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Abstract. Knowing the origins and destinations of pedestrians’ paths is key to
the initialization of crowd simulations. Unfortunately, they are difficult to mea-
sure in the real world. This is one major challenge for live predictions during
events such as festivals, soccer games, protest marches, and many others. Sensor
data can be used to feed real-world observations into simulations in real-time.
As input data for this study, we use density heatmaps generated from real-world
trajectory data obtained from stereo sensors. Density information is compact, of
constant size, and in general easier to obtain than e.g., individual trajectories.
Therefore, the information limitation improves the applicability to other scenar-
ios. We include the absolute pedestrian trip counts from origins to destinations
during a brief time interval in an OD matrix, including unknown destinations
due to sensor errors. Our goal is to estimate these OD matrices from a series of
density heatmaps for the same interval. For this, we compute the ground truth
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OD matrices and density heatmaps using real-world trajectory data from a train
station. We employ linear regression as a statistical learning method for estima-
tion. We observe that the linear share of the relationship between density and
OD matrix is estimated successfully. Nevertheless, a portion of the data remains
that cannot be explained. We attempt to overcome this difficulty with random
forest as a nonlinear model. The results indicate that both a linear and a non-
linear model can estimate some features of the OD matrices. However, there is
no clear winner in terms of the chosen metric, the R* score. Overall, our findings
are a strong indicator that OD matrices can indeed be estimated from density
heatmaps extracted automatically from sensors.

Keywords: machine learning, nonlinear dynamics, traffic and crowd dynamics
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1. Introduction

Crowd simulations are an important tool to enhance safety and security at events. They
are cheap to perform when compared to experiments and field observations, and they
are simple to modify to study different setups. There are several models available today
for microscopic crowd simulations. Common models are based on differential equations,
such as social force models [1, 2|, rule-based models, such as cellular automata [3], or
utility-based models, such as the optimal steps model [4, 5].

In most agent-based simulations, the origin and destination of agents are essential
for the initialization of the simulation. In addition, they have a great impact on the
prediction. Values are frequently chosen today based on experience, observations from
experiments or in the field, and surveys. While these initialization options are appro-
priate and useful in a variety of situations, they are typically static or only vary over
longer time frames, at least hours.

Today, crowd simulations are not only used during the planning phase, but also for
live predictions at events [6-10]. This relatively new application presents challenges: a
static initialization is no longer sufficient. To perform a realistic live prediction, methods
for using data from sensors as input for the simulation must be identified. The simu-
lation must be fed continuously with reliable dynamic information on the origins and
destinations of the agents.

1.1. Goals

We propose a parameter learning approach based on real-world data to determine the
number of pedestrians moving from each origin to each destination. This methodology
can be integrated into an online learning setup for a live prediction. Our data set contains
pedestrian trajectories in a train station overpass with stairs, escalators, and elevators
that lead to the platforms provided by Swiss Federal Railways (SBB).

In most setups, real-world trajectory data is hard to obtain, even when video footage
of crowds is available, since extracting trajectories from video material is still a non-
trivial task. Density heatmaps, on the other hand, can be obtained from a variety of
sensor types, such as video data [11]. In addition, the density heatmaps are of constant
size for a given observation area and resolution. This is necessary for the statistical
learning models. As a result, instead of using the full trajectories, we derive crowd
density heatmaps from the trajectories to increase the likelihood of application.
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The information about the origins and destinations of the pedestrians is encoded
in an origin-destination (OD) matrix that, in addition, contains information about the
popular paths. This is a standard format for pedestrian dynamics and traffic simulation.
It can be used as a Markov chain model for direct prediction as well as to initialize
simulations. We are interested in the latter case, particularly in the context of live
predictions.

1.2. State-of-the-art OD matrix estimation

Real-time event prediction is a new challenge in the pedestrian dynamics community.
Therefore, several issues need to be addressed. Most importantly, code acceleration and
initialization. At a minimum, the algorithms must be real-time capable. To improve
pedestrian safety, the computation of predictions has to be fast enough to allow enough
time to take action. Static initialization is no longer sufficient. Instead, the current
state must be translated into simulation inputs and fed to the simulation. The prob-
lems associated with real-time capability, as well as approaches to solving them, are
described in [12]. Here we focus on initialization, keeping in mind the computational
cost.

First, we take a look at studies that aim to set up systems for real-time prediction.
Kemloh Wagoum et al propose a real-time evacuation assistant for evacuating 50000
pedestrians from a stadium [8]. An automated pedestrian count is fed into the simulation.
The paper’s emphasis, however, is on parallelizing and speeding up the algorithm. Baqui
and Lohner present a framework for analyzing crowd density in Hajj video footage
[6]. A machine learning model is used to estimate the density from headcounts. The
estimation’s goal is to initialize a microscopic crowd simulation.

Next, we focus on the literature on the estimation of OD matrices. These publi-
cations focus on OD matrix estimation without providing a framework for real-time
predictions. OD matrix estimation is an established research topic in traffic simulations
[13, 14]. Pitombeira Neto et al present a review in [15]. Static OD matrices are often
sufficient for automobile traffic. However, dynamic OD matrices are required for crowd
simulation because we observe more fluctuations and pedestrians have more degrees
of freedom in their movement. The first step in estimating OD matrices is to spec-
ify the origin and destination of the agents. We define them based on the trajectory
data in the overpass scenario. This, however, is not always possible. Khan et al use
an unsupervised hierarchical clustering algorithm to determine the locations of origins
and destinations using short trajectories, known as tracklets, automatically extracted
from the video footage [16]. Their approach is applied to six scenarios: an airport, the
Hajj, a train station, an escalator, a university campus, and a gallery in downtown
Milan.

In [17], the dynamic origin-destination matrices are only an intermediate result to
validate a crowd model based on points of interest. Pouke et al derive city-level OD
matrices from Wi-Fi mobility traces collected in downtown Oulu, Finland. Using a con-
volutional neural network (CNN), Li et al estimate OD matrices from RGB-D images
for low visibility emergencies [18]. RGB-D images are created by combining an RGB
image with the corresponding depth image. CNNs are appropriate for this task because
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they are trained on images directly. The ground truth is obtained by manually labeling
pedestrians. The study is conducted using RGB-D cameras installed in the hallways
of a university building. Chan et al employ a two-stage programming model, a com-
monly used approach for estimating the OD matrix in automobile traffic simulation [19].
The inputs to the method are pedestrian counts. The two-stage programming model is
demonstrated on an abstract, large-scale network.

Pedestrian traffic in stations or even in a citywide transit system is of greater interest
because these areas have a larger number of potential origins and destinations. Wong
and Tong estimate dynamic OD matrices for the entire transportation system using
observed ridership from Hong Kong [20]. They employ an entropy-based approach. To
predict pedestrian flows within Takatsuki Station in Japan, Ahn et al estimate a static
OD matrix [21]. They estimate the OD matrix using Kawakami’s gravity model. The
estimation is based on manually observed traffic counts at the station. Bauer calculates
daily averaged OD matrices using pedestrian counts collected by sensors at entrance
and exit points [22]. This data comes from an Austrian shopping mall. The data is
divided into two sets, training and validation, and the performance is measured using
the R* score. A generalized method of moments is used to estimate the OD matrices.
Hanseler et al estimate dynamic OD matrices at Lausanne station based on tracking
data, travel surveys, and train schedules [23]. While they have a similar goal, we estimate
OD matrices using only relatively simple density data rather than combining different
types of data. This information restriction makes it much easier to collect data in a
complex scenario, such as a train station, reliably and continuously. As a result, its
applicability improves.

1.3. Research question

The research question of this study is: can we learn dynamic OD matrices? More pre-
cisely, can we estimate OD matrices for a short time interval based on a series of density
heatmaps? We perform a feasibility study that addresses this research question. Our
goal is to find out if it is possible to predict the OD matrix for a brief time interval
given a short series of density maps. It is not in our interest to find the model with the
lowest error.

Previously, we investigated how to predict the distribution of a pedestrian flow across
three different destinations [24]. The crowd simulation tool Vadere [25] was used to
simulate the surrogate input data from which we obtained the heatmaps. Based on
this, we incorporated experimental trajectory data from the Jiilich research center [26]
to predict the origin distribution of three pedestrian flows that all lead to the same
destination [27]. In both cases, the estimation of the distribution of agents or pedestrians
between origins and destinations is highly accurate. However, the studies were based
on either artificial data or controlled experiments, both with unidirectional flows and
limited variation in behaviors. While the results are encouraging, their informative value
is limited, and one hesitates to generalize to real-world data. Therefore, we now test ideas
and methods on real-world data to see if it is possible to predict where people come from
and where they go. In a train station, we investigate pedestrian flow through an overpass
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with stairs leading to platforms and the station hall. Since the flow is multidirectional,
predicting the distribution of agents only among the origins or destinations is no longer
sufficient. Instead, we forecast entire OD matrices.

2. Preprocessing of trajectory data

In this section, we describe the train station overpass in which the pedestrian trajectories
are recorded. We provide a brief analysis of the observed speeds and the pedestrian
count. Then, we describe the calculation of the density heatmaps and the ground truth
OD matrices from the dataset.

2.1. Scenario: train station overpass

For this study, we use pedestrian trajectories recorded on three days of September 2019
by SBB in an overpass (of approximately 60 m x 20 m) in a train station with exits to
several platforms and the station hall (cf figure 1). Xovis’ stereo sensors were used to
generate the trajectories. A collection of these sensors is installed in the ceiling. Each
pedestrian’s location is determined and tracked across the sensor array. Tracks of three-
dimensional positions with a temporal resolution of 100 milliseconds are contained in
the dataset. For this study, height data is omitted. The data contains some flaws, such
as time gaps of up to three seconds during which the positions are missing. Further-
more, whenever the sensor loses track of a pedestrian, a new measurement is initiated.
Therefore, some trajectories may be broken into multiple parts with different pedestrian
ids.

The density heatmaps and the ground truth OD matrices, used as input and output
for the estimation, are generated from the raw trajectory data. The density is calculated
using trajectory snippets within a time interval of fixed length, At = 10 s. This decision
is based on the rough calculation below: pedestrians move an average of eleven meters
in ten seconds, which is a substantial distance in the overpass but shorter than the OD
links. Time intervals with fewer than ten pedestrians in the overpass are not taken into
account. The trip counts for the true OD relationships are derived directly from the
trajectory data as well. Note that we ignore measurement errors in the trajectories. We
would also like to point out that any method for obtaining density maps from video
footage entails errors that we cannot account for here. In our case, the raw data stems
from stereo sensors installed on an indoor ceiling, hence their setup is optimized for
pedestrian tracking. In most applications, this is not the case and measurement error
may compromise the process we propose in this contribution.

2.2. Analysis of trajectory data

The dataset consists of three working days. Consequently, we most likely observe com-
muters and travelers within all age ranges. However, the sensor data does not include
information about the observed population’s age, fitness, or other characteristics. We
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Figure 1. Plan of the train station overpass (accessed on Dec 8, 2021, ©
SBB/CFF/FSS 07/2021, Geodata: © OpenStreetMap contributors, © swisstopo
(5704003351)).

analyze the speed of the pedestrians to gain some indirect insight. Figure 2 depicts the
asymmetric distribution of walking speeds. The speed is measured over the entire time
a pedestrian is inside the measurement area, including periods when the pedestrian
is stationary. This could be the reason for several slow pedestrians with speeds below
1 m s~!. The speeds are within the value range of 0.00 m s~! to 2.50 m s~!, with a mean
of 1.13 m s !, and a mode of 1.17 m s~! and standard deviation of 0.37 m s~!. This is in
accordance with earlier measurements [28—30]. The results are also in line with those by
Davidich and Koster [31] who measured a mode of 1.04 m s™! and standard deviation
of 0.51 m s~! during rush hours at a train station.

Figure 3 shows how the evolution of the number of pedestrians inside the observation
area varies over one day for the three weekdays of our study. We observe a similar
behavior of pedestrian counts for all three days. This is most likely due to commuters:
the number of pedestrians increases during rush hours (5-9 a.m. and 4-7 p.m.), while it
decreases during the day and at night. Alighting passengers from arriving trains cause
short-term peaks. We presume that the OD matrices require dynamic initialization due
to the variation in the trend of the number of pedestrians per day.

4https://sbb.ch/content /dam/infrastruktur/trafimage/bahnhofplaene/plan-basel-sbb-plakat.pdf.
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Figure 2. Observed speeds of all pedestrians within the overpass. The speed is
measured over the complete time a pedestrian remains inside the measurement
area, including stationary periods. Outliers over 2.5 m s~! have been removed from
the figure.
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Figure 3. Evolution of the number of pedestrians in the overpass over the three
separate days of the data set, Monday, Thursday, and Friday. The instantaneous
pedestrian count is evaluated every ten seconds. In addition, a moving average filter
with a span of 120 (=20 minutes) shows the trend for the pedestrian count.

2.3. Calculation of density heatmaps

For each time interval of At =10 s, we create a series of five density heatmaps at
equidistant time steps (tg =0s,t; =25, ..., t4 = 8 s). At each time step, the density at
each position in the overpass is computed with a Gaussian filter [4]. That means, each
pedestrian within the observation area and within the time interval is represented by a
Gaussian bell. The observation area is divided into a regular grid of 0.5 m width per
cell. The contributions of all nearby pedestrians’ Gaussian representations are added up
for each cell. As a result, we have five density heatmaps with 108 x 38 values each.
Figure 4 depicts an example of a series of density heatmaps for a 10 s time interval.
The corresponding trajectory snippets are shown in figure 4(a). We can see from the
density evolution, that there is a multidirectional movement within the observation area.
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Figure 4. From trajectory snippets (a) to a series of five density heatmaps (b)—(f),
both for a time interval of 10 s. The color encodes the pedestrian density from blue
to yellow (low to high). Coordinates (x, y) indicate the positions in the train station
overpass.

Based on the observed average speed of the pedestrian, a typical pedestrian moves about
4.5 cells of the density grid between two successive heatmaps for a sampling frequency
of 0.5 Hz.

2.4. Decomposition of density heatmap series

The density heatmap matrices are sparse as can be seen in figure 4. Thus, we choose to
reduce their dimensionality by a principal component analysis (PCA). As an additional
benefit, the PCA helps to reduce the noise in the data. The PCA decomposes the density
heatmaps into

X=Wz'=W,zZ} (1)

where X € RM*" contains a series of N; centered flattened density heatmap samples
each with n = 108 x 38 = 4104 features, W contains the principal components of X (or
eigenvalues of X X), and Z contains the right singular vectors of X (or eigenvectors of
X'X). The magnitude of the singular values of X is used to sort the singular vectors
in Z in descending order. The reduced matrix has dimensions N; x n because only the
first 7 components are kept. The routines save the matrix Z;. It is necessary for the
reconstruction of X or its approximation X. X can only be fully recovered if n = n. For
the case that n < n, the reconstruction approximates X.

Figure 5 shows the explained variance in the reconstructed density heatmaps over
the number of components. It indicates how well the components explain the original
data. We decided to use 321 components to reach an explained variance of 75%. After
decomposition, each density heatmap series is represented by 321 components.

Due to the stacking of the density heatmaps and the PCA decomposition, the spatial
and temporal relationships in the input samples are difficult to impossible for humans to
discern. For computerized processing, however, this is not a problem: the stacking of the
heatmaps can be understood as time-delayed embedding. Thereby we enrich the latest
density heatmap with temporal context of the preceding heatmaps. This procedure is
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Figure 5. Explained variance of the PCA of the input samples. Each sample con-
tains five density maps computed at equidistant steps within a time interval of ten
seconds.

also often applied in methods to reconstruct the dynamics in dynamical systems (cf
Takens’ theorem [32]). Here, we aim to improve the mapping to the OD matrices. The
input samples therefore include both the spatial and temporal context in the features.
By applying the PCA decomposition, the spatial and temporal structure in the input
sample space are encoded in the PCA components.

In addition to the PCA decomposition performed on the input samples, we perform
a PCA on the targets, the OD matrices which follows the same principle. Instead of
fixing the number of components for the target PCA, we evaluate the performance of
each model for different numbers of components.

2.5. Calculation of ground truth OD matrices

By plotting the pedestrian positions of a complete day, we identify nine relevant areas in
which most of the trips start or end (cf figure 6). As shown in figure 1, they correspond
to escalators, stairs, and elevators that lead to the platforms (ids 1, 2, 7, 8) as well as the
station hall (ids 3, 4, 5) and the remaining portion of the overpass that is not covered
by the sensor (id 0). With the ids 0 to 8, we use these areas as origins and destinations.

To determine the OD matrices for a time interval At, each pedestrian within the
observation area is mapped to one origin and one destination. If the start or endpoint
of the full trajectory is outside of the identified areas, we assign an artificial origin or
destination with index —1. In this way, we can map about 65% of the pedestrians to both
an origin and a destination (10% can be assigned to neither source nor destination, 11%
only to a source, and 12% only to a destination). Since the positions and trajectories,
and thus the densities, are affected by other pedestrians, we decided not to artificially
remove people from the scenario. Please note that this means that our ground truth is
not ideal, which is likely to impact our results.

Our definition of the OD matrix is based on trip counts. Each entry a; ; of the OD
matrix A = (a;;);jen,10) contains the absolute number of pedestrians who traveled from
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Figure 6. Pedestrian positions of a single day in the train station overpass show
which areas are strongly frequented. Nine areas (ids 0-8) are identified as relevant
origins and destinations: escalators, stairs, and elevators leading to the platforms
(ids 1, 2, 6, 7, 8) as well as to the station hall (ids 3, 4, 5), and the remaining
portion of the overpass (id 0). Coordinates (z, y) indicate the positions in the train
station overpass. Blue markers show the track numbers from figure 1.

S = N W e Ut

'
—_

Figure 7. Exemplary OD matrices for time intervals of 10 s. Each entry contains
the absolute trip count of pedestrians moving from origin i (row) to destination j
(column). Pedestrians whose trajectories could not be matched with an origin or
destination, are assigned —1 as origin and/or destination index.

origin ¢ to destination j. This leads to a 10 x 10 OD matrix. Exemplary OD matrices
can be seen in figure 7. We observe that the OD matrices are dynamic, as expected.
3. Setup of statistical learning models

We employ scikit-learn [33] routines for multivariate linear regression and random forest
to estimate the OD matrices. Therefore, in our description of the methods, we stick to
the machine learning terminology. The model is trained on a set of samples and targets.
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Figure 8. Processing scheme for the estimation of OD matrices from a series of
density heatmaps.

The samples in our case are the density heatmaps and the targets are the ground truth
OD matrices. Following training, the performance of each algorithm is evaluated on a
test set that only contains samples and targets that were not included in the training.
The setup is visualized in figure 8.

For the input samples, the time interval At is sampled with N; = 5 density maps.
After decomposition, each input sample contains 321 entries. These are then flattened
in row-major and concatenated to an input sample of size N; x 321. Each input sample
is paired with a target sample containing the OD matrix for the same observation time
interval At. The OD matrix is flattened in row-major order which results in a vector with
100 target entries. The data set for a single day contains approximately 4000 samples.
Two consecutive samples have disjoint time intervals.

In the context of real-time crowd predictions, the model is trained offline with exist-
ing data. The density heatmaps need to be calculated online from sensor data. From
trajectory data, density heatmaps can be derived fast by using a discrete convolution
for the Gaussian filter. Density heatmaps can be derived from a number of sensors.
However, proposing methods for retrieving density heatmaps from other sensor data,
analyzing the respective errors and their impact on the estimation is out of scope for
this publication. Given the heatmaps, fast predictions of OD matrices are possible with
a trained model.

3.1. Multivariate linear regression

We choose linear regression as the first model because it is well understood and fast.
The method assumes a linear relationship between input and output. Since the output
contains multiple target entries, multivariate linear regression is required. Multivariate
regression is a type of supervised machine learning method. The general formulation for
multivariate linear regression is

Y =ZB+E (2)
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where each row of the targets Y contains a single OD matrix, flattened in row-major
order, each row in the samples Z contains the PCA components for a sequence of N,
density maps, (cf equation (1)). B contains the linear regression parameters that need to
be determined in a least-squares sense and E contains the approximation errors. We fit
a linear regression with intercept. For this purpose, Z is complemented with a vector of
ones. Consequently, B holds the slope parameters and intercepts. Due to the centering
of the matrices for the PCA, however, the estimated intercept is close to zero.

3.2. Random forest

One nonlinear supervised model that is easy to apply, comparably fast, explainable,
and yet robust is random forest regression. In contrast to neural networks, random
forests do not require setting up a complex model architecture and they depend only
on a few parameters. In addition, unlike support vector machines, they are suitable
for the prediction of multiple targets without training multiple models. All of these
points make random forest a suitable model for our problem. Random forests are a
statistical learning model developed by Breiman et al [34]. Each forest consists of a set
of decision trees. Decision trees tend to overfit data, but by constructing an ensemble
of trees and consolidating the results, overfitting can be reduced. Each tree is trained
on a random subset of the data. Furthermore, for training, each tree employs a different
random subset of the features. The goal is to reduce the correlation between individual
trees. For the prediction, all trees are given the same input, and the average response
of all trees is used as the prediction. Due to the multitude of trees, the model is very
robust. Random forests only have three central parameters: the number of trees in the
forest, the maximum depth of the trees, and the number of features considered in each
split.

4. Performance and component analysis of statistical learning models

We investigate the performance of multivariate linear regression and random forest in
predicting dynamic OD matrices using density heatmaps. The heatmaps are generated
from real-world trajectory data from a train station overpass. The flow through the
overpass is multidirectional. It varies throughout the day as a result of working hours
and train schedules.

4.1. Performance metric: R? score

In the following, we employ the commonly used coefficient of determination, R* score,
as the metric for the performance of the algorithm. This score is defined as

¥4 L ’*7‘ 2
Ry, j) =1 — =¥ = ) 3)

izl(yi - yi)2
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where y; is the ground truth result with mean y; and y; is the prediction. It indicates
how well the predicted values fit the ground truth values. The score has an upper limit
of 1 and no lower limit. The scores for a multidimensional output are averaged with the
variance of the ground truth samples.

We calculate two scores as a performance metric: the first is the component score, and
the second is the OD matrix score. For the former, ¢; are n predicted components of the
PCA decomposition of the OD matrix (cf equation (1)). For the latter, we reconstruct
the entire OD matrix A = (a;;); jen,10) with absolute number of pedestrians travelling
from origin ¢ to destination j from the components. Consequently, 7; in this case are
the p = 100 entries of a flattened OD matrix.

4.2. Cross-validation

To test the generalization error and robustness of a statistical learning model for a
set of data, k-fold cross-validation is performed. Therefore, the data is divided into k
disjoint sections, known as folds. Then, k — 1 folds are used for training and one fold is
used for validation. Instead of assessing the performance for one split of the data, the
performance is assessed for each combination.

We perform three-fold cross-validation with a dataset consisting of three different
weekdays. Two days are used as a training set and one day is used as a test set for each
fold. The folds are not exactly equal in length because there is some variation in how
many intervals are ignored due to a lack of pedestrians. With this configuration, we can
determine whether the model’s performance is affected by the day.

4.3. Multivariate linear regression

The output of our prediction, the OD matrix, has 100 entries. Most statistical learning
models perform better with a scalar output or at least a low dimensional output. There-
fore, we decided to reduce the output dimension by applying a PCA decomposition to
our 100-dimensional target space. That is, we predict the OD matrices on the reduced
basis of the PCA.

We observe that the component scores are superior when predicting a small number
of components of the PCA while the OD matrix scores are inferior (figure 9). The reason
is a trade-off between the accuracy of the prediction which is higher for a small number
of targets and the accuracy of the reconstruction of the OD matrix which is higher for
a larger number of predicted PCA components. We argue that the results, while not
perfect, indicate that the linear regression model captures a significant portion of the OD
matrix variation over the day. Figure 10 depicts the evolution of the components over
time, which supports this. In figure 11, we report the absolute errors of the prediction of
the first two components of the PCA. We observe only minor variations in the accuracy
over the course of the day. Figures 12 and 13 evaluate the absolute errors for one-hour
intervals for the first and second component, respectively. The errors are centered around
0. For the first components, the variation increases slightly during the rush hours.
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Figure 9. Performance of multivariate linear regression for the prediction of OD
matrices from a series of five density heatmaps. The performance is shown with
respect to the number of predicted components of the PCA of the OD matrix. The
R? score is evaluated for the prediction of the components and the reconstructed
entire OD matrix. Markers indicate the performance for each individual fold, lines

100

Component 1

-50

00:00

(Al
(=}
T

(=}
T

show the averaged performance.

Ground truth
Prediction

12:00 18:00

Time

06:00

(a) First component of PCA

00:00
Sep 05, 2019

Component 2

100

50

-50

Ground truth
Prediction

00:00

06:00 18:00

Sep 05, 2019

12:00
Time

(b) Second component of PCA

00:00
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over one day.

In addition, in figure 9 the scores are shown for each fold (markers). We observe sim-
ilar R* scores for all folds demonstrating that the model is robust against the variation

between days and therefore generalizes well.

Initially, we chose five heatmaps in each sample to capture the movement of the
crowd with the density heatmaps. However, we are not sure whether the linear regression
model profits from the series of density heatmaps. We clarify this by comparing the
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Figure 12. Difference between predicted and ground truth first component of the
PCA of the OD matrices over one day. Data is binned in one-hour intervals.

performance with a single density heatmap (N; = 1) to a series of Ny =2 and N; =5
density heatmaps per samples. See figure 14. Again, we use the PCA decomposition for
the input samples with 75% explained variance. That corresponds to 99 components
for a single heatmap in each sample and 182 components for a series of two density
heatmaps, respectively. We expect that using a series of density maps to predict the
movements of pedestrians improves the performance. In fact, there is an increase in
the R? score when comparing a single heatmap (N; = 1) to a series of two heatmaps
(N; = 2). Using five heatmaps brings only a negligible improvement over two.

We also varied the number of features in the input samples by varying the num-
ber of components that we keep from the PCA decomposition of the density heatmap
series. The results are shown in appendix A. They support the choice of keeping 321
components.
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Figure 14. Average performance of multivariate linear regression with different
input samples: each sample contains either a single density heatmap (N; = 1) or
a series of two (N; =2) or five (IN; =5) density heatmaps. The performance is
evaluated with respect to the number of predicted components of the PCA of the
OD matrices.

Let us take a look at why the performance of the regression remains so far from
an ideal R? score of 1. We saw in the previous sections that keeping two components
of the OD matrix decomposition provides the best performance in terms of the com-
ponent scores. Plotting the prediction and ground truth components shows how well
the predictions fit the targets in the component domain (cf figures 15 and B1). The
linear regression predictions overlap with some of the ground truth data. Nonetheless,
the shapes of the data clouds vary considerably. We suspect that the overlap reflects the
linear part of the relationship between input samples and target samples. This indicates
that a nonlinear model is necessary to obtain a better fit.
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Figure 15. Scatter plot of the first and second component of the PCA of the OD
matrices. The linear regression predictions of the components are shown together
with the ground truth components.

4.4. Nonlinear model: random forest

We choose random forest as a nonlinear model. Random forest is a well-understood and
relatively simple model with a low number of parameters. We studied the impact of the
main parameters (see appendix C) and use the best configuration (number of trees: 100,
maximum depth of the trees: 10, number of features considered for each split: 321 (all
features)). Figure 16 shows the results. In this configuration, random forest performs
slightly worse than linear regression (considering the test scores). To avoid overfitting
due to a small sample size, we create a larger dataset by using overlapping time intervals
(see appendix D). However, the performance of random forest does not change as the
larger dataset grows larger.

Figure 17 compares the first two ground truth components and the first two predicted
components of the OD matrix for linear regression and random forest. Figure B2 shows
the point clouds for ground truth and prediction separately. The random forest predic-
tions appear to fit the ground truth components much better. However, the ground truth
and predicted components do not perfectly overlap. This means the random forest model
does not capture all of the data set and that there is room for improvement with more
advanced methods. This is encouraging news because linear regression still outperforms
random forest, although random forest captures the shape better. Figure 16 depicts this.
As a result, we believe that a better nonlinear model is required to improve accuracy.
A brief comparison with other nonlinear models showed no significant improvements.
Determining the best nonlinear model is a difficult task that is beyond the scope of this

paper.
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provided by (a) multivariate linear regression and (b) random forest.

In this work, we estimated time-dependent OD matrices from crowd density heatmaps.
OD matrices describe where pedestrians come from and where they go. They serve as
vital input for predictive crowd simulations. Instead of relying on full trajectories which
are often not available, we constricted the input data to density heatmaps that can
be derived from various sensors. In addition, the heatmaps are of constant size, which
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allows the application of statistical learning models. The heatmaps were computed from
real-world trajectories in a train station. We used a series of five heatmaps in a time
interval of ten seconds as input for the models. Our goal was to predict the OD matrix
for the same time interval. To reduce the dimensionality of the input data, we performed
a PCA on the input space, maintaining an explained variance of 75% of the data.

We compared two different methods for the estimation: first, a multivariate lin-
ear regression model. Second, random forest as an example of a nonlinear model. We
discovered that linear regression predicts the OD matrices with acceptable accuracy.
Further investigation revealed that the linear relationship mapped in the linear regres-
sion explains only a portion of the data. We contend that a nonlinear model is required
to capture the entire relationship. As a result, we used a random forest model to solve
the problem, which better captured the shape of the output space but performed slightly
worse in terms of our metric, the R? score.

It is promising to see that OD matrices can be predicted from density heatmaps
which nowadays can be automatically extracted from video surveillance data. In the
context of real-time crowd predictions, the estimation of OD matrices can be performed
online to initialize the simulation.

The comparably low scores suggest that random forest is not the best model for
this problem. In future work, we intend to use more complex machine learning models.
Convolutional neural networks, which are popular for image data, and recurrent neural
networks, which are tailored to time series, are potential candidates.

We discovered that the results of this study are highly dependent on the metric.
In this contribution, we used a standard metric of the scikit-learn library. Future work
will include developing a custom performance measure for OD matrices that reflects the
effect of initialization on simulation results.

To summarize, our results demonstrate that both a linear and a non linear model
can estimate some features of the OD matrices. There is no clear winner regarding the
chosen metric, the R? score. However, the results show that some portion of the OD
matrices can indeed be learned and therefore encourage further investigations including
an exhaustive search for a better model. Thus, we achieve a necessary step towards
real-time crowd simulations.
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Appendix A. Impact of decomposition of density heatmap series on the model
performance

As explained in section 2.4, we perform a PCA decomposition for the density heatmap
series to reduce the number of features and therefore the size of the input samples.
Throughout the paper, we keep so many components of the PCA decomposition so that
the reconstruction reaches an explained variance of 75%. For a series of N; = 5 density
heatmaps, this means keeping 321 components.

We analyze the impact of the number of components kept from the input PCA
on the performance of the multivariate regression and random forest in figure Al. For
linear regression, the results indicate that there is a trade-off between the performance
in terms of the test score and the difference between training and test score. With a
larger number of components, both training and test score increase. However, the gap
between training score and test score also increases. Using more than 321 components
of the input PCA brings no or only negligible improvement.

Interestingly, the performance of random forest is not improved by increasing the
number of components. Instead, the maximum performance (in terms of the test score)
is achieved at about 15 components of the input PCA. However, the performance with
321 components is similar. Therefore, to allow a fair comparison with linear regression,
we stick with 321 components.
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Figure B2. Scatter plot of the first and second component of the PCA of the OD
matrices. The random forest predictions of the components (a) are shown together
with the ground truth components (b).

Appendix B. Component analysis

We compare the a component analysis of the PCA decomposition of the OD matrices
between the ground truth and the predicted matrices by linear regression and random
forest. For the component analysis, we plot the first against the second PCA component.
In figure B1, the predictions of multivariate linear regression are compared to the ground
truth components of the OD matrices. The shapes of the point clouds differ significantly.
For the nonlinear RF the two forms are similar (cf figure B2).
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Appendix C. Random forest parameters

There are three main parameters to tune the performance of random forest: first, the
number of estimators or trees that are trained to the data. Second, the maximum depth
for each tree. Third, the number of features is taken into account in each split. To find
a suitable configuration for our problem, we investigate the impact of each parameter
separately. For each parameter, we analyze the impact regarding two configurations:
predicting the entire OD matrix and predicting two components of the target PCA.

C.1. Number of trees

In figure C1 the performance of random forest for different numbers of trees is shown
(number of features 0.75 x 321, maximum depth: 15). We choose 100 trees.

C.2. Number of features for split

Figure C2 displays the results for random forests with respect to the number of features
considered when looking for the best split (number of trees: 100, maximum depth: 15).
We choose all features (321) to be considered for the split.

C.3. Maximum depth of the trees

Figure C3 depicts the scores for random forest with different values for the maximum
depth of the trees (number of trees: 100, max features: 0.75 x 321). The maximum depth
has the largest impact on the results. The best test scores with a minimum distance
between train and test score are obtained with a maximum depth of 10.
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Appendix D. Overlapping data set

We generate a data set with overlapping time intervals to increase the sample size.
Overlapping means that consecutive samples are no longer drawn from disjoint time
intervals, but are instead drawn from time intervals of 10 s separated by one second. This
mimics Takens’ time-delayed embedding [32], which is a technique for reconstructing a
dynamic system from a series of observations. The new dataset contains approximately

130000 samples.
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are predicted.

Due to a large amount of input data, we use the incremental PCA approach by Ross
et al [35] implemented in [33]. That means, the PCA is fitted iteratively with batches
of 5 x 20,520 samples.

The results using overlapping time intervals are shown in figure D1. The performance
of random forest could not be improved using overlapping time intervals.
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