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Abstract. As many molecules have their rotovibrational resonance frequencies in the mid-
infrared or terahertz regime, efficient generation of corresponding frequency combs may lead
to large progress in gas spectroscopy and sensing. Quantum cascade lasers (QCLs) are among
the most promising candidates for a compact and cheap radiation source in this frequency
range. This contribution presents a full-wave numerical solution of the Maxwell-Liouville-von
Neumann equations, thus avoiding the limited applicability of the rotating wave approximation
to moderate field strengths and spectral bandwidths. We include losses and chromatic dispersion
of the optically active material in the QCL. The semiclassical approach uses the finite-difference
time-domain (FDTD) method to derive update equations for the electric field, starting from the
one-dimensional Maxwell equations. There, the optical full-wave propagation is coupled to the
electronic quantum system via a polarization term that arises from the evolution of the density
matrix. Furthermore, dispersion effects are considered through a classical polarization term
and losses are introduced by a finite material conductivity. This work mainly focuses on the
integration of group velocity dispersion (GVD) due to the bulk material and, if applicable, the
waveguide geometry into the update equations. It is known to be one of the main degradation
mechanisms of terahertz frequency combs, but has not yet been added to the existing full-wave
solver. The implementation is carried out as Lorentz model and is applied to an experimentally
investigated QCL frequency comb setup from the literature. The reported results are in
good agreement with the experimental data. Especially, they confirm the need for dispersion
compensation for the generation of terahertz frequency combs in QCLs.

1. Introduction
Due to the rapid evolution of solid-state optoelectronic devices the demand for predictive
simulation software of these systems increases naturally. The recently presented open-
source tool mbsolve [1] enables rapid full-wave device modeling. The underlying physical
description consists of the Maxwell-Bloch equations, as they are suitable to model light-matter
interactions, even in nonlinear regimes [2, 3]. They offer a semiclassical framework, where a
propagating electromagnetic wave is described classically by the Maxwell’s equations, whereas
the electronic system is described in a quantum mechanical framework using the density
operator. The temporal evolution of the density operator is governed by the Liouville-von
Neumann equation [4]. The Maxwell equations and the Liouville-von Neumann equation are
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coupled by the material polarization that depends on the quantum state and changes the optical
properties for the solution of the classical field. For a simple two-level system, the von Neumann
equation reduces to the Bloch equations, which can be solved more efficiently. However, the
simulation of more realistic devices requires the extension to multiple quantum levels, where
we solve for the complete density operator in a generalized Maxwell-Bloch approach using the
full quantum Liouville equation. This extension has been proven suitable for the simulation of
more sophisticated structures [4,5]. Among many different possible systems the most prominent
ones are quantum dots (QDs) and quantum cascade lasers (QCLs) [6, 7]. In recent years, a lot
of effort has been put into the development and refinement of efficient numerical solvers in the
Maxwell-Bloch framework, in order to study these devices [8–20].

Often the rotating wave approximation (RWA) and the slowly varying envelope
approximation (SVEA) are used to achieve a significant reduction of the numerical workload [3,
4]. However, for certain applications, like the description of ultrashort pulses in optical
waveguides [21] or octave-spanning QCL frequency combs [22], the approximations may omit
crucial features [23]. Therefore, the mbsolve project avoids to invoke these assumptions in order
to properly account for all possible dynamics [1].

A further assumption which is often made is to treat the background refractive index of
a material as a constant, while in reality, however, it is a frequency dependent quantity [2].
Therefore, the effect that different frequency components of the electromagnetic wave travel with
different velocities, also called group velocity dispersion (GVD), gets neglected. In the current
implementation of mbsolve [24], background material dispersion is not explicitly included.
Unfortunately, this effect is known to be one of the main degradation mechanisms of frequency
comb formation in QCLs [25,26]. Thus, in the contribution at hand, we include a suiting model
of group velocity dispersion to the existing solver, in order to apply it to a well studied QCL
structure and discuss the influence on terahertz frequency comb formation. It is shown that
proper dispersion modeling indeed accounts for degradation in the comb formation, which is in
good agreement with experimental evidence [27]. Further, it should be noted that also dispersion
due to the waveguide geometry can be accounted for in this approach by using suitably adapted
GVD parameters.

In section 2 we introduce our theoretical model for the group velocity dispersion, as well as
the Maxwell and Liouville-von Neumann equations. We then derive the update equation for the
electric field containing the dispersion formulation. The physical structure of the exemplary QCL
frequency comb is given in terms of its electronic potential and the corresponding wavefunctions
in section 3. Simulation results that demonstrate the influence of dispersion on terahertz
frequency comb generation are presented. Finally, in section 4 we summarize our results and
conclude the contribution.

2. Theoretical model
Group velocity dispersion arises from a frequency dependent refractive index, or equivalently,
a frequency dependent relative permittivity within a waveguiding material. In this section we
present a dispersion model, as well as a concept for coupling it to the generalized Maxwell-
Bloch approach. Subsequently, we outline its numerical treatment using the finite-difference
time-domain (FDTD) method.

2.1. Spectral permittivity function
In order to describe the variable relative permittivity, an analytic function in the spectral domain
can be defined. Here, several models exist which are used in different applications [28]. The most
common ones are the Debye, Drude and Lorentz models, which should be selected depending on
the conductivity of the respective material. More recently developed dispersion models include
the quadratic-complex rational function (QCRF), complex conjugate pole-residue (CCPR), and
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the critical point (CP) technique [29]. In this work we decided to use the Lorentz model, as
it is a fairly simple but sufficient description of dispersion in slightly n-doped semiconductors
(around 1 × 1015 cm−3). For doping concentrations that are by orders of magnitude larger, a
change to the Drude model or an extension to a Drude-Lorentz model should be considered [30].
The low doping requirement of the Lorentz model is typically met in optoelectronic devices,
however, our implementation will allow to easily change to a different model.

The Lorentz formulation of the spectral permittivity function is given as

εr(ω) = εr,∞ + χ(ω) = εr,∞ +
∆εω2

0

ω2
0 − 2iωδ − ω2

, (1)

where χ(ω) is the material susceptibility and ∆ε = εr,s − εr,∞ is the difference of the static
relative permittivity εr,s and the relative permittivity at infinite frequency εr,∞. The other two
parameters refer to the resonance frequency ω0 and a damping constant δ. Equation (1) possesses
two complex conjugate poles, with a positive and negative resonance frequency, respectively.
Physically they refer to a resonant phonon excitation in the material at ω0, which leads to the
absorption of light [30].

The generalized Maxwell-Bloch formalism, however, is defined in time domain. Thus, we
seek a temporal representation of the spectral function in order to integrate it to the current
implementation of mbsolve. This can be done by introducing a classical polarization term Pclass

in Maxwell’s equations. This approach arises from the general identity for the polarization
P = ε0χE. Finally, after an inverse Fourier transformation the Lorentz function will be
distributed to coefficients within the update equation for the electric field using the FDTD
method.

2.2. Generalized 1D Maxwell-Bloch formalism
With a suitable dispersion model at hand, the generalized Maxwell-Bloch equations shall be
discussed briefly. In three dimensions the coupling of Maxwell’s equations to the Liouville-von
Neumann equation turns out to be rather complex. However, for typical optoelectronic devices
we can separate transversal and longitudinal modes within a waveguide and thus it is sufficient
to solely consider the propagation direction of the optical field [1, 4]. In a coordinate system
where x is the propagation direction and y and z are the transversal coordinates, we can identify
Ez(x, t) and Hy(x, t) as the descriptive field components. It is then possible to reduce Maxwell’s
equations to a time evolution equation of the electric field, given by

∂tEz = ε−1(−σEz − Γ∂tPz,qm − ∂tPz,class + ∂xHy) , (2)

and a time evolution equation of the magnetic field

∂tHy = µ−1∂xEz . (3)

There, ε and µ represent the total material permittivity and permeability, respectively. The two
classical contributions, Pz,class and σEz, model the polarization caused by bulk and waveguide
dispersion as well as the material losses. The interaction of the optical field with the quantum
system is given by the term Γ∂tPz,qm. The overlap factor Γ ∈ [0, 1] accounts for the ratio of
the spatial overlap between the field and the quantum system. Finally, ∂tPz,qm is the temporal
derivative of a polarization which arises from the time evolution of the density operator

∂tPz,qm = n3D tr{µ̂z∂tρ̂} , (4)

where the density operator itself is governed by the Liouville-von Neumann master equation

∂tρ̂ = −i~−1[Ĥ0 − µ̂zEz, ρ̂] +D(ρ̂) . (5)

For more details, we refer to [1].
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2.3. Numerical Treatment
As the inclusion of group velocity dispersion affects the classical Maxwell equations, the FDTD
update equations for the electromagnetic field need to be modified. In order to derive update
equations that can be implemented numerically, we apply the centered differencing scheme
to equations (2) and (3). The discrete spatial and temporal indices are denoted by m and n,
respectively. The spatial discretization length is given by ∆x and time is discretized in multiples
of ∆t. The electric field Ez at the next timestep n+ 1 at a certain location m is given by

Em,n+1
z = aEm,n

z + b

[
1

∆x

(
H

m+ 1
2
,n+ 1

2
y −H

m− 1
2
,n+ 1

2
y

)
− Γ∂tP

m,n+ 1
2

z,qm

]
− d

(
Pm,n+1
z,class − Pm,n

z,class

) (6)

with the coefficients

a =
2ε− σ∆t

2ε+ σ∆t
, b =

2∆t

2ε+ σ∆t
, d =

2

2ε+ σ∆t
.

The magnetic field update equation results in

H
m+ 1

2
,n+ 1

2
y = H

m+ 1
2
,n− 1

2
y +

∆t

∆xµ

(
Em+1,n

z − Em,n
z

)
. (7)

The field components Ez and Hy as well as the density operator ρ̂ lie on a Yee grid, where the
respective electric and magnetic field grids are shifted by half a discretization length [1]. Note
that the temporal derivative of the quantum mechanical polarization in (6) is not discretized
intentionally. The mbsolve subroutine for the time evolution of the density operator explicitly
returns the time derivate of the polarization induced by the quantum system.

Notably, the calculated electric field Em,n+1
z depends on the polarization at the same

timestep Pm,n+1
z,class , which prevents direct updating at this point. Therefore, we use the relation

P (ω) = ε0χ(ω)E(ω) and apply the inverse Fourier-transform and centered-differencing scheme
to obtain an update equation for the classical polarization [29]

Pm,n+1
z,class =

Cd

Ca
Em,n+1

z +
Ce

Ca
Em,n

z +
Cf

Ca
Em,n−1

z − Cb

Ca
Pm,n
z,class −

Cc

Ca
Pm,n−1
z,class . (8)

Equation (8) contains the information of the spectral permittivity function (1) about the group
velocity dispersion in the prefactors Cj/Ca with j ∈ {b, c, d, e, f}. The coefficients have the
following values [29]:

Ca = 2(1 + δ∆t) , Cb = 2ω2
0∆t2 − 4 , Cc = 2(1− δ∆t) ,

Cd = 0 , Ce = 2∆εω2
0ε0∆t2 , Cf = 0 .

Inserting these coefficients into the update equation (6), it is now possible to solve explicitly
for Em,n+1

z . Due to vanishing Cd and Cf the update equation for the classical polarization is
only dependent on values of the previous timestep. It should be noted that this simplification
is also valid for the Debye and Drude dispersion models. Starting from our formulation, these
two models can be implemented by changing Ca, Cb, Cc, and Ce [29]. Nevertheless, it is useful
to keep the factors Cd and Cf at this point as they become relevant for more advanced models
(QCRF, CCPR, CP).

Substituting (8) into (6) yields the final update equation for the electric field

Em,n+1
z = aEm,n

z + b

[
1

∆x

(
H

m+ 1
2
,n+ 1

2
y −H

m− 1
2
,n+ 1

2
y

)
− Γ∂tP

m,n+ 1
2

z,qm

]
+ d

(
Pm,n
z,class −Wm,n

1

)
.

(9)



IC-MSQUARE 2021
Journal of Physics: Conference Series 2090 (2021) 012082

IOP Publishing
doi:10.1088/1742-6596/2090/1/012082

5

Here, the non-physical quantity W1 has been introduced to avoid storing of full field samples of
two independent timesteps, which would have been necessary according to Pm,n−1

class in (8). This
introduction makes the implementation more memory efficient [29]. The quantity W1 contains
information of two timesteps by introducing a second quantity W2. These two variables are
linked to the dispersion polarization term Pz,class by

Pm,n+1
z,class = Wm,n

1 , (10)

Wm,n+1
1 =

Ce

Ca
Em,n+1

z − Cb

Ca
Pm,n+1
z,class +Wm,n

2 , (11)

Wm,n+1
2 = −Cc

Ca
Pm,n+1
z,class . (12)

Notably, in the above equation (11), the coefficient for Em,n+1
z is Ce

Ca
while in (8) this is the

coefficient of Em,n
z . This is due to the fact that the electric field has already been updated in

this timestep and therefore Em,n
z becomes Em,n+1

z , while the coefficient stay the same. Thus
it is important to carry out the calculations for the electric field and the polarization in the
correct order. This form of the update equations has been implemented in mbsolve, however,
the project is under active development and thus the equations may change at any time.

In order to assure the correctness of the dispersion implementation we simulated a test
scenario described in [28]. In this experiment, the evolution of a hyperbolic secant pulse entering
and passing through an exemplary dispersive medium is investigated. The nearly identical results
indicate the validity of the implemented method.

3. Dispersion in QCL frequency combs
After verifying the implementation, the dispersion aware model has been applied to a well studied
and experimentally tested QCL frequency comb structure [16,27]. The simulation setup and the
results are presented and discussed in the following.

3.1. Setup for comb generation
In horizontal direction, the optical propagation direction, the cavity length of the QCL frequency
comb structure is 5mm. Along the vertical axis, a QCL typically consists of many identical
periods of optically active quantum-well systems [13]. As we wish to reduce the numerical load
of our calculations as far as possible, we only consider a single period of the quantum system
and apply periodic boundary conditions.

In one period, the physical processes can be modeled by a five-level system. This is visualized
in Figure 1, where the potential and associated quantum states of roughly one and a half periods
are plotted along the growth direction z. Of the seven states that can be seen in Figure 1, the
dashed curves refer to states of the adjacent period. They are taken into account to indicate
the periodicity of the system and are equivalent to the solid blue and orange line. These two
states serve as injector levels |INJ1〉 and |INJ2〉. They supply charge carriers to the upper laser
level |ULL〉 of their respective period. The splitting of these three states is necessary in order to
correctly model coherent tunneling through the injector barrier according to the tight binding
approximation [13]. At the given bias field of 11 kV/cm, as shown in Figure 1, the eigenenergies
of |INJ2〉 and |ULL〉 assume nearly identical values. We can therefore assume |INJ2〉 to be the
main injector state [19]. In order to model this asymmetric carrier injection we choose the rate of
quantum mechanical dephasing between |INJ1〉 and |ULL〉 to be 3.33×1015 s−1 which is ≈ 2 000
times larger than the rate between |INJ2〉 and |ULL〉 (1.67× 1012 s−1).

The remaining two energy eigenstates are the lower laser levels |LLL1〉 and |LLL2〉. However,
in our model a dipole moment of 4 nm × e only exists from |ULL〉 to |LLL1〉, where e is the
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Figure 1. Potential and according quantum state probability distributions of the investigated
QCL structure at a bias field strength of 11 kV/cm.

Table 1. Selected parameters of the Lorentz dispersion model for n-doped gallium arsenide.

εr,s εr,∞ ω0 in THz δ in GHz

12.96 10.89 2π 8.070 2π 37.474

elementary charge. Thus, there is only a single radiative transition at a center frequency of
f = 3.869THz. Nevertheless, non-radiative transitions from |ULL〉 into |LLL2〉 remain possible,
so they are modeled by a corresponding scattering rate.

In order to achieve laser operation |LLL1〉 needs to be efficiently depopulated into the next
period, which typically happens by tailored depopulation levels [13]. However, in this case they
coincide with the injector levels of the next period. Thus, we obtain scattering rates between
the two lower laser levels and the injector levels of the next period.

An overview of the included eigenenergies, scattering, and dephasing rates of the quantum
mechanical model is given in the appendix. They were extracted by a Schrödinger-Poisson solver
and the Ensemble-Monte-Carlo method, respectively.

3.2. Dispersion parameter choice
Before simulating the QCL structure, parameters for the Lorentz dispersion model must be
chosen carefully, in order to match the gallium arsenide (GaAs) bulk material. The values for
the reststrahlen region were extracted from literature [30,31]. An overview of these parameters is
shown in Table 1. The frequency dependent permittivity function (1) with the according Lorentz
parameters is plotted in Figure 2. We observe that the phononic resonance frequency of the
n-doped GaAs lies around 8THz. Consequently, the operation of a laser at this frequency would
be unfeasible. However, also for devices operating close to this pole, like our QCL frequency
comb structure (≈ 4THz), the varying relative permittivity should be taken into account.

In subfigure 2 (a) the real part of the complex permittivity function is plotted, where the
relative permittivity value for a frequency of 4THz is highlighted. At this point the relative
permittivity has a value of about 13.64 with a positive slope. This will lead to different round
trip times for distinct frequency modes in the laser cavity and thus to group velocity dispersion.

The same pole close to 8THz can be seen in the imaginary part, depicted in subfigure 2 (b).
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Figure 2. Real part (a) and imaginary part (b) of the permittivity according to the Lorentz
model using the parameters from Table 1.
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Figure 3. Gaussian pulses included in the conducted computer experiment. In (a) the excited
pulse at the first cavity interface is plotted. The recorded pulse at the second interface is shown
in (b) without the explicit dispersion model, and in (c) applying the model.

The imaginary part of the function accounts for additional losses. Therefore, field components
with a frequency close to the pole will experience large damping. This also implies that the
overall field strength inside the cavity will be smaller compared to the non-dispersive case, while
the overall power gets distributed over a broader frequency range.

3.3. Dispersion mechanisms
In order to identify the included dispersion mechanisms, we perform a time-domain pulse
distortion simulation. The system is excited with a Gaussian field pulse at one interface of the
cavity. The initial pulse, plotted in Figure 3 (a), travels through the medium once (half a cavity
round trip) and is finally observed at the other cavity facet. This simulation was conducted
twice, once without the inclusion of the newly modeled bulk material and waveguide dispersion
(we also call this case ”dispersion-free”), and once using the modified update equations. The
observed pulse shape, assuming a non-dispersive medium, is given in Figure 3 (b). The one
containing waveguide dispersion on the other hand is plotted in Figure 3 (c). The results show
that the interaction of the optical field with the quantum system indeed leads to an amplification
of the pulse in both cases. We see that in Figure 3 (b), even in the absence of the explicit group
velocity dispersion, the initial pulse gets broadened and distorted. This effect can be attributed
to the chromatic dispersion caused by the quantum system, which was also observed in previous
simulations and experiments. This effect is known to account for the degradation of frequency
combs on its own [16,26,27].
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However, in Figure 3 (c), where we additionally include the classical group velocity dispersion
of the gain material, it can be seen that the broadening effect gets more pronounced. This
confirms the effects of a longer round trip time and increased damping, predicted in section 3.2.
The pulse in Figure 3 (c) is arriving roughly 5 ps later at the second interface as a consequence of
the increased real part of the permittivity. The amplified field strength in the case of additional
dispersion is smaller, due to damping included in the imaginary part of the relative permittivity.

When putting these results together we notice that two contributions to the overall dispersion
are present: one part arising from the interaction of the optical field with the quantum system
and the other part from the classical material dispersion, which was added within this work.
Experimental results show that a special dispersion grating can be used, such that both
contributions roughly cancel each other. This leads to an improved laser performance [27].
In our present work we refrain from modeling this elaborate grating and rather investigate
the effect of including the classical material dispersion of bulk GaAs on the frequency comb
generation.

3.4. Frequency comb operation
We now investigate the frequency comb operation properties of the aforementioned device.
Therefore, we randomly initialize the electric field with zero mean and a standard deviation of
roughly 5×10−16V/m at each grid point within the cavity. For the quantum system we assume
nearly perfect population inversion at the beginning to enhance light-matter interaction. The
system then evolves for 60 ns, which corresponds to about 500 round trips of the optical field
in the cavity. The full-wave electric field strength over time at the interface of the cavity is
recorded for further data processing.

3.4.1. Spectral results The laser enters a steady state operation regime after around 250 round
trips. Thus, we Fourier transform the recorded field data starting at that point in time and
obtain the output spectrum of the laser. The resulting frequency comb spectra are depicted
in Figure 4, again for the ”non-dispersive” case (a) and (b), and for the dispersive case (c)
and (d). Let us first consider the case, where only dispersion due to the quantum system is
present. In Figure 4 (a) it is clearly visible that two distinct frequency comb lobes have formed.
The one at lower frequencies, plotted in orange color, has a center frequency of about 3.72THz
and the higher frequency comb, drawn in blue color, builds up around 4.02THz. The different
coloring was chosen to aid the reader in keeping track of the different modes when looking at
temporal results. The division of the spectrum is done by applying a bandpass filter to each of
the lobes. In this normalized linear intensity plot, we can count about 20 distinct comb modes,
where the ones of the higher frequency lobe are clearly dominant. On a logarithmic scale even
up to 70 modes can be identified in the considered frequency range. This result matches well
to the results of the same structure simulated using the rotating wave approximation [16], also
including chromatic dispersion due to the quantum system.

We further consider the RF beatnote of the field at the cavity interface in Figure 4 (b). A
prominent peak around 8.1GHz can be observed. It drops rapidly to −20 dB and for further
spaced frequencies even to less than −50 dB. This indicates that the different field modes mainly
travel with a similar group velocity. However, here the frequency resolution is limited by the
Fourier transform to roughly 16MHz. A closer investigation of the beatnote would require a far
longer simulation time, which is unfeasible using our full-wave approach.

Now we compare the presented results to the case where bulk material and waveguide
dispersion gets additionally included. In Figure 4 (c), it is clearly visible that both lobes
show a decreased intensity and a broadened spectrum. The intensities in the plot are still
normalized to the highest intensity mode of the non-dispersive comb for better comparison. It
can be observed that the number of identified modes increased and the power is more equally
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Figure 4. Simulation results of the THz frequency comb and the RF beatnote. In the absence
of background and waveguide group velocity dispersion (GVD) two clear and distinct frequency
combs (a) and a sharp beatnote (b) arise. When including this kind of GVD, the two combs
broaden and loose intensity (c). The beatnote becomes more distorted (d).

distributed. Integrating over all modes delivers roughly the same overall power in both cases
(non-dispersive and dispersive).

Finally, we can conclude that through material dispersion additional modes arise which carry
parts of the energy of the previous modes. The system behavior becomes more irregular and an
efficient generation of the desired comb spectrum gets deteriorated. This argument is supported
by the RF beatnote shown in Figure 4 (d). It is obvious that, compared to the case of no
waveguide dispersion, more power is distributed to side modes of different round trip frequencies.
The most dominant peak is almost −3 dB weaker than in Figure 4 (b). The shift of the center
frequency to below 8GHz can be explained by the increased permittivity due to the pole in the
spectral function and the associated longer round trip time.

3.4.2. Time domain results Aside from the spectral results, it is also worthwhile to have a
brief look at the time resolved fields, in order to further support the interpretation. In Figure 5
again two plots can be seen, in which the field envelopes are depicted. The included time spans
over the last three round trips and the fields refer to (a) the dispersion-free case and (b) to
the case of dispersive waveguide material. Notably, the division into orange and blue parts for
the lower and higher frequency contributions reappears in these plots. In Figure 5 (a) a clear
distinction of the field into the higher and lower frequency lobe can be seen. The fact that the
blue lobe dominates the temporal behavior is consistent with the fact that the higher frequency
lobe has larger intensity in the spectral plot in Figure 4 (a). Both components are alternating
temporally at the cavity interface. This effect has already been observed experimentally, as well
as in simulations, and was named ”temporal hole burning” [16,32]. The reason of this behavior
is believed to lie in the strong anti-crossing of the injector quantum states.

For the dispersive case shown in Figure 5 (b) we observe decreased intensity and large



IC-MSQUARE 2021
Journal of Physics: Conference Series 2090 (2021) 012082

IOP Publishing
doi:10.1088/1742-6596/2090/1/012082

10

497 498 499 500
0

0.5

1

Round trips

In
te

ns
ity

in
a
.u
.

(a)

497 498 499 500
0

0.5

1

Round trips

(b)

Figure 5. Electric field envelope at the interface of the laser cavity for the last three simulated
round trips. In absence of bulk and waveguide dispersion (a) a clear temporal separation between
the higher and lower frequency lobe is visible. By inclusion of this kind of chromatic dispersion
(b) the field is distributed to more modes with less intensity and the clear temporal separation
is lifted.

distortions of the envelopes. Again, we normalize the field to the highest intensity achieved
in the non-dispersive case. It can be seen that even in the presence of many parasitic modes, the
periodicity and exchange of the field components, or ”temporal hole burning”, is still present.
This is not surprising since the explicitly included dispersion model does not directly affect the
quantum system but only acts on the propagating field in the cavity.

Nevertheless, these results imply that waveguide dispersion is disadvantageous for stable
frequency comb operation. Thus, we can support the assumption that a dispersion compensation
grating contained in the waveguide is necessary for THz frequency comb operation [27].

4. Conclusion
In this contribution we presented an extension to the open-source solver tool mbsolve that adds
chromatic dispersion due to the bulk material and waveguide geometry. The mathematical
formulation of a frequency dependent permittivity could be integrated into the generalized
Maxwell-Bloch equation system. Notably, it is possible to replace the Lorentz dispersion model
considered for the present paper by several other models at comparably low effort. In order
to validate our extension, we simulated a terahertz frequency comb QCL structure using the
modified update equations. The results showed that the added group velocity dispersion leads
to a degradation of frequency comb formation, which coincides with experiments and common
literature. The presented work can be used to predict the performance of quantum-optical
devices more accurately. In particular, this allows to engineer chromatic dispersion due to the
bulk material and waveguide geometry such that it compensates for other dispersion mechanisms,
e.g. by choosing a waveguide design with an integrated grating. With this, we hope to be able
to contribute to the improvement of quantum-optoelectronic devices.
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Appendix

Table A1. Energies of the five eigenstates in a single QCL period at a bias field of 11 kV/cm.

|INJ1〉 |INJ2〉 |ULL〉 |LLL1〉 |LLL2〉

4.065meV 0 eV 0 eV −0.016 eV −0.021 eV

Table A2. Scattering rates between states (×1012 s−1).

|INJ1〉 |INJ2〉 |ULL〉 |LLL1〉 |LLL2〉

|INJ1〉 0 0.495 0.097 0.812 1.041
|INJ2〉 0.825 0 0.136 0.662 1.124
|ULL〉 0.023 0.047 0 0.079 0.036
|LLL1〉 0.005 0.003 0.125 0 0.281
|LLL2〉 0.005 0.005 0.110 0.495 0

Table A3. Additional simulation parameters.

Parameter Value

Lin. amplitude loss 11 cm−1

Avg. carrier density 5.6× 1015 cm−3

Overlap factor 0.9
Mirror reflectivity 0.8
Anti-crossing energy |INJ1〉 ↔ |ULL〉 1.18meV
Anti-crossing energy |INJ2〉 ↔ |ULL〉 1.38meV
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