
����������
�������

Citation: Wislicenus, J.; Daidzic, N.E.

Estimation of Transport-Category Jet

Airplane Maximum Range and

Airspeed in the Presence of Transonic

Wave Drag. Aerospace 2022, 9, 192.

https://doi.org/10.3390/

aerospace9040192

Academic Editor: Kojiro Suzuki

Received: 19 October 2021

Accepted: 23 March 2022

Published: 2 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Estimation of Transport-Category Jet Airplane Maximum Range
and Airspeed in the Presence of Transonic Wave Drag
Jan Wislicenus 1 and Nihad E. Daidzic 2,3,*

1 Department of Aerospace and Geodesy, Technical University of Munich, 80333 Munich, Germany;
jan.wislicenus@tum.de

2 Department of Aviation, Minnesota State University, Mankato, MN 56001, USA
3 AAR Aerospace Consulting, LLC, Saint Peter, MN 56082, USA
* Correspondence: nihad.daidzic@mnsu.edu

Abstract: One of the most difficult steps in estimating the cruise performance characteristics of
high-subsonic transport-category turbofan-powered airplanes is the estimation of the transonic wave
drag. Modern jet airplanes cruise most efficiently in the vicinity of the drag-divergence or drag-rise
Mach numbers. In the initial design phase and later when the preliminary wind-tunnel and/or
CFD computations and drag polars are known with increased accuracy, a method of estimating
cruise performance is needed. In this study, a new semi-empirical transonic wave drag model using
modified Lock’s equation was developed. For maximum range cruise estimations, an optimization
criterion based on maximizing specific air range was used. The resulting nonlinear equations are of
12th- and 13th-order. Numerical Newton–Raphson nonlinear solvers were used to find real positive
roots of such polynomials. The NR method was first tested for accuracy and convergence using
known analytical solutions. A methodology for an initial guess was developed starting with the
maximum-range cruise Mach without the wave-drag included. This guess resulted in fast quadratic
convergence in all computations. Other novel features of this article include a new semi-empirical
fuel-flow law, which was also extensively tested. Additionally, a semi-empirical turbofan thrust
model usable for a wide range of bypass ratios and the entire flight envelope was developed. Such
physics-based semi-empirical model can be used for a wide range of turbofans. The algorithm can
be utilized to identify most beneficial input parameter values and combinations for the cruise flight
phase. The model represents a powerful tool to estimate important cruise performance airspeeds
located in the transonic regime. An intended application is in the conceptual development stages for
early design optimizations of future airplanes. It is possible with additional effort to extend existing
model capabilities to deal with supersonic transports optimal cruise parameters.

Keywords: transonic wave drag; maximum range cruise; performance airspeeds; nonlinear equations
solvers; convergence of the Newton–Raphson method

1. Introduction

Estimation of performance airspeeds for various phases of high-subsonic transport-
category (T-category) airplanes is an essential element in aircraft design, flight testing,
certification, and in-service line operations. If the manufacturer’s advertised cruise speci-
fications in terms of airspeeds, ranges, and endurances are not met, it could render new
aircraft designs obsolete and unattractive and result in costly redesigns and delays. This
applies today to high-subsonic designs, but it is equally and perhaps even more critical
for the future supersonic, hypersonic, and spaceplane designs. Performing transonic CFD
and utilizing high-speed wind tunnels for proof of concept and actual designs is expensive
and time consuming. In the end, what sells aerospace transports is not utilization of com-
plex CFD or transonic wind tunnels but ultimately meeting the advertised performance
characteristics in operational service.
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For modern high-subsonic cruisers, the estimation of the transonic wave drag, and
computation of cruise performance characteristic is essential. Having a performance tool
that integrates airplane components and airframe and powerplants characteristics and
delivers essential performance figures is essential. Obtaining drag polars from the initial
wind-tunnel testing and/or CFD efforts also allows for analytical/numerical treatment
of performance airspeeds. No matter how effective CFD computations are at delivering
pressure, temperature, and velocity distributions, the spatial results need to be integrated
and presented in terms of aerodynamic coefficients for the entire aircraft so that perfor-
mance analysis can be completed. In the first design estimates, drag polars and other
aerodynamic and powerplant characteristics are not fully known, and this is an iterative
process that hopefully converges toward desired evolutionary designs. Flight testing of
prototypes will deliver final aerodynamic and propulsion characteristics that can be then
fed to performance calculators to deliver in-service figures and can be also used for crew
training and development of the best operational practices.

Unrealistic cruise ranges and airspeeds are obtained if the transonic wave drag is
not properly accounted for in the high-speed cruise performance computations for high-
subsonic T-category jet airplanes. While accounting for only few percentages of the total
drag, the transonic wave-drag is concentrated in that high-speed range and has an essential
effect on high-speed parameters. The transonic wave-drag differs from the supersonic
wave-drag, mostly due to shock formation over the upper and lower wing surfaces and
their interference with the boundary layer (BL). Often due to adverse pressure gradients
across the shock, thickening and possible separation of the BL occurs, resulting in additional
transonic pressure-drag. Supersonic wave drag is mostly the result of the kinetic energy
loss through the bow and rear shocks. Total drag rise in transonic flow becomes especially
troublesome as Mach-rise or Mach drag-divergence (MDD) is exceeded. While wing sweep
will increase freestream critical Mach number (MCR) and delay the onset of shocks, it is the
supercritical wing design that will expand the range between the MCR and MDD. In terms
of range and economy of flight, it is normally not efficient to fly faster than MDD as the
drag increase may become very steep, thus reducing the maximum range.

Most of the modern high-subsonic swept-wing T-category jet airplanes certified un-
der FAA FAR 25 (USA), EASA CS 25 (EU), etc., worldwide operate at Mach numbers
exceeding critical Mach numbers by small amounts, thus ensuring locally transonic flows.
The transonic region is defined for the range of freestream supercritical Mach numbers,
typically between 0.75 and 1.2, but that classification is somewhat arbitrary and airplane-
design dependent. Transonic flow regime consists of pockets of subsonic and supersonic
flows. Lower regions of boundary layers are subsonic, while the outer parts may become
supersonic.

Before we proceed, we must underscore that the approach adopted here is an integral
modelling of the transonic wave-drag in terms of a complex nonlinear algebraic model
and not in any kind of CFD computations or experimental results. The algebraic model of
total airplane drag includes somewhat novel transonic wave-drag module based on the
modified Lock’s integral momentum equation for speeds slightly above the critical Mach
numbers and only on the subsonic side. In doing so, we also incorporated algebraic models
for turbofan engines and fuel flow laws, which enabled treatment of optimal performance
cruise airspeeds based on one optimization criteria (maximizing still-air ranges). Hence, this
article does not go into any specific detail of complex transonic flow phenomena simulating
shocks and detailed flow parameters (such as air speed and pressure distributions) over
modern supercritical wings, other than giving a brief description of the problem and
basic equations, but instead focuses on high-subsonic cruise performance optimization,
which is of ultimate operational significance. Naturally, the model developed here is
based on several assumptions regarding various drag components that must be checked
computationally, experimentally, and ultimately during certification flight tests. Results in
terms of airspeeds and ranges were compared to real high-subsonic airplane performance,
and very reasonable estimates were obtained.
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Detailed treatment of transonic flow over aircraft structures accounting for various
interactions is one of the most challenging problems in the aerodynamics of compressible
flows. Specialized high-speed wind tunnels and transonic CFD computations are the
primary tools in treating transonic flows. Shock-wave/boundary-layer interactions (SWBLI)
with their intricacies are also fundamental in transonic flow computations. Computationally,
transonic flow problems can be treated, in the order of complexity and difficulty, as:

• Small-perturbation potential-flow transonic flow equation.
• Full nonlinear potential equation for inviscid, isentropic, and irrotational flow assum-

ing weak (third-order entropy increase) shocks.
• Euler equations for adiabatic inviscid but rotational flows.
• RANS-LES-DES simulations using Reynolds-averaged Navier–Stokes equations with

various turbulence modelling methods and models.
• DNS simulations using spatially and temporally discretized Navier–Stokes equations.

Significant progress has been achieved in computational compressible aerodynamics
and CFD utilization in aircraft design over the past 50 years. Enlightening historical
reviews of existing state of the art computational aerodynamics and aircraft CFD design
progress and developments are given by [1–4]. Important references dealing specifically
with transonic flow and wave drag computations are given in [5–8]. A discussion of
computational capabilities utilizing RANS/LES transonic flow predictions was published
in a recent review of RANS/LES turbulent flow modelling by [9].

SWBLIs play fundamental role in transonic wave drag physics due to thickening of
the boundary layers (increasing profile drag) and possibly causing separation of the BL,
which may result in shock-stall or high-speed buffet. Much has been published on SWBLI,
and more or less detailed considerations can be found, for example, in [10–12]. A good
introduction to SWBLI with laminar and turbulent BLs is also given in [13]. The detailed
physics of shock waves was examined in the classical works by [14] and in particular in [15].
Inviscid hypersonic flow was examined in depth in [16]. Detailed consideration of both
inviscid and viscous hypersonic flight is given, for example, in [17].

An early treasure in analysis of subsonic, transonic, and supersonic airplane flight
paths from spherical rotating to simple flat non-rotating Earth is a book by Miele [18].
Parabolic and arbitrary drag polars were used in addition to some simple fuel laws and
engine characteristics. Many different cases were considered, including early consider-
ations of optimal level cruise. Superb treatment of subsonic, transonic, and supersonic
aerodynamics with many important details is given in Küechemann [19]. The author’s
treatment of swept wings in transonic (and supersonic) flight is especially important for
us. Shevell [20] introduces the compressibility effects and drag on airfoils and wings. The
author also provides a semi-empirical relationship for the estimation of drag-divergence
Mach number based on the critical Mach number for swept wings. Menon [21] has studied
aircraft cruise from the aspect of trajectory optimization and compared his theory with the
point-mass and energy models. The author has shown that oscillatory cruise trajectories
exist if the Hessian of a characteristic function is positive definite. Miller [22] also studied
optimal cruise performance and the determination of optimal cruise speeds. Miller has
concluded that the optimal cruise Mach number occurs in the drag-rise (transonic) region,
i.e., between MCR and MDD. Wave drag becomes noticeable once MCR is exceeded but truly
significant once MDD is surpassed. Mason [5] uses potential flow model for aerodynamic de-
sign at transonic speeds. The author points out principal shortcomings of the potential flow
models in terms that can be easily understood by aerodynamicists. Malone and Mason [23]
present an approach to multidisciplinary aircraft design optimization that combines global
sensitivity equation method, parametric optimization, and analytic technology models.
An expression for wave-drag and MDD is given for swept-wing aircraft—an extension
of the classical Korn equation. Torenbeek [24] provides very exhaustive consideration, a
unified analytical treatment, and optimization techniques for the cruise performance of
subsonic transport aircraft. A simple alternative to the celebrated Bréguet range equation
is presented that applies to several practical cruise techniques. A practical non-iterative
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procedure for computing mission fuel and reserve fuel loads in the preliminary design
stage is proposed. Mason [25] provides extended summary of transonic aerodynamics
of airfoils and (finite) wings. The historical development and facts were included that
show the tortuous path that must be traveled to understand and solve transonic flow
problems. All operating considerations are based on the cost index (CI), which is the
most suitable method in defining the new economical long-range cruise (ELRC). Fujino
and Kawamura [6] present an experimental and theoretical study of wave-drag reduction
and increase in MDD in the case of over-the-wing nacelle configuration. Such nacelle
configuration reduces transonic cruise drag without altering the original geometry of the
natural-laminar-flow wing. Jakirlić et al. [26] implemented CFD for performance estimation
of supercritical transonic RAE2822 airfoil profiles. A near-wall RANS viscous turbulence
model was used. Very recently, Friedewald [27] used URANS simulations for sinusoidal
gust load modelling of often-used testbed RAE2822 airfoil involving different transonic
Mach numbers and using in-house-developed DLR TAU code based on a finite-volume
RANS solver.

Cavcar and Cavcar [28] delivered approximate cruise range solutions for the constant-
altitude and constant high-subsonic cruise speed of transport category aircraft with cam-
bered wing designs. The authors also used Mach-dependent specific fuel consumption
(SFC), which differs from the one introduced in this work. The effect of Mach number
on the drag polar was evident when deriving approximate solutions. Wave drag was
considered when estimating optimum cruise factor. It was found that compressibility
effects necessitate use of higher-order polynomial drag polar. Rivas and Valenzuela [29]
analyzed maximum range cruise at constant altitude as a singular optimal control problem
for an aircraft model with a general compressible drag polar. Compressibility effects must
be considered when seeking optimum cruise solutions in terms of speed and range. The
influence of flight altitude on optimal trajectories was shown to be important as well.
Results presented were for a B767-300ER model, a popular long-range twin-jet design from
early 1980’s. Daidzic [30] discussed global range of subsonic and supersonic airplanes and
the aerodynamic and propulsion developments needed.

A method to compute various performance airspeeds of FAR/CS 25 T-category turbo-
fan airplanes was developed by Daidzic [31]. Newton–Raphson (NR) nonlinear-equation
solvers were used to find real positive zeros of high-order polynomials. However, the
parabolic-drag model lacked (transonic) wave-drag, resulting in overestimation of maxi-
mum airspeeds and unrealistic still-air ranges. Wave drag originates in the formation of
shock waves in supercritical subsonic flow. Hence, a semi-empirical wave-drag model,
which was added to parabolic subcritical compressible drag model to capture transonic
wave drag and compute high-speed range, was developed. To the best knowledge of the
authors, no such publicly available complete method has been introduced before. The eco-
nomic and environmental importance of finding optimum cruising parameters under given
atmospheric conditions in air transportation should not be overlooked. In Daidzic [30], both
subsonic and supersonic cruisers were compared in terms of passenger-miles (or passenger-
km) per mass or weight unit of fuel and other economic factors. Increasing cruise economy
also reduces environmental pollution and has wider positive socio-economic impact.

The basic methodology presented here could perhaps be extended to emerging hyper-
sonic suborbital and even orbital reentry transports. For example, Daidzic [32] discusses
the conceptual design and analysis of hypersonic RBCC SSTO spaceplane with gliding
reentry for cost-effective LEO access. The article by Fusaro at al. [33] is focused on the
analysis and methodology of lowering direct operating cost of long-haul point-to-point
hypersonic transportation systems from 90% to about 70% utilizing liquid-hydrogen (LH2).
Viola et al. [34] in a recent article provided technical insights into the aerodynamic charac-
terization of a Mach-8 waverider hypersonic civil transport. While we specifically consider
modern high-subsonic T-category airplanes in this article, the basic methodology could be
extended for use in supersonic transports.
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Transonic flow problems, even in linearized form assuming small angles-of-attack
(AOA) and thin airfoils, cannot be treated as easily as subcritical subsonic or fully developed
supersonic flows. This is because the small-perturbation potential transonic flow equation
using velocity potential for the inviscid irrotational flow remains nonlinear [35–39]:(

1−M2
∞

)
φxx + φyy + φzz = M2

∞

[
(γ + 1)

φx

v∞

]
· φxx (1)

This is a dramatically different situation from the linearized subcritical potential
flow equation, which is, de facto, linear and can be converted into the elliptic quasi-
incompressible flow Laplace equation by proper coordinate transformation. Additionally,
linearized small-perturbation subcritical potential flow results in the Prandtl–Glauert
rule [35,36,39,40], which addresses the effect of shock-free air compressibility on the pres-
sure, lift, and pitching-moment coefficients. Improved compressibility corrections were
obtained by Karman–Tsien [41,42] and Laitone [43] rules by considering local and not
freestream Mach numbers. Prandtl–Glauert compressibility correction diverges as Mach
one is approached and is not valid for transonic flow.

Inviscid irrotational CFD models can predict chordwise and spanwise pressure distri-
butions and hence coefficients-of-lift and pitching-moments-coefficients with acceptable
accuracy. Full potential models include mass-, momentum-, and energy conservation in
one single, albeit complex and nonlinear, velocity-potential PDE [35,36,39,40]:

(
1− Φ2

x
a2

)
Φxx +

(
1−

Φ2
y

a2

)
φyy +

(
1− Φ2

z
a2

)
Φzz −

2ΦxΦy

a2 Φxy −
2ΦxΦz

a2 Φxz −
2ΦyΦz

a2 Φyz = 0 (2)

where:
a2 = a2

SL −
γ− 1

2

(
Φ2

x + Φ2
y + Φ2

z

)
(3)

The velocity vector is expressed by a scalar potential function for irrotational field
everywhere:

ς = curl v = ∇× v = ∇× (∇Φ) ≡ 0 ⇒ v = u
→
i + v

→
j + w

→
k = ∇Φ =

∂Φ
∂x

→
i +

∂Φ
∂y

→
j +

∂Φ
∂z

→
k (4)

Small perturbation or linearized (thin airfoils/wings and/or small AOAs) potential
equation with the Prandtl–Glauert compressibility-correction factor β for a swept wing
with sweep-angle Λ yields [13]:

β2φxx + φyy + φzz = 0 β =
√

1−M2
∞ cos2 Λ u′ =

∂φ

∂x
v′ =

∂φ

∂y
w′ =

∂φ

∂z
(5)

This linear elliptic PDE, which is obtained from Equation (1) directly, is only valid for
subcritical subsonic range (M < MCR) and can be easily solved by coordinate transformation
resulting in Laplace’s PDE [35,36,38]. The mixed supersonic-subsonic flow over transonic
airfoils for two-dimensional geometry is treated by the hyperbolic-elliptic linear PDE or
Tricomi equation [36]. Supersonic linearized theory or Ackert’s rule (analog to subcritical
Prandtl–Glauert rule but on the supersonic side) is described, for example, in [13,35]. The
validity of asymptotic Ackert’s or Prandtl–Glauert rules ceases at the boundaries of the
transonic flow region, and small-perturbation transonic flow computations require use of
Equation (1).

Inviscid irrotational potential models can predict induced (vortex) drag and the wave
drag but cannot address the BL skin-friction drag and pressure drag due to BL separation
and wakes. Inviscid full potential equation can be used for any inviscid irrotational flow
from low subsonic to hypersonic. Panel methods could be used for subcritical compressible
flow on transformed Laplace equation but not for transonic flow. A good review of
panel methods is given, for example, in [13,39]. An exceptional review of nonlinear
potential methods is given in [37]. Inviscid irrotational flow behind a curved shock-wave
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may become rotational, in which case Euler models, which do not require isentropic and
irrotational conditions such as potential codes, are needed. Vorticity can exist in Euler’s
inviscid flow, but the Euler equation itself provides no mechanisms for the generation
(other than with curved shock waves) and dissipation of vorticity. Kelvin’s theorem ensures
the conservation of circulation in such flows. However, continuity, three momentums for
speeds in each orthogonal direction, and the energy differential conservation equations
are required for this adiabatic, inviscid flow with no external body forces (gravity force
neglected), resulting in a system of five PDEs [35]:

∂ρ

∂t
+∇ · (ρ v) = 0 ρ

D v
Dt

= −∇p ρ
D htot

D t
=

∂p
∂t

where htot ≡ hstatic +
v2

2
(6)

Using Lamb’s rotational form of the convective acceleration term in the material
(substantial) derivative, one obtains the Euler equation with gravitational term neglected:

Dv
Dt

=
∂v
∂t

+ (v · ∇)v =
∂v
∂t

+∇
(

v2

2

)
− v× (∇× v) = −∇p

ρ
v2 = v2 (7)

The Euler equations will account for entropy changes across shocks and production of
rotation behind curved shocks as seen from Crocco’s theorem [35,38,44,45]:

T · ∇s = ∇htot − v× (∇× v) +
∂v
∂t

(8)

Equation of state is required to complete the model. Most of the inviscid flow models
use BL equations to compute parasitic drag (viscosity induced skin-friction and to an extent
pressure drag). The problem with DNS and turbulence modelling approaches is that they
take extensive time (especially for high Reynolds numbers) and require access to powerful
(super-) computers and specialized codes. Despite this, many turbulence models and
numerical algorithms are still not capable of capturing shock/BL interactions correctly.
Accordingly, total drag computations on supercritical-wings high-subsonic airplanes are
difficult and resource- and time-demanding.

For airframe performance computations, any CFD or wind tunnel results must be
integrated with the propulsion model and fuel laws to arrive at optimum airspeeds under
various atmospheric conditions. Hence, in this article a semi-empirical approach to tran-
sonic wave drag modeling is proposed in conjunction with the semi-empirical turbofan
and fuel-law models. Of course, any semi-empirical wave-drag model cannot account
for immense details in specific transonic aerospace designs. By adjusting the coefficients
in semi-empirical drag model, it is hoped that transonic and the total airplane drag can
be estimated with reasonable accuracy, thus enabling estimates of the optimal cruise pa-
rameters, and aiding economic and environmental impact analysis in the early stages of
aerospace designs. These capabilities can be, in theory, extended to address supersonic air
transportation designs.

2. Mathematical Model of Transonic Drag Polars

In general, for an entire transonic airplane, the lift and drag aerodynamic coefficients
for given geometry are additional functions of:

CD = f (α, β, Re, M) CL = g(α, β, Re, M)

Normally, the sideslip angle β will be small in cruising flight due to trimming off
sideslip and continuous operation of yaw dampers. Additionally, since the cruising al-
titudes of modern high-bypass turbofan high-subsonic jet transports typically occur at
altitudes between 30,000 and 40,000 feet (9 and 12 km), the effect of small changes in
Reynolds numbers primarily due to increasing kinematic viscosity of air with altitude on
aerodynamic coefficients can be neglected for now. Hence, only AOA and the Mach number
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remain as the primary factors of aerodynamic behavior of fixed-geometry designs. At sub-
critical airspeeds (M < MCR), the total drag is affected by compressibility, which is captured
here by the Prandtl–Glauert rule. More accurate compressibility correction models exist,
such as Karman–Tsien [41,42] and Laitone [43] rules, but at the cost of increased complexity.
At supercritical subsonic airspeeds, the total drag is the sum of parasitic, vortex (induced),
and transonic wave drag. Parabolic drag model for the intermediate linear range of AOAs
and coefficients-of-lift was employed. Wave drag consisting of the parasitic zero-lift and
the lift-dependent parabolic component was added. Hence, the total airplane drag for a
generic slightly-cambered transonic supercritical airfoil is represented by:

CD(M, CL) = CD0(M) + KCamber(M) · CL + KLift(M) · C2
L (9)

where drag-due-to-lift coefficient is:

KLi f t(M) = Ksec tion(M) + Kvortex(M) + Kwave(M)

Below critical-Mach (MCR), there are no local shocks so there is no transonic wave-drag
either, although increasing Mach number is affecting pressure distribution and thus slightly
parasitic drag even in subcritical flow. Prandtl–Glauert or other more accurate relationships
can be used to address the effect of shock-free compressibility. Exact estimation of MDD and
wave-drag for an actual airfoil/wing can only be done using sophisticated CFD and/or
wind tunnel measurements. Shevell [20] provides expression for drag divergence Mach
and the drag rise due to compressibility effect. Shevell [20] is basing MDD definition on
the slope of the CD vs. M curve being equal to 0.05. However, Shevell’s relationships are
generally more applicable to older transonic airfoils.

2.1. Semi-Empirical Transonic Wave-Drag Algebraic Model

The improved semi-empirical transonic wave-drag airplane model is based on consid-
erations from [31,46] as an extension of the original Lock’s equation. As reported in [10], C.
N. H. Lock, in an unpublished paper titled “The ideal drag due to shock wave”, used small
increase of Mach number above the critical as a prime variable in estimating shock-wave
drag. By using Rankine–Hugoniot shock-wave jump conditions, Glauert’s subcritical-flow
rule, and integral of momentum approach, Lock derived ideal wave-drag relationship.
Changing coefficient-of-lift also affects wave drag, thus resulting in a wave-drag model
used in this study:

CDw(M, CL) = z ·
{
[M−MCR(CL)] + f · (CL − CL,0)

1/2
}m

z = 10÷ 30 f ≈ 5× 10−3 M ≥ MCR (10)

Design compressible lift-coefficient CL,0 equal zero with absolute AOA defined as the
angle between the far-field relative wind and the zero-lift-line (ZLL) was used. Exponent m
is typically four (Lock’s equation), but it can be non-integer to account for different wing
designs. However, there are no physical bases for that. Computed coefficient of total drag
as a function of Mach number and CL using transonic wave-drag model (m = 4, z = 20
and f = 0.005) from Equation (10) is presented in Figure 1. Prandtl–Glauert rule has been
utilized for subcritical flow. Lower CL’s indicate higher MDD’s. By adjusting coefficients in
Equation (10), original B747-100 data [47] were approximated reasonably well in the linear
lift-curve region at not too high Mach numbers. However, at sufficiently high transonic
Mach numbers, the Mach-dependent parabolic drag model becomes increasingly deficient.
This well-known fact was predicted and observed by many authors previously, such as
in [28,48]. The wave-drag model expressed through Equation (10) becomes progressively
inaccurate as the flight Mach number exceeds MDD. It would be unreasonable to expect
that a simple algebraic model could entirely capture rich and complex physics of the BL–
SW interactions. The onset of significant wave drag rise due to normal shocks inducing
increased localized BL separation is based here on the McDonnell–Douglas industry-
accepted criterion (∂CD/∂M = 0.1) and modified Lock’s equation as:
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(
∂CDw
∂M

)
M=MDD

= m · z(MDD −MCR)
m−1 ⇒ MCR = MDD −

[
1

m · z

(
∂CDw
∂M

)
MDD

]1/(m−1)

(11)
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Boeing company traditionally used increase in drag-coefficient of 0.0020 (20 drag
counts) to define MDD. The definition of onset of drag rise is thus somewhat subjective.
Drag-divergence (drag-rise) Mach number can be expressed by modified Korn’s equa-
tion [23,25,28]:

MDD(CL) =
κA

cos Λ
− (t/c)max

cos2 Λ︸ ︷︷ ︸
MDD,CL=0

− κ · CL

cos3 Λ
= MDD,0 −

( κ

cos3 Λ

)
· CL (12)

where:[
∂MDD

∂(t/c)max

]
= − 1

cos2 Λ
= − sec2 Λ

(
∂MDD

∂CL

)
= − κ

cos3 Λ
= −κ sec3 Λ

Here, κA is the so-called wing-technology factor (ideal-wing MDD at zero AOA/CL
and practically zero-thickness), which is commonly in the range 0.87–0.955 with higher
values reserved for modern supercritical airfoils; Λ is the main wing-sweep angle at given
chord location; (t/c)max is the maximum airfoil relative thickness; and κ is a slope-factor
usually in the range of 0.1–0.14 [49]. Lower values of technology factors apply to older
NACA 6-series airfoils, while values of 0.92 and 0.95 may represent supercritical wing
designs from the 80s (e.g., B767-300) and 90s (e.g., B777-200), respectively. Drag-divergence
Mach number is linearly dependent on the coefficient-of-lift. Computations of MDD, as a
function of various factors for the constant slope-factor κ = 0.1, are presented in Figure 2.
Plotted modified Korn’s equation for MDD agrees well with the NASA’s supercritical-wing
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development predictions [50] and with the prediction by Shevell [20] as already reported
in Mason [25]. The larger the sweep angles, the steeper the negative slopes of MDD.
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The freestream critical Mach number (MCR,∞) is estimated for wings with arbitrary
sweep angles Λ. The coefficient-of-pressure (Cp) for the minimum pressure point corrected
for compressibility through the Prandtl–Glauert rule is equal to isentropic pressure ratio
between the wing’s minimum pressure point (where local Mn = 1) and the freestream static
pressure [13]. First local sonic condition of the freestream normal component to the span
will appear at the minimum pressure point:

Cp,inc√
1−M2

CR,n

− 2
γM2

CR,n


[

1 + (γ− 1)/2 ·M2
CR,n

1 + (γ− 1)/2

] γ
γ−1

− 1

 = 0 ⇒ MCR,∞ =
MCR.n

(
Cp,cmpr

)
cos Λ

(13)

The nonlinear Equation (13) was solved for normal-component and freestream MCR
and minimum incompressible Cp. For example, for assumed incompressible coefficient-of-
pressure Cp,inc of −0.7000 with 35◦ back-sweep angle (set at x/c = 0.25) at wing’s minimum
pressure point, the normal-component critical Mach number was computed as 0.6645373
and corresponding freestream MCR of 0.8112502 with compressible Cp,cmpr of −0.936762
accurate to seven significant digits. For a 31.5◦ quarter-chord sweep angle (such as in
B767-300), the critical freestream Mach number would be 0.7793878 (rounded 0.78). Total
parabolic drag including wave-drag is modeled as:

D(σ, v) =
1
2
(σ ρSL) v2Sre f CD(M) = Cp(M)v2 + Ci(M)v−2 + Cw(M, CL)v2 (14)

where:

Cp =
1
2
(σ ρSL)Sre f CD,0(M) Ci =

2 K(M)Sre f n2

(σ ρSL)
·
(

W
Sre f

)2

Cw =
1
2
(σ ρSL)Sre f CDw(M, CL) (15)
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The semi-empirical model of transonic wave drag used here yields:

CDw = z ·
[

v
aSL
√

θ
−MDD,0 +

(
∂CDw,MDD

m · z

)1/(m−1)
+ f

√
2nW

σ ρSLSre f

(
1
v

)
+

κ

cos3 ΛLE

2nW
σ ρSLSre f

(
1
v

)2
]m

(16)

Here, we designate:

a =
1

aSL
√

θ
b = MDD,0 −

(
∂CDw,MDD

m · z

) 1
m−1

c = f d =

√
2nW

σ ρSLSre f
e =

κ

cos3 ΛLE
(17)

where relative air temperature and density in ISA model atmosphere are defined as:

θ =
T

TSL
σ =

ρ

ρSL

Coefficient a in Equation (17) should not be confused with the acoustic-speed (speed-of-
sound), and aSL is the ISA SL speed-of-sound. Assuming m = 4 and expanding fourth-order
polynomial (Equation (16)), after tedious algebraic reductions, transonic wave-drag is
expressed as:

CDw(σ, v) = z ·
(

Adwv4 + Bdwv3 + Cdwv2 + Ddwv + Edw + Fdwv−1 + Gdwv−2+
+Hdwv−3 + Idwv−4 + Jdwv−5 + Kdwv−6 + Mdwv−7 + Ndwv−8

)
(18)

with coefficients:

Adw = a4; Bdw = 4a3b; Cdw = 2a2(2acd + b2)+ 4a2b2

Ddw = 4a2(aed2 − bcd
)
− 4ab

(
2acd + b2)

Edw = 2a2d2(c2 − 2be
)
− 8ab

(
aed2 − bcd

)
+
(
2acd + b2)2

Fdw = 4a2ced3 − 4abd2(c2 − 2be
)
+ 4
(
2acd + b2)(aed2 − bcd

)
Gdw = 2a2e2d4 − 8abced3 + 2d2(2acd + b2)(c2 − 2be

)
+ 4
(
aed2 − bcd

)2

Hdw = −4abe2d4 + 4ced3(2acd + b2)+ 4d2(c2 − 2be
)(

aed2 − bcd
)

Idw = 2e2d4(2acd + b2)+ 8ced3(aed2 − bcd
)
+ d4(c2 − 2be

)2

Jdw = 4e2d4(aed2 − bcd
)
+ 4ced5(c2 − 2be

)
Kdw = 2e2d6(c2 − 2be

)
+ 4c2e2d6; Mdw = 4ce3d7; Ndw = e4d8

(19)

Total drag, including the semi-empirical transonic wave-drag model, yields:

D(σ, v) = Cpv2 + Civ−2 + z ·
Cp

CD0

[
Adwv6 + Bdwv5 + Cdwv4 + Ddwv3 + Edwv2 + Fdwv + Gdw+

+Hdwv−1 + Idwv−2 + Jdwv−3 + Kdwv−4 + Mdwv−5 + Ndwv−6

]
(20)

2.2. Specific Air Range Optimization Criteria

The specific air range (SAR) and Breguet range (R) in still-air can be expressed as
following using the arbitrary Thrust Specific-Fuel-Consumption (TSFC) law [31]:

SAR(v, σ) =
RF
W

=
v

TSFC · D =

(
aSL × θ1/2

TSFC

)
·
(

M
L
D

)
·
(

1
W

)
(21)

If the amount of fuel used per each NAM (Nautical Air Mile) is taken as the optimality
criteria, then maximizing SAR or minimizing specific fuel consumption TSFC (inverse-SAR)
results in:

∂

∂v

[
1

SAR(σ, v)

]
=

∂

∂v

[
D(σ, v) · TSFC(σ, v)

v

]
=

1
a2

∂

∂M

[
D(σ, M) · TSFC(σ, M)

M

]
= 0 (22)
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Differential equation defining optimum condition for still-air MRC yields [31]:

− D
v
+

∂D
∂v

+
D

TSFC
· ∂TSFC

∂v
= 0 v > 0 TSFC > 0 (23)

2.3. Turbofan and Fuel-Law Models

Semi-empirical turbofan thrust model is adopted from [31]:

Ta(σ, v) = neN1T0σm(1 + d1v + d2v2) T0 = Tstatic
SL,ISA σ =

ρ

ρSL
(24)

The coefficients d’s are functions of the engine by-pass ratio (BPR), with d1 being less
than zero, representing momentum drag, and d2 larger than zero, representing RAM effect.
The SL-rated thrust is expressed as certified time-limited (5 or 10 min) maximum takeoff
and go-around thrust (TOGA) and certified maximum continuous thrust (MCT) with ne
designating number of operating engines (including one-engine inoperative or OEI cases).
For more details on the turbofan model, consult [31]. Fuel-laws considered in our cruise
performance analysis are classified as:

a) TSFC = TSFC0
b) TSFC = TSFC0 · θ1/2

c) TSFC = TSFCre f · θ1/2 ·Mn TSFCre f = (1.5÷ 1.9)TSFC0
d) TSFC(θ, M) = TSFC0 · θ1/2 · (1 + M)n

(25)

The fuel-law (a) is simplest but also unrealistic. Indeed, TSFC decreases with increasing
altitude. Furthermore, it is speed-independent, just like fuel law (b). The latter, however,
includes air temperature (altitude) dependence. Comparison of three fuel-laws (b, c, and d)
for cruise analysis is performed. Fuel laws (c) and (d) are flight-speed (Mach)-dependent
and much more realistic than fuel-laws (a) and (b). After comparison of results obtained
with present equations with range data of real existing aircraft, the semi-empirical fuel-law
(d) proposed by Daidzic [31] is found to be the most reliable for the entire flight envelope:

TSFC(θ, M) = TSFC0 · θ1/2 · (1 + M)n n =


0.2 Turbojet
0.8 HBPR
0.9 UHBPR

 (26)

Standard atmosphere (ISA) computations used are based on methods presented in [51].
Turbojet powerplant has BPR equal zero.

2.4. Maximum Cruise Range and Airspeed in the Presence of Wave Drag

Still-air MRC airspeed and range are essential parameters in T-category jet airplane
cruise performance. Integrated SAR equation (Equation (21)) by utilizing new proposed
fuel-law (Equation (26)) results in:

R(d)
12 = −

W2∫
W1

SAR(W)dW =
aSL

TSFC0
(1 + M)n

(
M

L
D

)
ln
(

W1

W2

)
(27)

With the new fuel-law, for all other parameters constant, it is no longer enough to max-
imize the aerodynamic range parameter (M · L/D), but the product (1 + M)n(M · L/D),
noting that drag (D) increases with the Mach number, especially in the supercritical tran-
sonic region past MDD, thus rapidly reducing aerodynamic efficiency, leading to decrease
of still-air range despite increased cruising Mach.
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Using differential equation for MRC criterion (Equation (23)) without wave-drag and
applying fuel-law (d) produces 5th-degree polynomial:

Cp(1 + n)v5 + Cpa0θ1/2v4 + Ci(n− 3)v− 3Cia0θ1/2 = 0 (28)

Differential equation for MRC, including semi-empirical wave-drag model:

− D
v
+

∂D
∂v

+
D · n

aSLθ1/2
(

1 + v
aSLθ1/2

) =

(
−D

v
+

∂D
∂v

)(
v + aSLθ1/2

)
+ D · n = 0 (29)

After lengthy manipulations, Equation (29) becomes a polynomial of the 13th-degree:

(5 + n)Adwv13 +
[
(4 + n)Bdw + 5Adwa0θ1/2

]
v12 +

[
(3 + n)Cdw + 4Bdwa0θ1/2

]
v11+[

(2 + n)Ddw + 3Cdwa0θ1/2
]
v10 +

[
(1 + n)

(
Edw + CD0

20

)
+ 2Ddwa0θ1/2

]
v9+[

nFdw +
(

Edw + CD0
20

)
a0θ1/2

]
v8 + (n− 1)Gdwv7 +

[
(n− 2)Hdw − Gdwa0θ1/2

]
v6+[

(n− 3)
(

Idw + Ci
CD0
20Cp

)
− 2Hdwa0θ1/2

]
v5 +

[
(n− 4)Jdw − 3a0θ1/2

(
Idw + Ci

CD0
20Cp

)]
v4+[

(n− 5)Kdw − 4Jdwa0θ1/2
]
v3 +

[
(n− 6)Mdw − 5Kdwa0θ1/2

]
v2+[

(n− 7)Ndw − 6Mdwa0θ1/2
]
v− 7Ndwa0θ1/2 = 0

(30)

Theoretical considerations of MRC airspeeds and ranges using other fuel-laws (a, b,
and c) are summarized in Appendix A.

3. Methods and Methodology

MRC computations reduce to finding positive real roots of polynomials of high-order.
In general, such polynomials have no closed-form or analytical solutions (except in few
lucky cases), and use of numerical solvers for finding roots of nonlinear equations is
necessary. Naturally, one is only looking for real positive roots, and any negative-real or
complex-conjugate pairs are rejected on the physical grounds. A simple Newton–Raphson
(NR) algorithm, which exhibits rapid quadratic convergence once the initial guess is
well chosen, was employed here. NR solvers are also very practical for polynomials as
their analytical derivatives are easily obtained. The initial guess for all computations
must be selected carefully to ensure rapid convergence and accurate root finding. Using
an initial guess in the vicinity of wave-drag-free analytical solutions of MRC airspeed
was a sufficiently good starting value for ensuring rapid convergence in all cases. For a
polynomial of m-th order, one can write iterative NR scheme with the convergence criterion:

vj+1 = vj −

M
∑

m=0
amvm

M
∑

m=0
m · amvm−1

v0 = vinitial j = 0, 1, 2, . . . , N
∣∣vj+1 − vj

∣∣ ≤ ε (31)

Iterations j are discontinued when the absolute or relative difference between two sub-
sequent iterations becomes arbitrarily small. A disadvantage of the standard NR method
occurs when multiple zeroes (roots r > 1) exist for the given function. Convergence then is
only linear instead of quadratic. Alternatively, if root multiplicity is known beforehand,
modified approaches can be applied. They ensure more rapidly converging results even
when r > 1. In our cases, multiplicity of zeroes was unknown. In such cases, modified NR
algorithm is significantly more complex but provides quadratic convergence. Complicat-
ing matter in this context is the need for 2nd-order derivatives of polynomials. For the
summary and exact formulations of regular and alternative NR approaches, refer to [31].
Computations in this study converged after a maximum of 11 iterations by using regular
NR method, which can be considered quick considering the high functional values in the
order of 1023 when inserting initial speed guesses of 1000 ft/s (about 600 knots or 300 m/s)
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or more. Due to rapid convergence, no implementation of other numerical approaches,
such as modified-NR methods used previously in [31], was necessary.

After extensive testing of the in-house developed NR numerical solver in terms of
reliability and accuracy, full confidence in the solver’s ability was gained and we proceeded
with the computations of MRC ranges and airspeeds for the cases with and without wave
drag. Unrealistic results obtained by omitting wave drag were used to assess the relative
importance and magnitude of wave drag in the supercritical regime of transonic flight
on subsonic side. The maximum range performance of a fictitious T-category aircraft is
analyzed in a systematic manner.

Airplane still-air ranges (SAR) are dependent on airframe, powerplant, and in-flight
weights for flights at constant-altitudes. They are computed here by solving a simulta-
neous system of nonlinear algebraic equations for given design and flight conditions. In
straight and level (S&L) flight, thrust provided by powerplants must equal aerodynamic
drag (includes speed-dependent parasitic, induced, and wave drag). While parasitic and
induced drag can be computed explicitly, speed-dependent wave drag must be solved by
iterative numerical method. Fuel consumption is computed, and the process is repeated for
various flight conditions (ISA altitudes) and weights/masses using the same airplane and
powerplant models. Drag divergence Mach is computed using modified Korn’s equation
for given wing/airfoil design (supercritical design, sweep angle, relative airfoil thickness,
and coefficient-of-lift). The critical Mach number is computed based on modified Lock’s
equation, with coefficients being variable to accommodate for specific design changes.

This fictious airplane considered here is similar to popular long-range twin
B767-300ER, but there was no attempt to replicate exact performance data, nor are such
data available in public domain. Basic information on virtual and fictitious testbed airplane
is provided in Tables 1 and 2. Essential turbofan data [31] is presented in Table 3.

Table 1. Basic data for a large T-category FAR/CS 25 medium- to long-haul commercial jet.

MTOW [lb] MLW [lb] S [ft2] b [ft] AR [-] e [-]

400,000 320,000 3100 156.0 7.85 0.90 (cruise)

Table 2. Aerodynamic data of the fictitious large T-category FAR/CS 25 commercial jet.

Configuration CD,0 K
Supercritical
Sections κ

[-]

t/c
[%]

Sweep Λ

[◦]

Technology
Factor

MDD0 [-]

Maximum
Oper. Mach

MMO [-]

Clean/Cruise 0.020 0.045 0.14 12 35 0.94 0.85

Table 3. Basic data for flat-rated turbofan engines model used.

Turbofan TSL, Static [lb]
TOGA/MCT

TSFC0 (MCT)
[lb/lb-hr] n a1 a2

Carried
Fuel

WFuel [lb]

HBPR 60,000/54,000 0.40 0.8 −8.5 × 10−4 +5.5 × 10−7 161,000

UHBPR 72,000/64,800 0.32 0.9 −9.5 × 10−4 +5.0 × 10−7 161,000

We will first compare range and SAR for the model airplane and powerplant using
four different fuel laws (a–d) with and without (totally unrealistic) transonic wave drag.
Subsequently, as most complex fuel-law (d) described in Equation (26) delivers most
promising results, only this one will be used for further analysis to examine the effect
of varying input parameters. Following introductory overview shows the cases we will
present in detailed manner in the results:

• MRC range and airspeed (Figures 3 and 4 and Table 4) using fuel-laws (b), (c), and (d)
(here designated as cases I, II, and III).
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• MRC range and airspeed (Figures 5 and 6), using fuel-law (d) only for various pressure
altitudes (flight levels).

• MRC range, airspeed, and drag breakdown (Figures 7–9), using fuel-law (d) for various
in-flight weights.

• MRC range and airspeed (Figure 10), using fuel-law (d) for various wing planform
reference surface areas.

• MRC range, airspeed, and drag breakdown (Figures 11 and 12), using fuel-law (d) for
various wing planform back-sweep angles.

• MRC range and airspeed (Figure 13), using fuel-law (d) for various turbofan en-
gines BPRs.

4. Results and Discussion

A comparison of cruise performance parameters for the three different fuel laws (b–d)
introduced earlier (Equation (25)) with and without transonic wave drag (Cases I-a to
III-b) is presented in Figure 3. Fuel-law (a) differs from fuel-law (b) only in range (by the
square-root of temperature ratio) but not in VMRC. A large difference exists in maximum
range depending on which fuel-law is chosen. Speed-independent fuel-laws (case (b) in
our classification of fuel-laws) represented in Figure 3 as I-a (no wave drag) and I-b (with
wave drag) predictably result in longest computed ranges. However, that result is not
realistic. Maximum range (with full fuel load) for the fictitious transport airplane modeled
here would amount to over 10,000 NAM, which is about 65% longer than maximum of
about 6000 NAM of a real B767-300ER aircraft. Additionally, the SAR of 56 NAM/1000 lb
fuel is unrealistic and closer to values of narrow-body airplanes that cruise at SARs of 50 to
90 NAM/1000 lb fuel [30].
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Cases II (fuel-law (c)) and III (fuel-law (d)) are speed-dependent and more realistic.
Maximum range totals of about 6000 NAM and SAR are approximately 34 NAM/1000 lbf.
These results are in good agreement with the data of existing Boeing 767-300ER and other
modern wide-body airplanes of similar size. Fuel law (c) (Cases II-a and II-b) results in
slightly higher performance numbers at M < 0.6. Furthermore, it is sensitive to chosen
TSFCref. For the TSFCref = (1.8 × TSFC0) used here, the results for cases II and III overlay
almost exactly. For factors 1.7 or lower, range and SAR curves would shift upwards.
Due to complex turbofan engine characteristics, it cannot be predicted with sufficient
reliability which factor is required for each airframe-engine combination. Other authors,
such as [48,52], state that fuel-law (c) is only applicable at higher Mach numbers, M ≥ 0.6.
It can be reasonably assumed that the new proposed fuel law (d) (cases III-a, III-b) seems
to be most reliable, accurate, and robust in predicting MRC and MRC-airspeed VMRC in
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the entire flight envelope. Subsequent investigations into the influence of dynamic input
parameters will therefore be mostly conducted using this new proposed fuel-law.

One can observe from Figure 3 an expected decrease in the maximum range in all
cases when transonic wave drag model is included. Results start to diverge upon reaching
MCR, which in these cases is around 0.75. One can also observe relatively flat maximums,
meaning that small speed variations around MRC do not affect still-air range much. Range
change for speed-independent fuel law (b) is quite severe but still overpredicts range in
comparison with the speed-dependent fuel laws. This is not surprising as the maximum
for case I-a is located deep in the transonic speed range close to M = 1. Once wave-
drag is accounted for, maximum range for cases II and III occurs at lower airspeeds of
approximately M ≈ 0.8. It must be stated that the transonic wave-drag model becomes
increasingly inaccurate as the freestream flight Mach number increases and especially as
the upper boundary of transonic regime (M = 1.2) is approached. In the upper transonic
region, shocks become stronger. However, we are only interested in the wave-drag at
the lower end of the transonic region. Additionally, for all three cases, VMRC decreases
when the wave-drag is included. The difference is largest for fuel law “b” (−15%) and
least for “c” (−4.2%) as it exhibits the earliest maximum in the range. For the fuel-law
“d”, wave drag penalty on VMRC is negative 7.2%. The exact data for fuel law comparison
for the fictitious T-category airplane are summarized in Table 4 and Figure 4. Apparently,
transonic wave drag has more effect on the VMRC/MMRC than on cruise range (MRC) itself.
For all cases, MRC is obtained at airspeeds closer to drag-divergence Mach number than
minimum-drag airspeed (VMD/MMD). Maximum cruise range MMRC at high altitudes is
usually 10–32% greater than MMD and located in transonic range. As fuel law (d) was now
identified to deliver most robust results, subsequent analysis here will only consider that
fuel law. Analytical and polynomial MRC airspeeds and ranges for fuel-laws (a), (b), and
(c) are summarized in Appendix A.
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Table 4. Fuel law-dependence of MRC and MRC Mach number (MMRC) for both cases, with and
without transonic wave-drag model.

MRC
(Case I)

MRC
(Case II)

MRC
(Case III)

MMRC
(Case I)

MMRC
(Case II)

MMRC
(Case III)

Without
wave drag 10,036 nm 6055 nm 6049 nm 0.935 0.797 0.838

With wave
drag

9440 nm 6005 nm 5931 nm 0.797 0.763 0.778
(−5.9%) (−0.8%) (−1.9%) (−14.8%) (−4.2%) (−7.2%)
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The numerical computations were performed for flight-level (FL) increments of 5000 ft
(1500 m) starting at 5000 ft. Results reveal a tendency towards higher achievable range
at greater altitudes and at increased airspeeds (>+40%). Wave drag must be taken into
account only at typical cruise levels because, for the fictional T-category airplane modeled
here, MMRC < MCR until up to about 28,000 ft. For flight levels where wave drag is present,
it comes as no surprise that both range and MRC airspeed are located below the results
when transonic wave drag is neglected. SAR changes from 22.5 NAM/1000 lb at 5000 ft to
almost 33 NAM/1000 lb at FL330.

Figure 5 illustrates the behavior in the familiar two-dimensional layout, while Figure 6
resorts to a three-dimensional plot. Here, one can rapidly identify that maximum range
occurs at the highest flight altitudes and at Mach numbers around 0.8. No confidence exists
for the results exceeding flight Mach numbers of about 0.94 for the present model.
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Further investigations were conducted for clean cruise configurations at FL330 and
variable in-flight weight. Reducing in-flight weight while keeping fuel capacity constant
naturally leads to increased range due to reduced vortex drag. B767-300ER with a take-off
and fuel weight of about 410,000 lb and 160,000 lb, respectively, has a usable fuel fraction of
39%. This is in the range of modern transport commercial jets, which have a fuel-weight
ratio of less than half their maximum structural take-off weights (about 26% for medium-
haul and 45% for long-haul planes). Maximum range decreases with increased in-flight
weight, and MMRC is evaluated for both drag models, including and excluding wave drag,
as shown in Figure 7. The relationship between the 1-g flight CL and Mach at given weight
and altitude (pressure ratio) is:

M2CL ∝
W
δ

(32)
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Figure 7. MMRC and range for variable in-flight weight for both drag models, with and without
transonic wave drag.

In-depth analysis would show that the maximum still-air range will be obtained by
maintaining the product M2 × CL constant, which, for decreasing in-flight weight (due
to fuel consumption), will require an airplane to climb continuously at low climb rates
(15–25 feet/minute). Since ATC separation traffic restrictions do not allow continuous-
climb flight (except for famed Concorde’s continuous-climb at supersonic speeds), the
next best thing is step-climb, which is an accepted operational practice made more feasible
by introduction of RVSM [30]. 3D plot illustrating dependance of range on flight Mach
number and in-flight weight is presented in Figure 8. When transonic shock systems are
present, VMRC rises to certain point. After passing “critical weight” condition, best cruise
airspeed stays almost constant and decreases only slightly with increased weight. The
reason for is the increasing transonic wave-drag coefficient with increasing Mach number.
In cases where transonic wave drag was neglected, VMRC increases almost linearly while
range decreases. Graphical representation of drag counts as a function of weight is shown
with a bar-graph in Figure 9. Even at highest weights, transonic wave drag is a very small
proportion of the total drag (less than 5%).
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Figure 9. Drag breakdown for a simulated fictitious T-category aircraft, depending on in-flight
cruise weight.

An overview of percentage variations of maximum range and corresponding best
cruise airspeed is summarized in Table 5. It can be concluded that lift-dependent wave
drag component has significant impact on cruise performance for heavy aircraft.
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Table 5. Weight-dependence of maximum range and maximum-range airspeed, for both cases, with
and without wave drag (including/excluding wave drag).

W [1000 lb] 300 340 380 420 460 500

Mach (M)
No wave drag 0.731 0.776 0.818 0.857 0.895 0.931

Mach (M) 0.731 0.766 0.776 0.778 0.777 0.774
With wave drag −0.0% −1.3% −5.1% −9.2% −13.2% −16.9%

Range (R)
No wave drag 8080 nm 7088 nm 6352 nm 5778 nm 5316 nm 4934 nm

Range (R) 8080 nm 7081 nm 6285 nm 5597 nm 4982 nm 4426 nm
No wave drag −0.0% −0.1% −1.0% −3.1% −6.3% −10.3%

Discussion of third input parameter wing reference surface area shows that increasing
surface area results in progressively lower maximum range as well as lower airplane’s best
cruise speed for both models including and excluding wave drag. Larger wing surface
areas effectively reduce lift coefficient CL and cause later drag rise (higher MDD). On the
other hand, larger wing wetted area creates more parasitic drag so that most economic
cruise airspeed essentially moves to lower speeds. Interestingly, wave drag only comes
into account for smaller wing areas because for larger lifting surfaces VMRC is shifted into
subcritical subsonic region (M < MCR). Consequently, no wave drag can form, and the
curves for both models are identical as plotted in Figure 10.
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If transonic-flow normal shocks are ignored, the sweep-angle Λ parameter does not
change the total drag significantly. Range and maximum cruise range airspeed remain
constant in that case, as shown in Figure 11. With wave drag included, increasing leading-
edge sweep delays critical flow conditions on the wing’s upper surface to higher Mach
numbers as the LE perpendicular velocity component diminishes. A good example is
Concorde, which, although flying supersonically, had subsonic double-ogee wing planform.
Thereby, CDw decreases and efficient flight at higher forward speeds is enabled. Accordingly,
both VMRC and range also increase steadily with Λ (MDD increases with increasing sweep
angle according to modified Korn equation). Wave drag decreases with increased sweep, a
relation that is noticeable also with the drag proportions in Figure 12 and range and MMRC
data presented in Table 6.
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Figure 12. Drag breakdown of a fictitious T-category airplane as a function of sweep angle Λ.

Table 6. Maximum range and best cruise airspeed for both models, with and without wave drag.

Λ [degree] 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦

M [-]
No CDw

0.838

M [-] 0.707 0.715 0.725 0.740 0.757 0.778 0.800
With CDw −15.6% −14.7% −13.4% −11.7% −9.6% −7.2% −4.5%

R [NAM]
No CDw

6049 nm (11,200 km)

R [NAM] 5554 5608 5679 5762 5849 5931 5995
With CDw −8.2% −7.3% −6.1% −4.7% −3.3% −1.9% −0.9%
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The last input parameter evaluated here is BPR of turbofan engines. Aircrafts equipped
with powerplants with higher BPR tend to achieve greater range due to lower TSFC.
However, the airspeed VMRC at which optimum range is reached stays almost constant for
HBPR (High BPR) and UHBPR (Ultra-High BPR) engines. At high Mach numbers between
0.8 and 0.9, UHBPR turbofans show a larger thrust decrease due to ram effect than HBPR
engines. Cruise altitudes such as FL330 result in only a minor difference in thrust available
for both turbofan types, and consequently both VMRC are nearly identical. If one considers
other engines than the P&Ws PW4056 modeled here with Equation (24), a greater BPR
would accentuate the trend towards better range performance. The higher the BPR, the
higher maximum range at still almost constant MMRC, as shown in Figure 13.
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All previous computations and optimizations were made for the AEO (All Engines
Operating) cruise scenarios. OEI (One Engine Inoperative) conditions were treated for
all input parameters, but it was found that they do not require separate presentation as
the maximum level airspeeds when OEI are significantly lower than for the AEO cases.
Sudden engine failure in flight is not a particularly serious problem as the aircraft will
continue to fly; however, a drift-down must be initiated toward OEI-service ceiling (typi-
cally 22,000–25,000 ft) where flight at constant airspeed can be maintained with remaining
operating engine(s). OEI maximum range cruise airspeed will no longer be in transonic
region and hence no wave drag is present. Additionally, flight may proceed to unscheduled
nearest acceptable airport. For more details on optimal subsonic airspeeds and range
during OEI conditions, one can resort to [31].

Looking at the fictional aircraft modeled here with MTOW of 400,000 lb, sweep of
35◦, wing area of 3100 ft2 and in cruise at FL330, wave drag accounts for only 1% of the
total drag when flying at MRC Mach number of about 0.78. Drag breakdowns are also
shown in Figures 9 and 12. However, many references estimate the transonic wave drag
component for transport airplanes flown at cruise M below MDD at about 5% of the total
drag [53,54]. This discrepancy cannot be ascribed to deficiencies of the mathematical model
but finds its origin primarily in two contributing factors. Firstly, the sweep angle of 35◦

used here is rather high. Real B767-300ER, A350, and similar T-category airplanes feature
leading edges with angles of 31.5 to 32◦. Secondly, long-range jetliners will normally cruise
at speeds faster than MMRC. The cost index (CI) is practically never zero in flight operations,
and time-cost (crew time, etc.) plays an important role in finding best-economy airspeed.
Flying with effective headwinds will require faster forward airspeeds to maximize range
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over ground or SGR [30]. While MMRC does not account for wind, economy-Mach (MECON)
does. Modern T-category jets are sometimes flown at the long-range-cruise airspeed (MLRC)
industry standard, which is based on the 99% MRC, which corresponds to somewhat higher
LRC airspeeds (MLRC is typically MMRC + 0.02). For our fictious airplane model, MMRC
is 0.78 so that MLRC could be about 0.80 (which also happens to be design cruise Mach
of B767-300). Wave drag and the total CD for new sweep and forward airspeed would
amount to 0.00148 and 0.03395, respectively. Wave drag proportion of the total drag is
now 4.4% and close to the usual cited figures of 5% for high-subsonic wide-body airplanes,
again validating the accuracy of the approach in this study. Using Flight Management
Systems (FMS), the operational airspeeds are economy Mach numbers, which minimizes
total operating cost (fuel-cost and time-dependent cost). For more details on cruise speeds,
ranges, and economy, see [30].

Maximum operating limit airspeeds in flight operations VMO/MMO are based on flight
testing and are established in relationship to design diving airspeed VD/MD, maximum
flight demonstrated diving airspeed VDF/MDF, and the maximum airspeed for stability
characteristics VFC/MFC. Some of the corresponding regulations in US are Title 14 of
CFR 25.253 (high-speed characteristics), CFR 25.335 (design airspeeds), and CFR 25.1505
(maximum operating limit airspeed). Maximum operating limit airspeed is limited by max-
q (at lower altitudes) and generally by aircraft static and dynamic stability, control, handling
qualities, upset recovery, structural integrity, flutter, vibrations, loads, and other limitations.
More on this subject and airworthiness requirements of FAR and CS 25 airplanes can be
found in [55–57]. Range is computed and summarized in Table 7 for various aerodynamic,
performance, control, and operationally limiting airspeeds for an airplane similar to B767-
300 (check Tables 1–3). Approximate operational cost index (CI) for a typical range 0–200
(in older FMSs) was given as a reference. In these conditions, critical Mach number is about
0.75 with the wave drag being zero. Still-air range at MCR is lower than at MMRC. Values of
wave drag proportion, airspeeds, and ranges agree well with the certified and flight-tested
values for T-category airplanes of similar designs, demonstrating that modeling used here
is reasonably accurate.

Table 7. Flight Mach, maximum still-air range, and wave-drag percentage of the total drag for various
flight conditions at constant in-flight weight of 350,000 lb flying at 35,000 ft ISA.

M > MCR
MMRC MLRC MECON MDD MMO
CI = 0 CI ≈ 30–40 CI ≈ 80 CI ≈ 140 CI ≈ 200

Flight
Mach [-] 0.77 0.78 0.80 0.82 0.84 0.85

Air-Range
[NAM]

7006 nm 7010 6950 6857 6655 6488
−0.06% −0.14% −1.0% −2.18% −5.06% −7.47%

Wave Drag
[%] 0.41% 0.71 1.88 3.37 6.15 8.38

It must be underscored again that transonic wave-drag represents complicated flow
phenomenon that cannot be fully described by a relatively simple semi-empirical algebraic
model in the supercritical flight regime as used here. For Mach numbers between MCR
and MMO as investigated in this study, the proposed semi-empirical wave-drag, fuel-law,
and turbofan models are still reasonably satisfactory and could be used to develop basic
methodology for design optimization in early aircraft development phases. During such
initial phase, other performance airspeeds under control of wave-drag can be estimated
with the present model, such as the maximum level-flight propulsion-limited airspeed.
Computations of propulsion-limited maximum level flight airspeeds may be presented in
a separate publication. It is also emphasized that this is perhaps one of several possible
methodologies of estimating cruise parameters of modern transonic airplanes. The results
obtained here show reasonable agreement with demonstrated flight data. Further improve-
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ments in models are possible and are envisioned. Present algebraic models could be, in
theory, extended to account for supersonic flight of various aerospace designs. One of the
biggest difficulties in presented method is in choosing a wing-technology factor for a given
design as no rational analysis for that currently exists.

5. Conclusions

Transonic wave-drag computations using modern RANS/LES/DNS codes is time,
cost, and resource consuming. Thus, in this article a semi-empirical wave-drag model for
supercritical flow was developed and subsequently added to the standard compressible
subcritical parabolic drag polar in the linear lift region. The wave drag model developed is
increasingly inaccurate for Mach numbers approaching one and should be fully discarded
for Mach numbers on supersonic side of the transonic regime. Luckily, only the subsonic
side of the transonic supercritical flow around the drag-divergence Mach number was
needed. The criterion of maximizing the specific air range (SAR) was developed. Optimality
criterion delivers polynomials, whose analytical and numerical solutions agree well with the
known cruise range and airspeed results of modern commercial T-category jets. New semi-
empirical turbofan model and fuel-laws were implemented, giving rise to polynomials of
12th and higher orders. A numerical Newton–Raphson nonlinear equation solver code was
developed and used for all computations. The NR algorithm searched only for positive real
roots of polynomials representing the sought-after optimum airspeeds. The NR method and
code were extensively tested against known analytical cruise range solutions to guarantee
accuracy and convergence. Cruise range is calculated by analytical or numerical integration
of Breguet range equation while utilizing several fuel-flow laws for comparison. It was
found that transonic shock systems have a noticeable influence on cruise range parameters.
The dependence of performance airspeeds on several design features was explored for a
specific airframe-powerplant vehicle and various atmospheric cruise conditions.

The numerical method used can be applied to all other drag polynomials, including
eventual non-integer exponents. If available, wind tunnel-, flight-test-, or CFD-obtained
transonic drag polars can be incorporated into methodology developed. The model used
here allows turbofan characteristics in any suitable polynomial form. It can be utilized to
identify the most beneficial input parameter values and combinations for the cruise flight
phase, especially regarding geometric airframe data. The algorithm represents a powerful
tool to estimate important performance airspeeds in transonic flights on the subsonic
side. Its intended application is utilization in the conceptual development stages of the
design optimization of high-subsonic jet airplanes. The results may also assist in improving
operational techniques and best piloting practices in modern air transportation. Further
improvements of this integral algebraic model are certainly possible and are planned.
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Glossary

Symbols
a Speed of Sound [m/s]
c Chord (airfoil) [m]
CD Coefficient of drag [-]
Ci Coefficient of induced drag [-]
CL Coefficient of lift [-]
Cp Coefficient of pressure [-]
Cp Coefficient of parasitic drag [-]
Cw Coefficient of wave drag [-]
D Drag force [N]
f Coefficient in modified Lock’s equation [-]
h Enthalpy (specific) [kJ/kg]
K Coefficient of drag not-due-to-lift [-]
L Lift force [N]
m Exponent in modified Lock’s equation [-]
M Mach number [-]
n Load factor [-]
n Exponent (fuel law) [-]
p Pressure [Pa]
Re Reynolds number [-]
s Entropy (specific) [kJ/kg K]
t Time [s]
t Thickness (airfoil) [m]
T Temperature (absolute) [K]
T Thrust force [N]
v Airspeed (true) [m/s]
W Weight [N]
z Coefficient in modified Lock’s equation [-]
Note
a, b, c, d, e Dummy coefficients (Equation (17))
A, B, C, D, E, F, G, H, I, J, K, M, N Dummy coefficients (Equation (19))
Greek
α Angle of attack [radian or degree]
β Compressibility correction factor [-]
β Sideslip angle [radian or degree]
φ Potential function (velocity)
Φ Potential function (velocity)
γ Coefficient of isentropic expansion [-]
κA Wing technology factor in Korn’s equation [-]
κ Wing slope factor in Korn’s equation [-]
ρ Density (air) [kg/m3]
Λ Sweep angle (wing) [radian or angular degree]
θ Relative temperature (air) [-]
σ Relative density (air) [-]
ς Vorticity [rad/s]
Subscripts
CR Critical
DD Drag divergence
DW Wave drag (transonic)
LE Leading edge
ref Reference
SL Sea Level
tot Total
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Abbreviations
AEO All Engines Operating
AOA Angle-of-Attack
ATC Air Traffic Control
BL Boundary Layer
BPR Bypass Ratio (turbofan engines)
CFD Computational Fluid Dynamics
CFR Code of Federal Regulation (FAA, Title 14 CFR)
CI Cost Index
CS Certification Specifications (EASA)
DES Detached Eddy Simulation
DNS Direct Navier–Stokes simulations
EASA European Union Aviation Safety Agency
ECON Economy cruise based on CI
FAA Federal Aviation Administration (US Department of Transportation agency)
FAR Federal Aviation Regulations (Tile 14 CFR, FAA)
FL Flight Level (pressure altitude in hundreds of feet or meter)
FMS Flight Management System
HBPR High Bypass Ratio (turbofan engines)
ICAO International Civil Aviation Organization
ISA International Standard Atmosphere
LEO Low Earth Orbit
LES Large-Eddy Simulation
LRC Long Range Cruise
MCT Maximum Continuous Thrust
MO Maximum Operating (subscript)
MRC Maximum Range Cruise
NAM Nautical Air Miles (still-air nautical miles)
NR Newton–Raphson nonlinear equations solver
NS Navier–Stokes
OEI One Engine Inoperative
PDE Partial Differential Equations
RANS Reynolds-averaged Navier–Stokes equations
RBCC Rocket-Based Combined Cycle
RF Range Factor
RVSM Reduced Vertical Separation Minimum (ICAO)
SAR Specific Air Range (still-air)
SGR Specific Ground Range (accounting for wind)
S&L Straight and Level (cruise) flight
SSTO Single-Stage to Orbit
SWBLI Shock-Wave Boundary-Layer Interactions
TOGA Takeoff/Go-Around Thrust
TSFC Thrust Specific Fuel Consumption
UHBPR Ultra-High Bypass Ratio (turbofan engines)
URANS Unsteady Reynolds-averaged Navier–Stokes

Appendix A. Other Fuel Laws

In the main text, all MRC range and airspeed computations and parameter variations
utilized fuel-law (d). Analytic expressions for MMRC using fuel-laws (a), (b), and (c) are
presented here. Some analytical expressions for MRC cruise parameters exist in case wave-
drag is neglected and for simple fuel-laws. General differential equation for the optimum
range conditions (Equation (23)) yields:

− D
v
+

∂D
∂v

+
D

TSFC
· ∂TSFC

∂v
= 0 v 6= 0 TSFC 6= 0 (A1)
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Speed-independent fuel-laws (a) and (b)

For speed-independent fuel-laws (a and b), we have from Equation (A1):

− D
v
+

∂D
∂v

= 0 (A2)

Both cases, with and without wave drag, will be entertained. Fuel-laws (a) and (b) are
similar, with (b) being more accurate as it implements temperature (altitude) dependence.
Fuel laws (a) and (b) without wave drag have familiar analytical solution for MRC airspeed:

∂D
∂v

=
D
v
⇒ 2Cpv− 2Civ−3 = Cpv + Civ−3 (A3)

The (true) MRC airspeed is now the familiar expression (Eshelby, 2000; Mair and
Birdsall, 1992):

vMRC = 4

√
3 Ci
Cp

= 31/4vMD ≈ 1.316 · vMD vMD =

(
Ci
Cp

)1/4
=

(
2

ρSLσ

)1/2(W
S

)1/2( K
CD,0

)1/4
(A4)

Fuel-laws (a) and (b) when including wave-drag result in:

5Adwv12 + 4Bdwv11 + 3Cdwv10 + 2Ddwv9 +
(

Edw + CD0
20

)
v8 − Gdwv6 − 2Hdwv5−

3
(

Idw + Ci
CD0
20Cp

)
v4 − 4Jdwv3 − 5Kdwv2 − 6Mdwv− 7Ndw = 0

(A5)

This polynomial of 12th-degree must be solved numerically. Constant-Mach flight
range utilizing fuel-laws (a) and (b), respectively, after integration of Equation (21) yields
(Daidzic, 2014):

R(a)
12 =

aSL
√

θ

TSFC0

(
M

L
D

)
ln
(

W1

W2

)
R(b)

12 =
aSL

TSFC0

(
M

L
D

)
ln
(

W1

W2

)
(A6)

Speed-dependent fuel-law (c)

Simple speed-dependent fuel-law (c) yields (Mair and Birdsall, 1992):

TSFC = TSFCre f · θ1/2 ·Mn TSFCre f = (1.5÷ 1.9)TSFC0 (A7)

Fuel law (c), excluding wave drag, has analytical solution for the MRC airspeed:

−D
v + ∂D

∂v + D
TSFC ·

∂TSFC
∂v = −D

v + ∂D
∂v + D · n · v−1 = 0

⇒ Cp(1 + n)v4 + Ci(n− 3) = 0
(A8)

vMRC = 4

√
Ci(3− n)
CP(1 + n)

=

(
3− n
1 + n

)1/4
·
(

Ci
CP

)1/4
=

(
3− n
1 + n

)1/4
· vMD (A9)

This is also a well-known analytic performance result [48,52]. For n = 1 in Equation (A7),
VMRC = VMD (or in Mach equivalent) because the fuel-flow law is linearly dependent on
the Mach number. For n = 0 (no speed-dependence) in Equation (A9), speed-independent
result VMRC = 1.316 × VMD is recovered (Equation (A4)). For typical turbofan engines
values of n = 0.5 [48,52], the MRC cruise speed is about 1.136 × VMD. Speed-dependent
fuel law (c), including wave drag, is a polynomial of 12th-degree that has no analytical
solution, but real positive roots were computed using NR nonlinear solver implemented
here:
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(5 + n)Adwv12 + (4 + n)Bdwv11 + (3 + n)Cdwv10 + (2 + n)Ddwv9 + (1 + n)
(

Edw + CD0
20

)
v8+

nFdwv7 + (n− 1)Gdwv6 + (n− 2)Hdwv5 + (n− 3)
(

Idw + Ci
CD0
20Cp

)
v4 + (n− 4)Jdwv3+

(n− 5)Kdwv2 + (n− 6)Mdwv + (n− 7)Ndw = 0

(A10)

Constant-Mach and aerodynamic-efficiency flight still-air range utilizing fuel-law (c)
becomes [30]:

R(c)
12 =

aSL
TSFC0

(
M1−n L

D

)
ln
(

W1

W2

)
(A11)
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