to the coupling of glycolysis to toxic methylglyoxal production in *tpiA* deletion strains of *Escherichia coli* requires synchronized and counterintuitive genetic changes. *Metabolic Engineering*, 48, 82–93. https://doi.org/10.1016/j.ymben.20 18.05.012

- Megchelenbrink, W., Huynen, M. & Marchiori, E. (2014). optGpSampler: An improved tool for uniformly sampling the solution-space of genome-scale metabolic networks. *PLoS ONE*, 9(2). https://doi.org/10.1371/journal.pone.0086587
- Meza, E., Becker, J., Bolivar, F., Gosset, G. & Wittmann, C. (2012). Consequences of phosphoenolpyruvate:sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in *Escherichia coli*. *Microbial cell factories*, 11(1), 1–13. https://doi.org/10.1186/1475-2859-11-127
- Miller, J. E., Backman, K. C., O'Connor, M. J. & Hatch, R. T. (1987). Production of phenylalanine and organic acids by phospho enolpyruvate carboxylase-deficient mutants of *Escherichia coli. Journal of Industrial Microbiology*, 2(3), 143–149. https://doi.org/10.1 007/BF01569421
- Monod, J. (1949). The Growth of Bacterial Cultures. Annual Review of Microbiology, 3(1), 371–394. https://doi.org/10.1146/annurev.mi.03.100149.002103
- Moussatova, A., Kandt, C., O'Mara, M. L. & Tieleman, D. P. (2008). ATP-binding cassette transporters in *Escherichia coli*. *Biochimica et Biophysica Acta (BBA) - Biomembranes*, 1778(9), 1757–1771. https://doi.org/10.1016/J.BBAMEM.2008.06.009
- Mundhada, H., Schneider, K., Christensen, H. B. & Nielsen, A. T. (2016). Engineering of high yield production of L-serine in *Escherichia coli*. *Biotechnology and Bioengineering*, 113(4), 807–816. https://doi.org/10.1002/BIT.25844
- Mundhada, H., Seoane, J. M., Schneider, K., Koza, A., Christensen, H. B., Klein, T., Phaneuf, P. V., Herrgard, M., Feist, A. M. & Nielsen, A. T. (2017). Increased production of L-serine in *Escherichia coli* through Adaptive Laboratory Evolution. *Metabolic Engineering*, 39, 141–150. https://doi.org/10.1016/J.YMBEN.2016.11.008
- Munk, K. (2001). Grundstudium Biologie Mikrobiologie. Spektrum, Akad. Verl.
- Nasution, U., van Gulik, W. M., Proell, A., van Winden, W. A. & Heijnen, J. J. (2006). Generating short-term kinetic responses of primary metabolism of *Penicillium chrysogenum* through glucose perturbation in the bioscope mini reactor. *Metabolic Engineering*, 8(5), 395–405. https://doi.org/10.1016/J.YMBEN.2006.04.002
- Nasution, U., van Gulik, W. M., Ras, C., Proell, A. & Heijnen, J. J. (2008). A metabolome study of the steady-state relation between central metabolism, amino acid biosynthesis and penicillin production in *Penicillium chrysogenum*. *Metabolic Engineering*, 10(1), 10– 23. https://doi.org/10.1016/J.YMBEN.2007.07.001
- Nielsen, J. (2001). Metabolic engineering. Applied Microbiology and Biotechnology 2001 55:3, 55(3), 263–283. https://doi.org/10.1007/s002530000511
- Nielsen, J. (1997). Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates. *The Biochemical journal*, 321(Pt 1), 133–138. https://doi .org/10.1042/BJ3210133

- Nielsen, J., Fussenegger, M., Keasling, J., Lee, S. Y., Liao, J. C., Prather, K. & Palsson, B. (2014). Engineering synergy in biotechnology. *Nature Chemical Biology 2014 10:5*, 10(5), 319–322. https://doi.org/10.1038/nchembio.1519
- Nikel, P. I., Pettinari, M. J., Galvagno, M. A. & Méndez, B. S. (2008). Poly(3-hydroxybutyrate) synthesis from glycerol by a recombinant *Escherichia coli arcA* mutant in fed-batch microaerobic cultures. *Applied Microbiology and Biotechnology*, 77(6), 1337–1343. https ://doi.org/10.1007/s00253-007-1255-7
- Nikolaev, Y. V., Kochanowski, K., Link, H., Sauer, U. & Allain, F. H. (2016). Systematic Identification of Protein-Metabolite Interactions in Complex Metabolite Mixtures by Ligand-Detected Nuclear Magnetic Resonance Spectroscopy. *Biochemistry*, 55(18), 2590–2600. https://doi.org/10.1021/ACS.BIOCHEM.5B01291
- Niu, H., Li, R., Liang, Q., Qi, Q., Li, Q. & Gu, P. (2019). Metabolic engineering for improving l-tryptophan production in *Escherichia coli. Journal of Industrial Microbiology and Biotechnology*, 46(1), 55–65. https://doi.org/10.1007/s10295-018-2106-5
- Noack, S. & Wiechert, W. (2014). Quantitative metabolomics: a phantom? Trends in Biotechnology, 32(5), 238–244. https://doi.org/10.1016/J.TIBTECH.2014.03.006
- Noor, E. (2018). Removing both Internal and Unrealistic Energy-Generating Cycles in Flux Balance Analysis. *Molecular Networks*. https://doi.org/10.48550/arXiv.1803.04999
- Oldham, M. L., Davidson, A. L. & Chen, J. (2008). Structural insights into ABC transporter mechanism. Current Opinion in Structural Biology, 18(6), 726–733. https://doi.org/10 .1016/J.SBI.2008.09.007
- Oldiges, M. & Takors, R. (2005). Applying Metabolic Profiling Techniques for Stimulus-Response Experiments: Chances and Pitfalls. Springer, Berlin, Heidelberg. https://doi.org/10.100 7/b98913
- Orth, J. D., Conrad, T. M., Na, J., Lerman, J. A., Nam, H., Feist, A. M. & Palsson, B. Ø. (2011). A comprehensive genome-scale reconstruction of *Escherichia coli* metabolism– 2011. *Molecular systems biology*, 7(1), 535. https://doi.org/10.1038/msb.2011.65
- Orth, J. D., Thiele, I., ØPalsson, B., Palsson, B. Ø., Ø Palsson, B. & Palsson, B. Ø. (2010). What is flux balance analysis? *Nature Publishing Group*, 28(3), 245–248. https://doi.or g/10.1038/nbt.1614
- Ozyamak, E., Black, S. S., Walker, C. A., MacLean, M. J., Bartlett, W., Miller, S. & Booth, I. R. (2010). The critical role of S-lactoylglutathione formation during methylglyoxal detoxification in *Escherichia coli*. *Molecular Microbiology*, 78(6), 1577–1590. https://do i.org/10.1111/j.1365-2958.2010.07426.x
- Pabst, M. J., Kuhn, J. C. & Somerville, R. L. (1973). Feedback regulation in the anthranilate aggregate from wild type and mutant strains of *Escherichia coli*. Journal of Biological Chemistry, 248(3), 901–914. https://doi.org/10.1016/s0021-9258(19)44352-4

- Pagliaro, M. & Rossi, M. (2008). Glycerol: Properties and Production. The Future of Glycerol: New Uses of a Versatile Raw Material (S. 1–17). https://doi.org/10.1039/978184755830 5-00001
- Palsson, B., Price, N. D., Famili, I. & Beard, D. A. (2002). Extreme pathways and Kirchhoff's second law. *Biophysical journal*, 83(5), 2879–2882. https://doi.org/10.1016/S0006-3495 (02)75297-1
- Pan, J. G., Rhee, J. S. & Lebeault, J. M. (1987). Physiological constraints in Increasing Biomass Concentration Of *Escherichia coli* B in Fed-Batch Culture. *Biotechnology Letters*, 9(2), 94–95.
- Panichkin, V. B., Livshits, V. A., Biryukova, I. V. & Mashko, S. V. (2016). Metabolic Engineering of Escherichia coli for L-Tryptophan Production. Applied Biochemistry and Microbiology, 52(9), 783–809. https://doi.org/10.1134/S0003683816090052
- Patnaik, R. & Liao, J. C. (1994). Engineering of *Escherichia coli* central metabolism for aromatic metabolite production with near theoretical yield. *Applied and environmental microbiology*, 60(11), 3903–3908.
- Piazza, I., Kochanowski, K., Cappelletti, V., Fuhrer, T., Noor, E., Sauer, U. & Picotti, P. (2018). A Map of Protein-Metabolite Interactions Reveals Principles of Chemical Communication. Cell, 172(1-2), 358–372. https://doi.org/10.1016/J.CELL.2017.12.006
- Pizer, L. I. & Potochny, M. L. (1964). Nutritional and Regulatory Aspects of Serine Metabolism in *Escherichia coli. Journal of bacteriology*, 88(3), 611–619. https://doi.org/10.1128/JB .88.3.611-619.1964
- Poblete-Castro, I., Wittmann, C. & Nikel, P. I. (2020). Biochemistry, genetics and biotechnology of glycerol utilization in *Pseudomonas* species. *Microbial Biotechnology*, 13(1), 32–53. h ttps://doi.org/10.1111/1751-7915.13400
- Pontrelli, S., Chiu, T. Y., Lan, E. I., Chen, F. Y. H., Chang, P. & Liao, J. C. (2018). Escherichia coli as a host for metabolic engineering. Metabolic Engineering, 50(February), 16–46. ht tps://doi.org/10.1016/j.ymben.2018.04.008
- Postma, P. W., Lengeler, J. W. & Jacobson, G. R. (1993). Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. *Microbiological reviews*, 57(3), 543–594.
- Price, N. D., Reed, J. L. & Palsson, B. (2004). Genome-scale models of microbial cells: evaluating the consequences of constraints. *Nature reviews. Microbiology*, 2(11), 886–897. https://d oi.org/10.1038/NRMICRO1023
- Ray, J. M., Yanofsky, C. & Bauerle, R. (1988). Mutational analysis of the catalytic and feedback sites of the tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of *Escherichia coli. Journal of bacteriology*, 170(12), 5500–5506. https://doi.org/10.112 8/JB.170.12.5500-5506.1988

- Reed, J. L., Vo, T. D., Schilling, C. H. & Palsson, B. O. (2003). An expanded genome-scale model of *Escherichia coli* K-12. *Genome Biology*, 4(9), R54. https://doi.org/10.1186/g b-2003-4-9-r54
- Reznik, E., Christodoulou, D., Goldford, J. E., Briars, E., Sauer, U., Segrè, D. & Noor, E. (2017). Genome-Scale Architecture of Small Molecule Regulatory Networks and the Fundamental Trade-Off between Regulation and Enzymatic Activity. *Cell Reports*, 20(11), 2666–2677. https://doi.org/10.1016/J.CELREP.2017.08.066
- Riesenberg, D., Schulz, V., Knorre, W. A., Pohl, H. D., Korz, D., Sanders, E. A., Roß, A. & Deckwer, W. D. (1991). High cell density cultivation of *Escherichia coli* at controlled specific growth rate. *Journal of Biotechnology*, 20(1), 17–27. https://doi.org/10.1016/0 168-1656(91)90032-Q
- Rodriguez, A., Martínez, J. A., Flores, N., Escalante, A., Gosset, G. & Bolivar, F. (2014). Engineering *Escherichia coli* to overproduce aromatic amino acids and derived compounds. *Microbial Cell Factories*, 13(1), 1–15. https://doi.org/10.1186/S12934-014-0126-Z
- Rowlands, R. T. (1984). Industrial strain improvement: Mutagenesis and random screening procedures. *Enzyme and Microbial Technology*, 6(1), 3–10. https://doi.org/10.1016/014 1-0229(84)90070-X
- Royce, L. A., Yoon, J. M., Chen, Y., Rickenbach, E., Shanks, J. V. & Jarboe, L. R. (2015). Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. *Metabolic Engineering*, 29, 180–188. https://doi.org/10.1016/J .YMBEN.2015.03.014
- Sabido, A., Sigala, J. C., Hernández-Chávez, G., Flores, N., Gosset, G. & Bolívar, F. (2014). Physiological and transcriptional characterization of *Escherichia coli* strains lacking interconversion of phosphoenolpyruvate and pyruvate when glucose and acetate are coutilized. *Biotechnology and bioengineering*, 111(6), 1150–1160. https://doi.org/10.1002/BI T.25177
- Salvy, P., Fengos, G., Ataman, M., Pathier, T., Soh, K. C. & Hatzimanikatis, V. (2019). Systems biology pyTFA and matTFA : a Python package and a Matlab toolbox for Thermodynamics-based Flux Analysis. *Bioinformatics*, 35(1), 167–169. https://doi.org /10.1093/bioinformatics/bty499
- Sandberg, T. E., Salazar, M. J., Weng, L. L., Palsson, B. O. & Feist, A. M. (2019). The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. *Metabolic Engineering*, 56, 1–16. https://doi.org/10.1016/j.ymben.2019 .08.004
- Sauer, D. B., Zeng, W., Canty, J., Lam, Y. & Jiang, Y. (2013). Sodium and potassium competition in potassium-selective and non-selective channels. *Nature Communications*, 4(May), 1–9. https://doi.org/10.1038/ncomms3721
- Sauer, U. & Eikmanns, B. J. (2005). The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria: We dedicate this paper to Rudolf K. Thauer, Director of the Max-Planck-Institute for Terrestrial Microbiology in Marburg, Germany, on the occasion of his 65th. *FEMS Microbiology Reviews*, 29(4), 765–794. https://doi.o rg/10.1016/j.femsre.2004.11.002
- Schellenberger, J., Lewis, N. E. & Palsson, B. (2011). Elimination of thermodynamically infeasible loops in steady-state metabolic models. *Biophysical Journal*, 100(3), 544–553. https://doi.org/10.1016/j.bpj.2010.12.3707
- Schilling, C. H., Edwards, J. S., Letscher, D. & Palsson, B. Ø. (2000). Combining Pathway Analysis with Flux Balance Analysis for the Comprehensive Study of Metabolic Systems. *Biotechnol Bioeng*, 71, 286–306.
- Schmitz, M., Hirsch, E., Bongaerts, J. & Takors, R. (2002). Pulse experiments as a prerequisite for the quantification of in vivo enzyme kinetics in aromatic amino acid pathway of *Escherichia coli. Biotechnology Progress*, 18(5), 935–941. https://doi.org/10.1021/bp01 0199z
- Schoner, R. & Herrmann, K. M. (1976). 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase. Purification, properties, and kinetics of the tyrosine-sensitive isoenzyme from *Escherichia coli*. Journal of Biological Chemistry, 251(18), 5440–5447. https://doi.org/10.1016/S00 21-9258(17)33079-X
- Schoppel, K., Trachtmann, N., Mittermeier, F., Sprenger, G. A. & Weuster-Botz, D. (2021). Metabolic control analysis of L-tryptophan producing *Escherichia coli* applying targeted perturbation with shikimate. *Bioprocess and Biosystems Engineering*, 44(12), 2591–2613. https://doi.org/https://doi.org/10.1007/s00449-021-02630-7
- Schuetz, R., Kuepfer, L. & Sauer, U. (2007). Systematic evaluation of objective functions for predicting intracellular fluxes in *Escherichia coli. Molecular Systems Biology*, 3. https: //doi.org/10.1038/MSB4100162
- Schügerl, K. (1997). Bioreaktionstechnik: Bioprozesse mit Mikroorganismen und Zellen. Springer Basel AG.
- Schuldiner, S. (2018). The Escherichia coli effluxome. Research in Microbiology, 169(7-8), 357– 362. https://doi.org/10.1016/J.RESMIC.2018.02.006
- Schurmann, M. & Sprenger, G. A. (2001). Fructose-6-phosphate aldolase is a novel class I aldolase from *Escherichia coli* and is related to a novel group of bacterial transaldolases. *The Journal of biological chemistry*, 276(14), 11055–11061. https://doi.org/10.1074/jbc.M00 8061200
- Schuster, S. & Hilgetag, C. (1994). On elementary flux modes in biochemical reaction systems at steady state. *Journal of Biological Systems*, 02(02), 165–182. https://doi.org/10.114 2/s0218339094000131

- Selvarasu, S., Ow, D. S. W., Lee, S. Y., Lee, M. M., Oh, S. K. W., Karimi, I. A. & Lee, D. Y. (2009). Characterizing *Escherichia coli* DH5α growth and metabolism in a complex medium using genome-scale flux analysis. *Biotechnology and Bioengineering*, 102(3), 923– 934. https://doi.org/10.1002/BIT.22119
- Shen, T., Liu, Q., Xie, X., Xu, Q. & Chen, N. (2012). Improved Production of Tryptophan in Genetically Engineered Escherichia coli with tktA and ppsA Overexpression. Journal of Biomedicine and Biotechnology, 2012, 1–8. https://doi.org/10.1155/2012/605219
- Shendure, J., Balasubramanian, S., Church, G. M., Gilbert, W., Rogers, J., Schloss, J. A. & Waterston, R. H. (2017). DNA sequencing at 40: past, present and future. *Nature 2017* 550:7676, 550(7676), 345–353. https://doi.org/10.1038/nature24286
- Simão, E., Remy, E., Thieffry, D. & Chaouiya, C. (2005). Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in *Escherichia coli. Bio*informatics, 21(2), 190–196. https://doi.org/10.1093/bioinformatics/bti1130
- Smith, L. C., Ravel, J. M., Lax, S. R. & Shive, W. (1962). The control of 3-deoxy-D-arabinoheptulosonic acid 7-phosphate synthesis by phenylalanine and tyrosine. *The Journal of Biological Chemistry*, 237(11), 3566–3570.
- Snell, K. D., Draths, K. M. & Frost, J. W. (1996). Synthetic modification of the Escherichia coli chromosome: Enhancing the biocatalytic conversion of glucose into aromatic chemicals. Journal of the American Chemical Society, 118(24), 5605–5614. https://doi.org/10.1021 /ja9538041
- Soh, K. C. & Hatzimaikatis, V. (2010). Network thermodynamics in the post-genomic era.
- Soh, K. C. & Hatzimanikatis, V. (2014). Constraining the Flux Space Using Thermodynamics and Integration of Metabolomics Data. Humana Press, New York, NY. https://doi.org /10.1007/978-1-4939-1170-7-3
- Sprenger, G. A. (1995). Genetics of pentose-phosphate pathway enzymes of *Escherichia coli* K-12. Archives of Microbiology, 164(5), 324–330. https://doi.org/10.1007/BF02529978/M ETRICS
- Sprenger, G. A. (2006). Aromatic Amino Acids. Amino Acid Biosynthesis Pathways, Regulation and Metabolic Engineering (S. 93–127). Springer Berlin Heidelberg.
- Sprenger, G. A. (2007). From scratch to value: Engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate. Applied Microbiology and Biotechnology, 75(4), 739–749. https://doi.org/10.1007/S00253-007-0 931-Y
- Sprenger, G. A. (2017). Glycerol as carbon source for production of added-value compounds. Engineering of Microorganisms for the Production of Chemicals and Biofuels from Renewable Resources (S. 93–123). Springer International Publishing. https://doi.org/10.1 007/978-3-319-51729-2-4

- Stauffer, G. V. (2004). Regulation of Serine, Glycine, and One-Carbon Biosynthesis. EcoSal Plus, 1(1). https://doi.org/10.1128/ECOSALPLUS.3.6.1.2
- Stephanopoulos, G. G. N., Aristidou, A. A. & Nielsen, J. (1998). Metabolic Engineering: Principles and Methodologies. Elsevier Science.
- Stichnothe, H. (2019). Sustainability evaluation. Advances in Biochemical Engineering/ Biotechnology (S. 519–539). Springer Science; Business Media Deutschland GmbH. https://doi .org/10.1007/10-2016-71
- Storhas, W. (2013). Bioverfahrensentwicklung (2. Auflage). Wiley-VCH Verlag GmbH {\&} Co. KGaA. https://doi.org/10.1002/9783527673834
- Stroud, R. M., Miercke, L. J. W., O'Connell, J., Khademi, S., Lee, J. K., Remis, J., Harries, W., Robles, Y. & Akhavan, D. (2003). Glycerol facilitator GlpF and the associated aquaporin family of channels. *Current Opinion in Structural Biology*, 13(4), 424–431. https://doi .org/10.1016/S0959-440X(03)00114-3
- Sugimoto, E. & Pizer, L. I. (1968). The mechanism of end product inhibition of serine biosynthesis. I. Purification and kinetics of phosphoglycerate dehydrogenase. *Journal of Biological Chemistry*, 243(9), 2081–2089. https://doi.org/10.1016/S0021-9258(18)93450-2
- Tatarko, M. & Romeo, T. (2001). Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in *Escherichia coli. Current microbiology*, 43(1), 26–32. https://doi.org/10.1007/S002840010255
- Taymaz-Nikerel, H., de Mey, M., Ras, C., ten Pierick, A., Seifar, R. M., van Dam, J. C., Heijnen, J. J. & van Gulik, W. M. (2009). Development and application of a differential method for reliable metabolome analysis in *Escherichia coli. Analytical Biochemistry*, 386(1), 9– 19. https://doi.org/10.1016/J.AB.2008.11.018
- Taymaz-Nikerel, H., van Gulik, W. M. & Heijnen, J. J. (2011). Escherichia coli responds with a rapid and large change in growth rate upon a shift from glucose-limited to glucose-excess conditions. Metabolic Engineering, 13(3), 307–318. https://doi.org/10.1016/J.YMBEN .2011.03.003
- Teusink, B., Passarge, J., Reijenga, C. A., Esgalhado, E., Van Der Weijden, C. C., Schepper, M., Walsh, M. C., Bakker, B. M., Van Dam, K., Westerhoff, H. V. & Snoep, J. L. (2000). Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. *European journal of biochemistry*, 267(17), 5313–5329. https://doi.org/10.1046/J.1432-1327.2000.01527.X
- Thiele, I., Fleming, R. M. T., Bordbar, A., Schellenberger, J. & Palsson, B. (2010). Functional Characterization of Alternate Optimal Solutions of *Escherichia coli*'s Transcriptional and Translational Machinery. *Biophysical Journal*, 98(10), 2072–2081. https://doi.org/1 0.1016/J.BPJ.2010.01.060

- Thorner, J. W. & Paulus, H. (1973). Catalytic and Allosteric Properties of Glycerol Kinase from Escherichia coli. Journal of Biological Chemistry, 248, 3922–3932. https://doi.org/10.1 016/S0021-9258(19)43821-0
- Tötemeyer, S., Booth, N. A., Nichols, W. W., Dunbar, B. & Booth, I. R. (1998). From famine to feast: the role of methylglyoxal production in *Escherichia coli*. *Molecular Microbiology*, 27(3), 553–562. https://doi.org/10.1046/J.1365-2958.1998.00700.X
- Tribe, D. E. & Pittard, J. (1979). Hyperproduction of tryptophan by *Escherichia coli*: genetic manipulation of the pathways leading to tryptophan formation. *Applied and environmen*tal microbiology, 38(2), 181–190.
- Trinh, C. T. & Srienc, F. (2009). Metabolic engineering of *Escherichia coli* for efficient conversion of glycerol to ethanol. *Applied and Environmental Microbiology*, 75(21), 6696–6705. htt ps://doi.org/10.1128/AEM.00670-09
- Tröndle, J. (2019). Metabolische Analysen zur Herstellung aromatischer Aminosäuren mit Escherichia coli im Zulaufverfahren (Diss.). Technische Universität München.
- Tröndle, J., Albermann, C., Weiner, M., Sprenger, G. A. & Weuster-Botz, D. (2018a). Phosphoenolpyruvate Transporter Enables Targeted Perturbation During Metabolic Analysis of L-Phenylalanine Production With Escherichia coli. Biotechnology Journal, 13(5), 1–10. https://doi.org/10.1002/biot.201700611
- Tröndle, J., Schoppel, K., Bleidt, A., Trachtmann, N., Sprenger, G. A. & Weuster-Botz, D. (2020). Metabolic control analysis of L-tryptophan production with *Escherichia coli* based on data from short-term perturbation experiments. *Journal of Biotechnology*, 307(October 2019), 15–28. https://doi.org/10.1016/j.jbiotec.2019.10.009
- Tröndle, J., Trachtmann, N., Sprenger, G. A. & Weuster-Botz, D. (2018b). Fed-batch production of l-tryptophan from glycerol using recombinant *Escherichia coli*. *Biotechnology and Bioengineering*, 115(12), 2881–2892. https://doi.org/10.1002/bit.26834
- Tsouka, S., Ataman, M., Hameri, T., Miskovic, L. & Hatzimanikatis, V. (2021). Constraintbased metabolic control analysis for rational strain engineering. *Metabolic Engineering*, 66, 191–203. https://doi.org/10.1016/J.YMBEN.2021.03.003
- Valley, S. (1988). Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiological reviews, 52(2), 190–232. https://doi.org/10.1128/MR.52.2.190-232.1988
- van Gulik, W. M. (2010). Fast sampling for quantitative microbial metabolomics. Current Opinion in Biotechnology, 21(1), 27–34. https://doi.org/10.1016/J.COPBIO.2010.01.008
- Vinayavekhin, N., Homan, E. A. & Saghatelian, A. (2009). Exploring Disease through Metabolomics. ACS Chemical Biology, 5(1), 91–103. https://doi.org/10.1021/CB900271R
- Visser, D. & Heijnen, J. J. (2002). The mathematics of Metabolic Control Analysis revisited. Metabolic Engineering, 4(2), 114–123. https://doi.org/10.1006/mben.2001.0216

- Visser, D. & Heijnen, J. J. (2003). Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. *Metabolic engineering*, 5(3), 164–176. https://doi.org/10 .1016/S1096-7176(03)00025-9
- Visser, D., Van Zuylen, G. A., van Dam, J. C., Eman, M. R., Pröll, A., Ras, C., Wu, L., van Gulik, W. M. & Heijnen, J. J. (2004). Analysis of in vivo kinetics of glycolysis in aerobic Saccharomyces cerevisiae by application of glucose and ethanol pulses. Biotechnology and Bioengineering, 88(2), 157–167. https://doi.org/10.1002/bit.20235
- Voet, D. 1., Voet, J. G., Pratt, C. W., Häcker, B. & Prowald, A. (2010). Lehrbuch der Biochemie (3. Auflage).
- Volkmer, B. & Heinemann, M. (2011). Condition-Dependent Cell Volume and Concentration of *Escherichia coli* to Facilitate Data Conversion for Systems Biology Modeling. *PLOS ONE*, 6(7), e23126. https://doi.org/10.1371/JOURNAL.PONE.0023126
- Wang, J., Huang, J., Shi, J., Xu, Q., Xie, X. & Chen, N. (2013). Fermentation characterization of an L-tryptophan producing *Escherichia coli* strain with inactivated phosphotransacetylase. *Annals of Microbiology*, 63(4), 1219–1224. https://doi.org/10.1007/s13213-012-0 579-4
- Wang, J. J., Cheng, L. K., Wang, J. J., Liu, Q., Shen, T. & Chen, N. (2013). Genetic engineering of *Escherichia coli* to enhance production of L-tryptophan. *Applied Microbiology and Biotechnology*, 97(17), 7587–7596. https://doi.org/10.1007/s00253-013-5026-3
- Weaver, L. M. & Herrmann, K. M. (1990). Cloning of an aroF allele encoding a tyrosineinsensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase. Journal of bacteriology, 172(11), 6581–6584. https://doi.org/10.1128/JB.172.11.6581-6584.1990
- Weber, J., Kayser, A. & Rinas, U. (2005). Metabolic flux analysis of *Escherichia coli* in glucoselimited continuous culture. II. Dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behaviour. *Microbiology*, 151(3), 707–716. https: //doi.org/10.1099/mic.0.27482-0
- Weiner, M., Albermann, C., Gottlieb, K., Sprenger, G. A. & Weuster-Botz, D. (2014a). Fed-batch production of l-phenylalanine from glycerol and ammonia with recombinant *Escherichia coli. Biochemical Engineering Journal*, 83, 62–69. https://doi.org/10.1016/J.BEJ.2013.1 2.001
- Weiner, M., Tröndle, J., Albermann, C., Sprenger, G. A. & Weuster-Botz, D. (2014b). Improvement of constraint-based flux estimation during L-phenylalanine production with *Escherichia coli* using targeted knock-out mutants. *Biotechnology and Bioengineering*, 111(7), 1406–1416. https://doi.org/10.1002/bit.25195
- Weiner, M., Tröndle, J., Albermann, C., Sprenger, G. A. & Weuster-Botz, D. (2016). Perturbation experiments: Approaches for metabolic pathway analysis in bioreactors. Advances

in Biochemical Engineering/Biotechnology (S. 91–136). https://doi.org/10.1007/10-201 5-326

- Weiner, M., Tröndle, J., Albermann, C., Sprenger, G. A. & Weuster-Botz, D. (2017). Metabolic control analysis of L-phenylalanine production from glycerol with engineered *E. coli* using data from short-term steady-state perturbation experiments. *Biochemical Engineering Journal*, 126, 86–100. https://doi.org/10.1016/j.bej.2017.06.016
- Weiner, M., Tröndle, J., Schmideder, A., Albermann, C., Binder, K., Sprenger, G. A. & Weusterbotz, D. (2015). Parallelized small-scale production of uniformly for quantitative metabolome analysis C-labeled cell extract. *Analytical Biochemistry*, 478, 134–140. https://d oi.org/10.1016/j.ab.2015.03.008
- Weuster-Botz, D. (1997). Sampling Tube Device for Monitoring Intracellular Metabolite Dynamics. Analytical Biochemistry, 246(2), 225–233. https://doi.org/10.1006/ABIO.1997.20 09
- Weuster-Botz, D. (2006). Mikro-Bioverfahrenstechnik. Chemie-Ingenieur-Technik, 78(3), 256–260. https://doi.org/10.1002/CITE.200500180
- Whipp, M. J., Camakaris, H. & Pittard, A. J. (1998). Cloning and analysis of the shiA gene , which encodes the shikimate transport system of *Escherichia coli* K-12. Gene, 209, 185–192.
- Wiechert, W. & Noack, S. (2011). Mechanistic pathway modeling for industrial biotechnology: challenging but worthwhile. *Current Opinion in Biotechnology*, 22(5), 604–610. https: //doi.org/10.1016/J.COPBIO.2011.01.001
- Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, M. & Goodacre[†], R. (2008). Global Metabolic Profiling of *Escherichia coli* Cultures: an Evaluation of Methods for Quenching and Extraction of Intracellular Metabolites. *Anal Chem.*, 80, 2939–2948. https://doi.org/10.1021/AC7023409
- Winicov, I. (1975). The mechanism of end product inhibition of serine biosynthesis: V. Mechanism of serine inhibition of phosphoglycerate dehydrogenase. Journal of Biological Chemistry, 250(5), 1640–1647. https://doi.org/10.1016/s0021-9258(19)41741-9
- Wishart, D. S. (2008). Quantitative metabolomics using NMR. TrAC Trends in Analytical Chemistry, 27(3), 228–237. https://doi.org/10.1016/J.TRAC.2007.12.001
- Woolston, B. M., Edgar, S. & Stephanopoulos, G. (2013). Metabolic Engineering: Past and Future. Annual Review of Chemical and Biomolecular Engineering, 4(1), 259–288. http s://doi.org/10.1146/annurev-chembioeng-061312-103312
- Wright, B. E. & Kelly, P. J. (1981). Kinetic models of metabolism in intact cells, tissues, and organisms. Current topics in cellular regulation, 19(100), 103–158. https://doi.org/10.1 016/B978-0-12-152819-5.50021-X

- Wright, J. & Wagner, A. (2008). Exhaustive identification of steady state cycles in large stoichiometric networks. BMC Systems Biology, 2(1), 1–9. https://doi.org/10.1186/1752-0 509-2-61
- Wu, L., Mashego, M. R., Proell, A. M., Vinke, J. L., Ras, C., Van Dam, J., Van Winden, W. A., Van Gulik, W. M. & Heijnen, J. J. (2006). In vivo kinetics of primary metabolism in *Saccharomyces cerevisiae* studied through prolonged chemostat cultivation. *Metabolic Engineering*, 8(2), 160–171. https://doi.org/10.1016/J.YMBEN.2005.09.005
- Wu, L., Mashego, M. R., Van Dam, J. C., Proell, A. M., Vinke, J. L., Ras, C., Van Winden, W. A., Van Gulik, W. M. & Heijnen, J. J. (2005). Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. *Analytical Biochemistry*, 336(2), 164–171. https://doi.or g/10.1016/J.AB.2004.09.001
- Wu, L., Wang, W., Van Winden, W. A., Van Gulik, W. M. & Heijnen, J. J. (2004). A new framework for the estimation of control parameters in metabolic pathways using lin-log kinetics. *European Journal of Biochemistry*, 271(16), 3348–3359. https://doi.org/10.111 1/j.0014-2956.2004.04269.x
- Xiong, B., Zhu, Y., Tian, D., Jiang, S., Fan, X., Ma, Q., Wu, H. & Xie, X. (2021). Flux redistribution of central carbon metabolism for efficient production of l-tryptophan in *Escherichia* coli. Biotechnology and Bioengineering, 118(3), 1393–1404. https://doi.org/10.1002/bit .27665
- Yakandawala, N., Romeo, T., Friesen, A. D. & Madhyastha, S. (2008). Metabolic engineering of Escherichia coli to enhance phenylalanine production. Applied microbiology and biotechnology, 78(2), 283–291. https://doi.org/10.1007/S00253-007-1307-Z
- Yanofsky, C., Platt, T., Crawford, I. P., Nichols, B. P., Christie, G. E., Horowitz, H., Vancleemput, M. & Wu, A. M. (1981). The complete nucleotide sequence of the tryptophan operon of *Escherichia coli*. Nucleic Acids Research, 9(24), 6647. https://doi.org/10.109 3/NAR/9.24.6647
- Yanofsky, C. (2003). Using studies on tryptophan metabolism to answer basic biological questions. Journal of Biological Chemistry, 278(13), 10859–10878. https://doi.org/10.1074/jb c.X200012200
- Yi, J., Li, K., Draths, K. M. & Frost, J. W. (2002). Modulation of phosphoenolpyruvate synthase expression increases shikimate pathway product yields in *E. coli. Biotechnology Progress*, 18(6), 1141–1148. https://doi.org/10.1021/bp020101w
- Zamboni, N., Kümmel, A. & Heinemann, M. (2008). anNET : a tool for network-embedded thermodynamic analysis of quantitative metabolome data. BMC Bioinformatics, 11(April 2015), 1–11. https://doi.org/10.1186/1471-2105-9-199

- Zamboni, N., Saghatelian, A. & Patti, G. J. (2015). Defining the Metabolome: Size, Flux, and Regulation. *Molecular cell*, 58(4), 699. https://doi.org/10.1016/J.MOLCEL.2015.04.021
- Zhao, C., Fang, H., Wang, J., Zhang, S., Zhao, X., Li, Z., Lin, C., Shen, Z. & Cheng, L. (2020). Application of fermentation process control to increase l-tryptophan production in *Escherichia coli*. Biotechnology Progress, 36(2), 1–10. https://doi.org/10.1002/btpr.2944
- Zhao, Z. J., Zou, C., Zhu, Y. X., Dai, J., Chen, S., Wu, D., Wu, J. & Chen, J. (2011). Development of l-tryptophan production strains by defined genetic modification in *Escherichia coli*. *Journal of Industrial Microbiology and Biotechnology*, 38(12), 1921–1929. https://doi.or g/10.1007/S10295-011-0978-8
- Zwaig, N. & Lin, E. C. (1966). Feedback inhibition of glycerol kinase, a catabolic enzyme in Escherichia coli. Science (New York, N.Y.), 153(3737), 755–757. https://doi.org/10.112 6/SCIENCE.153.3737.755

9 Abkürzungsverzeichnis

Allgemeine Abkürzungen

ACN	Acetonitril
BTM	Biotrockenmasse
C. glutamicum	Corynebacterium glutamicum
E. coli	Escherichia coli
EGC	Energie erzeugende Schleife; "Energy Generating Cycle"
FBA	Flussbilanzanalyse
FVA	Flussvarianzanalyse
FVA ll	loopless-Flussvarianzanalyse
GEM	genomweites stöchiometrisches Modell
HPLC	eq:Flussigkeitschromatographie; "high performance liquid chromatography"
IPTG	$Isopropyl-\beta-D-thiogalactopyranosid$
kan	Kanamycin
LB	lysogeny broth-Medium
LC-MS	Flüssigchromatographie mit Massenspektrometrie-Kopplung
lin-log	linear logarithmische
MCA	Metabolische Kontrollanalyse
MeOH	Methanol
MILP	gemischt-ganzzahlige lineare Optimierung; "mixed-integer linear programming"
MS	Massenspektrometer
M. tuberculosis	Mycobacterium tuberculosis
NMR	Kernspinresonanz; "nuclear magnetic resonance"
OD_{600}	Optische Dichte, gemessen bei 600 nm
PBS	Phosphatpuffer; "phosphate buffered saline"

RMT	Methode des schnellen Medienwechsels; "rapid media transition"
TBA	Tributylamin
TEA	Triethanolamin
TFA	Thermodynamische Flussanalyse
TVA	Thermodynamische Flussvarianzanalyse
U- ¹³ C	Uniform- ¹³ C
UHPLC	eq:hochleistungsflüssigkeitschromatographie; "ultrahigh performance liquid chromatography"
VE	Vollentsalzt

Metabolite

13DPG	1,3-Bisphosphoglycerat
2cdr5p	Carboxyphenylamino-Desoxyribulose-5-Phosphat
2pg	2-Phosphoglycerat
3dhq	3-Dehydroquinat
3dhs	3-Dehydroshikimat
3ig3p	Indol-3-Glycerinphosphat
$3 \mathrm{pg}$	3-Phosphoglycerat
3php	3-Phosphohydroxypyruvat
3psme	5-Enolpyruvoylshikimat-3-Phosphat
6pg	6-Phosphogluconat
ac	Acetat
acCoA	Acetyl-CoenzymA
akg	α -Ketoglutarat
amp	Adenosinmonophosphat
anth	Anthranilat
adp	Adenosindiphosphat
atp	Adenosintriphosphat

chor	Chorismat
cit	Citrat
coA	CoenzymA
dahp	3-Deoxy-D-Arabino-Heptulosonat-7-Phosphat
dha	Dihydroxyaceton
dhap	Dihydroxyacetonphosphat
e4p	Erythrose-4-Phosphat
etoh	Ethanol
f6p	Fructose-6-Phosphat
fad	Flavinadenindinukleotid oxidiert
$fadh_2$	Flavinadenindinukleotid reduziert
fbp	Fructose-1,6-Bisphosphat
for	Formiat
fum	Fumarat
g3p	Glycerinaldehydphosphat
g6p	Glucose-6-Phosphat
glx	Glyoxylat
gly3p	Glycerin-3-Phosphat
glyc	Glycerin
hpp	4-Hydroxyphenylpyruvat
icit	Isocitrat
ind	Indol
lac	Laktat
L-gln	L-Glutamin
L-glu	L-Glutamat
L-phe	L-Phenylalanin
L-pser	Phospho-L-Serin
L-ser	L-Serin

L-trp	L-Tryptophan
L-tyr	L-Tyrosin
mal	Malat
mgo	Methylglyoxal
nad	Nikotinamidadeninnukleotid oxidiert
nadh	Nikotinamidadeninnukleotid reduziert
nadp	$Nikotinamidaden indinukle otid phosphat\ oxidiert$
nadph	$Nikotinamidaden indinukleotid phosphat\ reduziert$
oaa	Oxalacetat
pep	Phosphoenolpyruvat
phpyr	Phenylpyruvat
p_i	anorganisches Phosphat
pp_i	Pyrophosphat
pphn	Prephenat
pran	Phosphoribosylanthranilat
prpp	Phosphoribosyl-Pyrophosphat
pyr	Pyruvat
q8	Ubiquinol oxidiert
$q8H_2$	Ubiquinol reduziert
r5p	Ribose-5-Phosphat
ru5p	Ribulose-5-Phosphat
s7p	Sedoheptulose-7-Phosphat
shk	Shikimat
s3p	Shikimat-3-Phosphat
suc	Succinat
succCoA	Succinyl-CoenzymA
x5p	Xylulose-5-Phosphat

$Reaktionen/\ katalysierende\ Enzyme$

ACKr	Acetat-Kinase
ACONT	(Iso-)Citrat-Hydrolase-Komplex
ADH	Alkohol-Dehydrogenase
AKGDH	α -Ketoglutarat-Dehydrogenase
ANPRT	Anthranilat-Phosphoribosyl-Transferase
ANS	Anthranilat-Synthase
ATPS4rpp	Adenosintriphosphat-Synthase
CHORM	Chorismat-Mutase
CHORS	Chorismat-Synthase
CS	Citrat-Synthase
CYTBO	Cytochrom-Terminal-Oxidase
DDPA	$\label{eq:2-Decomposition} 3-\text{Deoxy-D-Arabino-Heptulosonat-7-Phosphat-Synthase}$
DHAPT	Dihydroxyacetonphosphat-Transferase
DHQTi	3-Dehydroquinat-Dehydratatse
DHQS	3-Dehydroquinat-Synthase
ENO	Enolase
FBA	Fructose-1,6-Bisphosphat-Aldolase
FBP	Fructose-1,6-Bisphosphatase
FHL	Formiat-Hydrogen-Lyase
FUM	Fumarase
G6PDH	Glucose-6-Phosphat-Dehydrogenase
GAPD	Glyceraldehyd-3-Phosphat-Dehydrogenase
GLY3PD	Glycerin-Phosphat-Dehydrogenase
GLYCDx	Glycerin-Dehydrogenase
GLYK	Glycerin-Kinase
GLYOX	Glyoxalase

GND	6-Phosphogluconat-Dehydrogenase
ICDH	Isocitrat-Dehydrogenase
ICL	Isocitrat-Lyase
IGPS	Indol-3-Glycerin-Phosphat-Synthase
LDH	Laktat-Dehydrogenase
MALS	Malat-Synthase
MDH	Malat-Dehydrogenase
MGSA	Methylglyoxal-Synthase
ME	Malat-Enzyme; malic enzymes
NADH5	NADH-Ubiquinon-Oxidoreduktase
OAADC	Oxalacetat-Dehydrogenase
PDH	Pyruvat-Dehydrogenase
PFK	Phosphofructo-Kinase
PFL	Pyruvat-Formiat-Kinase
PGCD	3-Phosphoglycerat-Dehydrogenase
PGI	Phosphoglucose-Isomerase
PGK	Phosphoglycerat-Kinase
PGL	6-phosphogluconolactonase
PGM	Phosphoglycerat-Mutase
PHETA	L-Phenylalanin-Transaminase
POX	Pyruvat-Oxidase
PPC	Phosphoenolpyruvat-Carboxylase
PPCK	Phosphoenolpyruvat-Carboxykinase
PPND	Prephenat-Dehydrogenase
PPNDH	Prephenat-Dehydratase
PPS	Phosphoenolpyruvat-Synthase
PRALI	Phosphoribosyl-Anthranilat-Isomerase
PRPPS	Phosphoribosyl-Pyrophosphat-Synthetase

PSCVT	5- Enol pyruvoyl shiki mat-3- Phosphat-Synthase
PSERT	3-Phosphoserin-Aminotransferase
PSP_L	Phosphoserin-Phosphatase
PTAr	Phosphat-Acetyl-Transferase
PTS	Phosphotransferase-System
РҮК	Pyruvat-Kinase
RPE	Ribulose-5-Phosphat-Epimerase
RPI	Ribulose-5-Phosphat
SUCD	Succinat-Dehydrogenase
SHIKK	Shikimat-Kinase
SHK3Dr	Shikimat-Dehydrogenase
SUCOAS	Succinyl-CoenzymA-Synthase
TALA	Transaldolase
THD2	NAD-Transhydrogenase
TPI	Triosephosphat-Isomerase
TKT1	Transketolase 1
TKT2	Transketolase 2
TRPAS2	Tryptophanase
TRPS2	Tryptophan-Synthase
TRPS3	Indol-Glycerin-Phosphat-Aldolase
TYRTA	L-Tyrosin-Aminotransferase

10 Symbolverzeichnis

Bioprozesstechnik

CER	Kohlenstoffdioxid bildungsrate; ",carbondioxide evolution rate", mol $\rm L^{-1}~h^{-1}$
c_i	Konzentration Komponente i im Reaktor, g $\mathrm{L}^{\text{-}1}$
$c_{i,aus}$	Konzentration Komponente i im Ablauf, g ${\rm L}^{\text{-}1}$
$c_{i,ein}$	Konzentration Komponente i im Zulauf, g ${\rm L}^{\text{-}1}$
c_x	Biomassekonzentration, g $\rm L^{-1}$
c_x^0	initiale Biomassekonz entration, g $\rm L^{-1}$
F_{aus}	Ablaufstrom, L $\mathrm{h}^{\text{-}1}$
F_{ein}	Zulaufstrom, L h ⁻¹
K	Gleichgewichtskonstante, -
OTR	Sauerstoffeintragsrate; "oxygen transfer rate", mol $\rm L^{-1}~h^{-1}$
OUR	Sauerstoffaufnahmerate; "oxygen uptake rate", mol $\rm L^{-1}~h^{-1}$
qCER	biomasses pezifische Kohlenstoffdioxid bildungsrate, mol $\rm g^{-1}~h^{-1}$
q_i	biomassespezifische Aufnahme- und Bildungsrate der Komponente i, g $\rm g^{-1}~h^{-1}$
q_s	biomassespezifische Substrataufnahmerate, g $\rm g^{-1}~h^{-1}$
qOUR	biomasses pezifische Sauerstoffaufnahmerate, mol $\rm g^{-1}~h^{-1}$
r_i	Reaktionsgeschwindigkeit der Komponente i, g $\rm L^{-1}$ h^-
RQ	Respirationskoeffizient (ohne Einheit)
r_x	Wachstumsrate, g $\rm L^{-1}~h^{-1}$
t	Zeit, h
V_{Gas}^{aus}	Gasvolumenstrom in der Abluft, L $\mathrm{h}^{\text{-}1}$
V_{Gas}^{ein}	Gasvolumenstrom in der Zuluft, L $\mathrm{h}^{\text{-}1}$
V_M	ideales molares Volumen, 22,414 L $\mathrm{mol}^{\text{-}1}$
V_R	Volumen des Reaktionsansatzes, L
V_R^0	initiales Reaktorvolumen, L

$x_{CO_2}^{aus}$	Molanteil Kohlenstoffdioxid in der Abluft, -
$x_{CO_2}^{ein}$	Molanteil Kohlenstoffdioxid in der Zuluft, -
$x_{Inert_2}^{aus}$	Molanteil Inertgas in der Abluft, -
$x_{Inert_2}^{ein}$	Molanteil Inertgas in der Zuluft, -
$x_{O_2}^{aus}$	Molanteil Sauerstoff in der Abluft, -
$x_{O_2}^{ein}$	Molanteil Sauerstoff in der Zuluft, -
$Y_{i/j}$	Ausbeutekoeffizient der Komponente i bezogen auf die Komponente j, g $\rm g^{\textsc{-}1}$
$Y_{x/s}$	Biomasseer tragskoeffizient, g $\rm g^{-1}$
μ	spezifische Wachstumsrate, h ⁻¹

Stoffflussanalysen

K	Konstante, J $\mathrm{mol}^{\text{-}1}$
Ν	stöchiometrische Matrix
$n_{i,j}$	Menge n der Reaktanten j am Stofffluss i, -
R	universelle Gaskonstante, 8,314 J $\rm mol^{-1}~K^{-1}$
Т	Temperatur, K
V	Flussvektoren aller Reaktionen im Netzwerk
vi	intrazellulärer Fluss
vj	Austauschfluss
x_j	Metabolitkonzentration des Reaktant j, mol ⁻¹
Ζ	Zielfunktion
z_i	Flussnutzungsvariable, -
γ	Varianzkriterium
μ_j	chemisches Potenzial der Reaktanten j , J $\mathrm{mol}^{\text{-}1}$
$\Delta_{f,err}G_j^{\prime o}$	Fehler der Standard Gibbs'schen Bildungsenthalpie, J $\mathrm{mol}^{\text{-}1}$
$\Delta_f G_j^{\prime o}$	Standard Gibbs'sche Bildungsenthalpie, J ${\rm mol}^{\text{-}1}$
$\Delta_r G'_i$	transformierte Gibbs'sche Reaktionsenergie, J ${\rm mol}^{\text{-}1}$
$\Delta_{r,tpt}G'_i$	Transportenergie, J mol ⁻¹

Nomenklatur und Symbole der metabolischen Kontrollanalyse

0	bezeichnet den Referenzzustand
a	kinetischer Modellparameter, -
A_j	Affinität der Reaktion j, j mol ⁻¹
с	Vektor extrazellulärer Metabolitkonzentrationen
С	extrazelluläre Metabolitkonzentration/ ${\rm Effektorkonzentration},{\rm mM}$
c^0	extrazelluläre Metabolitkonzentration im Referenzzustand, mM
C^{J0}_{ij}	Flusskontrollkoeffizient, -
C_{ij}^{x0}	Konzentrationskontrollkoeffizient, -
C^{J0}	Matrix der Flusskontrollkoeffizienten
C^{x0}	Matrix der Konzentrationskontrollkoeffizienten
e	Vektor der Enzymkonzentrationen
e	Enzymkonzentration, mol min ⁻¹
e^0	Enzymkonz entration im Referenz zustand, mol $\min^{\text{-}1}$
E^{c0}	Matrix der Elastizitätskoeffizienten extrazellulärer Metabolite
E^{e0}	Matrix der Elastizitätskoeffizienten der Enzyme
E^{e0}	Matrix der Elastizitätskoeffizienten intrazellulärer Metabolite
Ι	Identitätsmatrix
i	Einheitsvektor
ind	bezeichnet die Unabhängigkeit der Metabolite, Flüsse und Kontrollkoeffizienten
J	Flussvektor
J	Stofffluss i, mmol g ⁻¹ h ⁻¹
J_i^0	Stofffluss i im Referenz zustand, mmol $\mathrm{g}^{\text{-1}}$ h^{\text{-1}}
L^{x}	Linkmatrix der Metabolite
m	Anzahl intrazellulärer Metabolite, -
m_c	Anzahl extrazellulärer Komponenten/ Effektoren, -
Ν	stöchiometrische Matrix

n	Anzahl Reaktionen, -
p	kinetischer Modellparameter der Reaktion j, h ⁻¹
R^{x0}	Matrix der Konzentrationsauslenkungskoeffizienten
v	Reaktionsgeschwindigkeit, mol \min^{-1}
v	Vektor der Reaktionsraten
х	Vektor der Metabolitkonzentrationen
x	intrazelluläre Metabolitkonzentration, mM
x^0	intrazelluläre Metabolitkonzentration im Referenzzustand, mM
$\varepsilon_{x_i}^{v_j}$	Elastizitätskoeffizient des Metabolits i für die Reaktion j, -

A Anhang

A.1 Verwendete Chemikalien, Geräte und Methoden

Chemikalie	Hersteller	Artikelnummer
Acetonitril HPLC-grade	Carl Roth GmbH + Co. KG	4722.2
Acetonitril HPLC-MS-grade	Fluka Analytical	34967
Acetyl-CoA-Tri-Li-Salz	Roche Pharma AG	10101893001
Adenosindiphosphat-Na-Salz	Sigma-Aldrich GmbH	A2754
Adenosinmonophosphat-Na-Salz	Sigma-Aldrich GmbH	A1752
Adenosintriphosphat-Di-Na-Salz	Sigma-Aldrich GmbH	A2383
Agar-Agar	Carl Roth GmbH + Co. KG	6494.3
$\label{eq:aluminium} Aluminium (III) chlorid-Hexahydrat$	Merck KGaA	1.01084.1000
α -Ketoglutarsäure	Fluka Analytical	75890
Ammoniaklösung, 25 $\%$	Labochem international	86941
Di-Ammoniumhydrogenphosphat	Carl Roth GmbH + Co. KG	0268.3
Ammoniumsulfat	Labochem international	59BA93A2
Antifoam 204	Sigma-Aldrich GmbH	A6425
Anthranilsäure	Sigma-Aldrich GmbH	A89855
L-Äpfelsäure	Merck KGaA	8.00384.0050
Bernsteinsäure-Di-Na-Salz Hexahydrat	Merck KGaA	8.20151.0500
Bernsteinsäure	Merck KGaA	8.22260.1000
Bicin	Sigma-Aldrich GmbH	9162.1
Borsäure	Merck KGaA	1.00165.0500
Brenztraubensäure-Na-Salz	Carl Roth GmbH + Co. KG	8793.2
Calciumchlorid-Dihydrat	Merck KGaA	1.02382.0500
Chorisminsäure	Sigma-Aldrich GmbH	C1761
Cobaltchlorid-Hexahydrat	Merck KGaA	1.02539.0250
Eisen(II)sulfat-Heptahydrat	Merck KGaA	1.03965.0500
Essigsäure	Fluka Analytical	49199
Ethanol, 99 $\%$	Carl Roth GmbH + Co. KG	-
Fumarsäure	Merck KGaA	8.00269.0100
Glucose-Monohydrat	Carl Roth GmbH + Co. KG	6887.5
Glyceraldehyd-3-Phosphat-Lösung	Sigma-Aldrich GmbH	G5251
Glycerin, 99,5 $\%$	CLN GmbH	-
Glycerin-3-Phosphat-Li-Salz	Sigma-Aldrich GmbH	94124
Hefeextrakt	Carl Roth $GmbH + Co. KG$	2363.3

Tabelle A.1: Übersicht der verwendeten Chemikalien

Chemikalie	Hersteller	Artikelnummer
Dihydroxyacetonphosphat-Di-Li-Salz	Sigma-Aldrich GmbH	D7137
Indol	Sigma-Aldrich GmbH	I3408
Iodessigsäure	Sigma-Aldrich GmbH	I4386
Isocitrat-Tri-Na-Salz	Sigma-Aldrich GmbH	I1252
$\label{eq:sopropyl-bound} Isopropyl-\beta-D-thiogalactopyranosid$	neoFroxx GmbH	1122 GR100
Kaliumchlorid	Carl Roth GmbH + Co. KG	6781.2
Kaliumdihydrogenphosphat	Labochem international	593 E 89 B 0
Di-Kaliumhydrogenphosphat	Carl Roth GmbH + Co.	KG P749.3
Kaliumhydroxid	Labochem international	5800C914
Kanamycinsulfat	Carl Roth GmbH + Co.	KG T832.3
Kupfer(II)chlorid-Dihydrat	Merck KGaAKGaA	1.02733.0250
Magnesiumsulfat-Heptahydrat	Carl Roth GmbH + Co. KG	T888.3
Mangan(II) sulfat-Monohydrat	Carl Roth GmbH + Co. KG	4487.1
Methanol, HPLC-grade	J.T. Baker	8402
Methanol, HPLC-MS-grade	Fluka Analytical	34966
Mercaptopropionsäure	Sigma-Aldrich GmbH	63768
Methylglyoxal	Sigma-Aldrich GmbH	M0252
Natriumacetat	Carl Roth GmbH + Co. KG	6773.2
Natriumchlorid	Sigma-Aldrich GmbH	S3014
Natriumcitrat	Carl Roth GmbH + Co. KG	HN13.2
$Natrium dihyd rogen phosphat\ Monohydrat$	AppliChem GmbH	A3559
Natrium-DL-Laktat	Sigma-Aldrich GmbH	L1375
Natrium-Succinat dibasisches Hexahydrat		
${\it Di-Natrium-Flav} in a denind in ukle otid Hydrat$	Sigma-Aldrich	GmbH F6625
Natriumformiat	Alka Aesar GmbH	036424
${\it Tri-Natrium-Fructose-1, 6-Bisphosphat}$	Sigma-Aldrich GmbH	F6803
${\it Di-Natrium-Fructose-6-PhosphatHydrat}$	Sigma-Aldrich GmbH	T3627
Natrium-D-Glucose-6-Phosphat	Sigma-Aldrich GmbH	G7879
Natrium-L-Glutamat-Monohydrat	Merck KGaA	1.06445.1000
Di-Natriumhydrogenphosphat	AppliChem GmbH	A1372,9010
Natriumhydroxid	Carl Roth GmbH + Co. KG	P031.2
Natriummolybdat-Dihydrat	Merck KGaA	1065210250
Natrium-Phenylpyruvat	Sigma-Aldrich GmbH	P8001
${\it Tri-Natrium-6-Phospho-D-Gluconat}$	Sigma-Aldrich GmbH	P7877
${\it Di-Natrium-Ribose-5-PhosphatDihydrat}$	Sigma-Aldrich GmbH	83875
Natriumsulfat	Carl Roth GmbH + Co. KG	P032.3
NAD	Roche Pharma AG	13814528
NADH-Di-Na-Salz	Roche Pharma AG	10107735001
NADP-Di-Na-Salz	Roche Pharma AG	10128031001

Tabelle A.1 – Fortsetzung

Chemikalie	Hersteller	Artikelnummer
NADPH-Tetra-Na-Salz	Roche Pharma AG	10107824001
Pepton (aus Casein)	Fluka Analytical	70172
L-Phenylalanin	Carl Roth GmbH + Co. KG	1709.2
Phosphoenolpyruvat-K-Salz	AppliChem GmbH	A2271
6-Phosphogluconat-Tri-Na-Salz	Sigma-Aldrich GmbH	P7877
3-Phosphoglycerat-Di-Na-Salz	Sigma-Aldrich GmbH	P8877
Ortho-Phosphorsäure, 85 $\%$	Carl Roth GmbH + Co. KG	6366.2
O-Phospho-L-Serin	Sigma-Aldrich GmbH	P0878
Ortho-Phthaldialdehyd	Carl Roth GmbH + Co. KG	5980.1
Prephenat-Ba-Salz	Sigma-Aldrich GmbH	P2384
2-Propanol HPLC-grade	Sigma-Aldrich GmbH	34959
2-Propanol HPLC-MS-grade	Carl Roth GmbH + Co. KG	AE73.2
Ribulose-5-Phosphat-Di-Na-Salz	Sigma-Aldrich GmbH	83899
Salzsäure, 37 $\%$	Honeywell international	10314253
Schwefelsäure, 95-97 $\%$	Labochem international	LC-7099.1
${\it Sedoheptulose-7-Phosphat-Li-Salz}$	Sigma-Aldrich GmbH	78832
L-Serin	Sigma-Aldrich GmbH	S4500
Shikimisäure	Sigma-Aldrich GmbH	S5375
Succinyl-Coenzym A-Na-Salz	Sigma-Aldrich GmbH	S1129
Thiamin-Hydrochlorid	Sigma-Aldrich GmbH	T4625
Tributylamin	Sigma-Aldrich GmbH	9078.1
Triethanolamin	Sigma-Aldrich GmbH	T1502
TRIS Carl Roth	GmbH + Co. KG	2449.3
L-Tryptophan	Sigma-Aldrich GmbH	T0254
L-Tyrosin	Carl Roth GmbH + Co. KG	1741.2
Wasser, LC-MS-grade	LGC Standards GmbH	1608874
Zinksulfat-Heptahydrat	Merck KGaA	1.08883.0500

 ${\bf Tabelle \ A.1}-{\rm Fortsetzung}$

Tabelle A.2: Zusammenstellung der verwendeten Einzelgeräte

Gerät	Hersteller	Bezeichnung
Autoklav	H+P Labortechnik GmbH	Varioklav Zyklondampf
Autoklav	Systec GmbH	VX150
Feinwaage	Ohaus GmbH	Explorer
Feinwaage	Sartorius AG	Extend
Inkubator	Infors AG Multitron	AJ119
Inkubationsschrank	Binder GmbH	Modell 28
Kryostat	MGW Lauda Ultra-Kryomat	K90W

Gerät	Hersteller	Bezeichnung
Magnetrührer	neoLAB	D-6010
Magnetrührer	Variomag	Monotherm
Mikrotiterplatten-Photometer	Thermo Fisher Scientific	MultiSkan FC
pH-Meter	Schott Instruments AG Lab	850
Photometer	Thermo Fisher Scientific	Spectronic Genesys 10uv
Pipette	Brand GmbH	Transferpette $10\mu\mathrm{L}$
Pipette	Brand GmbH	Transferpette $20\mu\mathrm{L}$
Pipette	Brand GmbH	Transferpette $200\mu\mathrm{L}$
Pipette	Brand GmbH	Transferpette $1000\mu\mathrm{L}$
Pipette	Brand GmbH	Transferpette $5\mathrm{mL}$
Pipette	Brand GmbH	Transferpette $10\mathrm{mL}$
Sterilbank	Thermo Fisher Scientific	Herasafe KS
Sterilbank	Walder Laboreinrichtungen	SWB, Klasse 1
Thermo-Heizplatte	witeg	WiseStir SMHS-6
Trockenschrank	Binder GmbH	ArtNr. 9010-0003
Ultraschallbad	Schalltec GmbH	Sonorex Super RK510H
Vakuumpumpe	KNF Neuberger GmbH	Laboport
Vortexer	Heidolph Instruments	Reax top
Waage	Ohaus GmbH	E1M213 SNR 1120081093
Waage	Chyo	MW-100K
Wasserbad	JULABO Labortechnik GmbH	EH
Zentrifuge	Eppendorf AG	5424 R
Zentrifuge	Heraeus	Rotixa 50 RS
Zentrifuge	Hettich Zentrifugen	Mikro 20
Zentrifuge	Hettich Zentrifugen	Rotanta 460R

Tabelle A.2 – Fortsetzung

Bauteil	Hersteller	Bezeichnung
Abgasanalytik	ABB Germany	Easyline
Ablluftfilter	Pall	AB05PFR2PVH4 (0,2 μm)
Dampfgenerator	Stritzel	PS 100
Drucksonde	Keller	PR-25HT8931A
Gelöstsauerstoff-Elektrode	Mettler-Toledo	322756800/2023295
pH-Elektrode	Mettler-Toledo	405-DPAS-SC-K8SH50
Schlauchpumpe	Ismatec	Ecoline VC-360
Schlauchpumpe	Watson Marlow	$501\mathrm{U}$
Software	Infors HT	IRIS NT V4.0
Zulaufwaage	Mettler-Toledo	Viper SW 35 IntCal
Zuluftfilter	Pall	Emlon II AB02V0022PVH4
42 L-Reaktor	Infors HT	Fermeter Fermenter TV42L K1577

 Tabelle A.3: Bestandteile des 42 L-Rührkessels (Techfors Infors HT).

 Tabelle A.4:
 Bestandteile des Vierfach-Parallelbioreaktorsystem DASGIP (Eppendorf AG).

Bauteil	Hersteller	Bezeichnung
Reaktorgefäß, 4x	Eppendorf AG	DS0500TPSS
Abgasanalytik, 4x	ABB Germany	EL2030
Begasungseinheit, 4x	Eppendorf AG	MX4/4
Gelöstsauerstoff-Elektrode, $4x$	Hamilton	Visiferm DO Sensor
pH-Elektrode, 4x	Mettler-Toledo	MIT D12 mm, L225 mm
Pumpeneinheit, 2x	Eppendorf AG	MP8
Sensoreinheit	Eppendorf AG	PH4 PO4
Software	Eppendorf AG	DASGIP Control
Steuerungseinheit	Eppendorf AG	TC4 SC4
Zulaufwaage, 4x	Mettler-Toledo	XA204
Zu- und Abluftfilter, 8x	Sartorius	Stedim Midisart 2000

Bauteil	Hersteller	Bezeichnung
Bioreaktorblock mit		
Sterilgasabdeckung und Rührer	2mag AG	bioReactor48
Einwegreaktor	PreSens Precision Sensing	HTBD
	GmbH	
Heizbad	Thermo Fisher Scientific	Haake W15
Optosensorik	PreSens Precision Sensing	Multichannel Reader for
	GmbH	pH and oxygen
Software	DASGIP AG	Fedbatch XP 1.0.213
Gasmischstation	Westphal Mess- und Regeltech- nik GmbH	Brooks 5850S

 Tabelle A.5:
 Bestandteile des 48fach-Parallelbioreaktorsystems.

Tabelle A.6: Bestandteile der HPLC-Anlage (Agilent Technologies) zur Quantifizierung von Zuckern, organischen Säuren und Alkoholen.

Bauteil	Hersteller	Bezeichnung
Manager	Agilent Technologies	1100 Series
Ofen	Spark-Holland	Mistral
Probengeber	Agilent Technologies	1100 Series
Pumpe	Agilent Technologies	1100 Series
RI-Detektor	Agilent Technologies	1200 Series
Software	Agilent Technologies	ChemStation
Trennsäule	Bio-Rad Laboratories	Aminex HPX-87H Column,
		300 x 7,8 mm, 125-0140
Vorsäule	Bio-Rad Laboratories	Micro-Guard Cation H

Tabelle A.7: Bestandteile der HPLC-Anlage ((Shimadzu)	zur	Quantifizierung	von Zuckern,	organischen
Säuren und Alkoholen.					

Bauteil	Hersteller	Bezeichnung
Manager	Shimadzu	LC-2030C Plus
RI-Detektor	Agilent Technologies	1200 Series
Trennsäule	Bio-Rad Laboratories	Aminex HPX-87H Column,
		300 x 7,8 mm, 125-0140
Vorsäule	Bio-Rad Laboratories	Micro-Guard Cation H

Bauteil	Hersteller	Bezeichnung
Fluoreszenzdetektor	Shimadzu	RF-20A
Manager	Knauer	Smartline 5000
Ofen	Knauer	Jet Stream
Probengeber	Spark	Midas Cool
Pumpe	Knauer	Smartline 1000
Software	Knauer	Chromgate 3.1
Trennsäule	Phenomenex	Gemini 5 µm C18 110 Å LC Column 150 x 4,6 mm
Vorsäule	Phenomenex	Security Guard Cartridges Gemini C18, 4 x 3,0 mm

 $\label{eq:constraint} \textbf{Tabelle A.8:} \ Bestandteile \ der \ HPLC-Anlage \ (Knauer \ Wissenschaftliche \ Ger"ate) \ zur \ Quantifizierung \ von \ Aminos" auren.$

Tabelle A.9: Laufmittel-Gradient der HPLC-Methode zur Quantifizierung von Aminosäuren.

Zeit, min	Laufmittel A, %	Laufmittel B, $\%$
0	100	0
3	100	0
8,5	75	25
28,5	60	40
30	60	40
30,02	0	100
32	0	100
32,02	20	80
34	20	80
38	100	0
43	100	0

Tabelle A.10: Bestandteile der UHPLC-MS (Triple Quadrupol) Anlage (Thermo Fisher Scientific) zur Quantifizierung intrazellulärer Metabolite.

Gerät	Hersteller	Bezeichnung
Massenspektrometer	Thermo Fisher Scientific	TSQ Vantage
Ofen	Mayland	MistraSwitch
Probengeber	CTC Analytics	PAL CTC
Pumpe und Entgaser	Thermo Fisher Scientific	Accella
Software Auswertung	Thermo Fisher Scientific	Xcalibur 2.2
Software Steuerung	Thermo Fisher Scientific	LCQ Tune Plus X
Trennsäule	Waters Corporation	Acquity HSS T3
		150 mm x 2,1 mm x 1,8 $\mu\mathrm{m}$
Vorsäule	Waters Corporation	VanGuard 2,1 mm x 5,0 mm

Zeit, min	Flussrate, $mlmin^{-1}$	Laufmittel A, $\%$	Laufmittel B, $\%$
0	100	0	0,4
5	100	0	0,4
10	98	2	0,4
11	91	9	$0,\!35$
16	91	9	0,25
18	75	25	0,25
19	50	50	$0,\!15$
25	50	50	$0,\!15$
26	100	0	$0,\!15$
32	100	0	0,4
36	100	0	0,4

Tabelle A.11: Laufmittelfluss und -gradient der UHPLC-Methode zur Quantifizierung intrazellulärer Metabolite.

A.2 Stoffflussberechnungen

Tabelle A.12: Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen in mmol g_{BTM}^{-1} h⁻¹ und die Biomassebildung in h⁻¹ während der metabolischen Analyse von *E. coli* NT1259 *shiA*_{Cg} mit der Kohlenstoffquelle Glycerin in drei Zulaufstufen (1-3). Berechnet mit der thermodynamischen Flussanalyse (TFA) und thermodynamischen Flussvarianzanalyse (min: untere Grenze; max: obere Grenze). Die Reaktionsbezeichnungen und -richtungen wurden vom Modell *i*JO1366 übernommen.

		Glyc 1			Glyc 2			Glyc 3	
Reaktion	TFA	min	max	TFA	min	max	TFA	min	max
ACKr	$0,\!549$	$0,\!548$	$0,\!549$	0,000	0,000	0,000	0,000	0,000	0,000
ACONTa	$1,\!304$	$0,\!410$	$1,\!305$	1,782	$0,\!995$	$1,\!905$	2,060	0,513	$2,\!155$
ACONTb	1,304	$0,\!410$	$1,\!305$	1,782	0,995	$1,\!905$	2,060	0,513	$2,\!155$
ACS	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
AKGDH	0,006	0,006	$1,\!189$	1,728	0,220	$1,\!851$	$1,\!246$	$0,\!051$	$1,\!378$
ANPRT	$0,\!297$	$0,\!297$	$0,\!297$	$0,\!237$	$0,\!237$	$0,\!237$	$0,\!103$	0,103	$0,\!107$
ANS	$0,\!297$	$0,\!297$	$0,\!297$	$0,\!242$	0,242	$0,\!242$	$0,\!105$	$0,\!105$	$0,\!109$
CHORM	0,004	0,004	0,004	0,009	0,009	0,009	$0,\!052$	0,052	$0,\!056$
CHORS	$0,\!300$	$0,\!300$	$0,\!301$	$0,\!251$	$0,\!251$	$0,\!252$	$0,\!158$	$0,\!157$	0,162
CITL	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
\mathbf{CS}	$1,\!304$	$0,\!410$	$1,\!305$	1,782	0,995	$1,\!905$	2,060	0,513	$2,\!155$
CYSS	0,003	0,003	0,003	0,001	0,001	0,001	$0,\!025$	0,024	0,033
DDPA	$0,\!300$	$0,\!300$	$0,\!301$	$0,\!251$	$0,\!251$	$0,\!252$	0,161	0,160	0,166
DHQS	$0,\!300$	$0,\!300$	$0,\!301$	$0,\!251$	$0,\!251$	$0,\!252$	0,161	0,160	0,166
DHQTi	$0,\!300$	$0,\!300$	$0,\!301$	$0,\!251$	$0,\!251$	$0,\!252$	0,161	0,160	0,166
DM_ac	-0,542	-0,542	-0,541	$0,\!170$	$0,\!170$	$0,\!171$	$0,\!170$	$0,\!170$	$0,\!190$
DM_acser	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_cit	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_co2	$3,\!583$	$3,\!583$	$3,\!588$	$6,\!085$	6,085	$6,\!087$	$6,\!085$	6,085	$6,\!087$
DM_cys-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_etoh	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_for	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_glc	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_glu-L	0,030	0,030	0,031	0,002	0,002	0,002	0,000	0,000	0,000
DM_glyc	-2,122	-2,122	-2,120	-3,145	-3,145	-3,144	-4,471	-4,471	-4,457
DM_lac-D	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_lac-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_mal-D	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_mal-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_o2_e	-4,413	-4,413	-4,219	$-7,\!624$	-8,070	$-7,\!624$	$-7,\!624$	-8,070	$-7,\!624$
DM_phe-L	0,000	0,000	0,000	0,004	0,004	$0,\!004$	$0,\!017$	0,017	0,022
DM_pyr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

		Glyc 1			Glyc 2			Glyc 3	
Reaktion	TFA	\min	max	TFA	\min	max	TFA	\min	max
DM_ser-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_succ	0,000	0,000	0,000	0,029	$0,\!029$	0,029	$0,\!406$	0,406	$0,\!416$
DM_trp-L	0,296	$0,\!296$	$0,\!296$	0,237	$0,\!237$	$0,\!237$	0,098	0,098	0,102
DM_tyr-L	0,000	0,000	0,000	0,004	$0,\!004$	$0,\!004$	0,004	0,004	0,006
$Ec_biomass$	0,011	0,011	0,011	0,004	$0,\!004$	$0,\!004$	$0,\!099$	0,098	0,099
ENO	$1,\!193$	0,000	$1,\!194$	2,223	$1,\!404$	$2,\!223$	$3,\!052$	0,323	$3,\!053$
FBA	-0,310	-0,462	-0,310	-0,368	-0,495	-0,246	-0,303	-0,394	-0,220
FBP	0,310	$0,\!310$	$0,\!462$	0,368	$0,\!246$	$0,\!495$	0,303	$0,\!220$	$0,\!394$
FUM	$1,\!273$	0,858	$3,\!140$	1,751	$0,\!964$	$2,\!685$	$1,\!646$	$0,\!408$	4,589
G3PD5	$2,\!120$	$2,\!119$	$2,\!120$	$3,\!144$	$3,\!144$	$3,\!144$	$4,\!455$	$4,\!442$	$4,\!455$
G6PDH2r	0,007	$0,\!005$	$0,\!460$	0,367	0,000	0,745	$0,\!273$	0,021	$0,\!531$
GAPD	$1,\!496$	0,303	$1,\!497$	$2,\!463$	$1,\!648$	$2,\!463$	$3,\!211$	$0,\!481$	3,211
GLYK	2,122	$2,\!120$	$2,\!122$	$3,\!145$	$3,\!144$	$3,\!145$	$4,\!472$	$4,\!458$	$4,\!472$
GLYOX3	0,000	0,000	$1,\!478$	0,000	0,000	$0,\!995$	$0,\!662$	0,000	3,626
GND	0,007	$0,\!005$	$0,\!460$	0,367	0,000	0,745	$0,\!273$	0,021	0,531
ICDHyr	$0,\!619$	$0,\!048$	$1,\!231$	1,735	$0,\!227$	$1,\!858$	$2,\!060$	$0,\!158$	$2,\!155$
ICL	$0,\!685$	0,060	$1,\!257$	0,048	$0,\!042$	$1,\!619$	0,000	0,000	1,566
IGPS	0,297	$0,\!297$	$0,\!297$	0,237	$0,\!237$	$0,\!237$	$0,\!103$	$0,\!103$	$0,\!107$
LDH_D2	0,000	0,000	$1,\!478$	0,000	0,000	$0,\!995$	0,717	0,000	$3,\!626$
MALS	$0,\!685$	$0,\!063$	$1,\!258$	0,048	$0,\!043$	$1,\!619$	0,000	0,000	1,562
MDH	$1,\!957$	$0,\!920$	$3,\!495$	1,799	$1,\!007$	$3,\!435$	$1,\!646$	$1,\!081$	4,589
MGSA	0,000	0,000	$1,\!194$	$0,\!057$	0,000	$0,\!995$	$0,\!662$	$0,\!567$	$3,\!477$
OAADC	0,000	0,000	$1,\!183$	0,000	0,000	$1,\!576$	$1,\!856$	0,000	$3,\!494$
PDH	$1,\!455$	0,000	$2,\!030$	0,000	0,000	$2,\!083$	0,000	0,000	0,000
PFK	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PFL	0,005	0,000	$2,\!042$	$1,\!840$	0,000	$3,\!481$	$2,\!406$	$0,\!459$	3,841
PGCD	0,303	$0,\!303$	$1,\!197$	$0,\!240$	$0,\!240$	$1,\!059$	$0,\!159$	$0,\!158$	1,788
PGI	-0,009	-0,462	-0,007	-0,368	-0,746	-0,001	-0,293	-0,550	-0,040
PGK	-1,496	-1,497	-0,303	-2,463	-2,463	$-1,\!648$	-3,211	-3,211	-0,481
PGL	0,007	$0,\!005$	$0,\!460$	0,367	0,000	0,745	$0,\!273$	0,021	$0,\!531$
\mathbf{PGM}	-1,193	-1,194	0,000	-2,223	-2,223	-1,404	-3,052	-3,053	-0,323
PHETA1	-0,002	-0,002	-0,002	-0,005	-0,005	-0,005	-0,035	-0,039	-0,035
PPC	0,000	0,000	0,000	0,000	0,000	0,000	$2,\!673$	0,000	2,730
PPCK	$0,\!602$	0,000	$0,\!602$	0,000	0,000	0,000	0,000	0,000	0,000
PPND	0,002	0,001	$0,\!002$	0,005	$0,\!005$	$0,\!005$	$0,\!017$	0,017	0,019
PPNDH	0,002	$0,\!002$	$0,\!002$	0,005	$0,\!005$	$0,\!005$	$0,\!035$	$0,\!035$	0,039
PPS	0,000	0,000	0,000	0,000	0,000	$1,\!630$	0,000	0,000	0,000
PRAIi	0,297	$0,\!297$	$0,\!297$	0,237	$0,\!237$	$0,\!237$	$0,\!103$	$0,\!103$	0,107

Tabelle A.12 – Fortsetzung

		Glyc 1			Glyc 2			Glyc 3	
Reaktion	TFA	min	max	TFA	min	max	TFA	min	max
PRPPS	0,306	0,306	0,309	0,241	0,241	0,242	0,188	$0,\!187$	0,208
PSCVT	$0,\!300$	0,300	0,301	$0,\!251$	0,251	$0,\!252$	$0,\!158$	$0,\!157$	0,162
PSERT	0,303	0,303	$1,\!197$	0,240	0,240	$1,\!059$	$0,\!159$	$0,\!158$	1,788
PSP_L	0,303	0,303	$1,\!197$	0,240	0,240	$1,\!059$	$0,\!159$	$0,\!158$	1,788
PTAr	-0,549	-0,549	-0,548	0,000	0,000	0,000	0,000	0,000	0,000
GLCptspp	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
РҮК	$1,\!194$	0,000	$1,\!195$	1,720	0,901	$3,\!346$	0,000	0,000	2,730
RPE	-0,300	-0,301	$0,\!002$	0,000	-0,245	$0,\!252$	0,000	-0,170	$0,\!170$
RPI	-0,307	-0,457	-0,306	-0,367	-0,493	-0,244	-0,271	-0,360	-0,188
SHK3Dr	0,300	0,300	$0,\!301$	$0,\!251$	0,251	$0,\!252$	$0,\!158$	$0,\!157$	0,162
SHKK	0,300	0,300	$0,\!301$	$0,\!251$	0,251	$0,\!252$	$0,\!158$	$0,\!157$	0,162
SUCDi	$1,\!261$	0,368	$1,\!267$	1,747	0,960	$1,\!871$	$1,\!546$	0,000	$1,\!673$
SUCOAS	0,000	-1,183	0,000	-1,726	-1,849	-0,218	-1,195	-1,195	0,000
TALA	0,000	0,000	$0,\!151$	$0,\!126$	0,003	0,252	0,079	-0,004	0,166
TKT1	0,000	0,000	$0,\!151$	$0,\!126$	0,003	0,252	0,082	0,000	$0,\!170$
TKT2	-0,300	-0,301	-0,149	-0,126	-0,248	0,000	-0,082	-0,170	0,000
TPI	1,810	$0,\!616$	1,810	2,719	1,904	2,719	$3,\!490$	0,759	$3,\!497$
TRPS2	$0,\!297$	$0,\!297$	$0,\!297$	0,237	0,237	$0,\!237$	$0,\!103$	0,103	$0,\!107$
TRPS3	$0,\!297$	$0,\!297$	$0,\!297$	0,237	0,237	0,237	$0,\!103$	0,103	$0,\!107$
TYRTA	-0,002	-0,002	-0,001	-0,005	-0,005	-0,005	-0,017	-0,019	-0,017

Tabelle A.12 – Fortsetzung

Tabelle A.13: Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen in mmol g_{BTM}^{-1} h⁻¹ und die Biomassebildung in h⁻¹ während der metabolischen Analyse von *E. coli* NT1259 *shiA*_{Cg} mit der Kohlenstoffquelle Glucose in drei Zulaufstufen (1-3). Berechnet mit der thermodynamischen Flussanalyse (TFA) und thermodynamischen Flussvarianzanalyse (min: untere Grenze; max: obere Grenze). Die Reaktionsbezeichnungen und -richtungen wurden vom Modell *i*JO1366 übernommen.

		Gluc 1			Gluc 2		Gluc 3		
Reaktion	TFA	min	max	TFA	min	max	TFA	\min	max
ACKr	$0,\!673$	$0,\!672$	1,914	0,002	0,002	$0,\!097$	0,000	0,000	0,000
ACONTa	$1,\!057$	0,759	$1,\!251$	$1,\!466$	1,323	$1,\!470$	1,529	0,961	$1,\!633$
ACONTb	$1,\!057$	0,759	$1,\!251$	$1,\!466$	1,323	$1,\!470$	1,529	0,961	$1,\!633$
ACS	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
AKGDH	1,049	0,004	$1,\!243$	0,775	$0,\!488$	0,823	0,004	0,004	$1,\!393$
ANPRT	$0,\!190$	$0,\!190$	$0,\!191$	$0,\!140$	0,140	0,140	$0,\!194$	$0,\!194$	$0,\!195$
ANS	$0,\!190$	$0,\!190$	$0,\!191$	$0,\!140$	$0,\!140$	$0,\!140$	0,201	0,201	0,202
CHORM	0,002	0,002	0,003	0,003	0,003	0,003	0,003	0,003	0,003
CHORS	$0,\!193$	$0,\!193$	$0,\!193$	$0,\!143$	$0,\!143$	$0,\!143$	$0,\!204$	$0,\!204$	0,204

		Gluc 1			Gluc 2			Gluc 3	
Reaktion	TFA	\min	max	TFA	\min	max	TFA	\min	max
CITL	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
\mathbf{CS}	$1,\!057$	0,759	$1,\!251$	1,466	$1,\!323$	$1,\!470$	1,529	0,961	$1,\!633$
CYSS	0,002	0,002	0,002	0,001	0,001	0,001	0,002	0,002	0,002
DDPA	$0,\!193$	$0,\!193$	$0,\!193$	0,143	$0,\!143$	$0,\!143$	0,204	0,204	0,204
DHQS	$0,\!193$	$0,\!193$	$0,\!193$	0,143	$0,\!143$	$0,\!143$	0,204	0,204	0,204
DHQTi	$0,\!193$	$0,\!193$	$0,\!193$	0,143	$0,\!143$	$0,\!143$	0,204	0,204	0,204
DM_ac	-0,669	-0,669	-0,668	0,000	0,000	0,000	$0,\!120$	$0,\!120$	$0,\!121$
DM_acser	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_cit	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_co2	3,307	$3,\!307$	$3,\!310$	4,442	4,442	4,444	$5,\!087$	$5,\!087$	5,090
DM_cys-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_etoh	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_for	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_glc	-0,693	-0,693	-0,693	-1,067	-1,067	-1,067	-1,369	-1,369	-1,369
DM_glu-L	0,000	0,000	0,000	$0,\!050$	$0,\!050$	$0,\!050$	0,000	0,000	0,000
DM_glyc	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_lac-D	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_lac-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_mal-D	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_mal-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_o2	-3,848	-4,286	-3,848	-5,343	$-5,\!612$	-5,343	-5,981	-6,178	-5,981
DM_phe-L	0,000	0,000	0,000	0,001	$0,\!001$	0,001	0,000	0,000	0,001
DM_pyr	0,000	0,000	$0,\!000$	0,000	0,000	0,000	0,000	0,000	0,000
DM_ser-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_succ	-0,050	-0,050	-0,049	0,000	0,000	0,000	$0,\!103$	$0,\!103$	0,104
DM_trp-L	$0,\!190$	$0,\!190$	$0,\!190$	$0,\!140$	$0,\!140$	$0,\!140$	$0,\!194$	$0,\!194$	$0,\!194$
DM_tyr-L	0,000	0,000	0,000	$0,\!001$	$0,\!001$	$0,\!001$	0,000	0,000	0,000
$Ec_biomass$	0,007	0,007	$0,\!007$	$0,\!004$	$0,\!004$	$0,\!004$	$0,\!007$	$0,\!007$	0,007
ENO	0,297	0,000	$0,\!297$	0,773	$0,\!632$	0,777	$0,\!957$	0,000	$0,\!958$
FBA	0,000	0,000	$0,\!494$	0,000	0,000	$0,\!001$	0,000	0,000	0,000
FBP	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
FUM	$1,\!107$	0,809	2,748	$1,\!416$	$1,\!273$	$1,\!560$	$1,\!425$	$0,\!856$	4,131
G3PD5	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
G6PDH2r	$0,\!691$	0,003	$0,\!691$	0,923	$0,\!922$	1,066	$1,\!265$	$1,\!264$	1,265
GAPD	$0,\!492$	$0,\!194$	$0,\!492$	0,919	$0,\!825$	$0,\!920$	$1,\!157$	$0,\!198$	$1,\!157$
GLYK	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
GLYOX3	$0,\!192$	0,000	1,069	0,000	0,000	$0,\!189$	$0,\!101$	0,000	1,829
GND	0,583	0,003	$0,\!585$	0,001	0,000	$0,\!428$	0,303	0,303	0,305

Tabelle A.13 – Fortsetzung

Reaktion TFA min max TFA min max TFA min max TFA min max ICDHyr 1,057 0,012 1,251 0,830 0,542 1,113 0,011 0,011 1,400 ICL 0,000 0,000 1,239 0,636 0,354 0,924 1,518 0,122 1,520 IGPS 0,190 0,190 0,191 0,140 0,140 0,140 0,144 0,194 0,192 1,521 IDH_D2 0,192 0,000 1,241 0,636 0,354 0,924 1,518 0,123 1,521 MDH 1,107 0,809 3,147 2,052 1,767 2,341 2,943 0,981 4,834 MGSA 0,192 0,000 1,261 0,000 0,000 0,283 1,388 0,000 1,389 PDH 0,394 0,000 1,828 2,113 0,000 0,000 0,000 0,000 0,001 <th></th> <th></th> <th>Glue 1</th> <th></th> <th></th> <th>Glue 2</th> <th></th> <th></th> <th>Glue 3</th> <th></th>			Glue 1			Glue 2			Glue 3	
ICD Hyr 1,057 0,012 1,251 0,830 0,542 1,113 0,011 0,011 1,400 ICL 0,000 0,000 1,239 0,636 0,354 0,924 1,518 0,122 1,520 IGPS 0,190 0,190 0,191 0,140 0,140 0,194 0,194 0,195 LDH_D2 0,192 0,000 1,069 0,000 0,000 0,101 0,000 1,829 MALS 0,000 0,000 1,241 0,636 0,354 0,924 1,518 0,123 1,521 MDH 1,107 0,809 3,147 2,052 1,767 2,341 2,943 0,981 4,834 MGSA 0,192 0,000 1,261 0,000 0,000 0,101 0,100 1,059 OAADC 0,021 0,000 1,261 0,000 0,001 0,000 0,383 0,300 1,389 PDH 0,394 0,000 1,828 2,113	Reaktion	TFA	min	max	TFA	min	max	TFA	min	max
ICD Hyr 1,037 0,012 1,231 0,830 0,342 1,113 0,011 0,011 1,400 ICL 0,000 0,000 1,239 0,636 0,354 0,924 1,518 0,122 1,520 IGPS 0,190 0,190 0,191 0,140 0,140 0,194 0,194 0,195 LDH_D2 0,192 0,000 1,069 0,000 0,000 0,101 0,000 1,829 MALS 0,000 0,000 1,241 0,636 0,354 0,924 1,518 0,123 1,521 MDH 1,107 0,809 3,147 2,052 1,767 2,341 2,943 0,981 4,834 MGSA 0,921 0,000 1,261 0,000 0,000 0,283 1,388 0,000 1,389 PDH 0,394 0,000 1,828 2,113 0,000 2,402 2,448 0,000 2,448 PFK 0,000 0,000 1,836		1.057	0.019	1.051	0.820	0 5 4 9	1 1 1 9	0.011	0.011	1 400
ICL 0,000 0,000 1,239 0,536 0,334 0,324 1,318 0,122 1,320 IGPS 0,190 0,190 0,191 0,140 0,140 0,194 0,194 0,195 LDH_D2 0,192 0,000 1,069 0,000 0,000 0,189 0,101 0,000 1,829 MALS 0,000 0,000 1,241 0,636 0,354 0,924 1,518 0,123 1,521 MDH 1,107 0,809 3,147 2,052 1,767 2,341 2,943 0,981 4,834 MGSA 0,192 0,000 0,790 0,000 0,000 0,101 0,100 1,059 OAADC 0,021 0,000 1,261 0,000 0,000 2,402 2,448 0,000 1,389 PDH 0,394 0,000 1,828 2,113 0,000 2,402 2,448 0,000 3,171 PGCD 0,194 0,194 0,492	ICDHyr	1,057	0,012	1,251	0,830	0,542	1,113	0,011	0,011	1,400
IGPS0,1900,1900,1910,1400,1400,1400,1940,1940,1940,193LDH_D20,1920,0001,0690,0000,0000,1890,1010,0001,829MALS0,0000,0001,2410,6360,3540,9241,5180,1231,521MDH1,1070,8093,1472,0521,7672,3412,9430,9814,834MGSA0,1920,0000,7900,0000,0000,1890,1010,1001,059OAADC0,0210,0001,2610,0000,0000,2831,3880,0001,389PDH0,3940,0001,8282,1130,0002,4022,4480,0002,448PFK0,0000,0000,4940,0000,0010,0000,0000,0000,000PFL0,0080,0001,8360,0000,0010,0000,0003,171PGCD0,1940,1940,4920,1460,1420,2880,2000,1981,157PGI0,0010,0000,6880,1430,0000,1450,1030,1020,104PGK-0,492-0,492-0,194-0,919-0,920-0,825-1,157-1,157-0,198PGL0,6910,0030,6910,9230,9221,0661,2651,2641,265PGM-0,297-0,2970,000-0,002-0,002-0,001	ICL	0,000	0,000	1,239	0,030	0,354	0,924	1,518	0,122	1,520
LDH_D2 0,192 0,000 1,069 0,000 0,000 0,189 0,101 0,000 1,829 MALS 0,000 0,000 1,241 0,636 0,354 0,924 1,518 0,123 1,521 MDH 1,107 0,809 3,147 2,052 1,767 2,341 2,943 0,981 4,834 MGSA 0,192 0,000 0,790 0,000 0,000 0,189 0,101 0,100 1,059 OAADC 0,021 0,000 1,261 0,000 0,000 0,283 1,388 0,000 1,389 PDH 0,394 0,000 1,828 2,113 0,000 2,402 2,448 0,000 2,448 PFK 0,000 0,000 1,836 0,000 0,001 0,000 3,171 PGCD 0,194 0,194 0,492 0,146 0,142 0,288 0,200 0,198 1,157 PGI 0,001 0,000 0,688 0,143 0,000 0,145 0,103 0,102 0,104 PGK <td>IGPS</td> <td>0,190</td> <td>0,190</td> <td>0,191</td> <td>0,140</td> <td>0,140</td> <td>0,140</td> <td>0,194</td> <td>0,194</td> <td>0,195</td>	IGPS	0,190	0,190	0,191	0,140	0,140	0,140	0,194	0,194	0,195
MALS 0,000 0,000 1,241 0,636 0,334 0,924 1,518 0,123 1,521 MDH 1,107 0,809 3,147 2,052 1,767 2,341 2,943 0,981 4,834 MGSA 0,192 0,000 0,790 0,000 0,000 0,189 0,101 0,100 1,059 OAADC 0,021 0,000 1,261 0,000 0,000 0,283 1,388 0,000 1,389 PDH 0,394 0,000 1,828 2,113 0,000 2,402 2,448 0,000 2,448 PFK 0,000 0,000 1,836 0,000 0,000 2,402 0,618 0,000 3,171 PGCD 0,194 0,194 0,492 0,146 0,142 0,288 0,200 0,198 1,157 PGI 0,001 0,000 0,688 0,143 0,000 0,145 0,103 0,102 0,104 PGK -0,492 -0,492 -0,194 -0,919 -0,920 -0,825 -1,157 -1,157 <td< td=""><td>LDH_D2</td><td>0,192</td><td>0,000</td><td>1,009</td><td>0,000</td><td>0,000</td><td>0,189</td><td>0,101</td><td>0,000</td><td>1,829</td></td<>	LDH_D2	0,192	0,000	1,009	0,000	0,000	0,189	0,101	0,000	1,829
MDH1,1070,8093,1472,0521,7672,3412,9430,9814,834MGSA0,1920,0000,7900,0000,0000,1890,1010,1001,059OAADC0,0210,0001,2610,0000,0000,2831,3880,0001,389PDH0,3940,0001,8282,1130,0002,4022,4480,0002,448PFK0,0000,0000,4940,0000,0000,0010,0000,0000,000PFL0,0080,0001,8360,0000,0002,4020,6180,0003,171PGCD0,1940,1940,4920,1460,1420,2880,2000,1981,157PGI0,0010,0000,6880,1430,0000,4150,1030,1020,104PGK-0,492-0,492-0,194-0,919-0,920-0,825-1,157-1,157-0,198PGL0,6910,0030,6910,9230,9221,0661,2651,2641,265PGM-0,297-0,2970,000-0,002-0,002-0,001-0,002-0,001PPC0,0000,0000,0000,0000,0000,0000,0000,000PPCK0,0010,0010,0010,0010,0010,0010,001PPNDH0,0010,0010,0020,0020,0020,0020,0010,001PPNDH0,001	MALS	0,000	0,000	1,241	0,636	0,354	0,924	1,518	0,123	1,521
MGSA 0,192 0,000 0,790 0,000 0,000 0,189 0,101 0,100 1,059 OAADC 0,021 0,000 1,261 0,000 0,000 0,283 1,388 0,000 1,389 PDH 0,394 0,000 1,828 2,113 0,000 2,402 2,448 0,000 2,448 PFK 0,000 0,000 0,494 0,000	MDH	1,107	0,809	3,147	2,052	1,767	2,341	2,943	0,981	4,834
OAADC 0,021 0,000 1,261 0,000 0,000 0,283 1,388 0,000 1,389 PDH 0,394 0,000 1,828 2,113 0,000 2,402 2,448 0,000 2,448 PFK 0,000 0,000 0,494 0,000	MGSA	0,192	0,000	0,790	0,000	0,000	0,189	0,101	0,100	1,059
PDH 0,394 0,000 1,828 2,113 0,000 2,402 2,448 0,000 2,448 PFK 0,000 0,000 0,494 0,000 0,000 0,001 0,000 0,000 0,000 PFL 0,008 0,000 1,836 0,000 0,000 2,402 0,618 0,000 3,171 PGCD 0,194 0,194 0,492 0,146 0,142 0,288 0,200 0,198 1,157 PGI 0,001 0,000 0,688 0,143 0,000 0,145 0,103 0,102 0,104 PGK -0,492 -0,492 -0,194 -0,919 -0,920 -0,825 -1,157 -1,157 -0,198 PGL 0,691 0,003 0,691 0,923 0,922 1,066 1,265 1,264 1,265 PGM -0,297 -0,297 0,000 -0,773 -0,777 -0,632 -0,957 -0,958 0,000 PHETA1 -0,001 -0,002 -0,002 -0,002 -0,001 -0,002 -0,001 0,000<	OAADC	0,021	0,000	1,261	0,000	0,000	0,283	1,388	0,000	1,389
PFK0,0000,0000,4940,0000,0000,0010,0000,0000,000PFL0,0080,0001,8360,0000,0002,4020,6180,0003,171PGCD0,1940,1940,4920,1460,1420,2880,2000,1981,157PGI0,0010,0000,6880,1430,0000,1450,1030,1020,104PGK-0,492-0,492-0,194-0,919-0,920-0,825-1,157-1,157-0,198PGL0,6910,0030,6910,9230,9221,0661,2651,2641,265PGM-0,297-0,2970,000-0,773-0,777-0,632-0,957-0,9580,000PHETA1-0,001-0,002-0,001-0,002-0,001-0,002-0,001-0,002-0,001PPC0,0000,0000,0000,0000,0000,0000,0000,0000,000PPCK0,0000,0010,0010,0010,0010,0010,0010,001PPNDH0,0010,0010,0010,0010,0010,0010,0010,002PPS0,7820,0001,0800,0050,0000,2880,8200,8191,778PRAIi0,1900,1910,1400,1400,1440,1940,1940,195PRPPS0,1970,1980,1430,1430,1430,1440,2000,2000	PDH	0,394	0,000	1,828	2,113	0,000	2,402	2,448	0,000	2,448
PFL0,0080,0001,8360,0000,0002,4020,6180,0003,171PGCD0,1940,1940,4920,1460,1420,2880,2000,1981,157PGI0,0010,0000,6880,1430,0000,1450,1030,1020,104PGK-0,492-0,492-0,194-0,919-0,920-0,825-1,157-1,157-0,198PGL0,6910,0030,6910,9230,9221,0661,2651,2641,265PGM-0,297-0,2970,000-0,773-0,777-0,632-0,957-0,9580,000PHETA1-0,001-0,002-0,001-0,002-0,002-0,001-0,002-0,001PPC0,0000,0000,0000,0000,0000,0000,0000,000PPCK0,0000,0010,0010,0010,0010,0010,001PPNDH0,0010,0010,0010,0010,0010,0010,001PPS0,7820,0001,0800,0050,0000,2880,8200,8191,778PRAIi0,1900,1910,1400,1400,1440,2000,2000,202PSCVT0,1930,1930,1430,1430,1430,1440,2040,2040,204	PFK	0,000	0,000	0,494	0,000	0,000	0,001	0,000	0,000	0,000
PGCD0,1940,1940,4920,1460,1420,2880,2000,1981,157PGI0,0010,0000,6880,1430,0000,1450,1030,1020,104PGK-0,492-0,492-0,194-0,919-0,920-0,825-1,157-1,157-0,198PGL0,6910,0030,6910,9230,9221,0661,2651,2641,265PGM-0,297-0,2970,000-0,773-0,777-0,632-0,957-0,9580,000PHETA1-0,001-0,002-0,001-0,002-0,002-0,001-0,002-0,001PPC0,0000,0000,0000,0000,0000,0000,0000,000PPCK0,0000,0011,0800,5750,2930,7220,0000,0010,001PPND0,0010,0010,0010,0010,0010,0010,0010,002PPS0,7820,0001,0800,0050,0000,2880,8200,8191,778PRAIi0,1900,1900,1910,1400,1400,1440,2000,2000,202PRPS0,1970,1980,1430,1430,1440,2000,2000,202PSCVT0,1030,1030,1030,1430,1440,2040,2040,204	PFL	0,008	0,000	1,836	0,000	0,000	2,402	$0,\!618$	0,000	$3,\!171$
PGI0,0010,0000,6880,1430,0000,1450,1030,1020,104PGK-0,492-0,492-0,194-0,919-0,920-0,825-1,157-1,157-0,198PGL0,6910,0030,6910,9230,9221,0661,2651,2641,265PGM-0,297-0,2970,000-0,773-0,777-0,632-0,957-0,9580,000PHETA1-0,001-0,002-0,001-0,002-0,002-0,001-0,002-0,001PPC0,0000,0000,0000,0000,0000,0000,0000,000PPCK0,0000,0001,0800,5750,2930,7220,0000,0000,000PPCK0,0010,0010,0010,0010,0010,0010,0010,001PPCK0,0000,0001,0800,5750,2930,7220,0000,0000,000PPND0,0010,0010,0010,0010,0010,0010,0010,001PPNDH0,0010,0010,0020,0020,0020,0020,0010,0010,002PPS0,7820,0001,0800,0050,0000,2880,8200,8191,778PRAIi0,1900,1900,1910,1400,1400,1440,2000,2000,202PSCVT0,1930,1930,1930,1430,1430,1430,1440,2040,204	PGCD	$0,\!194$	$0,\!194$	$0,\!492$	$0,\!146$	0,142	$0,\!288$	0,200	$0,\!198$	$1,\!157$
PGK-0,492-0,492-0,194-0,919-0,920-0,825-1,157-1,157-0,198PGL0,6910,0030,6910,9230,9221,0661,2651,2641,265PGM-0,297-0,2970,000-0,773-0,777-0,632-0,957-0,9580,000PHETA1-0,001-0,002-0,001-0,002-0,002-0,001-0,002-0,001PPC0,0000,0000,0000,0000,0000,0000,0000,000PPCK0,0000,0011,0800,5750,2930,7220,0000,0000,000PPND0,0010,0010,0010,0010,0010,0010,0010,001PPNDH0,0010,0010,0020,0020,0020,0020,0010,001PPS0,7820,0001,0800,0050,0000,2880,8200,8191,778PRAIi0,1900,1910,1400,1400,1440,2000,2000,202PSCVT0,1930,1930,1430,1430,1430,2040,2040,204	PGI	0,001	0,000	$0,\!688$	$0,\!143$	0,000	$0,\!145$	$0,\!103$	0,102	$0,\!104$
PGL0,6910,0030,6910,9230,9221,0661,2651,2641,265PGM-0,297-0,2970,000-0,773-0,777-0,632-0,957-0,9580,000PHETA1-0,001-0,002-0,001-0,002-0,002-0,002-0,001-0,002-0,001PPC0,0000,0000,0000,0000,0000,0000,0000,0000,000PPCK0,0000,0001,0800,5750,2930,7220,0000,0000,000PPND0,0010,0010,0010,0010,0010,0010,0010,001PPNDH0,0010,0010,0020,0020,0020,0020,0010,0010,002PPS0,7820,0001,0800,0050,0000,2880,8200,8191,778PRAIi0,1900,1910,1400,1400,1440,2000,2000,202PSCVT0,1930,1930,1430,1430,1430,1430,2040,2040,204	PGK	-0,492	-0,492	-0,194	-0,919	-0,920	-0,825	-1,157	-1,157	-0,198
PGM-0,297-0,2970,000-0,773-0,777-0,632-0,957-0,9580,000PHETA1-0,001-0,002-0,001-0,002-0,002-0,002-0,001-0,002-0,001PPC0,0000,0000,0000,0000,0000,0000,0000,0000,0000,000PPCK0,0000,0001,0800,5750,2930,7220,0000,0000,000PPND0,0010,0010,0010,0010,0010,0010,0010,001PPNDH0,0010,0010,0020,0020,0020,0020,0010,001PPS0,7820,0001,0800,0050,0000,2880,8200,8191,778PRAIi0,1900,1900,1910,1400,1400,1440,2000,2000,202PSCVT0,1030,1030,1030,1430,1430,1430,1440,2040,2040,204	PGL	$0,\!691$	0,003	$0,\!691$	0,923	0,922	1,066	1,265	1,264	1,265
PHETA1-0,001-0,002-0,001-0,002-0,002-0,002-0,001-0,002-0,001PPC0,0000,0000,0000,0000,0000,0000,0000,0000,000PPCK0,0000,0001,0800,5750,2930,7220,0000,0000,000PPND0,0010,0010,0010,0010,0010,0010,0010,0010,001PPNDH0,0010,0010,0020,0020,0020,0020,0010,0010,002PPS0,7820,0001,0800,0050,0000,2880,8200,8191,778PRAIi0,1900,1900,1910,1400,1400,1400,1940,1940,195PRPPS0,1970,1930,1430,1430,1440,2000,2000,202PSCVT0,1030,1030,1030,1430,1430,1430,2040,2040,204	\mathbf{PGM}	-0,297	-0,297	0,000	-0,773	-0,777	-0,632	-0,957	-0,958	0,000
PPC0,0000,0000,0000,0000,0000,0000,0000,0000,000PPCK0,0000,0001,0800,5750,2930,7220,0000,0000,000PPND0,0010,0010,0010,0010,0010,0010,0010,0010,001PPNDH0,0010,0010,0020,0020,0020,0020,0010,0010,002PPS0,7820,0001,0800,0050,0000,2880,8200,8191,778PRAIi0,1900,1900,1910,1400,1400,1400,1940,1940,195PRPPS0,1970,1930,1430,1430,1440,2000,2000,202PSCVT0,1030,1030,1430,1430,1430,1430,2040,2040,204	PHETA1	-0,001	-0,002	-0,001	-0,002	-0,002	-0,002	-0,001	-0,002	-0,001
PPCK0,0000,0001,0800,5750,2930,7220,0000,0000,000PPND0,0010,0010,0010,0010,0010,0010,0010,0010,001PPNDH0,0010,0010,0020,0020,0020,0020,0010,0010,002PPS0,7820,0001,0800,0050,0000,2880,8200,8191,778PRAIi0,1900,1900,1910,1400,1400,1400,1940,1940,195PRPPS0,1970,1930,1430,1430,1440,2000,2000,202PSCVT0,1030,1030,1430,1430,1430,1430,2040,2040,204	PPC	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PPND0,0010,0010,0010,0010,0010,0010,0010,0010,001PPNDH0,0010,0010,0020,0020,0020,0020,0010,0010,002PPS0,7820,0001,0800,0050,0000,2880,8200,8191,778PRAIi0,1900,1900,1910,1400,1400,1400,1940,1940,195PRPPS0,1970,1970,1980,1430,1430,1440,2000,2000,202PSCVT0,1030,1030,1430,1430,1430,1430,2040,2040,204	PPCK	0,000	0,000	$1,\!080$	$0,\!575$	0,293	0,722	0,000	0,000	0,000
PPNDH0,0010,0010,0020,0020,0020,0020,0010,0010,002PPS0,7820,0001,0800,0050,0000,2880,8200,8191,778PRAIi0,1900,1900,1910,1400,1400,1400,1940,1940,195PRPPS0,1970,1970,1980,1430,1430,1440,2000,2000,202PSCVT0,1030,1030,1430,1430,1430,1430,2040,2040,204	PPND	0,001	0,001	$0,\!001$	$0,\!001$	0,001	$0,\!001$	$0,\!001$	$0,\!001$	$0,\!001$
PPS0,7820,0001,0800,0050,0000,2880,8200,8191,778PRAIi0,1900,1900,1910,1400,1400,1400,1940,1940,195PRPPS0,1970,1970,1980,1430,1430,1440,2000,2000,202PSCVT0,1030,1030,1430,1430,1430,1430,2040,2040,204	PPNDH	0,001	0,001	$0,\!002$	$0,\!002$	0,002	$0,\!002$	$0,\!001$	$0,\!001$	0,002
PRAIi 0,190 0,190 0,191 0,140 0,140 0,140 0,194 0,194 0,195 PRPPS 0,197 0,197 0,198 0,143 0,143 0,144 0,200 0,200 0,202 PSCVT 0,103 0,103 0,143 0,143 0,143 0,143 0,204 0,204 0,204	PPS	0,782	0,000	1,080	$0,\!005$	0,000	$0,\!288$	0,820	0,819	1,778
PRPPS 0,197 0,197 0,198 0,143 0,143 0,144 0,200 0,200 0,202 PSCVT 0.103 0.103 0.143 0.143 0.143 0.143 0.204 0.204 0.204	PRAIi	$0,\!190$	$0,\!190$	$0,\!191$	$0,\!140$	$0,\!140$	$0,\!140$	$0,\!194$	$0,\!194$	$0,\!195$
PSCVT 0.103 0.103 0.103 0.143 0.143 0.143 0.204 0.204	PRPPS	$0,\!197$	$0,\!197$	$0,\!198$	$0,\!143$	$0,\!143$	$0,\!144$	0,200	0,200	0,202
$150 1 \qquad 0.133 0.133 0.143 0.143 0.143 0.204 0.204 0.204$	PSCVT	$0,\!193$	$0,\!193$	$0,\!193$	$0,\!143$	$0,\!143$	$0,\!143$	0,204	0,204	0,204
PSERT 0,194 0,194 0,492 0,146 0,142 0,288 0,200 0,198 1,157	PSERT	$0,\!194$	$0,\!194$	$0,\!492$	0,146	0,142	0,288	0,200	0,198	$1,\!157$
PSP_L 0,194 0,194 0,492 0,146 0,142 0,288 0,200 0,198 1,157	PSP_L	$0,\!194$	$0,\!194$	$0,\!492$	0,146	0,142	0,288	0,200	0,198	$1,\!157$
PTAr -0,673 -1,914 -0,672 -0,002 -0,097 -0,002 0,000 0,000 0,000	PTAr	-0,673	-1,914	-0,672	-0,002	-0,097	-0,002	0,000	0,000	0,000
GLCptspp 0,693 0,693 0,693 1,067 1,067 1,067 1,369 1,369 1,369	GLCptspp	$0,\!693$	$0,\!693$	$0,\!693$	1,067	1,067	1,067	1,369	1,369	1,369
PYK 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	РҮК	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
RPE 0,193 -0,193 0,193 -0,143 -0,143 0,142 0,000 -0,001 0,000	RPE	$0,\!193$	-0,193	$0,\!193$	-0,143	-0,143	0,142	0,000	-0,001	0,000
RPI -0,390 -0,391 -0,197 -0,144 -0,286 -0,143 -0,303 -0,304 -0,302	RPI	-0,390	-0,391	-0,197	-0,144	-0,286	-0,143	-0,303	-0,304	-0,302
SHK3Dr 0,193 0,193 0,193 0,143 0,143 0,143 0,204 0,204 0,204	SHK3Dr	$0,\!193$	$0,\!193$	0,193	$0,\!143$	0,143	$0,\!143$	0,204	0,204	0,204
SHKK 0,193 0,193 0,193 0,143 0,143 0,143 0,204 0,204 0,204	SHKK	$0,\!193$	$0,\!193$	0,193	0,143	0,143	$0,\!143$	0,204	0,204	0,204
SUCDi 1,099 0,801 1,296 1,413 1,269 1,418 1,418 0,849 1,525	SUCDi	1,099	0,801	1,296	1,413	1,269	1,418	1,418	0,849	1,525
SUCOAS -1,045 -1,239 0,000 -0,773 -0,773 -0,486 0,000 -1,389 0,000	SUCOAS	-1,045	-1,239	0,000	-0,773	-0,773	-0,486	0,000	-1,389	0,000
TALA 0,000 -0,494 0,000 0,000 -0,096 0,001 0,000 0,000 0.000	TALA	0,000	-0,494	0,000	0,000	-0,096	0,001	0,000	0,000	0,000
TKT1 0,193 0,000 0,193 0,000 0,142 0,102 0,102 0,102	TKT1	$0,\!193$	0,000	$0,\!193$	0,000	0,000	$0,\!142$	$0,\!102$	0,102	$0,\!102$

 ${\bf Tabelle \ A.13}-{\rm Fortsetzung}$

		Gluc 1			Gluc 2			Gluc 3		
Reaktion	TFA	min	max	TFA	min	max	TFA	min	max	
TKT2	0,000	-0,193	0,000	-0,143	-0,143	-0,001	-0,102	-0,103	-0,102	
TPI	0,000	-0,297	0,000	-0,001	-0,095	0,000	0,000	-0,958	0,000	
TRPS2	$0,\!190$	$0,\!190$	$0,\!191$	$0,\!140$	$0,\!140$	$0,\!140$	$0,\!194$	$0,\!194$	$0,\!195$	
TRPS3	0,190	$0,\!190$	$0,\!191$	$0,\!140$	$0,\!140$	$0,\!140$	$0,\!194$	$0,\!194$	$0,\!195$	
TYRTA	-0,001	-0,001	-0,001	-0,001	-0,001	-0,001	-0,001	-0,001	-0,001	

Tabelle A.13 – Fortsetzung

Tabelle A.14: Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen in mmol g_{BTM}^{-1} h⁻¹ und die Biomassebildung in h⁻¹ während der metabolischen Analyse von *E. coli* NT1259 *shiA*_{Cg} mit den Kohlenstoffquellen Glycerin und Shikimat in drei Zulaufstufen (1-3). Berechnet mit der thermodynamischen Flussvarianzanalyse (min: untere Grenze; max: obere Grenze). Die Reaktionsbezeichnungen und -richtungen wurden vom Modell *i*JO1366 übernommen.

	Glyc & Shik 1			Glyc & Shik 2			Glyc & Shik 3		
Reaktion	TFA	min	max	TFA	min	max	TFA	min	max
ACKr	$0,\!050$	$0,\!050$	$0,\!050$	0,000	0,000	0,000	0,000	0,000	0,000
ACONTa	$0,\!970$	$0,\!035$	$1,\!307$	$1,\!445$	0,790	$1,\!445$	2,713	$1,\!284$	2,750
ACONTb	$0,\!970$	$0,\!035$	$1,\!307$	$1,\!445$	0,790	$1,\!445$	2,713	$1,\!284$	2,750
ACS	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
AKGDH	0,019	$0,\!019$	$0,\!977$	1,020	0,008	$1,\!274$	$2,\!095$	0,016	$2,\!303$
ANPRT	0,213	$0,\!144$	$0,\!215$	$0,\!192$	$0,\!192$	$0,\!193$	$0,\!140$	0,140	$0,\!146$
ANS	0,213	$0,\!144$	0,215	$0,\!195$	$0,\!195$	$0,\!196$	$0,\!152$	$0,\!150$	$0,\!158$
CHORM	0,015	$0,\!015$	0,028	0,028	0,027	0,028	$0,\!055$	0,043	0,061
CHORS	$0,\!228$	$0,\!159$	$0,\!238$	0,222	0,222	0,223	0,207	0,207	0,213
CITL	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
\mathbf{CS}	$0,\!970$	$0,\!035$	$1,\!307$	$1,\!445$	0,790	$1,\!445$	2,713	$1,\!284$	2,750
CYSS	0,009	0,009	0,009	0,004	0,004	$0,\!005$	0,008	0,008	0,010
DDPA	0,093	$0,\!024$	$0,\!135$	0,032	0,032	0,033	0,000	0,000	0,002
DHQS	0,093	$0,\!024$	$0,\!135$	0,032	0,032	0,033	0,000	0,000	0,002
DHQTi	0,093	$0,\!024$	$0,\!110$	0,032	0,032	0,033	0,000	0,000	$0,\!001$
DM_ac	-0,028	-0,028	-0,028	0,746	0,746	0,749	$0,\!227$	0,227	$0,\!233$
DM_acser	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_cit	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_co2	3,363	$3,\!363$	$3,\!475$	5,332	$5,\!332$	$5,\!339$	8,448	8,448	8,460
DM_cys-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_etoh	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_for	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_glc	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_glu-L	-0,024	-0,024	-0,023	0,019	$0,\!019$	0,020	$0,\!009$	0,009	0,011

	Cluc & Shik 1			Clyc & Shik 2			Clue & Shik 3		
Reaktion		yc & Sill min	may	TFA	yc & Sill min	may	TFA	min	may
	IIA	111111	шах	IIA	111111	шах	IIA	111111	шах
DM_glyc	-2,041	-2,041	-1,826	-2,926	-2,926	-2,924	-3,963	-3,963	-3,959
DM_lac-D	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_lac-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_mal-D	0,000	0,000	0,000	0,000	0,000	$0,\!000$	0,000	0,000	0,000
DM_mal-L	0,002	0,002	$0,\!197$	0,000	0,000	0,000	0,000	0,000	0,000
DM_o2	-4,188	-4,631	-3,820	-7,406	$-7,\!632$	-7,406	-	-	-
							$11,\!098$	$11,\!098$	10,771
DM_phe-L	$0,\!003$	$0,\!003$	$0,\!017$	0,014	0,014	0,014	0,026	0,014	0,032
DM_pyr	$0,\!000$	0,000	0,000	$0,\!000$	0,000	0,000	0,000	0,000	0,000
DM_ser-L	$0,\!000$	0,000	0,000	$0,\!000$	0,000	0,000	0,000	0,000	0,000
DM_succ	0,000	0,000	0,000	$0,\!050$	$0,\!050$	$0,\!052$	$0,\!271$	$0,\!271$	$0,\!274$
DM_trp-L	0,211	$0,\!142$	$0,\!213$	$0,\!191$	$0,\!191$	$0,\!192$	$0,\!138$	$0,\!138$	$0,\!144$
DM_tyr-L	0,000	0,000	0,000	0,009	0,009	$0,\!010$	$0,\!019$	0,004	$0,\!019$
$Ec_biomass$	$0,\!037$	$0,\!037$	$0,\!037$	$0,\!016$	0,016	$0,\!016$	$0,\!032$	0,031	$0,\!032$
ENO	0,322	0,000	$1,\!412$	$2,\!459$	$1,\!807$	$2,\!460$	$3,\!552$	$2,\!124$	$3,\!592$
FBA	-0,304	-0,417	-0,188	-0,212	-0,213	-0,211	-0,178	-0,184	-0,177
FBP	$0,\!304$	$0,\!188$	$0,\!417$	$0,\!212$	0,211	$0,\!213$	$0,\!178$	$0,\!177$	$0,\!184$
FUM	$0,\!991$	$0,\!142$	$2,\!992$	$1,\!375$	0,720	$1,\!866$	$2,\!431$	1,002	3,759
G3PD5	2,035	1,775	$2,\!035$	$2,\!923$	2,921	$2,\!923$	$3,\!958$	$3,\!954$	$3,\!958$
G6PDH2r	$0,\!293$	0,040	$0,\!476$	$0,\!176$	$0,\!173$	$0,\!178$	$0,\!168$	0,165	$0,\!176$
GAPD	$1,\!576$	$0,\!164$	$1,\!576$	$2,\!660$	$2,\!151$	$2,\!661$	3,742	$2,\!417$	3,743
GLYK	2,041	1,782	$2,\!041$	2,926	2,924	2,926	$3,\!963$	$3,\!959$	$3,\!963$
GLYOX3	0,018	0,000	1,864	0,000	0,000	$0,\!637$	0,000	0,000	$1,\!430$
GND	0,293	0,040	$0,\!476$	$0,\!176$	$0,\!173$	$0,\!178$	0,168	0,165	$0,\!176$
ICDHyr	0,716	0,035	$0,\!993$	$1,\!057$	0,077	$1,\!312$	$2,\!138$	$0,\!059$	$2,\!346$
ICL	0,254	0,000	$1,\!147$	$0,\!388$	$0,\!115$	$1,\!347$	$0,\!575$	0,366	$2,\!691$
IGPS	0,213	0,144	0,215	0,192	0,192	$0,\!193$	0,140	0,140	$0,\!146$
LDH_D2	0,018	0,000	1,864	0,000	0,000	$0,\!637$	0,000	0,000	$1,\!430$
MALS	0,254	0,086	1,016	$0,\!388$	$0,\!116$	$1,\!347$	$0,\!575$	0,372	$2,\!697$
MDH	$1,\!243$	0,226	$3,\!076$	1,762	0,836	2,704	$3,\!006$	$1,\!374$	$5,\!411$
MGSA	0,018	0,000	$1,\!615$	0,000	0,000	0,509	0,000	0,000	$1,\!325$
OAADC	0,136	0,000	0,922	0,246	0,000	1,231	0,203	0,000	$2,\!287$
PDH	0,000	0,000	2,134	0,000	0,000	2,280	0,000	0,000	3,094
PFK	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PFL	$1,\!274$	0,000	$2,\!137$	1,866	0,000	2,832	$3,\!403$	0,000	5,523
PGCD	$1,\!254$	0,164	$1,\!351$	0,201	0,201	$0,\!854$	$0,\!190$	$0,\!150$	$1,\!619$
PGI	-0,300	-0,483	-0,048	-0,179	-0,181	-0,176	-0,174	-0,182	-0,171
PGK	-1,576	-1,576	-0,164	-2,660	-2,661	-2,151	-3,742	-3,743	-2,417

 Tabelle A.14 – Fortsetzung

	Glyc & Shik 1			Glyc & Shik 2			Glyc & Shik 3		
Reaktion	TFA	min	max	TFA	min	max	TFA	min	max
PGL	0,293	0,040	$0,\!476$	0,176	$0,\!173$	$0,\!178$	0,168	0,165	0,176
\mathbf{PGM}	-0,322	-1,412	0,000	-2,459	-2,460	-1,807	-3,552	-3,592	-2,124
PHETA1	-0,010	-0,023	-0,010	-0,017	-0,017	-0,017	-0,032	-0,038	-0,020
PPC	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PPCK	0,000	0,000	$0,\!343$	0,000	0,000	0,000	0,000	0,000	0,000
PPND	0,005	$0,\!005$	$0,\!005$	0,011	$0,\!011$	0,012	$0,\!023$	0,008	0,023
PPNDH	0,010	0,010	0,023	0,017	$0,\!017$	0,017	0,032	0,020	0,038
PPS	0,000	0,000	$3,\!082$	0,000	0,000	1,017	0,000	0,000	0,000
PRAIi	0,213	$0,\!144$	0,215	$0,\!192$	$0,\!192$	$0,\!193$	$0,\!140$	$0,\!140$	$0,\!146$
PRPPS	0,244	$0,\!175$	$0,\!356$	0,206	$0,\!206$	0,207	$0,\!167$	0,166	$0,\!173$
PSCVT	0,228	$0,\!159$	$0,\!238$	0,222	$0,\!222$	0,223	$0,\!207$	0,207	0,213
PSERT	1,254	0,164	$1,\!351$	0,201	$0,\!201$	$0,\!854$	$0,\!190$	$0,\!150$	$1,\!619$
PSP_L	1,254	0,164	$1,\!351$	0,201	$0,\!201$	$0,\!854$	$0,\!190$	$0,\!150$	$1,\!619$
PTAr	-0,050	-0,050	-0,050	0,000	0,000	0,000	0,000	0,000	0,000
GLCptspp	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
РҮК	0,000	0,000	$4,\!652$	$2,\!204$	$1,\!552$	$3,\!205$	$3,\!343$	$1,\!916$	$3,\!384$
RPE	0,000	-0,136	$0,\!136$	-0,031	-0,033	-0,030	0,000	-0,003	0,003
RPI	-0,292	-0,356	-0,176	-0,206	-0,207	-0,206	-0,168	-0,174	-0,167
SHK3Dr	0,093	$0,\!024$	$0,\!110$	0,032	$0,\!032$	$0,\!032$	-0,007	-0,007	-0,005
SHKK	0,228	$0,\!159$	$0,\!238$	0,225	$0,\!225$	$0,\!225$	$0,\!214$	$0,\!214$	0,220
SUCDi	0,965	$0,\!019$	$1,\!303$	$1,\!358$	0,703	$1,\!363$	$2,\!399$	$0,\!970$	$2,\!449$
SUCOAS	0,000	-0,958	0,000	-1,012	-1,012	0,000	-2,078	-2,078	0,000
TALA	0,046	-0,002	$0,\!135$	0,000	-0,001	$0,\!001$	-0,001	-0,001	0,002
TKT1	0,047	0,000	$0,\!136$	$0,\!001$	0,000	$0,\!001$	$0,\!001$	0,000	0,003
TKT2	-0,047	-0,136	0,000	-0,032	-0,033	-0,031	-0,001	-0,003	0,000
TPI	1,713	$0,\!232$	1,776	2,712	$2,\!203$	2,712	$3,\!780$	$2,\!454$	3,781
TRPS2	0,213	$0,\!144$	0,215	$0,\!192$	$0,\!192$	$0,\!193$	$0,\!140$	$0,\!140$	$0,\!146$
TRPS3	0,213	$0,\!144$	0,215	$0,\!192$	$0,\!192$	$0,\!193$	$0,\!140$	$0,\!140$	$0,\!146$
TYRTA	-0,005	-0,005	-0,005	-0,011	-0,012	-0,011	-0,023	-0,023	-0,008

Tabelle A.14 – Fortsetzung

Grenze). Die Real	ktionsbezei	ichnungen	und -rich	ntungen w	urden voi	n Modell	<i>i</i> JO1366	übernomr	nen.
	Gluc & Shik 1		k 1	Gluc & Shik 2			Gluc & Shik 3		
Reaktion	TFA	min	max	TFA	min	max	TFA	min	max
ACKr	0,004	0,004	1,102	0,001	0,001	0,090	0,000	0,000	0,000
ACONTa	$1,\!039$	$0,\!420$	$1,\!133$	$1,\!294$	1,218	$1,\!340$	1,773	$1,\!458$	1,777
ACONTb	$1,\!039$	$0,\!420$	$1,\!133$	$1,\!294$	1,218	$1,\!340$	1,773	$1,\!458$	1,777
ACS	$0,\!000$	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
AKGDH	$0,\!502$	$0,\!003$	$1,\!102$	$1,\!116$	1,064	$1,\!333$	$1,\!629$	0,788	$1,\!640$
ANPRT	$0,\!200$	0,200	0,201	0,212	0,212	0,212	0,044	0,044	$0,\!046$
ANS	$0,\!200$	0,200	0,201	$0,\!235$	0,235	$0,\!235$	$0,\!046$	0,046	$0,\!051$
CHORM	$0,\!002$	$0,\!002$	$0,\!002$	$0,\!009$	0,009	$0,\!010$	$0,\!024$	0,024	0,029
CHORS	$0,\!203$	0,203	0,203	$0,\!245$	0,245	$0,\!245$	0,069	0,069	$0,\!078$
CITL	$0,\!000$	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
\mathbf{CS}	$1,\!039$	$0,\!420$	$1,\!133$	$1,\!294$	1,218	$1,\!340$	1,773	$1,\!458$	1,777
CYSS	$0,\!002$	$0,\!002$	$0,\!002$	0,000	0,000	$0,\!001$	$0,\!007$	0,007	0,009
DDPA	0,093	$0,\!093$	$0,\!093$	$0,\!093$	0,093	$0,\!093$	0,000	0,000	$0,\!002$
DHQS	$0,\!093$	$0,\!093$	$0,\!093$	$0,\!093$	0,093	$0,\!093$	0,000	0,000	0,002
DHQTi	0,093	$0,\!093$	$0,\!093$	$0,\!093$	0,093	$0,\!093$	0,000	0,000	$0,\!002$
DM_ac	0,000	0,000	0,000	0,000	0,000	0,000	$0,\!174$	$0,\!174$	$0,\!179$
DM_acser	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_cit	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_co2	3,744	3,744	3,747	$5,\!056$	$5,\!056$	$5,\!057$	5,702	5,702	5,713
DM_cys-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_etoh	$0,\!050$	$0,\!050$	$0,\!051$	$0,\!698$	$0,\!698$	$0,\!698$	0,788	0,788	0,793
DM_for	0,000	0,000	0,000	0,000	0,000	0,000	$0,\!637$	$0,\!637$	$0,\!648$
DM_glc	-0,922	-0,922	-0,922	-1,338	-1,338	-1,338	-1,586	-1,586	$-1,\!584$
DM_glu-L	$0,\!000$	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_glyc	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_lac-D	$0,\!000$	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_lac-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_mal-D	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_mal-L	$0,\!000$	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_o2	-4,285	-4,470	-4,285	-6,363	$-6,\!659$	-6,363	-7,017	-7,243	-7,017
DM_phe-L	0,000	0,000	0,000	$0,\!005$	0,005	$0,\!005$	0,009	0,009	$0,\!014$
DM_pyr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_ser-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_succ	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Tabelle A.15: Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen in mmol g_{BTM}^{-1} h⁻¹ und die Biomassebildung in h⁻¹ während der metabolischen Analyse von *E. coli* NT1259 *shiA*_{Cg} mit den Kohlenstoffquellen Glucose und Shikimat in drei Zulaufstufen (1-3). Berechnet mit der thermodynamischen Flussvarianzanalyse (min: untere Grenze; max: obere Grenze). Die Reaktionsbezeichnungen und -richtungen wurden vom Modell *i*JO1366 übernommen.
	Gluc & Shik 1			Gluc & Shik 2			Gluc & Shik 3		
Reaktion	TFA	min	max	TFA	\min	max	TFA	min	max
DM_trp-L	0,200	0,200	0,200	0,212	0,212	0,212	0,042	0,042	0,045
DM_tyr-L	0,000	0,000	0,000	$0,\!004$	$0,\!004$	$0,\!004$	0,006	0,006	0,009
$Ec_biomass$	0,006	0,006	0,006	0,002	$0,\!002$	0,002	0,028	$0,\!027$	0,028
ENO	$0,\!618$	0,000	$0,\!618$	1,030	$0,\!894$	$1,\!030$	$1,\!490$	$1,\!041$	$1,\!495$
FBA	0,000	0,000	0,714	0,000	0,000	0,269	0,000	0,000	0,851
FBP	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
FUM	1,039	$0,\!420$	$2,\!953$	$1,\!294$	$1,\!218$	$1,\!474$	1,771	$1,\!456$	$2,\!185$
G3PD5	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
G6PDH2r	0,920	$0,\!113$	$0,\!921$	$1,\!291$	$0,\!976$	$1,\!338$	$1,\!579$	0,722	$1,\!581$
GAPD	0,822	$0,\!204$	$0,\!822$	1,243	$1,\!154$	$1,\!243$	0,000	0,000	0,004
GLYK	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
GLYOX3	0,000	0,000	$1,\!436$	0,000	0,000	0,268	0,000	0,000	$0,\!847$
GND	$0,\!391$	$0,\!113$	$0,\!393$	0,260	$0,\!120$	$0,\!483$	$0,\!070$	$0,\!065$	0,927
ICDHyr	1,015	$0,\!010$	$1,\!108$	1,117	$1,\!065$	$1,\!334$	$1,\!659$	0,818	$1,\!670$
ICL	0,025	0,000	$1,\!123$	$0,\!176$	0,000	$0,\!273$	0,114	0,009	0,932
IGPS	0,200	$0,\!200$	$0,\!201$	0,212	$0,\!212$	$0,\!212$	0,044	0,044	$0,\!046$
LDH_D2	0,000	0,000	$1,\!436$	0,000	0,000	0,268	0,000	0,000	$0,\!847$
MALS	0,025	$0,\!018$	$1,\!174$	$0,\!176$	$0,\!005$	$0,\!273$	$0,\!114$	0,080	0,932
MDH	1,064	$0,\!438$	$3,\!350$	$1,\!470$	$1,\!222$	$1,\!613$	$1,\!886$	$1,\!536$	2,707
MGSA	0,092	0,000	$1,\!332$	$0,\!046$	0,000	0,268	0,000	0,000	$0,\!847$
OAADC	0,000	0,000	$1,\!098$	0,169	0,000	0,269	0,000	0,000	0,852
PDH	0,000	0,000	$1,\!421$	0,000	0,000	$2,\!314$	$2,\!077$	0,000	2,927
\mathbf{PFK}	0,000	0,000	0,714	0,000	0,000	0,269	0,000	0,000	0,851
PFL	$1,\!126$	0,000	$2,\!318$	$2,\!170$	0,000	$2,\!315$	$0,\!663$	$0,\!070$	$3,\!567$
PGCD	0,204	0,204	$0,\!822$	0,213	0,213	$0,\!349$	$0,\!059$	$0,\!059$	0,512
PGI	0,000	0,000	$0,\!808$	0,046	0,000	0,362	$0,\!002$	0,000	0,859
PGK	-0,822	-0,822	-0,204	-1,243	$-1,\!243$	-1,154	-1,549	$-1,\!554$	-1,269
PGL	0,920	$0,\!113$	$0,\!921$	1,291	$0,\!976$	$1,\!338$	$1,\!579$	0,722	$1,\!581$
\mathbf{PGM}	-0,618	$-0,\!618$	0,000	-1,030	-1,030	-0,894	-1,490	$-1,\!495$	-1,041
PHETA1	-0,001	-0,002	-0,001	-0,005	-0,005	-0,005	-0,014	-0,019	-0,014
PPC	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PPCK	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PPND	0,001	$0,\!001$	$0,\!001$	$0,\!004$	$0,\!004$	$0,\!004$	0,010	0,010	0,012
PPNDH	0,001	0,001	$0,\!002$	$0,\!005$	$0,\!005$	$0,\!005$	$0,\!014$	$0,\!014$	0,019
PPS	0,599	$0,\!599$	1,218	$0,\!645$	$0,\!645$	0,781	0,167	0,162	$0,\!615$
PRAIi	0,200	0,200	0,201	0,212	0,212	0,212	0,044	0,044	0,046
PRPPS	0,206	$0,\!206$	$0,\!257$	0,213	0,213	$0,\!348$	$0,\!067$	0,067	0,860
PSCVT	0,203	0,203	0,203	$0,\!245$	$0,\!245$	$0,\!245$	0,069	0,069	0,078

Tabelle A.15 – Fortsetzung

	Gluc & Shik 1			Gluc & Shik 2			Gluc & Shik 3		
Reaktion	TFA	\min	max	TFA	\min	max	TFA	\min	max
PSERT	0,204	0,204	0,822	0,213	0,213	0,349	0,059	0,059	0,512
PSP_L	0,204	0,204	0,822	$0,\!213$	0,213	$0,\!349$	$0,\!059$	0,059	0,512
PTAr	-0,004	-1,102	-0,004	-0,001	-0,090	-0,001	0,000	0,000	0,000
GLCptspp	0,922	0,922	0,922	$1,\!338$	1,338	$1,\!338$	$1,\!586$	$1,\!584$	$1,\!586$
РҮК	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
RPE	0,093	-0,093	$0,\!094$	0,000	-0,093	0,093	0,001	-0,002	$0,\!572$
RPI	-0,298	-0,299	-0,206	-0,260	-0,482	-0,213	-0,068	-0,881	-0,067
SHK3Dr	0,093	0,093	0,093	0,091	0,091	0,091	-0,003	-0,003	0,000
SHKK	0,203	0,203	0,203	$0,\!246$	0,246	$0,\!246$	0,074	0,074	0,082
SUCDi	1,033	$0,\!413$	$1,\!129$	$1,\!292$	1,216	$1,\!339$	1,743	$1,\!428$	1,760
SUCOAS	-0,498	-0,498	0,000	-1,115	-1,331	-1,063	$-1,\!615$	-1,621	-0,774
TALA	0,000	-0,715	0,000	0,000	-0,269	0,000	0,000	-0,852	0,003
TKT1	0,093	0,000	0,093	0,046	0,000	0,093	0,001	0,000	$0,\!287$
TKT2	0,000	-0,093	0,001	-0,046	-0,093	0,000	0,000	-0,002	0,286
TPI	0,000	-0,618	0,000	0,000	-0,090	0,000	-0,005	-0,284	0,000
TRPS2	0,200	0,200	0,201	0,212	0,212	0,212	0,044	0,044	0,046
TRPS3	0,200	0,200	0,201	0,212	0,212	0,212	0,044	0,044	0,046
TYRTA	-0,001	-0,001	-0,001	-0,004	-0,004	-0,004	-0,010	-0,012	-0,010

Tabelle A.15 – Fortsetzung

Tabelle A.16: Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen in mmol g_{BTM}^{-1} h⁻¹ und die Biomassebildung in h⁻¹ während der metabolischen Analyse von *E. coli* NT1259 *shiA*_{Cg} im Referenzprozess. Berechnet mit der thermodynamischen Flussanalyse (TFA) und thermodynamischen Flussvarianzanalyse (min: untere Grenze; max: obere Grenze). Die Reaktionsbezeichnungen und -richtungen wurden vom Modell *i*JO1366 übernommen.

		Ref	
Reaktion	TFA	min	max
ACKr	0,000	0,000	0,000
ACONTa	$1,\!467$	$0,\!074$	$1,\!612$
ACONTb	$1,\!467$	$0,\!074$	$1,\!612$
ACS	0,000	0,000	0,000
AKGDH	$1,\!376$	0,009	1,526
ANPRT	$0,\!137$	$0,\!137$	$0,\!138$
ANS	$0,\!137$	$0,\!137$	$0,\!138$
CHORM	0,005	$0,\!005$	0,005
CHORS	$0,\!142$	$0,\!142$	$0,\!143$
CITL	0,000	0,000	0,000
CS	1,467	0,074	1,612

Tabelle A.16 –	- Fortsetzung		
		Ref	
Reaktion	TFA	min	max
CYSS	0,004	0,004	0,006
DDPA	$0,\!142$	$0,\!142$	$0,\!143$
DHQS	$0,\!142$	$0,\!142$	$0,\!143$
DHQTi	$0,\!142$	$0,\!142$	$0,\!143$
DM_ac	0,021	0,021	0,024
DM_acser	0,000	0,000	0,000
DM_cit	0,000	0,000	0,000
DM_co2	4,953	4,953	4,960
DM_cys-L	0,000	0,000	0,000
DM_etoh	0,000	0,000	0,000
DM_for	0,000	0,000	0,000
DM_glc	0,000	0,000	0,000
DM_glu-L	0,000	0,000	0,001
DM_glyc	-2,400	-2,400	-2,398
DM_lac-D	0,000	0,000	0,000
DM_lac-L	0,000	0,000	0,000
DM_mal-D	0,000	0,000	0,000
DM_mal-L	0,000	0,000	0,000
DM_o2	-6,280	-6,430	-6,280
DM_phe-L	0,000	0,000	0,000
DM_pyr	0,000	0,000	0,000
DM_ser-L	0,000	0,000	0,000
DM_succ	0,000	0,000	0,000
DM_trp-L	$0,\!136$	$0,\!136$	$0,\!137$
DM_tyr-L	0,000	0,000	0,000
$Ec_biomass$	$0,\!017$	0,017	0,017
ENO	1,787	0,286	1,931
FBA	-0,300	-0,302	-0,157
FBP	$0,\!300$	$0,\!157$	0,302
FUM	$1,\!466$	0,362	4,571
G3PD5	$2,\!397$	$2,\!395$	$2,\!397$
G6PDH2r	$0,\!438$	0,008	$0,\!440$
GAPD	$1,\!934$	$0,\!432$	2,077
GLYK	$2,\!400$	$2,\!398$	$2,\!400$
GLYOX3	0,000	0,000	$2,\!144$
GND	$0,\!438$	0,008	$0,\!440$
ICDHyr	$1,\!395$	0,028	1,545
ICL	0,072	$0,\!047$	$1,\!495$

bollo A 1

Tabelle A.10	– Fortsetzun	g	
		Ref	
Reaktion	TFA	\min	max
IGPS	0,137	0,137	0,138
LDH_D2	0,000	0,000	$2,\!144$
MALS	0,072	0,050	$1,\!495$
MDH	1,538	$0,\!412$	4,621
MGSA	0,000	0,000	$1,\!645$
OAADC	0,000	0,000	$1,\!436$
PDH	0,000	0,000	$1,\!670$
PFK	0,000	0,000	0,000
PFL	$1,\!580$	0,000	3,065
PGCD	$0,\!146$	$0,\!146$	$1,\!681$
PGI	-0,442	-0,444	-0,012
PGK	-1,934	-2,077	-0,432
PGL	$0,\!438$	0,008	$0,\!440$
\mathbf{PGM}	-1,787	-1,931	-0,286
PHETA1	-0,003	-0,003	-0,003
PPC	0,000	0,000	0,000
PPCK	0,000	0,000	0,000
PPND	0,002	0,002	0,002
PPNDH	0,003	0,003	0,003
PPS	0,000	0,000	0,000
PRAIi	$0,\!137$	$0,\!137$	$0,\!138$
PRPPS	$0,\!152$	$0,\!152$	$0,\!155$
PSCVT	$0,\!142$	$0,\!142$	$0,\!143$
PSERT	$0,\!146$	$0,\!146$	$1,\!681$
PSP_L	$0,\!146$	$0,\!146$	$1,\!681$
PTAr	0,000	0,000	0,000
$\operatorname{GLCptspp}$	0,000	0,000	0,000
РҮК	1,501	0,000	$1,\!645$
RPE	$0,\!143$	-0,144	$0,\!144$
RPI	-0,295	-0,296	-0,152
SHK3Dr	$0,\!142$	$0,\!142$	$0,\!143$
SHKK	$0,\!142$	$0,\!142$	$0,\!143$
SUCDi	$1,\!448$	$0,\!055$	$1,\!599$
SUCOAS	-1,367	-1,517	0,000
TALA	$0,\!142$	-0,001	$0,\!143$
TKT1	$0,\!143$	0,000	$0,\!144$
TKT2	0,000	-0,144	0,000
TPI	2,097	$0,\!595$	$2,\!240$

Tabelle A.16 – Fortsetzung

Tabelle A.16 – Fortsetzung										
		Ref								
Reaktion	TFA	min	max							
TRPS2	$0,\!137$	$0,\!137$	$0,\!138$							
TRPS3	$0,\!137$	$0,\!137$	$0,\!138$							
TYRTA	-0,002	-0,002	-0,002							

Tabelle A.17: Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen in mmol g_{BTM}^{-1} h⁻¹ und die Biomassebildung in h⁻¹ während der metabolischen Analyse von *E. coli* NT1446 mit der Kohlenstoffquelle Glycerin in drei Zulaufstufen (1-3). Berechnet mit der thermodynamischen Flussanalyse (TFA) und thermodynamischen Flussvarianzanalyse (min: untere Grenze; max: obere Grenze). Die Reaktionsbezeichnungen und -richtungen wurden vom Modell *i*JO1366 übernommen.

		Glyc 1			Glyc 2			Glyc 3	
Reaktion	TFA	min	max	TFA	min	max	TFA	min	max
ACKr	0,346	0,286	$0,\!359$	0,015	0,007	0,019	0,010	$0,\!005$	0,014
ACONTa	$1,\!108$	0,922	$1,\!304$	1,715	$1,\!605$	$1,\!854$	$2,\!599$	$2,\!438$	$2,\!819$
ACONTb	$1,\!108$	0,922	$1,\!304$	1,715	$1,\!605$	$1,\!854$	$2,\!599$	$2,\!438$	$2,\!819$
ACS	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
AKGDH	0,862	0,509	$1,\!097$	1,529	$1,\!349$	1,711	$2,\!493$	$2,\!302$	2,769
ANPRT	$0,\!057$	$0,\!055$	$0,\!136$	$0,\!136$	$0,\!135$	$0,\!181$	$0,\!205$	$0,\!205$	0,238
ANS	$0,\!057$	$0,\!055$	$0,\!136$	$0,\!136$	$0,\!135$	$0,\!181$	$0,\!205$	$0,\!205$	0,238
ATPS4rpp	8,041	$3,\!302$	$12,\!317$	0,000	0,000	$7,\!222$	0,000	0,000	$11,\!092$
CHORM	0,021	0,011	$0,\!021$	0,008	$0,\!004$	$0,\!008$	0,006	0,003	0,006
CHORS	0,078	0,065	$0,\!150$	$0,\!144$	$0,\!139$	$0,\!185$	$0,\!211$	0,208	$0,\!240$
\mathbf{CS}	$1,\!108$	0,922	$1,\!304$	1,715	$1,\!605$	$1,\!854$	$2,\!599$	$2,\!438$	$2,\!819$
DDPA	0,078	0,065	$0,\!150$	$0,\!144$	$0,\!139$	$0,\!185$	$0,\!211$	0,208	$0,\!240$
DHQS	0,078	0,065	$0,\!150$	$0,\!144$	$0,\!139$	$0,\!185$	$0,\!211$	0,208	$0,\!240$
DHQTi	0,078	0,065	$0,\!150$	$0,\!144$	$0,\!139$	$0,\!185$	$0,\!211$	0,208	$0,\!240$
DM_ac	-0,306	-0,306	-0,266	0,000	0,000	0,000	0,000	0,000	0,000
DM_acser	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_cit	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_co2	$3,\!179$	$3,\!179$	$3,\!414$	5,528	$5,\!528$	$5,\!806$	8,312	8,312	8,672
DM_cys-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_etoh	0,000	0,000	0,000	0,256	$0,\!256$	$0,\!302$	0,033	0,033	0,106
DM_for	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_glc	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_glu-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_glu-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_glyc	-1,933	-1,933	-1,881	-2,921	-2,921	-2,842	-3,840	-3,840	-3,736
DM_indole	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

		Clyc 1			Clyc 2			Clyc 3	
Reaktion	TFA	min	may	TFA	min	may	TFA	min	may
DM_lac-D	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_lac-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_mal-D	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_mal-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_mthgxl	0,000	0,000	0,000	0,002	0,002	0,002	$0,\!052$	0,052	0,053
DM_02	-3,971	-4,501	-3,425	-6,314	-6,743	-6,314	-	-	-
							11,708	$12,\!137$	11,708
DM_phe-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_pyr	0,000	$0,\!000$	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_ser-L	0,000	$0,\!000$	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_succ	-0,023	-0,023	-0,021	$0,\!057$	$0,\!057$	$0,\!060$	$0,\!004$	$0,\!004$	0,009
DM_trp-L	$0,\!053$	$0,\!053$	$0,\!133$	$0,\!135$	$0,\!135$	$0,\!180$	$0,\!204$	0,204	$0,\!237$
DM_tyr-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
$Ec_biomass$	0,067	$0,\!034$	$0,\!067$	$0,\!025$	$0,\!012$	$0,\!025$	$0,\!018$	0,009	0,018
ENO	$0,\!159$	$0,\!133$	$1,\!613$	$2,\!394$	$0,\!279$	$2,\!471$	$3,\!006$	$0,\!416$	$3,\!143$
FBA	-0,136	-0,402	-0,089	-0,198	-0,590	-0,150	-0,332	-0,495	-0,215
FBP	$0,\!136$	$0,\!089$	$0,\!402$	$0,\!198$	$0,\!150$	$0,\!590$	$0,\!332$	0,215	$0,\!495$
FUM	$1,\!126$	0,922	$1,\!231$	$1,\!656$	$1,\!540$	1,779	$2,\!593$	$2,\!432$	2,814
G3PD5	1,922	$1,\!870$	$1,\!927$	2,917	2,839	$2,\!919$	$3,\!837$	3,735	$3,\!838$
G6PDH2r	0,036	0,000	$0,\!392$	$0,\!112$	0,004	$0,\!586$	0,327	0,003	0,727
GAPD	0,326	$0,\!241$	1,721	2,544	0,421	$2,\!613$	3,221	$0,\!626$	$3,\!353$
GLCptspp	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
GLYK	1,933	1,881	1,933	2,921	2,843	2,921	3,840	3,736	3,840
GLYOX3	1,302	0,000	1,480	0,000	0,000	2,192	0,000	0,000	2,727
GND	0,036	0,000	0,392	0,112	0,004	$0,\!586$	0,327	0,003	0,727
ICDHyr	0,935	0,826	1,134	1,556	1,478	1,724	2,513	2,391	2,778
ICL	$0,\!173$	0,075	0,366	$0,\!159$	0,108	0,239	0,086	0,040	$0,\!130$
IGPS	$0,\!057$	0,055	$0,\!136$	$0,\!136$	0,135	$0,\!181$	0,205	0,205	0,238
LDH_D2	1,302	0,000	1,480	0,000	0,000	2,192	0,000	0,000	2,727
MALS	$0,\!173$	0,075	0,366	$0,\!159$	0,108	0,239	0,086	0,040	0,130
MDH	1,299	1,017	1,402	1,815	1,655	1,927	2,680	2,474	2,859
MGSA	1,302	0,000	1,480	0,002	0,002	2,194	0,052	0,052	2,779
NADH5	2,463	0,000	5,365	7,919	0,000	8,354	11,281	0,000	12,057
OAADC	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PDH	0,000	0,000	1,440	2,147	0,000	2,294	2,732	0,000	2,904
PFK	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
\mathbf{PFL}	$1,\!175$	0,000	1,442	0,024	0,000	2,294	0,008	0,004	2,908
PGCD	$0,\!167$	0,108	0,210	$0,\!150$	$0,\!142$	0,188	$0,\!215$	0,210	0,243

 Tabelle A.17 – Fortsetzung

		Glyc 1			Glyc 2			Glyc 3	
Reaktion	TFA	min	max	TFA	\min	max	TFA	\min	max
PGI	-0,049	-0,399	-0,007	-0,117	-0,588	-0,009	-0,330	-0,729	-0,006
PGK	-0,326	-1,721	-0,241	-2,544	$-2,\!613$	-0,421	-3,221	-3,353	-0,626
PGL	0,036	0,000	0,392	0,112	0,004	$0,\!586$	0,327	0,003	0,727
\mathbf{PGM}	-0,159	$-1,\!613$	-0,133	-2,394	-2,471	-0,279	-3,006	-3,143	-0,416
PHETA1	-0,012	-0,012	-0,006	-0,004	-0,004	-0,002	-0,003	-0,003	-0,002
PPC	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PPCK	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PPND	0,009	0,004	0,009	0,003	0,002	0,003	0,002	0,001	0,002
PPNDH	0,012	0,006	0,012	0,004	0,002	0,004	0,003	0,002	0,003
PPS	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PRAIi	$0,\!057$	$0,\!055$	$0,\!136$	0,136	$0,\!135$	$0,\!181$	0,205	0,205	0,238
PRPPS	0,114	0,083	0,358	$0,\!157$	$0,\!146$	0,516	$0,\!220$	0,212	0,285
PSCVT	0,078	0,065	$0,\!150$	0,144	$0,\!139$	$0,\!185$	0,211	0,208	$0,\!240$
PSERT	0,167	$0,\!108$	$0,\!210$	$0,\!150$	$0,\!142$	$0,\!188$	0,215	0,210	$0,\!243$
PSP_L	0,167	$0,\!108$	$0,\!210$	$0,\!150$	$0,\!142$	$0,\!188$	0,215	0,210	$0,\!243$
PTAr	-0,346	-0,359	-0,286	-0,015	-0,019	-0,007	-0,010	-0,014	-0,005
РҮК	0,000	0,000	$1,\!480$	$2,\!105$	0,000	$2,\!192$	$2,\!583$	0,000	2,727
RPE	-0,080	-0,261	0,000	-0,079	-0,185	0,000	0,000	-0,241	0,241
RPI	-0,114	-0,391	-0,067	-0,190	-0,586	-0,146	-0,326	-0,492	-0,212
SHK3Dr	0,078	0,065	$0,\!150$	0,144	$0,\!139$	$0,\!185$	0,211	0,208	0,240
SHKK	0,078	0,065	$0,\!150$	0,144	$0,\!139$	$0,\!185$	0,211	0,208	$0,\!240$
SUCDi	$1,\!058$	0,888	$1,\!196$	$1,\!631$	$1,\!527$	1,762	$2,\!576$	$2,\!423$	$2,\!805$
SUCOAS	-0,827	-1,080	-0,491	-1,516	-1,705	-1,342	-2,484	-2,764	-2,297
TALA	-0,002	-0,098	0,074	0,032	-0,012	0,092	$0,\!105$	-0,008	0,240
TKT1	0,000	-0,097	0,079	0,033	0,000	0,093	$0,\!106$	0,000	0,241
TKT2	-0,080	-0,185	-0,033	-0,112	-0,185	-0,070	-0,106	-0,241	0,000
TPI	$0,\!484$	$0,\!346$	$1,\!833$	2,717	$0,\!575$	2,767	$3,\!453$	$0,\!844$	$3,\!571$
TRPS2	$0,\!057$	$0,\!055$	$0,\!136$	$0,\!136$	$0,\!135$	$0,\!181$	0,205	0,205	0,238
TRPS3	$0,\!057$	$0,\!055$	$0,\!136$	$0,\!136$	$0,\!135$	$0,\!181$	0,205	0,205	0,238
TRPTRS	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
TYRTA	-0,009	-0,009	-0,004	-0,003	-0,003	-0,002	-0,002	-0,002	-0,001

Tabelle A.17 – Fortsetzung

		Gluc 1			Gluc 2			Gluc 3	
Reaktion	TFA	min	max	TFA	min	max	TFA	\min	max
ACKr	0,000	0,000	$0,\!345$	0,006	0,003	0,008	0,000	0,000	0,000
ACONTa	$1,\!099$	$0,\!941$	$1,\!267$	$1,\!307$	$1,\!280$	$1,\!380$	$1,\!412$	1,229	$1,\!636$
ACONTb	$1,\!099$	$0,\!941$	$1,\!267$	$1,\!307$	$1,\!280$	$1,\!380$	$1,\!412$	1,229	$1,\!636$
ACS	0,333	0,000	$0,\!345$	0,000	0,000	0,000	0,000	0,000	0,000
AKGDH	$0,\!910$	$0,\!601$	$1,\!096$	$1,\!192$	$1,\!136$	$1,\!285$	$1,\!103$	0,730	$1,\!301$
ANPRT	0,003	0,002	0,086	$0,\!155$	$0,\!154$	$0,\!174$	0,019	0,017	$0,\!136$
ANS	$0,\!003$	$0,\!002$	0,086	$0,\!155$	$0,\!154$	$0,\!174$	0,019	0,017	$0,\!136$
ATPS4rpp	5,779	$2,\!499$	$9,\!429$	$1,\!455$	$0,\!932$	$4,\!272$	4,249	$3,\!065$	8,646
CHORM	$0,\!019$	0,010	$0,\!019$	$0,\!003$	0,002	$0,\!003$	0,020	0,010	0,020
CHORS	$0,\!023$	0,011	$0,\!138$	$0,\!158$	$0,\!156$	$0,\!175$	0,039	0,027	$0,\!146$
\mathbf{CS}	$1,\!099$	$0,\!941$	$1,\!267$	$1,\!307$	$1,\!280$	$1,\!380$	$1,\!412$	1,229	$1,\!636$
DDPA	$0,\!023$	0,011	$0,\!138$	$0,\!158$	$0,\!156$	$0,\!175$	0,039	0,027	$0,\!146$
DHQS	$0,\!023$	0,011	$0,\!138$	$0,\!158$	$0,\!156$	$0,\!175$	0,039	0,027	$0,\!146$
DHQTi	$0,\!023$	$0,\!011$	$0,\!138$	$0,\!158$	$0,\!156$	$0,\!175$	0,039	0,027	$0,\!146$
DM_ac	-0,296	-0,296	-0,289	0,000	0,000	0,000	$0,\!488$	$0,\!488$	0,528
DM_acser	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_cit	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_co2	$3,\!134$	$3,\!134$	$3,\!263$	4,000	4,000	4,212	4,411	4,411	4,606
DM_cys-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_etoh	0,000	0,000	0,000	$0,\!206$	0,206	$0,\!223$	$0,\!176$	$0,\!176$	0,252
DM_for	0,000	0,000	0,000	$0,\!220$	$0,\!220$	$0,\!231$	$0,\!530$	0,530	0,565
DM_glc	-0,806	-0,806	-0,773	$-1,\!197$	-1,197	-1,161	-1,553	-1,553	-1,49
DM_glu-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_glu-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_glyc	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_indole	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_lac-D	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_lac-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_mal-D	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_mal-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_mthgxl	0,000	0,000	0,000	$0,\!045$	$0,\!045$	$0,\!047$	0,018	0,018	0,018
DM_o2	-2,973	-3,182	-2,973	-4,071	-4,480	-4,071	-4,389	$-4,\!659$	-4,37
DM_phe-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_pyr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Tabelle A.18: Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen in mmol g_{BTM}^{-1} h⁻¹ und die Biomassebildung in h⁻¹ während der metabolischen Analyse von *E. coli* NT1446 mit der Kohlenstoffquelle Glucose in drei Zulaufstufen (1-3). Berechnet mit der thermodynamischen Flussanalyse (TFA) und thermodynamischen Flussvarianzanalyse (min: untere Grenze; max: obere Grenze). Die Reaktionsbezeichnungen und -richtungen wurden vom Modell *i*JO1366 übernommen.

		Gluc 1			Gluc 2			Gluc 3	
Reaktion	TFA	\min	max	TFA	\min	max	TFA	\min	max
DM_ser-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_succ	-0,059	-0,059	-0,042	0,073	0,073	0,087	$0,\!053$	$0,\!053$	0,093
DM_trp-L	0,000	0,000	0,084	0,154	$0,\!154$	$0,\!173$	0,016	0,016	0,134
DM_tyr-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
$Ec_biomass$	0,062	0,031	0,062	0,010	$0,\!005$	0,010	$0,\!064$	0,032	0,064
ENO	$0,\!608$	0,000	0,707	0,855	0,000	$0,\!872$	$1,\!317$	0,000	$1,\!447$
FBA	0,727	0,508	0,767	1,030	0,778	1,036	$1,\!456$	$0,\!987$	$1,\!498$
FBP	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
FUM	$1,\!153$	$0,\!989$	$1,\!219$	$1,\!233$	$1,\!204$	$1,\!306$	$1,\!354$	$1,\!151$	$1,\!488$
G3PD5	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
G6PDH2r	0,039	0,000	$0,\!288$	0,006	$0,\!002$	0,261	0,040	$0,\!010$	$0,\!669$
GAPD	0,709	$0,\!051$	0,757	1,026	$0,\!163$	$1,\!034$	$1,\!438$	$0,\!041$	$1,\!488$
GLCptspp	0,806	0,773	0,806	$1,\!148$	$1,\!148$	$1,\!197$	$1,\!553$	$1,\!490$	1,553
GLYK	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
GLYOX3	0,717	$0,\!503$	$1,\!469$	$0,\!983$	0,731	$1,\!862$	$1,\!428$	$0,\!964$	2,922
GND	0,039	0,000	$0,\!288$	0,006	$0,\!002$	0,261	0,040	$0,\!010$	$0,\!669$
ICDHyr	0,977	$0,\!901$	$1,\!130$	1,203	$1,\!189$	$1,\!291$	$1,\!172$	$1,\!060$	$1,\!336$
ICL	$0,\!122$	0,032	$0,\!314$	0,104	$0,\!089$	$0,\!139$	$0,\!240$	$0,\!147$	$0,\!483$
IGPS	0,003	$0,\!002$	$0,\!086$	$0,\!155$	$0,\!154$	$0,\!174$	$0,\!019$	$0,\!017$	$0,\!136$
LDH_D2	0,717	$0,\!503$	$1,\!469$	0,983	0,731	$1,\!862$	$1,\!428$	0,964	2,922
MALS	$0,\!122$	0,032	$0,\!314$	0,104	$0,\!089$	$0,\!139$	$0,\!240$	$0,\!147$	$0,\!483$
MDH	1,275	1,029	$1,\!356$	$1,\!337$	$1,\!295$	$1,\!395$	$1,\!594$	$1,\!320$	1,761
MGSA	0,717	0,503	$1,\!469$	1,028	0,777	$1,\!907$	$1,\!446$	$0,\!982$	2,939
NADH5	0,000	0,000	$4,\!227$	0,518	0,000	$5,\!134$	$5,\!260$	0,000	5,790
OAADC	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PDH	1,098	0,000	$1,\!358$	$1,\!427$	0,000	$1,\!470$	$1,\!514$	0,000	1,766
PFK	0,727	0,508	0,767	1,030	0,778	1,036	$1,\!456$	$0,\!987$	$1,\!498$
PFL	0,007	$0,\!003$	$1,\!361$	0,221	$0,\!220$	$1,\!690$	$0,\!537$	0,533	2,326
PGCD	0,101	$0,\!051$	$0,\!177$	$0,\!171$	$0,\!163$	$0,\!182$	$0,\!120$	$0,\!041$	$0,\!187$
PGI	0,754	$0,\!000$	0,799	$1,\!189$	0,000	$1,\!193$	1,500	0,000	1,530
PGK	-0,709	-0,757	-0,051	-1,026	-1,034	-0,163	-1,438	$-1,\!488$	-0,041
PGL	0,039	$0,\!000$	$0,\!288$	0,006	$0,\!002$	0,261	$0,\!040$	$0,\!010$	$0,\!669$
\mathbf{PGM}	-0,608	-0,707	0,000	-0,855	-0,872	0,000	-1,317	-1,447	0,000
PHETA1	-0,011	-0,011	-0,006	-0,002	-0,002	-0,001	-0,011	-0,011	-0,006
PPC	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PPCK	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PPND	0,008	$0,\!004$	0,008	0,001	$0,\!001$	$0,\!001$	0,009	$0,\!004$	0,009
PPNDH	0,011	$0,\!006$	$0,\!011$	0,002	$0,\!001$	$0,\!002$	$0,\!011$	0,006	0,011

Tabelle A.18 – Fortsetzung

		Gluc 1			Gluc 2			Gluc 3	
Reaktion	TFA	min	max	TFA	min	max	TFA	min	max
PPS	0,247	0,123	1,083	0,609	0,588	1,547	0,318	0,100	1,847
PRAIi	$0,\!003$	$0,\!002$	0,086	$0,\!155$	$0,\!154$	$0,\!174$	$0,\!019$	0,017	$0,\!136$
PRPPS	$0,\!056$	0,028	$0,\!281$	$0,\!163$	$0,\!159$	$0,\!417$	$0,\!073$	0,044	$0,\!527$
PSCVT	$0,\!023$	$0,\!011$	$0,\!138$	$0,\!158$	$0,\!156$	$0,\!175$	0,039	0,027	$0,\!146$
PSERT	$0,\!101$	$0,\!051$	$0,\!177$	$0,\!171$	0,163	$0,\!182$	$0,\!120$	$0,\!041$	$0,\!187$
PSP_L	$0,\!101$	$0,\!051$	$0,\!177$	$0,\!171$	0,163	$0,\!182$	$0,\!120$	$0,\!041$	$0,\!187$
PTAr	0,000	-0,345	0,000	-0,006	-0,008	-0,003	0,000	0,000	0,000
РҮК	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
RPE	-0,021	-0,125	0,000	-0,158	-0,175	-0,156	-0,037	-0,147	$0,\!147$
RPI	-0,058	-0,287	-0,028	-0,163	-0,417	-0,159	-0,076	-0,556	-0,045
SHK3Dr	$0,\!023$	$0,\!011$	$0,\!138$	$0,\!158$	$0,\!156$	$0,\!175$	$0,\!039$	0,027	$0,\!146$
SHKK	0,023	0,011	$0,\!138$	$0,\!158$	$0,\!156$	$0,\!175$	0,039	0,027	$0,\!146$
SUCDi	$1,\!090$	$0,\!958$	$1,\!186$	$1,\!222$	$1,\!198$	$1,\!301$	$1,\!290$	$1,\!119$	$1,\!432$
SUCOAS	-0,878	-1,080	-0,585	-1,187	-1,283	-1,133	-1,070	-1,285	-0,713
TALA	0,000	-0,030	0,068	0,000	-0,005	0,000	0,000	-0,031	$0,\!146$
TKT1	$0,\!002$	0,000	0,069	0,000	0,000	0,000	$0,\!002$	0,000	$0,\!147$
TKT2	-0,023	-0,125	-0,006	-0,158	-0,175	-0,156	-0,039	-0,147	0,000
TPI	0,000	-0,707	0,000	0,000	-0,872	0,000	0,000	-1,447	0,000
TRPS2	0,003	$0,\!002$	0,086	$0,\!155$	$0,\!154$	$0,\!174$	0,019	0,017	$0,\!136$
TRPS3	$0,\!003$	$0,\!002$	0,086	$0,\!155$	$0,\!154$	$0,\!174$	0,019	0,017	$0,\!136$
TRPTRS	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
TYRTA	-0,008	-0,008	-0,004	-0,001	-0,001	-0,001	-0,009	-0,009	-0,004

Tabelle A.18 – Fortsetzung

Tabelle A.19: Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen in mmol g_{BTM}^{-1} h⁻¹ und die Biomassebildung in h⁻¹ während der metabolischen Analyse von *E. coli* NT1446 mit der Kohlenstoffquelle Pyruvat in drei Zulaufstufen (1-3). Berechnet mit der thermodynamischen Flussanalyse (TFA) und thermodynamischen Flussvarianzanalyse (min: untere Grenze; max: obere Grenze). Die Reaktionsbezeichnungen und -richtungen wurden vom Modell *i*JO1366 übernommen.

		Pyr 1			Pyr 2			Pyr 3	
Reaktion	TFA	\min	max	TFA	min	max	TFA	min	max
ACKr	0,368	0,340	0,382	0,000	0,000	0,000	0,000	0,000	0,000
ACONTa	$1,\!662$	$1,\!434$	$1,\!878$	2,585	2,550	$2,\!663$	$3,\!148$	$3,\!127$	$3,\!183$
ACONTb	$1,\!662$	$1,\!434$	$1,\!878$	2,585	2,550	$2,\!663$	$3,\!148$	$3,\!127$	$3,\!183$
ACS	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
AKGDH	1,312	$0,\!646$	$1,\!548$	$2,\!346$	$2,\!183$	$2,\!449$	$2,\!610$	2,568	$2,\!676$
ANPRT	$0,\!004$	0,002	$0,\!136$	0,001	0,000	0,021	0,000	0,000	$0,\!009$
ANS	$0,\!004$	0,002	$0,\!136$	0,001	0,000	0,021	0,000	0,000	0,009

		Pyr 1			Pyr 2			Pyr 3	
Reaktion	TFA	min	max	TFA	min	max	TFA	min	max
ATPS4rpp	6,940	3,050	7,832	5,133	0,000	6,348	0,000	0,000	6,227
CHORM	0,023	0,011	0,023	0,003	0,002	0,003	0,002	0,001	0,002
CHORS	0,027	0,013	0,147	0,004	0,002	0,022	0,002	0,001	0,010
\mathbf{CS}	$1,\!662$	$1,\!434$	$1,\!878$	2,585	$2,\!550$	$2,\!663$	$3,\!148$	$3,\!127$	$3,\!183$
DDPA	0,027	0,013	$0,\!147$	0,004	0,002	0,022	0,002	0,001	0,010
DHQS	0,027	0,013	$0,\!147$	0,004	0,002	0,022	0,002	0,001	0,010
DHQTi	0,027	0,013	$0,\!147$	0,004	0,002	0,022	0,002	0,001	0,010
DM_ac	-0,325	-0,325	-0,319	0,017	0,017	0,022	$0,\!142$	0,142	$0,\!193$
DM_acser	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_cit	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_co2	4,975	4,975	$5,\!165$	$7,\!583$	$7,\!583$	7,806	$9,\!100$	9,100	9,203
DM_cys-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_etoh	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_for	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_glc	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_glu-L	-0,158	-0,158	-0,074	-0,021	-0,021	0,000	-0,128	-0,128	-0,108
DM_glu-L	-0,158	-0,158	-0,074	-0,021	-0,021	0,000	-0,128	-0,128	-0,108
DM_glyc	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_indole	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_lac-D	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_lac-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_mal-D	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_mal-L	0,000	0,000	0,000	0,210	0,210	0,236	0,743	0,743	0,769
DM_mthgxl	0,000	0,000	0,000	0,008	0,008	0,008	$0,\!002$	0,002	0,002
DM_o2	-3,780	-3,937	-3,780	-6,809	$-7,\!613$	-6,809	-8,111	-8,111	-7,789
DM_phe-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_pyr	-2,088	-2,088	-2,035	-2,964	-2,964	-2,890	-3,968	-3,968	-3,934
DM_ser-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_succ	-0,054	-0,054	-0,049	0,017	0,017	0,022	-0,006	-0,006	-0,003
DM_trp-L	0,000	0,000	$0,\!134$	0,000	0,000	0,020	0,000	0,000	0,009
DM_tyr-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
$Ec_biomass$	0,072	0,036	0,072	0,011	0,005	0,011	$0,\!005$	0,003	0,005
ENO	-0,287	-0,772	-0,122	-0,053	-0,124	-0,026	-0,022	-0,056	-0,011
FBA	-0,118	-0,354	-0,038	-0,018	-0,054	-0,006	-0,008	-0,025	-0,003
FBP	$0,\!118$	0,038	$0,\!354$	0,018	0,006	$0,\!054$	0,008	0,003	0,025
FUM	1,869	$1,\!620$	$1,\!974$	2,587	$2,\!551$	$2,\!666$	$3,\!281$	3,261	$3,\!316$
G3PD5	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
G6PDH2r	$0,\!126$	0,000	0,465	0,019	0,000	0,070	0,009	0,000	0,032

Tabelle A.19 – Fortsetzung

		Pvr 1			Pvr 2			Pvr 3	
Reaktion	TFA	min	max	TFA	min	max	TFA	min	max
GAPD	-0,243	-0,711	-0,100	-0,044	-0,115	-0,023	-0,019	-0,052	-0,009
GLCptspp	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
GLYK	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
GLYOX3	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
GND	$0,\!126$	0,000	0,465	0,019	0,000	0,070	0,009	0,000	0,032
ICDHyr	1,232	0,527	1,532	2,337	2,169	$2,\!435$	$2,\!487$	2,442	2,551
ICL	$0,\!430$	0,204	$0,\!947$	0,248	0,223	$0,\!390$	$0,\!661$	$0,\!632$	$0,\!692$
IGPS	0,004	0,002	$0,\!136$	0,001	0,000	$0,\!021$	0,000	0,000	0,009
LDH_D2	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
MALS	$0,\!430$	0,204	$0,\!947$	0,248	0,223	$0,\!390$	$0,\!661$	$0,\!632$	0,692
MDH	2,299	1,925	$2,\!632$	$2,\!625$	2,566	2,741	$3,\!199$	$3,\!151$	$3,\!217$
MGSA	0,000	0,000	0,000	0,008	0,008	0,008	0,002	0,002	0,002
NADH5	$5,\!252$	$4,\!179$	5,727	7,771	0,000	8,061	$9,\!612$	0,000	$9,\!698$
OAADC	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PDH	$1,\!825$	1,765	$2,\!125$	$2,\!852$	2,793	$2,\!956$	3,816	3,766	3,830
\mathbf{PFK}	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PFL	0,069	0,000	$0,\!082$	0,010	0,000	$0,\!012$	0,000	0,000	0,006
PGCD	0,044	$0,\!022$	$0,\!195$	$0,\!009$	0,003	$0,\!030$	$0,\!003$	0,002	0,014
PGI	-0,140	-0,472	-0,007	-0,021	-0,071	-0,001	-0,010	-0,033	0,000
PGK	$0,\!243$	$0,\!100$	0,711	$0,\!044$	0,023	$0,\!115$	$0,\!019$	0,009	$0,\!052$
PGL	$0,\!126$	0,000	$0,\!465$	$0,\!019$	0,000	$0,\!070$	0,009	0,000	0,032
\mathbf{PGM}	$0,\!287$	$0,\!122$	0,772	$0,\!053$	0,026	$0,\!124$	$0,\!022$	0,011	$0,\!056$
PHETA1	-0,013	-0,013	-0,006	-0,002	-0,002	-0,001	-0,001	-0,001	0,000
PPC	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PPCK	$0,\!344$	$0,\!151$	$1,\!015$	0,000	0,000	0,161	$0,\!026$	$0,\!013$	$0,\!073$
PPND	0,010	$0,\!005$	0,010	$0,\!001$	$0,\!001$	$0,\!001$	$0,\!001$	0,000	$0,\!001$
PPNDH	0,013	0,006	$0,\!013$	0,002	$0,\!001$	$0,\!002$	$0,\!001$	0,000	$0,\!001$
PPS	0,000	0,000	0,000	0,062	0,000	0,161	0,000	0,000	0,000
PRAIi	$0,\!004$	0,002	$0,\!136$	$0,\!001$	0,000	$0,\!021$	0,000	0,000	0,009
PRPPS	0,066	0,033	$0,\!328$	$0,\!010$	0,005	$0,\!050$	$0,\!005$	0,002	0,023
PSCVT	0,027	$0,\!013$	$0,\!147$	$0,\!004$	0,002	0,022	$0,\!002$	0,001	0,010
PSERT	0,044	0,022	$0,\!195$	0,009	0,003	$0,\!030$	$0,\!003$	0,002	$0,\!014$
PSP_L	0,044	0,022	$0,\!195$	0,009	0,003	$0,\!030$	$0,\!003$	0,002	$0,\!014$
PTAr	-0,368	-0,382	-0,340	0,000	0,000	0,000	0,000	0,000	0,000
РҮК	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
RPE	0,029	-0,224	$0,\!149$	$0,\!004$	-0,034	$0,\!022$	0,002	-0,016	0,010
RPI	-0,095	-0,342	-0,015	-0,014	-0,052	-0,002	-0,007	-0,024	-0,001
SHK3Dr	0,027	$0,\!013$	$0,\!147$	0,004	0,002	$0,\!022$	0,002	$0,\!001$	$0,\!010$

 ${\bf Tabelle \ A.19}-{\rm Fortsetzung}$

		Pyr 1			Pyr 2			Pyr 3	
Reaktion	TFA	min	max	TFA	min	max	TFA	min	max
SHKK	0,027	0,013	0,147	0,004	0,002	0,022	0,002	0,001	0,010
SUCDi	1,796	$1,\!583$	$1,\!910$	$2,\!576$	$2,\!546$	$2,\!660$	$3,\!276$	$3,\!258$	3,314
SUCOAS	$-1,\!274$	-1,516	$-0,\!627$	-2,340	-2,447	-2,181	-2,607	$-2,\!675$	-2,567
TALA	0,027	-0,106	$0,\!147$	0,004	-0,016	$0,\!022$	$0,\!002$	-0,007	0,010
TKT1	0,029	-0,105	$0,\!149$	0,004	-0,016	$0,\!022$	$0,\!002$	-0,007	0,010
TKT2	0,000	-0,155	0,000	0,000	-0,023	0,000	0,000	-0,011	0,000
TPI	-0,130	-0,360	-0,044	-0,027	-0,062	-0,014	-0,011	-0,027	-0,005
TRPS2	$0,\!004$	$0,\!002$	$0,\!136$	$0,\!001$	0,000	$0,\!021$	0,000	0,000	0,009
TRPS3	$0,\!004$	$0,\!002$	$0,\!136$	$0,\!001$	0,000	$0,\!021$	0,000	0,000	0,009
TRPTRS	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
TYRTA	-0,010	-0,010	-0,005	-0,001	-0,001	-0,001	-0,001	-0,001	0,000

Tabelle A.19 – Fortsetzung

Tabelle A.20: Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen in mmol g_{BTM}^{-1} h⁻¹ und die Biomassebildung in h⁻¹ während der metabolischen Analyse von *E. coli* NT1446 mit der Kohlenstoffquelle Succinat in drei Zulaufstufen (1-3). Berechnet mit der thermodynamischen Flussanalyse (TFA) und thermodynamischen Flussvarianzanalyse (min: untere Grenze; max: obere Grenze). Die Reaktionsbezeichnungen und -richtungen wurden vom Modell *i*JO1366 übernommen.

		Suc 1			Suc 2			Suc 3	
Reaktion	TFA	min	max	TFA	min	max	TFA	min	max
ACKr	0,340	0,326	$0,\!345$	0,034	$0,\!017$	0,045	0,023	0,011	0,030
ACONTa	$0,\!670$	$0,\!601$	$0,\!901$	$0,\!665$	$0,\!524$	$1,\!009$	$0,\!464$	$0,\!371$	1,099
ACONTb	$0,\!670$	$0,\!601$	$0,\!901$	$0,\!665$	$0,\!524$	$1,\!009$	$0,\!464$	$0,\!371$	1,099
ACS	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
AKGDH	$0,\!642$	0,007	0,856	0,029	$0,\!015$	$0,\!899$	$0,\!550$	0,010	$1,\!141$
ANPRT	0,001	0,001	0,048	0,003	0,002	$0,\!057$	0,071	0,070	$0,\!125$
ANS	0,001	0,001	0,048	0,003	0,002	$0,\!057$	0,071	0,070	$0,\!125$
ATPS4rpp	$3,\!152$	$1,\!358$	$4,\!193$	4,896	$1,\!964$	9,382	$4,\!273$	$2,\!051$	$7,\!493$
CHORM	0,008	$0,\!004$	0,008	0,018	0,009	0,018	0,012	0,006	0,012
CHORS	0,010	0,005	0,052	0,021	0,011	$0,\!071$	0,083	$0,\!076$	0,132
\mathbf{CS}	$0,\!670$	$0,\!601$	$0,\!901$	$0,\!665$	$0,\!524$	$1,\!009$	$0,\!464$	$0,\!371$	1,099
DDPA	0,010	0,005	0,052	0,021	0,011	$0,\!071$	0,083	$0,\!076$	0,132
DHQS	0,010	0,005	0,052	0,021	0,011	$0,\!071$	0,083	$0,\!076$	0,132
DHQTi	0,010	0,005	0,052	0,021	0,011	$0,\!071$	0,083	$0,\!076$	0,132
DM_ac	-0,325	-0,325	-0,319	0,000	0,000	0,000	0,000	0,000	0,000
DM_acser	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_cit	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_co2	3,228	3,228	$3,\!350$	4,327	4,327	4,571	5,770	5,770	$5,\!872$

		Suc 1			Suc 9			Suc 2	
Roaktion	TFΛ	Suc 1	may		Suc 2	may		Suc 5	may
	ITA	111111	шах	IFA	111111	шах	IFA	111111	шах
DM_cys-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_etoh	0,401	$0,\!401$	0,416	$0,\!380$	$0,\!380$	$0,\!438$	1,264	1,264	$1,\!333$
DM_for	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_glc	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_glu-L	0,000	0,000	0,000	0,000	0,000	0,000	-0,128	-0,128	-0,027
DM_glu-L	0,000	0,000	0,000	0,000	0,000	0,000	-0,128	-0,128	-0,027
DM_glyc	0,000	0,000	0,000	$0,\!000$	0,000	$0,\!000$	0,000	0,000	0,000
DM_indole	0,000	0,000	0,000	$0,\!000$	0,000	$0,\!000$	0,000	0,000	0,000
DM_lac-D	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_lac-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_mal-D	$0,\!000$	0,000	0,000	$0,\!000$	0,000	$0,\!000$	0,000	0,000	0,000
DM_mal-L	0,260	0,260	$0,\!265$	0,203	0,203	0,209	$0,\!239$	0,239	0,260
DM_mthgxl	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_o2	-2,936	-2,936	-2,760	-3,460	-4,064	-3,460	-5,714	-5,929	-5,714
DM_phe-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_pyr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_ser-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
DM_succ	-1,367	-1,367	-1,348	-2,057	-2,057	-2,028	-2,734	-2,734	-2,696
DM_trp-L	0,000	0,000	$0,\!048$	0,000	0,000	$0,\!055$	0,069	0,069	$0,\!123$
DM_tyr-L	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
$Ec_biomass$	0,026	$0,\!013$	$0,\!026$	$0,\!057$	0,028	$0,\!057$	0,038	0,019	0,038
ENO	-0,521	$-0,\!678$	-0,044	-0,274	-0,996	-0,097	-0,733	-1,923	-0,291
FBA	-0,433	-0,536	-0,014	-0,082	-0,689	-0,030	-0,467	$-1,\!607$	-0,089
FBP	$0,\!433$	$0,\!014$	$0,\!536$	$0,\!082$	0,030	$0,\!689$	$0,\!467$	0,089	$1,\!607$
FUM	2,035	$1,\!962$	$2,\!234$	2,718	2,568	$2,\!985$	$3,\!323$	3,223	$3,\!882$
G3PD5	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
G6PDH2r	$0,\!417$	0,000	$0,\!573$	0,065	0,000	$0,\!680$	$0,\!540$	0,000	1,721
GAPD	-0,477	$-0,\!657$	-0,036	-0,180	-0,947	-0,079	-0,602	-1,823	-0,191
GLCptspp	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
GLYK	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
GLYOX3	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
GND	$0,\!417$	0,000	$0,\!573$	0,065	0,000	$0,\!680$	$0,\!540$	0,000	1,721
ICDHyr	$0,\!670$	$0,\!021$	0,901	$0,\!091$	0,046	$1,\!009$	$0,\!464$	-0,098	$1,\!099$
ICL	0,000	0,000	0,751	$0,\!574$	0,000	$0,\!884$	0,000	0,000	1,068
IGPS	0,001	0,001	0,048	0,003	0,002	$0,\!057$	$0,\!071$	0,070	$0,\!125$
LDH_D2	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
MALS	0,000	0,000	0,751	$0,\!574$	0,000	0,884	0,000	0,000	1,068
MDH	1,775	1,701	2,614	$3,\!089$	2,364	$3,\!644$	3,084	$2,\!982$	4,623

 ${\bf Tabelle} ~ {\bf A.20} - {\rm Fortsetzung}$

		Suc 1			Suc 2			Suc 3	
Reaktion	TFA	\min	max	TFA	\min	max	TFA	\min	max
MGSA	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
NADH5	0,000	0,000	2,992	$3,\!126$	0,000	$3,\!931$	$0,\!459$	0,000	$3,\!544$
OAADC	$0,\!491$	0,308	$1,\!534$	1,942	$0,\!692$	$2,\!193$	$1,\!610$	0,396	2,557
PDH	$0,\!422$	$0,\!317$	$1,\!498$	1,783	0,228	2,089	0,000	0,000	2,572
PFK	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PFL	0,000	0,000	0,025	0,006	0,000	$0,\!055$	$1,\!305$	0,002	$2,\!574$
PGCD	$0,\!044$	0,008	0,069	0,093	0,017	$0,\!127$	$0,\!132$	$0,\!100$	0,162
PGI	-0,422	-0,576	-0,003	-0,076	-0,686	-0,006	-0,547	-1,724	-0,004
PGK	$0,\!477$	0,036	$0,\!657$	$0,\!180$	0,079	0,947	$0,\!602$	$0,\!191$	1,823
PGL	$0,\!417$	0,000	$0,\!573$	0,065	0,000	$0,\!680$	$0,\!540$	0,000	1,721
PGM	0,521	0,044	$0,\!678$	0,274	0,097	$0,\!996$	0,733	$0,\!291$	$1,\!923$
PHETA1	-0,005	-0,005	-0,002	-0,010	-0,010	-0,005	-0,007	-0,007	-0,003
PPC	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PPCK	$0,\!541$	$0,\!054$	0,762	0,319	$0,\!119$	1,079	$0,\!901$	$0,\!444$	2,166
PPND	0,003	0,002	0,003	0,008	0,004	0,008	$0,\!005$	0,003	$0,\!005$
PPNDH	0,005	0,002	0,005	0,010	$0,\!005$	0,010	0,007	0,003	$0,\!007$
PPS	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
PRAIi	$0,\!001$	0,001	0,048	0,003	0,002	$0,\!057$	$0,\!071$	$0,\!070$	$0,\!125$
PRPPS	0,023	0,012	0,526	0,052	0,026	$0,\!674$	$0,\!103$	$0,\!086$	$1,\!548$
PSCVT	0,010	0,005	$0,\!052$	0,021	0,011	0,071	0,083	0,076	$0,\!132$
PSERT	0,044	0,008	0,069	0,093	0,017	$0,\!127$	$0,\!132$	$0,\!100$	0,162
PSP_L	0,044	0,008	0,069	0,093	0,017	$0,\!127$	$0,\!132$	$0,\!100$	0,162
PTAr	-0,340	-0,345	-0,326	-0,034	-0,045	-0,017	-0,023	-0,030	-0,011
РҮК	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
RPE	-0,009	-0,353	$0,\!053$	0,000	-0,453	0,000	$0,\!084$	-1,058	$0,\!135$
RPI	-0,425	-0,532	-0,005	-0,064	$-0,\!679$	-0,012	-0,454	$-1,\!601$	-0,077
SHK3Dr	$0,\!010$	$0,\!005$	$0,\!052$	0,021	0,011	$0,\!071$	0,083	$0,\!076$	0,132
SHKK	$0,\!010$	0,005	$0,\!052$	0,021	0,011	$0,\!071$	0,083	0,076	0,132
SUCDi	2,009	$1,\!949$	2,216	$2,\!660$	$2,\!539$	$2,\!946$	$3,\!284$	$3,\!204$	3,862
SUCOAS	-0,629	-0,849	0,000	0,000	-0,884	0,000	-0,530	-1,131	0,000
TALA	0,000	-0,174	$0,\!052$	0,010	-0,222	0,035	$0,\!083$	-0,491	0,132
TKT1	$0,\!001$	-0,174	$0,\!053$	0,012	-0,221	0,040	$0,\!084$	-0,491	$0,\!135$
TKT2	-0,010	-0,191	0,000	-0,012	-0,247	-0,006	0,000	-0,582	0,000
TPI	-0,437	-0,538	-0,016	-0,091	$-0,\!693$	-0,035	-0,473	$-1,\!610$	-0,092
TRPS2	0,001	$0,\!001$	0,048	0,003	0,002	$0,\!057$	0,071	$0,\!070$	$0,\!125$
TRPS3	0,001	$0,\!001$	0,048	0,003	0,002	$0,\!057$	$0,\!071$	$0,\!070$	$0,\!125$
TRPTRS	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
TYRTA	-0,003	-0,003	-0,002	-0,008	-0,008	-0,004	-0,005	-0,005	-0,003

Tabelle A.20 – Fortsetzung

		Ref	
Reaktion	TFA	\min	max
ACKr	0.040	0.020	0.053
ACONTa	1.420	1.233	1.743
ACONTb	1.420	1.233	1.743
ACS	0.000	0.000	0.000
AKGDH	1.069	0.692	1.462
ANPRT	0.115	0.113	0.126
ANS	0.115	0.113	0.126
ATPS4rpp	11.059	5.013	18.222
CHORM	0.021	0.011	0.021
CHORS	0.136	0.124	0.146
\mathbf{CS}	1.420	1.233	1.743
DDPA	0.136	0.124	0.146
DHQS	0.136	0.124	0.146
DHQTi	0.136	0.124	0.146
DM_ac	0.000	0.000	0.000
DM_acser	0.000	0.000	0.000
DM_cit	0.000	0.000	0.000
DM_co2	4.653	4.653	4.937
DM_cys-L	0.000	0.000	0.000
DM_etoh	0.000	0.000	0.000
DM_for	0.000	0.000	0.000
DM_glc	0.000	0.000	0.000
DM_glu-L	0.000	0.000	0.002
DM_glu-L	0.000	0.000	0.002
DM_glyc	-2.874	-2.874	-2.797
DM_indole	0.000	0.000	0.000
DM_lac-D	0.000	0.000	0.000
DM_lac-L	0.000	0.000	0.000
DM_mal-D	0.000	0.000	0.000
DM_mal-L	0.000	0.000	0.000
DM_mthgxl	0.000	0.000	0.000
DM_o2	-6.645	-6.928	-6.645
DM_phe-L	0.000	0.000	0.000
DM_pyr	0.000	0.000	0.000

Tabelle A.21: Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen in mmol g_{BTM}^{-1} h⁻¹ und die Biomassebildung in h⁻¹ während der metabolischen Analyse von *E. coli* NT1446 im Referenzprozess. Berechnet mit der thermodynamischen Flussanalyse (TFA) und thermodynamischen Flussvarianzanalyse (min: untere Grenze; max: obere Grenze). Die Reaktionsbezeichnungen und -richtungen wurden vom Modell *i*JO1366 übernommen.

Tabelle A.21 –	Fortsetzung		
		Ref	
Reaktion	TFA	min	max
DM_ser-L	0.000	0.000	0.000
DM_succ	0.000	0.000	0.000
DM_trp-L	0.111	0.111	0.122
DM_tyr-L	0.000	0.000	0.000
$Ec_biomass$	0.067	0.034	0.067
ENO	2.162	0.249	2.425
FBA	-0.332	-0.552	-0.147
FBP	0.332	0.147	0.552
FUM	1.415	1.221	1.658
G3PD5	2.863	2.787	2.868
G6PDH2r	0.451	0.000	0.676
GAPD	2.314	0.380	2.557
GLCptspp	0.000	0.000	0.000
GLYK	2.874	2.797	2.874
GLYOX3	0.000	0.000	2.177
GND	0.451	0.000	0.676
ICDHyr	1.142	1.052	1.498
ICL	0.278	0.139	0.494
IGPS	0.115	0.113	0.126
LDH_D2	0.000	0.000	2.177
MALS	0.278	0.139	0.494
MDH	1.693	1.369	1.944
MGSA	0.000	0.000	2.177
NADH5	7.031	0.000	7.951
OAADC	0.000	0.000	0.000
PDH	1.746	0.000	2.177
PFK	0.000	0.000	0.000
PFL	0.064	0.000	2.197
PGCD	0.152	0.132	0.161
PGI	-0.464	-0.682	-0.007
PGK	-2.314	-2.557	-0.380
PGL	0.451	0.000	0.676
\mathbf{PGM}	-2.162	-2.425	-0.249
PHETA1	-0.012	-0.012	-0.006
PPC	0.000	0.000	0.000
PPCK	0.000	0.000	0.000
PPND	0.009	0.005	0.009
PPNDH	0.012	0.006	0.012

11 . 01 -

Tabelle A.21 – Fortsetzung					
		Ref			
Reaktion	TFA	min	max		
PPS	0.000	0.000	0.000		
PRAIi	0.115	0.113	0.126		
PRPPS	0.172	0.141	0.416		
PSCVT	0.136	0.124	0.146		
PSERT	0.152	0.132	0.161		
PSP_L	0.152	0.132	0.161		
PTAr	-0.040	-0.053	-0.020		
РҮК	1.887	0.000	2.177		
RPE	0.138	-0.320	0.164		
RPI	-0.311	-0.541	-0.125		
SHK3Dr	0.136	0.124	0.146		
SHKK	0.136	0.124	0.146		
SUCDi	1.347	1.187	1.601		
SUCOAS	-1.034	-1.444	-0.675		
TALA	0.136	-0.099	0.146		
TKT1	0.138	-0.098	0.164		
TKT2	0.000	-0.225	0.000		
TPI	2.530	0.544	2.720		
TRPS2	0.115	0.113	0.126		
TRPS3	0.115	0.113	0.126		
TRPTRS	0.000	0.000	0.000		
TYRTA	-0.009	-0.009	-0.005		

Tabelle A.21 – Fortsetzung

A.3 Modelle für die metabolische Kontrollanalyse

Tabelle A.22: Reaktionen des Modells für die MCA mit *E. coli* NT1259 $shiA_{Cg}$, ihre Stöchiometrie und Klassifizierung bezüglich des thermodynamischen Gleichgewichts. Equilibrium: Reaktion operiert am thermodynamischen Gleichgewicht; für Reaktionen fern des thermodynamischen Gleichgewichtes sind die gewählten Effektoren angegeben.

Reaktion	Stöchiometrie	Effektoren				
	Glykolyse, Gluconeogenese und Glycerin	nmetabolismus				
GLYK	$glyc + atp \rightarrow gly3p + adp$	atp, fbp, adp				
GLY3PD	$gly3p + q8 \rightarrow dhap + q8h2$	gap, pep, dhap, $2pg$, $3pg$				
PGI	m f6p ightarrow m g6p	Equilibrium				
FBP	$fbp \rightarrow f6p$	pep, g6p, cit, amp				
FBA	$gap + dhap \leftrightarrow fbp$	Equilibrium				
TPI	$\mathrm{dhap}\leftrightarrow\mathrm{gap}$	Equilibrium				
GAPD	$gap + nad \leftrightarrow 13dpg + nadh$	Equilibrium				
PGK	$13dpg + adp \leftrightarrow 3pg + atp$	Equilibrium				
PGM	$3\mathrm{pg}\leftrightarrow 2\mathrm{pg}$	Equilibrium				
ENO	$2\mathrm{pg}\leftrightarrow\mathrm{pep}$	Equilibrium				
PYK	$adp + pep \rightarrow atp + pyr$	atp, pep, pyr, fbp, sucCoA				
PDH	$\rm pyr + nad + coA \rightarrow acCoA + nadh$	acCoA, pyr, nadh				
L-Serinbiosynthese						
PGCD	$3pg + nad \leftrightarrow 3php + nadh$	Equilibrium				
PSERT	$3 php + L\text{-}Glu \rightarrow pser_L + akg$	pser_L				
PSP_L	$pser_L \rightarrow L\text{-ser}$	L-ser				
	Citratzyklus					
\mathbf{CS}	$acCoA + oaa \rightarrow cit + coA$	acCoA, oaa, akg, nadh				
ACONT	$\operatorname{cit} \rightarrow \operatorname{icit}$	Equilibrium				
ICDH	$icit + nadp \leftrightarrow akg + nadp$	pep, oaa, icit, fbp, cit, L-phe				
AKGDH	$\mathrm{akg} + \mathrm{coA} + \mathrm{nad} \rightarrow \mathrm{nadh} + \mathrm{sucCoA}$	akg, oaa				
SUCOAS	$adp + sucCoA \leftrightarrow atp + coA + suc$	Equilibrium				
SUCD	$suc + q8 \rightarrow fum + q8h2$	suc				
FUM	$\mathrm{fum} \leftrightarrow \mathrm{mal}$	Equilibrium				
MDH	$mal + nad \leftrightarrow nadh + oaa$	Equilibrium				
	Pentosephosphatweg					
G6PDH	$g6p + nadp \leftrightarrow 6pg + nadph$	Equilibrium				
GND	$6pg + nadp \leftrightarrow nadph + ru5p$	atp, ru5p, fbp, nadph				
RPE	$\rm ru5p \leftrightarrow \rm x5p$	Equilibrium				
RPI	$ru5p \leftrightarrow r5p$	Equilibrium				

TKT1	$r5p + x5p \leftrightarrow gap + s7p$	Equilibrium					
TKT2	$e4p + x5p \leftrightarrow gap + f6p$	Equilibrium					
TALA	$gap + s7p \leftrightarrow e4p + f6p$	Equilibrium					
PRPPS	$r5p + atp \rightarrow prpp + amp$	adp					
	Biosynthese aromatischer Aminos	säuren					
DDPA	$e4p + pep \rightarrow dahp$	pep, 2pg, 13dpg, dahp, L-trp					
DHQS	$\mathrm{dahp}\leftrightarrow\mathrm{gap}$	dahp, nad					
DHQTi	$3dhq \leftrightarrow 3dhs$	Equilibrium					
SHK3Dr	$3dhs + nadph \leftrightarrow shk + nadp$	Equilibrium					
SHIKK	$shk + atp \rightarrow s3p + adp$	s3p					
PSCVT	$s3p + pep \leftrightarrow 3psme$	pep, 3psme					
CHORS	$3 \text{psme} \rightarrow \text{chor}$	3psme					
CHORM	$chor \rightarrow pphn$	chor					
PPNDH	$pphn \rightarrow phepyr$	chor					
PHETA	$\text{L-glu} + \text{phepyr} \leftrightarrow \text{akg} + \text{L-phe}$	akg					
ANS	$\mathrm{chor} + \mathrm{L}\text{-}\mathrm{gln} \to \mathrm{anth} + \mathrm{pyr} + \mathrm{L}\text{-}\mathrm{glu}$	anth					
ANPRT	$anth + prpp \rightarrow pran$	prpp, anth					
PRALI	$\mathrm{pran} \to 2\mathrm{cdr5p}$	Equilibrium					
IGPS	$2 cdr5p \rightarrow 3 ig3p$	anth, L-trp					
TRPS3	$3ig3p \rightarrow indol + gap$	Equilibrium					
TRPS2	$\mathrm{ind}+\mathrm{L\text{-}ser}\rightarrow\mathrm{L\text{-}trp}$	L-ser					
Energiemetabolismus							
NADH5	$nadh + q8 \leftrightarrow nad + q8h2$	nadh					
ATPS4rpp	$\mathrm{adp}\to\mathrm{atp}$	atp					

Fortsetzung

Tabelle A.23: Reaktionen des Modells für die MCA mit *E. coli* NT1446, ihre Stöchiometrie und Klassifizierung bezüglich des thermodynamischen Gleichgewichts. Equilibrium: Reaktion operiert am thermodynamischen Gleichgewicht; für Reaktionen fern des thermodynamischen Gleichgewichtes sind die gewählten Effektoren angegeben.

Reaktion	Stöchiometrie	Effektoren	
Glykolyse, Gluconeogenese und Glycerinmetabolismus			
GLYK	$glyc + atp \rightarrow gly3p + adp$	atp, fbp, adp	
GLY3PD	$gly3p + q8 \rightarrow dhap + q8h2$	gap, pep, dhap, $2pg$, $3pg$	
PGI	m f6p ightarrow m g6p	Equilibrium	
FBP	$fbp \rightarrow f6p$	pep, g6p, cit, amp	
FBA	$gap + dhap \leftrightarrow fbp$	Equilibrium	
TPI	$dhap \leftrightarrow gap$	Equilibrium	

	-	
GAPD	$gap + nad \leftrightarrow 13dpg + nadh$	Equilibrium
PGK	$13dpg + adp \leftrightarrow 3pg + atp$	Equilibrium
PGM	$3pg \leftrightarrow 2pg$	Equilibrium
ENO	$2pg \leftrightarrow pep$	Equilibrium
РҮК	$adp + pep \rightarrow atp + pyr$	atp, pep, pyr, fbp, sucCoA
PDH	$\rm pyr + nad + coA \rightarrow acCoA + nadh$	acCoA, pyr, nadh
	Methylglyoxal-Stoffwechsel	l
MGSA	$dhap \rightarrow mgo$	pep, dhap, 3pg
GLYOX	$mgo \rightarrow lac$	mgo, pyr
ldh	$lac \leftrightarrow pyr$	lac, pyr
	L-Serinbiosynthese	
PGCD	$3pg + nad \leftrightarrow 3php + nadh$	Equilibrium
PSERT	$3php + L-Glu \rightarrow pser_L + akg$	pser_L
PSP_L	$\mathrm{pser}_\mathrm{L} \to \mathrm{L}\text{-}\mathrm{ser}$	L-ser
	Citratzyklus	
CS	$acCoA + oaa \rightarrow cit + coA$	acCoA, oaa, akg, nadh
ACONT	$\operatorname{cit} \to \operatorname{icit}$	Equilibrium
ICDH	$icit + nadp \leftrightarrow akg + nadp$	pep, oaa, icit, fbp, cit, L-phe
AKGDH	$\mathrm{akg} + \mathrm{coA} + \mathrm{nad} \rightarrow \mathrm{nadh} + \mathrm{sucCoA}$	akg, oaa
SUCOAS	$adp + sucCoA \leftrightarrow atp + coA + suc$	Equilibrium
SUCD	$suc + q8 \rightarrow fum + q8h2$	suc
FUM	$\mathrm{fum}\leftrightarrow\mathrm{mal}$	Equilibrium
MDH	$\mathrm{mal} + \mathrm{nad} \leftrightarrow \mathrm{nadh} + \mathrm{oaa}$	Equilibrium
	Pentosephosphatweg	
G6PDH	$g6p + nadp \leftrightarrow 6pg + nadph$	Equilibrium
GND	$6pg + nadp \leftrightarrow nadph + ru5p$	atp, ru5p, fbp, nadph
RPE	$\rm ru5p \leftrightarrow \rm x5p$	Equilibrium
RPI	$\rm ru5p \leftrightarrow \rm r5p$	Equilibrium
TKT1	$r5p + x5p \leftrightarrow gap + s7p$	Equilibrium
TKT2	$e4p + x5p \leftrightarrow gap + f6p$	Equilibrium
TALA	$gap + s7p \leftrightarrow e4p + f6p$	Equilibrium
PRPPS	$r5p + atp \rightarrow prpp + amp$	adp
	Biosynthese aromatischer Amino	säuren
DDPA	$e4p + pep \rightarrow dahp$	pep, 2pg, 13dpg, dahp, L-trp
DHQS	$\mathrm{dahp}\leftrightarrow\mathrm{gap}$	dahp, nad
DHQTi	$3dhq \leftrightarrow 3dhs$	Equilibrium
SHK3Dr	$3dhs + nadph \leftrightarrow shk + nadp$	Equilibrium

 $Tabelle \ A.23 - {\rm Fortsetzung}$

SHIKK $shk + atp \rightarrow s3p + adp$ $s3p$ PSCVT $s3p + pep \leftrightarrow 3psme$ $pep, 3psme$		
PSCVT $s_{3p} + pep \leftrightarrow 3psme$ pep, 3psme		
CHORS $3psme \rightarrow chor$ $3psme$		
CHORM $chor \rightarrow pphn$ chor		
PPNDH $pphn \rightarrow phepyr$ chor		
PHETA L -glu + phepyr \leftrightarrow akg + L-phe akg		
ANS $\operatorname{chor} + \operatorname{L-gln} \to \operatorname{anth} + \operatorname{pyr} + \operatorname{L-glu} $ anth		
ANPRT $anth + prpp \rightarrow pran$ prpp, anth		
PRALI $pran \rightarrow 2cdr5p$ Equilibrium		
IGPS $2cdr5p \rightarrow 3ig3p$ anth, L-trp		
TRPS3 $3ig3p \rightarrow indol + gap$ Equilibrium		
$TRPS2 \qquad ind + L-ser \rightarrow L-trp \qquad L-ser$		
Energiemetabolismus		
NADH5 $nadh + q8 \leftrightarrow nad + q8h2$ $nadh$		
$ATPS4rpp \qquad adp \to atp \qquad atp$		

Fortsetzung

A.4 Elastizitäten

Tabelle A.24: Mittelwerte der Elastizitäten für Reaktionen fern des thermodynamischen Gleichgewichtsder MCA mit *E. coli* NT1259 $shiA_{Cg}$. Die Berechnung erfolgte nach dem lin-log-Verfahren in einer Monte-
Carlo-Simulation mit 10.000 Berechnungszyklen.

Reaktion	Metabolit	mittlere Elastizität
GLYK	atp	0.19
	fbp	0.44
	adp	-0.70
GLY3PD	gap	-0.02
	pep	-0.36
	dhap	0.11
	$3\mathrm{pg}$	-0.06
	$2 \mathrm{pg}$	-0.02
FBP	pep	-0.04
	g6p	1.04
	cit	0.01
	amp	1.47
PSERT	pser_L	0.24
PSP_L	L-ser	-0.02
РҮК	atp	-0.03
	pep	-0.18
	pyr	0.25
	fbp	0.08
	sucCoA	0.13
PDH	acCoA	-0.13
	pyr	0.36
	nadh	-0.16
CS	acCoA	-0.70
	oaa	1.58
	akg	-0.01
	nadh	-0.60
ICDH	pep	-0.75
	oaa	0.86
	icit	0.03
AKGDH	oaa	-0.60
	akg	-0.14

Reaktion	Metabolit	mittlere Elastizität
SUCD	suc	-0.18
GND	atp	0.79
	ru5p	-0.51
	fbp	0.07
	nadph	-0.23
PRPPS	adp	-0.99
DDPA	pep	0.21
	$2 \mathrm{pg}$	-0.13
	13dpg	0.22
	dahp	0.00
	L-trp	0.00
DHQS	nad	-1.20
	dahp	0.00
SHIKK	s3p	0.03
PSCVT	pep	-0.22
	3psme	0.01
CHORS	3psme	-0.05
	pphn	-0.60
CHORM	chor	-0.64
PPNDH	chor	-0.61
PHETA	akg	-0.12
ANS	anth	-0.09
ANPRT	prpp	-0.03
	anth	-0.07
IGPS	anth	-0.07
	L-trp	-0.03
TRPS2	L-ser	-0.04
NADH5	nadh	1.00
ATPS4rpp	atp	1.00

Tabelle A.24 – Fortsetzung

Reaktion	Metabolit	mittlere Elastizität
GLY3PD	gap	0.00
	pep	0.38
	dhap	0.31
	$3\mathrm{pg}$	-0.07
	$2\mathrm{pg}$	0.19
FBP	pep	0.31
	g6p	0.23
	cit	-0.02
	amp	-0.92
FBA	gly3p	0.51
	pep	1.04
	dhap	0.36
	cit	-0.03
MGSA	pep	-1.45
	dhap	0.50
	$3\mathrm{pg}$	-0.50
GLYOX	mgo	0.00
	pyr	-0.26
LDH	pyr	-0.25
	lac	0.00
PSERT	pser_L	0.25
PSP_L	L-ser	0.03
РҮК	atp	-0.27
	pep	0.37
	pyr	0.09
	fbp	0.39
	sucCoA	-0.58
PDH	acCoA	-0.98
	pyr	1.73
	nadh	-2.23

 Tabelle A.25: Mittelwerte der Elastizitäten für Reaktionen fern des thermodynamischen Gleichgewichts der MCA mit *E. coli* NT1446. Die Berechnung erfolgte nach dem lin-log-Verfahren in einer Monte-Carlo-Simulation mit 10.000 Berechnungszyklen.

Reaktion	Metabolit	mittlere Elastizität
CS	acCoA	0.71
	oaa	0.05
	akg	0.00
	nadh	-0.60
ICDH	pep	-0.39
	oaa	-0.01
	icit	0.01
	$_{ m fbp}$	0.19
	cit	0.00
	phe	0.00
AKGDH	oaa	-0.60
	akg	-0.02
SUCD	suc	0.11
G6PDH	nadph	-0.60
GND	atp	0.67
	ru5p	-0.60
	nadph	-0.60
PRPPS	adp	-0.41
DDPA	pep	-0.10
	$2 \mathrm{pg}$	0.18
	$13 \mathrm{dpg}$	0.14
	dahp	0.00
	L-trp	0.00
DHQS	nad	-0.80
	dahp	0.01
DHQTi	suc	-0.05
	3dhq	0.03
SHIKK	s3p	0.16
PSCVT	pep	0.23
	3psme	0.01
CHORS	3psme	0.04
CHORM	preph	-0.60
PPNDH	preph	-0.17
ANS	anth	0.47
	/	

Tabelle A.25 – Fortsetzung

Iabelle A.25 – Fortsetzung		
Reaktion	Metabolit	mittlere Elastizität
ANPRT	prpp	0.00
	anth	0.52
IGPS	anth	0.52
	L-trp	0.00
TRPS2	L-ser	0.03
NADH5	nadh	1.00
ATPS4rpp	atp	1.00

Tabelle A.25 – Fortsetzung

Abbildung A.1: Absolutmengen (Einheit: g) des L-Tryptophans und der Biotrockenmasse im zeitlichen Prozessverlauf der Kultivierungen im 15 L-Zulaufprozess (37 °C, pH 7.0, DO > 30 % Luftsättigung) zur L-Tryptophanherstellung mit den *E. coli*-Stämmen NT1259, NT1438, NT1405, NT1439, NT1445, NT1446 und NT1448. Die vertikalen durchgezogenen Linien markieren (i) das Ende der Satzphase und (ii) Beginn der konstanten Zulaufphase/ Zugabe von IPTG. Die rote, unterbrochene Linie markiert den Zeitpunkt der Zellentnahme.

Tabellenverzeichnis

4.1	Verwendete Escherichia coli-Stämme und Plasmide	49
4.2	Zusammensetzung des Minimalmediums	51
4.3	Zusammensetzung der Zulaufmedien für die Kultivierung im 15 L-Maßstab $~$	51
4.4	Zulaufmedien und -raten in den vier Analysenreaktoren während der parallelisier-	
	ten Kurzzeitanalyse im Zulaufbetrieb mit <i>E. coli</i> NT1259 $shiA_{Cg}$	57
4.5	Zulaufmedien und -raten in den vier Analysenreaktoren während der parallelisier-	
	ten Kurzzeitanalyse im Zulaufbetrieb mit <i>E. coli</i> NT1446	57
5.1	Vorgegebene Grenzen, basierend auf experimentell ermittelten zellspezifischen Ra-	
	ten während der Kultivierung von <i>E. coli</i> NT1446 im 15 L-Zulaufverfahren, zur	
	Beschränkung des Lösungsraumes bei der Abschätzung von Stoffflussverteilungen	66
5.2	Bei der Evaluation verwendete Methoden zur Schätzung von Stoffflussverteilungen	67
5.3	Experimentell ermittelte zellspezifische Raten im Referenzprozess während der	
	metabolischen Analyse im Zulaufbetrieb mit <i>E. coli</i> NT1259 $shiA_{Cg}$	80
5.4	Experimentell ermittelte zellspezifische Raten während der metabolischen Ana-	
	lyse im Zulaufbetrieb von $E.\ coli$ NT1259 $shiA_{Cg}$ im Analysenreaktor mit der	
	Kohlenstoffquelle Glycerin	86
5.5	Experimentell ermittelte zellspezifische Raten während der metabolischen Ana-	
	lyse im Zulaufbetrieb von $E.\ coli$ NT1259 $shiA_{Cg}$ im Analysenreaktor mit den	
	Kohlenstoffquellen Glycerin und Shikimat	87
5.6	Experimentell ermittelte zellspezifische Raten während der metabolischen Ana-	
	lyse im Zulaufbetrieb von $E.~coli$ NT1259 $shiA_{Cg}$ im Analysenreaktor mit der	
	Kohlenstoffquelle Glucose	87
5.7	Experimentell ermittelte zellspezifische Raten während der metabolischen Ana-	
	lyse im Zulaufbetrieb von <i>E. coli</i> NT1259 $shiA_{Cg}$ im Analysenreaktor mit den	
	Kohlenstoffquellen Glucose und Shikimat	88
5.8	Für die metabolische Kontrollanalyse der L-Tryptophanproduktion mit <i>E. coli</i>	
	NT1259 $shiA_{Cg}$ vorgegebenen freien Gibbs'schen Reaktionsenergien $\Delta_r G$ für Re-	
	aktionen nahe dem thermodynamischen Gleichgewicht	114
5.9	Experimentell ermittelte zellspezifische Raten im Referenzprozess während der	
	metabolischen Analyse im Zulaufbetrieb von <i>E. coli</i> NT1446	134
5.10	Experimentell ermittelte zellspezifische Raten während der metabolischen Analy-	
	se im Zulaufbetrieb von <i>E. coli</i> NT1446 im Analysenreaktor mit der Kohlenstoff-	
	quelle Glycerin	139
5.11	Experimentell ermittelte zellspezifische Raten während der metabolischen Analy-	
	se im Zulautbetrieb von <i>E. coli</i> NT1446 im Analysenreaktor mit der Kohlenstoff-	1.10
	quelle Glucose	140

5.12	Experimentell ermittelte zellspezifische Raten während der metabolischen Analy- se im Zulaufbetrieb von <i>E. coli</i> NT1446 im Analysenreaktor mit der Kohlenstoff-	
	quelle Pyruvat	141
5.13	Experimentell ermittelte zellspezifische Raten während der metabolischen Analy-	
	se im Zulaufbetrieb von <i>E. coli</i> NT1446 im Analysenreaktor mit der Kohlenstoff-	
	quelle Succinat	141
5.14	Für die metabolische Kontrollanalyse der L-Tryptophanproduktion mit $E. \ coli$	
	NT1446 vorgegebenen freien Gibbs'schen Reaktionsenergien $\Delta_r G'$ für Reaktionen	
	nahe dem thermodynamischen Gleichgewicht $\hfill \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	162
A.1	Übersicht der verwendeten Chemikalien	228
A.2	Zusammenstellung der verwendeten Einzelgeräte	230
A.3	Bestandteile des 42 L-Rührkessels (Techfors Infors HT).	232
A.4	Bestandteile des Vierfach-Parallelbioreaktorsystem DASGIP	232
A.5	Bestandteile des 48fach-Parallelbioreaktorsystems	233
A.6	Bestandteile der HPLC-Anlage (Agilent Technologies) zur Quantifizierung von	
	Zuckern, organischen Säuren und Alkoholen	233
A.7	Bestandteile der HPLC-Anlage (Shimadzu) zur Quantifizierung von Zuckern, or-	
	ganischen Säuren und Alkoholen	233
A.8	Bestandteile der HPLC-Anlage (Knauer Wissenschaftliche Geräte) zur Quantifi-	
	zierung von Aminosäuren	234
A.9	Laufmittel-Gradient der HPLC-Methode zur Quantifizierung von Aminosäuren .	234
A.10	Bestandteile der UHPLC-MS (Triple Quadrupol) Anlage (Thermo Fisher Scien-	
	tific) zur Quantifizierung intrazellulärer Metabolite	234
A.11	Laufmittelfluss und -gradient der UHPLC-Methode zur Quantifizierung intrazel-	
	lulärer Metabolite	235
A.12	Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen während der meta-	
	bolischen Analyse von E. coli NT1259 $shiA_{Cg}$ mit der Kohlenstoffquelle Glycerin	
	in drei Zulaufstufen	236
A.13	Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen während der meta-	
	bolischen Analyse von $E.\ coli$ NT1259 $shiA_{Cg}$ mit der Kohlenstoffquelle Glucose	
	in drei Zulaufstufen	238
A.14	Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen während der meta-	
	bolischen Analyse von E. coli NT1259 $shiA_{Cg}$ mit den Kohlenstoffquellen Glycerin	
	und Shikimat in drei Zulaufstufen	241
A.15	Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen während der meta-	
	bolischen Analyse von E. coli NT1259 $shiA_{Cg}$ mit den Kohlenstoffquellen Glucose	
	und Shikimat in drei Zulaufstufen	244
A.16	Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen während der meta-	
	bolischen Analyse von <i>E. coli</i> NT1259 $shiA_{Cg}$ im Referenzprozess	246

A.17	Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen während der meta-	
	bolischen Analyse von <i>E. coli</i> NT1446 mit der Kohlenstoffquelle Glycerin in drei	
	Zulaufstufen	249
A.18	³ Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen während der meta-	
	bolischen Analyse von <i>E. coli</i> NT1446 mit der Kohlenstoffquelle Glucose in drei	
	Zulaufstufen	252
A.19	Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen während der meta-	
	bolischen Analyse von <i>E. coli</i> NT1446 mit der Kohlenstoffquelle Pyruvat in drei	
	Zulaufstufen	254
A.20	Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen während der meta-	
	bolischen Analyse von $E.$ coli NT1446 mit der Kohlenstoffquelle Succinat in drei	
	Zulaufstufen	257
A.21	Theoretisch abgeschätzte intrazelluläre Stoffflussverteilungen während der meta-	
	bolischen Analyse von <i>E. coli</i> NT1446 im Referenzprozess	260
A.22	2 Reaktionen des Modells für die MCA mit <i>E. coli</i> NT1259 $shiA_{Cg}$, ihre Stöchio-	
	metrie und Klassifizierung bezüglich des thermodynamischen Gleichgewichts	263
A.23	Reaktionen des Modells für die MCA mit $E.$ coli NT1446, ihre Stöchiometrie und	
	Klassifizierung bezüglich des thermodynamischen Gleichgewichts \hdots	264
A.24	Mittelwerte der Elastizitäten für Reaktionen fern des thermodynamischen Gleich-	
	gewichts der MCA mit <i>E. coli</i> NT1259 $shiA_{Cg}$	267
A.25	6 Mittelwerte der Elastizitäten für Reaktionen fern des thermodynamischen Gleich-	
	gewichts der MCA mit <i>E. coli</i> NT1446	269

Abbildungsverzeichnis

3.1	Vereinfachte Darstellung des zentralen Kohlenstoffmetabolismus von <i>E. coli</i> mit den Stoffwechselbereichen Glykolyse, Gluconeogenese, Citratzyklus, Pentosephos- phatweg sowie dem Biosyntheseweg aromatischer Aminosäuren und oxidativer Phosphorylierung	10
3.2	Strukturformel der aromatischen Aminosäure L-Tryptophan.	20
3.3	Phasen des mikrobiellen Wachstums im Satzprozess.	27
3.4	Modellschema zur Illustration des CycleFreeFlux-Algorithmus nach Desouki <i>et</i>	
	al. (2015)	41
4.1	Versuchsaufbau für Zulaufkultivierungen im 15 L-Maßstab	54
4.2	Versuchsaufbau des Vierfach-Parallelbioreaktorsystems zur Durchführung von	
	Kurzzeitanalysen	56
4.3	Schematische Darstellung des Zulaufprofils der Substratlösungen während der me-	-
	tabolischen Kurzzeitanalysen im Zulaufbetrieb	58
5.1	Mittels klassischer Flussvarianzanalyse, loopfreier Flussvarianzanalyse, thermody- namischer Flussvarianzanalyse, thermodynamischer Flussvarianzanalyse mit Vor- gabe der gemessenen intrazellulären Metabolitkonzentrationen und thermodyna- mischer Flussvarianzanalyse mit vorheriger Beschränkung der Reaktionsrichtun- gen durch die loopfreie FVA und Vorgabe der gemessenen intrazellulären Meta- bolitkonzentrationen geschätzte Lösungsbereiche für ausgewählte Reaktionen	68
5.2	Anzahl an aktiven Reaktionen und Reaktionsrichungen bei der Abschätzung von Stoffflussverteilungen mit den Methoden klassischer Flussvarianzanalyse, loopfrei- er Flussvarianzanalyse, thermodynamischer Flussvarianzanalyse, thermodynami- scher Flussvarianzanalyse mit Vorgabe der gemessenen intrazellulären Metabolit- konzentrationen und thermodynamischer Flussvarianzanalyse mit vorheriger Be- schränkung der Reaktionsrichtungen durch die loopfreie FVA und Vorgabe der	
	gemessenen intrazellulären Metabolitkonzentrationen	69
5.3	Lösungen der FBA-Methodik und der FVA ll & TFA & Met-Methode sowie die	
	Lösungsspannen der klassischen FVA und der FVA II & TVA & Met-Methode für	
F 4	die Reaktionen des Kohlenstoff-, Energie- und Aminosauren-Metabolismus	72
5.4	Gemessene und mit der FVA II & IVA & Met-Methode geschatzte Sauerstoffaur-	
	der gemessenen Atmungsraten und ohne die Vorgabe der gemessenen Atmungs-	
	raten im Vergleich	73
5.5	Glycerin- und Shikimatkonzentrationen bei Satzkultivierungen von <i>E. coli</i> NT1259	.0
	und <i>E. coli</i> NT1259 $shiA_{Ca}$ in Schüttelkolben	76
5.6	15 L-Zulaufverfahren zur L-Tryptophanproduktion im Rührkesselreaktor mit	
	<i>E. coli</i> NT1259 $shiA_{Cg}$ mit Glycerin als Kohlenstoffquelle $\ldots \ldots \ldots \ldots \ldots$	77

Integrale Kohlenstoffbilanz des L-Tryptophan produktionsprozesses mit $E.\ coli$	
NT1259 $shiA_{Cg}$ im 15 L-Zulaufbetrieb	79
$Biomassespezifische\ Sauerstoffaufnahmeraten\ und\ Kohlenstoffdioxidbildungsrameraten$	
ten im Referenz prozess mit $E.\ coli{\rm NT1259}\ shiA_{Cg}$ im Zeitraum der metabolischen	
Analyse	80
$Biomassespezifische\ Sauerstoffaufnahmeraten\ und\ Kohlenstoffdioxidbildungsrameraten$	
ten während der metabolischen Analyse der L-Tryptophanproduktion im Zulauf-	
verfahren von <i>E. coli</i> NT1259 $shiA_{Cg}$ in vier Analysenreaktoren	83
Gemessene biomassespezifische extrazelluläre Aufnahme- und Bildungsraten wäh-	
rend der parallelisierten Kurzzeitanalyse im Zulaufverfahren von $E.~coli$ NT1259	
$shiA_{Cg}$	85
Intrazelluläre Konzentrationen der Glykolyse-Metabolite während der metaboli-	
schen Kurzzeitanalyse in drei Zulaufphasen von $E.\ coli$ NT1259 $shiA_{Cg}$ mit den	
Kohlenstoffquellen Glycerin, Glucose, Glycerin und Shikimat, Glucose und Shiki-	
mat sowie der Probe aus dem Referenz prozess im Analysezeitraum $\ .\ .\ .\ .$	91
Intrazelluläre Konzentrationen der Metabolite aus dem aeroben Glycerinabbau-	
weg während der metabolischen Kurzzeitanalyse in drei Zulaufphasen von $E.~coli$	
NT1259 $shiA_{Cg}$ mit den Kohlenstoffquellen Glycerin, Glucose, Glycerin und Shi-	
kimat, Glucose und Shikimat sowie in der Probe aus dem Referenzprozess im	
Analysezeitraum	92
Intrazelluläre Konzentrationen der Metabolite aus dem Citratzyklus während der	
metabolischen Kurzzeitanalyse in drei Zulaufphasen von E. coli $\mathrm{NT1259}\ shiA_{Cg}$	
mit den Kohlenstoffquellen Glycerin, Glucose, Glycerin und Shikimat, Glucose	
und Shikimat sowie in der Probe aus dem Referenzprozess im Analysezeitraum .	93
Intrazelluläre Konzentrationen der Metabolite aus dem Pentosephosphatweg wäh-	
rend der metabolischen Kurzzeitanalyse in drei Zulaufphasen von $E.~coli$ NT1259	
$shiA_{Cg}$ mit den Kohlenstoffquellen Glycerin, Glucose, Glycerin und Shikimat,	
Glucose und Shikimat sowie in der Probe aus dem Referenzprozess im Analyse-	
zeitraum	94
Intrazelluläre Konzentration von Phospho-L-Serin aus L-Serinbiosynthese wäh-	
rend der metabolischen Kurzzeitanalyse in drei Zulaufphasen von $E. \ coli$ NT1259	
$shiA_{Cg}$ mit den Kohlenstoffquellen Glycerin, Glucose, Glycerin und Shikimat,	
Glucose und Shikimat sowie in der Probe aus dem Referenzprozess im Analyse-	
zeitraum	95
Intrazelluläre Konzentrationen der Metabolite aus dem Biosyntheseweg aroma-	
tischer Aminosäuren während der metabolischen Kurzzeitanalyse in drei Zulauf-	
phasen von <i>E. coli</i> NT1259 $shiA_{Cg}$ mit den Kohlenstoffquellen Glycerin, Glucose,	
Glycerin und Shikimat, Glucose und Shikimat sowie in der Probe aus dem Refe-	
renzprozess im Analysezeitraum	97
	Integrale Kohlenstoffbilanz des L-Tryptophanproduktionsprozesses mit $E. coli$ NT1259 $shiA_{C_g}$ in 15 L-Zulaufbetrieb

5.17	Intrazelluläre Konzentrationen der Energieäquivalente während der metaboli-	
	schen Kurzzeitanalyse in drei Zulaufphasen von E. coli NT1259 $shiA_{Cg}$ mit den	
	Kohlenstoffquellen Glycerin, Glucose, Glycerin und Shikimat, Glucose und Shiki-	
	mat sowie in der Probe aus dem Referenzprozess im Analysezeitraum	99

- 5.19 Heatmaps der Mittelwerte der mittels thermodynamischer Flussvarianzanalyse mit vorgeschaltetem CycleFreeFlux-Algorithmus und Vorgabe intrazellulärer Metabolitkonzentrationen (FVA ll & TVA & Met) abgeschätzten intrazellulären Stoffflussverteilungen während der Kurzzeitanalyse von E. coli NT1259 $shiA_{Cq}$. 105
- 5.21 Statistische Verteilung der mittels thermodynamischer Flussvarianzanalyse mit vorgeschaltetem CycleFreeFlux-Algorithmus und Vorgabe intrazellulärer Metabolitkonzentrationen (FVA ll & TVA & Met) abgeschätzten Konzentrationsbereiche während der L-Tryptophanproduktion im Referenzprozess mit *E. coli* NT1259 *shiA*_{Cg} ausgewählter Metabolite über 10.000 Abtastpunkte 109

5.22 Flusskontrollkoeffizienten ermittelt durch die metabolische Kontrollanalyse der L-Tryptophanproduktion mit *E. coli* NT1259 $shiA_{Cg}$ im Zulaufverfahren 115

5.23 Relative Genexpression ausgewählter Gene in Proben des Referenzprozesses zur L-Tryptophanproduktion mit *E. coli* NT1259 shiA_{Cg} und der Analysenreaktoren 121
5.24 Schematische Übersicht des Stoffwechsels mit farblich hervorgehobenen Enzymen ´β für die mittels MCA von *E. coli* NT1259 shiA_{Cg} eine kontrollierende Wir-

^{5.29} Biomassespezifische Sauerstoffaufnahmeraten und Kohlenstoffdioxidbildungsraten im Referenzprozess mit *E. coli* NT1446 im Zeitraum der metabolischen Analyse133

5.30	Biomassespezifische Sauerstoffaufnahmeraten und Kohlenstoffdioxidbildungsra-	
	ten während der metabolischen Analyse der L-Tryptophanproduktion im Zulauf-	
	verfahren von <i>E. coli</i> NT1446 in Analysenreaktoren mit den Kohlenstoffquellen	
	Glycerin, Glucose, Pyruvat und Succinat	137
5.31	Gemessene biomassespezifische extrazelluläre Aufnahme- und Bildungsraten wäh-	
	rend der parallelisierten Kurzzeitanalyse im Zulaufverfahren von E. coli NT1446	
	in vier Analysenreaktoren mit den Kohlenstoffquellen Glycerin, Glucose, Pyruvat	
	und Succinat	138
5.32	Intrazelluläre Konzentrationen der Glykolyse-Metabolite während der metaboli-	
	schen Kurzzeitanalyse in drei Zulaufphasen von E. coli NT1446 mit den Kohlen-	
	stoffquellen Glycerin, Glucose, Pyruvat und Succinat sowie in der Probe aus dem	
	Referenzprozess im Analysezeitraum	143
5.33	Intrazelluläre Konzentrationen Metabolite aus dem aeroben Glycerinabbauweg	
	während der metabolischen Kurzzeitanalyse in drei Zulaufphasen von <i>E. coli</i>	
	NT1446 mit den Kohlenstoffquellen Glycerin, Glucose, Pvruvat und Succinat so-	
	wie in der Probe aus dem Referenzprozess im Analysezeitraum	145
5.34	Intrazelluläre Konzentrationen der Metabolite aus dem Citratzyklus während der	
	metabolischen Kurzzeitanalyse in drei Zulaufphasen von E. coli NT1446 mit den	
	Kohlenstoffquellen Glycerin, Glucose, Pyruvat und Succinat sowie in der Probe	
	aus dem Referenzprozess im Analysezeitraum	146
5.35	Intrazelluläre Konzentrationen der Metabolite aus dem Pentosephosphatweg wäh-	
	rend der metabolischen Kurzzeitanalyse in drei Zulaufphasen von <i>E. coli</i> NT1446	
	mit den Kohlenstoffquellen Glycerin, Glucose, Pyruvat und Succinat sowie in der	
	Probe aus dem Referenzprozess im Analysezeitraum	147
5.36	Intrazelluläre Konzentration von Phospho-L-Serin aus L-Serinbiosynthese wäh-	
	rend der metabolischen Kurzzeitanalyse in drei Zulaufphasen von E. coli NT1446	
	mit den Kohlenstoffquellen Glycerin, Glucose, Pyruvat und Succinat sowie in der	
	Probe aus dem Referenzprozess im Analysezeitraum	148
5.37	Intrazelluläre Konzentrationen der Metabolite aus dem Biosyntheseweg aroma-	
	tischer Aminosäuren während der metabolischen Kurzzeitanalyse in drei Zulauf-	
	phasen mit E. coli NT1446 mit den Kohlenstoffquellen Glycerin, Glucose, Pyruvat	
	und Succinat sowie der Probe aus dem Referenzprozess im Analysezeitraum	149
5.38	Intrazelluläre Konzentrationen der Energieäquivalente während der metaboli-	
	schen Kurzzeitanalyse in drei Zulaufphasen von <i>E. coli</i> NT1446 mit den Koh-	
	lenstoffquellen Glycerin, Glucose, Pyruvat und Succinat sowie in der Probe aus	
	dem Referenzprozess im Analysezeitraum	150
5.39	Intrazelluläre Konzentrationen der Cofaktoren während der metabolischen Kurz-	
	zeitanalyse in drei Zulaufphasen von E. coli NT1446 mit den Kohlenstoffquellen	
	Glycerin, Glucose, Pyruvat und Succinat sowie in der Probe aus dem Referenz-	
	prozess im Analysezeitraum	151

5.40	Heatmaps der Mittelwerte der mittels thermodynamischer Flussvarianzanalyse	
	mit vorgeschaltetem CycleFreeFlux-Algorithmus und Vorgabe intrazellulärer	
	Metabolitkonzentrationen (FVA ll & TVA & Met) abgeschätzten intrazellulären	
	Flussverteilungen während der Kurzzeitanalyse von <i>E. coli</i> NT1446	155
5.41	Mittels thermodynamischer Flussvarianzanalyse mit vorgeschaltetem CycleFreeFlu	.x-
	Algorithmus und Vorgabe intrazellulärer Metabolitkonzentrationen (FVA ll &	
	TVA & Met) abgeschätzte Bereiche der möglichen Gibbs'schen Reaktionsener-	
	gien für die L-Tryptophanproduktion im Referenzprozess mit <i>E. coli</i> NT1446 im	
	Zeitraum der metabolischen Kurzzeitanalyse	158
5.42	Verteilung der mittels thermodynamischer Flussvarianzanalyse mit vorgeschalte-	
	tem CycleFreeFlux-Algorithmus und Vorgabe intrazellulärer Metabolitkonzen-	
	trationen (FVA ll & TVA & Met) abgeschätzten Konzentrationsbereiche während	
	der L-Tryptophanproduktion im Referenzprozess mit E. coli NT1446 ausgewähl-	
	ter Metabolite über 10.000 Abtastpunkte	159
5.43	Flusskontrollkoeffizienten ermittelt durch die metabolische Kontrollanalyse der	
	L-Tryptophanproduktion mit <i>E. coli</i> NT1446 im Zulaufverfahren	163
5.44	Relative Genexpression ausgewählter Gene in Proben des Referenzprozesses zur	
	L-Tryptophanproduktion mit <i>E. coli</i> NT1446 und der Analysenreaktoren	166
5.45	Relative Genexpression der Gene mgsA, gloA, gloB, gloC, yeiG, dld, yajL und dld	
	in Proben des Referenzprozesses zur L-Tryptophanproduktion mit E. coli NT1446	
	$pF112aroFBL_{Kan}$ und der Analysenreaktoren	169
5.46	Intrazelluläre Konzentrationen entscheidender Metabolite während der metabo-	
	lischen Kurzzeitanalysen in drei Zulaufphasen von $E. \ coli \ \mathrm{NT1259} \ shiA_{Cg}$ und	
	E. coli NT1446 mit den Kohlenstoffquellen Glycerin und Glucose und in den Re-	
	ferenzprozessen	172
5.47	Ausgewählte mittels MCA abgeschätzte Flusskontrollkoeffizienten des Chorismat-	
	und L-Tryptophanbiosynthesewegs der E. coli-Stämme NT1259 $shiA_{Cg}$ (NT1259	
	shiA) und NT1446 (NT1446), dargestellt für entscheidende Enzyme	175
5.48	Relative Genexpression entscheidender Gene in Proben der Referenzprozesse zur	
	L-Tryptophanproduktion mit den $E.$ coli-Stämmen NT1259 $shiA_{Cg}$ und $E.$ coli	
	NT1446 im Zulaufverfahren, sowie den Analysenreaktoren mit den Kohlenstoff-	
	quellen Glycerin und Glucose	177
5.49	Schematische Übersicht des Stoffwechsels mit farblich hervorgehobenen Enzymen	
	für die mittels MCA von <i>E. coli</i> NT1446 eine kontrollierende Wirkung auf die	
	L-Tryptophanbiosynthese identifiziert wurde	179
61	Zusammanfassung dar mataholischen Kontrollanalyson von F_{coli} NT1950 shi A_{coli}	
0.1	und <i>E. coli</i> NT1446. A: Ermittelte Flusskontrollkoeffizienten für die Stofffüsse	

der Chorismat- und L-Tryptophanbiosynthese für eine Auswahl relevanter Enzyme187
A.1	Absolutmengen des L-Tryptophans und der Biotrockenmasse im zeitlichen Pro-	
	zessverlauf der Kultivierungen im 15 L-Zulaufprozess zur L-Tryptophanherstellung	
	mit den <i>E. coli</i> -Stämmen NT1259, NT1438, NT1405, NT1439, NT1445, NT1446	
	und NT1448	272