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Abstract

This thesis leverages the tools in representation learning and applies them to specific
problems involving graph-structured and multi-modal data.

In the first part, we deal with these graph-structured data problems: link prediction,
community detection and node representation learning. Specifically, we focus on varia-
tional graph autoencoder (VGAE) and collaborative subgraphs (CSGs) for addressing
these problems. Before delving into the applications, we first investigate an important
theoretical problem in variational graph autoencoder (VGAE) model, i.e. over-pruning.
We propose a solution to mitigate this issue. We illustrate the problem and effectiveness
of our solution via experiments on three benchmark datasets. Our approach yields better
performance than simple VGAE on the link prediction task. After that, we turn towards
jointly learning the node representation and community detection. We argue that a single
node representation is sufficient for learning both the representation of the node itself and
its context. We propose a VGAE based model, J-ENC, for learning community-aware
node embeddings in such a way that connected nodes are not only “closer” to each
other but also share similar community assignments. Our experiments demonstrate that
J-ENC not only outperforms the competitive approaches but is also computationally
efficient than them. At the end, we employ a graph based approach to tackle the rec-
ommender system problem. We employ CSGs and metapaths to form metapath-aware
subgraphs, for explicitly capturing sequential semantics in graph structures. We compare
the performance of our approach with several baselines on different real-world datasets.

The second part of this thesis deals with composition of multi-modal data by leveraging
deep metric learning approach. We consider only two modalities of data, i.e., image
and text. First, we investigate the problem of retrieving images from a database based
on a multi-modal (image-text) query. We propose ComposeAE, an autoencoder based
approach to learn the composition of image and text query for retrieving images. We
devise a rotational symmetry constraint on the optimization problem that enables learning
better composed representations. Second, we focus on smart information retrieval systems
which should not only be able to retrieve images of never seen objects based on multi-
modal (image-text) query but also be able to learn the underlying primitive concepts
(state-object) present in the images. Building on ComposeAE, we propose ContraNet,
which leverages the rich semantics of the state-object to learn multimodal representation
in a contrastive manner.

At the end, we combine the two parts of this thesis and employ VGAE for learning the
composition of primitive concepts, i.e. objects and states and retrieving images based
on a multi-modal (image-text) query. Our proposed method Compositional Variational
Graph Autoencoder (CVGAE), learns a similarity metric in common embedding space
via bi-directional contrastive loss between projected graph and image embeddings.
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1 Introduction

Machine Learning (ML) methods rely on the choice and quality of data representation for
performing well on a given task. In traditional ML algorithms, feature engineering has
been employed to compensate for the inability of the algorithms to extract informative
representation from the raw data. But designing hand-crafted features is labor-intensive
and requires domain-specific knowledge. Thus, it greatly reduces the applicability of such
ML algorithms in a variety of real-world problems.

Representation learning promises to get rid of such hand-crafted features [2]. It aims
to automatically learn the relevant representation (features) from raw data and has been
an area of active research in the past ten years. This has led to the development of
enormous number of algorithms for learning good representation of the data. Some areas
which have been revolutionised by this research are: Speech Recognition and Signal
Processing [3, 4], Object Recognition [5], Recommendation Systems [6] and Natural
Language Processing [7, 8].

Historically, autoencoder is an architecture which despite being conceptually simple has
proven itself quite effective architecture for feature learning or dimensionality reduction.
Autoencoder (AE) attempts to non-trivially copy its input to its output with an aim
that it learns some useful properties of the data. The architecture consists of two parts,
namely: encoder and decoder. The encoder passes the input data through a feedforward
neural network. The encoded input information after the last hidden layer of encoder
is commonly referred as “code” or latent representation and the output units in this
hidden layer are called latent units. The task of the decoder is to try to reconstruct
the input from the latent representation. Variational autoencoders (VAE) [9] treat the
encoder and decoder as stochastic mappings rather than deterministic functions. That
is, VAE assumes that input data is being generated from some prior distribution, e.g.,
gaussian distribution. It employs encoder to learn the parameters of the prior distribution.
In VAE, the decoder reconstructs the input based on samples from the learnt latent
distribution. Despite being elegantly simple approach, VAE obtains excellent results and
is among the state-of-the-art approaches to generative modeling. There are following two
competing objectives VAE is trying to achieve:

1. Learning a “good” latent representation of the input data. This ensures that
the model is useful for tasks like dimensionality reduction, information retrieval,
classification etc.

2. The latent representation of input data should follow the prior distribution. This
is typically ensured via minimizing the Kullback-Leibler (KL) divergence between
latent and prior distribution. This is extremely important for ensuring good
generative ability of the model.
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1 Introduction

In recent times, the field of deep learning has seen a noticeable growth in the interest
in graph-related problems. Major factors fueling this growth are: (1) increase in com-
putational power, (2) the power of graphs to model complex relations between objects
and (3) algorithmic developments in learning feature representations from “raw” data.
Graphs are flexible data structures that model complex relationships among entities,
i.e. data points as nodes and the relations between nodes via edges. A large number of
real world problems can be represented in terms of graphs. Some prominent examples
are protein-protein interactions [10], social and traffic network s[11, 12] and knowledge
graphs [13] and economic activity flows [14]. In the first part of this thesis, we focus on
the graph-structured data.

Taking advantage of this trend, Kipf and Welling have proposed Variational Graph
Autoencoder (VGAE) [1], which is an extension of VAE for graph-structured data. VGAE
is a generative model for learning latent representations of nodes and edges of a graph.
Before delving into the applications of representation learning on graphs, we first study
VGAE model in Chapter 2. We particularly investigate the over-pruning problem, which
adversely affects learning diverse and interpretable latent representations (see Sec. 2.3).
We explain the over-pruning phenomenon briefly. The generative model of VGAE has
a set of independent stochastic latent variables. These variables are responsible for
capturing various factors of variation in the data such that new samples can be generated
based on these factors. These factors are learnt by encoder and encoded in the stochastic
latent units. In practice, it has been widely observed that VGAE (and also VAE)
converge to a solution in which a significant number of latent variables fail to capture any
information about the input data and the corresponding stochastic latent units become
inactive. This leads VAE (VGAE) model to learn a suboptimal generative model, whose
capacity is limited due to small number of active latent units. This phenomenon is
termed as over-pruning [15, 16, 17].

Several solutions have been proposed to tackle this problem. For instance, adding
dropout can be a simple solution to achieve more active latent units. However, this
solution adds redundancy rather than encoding more useful information with latent
variables [18]. [19] proposes division of the latent units into subsets and forcing each
subset to contribute to the Kullback-Leibler (KL) divergence between latent and prior
distribution. [16] uses KL cost annealing to activate more latent units. [18] uses a model
based approach where latent units are divided into subsets with only one subset penalized
for a certain data point. These subsets also share some latent variables which helps in
reducing the redundancy between different subsets.

To suppress this issue in VGAE, Kipf and Welling[1] adopted a solution which inadver-
tently sacrificed the generative ability of the model. That is, they harshly penalize the
KL-divergence term (which is responsible for ensuring good generative ability) by dividing
it with the number of nodes in the graph. We emphasize here that the KL-divergence
term actually ensures that the latent variables follow the prior distribution. Reducing
the weight of KL-divergence term adversely affects the generative ability of VGAE and
effectively reduces it to non-variational graph autoencoder. We propose our solution and
discuss it in detail in Chapter 2. Briefly, we attempt to improve the generative capability
of VGAE via epitomes. Epitomes are groups of latent variables sharing the latent space,
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see Section 2.5 for details. Our model based approach, called epitomic VGAE (EVGAE),
is a generative variational framework for graph datasets consist of multiple sparse VGAE
models. This epitomic approach aids in increasing active units as epitomes compete to
learn better representation of the graph data. This also enables other latent variables to
be more free in encoding useful information for the node. We verify the effectiveness of
our claims via experiments on three benchmark datasets, namely: Cora, Citeseer and
Pubmed. Our experiments show that EVGAE has a better generative ability than VGAE,
in terms of better matching of latent distribution with the prior distribution. Moreover,
we also demonstrate that the representations learnt by EVGAE yield better performance
than VGAE on the link prediction task. This chapter is based on the peer-reviewed
publication [20].

Afterwards, in Chapter 3, we tend towards two very important tasks in graph analysis,
namely: community detection and node representation learning. The objective in
community detection is to cluster nodes of a graph into multiple groups (communities).
Thus, each community is a set of densely connected nodes. The communities can be
overlapping or non-overlapping, depending on whether they share some nodes or not. The
second task, i.e., learning good node representation is quite useful for downstream tasks
like graph visualization, recommender systems and classification. Traditionally, these tasks
are usually treated separately. Early community detection algorithms are inspired from
clustering algorithms [21]. For instance, spectral clustering [22] is applied to the graph
Laplacian matrix for extracting the communities. Similarly, several matrix factorization
based methods have been proposed to tackle the community detection problem. For
example, Bigclam [23] treats the problem as a non-negative matrix factorization (NMF)
task. Another method CESNA [24] extends Bigclam by modelling the interaction between
the network structure and the node attributes. Some generative models, like vGraph
[25], Circles [26] etc, have also been proposed to detect communities in a graph. Many
successful algorithms which learn node representation in an unsupervised way are based
on random walk objectives [27, 28, 29]. Some known issues with random-walk based
methods (e.g. DeepWalk, node2vec etc) are: (1) They sacrifice the structural information
of the graph by putting over-emphasis on the proximity information [30] and (2) great
dependence of the performance on hyperparameters (walk-length, number of hops etc)
[27, 28]. Some interesting GCN based approaches include graph autoencoders e.g. GAE
and VGAE[1] and DGI[31].

In the literature, several attempts have been made to tackle both these tasks in a
single framework. Most of these methods propose an alternate optimization process, i.e.
learn node embeddings and improve community assignments with them and vice versa
[32, 33]. Some approaches (CNRL [33], ComE [32]) are inspired from random walk, thus
they inherit the issues discussed above. Others, like GEMSEC [34], are limited to the
detection of non-overlapping communities. Some generative models like CommunityGAN
[35] and vGraph [25] also jointly learn community assignments and node embeddings.

CNRL, ComE and vGraph require learning two embeddings for each node for simulta-
neously tackling the two tasks. Unlike them, our insight is to employ the VGAE model,
introduced in chapter 2, for learning a single community-aware node representation
which can be directly used for both tasks. We propose a joint generative model called
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1 Introduction

J-ENC for learning Joint Embedding for Node representation and Community detec-
tion. J-ENC learns a community-aware node representation, i.e., learning of the node
embeddings are constrained in such a way that connected nodes are not only “closer” to
each other but also share similar community assignments. This joint learning framework
leverages community-aware node embeddings for better performance on these tasks:
node classification, overlapping community detection and non-overlapping community
detection. In order to test the effectiveness of J-ENC, we have selected 18 different graph
datasets ranging from 270 to 126,842 edges and 61 to 19793 nodes. Our experiments
show that J-ENC effectively outperforms the competitive baselines on these tasks. We
also investigate the robustness of our proposed approach with varying hyperparameters.
Afterwards, we demonstrate that, due to our novel formulation of the problem, J-ENC
is computationally efficient than its direct competitors. This chapter is based on the
peer-reviewed publication [36].

After that, in chapter 4, we adopt graph based approach to investigate the problem
of recommender systems. In graph neural networks, nodes’ information from their
direct neighbours is iteratively aggregated via message passing while neglecting the
sequential nature of multi-hop node connections. Such sequential node connections e.g.,
metapaths, capture critical insights for tasks like recommender systems. Concretely,
disregarding a larger neighbourhood and focusing only on the immediate neighbours
leads to inadequate distillation of the collaborative signals for the recommendation.
To tackle this, we employ collaborative subgraphs (CSGs), i.e. a CSG is formed by
focusing on a single user-item pair and is aimed to suppress the influence of feature
nodes from other user-item interactions. Such local subgraphs contain rich semantic and
collaborative information of user-item interactions. We employ collaborative subgraphs
(CSGs) and metapaths to form metapath-aware subgraphs, which explicitly capture
sequential semantics in graph structures. We propose metaPath and Entity-Aware
Graph Neural Network (PEAGNN), which trains the graph neural network to perform
metapath-aware information aggregation on such subgraphs. The information from
different metapaths is then fused using attention mechanism. To leverage the local
structure of CSGs, we introduce entity-awareness that acts as a contrastive regularizer
on node embedding. Moreover, our proposed approach can be combined with prominent
layers such as GAT [37], GCN [12] and GraphSage[38]. Our empirical evaluation shows
that the proposed approach outperforms competitive baselines on three public datasets.
We also conduct further analysis on PEAGNN to investigate whether it learns meaningful
metapath combinations from a given set of metapaths. This chapter is based on a
manuscript which is currently under-review in a peer-reviewed conference [39].

Next, we turn our attention towards the second part of our thesis, i.e., multi-modal
data. Concretely, we only deal with two modalities, i.e., image and text. We focus on
addressing the following two problems:

• Image Retrieval from a database based on a multi-modal query, i.e., the query is
specified in the form of an image and natural language expressions describing the
desired modifications in the query image. This task has applications in the domain
of E-Commerce search, surveillance systems and internet search.
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• Compositional Zero-Shot learning (CZSL) problem. The task here is to learn
composition of primitive concepts, i.e. objects and states, from the images in such
a way that even their novel compositions can be zero-shot classified. In contrast to
image classification, the goal of CZSL classification is to simultaneously identify
the class of the object and the state in which the object appears. Sometimes the
visual differences of the same object in two states can be huge and that is where
traditional classification methods fail. For example, “sliced cheese” and “molten
cheese” can be visually very different from each other.

We address the first problem, i.e., image retrieval problem in chapter 5. We consider
an advanced image retrieval system, which enables the users in expressing the concept in
their mind by allowing a multi-modal (image-text) query. Such a retrieval system offers a
natural and effective interface [40]. For instance, a user on an E-commerce platform can
simply upload the image of a dress and request the system to find similar dresses but
with some desired modifications like V-neck, sleeveless etc. In such setting the problem
is to properly combine these two modalities, which despite being generated by naturally
different processes, may still capture the same entities. While we can apply different
metric learning techniques to compare and learn similarity between representations, it
is still unclear how to get most benefit from both sources of information. We propose
ComposeAE, an autoencoder based approach for composing the modalities in the multi-
modal query. We adopt a novel approach and map these features to a complex space.
We propose that the target image representation is an element-wise rotation of the
representation of the source image in this complex space. The information about the
degree of rotation is specified by the text features. We learn the composition of these
complex vectors and their mapping to the target image space by adopting a deep metric
learning (DML) approach. In this formulation, text features take a central role in defining
the relationship between query image and target image. This also implies that the search
space for learning the composition features is restricted. From a DML point of view, this
restriction proves to be quite vital in learning a good similarity metric. We also propose
an explicit rotational symmetry constraint on the optimization problem based on our
novel formulation of composing the image and text features. We validate the effectiveness
of our approach on three datasets: MIT-States, Fashion200k and Fashion IQ.

In chapter 6, we build upon ComposeAE model and address both the image retrieval
and CZSL tasks jointly. Specifically, (1) we aim to learn such model which understand
different states of an object and can recognise even unseen combinations of them. (2) The
model should be able to retrieve images based on multi-modal (image-text) query, where
the text describes the changes sought by the user in the query image. We propose a unified
approach, ContraNet, which bridges the existing gap in these two tasks. ContraNet, an
autoencoder based model, aims to predict a composition of multiple semantic concepts in
images. We adopt a contrastive learning approach to learn embeddings which are visually
grounded and semantically meaningful. We conduct several experiments to evaluate
the performance of ContraNet on three benchmark datasets. We also conduct several
ablation studies to quantify the contribution of different losses in the performance of our
approach.
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1 Introduction

In the end, in chapter 7, we combine the two parts of this thesis quite nicely. That is,
we employ our insights in VGAE and compositional learning of the concepts to tackle
the CZSL task. We argue that objects and states are being generated from a prior
distribution. They are treated as nodes of a graph and an edge between them indicates
the existence of a compositional pair. This formulation enables us to learn the latent
representation of our primitive concepts in a space of reduced dimensionality along with
the feasibility of their compositions (edges). The embeddings of the compositional pairs
are obtained by simply concatenating the respective state and object node embeddings.
Such problem formulation enables us to not assume the knowledge of novel composition
of concepts (objects and states) in the model output space at test time. We refer to this
case, where set of test compositions is not known, as Open-World (OW) CZSL task. The
other case when set of test compositions is known, is referred to as Close-World (CW)
CZSL task. This chapter is based on a manuscript which is currently under-review in a
peer-reviewed conference [41].

1.1 List of Publications

This thesis is built from the following publications:

1. Anwaar, Muhammad Umer[*]; Labintcev, Egor [*] and Kleinsteuber, Martin.
Compositional Learning of Image-Text Query for Image Retrieval. In IEEE Winter
Conference on Applications of Computer Vision (WACV ’21). 2021.

2. Anwaar, Muhammad Umer[*]; Khan, Rayyan Ahmad [*]; Pan, Zhihui and
Kleinsteuber, Martin. A Contrastive Learning Approach for Compositional Zero-
Shot Learning. In ICMI ’21: Proceedings of the 2021 International Conference on
Multimodal Interaction. 2021.

3. Anwaar, Muhammad Umer; Pan, Zhihui and Kleinsteuber, Martin. On Lever-
aging Variational Graph Embeddings for Open World Compositional Zero-Shot
Learning. In Proceedings of the 30th ACM International Conference on Multimedia
(MM ’22). Association for Computing Machinery, New York, NY, USA, 4645–4654.

4. Khan, Rayyan Ahmad [*]; Anwaar, Muhammad Umer [*] and Kleinsteuber,
Martin. Epitomic Variational Graph Autoencoder (EVGAE). In 25th International
Conference on Pattern Recognition (ICPR). 2020.

5. Khan, Rayyan Ahmad [*]; Anwaar, Muhammad Umer [*]; Kaddah, Omran,
Zhiwei Han and Kleinsteuber, Martin. Unsupervised Learning of Joint Embeddings
for Node Representation and Community Detection. In the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD), 2021.

6. Anwaar, Muhammad Umer[*]; Han, Zhiwei[*]; Arumugaswamy, Shyam [*];
Khan, Rayyan Ahmad [*]; Weber, Thomas; Qiu, Tianming; Shen, Hao; Liu,
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Aware Subgraphs for Recommendation. In Proceedings of the 1st Workshop on
Multimedia Computing towards Fashion Recommendation (MCFR ’22). 2022.

[*] indicates that the authors contributed equally to this work.

The following publications were published during the PhD, but are not made part of this
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1. Anwaar, Muhammad Umer; Rybalko, Dmytro and Kleinsteuber, Martin. Mend
The Learning Approach, Not the Data: Insights for Ranking E-Commerce Products
. In the European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML-PKDD), 2020.

2. S. Nawaz, A. Calefati, M. K. Janjua, Muhammad Umer Anwaar and I. Gallo,
”Learning Fused Representations for Large-Scale Multimodal Classification,” in
IEEE Sensors Letters, vol. 3, no. 1, pp. 1-4, Jan. 2019.

7



Part I
Graph-Structured Data



2 Variational Graph Autoencoder and
Over-pruning Problem

This chapter is based on the following peer-reviewed publication:

Khan, Rayyan Ahmad [*]; Anwaar, Muhammad Umer [*] and Kleinsteuber,
Martin. Epitomic Variational Graph Autoencoder (EVGAE). In 25th International
Conference on Pattern Recognition (ICPR). 2020.
[*] indicates that the authors contributed equally to this work.

2.1 Introduction

Graphs are data structures that model data points via nodes and the relations between
nodes via edges. A large number of real world problems can be represented in terms of
graphs. Some prominent examples are protein-protein interactions[10], social and traffic
networks[11, 12] and knowledge graphs[13]. Deep learning applications related to graphs
include but are not limited to link prediction, node classification, clustering [42, 43] and
recommender systems[44, 45, 46].

Kipf and Welling [1] introduced variational graph autoencoder (VGAE) by extending
the variational autoencoder (VAE) model [9]. Like VAE, VGAE tends to achieve the
following two competing objectives:

1. An approximation of input data should be possible.

2. The latent representation of input data should follow standard gaussian distribution.

There is, however, a well-known issue with VAE in general: The latent units, which
fail to capture enough information about the input data, are harshly suppressed during
training. As a result the corresponding latent variables collapse to the prior distribution
and end up simply generating standard gaussian noise. Consequently, in practice, the
number of latent units, referred to as active units, actually contributing to reconstruction
of the input data are quite low compared to the total available latent units. This
phenomenon is referred to as over-pruning ([15, 16, 17]). Several solutions have been
proposed to tackle this problem for VAEs . For instance, adding dropout, division of
the latent units into subsets and forcing each subset to contribute to the KL divergence
[19], KL cost annealing to activate more latent units [16] and adopting a model based
approach and dividing the latent units into overlapping subsets [18].
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2 Variational Graph Autoencoder and Over-pruning Problem

VGAE, being an extension of VAE for graph datasets, is also susceptible to the over-
pruning problem. This greatly reduces the modeling power of pure VGAE and undermines
its ability to learn diverse and meaningful latent representations As demonstrated in
detail in Sec. 2.3. To suppress this issue, the authors of [1] simply reduce the weight of the
second objective by the number of nodes in training data. For instance, PubMed dataset1

has ∼20k nodes, so the second objective is given 20,000 times less weight than the first
objective. Surprisingly, this factor is not mentioned in their paper, although it is present
in their code [48]. Since the second objective is the one enforcing standard gaussian
distribution for the latent variables, reducing its weight adversely affects the generative
ability of VGAE and effectively reduces it to non-variational graph autoencoder. We
discuss this further in Sec. 2.4.

In this work, we refer to VGAE without any weighted objective as pure VGAE to
distinguish it from VGAE[1]. In order to attain good generative ability and mitigate
over-pruning, we adopt a model based approach called epitomic VGAE (EVGAE). Our
approach is motivated by a solution proposed for tackling over-pruning problem in VAE
[18]. We consider our model to consist of multiple sparse VGAE models, called epitomes,
that share the latent space such that for every graph node only one epitome is forced
to follow prior distribution. This results in a higher number of active units as epitomes
compete to learn better representation of the graph data. Our main contributions are
summarized below:

• We identify that VGAE[1] has poor generative ability due to the incorporation of
weights in training objectives.

• We show that pure VGAE (without any weighted objectives) suffers from the
over-pruning problem.

• We propose a true variational model EVGAE that not only achieves better generative
ability than VGAE but also mitigates the over-pruning issue.

2.2 Pure Variational Graph Autoencoder

Given an undirected and unweighted graph G consisting of N nodes {x1,x2, · · · ,xN}
with each node having F features. We assume that the information in nodes and edges
can be jointly encoded in a D dimensional real vector space that we call latent space.
We further assume that the respective latent variables {z1, z2, · · · , zN} follow standard
gaussian distribution. These latent variables are stacked into a matrix Z ∈ RN×D. For
reconstructing the input data, this matrix is then fed to the decoder network pθ(G|Z)
parameterized by θ. The assumption on latent representation allows the trained model to
generate new data, similar to the training data, by sampling from the prior distribution.
Following VAE, the joint distribution can be written as

p(G,Z) = p(Z)pθ(G|Z), (2.1)

1PubMed is a citation dataset[47], widely used in deep learning for graph analysis. Details of the dataset
are given in experiments Sec. 2.6.1

10



2.2 Pure Variational Graph Autoencoder

where

p(Z) =

N∏
i=0

p(zi) (2.2)

p(zi) = N (0,diag(1)) ∀i. (2.3)

For an unweighted and undirected graph G, we follow [1] and restrict the decoder to
reconstruct only edge information from the latent space. The edge information can be
represented by an adjacency matrix A ∈ RN×N where A[i, j] refers to the element in ith

row and jth column. If an edge exists between node i and j, we have A[i, j] = 1. Thus,
the decoder is given by

pθ(A|Z) =

(N,N)∏
(i,j)=(1,1)

pθ(A[i, j] = 1|zi, zj), (2.4)

with

pθ(A[i, j] = 1|zi, zj) = σ(< zi, zj >), (2.5)

where < . , . > denotes dot product and σ(.) is the logistic sigmoid function.

The training objective should be such that the model is able to generate new data and
recover graph information from the embeddings simultaneously. For this, we aim to learn
the free parameters of our model such that the log probability of G is maximized i.e.

log
(
p(G)

)
= log

(∫
p(Z)pθ(G|Z) dZ

)
= log

(∫ qφ(Z|G)

qφ(Z|G)
p(Z)pθ(G|Z) dZ

)
= log

(
EZ∼qφ(Z|G)

{p(Z)pθ(G|Z)

qφ(Z|G)

})
, (2.6)

where qφ(Z|G), parameterized by φ, models the recognition network for approximate
posterior inference. It is given by

qφ(Z|G) =

N∏
i

qφ(zi|G) (2.7)

qφ(zi|G) = N
(
µi(G),diag(σ2

i (G))
)

(2.8)

where µi(.) and σ2
i (.) are learnt using graph convolution networks (GCN) [12] and

samples of qφ(Z|G) are obtained from mean and variance using the reparameterization
trick [9].
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2 Variational Graph Autoencoder and Over-pruning Problem

In order to ensure computational tractability, we use Jensen’s Inequality [49] to get
ELBO bound of Eq. equation 7.8. i.e.

log
(
p(G)

)
≥ EZ∼qφ(Z|G)

{
log
(p(Z)pθ(G|Z)

qφ(Z|G)

)}
(2.9)

= EZ∼qφ(Z|G)

{
log
(
pθ(G|Z)

)}
+ EZ∼qφ(Z|G)

{
log
( p(Z)

qφ(Z|G)

)}
(2.10)

= −BCE−DKL

(
qφ(Z|G)||p(Z)

)
(2.11)

where BCE denotes binary cross-entropy loss between input edges and the reconstructed
edges. DKL denotes the Kullback-Leibler (KL) divergence. By using equation 2.2,
equation 2.3, equation 2.7 and equation 2.8, the loss function of pure VGAE can be
formulated as negative of equation 7.11 i.e.

L = BCE

+

N∑
i=1

DKL

(
N
(
µi(G),σ2

i (G)
)
|| N (0,diag(1))

)
(2.12)

2.3 Over-pruning in pure VGAE

Burda et al. [15] showed that the learning capacity of VAE is limited by over-pruning.
Several other studies [16, 17, 19, 18] confirm this and propose different remedies for
the over-pruning problem. They hold the KL-divergence term in the loss function
of VAE responsible for over-pruning. This term forces the latent variables to follow
standard gaussian distribution. Consequently, those variables which fail to encode
enough information about input data are harshly penalized. In other words, if a latent
variable is contributing little to the reconstruction, the variational loss is minimized easily
by “turning off” the corresponding hidden unit. Subsequently, such variables simply
collapse to the prior, i.e. generate standard gaussian noise. We refer to the hidden units
contributing to the reconstruction as active units and the turned-off units as inactive
units. The activity of a hidden unit u was quantified by Burda et al. [15] via the statistic

Au = Covx(Eu∼q(u|x){u}). (2.13)

A hidden unit u is said to be active if Au ≥ 10−2.

VGAE is an extension of VAE for graph data and loss functions of both models contain
the KL-divergence term. Consequently, pure VGAE inherits the over-pruning issue. We
verify this by training VGAE with Eq. equation 2.12 on Cora dataset2. We employ
the same graph architecture as Kipf and Welling [1]. The mean and log-variance of
16-dimensional latent space are learnt via Graph Convolutional Networks[12]. From

2Details of Cora dataset are given in experiments Sec. 2.6.1
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2.3 Over-pruning in pure VGAE

Figure 2.1: KL-divergence of latent variables in pure VGAE

Figure 2.2: Unit activity of 16 hidden units in pure VGAE
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2 Variational Graph Autoencoder and Over-pruning Problem

Figure 2.3: KL-divergence of latent variables: VGAE (β ≈ 0.0003[1])

Fig. 2.1, we observe that 15 out of 16 latent variables have KL-divergence around 0.03,
indicating that they are very closely matched with standard gaussian distribution. Only
one latent variable has managed to diverge in order to encode the information required
by the decoder for reconstruction of the input.

In other words pure VGAE model is using only one variable for encoding the input
information while the rest 15 latent variables are not learning anything about the input.
These 15 latent variables collapse to the prior distribution and are simply generating
standard gaussian noise. Fig. 2.2 shows the activity of hidden units as defined in Eq. 2.13.
It is clear that only one unit is active, which corresponds to the latent variable with
highest KL-divergence in the Fig. 2.1. All other units have become inactive and are not
contributing in learning the reconstruction of the input. This verifies the existence of
over-pruning in pure VGAE model.

2.4 VGAE[1]: Sacrificing Generative Ability for Handling
Over-pruning

Kipf and Welling’s VGAE[1] employed a simple way to get around the over-pruning
problem by adding a penalty factor to the KL-divergence in Eq. equation 2.12. That is

L = BCE + β DKL

(
q(Z|G)||p(Z)

)
. (2.14)

But a consequence of using the penalty factor β is poor generative ability of VGAE. We
verify this by training VGAE on Cora dataset with varying β in Eq. equation 2.14. We
call the penalty factor β, as the loss of βVAE ( [50, 51] ) has the same factor multiplied
with its KL-divergence term. Specifically, in βVAE, β > 1 is chosen to enforce better
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Figure 2.4: Unit activity of 16 hidden units: VGAE (β ≈ 0.0003[1])

distribution matching. Conversely, a smaller β is selected for relaxing the distribution
matching, i.e. the latent distribution is allowed to be more different than the prior
distribution. This enables latent variables to learn better reconstruction at the expense
of the generative ability. In the degenerate case, when β = 0, VGAE model is reduced to
non-variational graph autoencoder (GAE). VGAE as proposed by Kipf and Welling[1]
has the loss function similar to βVAE with β chosen as reciprocal of number of nodes in
the graph. As a result β is quite small i.e. ∼ 0.0001-0.00001.

Fig. 2.3 shows the KL-divergence and hidden unit activity for original VGAE[1] model.
We observe that all the hidden units are active, i.e. Au ≥ 10−2. However, the value
of KL-divergence is quite high for all latent variables, indicating poor matching of
qφ(Z|G) with the prior distribution. This adversely affects the generative ability of the
model. Concretely, the variational model is supposed to learn such a latent representation
which follows standard gaussian (prior) distribution. Such high values of KL-divergence
implies that the learnt distribution is not standard gaussian. The reason is that the
KL-divergence term in equation 2.14 was responsible for ensuring that the posterior
distribution being learned follows standard gaussian distribution. VGAE[1] model assigns
too small weight (β = 0.0003) to the KL-divergence term. Consequently, when new
samples are generated from standard gaussian distribution p(Z) and then passed through
the decoder pθ(A|Z), we get quite different output than the graph data used for training.

Fig. 2.4 shows that Kipf and Welling’s[1] approach to deal with over-pruning makes
VAGE similar to its non-variational counter-part i.e. graph autoencoder (GAE). As β is
decreased, VGAE model learns to give up on the generative ability and behaves similar
to GAE. This can be seen in Fig. 2.4 (a), where the average KL-divergence per active
hidden unit increases drastically as β becomes smaller. On the other hand, we observe
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Figure 2.5: Effect of varying β on original VGAE[1]: Change in the active units of original
VGAE[1]

Figure 2.6: Effect of varying β on original VGAE[1]: Change in the Average KL-divergence per
active unit
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Figure 2.7: Example of eight epitomes in a 16-dimensional latent space.

from Fig. 2.4 (b) that decreasing β results in higher number of active hidden units till it
achieves the same number as GAE.

We conclude that as the contribution of KL-divergence is penalized in the loss function
(Eq. 2.14), VGAE model learns to sacrifice the generative ability for avoiding over-pruning.
Conversely, VGAE handles the over-pruning problem by behaving like a non-variational
model GAE [52].

2.5 Epitomic Variational Graph Autoencoder

We propose epitomic variational graph autoencoder (EVGAE) which generalizes and
improves the VGAE model. EVGAE not only successfully mitigates the over-pruning
issue of pure VGAE but also attains better generative ability than VGAE[1]. The
motivation comes from the observation that for a certain graph node, a subset of the
latent variables suffices to yield good reconstruction of edges. Yeung et al. [18] proposed
a similar solution for tackling over-pruning problem in VAE. We assume M subsets of
the latent variables called epitomes. They are denoted by {D1, · · · ,DM}. Furthermore,
it is ensured that every subset shares some latent variables with at least one other subset.
We penalize only one epitome for an input node. This encourages other epitomes to be
active. Let yi denote a discrete random variable that decides which epitome is penalized
for a node i. For a given node, the prior distribution of yi is assumed to be uniform over
all the epitomes. y represents the stacked random vector for all N nodes of the graph.
So:

p(y) =

N∏
i=0

p(yi); p(yi) = U(1,M), (2.15)

where U(·) denotes uniform distribution.

Let E ∈ RM×D denote a binary matrix, where each row represents an epitome and
each column represents a latent variable. Fig. 2.7 shows E with M = 8 and D = 16 in
a D-dimensional latent space. The grayed squares of rth row show the latent variables
which constitute the epitome Dr. We denote rth row of E by E[r, :].
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2 Variational Graph Autoencoder and Over-pruning Problem

2.5.1 Generative Model

of EVGAE is given by:

p(G,Z,y) = p(y)p(Z|y)pθ(G|Z), (2.16)

where

p(Z|y) =

N∏
i=0

p(zi|yi) (2.17)

p(zi|yi) =

D∏
j=1

(
E[yi, j] N (0, 1) + (1− E[yi, j])δ(0)

)
, (2.18)

where E[yi, j] refers to jth component of epitome yi. Eq. equation 2.18 shows that zi|yi follows

standard gaussian distribution for the latent variables j where E[yi, j] = 1 and for the rest it

follows degenerate distribution δ(0) located at 0.

2.5.2 Inference Model

uses the following approximate posterior:

qφ(Z,y|G) = qφ(y|G)qφ(Z|G), (2.19)

with

qφ(y|G) =

N∏
i=1

qφ(yi|G) (2.20)

qφ(yi|G) = Cat(πi(G)) (2.21)

qφ(Z|G) =

N∏
i

qφ(zi|G) (2.22)

qφ(zi|G) = N
(
µi(G),diag(σ2

i (G))
)
, (2.23)

where Cat(.) refers to the categorical distribution. πi(.), µi(.) and σ2
i (.) are learnt

using two-layer GCN networks. Specifically, πi(.) is obtained by learning a real vector
which is then passed through softmax layer to give probabilities. Under the assumption
that y and G are independent, given Z; the objective function is given by

log
(
p(G)

)
= log

(∫ ∑
y

p(y)p(Z|y)pθ(G|Z) dZ
)

(2.24)

= log
(
E(Z,y)∼qφ(Z,y|G)

{p(y)p(Z|y)pθ(G|Z)

qφ(Z,y|G)

})
(2.25)

= log
(
E(Z,y)∼qφ(Z,y|G)

{p(y)p(Z|y)pθ(G|Z)

qφ(Z|G)qφ(y|G)

})
. (2.26)
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2.5 Epitomic Variational Graph Autoencoder

By using Jensen’s inequality [49], the ELBO bound for log probability becomes

log
(
p(G)

)
≥ E(Z,y)∼qφ(Z,y|G)

{
log
(p(y)p(Z|y)pθ(G|Z)

qφ(Z|G)qφ(y|G)

)}
(2.27)

= EZ∼qφ(Z|G)

{
log
(
pθ(G|Z)

)}
+ Ey∼qφ(y|G)

{
log
( p(y)

qφ(y|G)

)}
+ E(Z,y)∼qφ(Z,y|G)

{
log
( p(Z|y)

qφ(Z|G)

)}
. (2.28)

Following VGAE[1], we restrict the decoder to recover only edge information from the
latent space. Hence, the decoder is the same as in Eq. equation 2.4. Thus, the first term
in Eq. equation 2.28 simplifies in a similar way as in VGAE i.e. binary cross-entropy
between input and reconstructed edges.

The second term in Eq. equation 2.28 is computed as:

Ey∼qφ(y|G)

{
log
( p(y)

qφ(y|G)

)}
= Ey∼qφ(y|G)

{ N∑
i=1

log
( p(yi)

qφ(yi|G)

)}
=

N∑
i=1

Eyi∼qφ(yi|G)
{
log
( p(yi)

qφ(yi|G)

)}
= −

N∑
i=1

DKL

(
qφ(yi|G)||p(yi)

)
= −

N∑
i=1

DKL

(
Cat(πi(G))|| U(1,M)

)
. (2.29)

The third term in Eq. equation 2.28 is computed as follows:

E(Z,y)∼qφ(Z,y|G)

{
log
( p(Z|y)

qφ(Z|G)

)}
=Ey∼qφ(y|G)

{
EZ∼qφ(Z|G)

{
log
( p(Z|y)

qφ(Z|G)

)}}
=
∑
y

qφ(y|G)EZ∼qφ(Z|G)

{
log
( p(Z|y)

qφ(Z|G)

)}

=

N∑
i=1

∑
y

qφ(y|G)Ezi∼qφ(zi|G)

{
log
( p(zi|yi)
qφ(zi|G)

)}

=

N∑
i=1

∑
yi

qφ(yi|G)Ezi∼qφ(zi|G)

{
log
( p(zi|yi)
qφ(zi|G)

)}

=−
N∑
i=1

∑
yi

qφ(yi|G)DKL

(
qφ(zi|G)||p(zi|yi)

)
(2.30)
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2 Variational Graph Autoencoder and Over-pruning Problem

We take motivation from [18] to compute Eq. equation 2.30 as:

−
N∑
i=1

∑
yi

qφ(yi|G)DKL

(
qφ(zi|G)||p(zi|yi)

)

=−
N∑
i=1

∑
yi

qφ(yi|G)

D∑
j=1

E[yi, j]DKL

(
qφ(zji |G)||p(zji )

)
(2.31)

=−
N∑
i=1

∑
yi

πi(G)

D∑
j=1

E[yi, j]

DKL

(
N
(
µji (G), (σ2

i )j(G)
)
||N (0, 1)

)
, (2.32)

where zji denotes jth component of vector zi. In Eq. equation 2.32, for each node, we
sum over all the epitomes. For a given epitome, we only consider the effect of those latent
variables which are selected by E for that epitome. This also implies that the remaining
latent variables have the freedom to better learn the reconstruction. Consequently,
EVGAE encourages more hidden units to be active without penalizing the hidden units
which are contributing little to the reconstruction. The final loss function is given by:

L = BCE +

N∑
i=1

DKL

(
Cat(πi(G))|| U(1,M)

)
+

N∑
i=1

∑
yi

πi(G)

D∑
j=1

E[yi, j]

DKL

(
N
(
µji (G), (σ2

i )j(G)
)
||N (0, 1)

)
. (2.33)

VGAE model can be recovered from EVGAE model, if we have only one epitome
consisting of all latent variables. Hence the model generalizes VGAE. The algorithm for
training EVGAE is given in Algo. 1.

2.6 Experiments

2.6.1 Datasets

We compare the performance of EVGAE with several baseline methods on the link
prediction task. We conduct the experiments on three benchmark citation datasets[47].

Cora dataset has 2,708 nodes with 5,297 undirected and unweighted links. The nodes
are defined by 1433 dimensional binary feature vectors, divided in 7 classes.

Citeseer dataset has 3,312 nodes defined by 3703 dimensional feature vectors. The
nodes are divided in 6 distinct classes. There are 4,732 links between the nodes.

PubMed consists of 19,717 nodes defined by 500 dimensional feature vectors linked
by 44,338 unweighted and undirected edges. These nodes are divided in 3 classes.
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Algorithm 1 EVGAE Algorithm

Input:

• G

• Epochs

• The matrix E to select latent variables
for each epitome.

Initialize model weights; i = 1
While e ≤ Epochs
compute πi(.), µi(.) and σ2

i (.) ∀i
compute zi ∀i by reparameterization trick
compute loss using Eq. equation 2.33
update model weights using back propagation

2.6.2 Implementation Details and Performance Comparison

In order to ensure fair comparison, we follow the experimental setup of Kipf and Welling[1].
That is, we train the EVGAE and pure VGAE model on an incomplete version of citation
datasets. Concretely, the edges of the dataset are divided in training set, validation set
and test set. Following [1], we use 85% edges for training, 5% for validation and 10% for
testing the performance of the model.

Method
Cora Citeseer PubMed

AUC AP AUC AP AUC AP

DeepWalk 83.1± 0.01 85.0± 0.00 80.5± 0.02 83.6± 0.01 84.4± 0.00 84.1± 0.0

Spectral Clus-
tering

84.6± 0.01 88.5± 0.00 80.5± 0.01 85.0± 0.01 84.2± 0.02 87.8± 0.01

GAE
(VGAE[1]
with β = 0)

91.0± 0.02 92.0± 0.03 89.5± 0.04 89.9± 0.05 96.4± 0.00 96.5± 0.0

VGAE [1] (β ∼
10−4 − 10−5)

91.4± 0.01 92.6± 0.01 90.8± 0.02 92.0± 0.02 94.4± 0.02 94.7± 0.0

pure VGAE (β
= 1)

79.44± 0.03 80.51± 0.02 77.08± 0.03 79.07± 0.02 82.79± 0.01 83.88± 0.01

EVGAE (β =
1)

92.96 ± 0.02 93.58 ± 0.03 91.55 ± 0.03 93.24 ± 0.02 96.80 ± 0.01 96.91 ± 0.02

Table 2.1: Results of link prediction on citation datasets

We compare the performance of EVGAE with three strong baselines, namely: VGAE[1],
spectral clustering[53] and DeepWalk[54]. We also report the performance of pure VGAE
(β=1) and GAE (VGAE with β=0). Since DeepWalk and spectral clustering do not
employ node features; so VGAE, GAE and EVGAE have an undue advantage over
them. The implementation of spectral clustering is taken from [55] with 128 dimensional
embedding and for DeepWalk, the standard implementation is used [56]. For VGAE and
GAE, we use the implementation provided by Kipf and Welling[1]. EVGAE also follows

21



2 Variational Graph Autoencoder and Over-pruning Problem

Figure 2.8: KL-divergence of latent variables in EVGAE

a similar structure with latent embedding being 512 dimensional and the hidden layer
consisting of 1024 hidden units, half of which learn µi(.) and the other half for learning
log-variance. We select 256 epitomes for all three datasets. Each epitome enforces three
units to be active, while sharing one unit with neighboring epitomes. This can also be
viewed as an extension of the matrix shown in Fig. 2.7. Adam [57] is used as optimizer
with learning rate 1e−3. Further implementation details of EVGAE can be found in the
code [58].

For evaluation, we follow the same protocols as other recent works [1][54][53]. That is,
we measure the performance of models in terms of area under the ROC curve (AUC) and
average precision (AP) scores on the test set. We repeat each experiment 10 times in
order to estimate the mean and the standard deviation in the performance of the models.

We can observe from Table 2.1 that the results of EVGAE are competitive or slightly
better than other methods. We also note that the performance of variational method
pure VGAE is quite bad as compared to our variational method EVGAE. Moreover, the
performance of methods with no or poor generative ability (GAE and VGAE [1] with β
∼ 10−4 − 10−5) is quite similar.

2.6.3 EVGAE: Over-pruning and Generative Ability

We now show the learning behavior of EVGAE model on our running example of Cora
dataset. We select 8 epitomes, each dictating three hidden units to be active. The
configuration is shown in Fig. 2.7. Fig. 2.6.2 shows the evolution of KL-divergence and
unit activity during training of EVGAE model. By comparing this figure with pure
VGAE (Fig. 2.2), we can observe that EVGAE has more active hidden units. This
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Figure 2.9: Unit activity of 16 hidden units of EVGAE

demonstrates that our model is better than pure VGAE at mitigating the over-pruning
issue.

On the other hand, if we compare it to VGAE[1](Fig. 2.3), we observe EVGAE have less
active units in comparison. But KL-divergence of the latent variables for VGAE is greater
than 1 for all the latent variables (Fig. 2.3). This implies that the latent distribution is
quite different from the prior distribution (standard gaussian). In contrast, we observe
from Fig. 2.8 that EVGAE has KL-divergence around 0.1 for 13 latent variables and
approximately 0.6 for remaining 3 latent variables. This reinforces our claim that VGAE
achieves more active hidden units by excessively penalizing the KL-term responsible for
generative ability.

In short, although EVGAE has less active units, the distribution matching is better
compared to VGAE. VGAE is akin to GAE due to such low weightage to KL-term, i.e.
β = 0.0003.

2.6.4 Impact of Latent Space Dimension

We now look at the impact of latent space dimension on the number of active units
and average KL-divergence per active unit. We plot the active units for dimensions
D ∈ {16, 32, 64, 128, 256, 512}. Fig. 2.6.3 presents an overview of this impact on our
running example (Cora dataset). For all values of D, the number of epitomes is set to D

2
and one unit is allowed to overlap with neighboring epitomes. Similar to the configuration
in Fig. 2.7 for D = 16. It is to be noted that we kept the same configuration of epitomes
for consistency reasons. Choosing a different configuration of epitomes does not affect
the learning behavior of EVGAE.
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Figure 2.10: Active hidden units with varying latent space dimensions
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Figure 2.11: Effect of changing latent space dimensions on active units and their KL-divergence.
It can be observed that EVGAE has more active units compared to VGAE, and
with better generative ability
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It can be observed that the number of active units is quite less compared to the available
units for VGAE with β = 1 (pure VGAE). Concretely, for D = 512 only 48 units are
active. This shows that the over-pruning problem persists even in high dimensional latent
space.

Now we observe the behavior of VGAE with β = N−1 as proposed by Kipf and
Welling[1], where N denotes the number of nodes in the graph. All the units are active
irrespective of the dimension of latent space. In the case of EVGAE, the number of
active units is in between the two. i.e. we are able to mitigate the over-pruning without
sacrificing the generative ability (β = 1). This results in better performance in graph
analysis tasks as shown in table 2.1.

To demonstrate that EVGAE achieves better distribution matching than VGAE, we
compare the average KL-divergence of active units for different latent space dimensions.
Only active units are considered when averaging the KL-divergence because the inactive
units introduce a bias towards zero in the results. Fig. 2.11 shows how the distribution
matching varies as we increase the number of dimensions. We note that when β = 1,
the average KL-divergence for active units is still quite small, indicating a good match
between learned latent distribution and the prior. Conversely, when β = N−1 the
average KL-divergence per active unit is quite high. This supports our claim that original
VGAE[1] learns a latent distribution which is quite different from the prior. Thus, when
we generate new samples from standard gaussian distribution and pass it through the
decoder, we get quite different output than the graph data used for training. In the
case of EVGAE, the KL divergence is quite closer to the prior compared to VGAE. For
D = 512, it is almost similar to the case with β = 1.
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3 Unsupervised Learning of Joint
Embeddings for Node Representation and
Community Detection

This chapter is based on the following peer-reviewed publication:

Khan, Rayyan Ahmad [*]; Anwaar, Muhammad Umer [*]; Kaddah, Omran,
Zhiwei Han and Kleinsteuber, Martin. Unsupervised Learning of Joint Embeddings
for Node Representation and Community Detection. In the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD), 2021.
[*] indicates that the authors contributed equally to this work.

3.1 Introduction

Graphs are flexible data structures that model complex relationships among entities,
i.e. data points as nodes and the relations between nodes via edges. One important
task in graph analysis is community detection, where the objective is to cluster nodes
into multiple groups (communities). Each community is a set of densely connected
nodes. The communities can be overlapping or non-overlapping, depending on whether
they share some nodes or not. Several algorithmic [59, 60] and probabilistic approaches
[61, 26, 62, 24] to community detection have been proposed. Another fundamental task
in graph analysis is learning the node embeddings. These embeddings can then be used
for downstream tasks like graph visualization [63, 64, 65, 62] and classification [66, 67].

In the literature, these tasks are usually treated separately. Although the standard
graph embedding methods capture the basic connectivity, the learning of the node
embeddings is independent of community detection. For instance, a simple approach
can be to get the node embeddings via DeepWalk [27] and get community assignments
for each node by using k-means or Gaussian mixture model. Looking from the other
perspective, methods like Bigclam [23], that focus on finding the community structure
in the dataset, perform poorly for node-representation tasks e.g. node classification.
This motivates us to study the approaches that jointly learn community-aware node
embeddings.

Recently several approaches, like CNRL [33], ComE [32], vGraph [25] etc, have been
proposed to learn the node embeddings and detect communities simultaneously in a
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unified framework. Several studies have shown that community detection is improved
by incorporating the node representation in the learning process [66, 68]. The intuition
is that the global structure of graphs learned during community detection can provide
useful context for node embeddings and vice versa.

The joint learning methods (CNRL, ComE and vGraph) learn two embeddings for each
node. One node embedding is used for the node representation task. The second node
embedding is the “context” embedding of the node which aids in community detection.
As CNRL and ComE are based on Skip-Gram [69] and DeepWalk [27], they inherit
“context” embedding from it for learning the neighbourhood information of the node.
vGraph also requires two node embeddings for parameterizing two different distributions.
In contrast, we propose learning a single community-aware node representation which is
directly used for both tasks.

In this paper, we propose an efficient generative model called J-ENC for jointly
learning both community detection and node representation. The underlying intuition
behind J-ENC is that every node can be a member of one or more communities. However,
the node embeddings should be learned in such a way that connected nodes are “closer”
to each other than unconnected nodes. Moreover, connected nodes should have similar
community assignments. Formally, we assume that for i-th node, the node embeddings
zi are generated from a prior distribution p(z). Given zi, the community assignments ci
are sampled from p(ci|zi), which is parameterized by node and community embeddings.
In order to generate an edge (i, j), we sample another node embedding zj from p(z) and
respective community assignment cj from p(cj |zj). Afterwards, the node embeddings and
the respective community assignments of node pairs are fed to a decoder. The decoder
ensures that embeddings of both the nodes and the communities of connected nodes
share high similarity. This enables learning such node embeddings that are useful for
both community detection and node representation tasks.

It is pertinent to highlight that although both vGraph and J-ENC adopt a variational
approach but the underlying models are quite different. vGraph assumes that each node
can be represented as a mixture of multiple communities and is described by a multinomial
distribution over communities, whereas J-ENC models the node embedding by a single
distribution. For a given node, vGraph, first draws a community assignment and then
a connected neighbor node is generated based on the assignment. Whereas, J-ENC
draws the node embedding from prior distribution and then community assignment is
conditioned on a single node only. In simple terms, vGraph also needs edge information
in the generative process whereas J-ENC does not require it. J-ENC relies on the
decoder to ensure that embeddings of the connected nodes and their communities share
high similarity with each other.

We validate the effectiveness of our approach on several real-world graph datasets. In
Sec. 3.3, we show empirically that J-ENC is able to outperform the baseline methods
including the direct competitors on all three tasks i.e. node classification, overlapping
community detection and non-overlapping community detection. Furthermore, we com-
pare the computational cost of training different algorithms. J-ENC is up to 40x more
time-efficient than its competitors. We also conduct hyperparameter sensitivity anal-

28



3.2 Methodology

ysis which demonstrates the robustness of our approach. Our main contributions are
summarized below:

• We propose an efficient generative model called J-ENC for joint community
detection and node representation learning.

• We adopt a novel approach and argue that a single node embedding is sufficient for
learning both the representation of the node itself and its context.

• Training J-ENC is extremely time-efficient in comparison to its competitors.

3.2 Methodology

3.2.1 Problem Formulation

Suppose an undirected graph G = (V, E) with the adjacency matrix A ∈ RN×N and a
matrix X ∈ RN×F of F -dimensional node features, N being the number of nodes. Given
K as the number of communities, we aim to jointly learn the node embeddings and the
community embeddings following a variational approach such that:

• One or more communities can be assigned to every node.

• The node embeddings can be used for both community detection and node classifi-
cation.

3.2.2 Variational Model

3.2.2.1 Generative Model:

Let us denote the latent node embedding and community assignment for i-th node by
the random variables zi ∈ Rd and ci respectively. The generative model is given by:

p(A) =

∫ ∑
c

p(Z, c,A)dZ, (3.1)

where c = [c1, c2, · · · , cN ] and the matrix Z = [z1, z2, · · · , zN ] stacks the node embed-
dings. The joint distribution in (3.1) is mathematically expressed as

p(Z, c,A) = p(Z) pθ(c|Z) pθ(A|c,Z), (3.2)

where θ denotes the model parameters. Let us denote elements of A by aij . Following
existing approaches [1, 20], we consider zi to be i.i.d random variables. Furthermore,
assuming ci|zi to be i.i.d random variables, the joint distributions in (3.2) can be
factorized as

p(Z) =

N∏
i=1

p(zi) (3.3)

pθ(c|Z) =

N∏
i=1

pθ(ci|zi) (3.4)
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pθ(A|c,Z) =
∏
i,j

pθ(aij |ci, cj , zi, zj), (3.5)

where Eq. (3.5) assumes that the edge decoder pθ(aij |ci, cj , zi, zj) depends only on ci, cj , zi
and zj .

3.2.2.2 Inference Model:

We aim to learn the model parameters θ such that log(pθ(A)) is maximized. In order to
ensure computational tractability, we introduce the approximate posterior

qφ(Z, c|I) =
∏
i

qφ(zi, ci|I) (3.6)

=
∏
i

qφ(zi|I)qφ(ci|zi, I), (3.7)

where I = (A,X) if node features are available, otherwise I = A.

log(pθ(A)) = log

(∫ ∑
c

pθ(Z, c,A)dZ

)
(3.8)

= log

(∫ ∑
c

p(Z) pθ(c|Z) pθ(A|c,Z)dZ

)
(3.9)

= log

(
E(Z,c)∼qφ(Z,c|I)

{
p(Z) pθ(c|Z) pθ(A|c,Z)

qφ(Z|I)qφ(c|Z, I)

})
(3.10)

≥ E(Z,c)∼qφ(Z,c|I)

{
log

(
p(Z) pθ(c|Z) pθ(A|c,Z)

qφ(Z|I)qφ(c|Z, I)

)}
(3.11)

= E(Z,c)∼qφ(Z,c|I)

{
log

(
p(Z)

qφ(Z|I)

)
+ log

(
pθ(c|Z)

qφ(c|Z, I)

)
+ log

(
pθ(A|c,Z)

)}
(3.12)

= EZ∼qφ(Z|I)

{
log

(
p(Z)

qφ(Z|I)

)}
+ E(Z,c)∼qφ(Z,c|I)

{
log

(
pθ(c|Z)

qφ(c|Z, I)

)}
+ E(Z,c)∼qφ(Z,c|I)

{
log

(
pθ(A|c,Z)

)}
. (3.13)

Where (3.11) follows from Jensen’s Inequality. First term of (3.13) is given by:

EZ∼qφ(Z|I)

{
log

(
p(Z)

qφ(Z|I)

)}
=

N∑
i=1

Ezi∼qφ(zi|I)

{
log

(
p(zi)

qφ(zi|I)

)}
(3.14)

= −
N∑
i=1

DKL(qφ(zi|I) || p(zi)). (3.15)
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Second term of Eq. (3.13) can be derived as:

E(Z,c)∼qφ(Z,c|I)

{
log

(
pθ(c|Z)

qφ(c|Z, I)

)}
=

N∑
i=1

E(zi,ci)∼qφ(zi,ci|I)

{
log

(
pθ(ci|zi)
qφ(ci|zi, I)

)}
(3.16)

≈
N∑
i=1

1

M

M∑
m=1

E
ci∼qφ(ci|z(m)

i ,I)

{
log

(
pθ(ci|z(m)

i )

qφ(ci|z(m)
i , I)

)}
(3.17)

= −
N∑
i=1

1

M

M∑
m=1

DKL(qφ(ci|z(m)
i , I) || pθ(ci|z(m)

i )) (3.18)

where (3.17) follows from Eq. (3.16) by replacing the expectation over zi with sample

mean by generating M samples z
(m)
i from distribution q(zi|I). Assuming aij ∈ [0, 1] ∀i,

the third term of Eq. (3.13) is the negative of binary cross entropy (BCE) between
observed and predicted edges.

E(Z,c)∼qφ(Z,c|I)

{
log

(
pθ(A|c,Z)

)}
=
∑

(i,j)∈E

E(zi,zj ,ci,cj)∼qφ(zi,zj ,ci,cj |I)

{

log

(
pθ(aij |ci, cj , zi, zj)

)}
(3.19)

Hence, by substituting Eq. (3.15) and Eq. (3.18) in Eq. (3.13), we get the ELBO bound
as:

LELBO ≈

−
N∑
i=1

DKL(qφ(zi|I) || p(zi))

−
N∑
i=1

1

M

M∑
m=1

DKL(qφ(ci|z(m)
i , I) || pθ(ci|z

(m)
i ))

+
∑

(i,j)∈E

E(zi,zj ,ci,cj)∼qφ(zi,zj ,ci,cj |I)

{

log

(
pθ(aij |ci, cj , zi, zj)

)}
(3.20)

where DKL(.||.) represents the KL-divergence between two distributions. The distribu-
tion qφ(zi, zj , ci, cj |I) in the third term of Eq. (??) is factorized into two conditionally
independent distributions i.e.

qφ(zi, zj , ci, cj |I) = qφ(zi, ci|I)qφ(zj , cj |I). (3.21)
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3.2.3 Design Choices

In Eq. (3.3), p(zi) is chosen to be the standard gaussian distribution for all i. The
corresponding approximate posterior qφ(zi|I) in Eq. (3.7), used as node embeddings
encoder, is given by

qφ(zi|I) = N
(
µi(I), diag(σ2

i(I))
)
. (3.22)

The parameters of qφ(zi|I) can be learnt by any encoder network e.g. graph convolu-
tional network [70], graph attention network [37], GraphSAGE [29] or even two matrices
to learn µi(I) and diag(σ2

i(I)). Samples are then generated using reparametrization
trick [71].

For parameterizing pθ(ci|zi) in Eq. (3.4), we introduce the community embeddings
{g1, · · · , gK}; gk ∈ Rd. The distribution pθ(ci|zi) is then modelled as the softmax of dot
products of zi with gk, i.e.

pθ(ci = k|zi) =
exp(< zi, gk >)
K∑̀
=1

exp(< zi, g` >)

. (3.23)

The corresponding approximate posterior qφ(ci = k|zi, I) in Eq. (3.7) is affected by the
node embedding zi as well as the neighborhood. To design this, our intuition is to consider
the similarity of gk with the embedding zi as well as with the embeddings of the neighbors
of the i-th node. The overall similarity with neighbors is mathematically formulated as
the average of the dot products of their embeddings. Afterwards, a hyperparameter α is
introduced to control the bias between the effect of zi and the set Ni of the neighbors of
the i-th node. Finally, a softmax is applied, i.e.

qφ(ci = k|zi,G) = softmax
(
α < zi, gk >

+ (1− α)
1

|Ni|
∑
j∈Ni

< zj , gk >
))
. (3.24)

Hence, Eq. (3.24) ensures that graph structure information is employed to learn
community assignments instead of relying on an extraneous node embedding as done in
[25, 32]. Finally, the choice of edge decoder in Eq. (3.5) is motivated by the intuition
that the nodes connected by edges have a high probability of belonging to the same
community and vice versa. Therefore we model the edge decoder as:

pθ(aij |ci = `, cj = m, zi, zj) =
σ(< zi, gm >) + σ(< zj , g` >)

2
. (3.25)

For better reconstructing the edges, Eq. (3.25) makes use of the community embeddings,
node embeddings and community assignment information simultaneously. This helps in
learning better node representations by leveraging the global information about the graph
structure via community detection. On the other hand, this also forces the community
assignment information to exploit the local graph structure via node embeddings and
edge information.
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3.2.4 Practical Aspects

The third term in Eq. (??) is estimated in practice using the samples generated by the
approximate posterior. This term is equivalent to the negative of binary cross-entropy
(BCE) loss between observed edges and reconstructed edges. Since community assignment
follows a categorical distribution, we use Gumbel-softmax [72] for backpropagation of
the gradients. As for the second term of Eq. (??), it is also enough to set M = 1, i.e. use
only one sample per input node.

For inference, non-overlapping community assignment can be obtained for i-th node as

Ci = arg max
k∈{1,··· ,K}

qφ(ci = k|zi, I). (3.26)

To get overlapping community assignments for i-th node, we can threshold its weighted
probability vector at ε, a hyperparameter, as follows

Ci =
{
k

∣∣∣∣ qφ(ci = k|zi, I)

max
`
qφ(ci = `|zi, I)

≥ ε
}
, ε ∈ [0, 1]. (3.27)

3.2.5 Complexity

Computation of dot products for all combinations of node and community embeddings
takes O(NKd) time. Solving Eq. (3.24) further requires calculation of mean of dot
products over the neighborhood for every node, which takes O(|E|K) computations
overall as we traverse every edge for every community. Finally, we need softmax over
all communities for every node in Eq. (3.23) and Eq. (3.24) which takes O(NK) time.
Eq. (3.25) takes O(|E|) time for all edges as we have already calculated the dot products.
As a result, the overall complexity becomes O(|E|K +NKd). This complexity is quite
low compared to other algorithms designed to achieve similar goals [32, 73].

3.3 Experiments

3.3.1 Synthetic Example

We start with a synthetic dataset, consisting of 3 communities with 5 points per community.
This dataset is actually a random partition graph generated by the python package
networkx. The encoder simply consists of two matrices that give µi(I) and diag(σ2

i(I)).
The results of the community assignments discovered by J-ENC are given in Fig. 3.1,
where the node sizes are reciprocal to the confidence of J-ENC in the community
assignments. We choose 3 communities for demonstration because the probabilistic
community assignments in such case can be thought of as rgb values for coloring the
nodes. It can be seen that J-ENC discovers the correct community structure. However,
the two bigger nodes in the center can be assigned to more than one communities as
J-ENC is not very confident in case of these nodes. This is evident from the colors that
are a mix of red, green and blue. We now proceed to the experiments on real-world
datasets.
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Dataset |V| |E| K |F | Overlap

CiteSeer 3327 9104 6 3703 N
CiteSeer-full 4230 10674 6 602 N
Cora 2708 10556 7 1433 N
Cora-ML 2995 16316 7 2879 N
Cora-full 19793 126842 70 8710 N
fb0 333 2519 24 N/A Y
fb107 1034 26749 9 N/A Y
fb1684 786 14024 17 N/A Y
fb1912 747 30025 46 N/A Y
fb3437 534 4813 32 N/A Y
fb348 224 3192 14 N/A Y
fb414 150 1693 7 N/A Y
fb698 61 270 13 N/A Y
youtube 5346 24121 5 N/A Y
amazon 794 2109 5 N/A Y
amazon500 1113 3496 500 N/A Y
amazon1000 1540 4488 1000 N/A Y
dblp 24493 89063 5 N/A Y

Table 3.1: Every dataset has |V| nodes, |E| edges, K communities and |F | features. |F | = N/A
means that either the features were missing or not used.
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Figure 3.1: Visualization of community assignments discovered by J-ENC in the synthetic
dataset of 15 points divided in three communities.
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3.3.2 Datasets

We have selected 18 different datasets ranging from 270 to 126,842 edges. For non-
overlapping community detection and node classification, we use 5 the citation datasets
[74, 75]. The remaining datasets [26, 76], used for overlapping community detection,
are taken from SNAP repository [77]. Following [25], we take 5 biggest ground truth
communities for youtube, amazon and dblp. Moreover, we also analyse the case of large
number of communities. For this purpose, we prepare two subsets of amazon dataset by
randomly selecting 500 and 1000 communities from 2000 smallest communities in the
amazon dataset.

3.3.3 Baselines

For overlapping community detection, we compare with the following competitive base-
lines:

1. MNMF[62] learns community membership distribution by using joint non-negative
matrix factorization with modularity based regularization.

2. BIGCLAM[23] also formulates community detection as a non-negative matrix
factorization (NMF) task. It simultaneously optimizes the model likelihood of
observed links and learns the latent factors which represent community affiliations
of nodes.

3. CESNA [24] extends BIGCLAM by statistically modelling the interaction between
the network structure and the node attributes.

4. Circles [26] introduces a generative model for community detection in ego-networks
by learning node similarity metrics for every community.

5. SVI [61] formulates membership of nodes in multiple communities by a Bayesian
model of networks.

6. vGraph [25] simultaneously learns node embeddings and community assign-
ments by modelling the nodes as being generated from a mixture of communities.
vGraph+, a variant further incorporates regularization to weigh local connectivity.

7. ComE [32] jointly learns community and node embeddings by using gaussian
mixture model formulation.

8. CNRL[33] enhances the random walk sequences (generated by DeepWalk, node2vec
etc) to jointly learn community and node embeddings.

9. CommunityGAN (ComGAN)is a generative adversarial model for learning node
embeddings such that the entries of the embedding vector of each node refer to the
membership strength of the node to different communities.
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10. Lastly, we compare the results with the communities obtained by applying k-means
to the learned embeddings of DGI [31].

For non-overlapping community detection and node classification, we compare J-ENC
with the following baselines:

1. DeepWalk [27] makes use of SkipGram [69] and truncated random walks on
network to learn node embeddings.

2. LINE [67] learns node embeddings while attempting to preserve first and second
order proximities of nodes.

3. Node2Vec [28] learns the embeddings using biased random walk while aiming to
preserve network neighborhoods of nodes.

4. GEMSEC is a sequence sampling-based learning model which aims to jointly learn
the node embeddings and clustering assignments.

5. Graph Autoencoder (GAE)[1] extends the idea of autoencoders to graph
datasets.

6. VGAE, variational graph autoencoder, discussed in detail in Chapter 2.

7. MNMF, discussed above.

8. DGI , discussed above.

9. CNRL, discussed above.

10. CommunityGAN, discussed above.

11. vGraph, discussed above.

12. ComE, discussed above.

3.3.4 Settings

For overlapping community detection, we learn mean and log-variance matrices
of 16-dimensional node embeddings. We set α = 0.9 and ε = 0.3 in all our experiments.
Following [1], we first pre-train a variational graph autoencoder. We perform gradient
descent with Adam optimizer [78] and learning rate = 0.01. Community assignments are
obtained using Eq. (3.27). For the baselines, we employ the results reported by [25]. For
evaluating the performance, we use F1-score and Jaccard similarity.

For non-overlapping community detection, since the default implementations
of most the baselines use 128 dimensional embeddings, for we use d = 128 for fair
comparison. Eq. (3.26) is used for community assignments. For vGraph, we use the code
provided by the authors. We employ normalized mutual information (NMI) and adjusted
random index (ARI) as evaluation metrics.
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For node classification, we follow the training split used in various previous works
[75, 70, 31], i.e. 20 nodes per class for training. We train logistic regression using
LIBLINEAR [79] solver as our classifier and report the evaluation results on rest of
the nodes. For the algorithms that do not use node features, we train the classifier by
appending the raw node features with the learnt embeddings. For evaluation, we use
F1-macro and F1-micro scores. All the reported results are the average over five runs.

3.3.5 Discussion of Results

Tables 3.2 and 3.3 summarize the results of the performance comparison for the overlapping
community detection task.

First, we note that our proposed method J-ENC outperforms the competitors on
all datasets in terms of Jaccard score as well as F1-score, with the dataset (fb0 ) being
the only exception where J-ENC is the second best. These results demonstrate the
capability of J-ENC to learn multiple community assignments quite well and hence
reinforces our intuition behind the design of Eq. (3.24).

Second, we observe that there is no consistent performing algorithm among the
competitive methods. That is, excluding J-ENC , the best performance is achieved
by vGraph/vGraph+ on 5, ComGAN on 4 and ComE on 3 out of 13 datasets in terms
of F1-score. A a similar trend can be seen in Jaccard Similarity. It is worth noting
that all the methods, which achieve the second-best performance, are solving the task of
community detection and node representation learning jointly.

Third, we observe that vGraph+ results are generally better than vGraph. This is
because vGraph+ incorporates a regularization term in the loss function which is based
on Jaccard coefficients of connected nodes as edge weights. However, it should be noted
that this prepossessing step is computationally expensive for densely connected graphs.

Tab. 3.4 and Tab. 3.5 show the results on non-overlapping community detection. First,
we observe that MNMF, DeepWalk, LINE and Node2Vec provide a good baseline for
the task. However, these methods are not able to achieve comparable performance
on any dataset relative to the frameworks that treat the two tasks jointly. Second,
J-ENC consistently outperforms all the competitors in NMI and ARI metrics, except
for CiteSeer where it achieves second best ARI. Third, we observe that GCN based
models i.e. GAE, VGAE and DGI show competitive performance. That is, they achieve
second best performance in all the datasets except CiteSeer. In particular, DGI achieves
second best NMI results in 3 out of 5 datasets and 2 out of 5 datsets in terms of ARI.
Nonetheless, DGI results are not very competitive in Tab. 3.2 and Tab. 3.3, showing
that while DGI can be a good choice for learning node embeddings for attributed graphs
with non-overlapping communities, it is not the best option for non-attributed graphs or
overlapping communities.

The results for node classification are presented in Tab. 3.6 and Tab. 3.7. J-ENC
achieves best F1-micro and F1-macro scores on 4 out of 5 datasets. We also observe that
GCN based models i.e. GAE, VGAE and DGI show competitive performance, following
the trend in results of Tab. 3.4 and Tab. 3.5. Furthermore, we note that the node
classification results of CommunityGan (ComGAN) are quite poor. We think a potential
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Table 3.2: F1 scores (%) for overlapping communities. Best and second best values are bold
and blue respectively.
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Table 3.3: Jaccard scores (%) for overlapping communities. Best and second best values are
bold and blue respectively.
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Alg. CiteSeer CiteSeer-full Cora Cora-ML Cora-full

MNMF 14.1 09.4 19.7 37.8 42.0
DeepWalk 08.8 15.4 39.7 43.2 48.5
LINE 08.7 13.0 32.8 42.3 40.3
Node2Vec 14.9 22.3 39.7 39.6 48.1
GAE 17.4 55.1 39.7 48.3 48.3
VGAE 16.3 48.4 40.8 48.3 47.0
DGI 37.8 56.7 50.1 46.2 39.9
GEMSEC 11.8 11.1 27.4 18.1 10.0
CNRL 13.6 23.3 39.4 42.9 47.7
ComGAN 03.2 16.2 05.7 11.5 15.0
vGraph 09.0 07.6 26.4 29.8 41.7
ComE 18.8 32.8 39.6 47.6 51.2
J-ENC 38.5 59.0 52.7 56.3 55.2

Table 3.4: NMI(%): Non-overlapping community detection results. Best and second best values
are bold and blue respectively.

Alg. CiteSeer CiteSeer-full Cora Cora-ML Cora-full

MNMF 02.6 00.4 02.9 24.1 06.1
DeepWalk 09.5 16.4 31.2 33.9 22.5
LINE 03.3 03.7 14.9 32.7 11.7
Node2Vec 08.1 10.5 25.8 27.9 18.8
GAE 14.1 50.6 29.3 41.8 18.3
VGAE 10.1 40.6 34.7 42.5 17.9
DGI 38.1 50.8 44.7 42.1 12.1
GEMSEC 00.6 01.0 04.8 01.0 00.2
CNRL 12.8 20.2 31.9 32.5 22.9
ComGAN 01.2 04.9 03.2 06.7 00.6
vGraph 05.1 04.2 12.7 21.6 14.9
ComE 13.8 20.9 34.2 37.2 19.7
J-ENC 35.2 60.3 45.1 49.8 28.8

Table 3.5: ARI(%): Non-overlapping community detection results. Best and second best values
are bold and blue respectively.
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Alg. CiteSeer CiteSeer-full Cora Cora-ML Cora-full

MNMF 57.4 68.6 60.9 64.2 30.4
DeepWalk 49.0 56.6 69.7 75.8 41.7
LINE 55.0 60.2 68.0 75.3 39.4
Node2Vec 55.2 61.0 71.3 78.4 42.3
GAE 57.9 79.9 71.2 76.5 36.6
VGAE 59.1 74.4 70.4 75.2 32.4
DGI 62.6 82.1 71.1 72.6 16.5
GEMSEC 37.5 53.3 60.3 70.6 35.8
CNRL 50.0 58.0 70.4 77.8 41.3
ComGAN 55.9 65.7 56.6 62.5 27.7
vGraph 30.8 28.5 44.7 59.8 33.4
ComE 59.6 69.9 71.6 78.5 42.2
J-ENC 64.8 76.8 73.1 80.2 43.1

Table 3.6: F1-macro(%): Node classification results. Best and second best values are bold and
blue respectively.

Alg. CiteSeer CiteSeer-full Cora Cora-ML Cora-full

MNMF 60.8 68.1 62.7 64.2 32.9
DeepWalk 52.0 57.3 70.2 75.6 48.3
LINE 57.7 60.0 68.3 74.6 42.1
Node2Vec 57.8 61.5 71.4 78.6 48.1
GAE 61.6 79.6 73.5 77.6 41.8
VGAE 62.2 74.4 72.0 76.4 37.7
DGI 67.9 81.8 73.3 75.4 21.1
GEMSEC 39.4 53.5 59.4 72.5 38.9
CNRL 53.2 57.9 70.4 78.4 45.9
ComGAN 59.1 64.9 58.5 62.8 29.4
vGraph 32.1 28.5 44.6 62.3 37.6
ComE 63.1 70.2 74.2 79.5 47.8
J-ENC 68.2 77.0 75.6 82.0 49.6

Table 3.7: F1-micro(%): Node classification results. Best and second best values are bold and
blue respectively.
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Figure 3.2: Effect of ε. Overall a slight decrease in scores can be observed after ε = 0.7 mark.
F1 and Jaccard scores are in solid and dashed lines respectively.

reason behind it is that the node embeddings are constrained to have same dimensions as
the number of communities. Hence, different components of the learned node embeddings
simply represent the membership strengths of nodes for different communities. The linear
classifiers may find it difficult to separate such vectors.

3.3.6 Hyperparameter Sensitivity

We study the dependence of J-ENC on ε and α by evaluating on four datasets of different
sizes: fb698 (N = 61), fb1912 (N = 747), amazon1000 (N=1540) and youtube(N = 5346).

Effect of ε: We sweep for ε = {0.1, 0.2, · · · , 0.9}. For demonstrating effect of α, we
fix ε = 0.3 and sweep for α = {0.1, 0.2, · · · , 0.9}. The average results of five runs for ε
and α are given in Fig. 3.2 and Fig. 3.3 respectively. Overall J-ENC is quite robust
to the change in the values of ε and α. In case of ε, we see a general trend of decrease
in performance when the threshold ε is set quite high e.g. ε > 0.7. This is because the
datasets contain overlapping communities and a very high ε will cause the algorithm
to give only the most probable community assignment instead of potentially providing
multiple communities per node. However, for a large part of sweep space, the results are
almost consistent.

Effect of α: When ε is fixed and α is changed, the results are mostly consistent except
when α is set to a low value. Eq. (3.24) shows that in such a case the node itself is almost
neglected and J-ENC tends to assign communities based upon neighborhood only, which
may cause a decrease in the performance. This effect is most visible in amazon1000
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Figure 3.3: Effect of α. The scores generally tend to decrease for small values of α. F1 and
Jaccard scores are in solid and dashed lines respectively.

dataset because it has only 1.54 points on average per community. This implies a decent
chance for neighbours of a point of being in different communities. Thus, sole dependence
on the neighbors will most likely result in poor results.

3.3.7 Training Time

Now we compare the training times of different algorithms in Fig. 3.4. As some of
the baselines are more resource intensive than others, we select aws instance type
g4dn.4xlarge for fair comparison of training times. For vGraph, we train for 1000
iterations and for J-ENC for 1500 iterations. For all other algorithms we use the
default parameters as used in section 3.3.4. We observe that the methods that simply
output the node embeddings take relatively less time compared to the algorithms that
jointly learn node representations and community assignments e.g J-ENC , vGraph
and CNRL. Among these algorithms J-ENC is the most time efficient. It consistently
trains in less time compared to its direct competitors. For instance, it is about 12 times
faster than ComE for CiteSeer-full and about 40 times faster compared to vGraph for
Cora-full dataset. This provides evidence for lower computational complexity of J-ENC
in Section 3.2.5.
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Figure 3.4: Comparison of running times of different algorithms. We can see that J-ENC
outperforms the direct competitors. The time on y-axis is in log scale.

Figure 3.5: fb107. Graph visualization with community assignments (better viewed in color
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Figure 3.6: fb3437. Graph visualization with community assignments (better viewed in color)

3.3.8 Visualization

Our experiments demonstrate that a single community-aware node embedding is sufficient
to aid in both the node representation and community assignment tasks. This is also
qualitatively demonstrated by graph visualizations of node embeddings (obtained via
t-SNE [80]) and inferred communities for two datasets, fb107 and fb3437, presented in
Figures 3.5 and 3.6.
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4 Leveraging the Metapath and Entity
Aware Subgraphs for Recommendation

This chapter is based on the following publication:

Anwaar, Muhammad Umer[*]; Han, Zhiwei[*]; Arumugaswamy, Shyam [*];
Khan, Rayyan Ahmad [*]; Weber, Thomas; Qiu, Tianming; Shen, Hao; Liu, Yuanting
and Kleinsteuber, Martin. 2022. On Leveraging the Metapath and Entity Aware
Subgraphs for Recommendation. In Proceedings of the 1st Workshop on Multimedia
Computing towards Fashion Recommendation (MCFR ’22). Association for Computing
Machinery, New York, NY, USA, 3–10. https://doi.org/10.1145/3552468.3555361
[*] indicates that the authors contributed equally to this work.

4.1 Introduction

Integrating content information for user preference prediction remains a challenging
task in the development of recommender systems. In spite of their effectiveness, most
collaborative filtering (CF) methods [81, 82, 83, 84] still suffer from the incapability of
modeling content information such as user profiles and item features [85, 86]. Several
methods have been proposed to address this problem. Most of them fall in these
two categories: factorization and graph-based methods. Factorization methods such as
factorization machine (FM) [87], neural factorization machine (NFM) [88] and Wide&Deep
models [89] fuse numerical features of each individual training sample. These methods
yield competitive performance on several datasets. However, they neglect the dependencies
among the content information. Graph-based methods such as NGCF [90], KGAT [91],
KGCN [92], Multi-GCCF[93] and LGC [94] represent recommender systems with graph
structured data and exploit the graph structure to enhance the node-level representations
for better recommendation performance [95, 90, 96, 97].

It is to be noted that learning such node-level representations loses the correspondences
and interactions between the content information of users and items. This is because the
node embeddings are learned independently as indicated by Zhang et al. [98]. Another
disadvantage of previous GNN-based methods is that the sequential nature of connectivity
relations are either ignored (Knowledge Graph based methods) or mixed up (GNN-based
methods) without the explicit modelling of multi-hop structure.

A natural solution of capturing the inter- and intra-relations between content features
and user-item pairs is to explore the high-order information encoded by metapaths
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[99, 100]. A metapath denotes a set of composite relations designed for representing
multi-hop structure and sequential semantics. To our best knowledge, only a limited
number of efforts have been made to enhance GNNs with metapaths. A prominent
metapath based method is MAGNN [101]: it aggregates intra-metapath information for
each path instance. As a consequence, MAGNN suffers from high memory consumption
problem. MEIRec [102] utilizes the structural information in metapaths to improve the
node-level representation for intent recommendation, but the method fails to generalize
when no user intent or query is available.

To overcome these limitations, we propose MetaPath- and Entity-Aware Graph Neural
Network (PEAGNN), a unified GNN framework, which aggregates information over
multiple metapath-aware subgraphs and fuse the aggregated information to obtain node
representation using attention mechanism. As a first step, we extract an h-hop enclosing
collaborative subgraph (CSG). Each CSG is centered at a user-item pair and aimed to
suppress the influence of feature nodes from other user-item interactions. Such local
subgraphs contain rich semantic and collaborative information of user-item interactions.
One major difference between the CSGs in our work and the subgraphs proposed by
Zhang et al. [98] is that in the subgraphs in their work neglect side information by
excluding all feature entity nodes.

As a second step, the CSG is decomposed into γ metapath-aware subgraphs based
on the schema of the selected metapaths. After that, PEAGNN updates the node
representation of the given CSG and outputs a CSG graph-level representation, which
distills the collective user-item pattern and sequential semantics encoded in the CSG. A
multi-layer perceptron is then trained to predict the recommendation score of a user-item
pair. To further exploit the local structure of CSGs, we introduce entity-awareness, a
contrastive regularizer which pushes the user and item nodes closer to the connected
feature entity nodes, while simultaneously pushing them apart from the unconnected
ones. PEAGNN learns by jointly minimizing Bayesian Personalized Rank (BPR) loss
and entity-aware loss. Furthermore, PEAGNN can be easily combined with any graph
convolution layers such as GAT, GCN and GraphSage.

In contrast to existing metapath based approaches [99, 102, 101, 103, 100], PEAGNN
avoids the high computational cost of explicit metapath reconstruction. This is achieved
by metapath-guided propagation. The information is propagated along the metapaths
“on the fly”. This is the primary reason of computational efficiency of PEAGNN as it
gets rid of applying message passing on the recommendation graph. Consequently, the
redundant information propagated from other interactions (subgraphs) is avoided by only
performing metapath-guided propagation on individual metapath-aware subgraph. We
discuss this in detail in Sec. 3.

The contributions of our work are summarized as follows:

1. We decouple the sequential semantics conveyed by metapaths into different metapath-
aware subgraphs and propose PEAGNN, which explicitly propagates and aggregates
multi-hop semantics on metapath-aware subgraphs.
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2. We fuse the aggregated information from metapath-aware subgraphs using attention
to get representations. For a given CSG, we utilize the graph-level representation
and predict the recommendation score of the target user-item pairs.

3. We introduce entity-awareness that acts as a contrastive regularizer on the node
embeddings during training.

4. The empirical analysis on three public datasets demonstrate that PEAGNN outper-
forms other competitive baselines and is capable of learning meaningful metapath
combinations.

4.2 Related Work

GNN is designed for learning on graph structured data [104, 105, 106]. GNNs employ
message passing algorithm to pass messages in an iterative fashion between nodes to
update node representation with the underlying graph structure. An additional pooling
layer is typically used to extract graph representation for graph-level tasks, e.g., graph
classification or clustering. Due to its superior performance on graphs, GNNs have
achieved state-of-the-art performance on node classification [106], graph representation
learning [107] and RSs [108]. In the task of RSs, relations such as user-item interactions
and user-item features can be presented as multi-typed edges in the graphs. Severel
recent works have proposed GNNs to solve recommendation tasks [90, 91, 95]. NGCF
[90] embeds bipartite graphs of users and items into node representation to capture
collaborative signals. GCMC [95] proposed a graph auto-encoder framework, which
produces latent features of users and items through a form of differentiable message
passing on the user-item graph. KGAT [91] proposed a knowledge graph based attentive
propagation, which enhances the node features by modeling high-order connectivity
information. Multi-GCCF [93] explicitly incorporates multiple graphs in the embedding
learning process and consider the intrinsic difference between user nodes and item nodes
in performing graph convolution.

Prior to GNNs, several efforts have been established to explicitly guide the recommender
learning with metapaths [109, 103, 110]. Heitmann et al. [109] utilized linked data from
heterogeneous data source to enhance collaborative filtering for the cold-start problem.
Sun et al. [103] converted recommendation tasks to relation prediction problems and
tackled it with metapath-based relation reasoning. Yu et al. [110] employed matrix
factorization framework over meta-path similarity matrices to perform recommendation.
Hu et al. [111] proposed user- and item-metapath based co-attention to fuse metapath
information for recommendation while ignored the inter-metapath interactions. Zhao et
al. [112] fed the semantics encoded by meta-graph in factorization model but neglected
the contribution of each individual meta-graph. However, only a limited number of works
attempted to enhance GNNs with metapaths. Two recent works are quite prominent
in this regard, MAGNN [101] and MEIRec [102]. MAGNN aggregates intra-metapath
information for each path instance. But this causes MAGNN to get in the problem
of unaffordable memory consumption. MEIRec devised a GNN to perform metapath-
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Figure 4.1: Illustration of the proposed PEAGNN model on the MovieLens dataset. Subfigure
(1) shows the metapath-aware subgraphs generated from a CSG with the given
user- and item metapaths. Subfigures (2), (3) and (4) illustrate the metapath-aware
information aggregation and fusion workflow of the PEAGNN model. For simplicity,
we have only adopted 2-hop metapaths.

guided propagation. But MEIRec fails to generalize when no user intent is available
and does not distinguish the contribution of metapaths. In contrast to these methods,
our method saves computational time and memory by adopting a stepwise information
propogation over meta-path aware subgraphs. Moreover, PEAGNN employs collaborative
subgraph (CSG) to separate semantics introduced by different metapaths and fuses
those semantics according to the learned metapath importance, in contrast to existing
approaches [98, 101, 102].

4.3 Methodology

4.3.1 Task description

We formulate the recommendation task as: Given a HIN that includes user-item historical
interactions as well as their feature entity nodes. The aim is to learn heterogeneous node
representations and the graph-level representations from given collaborative subgraphs.
The graph-level representations are utilized by a prediction model to predict the interaction
score between user-item pair.

4.3.2 Overview of PEAGNN

PEAGNN is a unified GNN framework, which exploits and fuses rich sequential semantics
in selected metapaths. To leverage the underlying local structure of the graph for
recommendation, we introduce an entity-aware regularizer that distinguishes users and
items from their unrelated features in a contrastive fashion. Figure 4.1 illustrates the
PEAGNN framework, which consists of three components:
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1. A Metapath Aggregation Layer, which explicitly aggregates information on
metapath-aware subgraphs.

2. A Metapath Fusion Layer, which fuses the aggregated node representations
from multiple metapath-aware subgraphs using attention mechanism.

3. A Prediction Layer, which readouts the graph-level representations of CSGs and
estimate the likelihood of potential user-item interactions.

4.3.3 Metapath Aggregation Layer

Sequential semantics encoded by metapaths reveal different aspects towards the connected
objects. Appropriate modelling of metapaths can improve the expressiveness of node
representations. Our aim is to learn node representations that preserve the sequential
semantics in metapaths. PEAGNN saves memory and computation time by performing
a step-wise information propagation over metapath-aware subgraphs. This is contrast to
Fan et al. [102] which consider each individual path as input.

4.3.3.1 Metapath-aware Subgraph

A metapath-aware subgraph is a directed graph induced from the corresponding CSG
by following one specific metapath. As the goal is to learn metapath-aware user-item
representation for recommendation, it is intuitive to choose such metapaths which end
with either a user or an item node. This ensures that the information aggregation on
metapath-aware subgraphs always end on nodes of our primary interest.

4.3.3.2 Information Propagation on Metapath-aware Subgraphs

PEAGNN trains a GNN model to perform step-wise information aggregation on metapath-
aware subgraphs. By stacking multiple GNN layers, PEAGNN is capable of not only
explicitly exploring the multi-hop connectivity in a metapath but also capturing the
collaborative signal effectively. Fig. 4.2 illustrates the flow of information propagation on
a given metapath-aware subgraph generated from the metapath mp. Here, Xmp,k is the
node representations on the metapath mp after kth propagation. Amp,k is the adjacency
matrix of the metapath mp at step k. We employ orange and red color to highlight the
edges being propagated at a certain aggregation step. Considering the high-order semantic
revealed by multi-hop metapaths, we stack multiple GNN layers and recurrently aggregate
the representations on the metapaths, so that the high-order semantic is injected into
node representations. The metapath-aware information aggregation is shown as follows

Xmp,1 = σ(GNNmp,1(X0,Amp,1)), Xmp,2 = σ(GNNmp,2(Xmp,1,Amp,2)), (4.1)

where X0 denotes initial node embeddings. Without loss of generality, by stacking N
GNN layers we take into account N -hop neighbours information from the metapath-aware
subgraph. Thus, the node representations in the metapath-aware subgraph are given by:

Xmp,n = σ(GNNmp,n(Xmp,n−1,Amp,n)). (4.2)

Xmp is the output node representation of the last step on the metapath mp.
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Figure 4.2: Information propagation on a metapath-aware subgraph

4.3.4 Metapath Fusion Layer

After information aggregation within metapath-aware subgraphs, the metapath fusion
layer combines and fuses the semantic information revealed by all metapaths. Assume
for a node v, a set of its node representations {xvmp1 ,x

v
mp2 , ...,x

v
mpγ} is aggregated

from γ metapaths. Semantics disclosed by metapaths are not of equal importance to
node representations and the contribution of every metapath should also be adjusted
accordingly. Therefore, we leverage soft attention to learn the importance of each
metapath, instead of adopting element-wise mean, max and add operators. It is to be
noted that PEAGNN applies a node-wise attentive fusion of metapath aggregated node
representation.This is contrast to previous works which employ a fixed attention factor
for all nodes. Consequently, they fail to capture the node-specific metapath preference.
For a given target node v, we apply vector concatenation on its representations from
γ metapath-aware subgraphs, denoted as Hv = [xvmp1 ; xvmp2 ; ...; xvmpγ ]. The metapath
fusion is performed as follows:

cv = trace(WTHv), (4.3)

where cv is a vector of metapath importance and W is a matrix with learnable parameters.
We then normalize the metapath importance score using softmax function and get the
attention factor for each metapath:

attvmpi =
exp(cmpiv )∑γ
j=1 exp(c

mpj
v )

, (4.4)

where attvmpi denotes the normalized attention factor of metapathmpi on the node v. With
the learned attention factors, we can fuse all metapath aggregated node representations
to the final metapath-aware node representation, ev, as:

ev =

γ∑
i=1

attvmpix
v
mpi . (4.5)

4.3.5 Prediction Layer

Next, we readout the node representations of CSGs into a graph-level feature vector. In
existing works, many pooling methods were investigated such as SumPool, MeanPooling,
SortPooling [113] and DiffPooling [114]. However, we adopt a different pooling strategy
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Algorithm 2 The training algorithm of PEAGNN

1: Input: A HIN G, number of iterations M , γ-metapaths
2: Output: Learned node representations E, a prediction model r̃
3: for i = 1 to M do
4: Sample a batch B of training user-item interactions
5: Construct the CSGs of B as illustrated in the figure 4.1
6: Sample the Metapath-aware Subgraphs from the constructed CSGs with the given

γ metapaths
7: Perform step-wise information propagation over the Metapath-aware Subgraphs as

per eqs. 4.1 and 4.2
8: For each node, obtain the metapath-aware node representation by fusing the

representation from γ metapaths with attention factors (see eqs. 4.4 and 4.5)
9: Use the graph-level representation to calculate the interaction scores of user u and

item i via eqs. 4.6 and 4.7
10: Compute the training loss with eqs. 4.8, 4.9 and 4.10 and update model parameters
11: end for

which concatenates the aggregated representations of the center user node eu and item
node ei in the CSGs. i.e.,

eg = concat(eu, ei). (4.6)

After obtaining the graph-level representation of CSG, we utilize a 2-layer MLP to
compute the matching score of a user-item pair. Lets denote a CSG with Gu,i, the
prediction function for the interaction score of user u and item i can be expressed as
follows

r̃(Gu,i) = wT
2 σ(wT

1 eg + b1) + b2, (4.7)

where w1, w2, b1 and b2 are the trainable parameters of the MLP which map the
graph-level representation eg to a scalar matching score, and σ is the non-linear activation
function (e.g. ReLU).

4.3.6 Graph-level representation for recommendation

Compared to the previous GNN-based methods such as NGCF, KGAT, KGCN, Multi-
GCCF and LGC that use node-level representations for recommendation, PEAGNN
predicts the matching score of a user-item pair by mapping its corresponding metapath-
aware subgraph to a scalar as shown in Fig. 4.1. As shown by [98], methods using
node-level representation suffer from the over-smoothness problem [115][106]. As their
node-level representations are learned independently, they fail to model the correspondence
of the structural proximity of a node pair. On the other hand, a graph-level GNN with
sufficient rounds of message passing can better capture the interactions between the local
structures of two nodes [116].
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4.3.7 Training Objective

To train model parameters in an end-to-end manner, we minimize the pairwise Bayesian
Personalized Rank (BPR) loss [117], which has been widely used in RSs. The BPR loss
can be expressed as follows:

LCF =
∑

(u,i+,i−)∈O

−lnσ
(
r̃(u, i+)− r̃(u, i−)

)
, (4.8)

where O = {(u, i+, i−)|(u, i+) ∈ R+, (u, i−) ∈ R−} is the training set, R+ is the observed
user-item interactions (positive samples) while R− is the unobserved user-item interactions
(negative samples). The detailed training procedure is illustrated in the Algorithm 2.

Although user and item representations can be derived by information aggregation
and fusion on metapath-aware subgraphs, the local structural proximity of user(item)
nodes are still missing. Towards this end, we propose Entity-Awareness to regularize
the local structural of user(item) nodes. The idea of entity-awareness is to distinguish
items or users with their unrelated feature entities in the embedding space. Specifically,
entity-awareness is a distance-based contrastive regularization term that pulls the related
feature entity nodes closer to the corresponding user(item) nodes, while push the unrelated
ones apart. The regularization term is defined as following:

LEntity =
∑

(u,i+,i−)∈O

−lnσ

[(
d(xu,xf−,u)− d(xu,xf+,u)

)

+
(
d(xi+ ,xf−,i+)− d(xi+ ,xf+,i+)

)]
, (4.9)

where xf+,u,xf−,u denote the observed and unobserved feature entity embeddings of
user u, xf+,i+ ,xf−,i− denote the observed and unobserved feature entity embeddings of
positive item i and d(·, ·) is a distance measure on the embedding space. The total loss is
computed by the weighted sum of these two losses. It is given by:

L = LCF + λLEntity, (4.10)

where λ is the weight of the entity-awareness term. We use mini-batch Adam optimizer
[118]. For a batch randomly sampled from training set O, we establish their representation
by performing information aggregation and fusion on their embeddings, and then update
model parameters via back propagation.

4.4 Experiments

We evaluate the effectiveness our approach via experiments on public datasets. Our
experiments aim to address the following research questions:

• RQ1: How does PEAGNN perform compared to other baseline methods?

• RQ2: How does the entity-awareness affect the performance of PEAGNN?

• RQ3: What is the impact of different metapaths in recommendation tasks?
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MovieLens-
small

MovieLens-
25M

Yelp

#Nodes 2933 33249 89252
#Users 608 14982 60808
#Items 2121 11560 28237
#Interactions 79619 1270237 754425

Table 4.1: Statistics of datasets

4.4.1 Experimental Settings

4.4.1.1 Datasets

The datasets which we included in our experimental evaluation are widely used in related
works. That is, Movielens [95, 119, 88] and Yelp [91, 96]. By changing the size of Movielens
from small to large, we investigated the effect of dataset scale on the performance of
the proposed method and the competitive baselines. We have three datasets of different
sizes, namely: MovieLens-small (small), Yelp (medium) and MovieLens-25M (large). The
statistics of the three datasets are summarized in Table 4.1.

MovieLens1 is widely used benchmark dataset for movie recommendation. We use
small (∼ 100k ratings) and 25M (∼ 25 million ratings) versions of the dataset. We
consider movies as items and ratings as interactions. For ML-small, we use 10-core setting
i.e. each user and item will have at least 10 interactions. For ML-25M, we select items
which have at least 10 interactions and users with 10 to 300 interactions (from 2018
on-wards) to ensure dataset quality.

Yelp2 is used for business recommendations and has around 10 million interactions.
Here we consider businesses as items; reviews and tips as interactions. The original
dataset is highly sparse. So, to ensure dataset quality, we select items which have at least
50 interactions and users with 10 to 20 interactions.

Along with user-item interactions, we use their features as entities to build HIN graph.
For MovieLens, we employ user feature of tag and item features like year, genre, actor,
director, writer etc. For Yelp, we extract user features like counts of reviews, friends,
fans, stars and item features like attributes, categories and counts of stars, reviews and
check-ins.

4.4.1.2 Evaluation Strategy and Metrics

Leaving one interaction out evaluation strategy is one of the most commonly followed
approach to evaluate recommender systems [88, 117, 120, 121]. Recent research shows
that different data splits have a huge impact on the final performance[122]. To avoid the
raised concerns in evaluating GNN based methods, we follow [82] and adapt leave-one-out
evaluation for a more stable, reliable and fair comparison. For each user, we set the
latest interacted item as the test set. The remaining items are employed for training.
For each user-item positive interaction in the training set, we employ negative sampling

1https://grouplens.org/datasets/movielens/
2https://www.yelp.com/dataset
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strategy to get four negative items for that user. For Yelp and ML-25M, we sample
randomly while for ML-small, we sample from the unseen items for each user.We use
two evaluation metrics: Hit Ratio (HR) and Normalized Discounted Cumulative Gain
(NDCG). We consider only top-10 positions of the returned results. HR@10 indicates
whether the test item is present in top-10 recommendations. NDCG@10 also takes in to
account the position at which the correct item appears in the recommendations [119].
We compute the metrics for each test user and report the average score.

4.4.1.3 Hyperparameter Settings

We implemented the PEAGNN and baselines in Pytorch Geometric 1.5.0 [123]. To
determine hyper-parameters of our methods, we follow the procedure proposed in [82].
For each user, one random interaction is sampled as the validation data for parameter
tuning. We cross validated the batch size of [1024, 2048, 4096], the learning rate of
[0.0001 ,0.0005, 0.001, 0.005] and weight of [0.03, 0.1, 0.3, 1] for entity-awareness. For
fair comparison, we employed the same embedding dimension for both PEAGNN and
the baselines. We set embedding dimension to 64 across all models and datasets. The
representation dimension is 16 for GNN-based models and hidden layer size is 64 for
factorization and GNN-based models. We use 2-step metapaths and attention channel
aggregation for PEAGNN. The number of metapaths, γ, for ML-small, ML-25M and
Yelp are 9, 13 and 11 respectively.

Further implementation details of PEAGNN as well as baseline models can be found
in the code3.

4.4.1.4 Baselines

We compare PEAGNN with several kinds of competitive baselines.
1. NFM [88] utilizes neural networks to enhance high-order feature interactions with
non-linearity. As suggested by He et al. [88], we apply one hidden layer neural network
on input features.
2. CFKG [124] applies TransE [125] to learn heterogeneous node embedding and
converts recommendation to a link prediction problem.
3. HeRec [99] extends the matrix factorization model with the joint learning of a set of
embedding fusion functions.
4. Metapath2Vec [99] utilizes a skip-gram model to update the node embeddings
generataed by metapath-guided random walks. We then use a MLP to predict the
matching score with the learned embeddings.
5. NGCF [90] integrates the user-item bipartite graph structure into the embedding
process for collaborative filtering.
6. KGCN [92] exploits multi-hop proximity information with a receptive field to learn
user preference.
7. KGAT [91] incorporates high-order information by performing attentive embedding
propagation with the learned entity attention on knowledge graph.

3https://github.com/ecml-peagnn/PEAGNN
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8. Multi-GCCF [93] explicitly incorporates multiple graphs in the embedding learning
process. Multi-GCCF not only models the high-order information but also integrates the
proximal information of item-item and user-user paris.
9. LGC [94] simplifies the design of GCN by maintaining only the neighborhood
aggregation for collaborative filtering.

4.4.2 Overall Performance Comparison (RQ1)

Table 4.2 summarizes the performance comparison of PEAGNN variants and the compet-
itive baselines. In the following, we discuss these results to gain some important insights
into the problem.

First, we note that our proposed method PEAGNN outperforms other methods by a
significant margin on all three datasets. In particular, the performance gains achieved
by PEAGNN are 7.87%, 2.39%, and 8.23% w.r.t. NDCG@10 on ML-small, ML-25m
and Yelp datasets, respectively. The primary reason for outstanding performance of
PEAGNN is that none of the existing methods do explicit modelling consequently all
node messages get mixed up during message passing. This verifies our claim that explicit
modelling and fusing sequential semantics in metapath help in better learning of user-
item interactions. Moreover, the superior performance of PEAGNN also reveals the
effectiveness of modelling the local graph structure, while other GNN-based methods
simply pay no attention to their structure proximity.

Second, we observe that the path-based methods that are not based on GNN signif-
icantly underperform all the GNN-based models on all three datasets. Both Metap-
ath2Vec+MLP and HeRec have incorporated the static node embedding using Metap-
ath2vec [99]. The poor performance indicates that learning unsupervised static node
embeddings have limited the power of the model to capture the complex collaborative
signals and intricate content relations.

Third, we observe that CFKG and NFM prove to be strong baselines for GNN based
methods especially on ML-25m and Yelp datasets. For instance, CFKG achieves 0.8729
HR@10 on Yelp and is fourth best performing model. But the performance gap with
second and third best models is negligible i.e. 0.4% and 0.2% respectively. CFKG is
significantly outperformed only by our method (PEAGAT∗) by 4.37%. This demonstrates
that our method is able to better leverage the information in the graph-structured data
by explicitly modelling the the sequential semantics via metapath aware subgraphs.

4.4.3 Effect of Entity-awareness (RQ2)

The goal of introducing entity-awareness is to take advantage of the first-order structure
of CSG, which is not well exploited by pure message passing in graph-based RSs [126]. We
study the effect of entity-awareness by comparing the performances of our models with
and without entity-awareness. The effect of entity-awareness for different base models
are summarized in Table 4.2. Generally, entity-awareness delivers consistently better
performance than PEAGNN without entity-awareness. In particular, a more significant
performance gain has been observed in the smaller dataset ML-small with a minimum
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Model
MovieLens-small MovieLens-25M Yelp

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

NFM 0.477 0.2668 0.8132 0.5347 0.8595 0.6062

CFKG 0.4378 0.2381 0.8152 0.5196 0.8729 0.5826

HeRec 0.2668 0.1449 0.607 0.3291 0.5533 0.3302
Metapath2Vec 0.3063 0.1614 0.7956 0.5051 0.6307 0.402

NGCF 0.5016 0.2755 0.7807 0.4866 0.8068 0.481
KGCN 0.5132 0.2788 0.7771 0.4699 0.8125 0.4668
KGAT 0.5214 0.2846 0.8147 0.5236 0.8762 0.6136

MultiGCCF 0.5230 0.2836 0.8014 0.5153 0.8639 0.6120
LGC 0.5003 0.2815 0.8081 0.5237 0.8744 0.6122

PEAGCN 0.5382 0.2951 0.8185 0.5344 0.9041 0.6379

PEAGCN* 0.5576 0.3036 0.8187 0.5361 0.9125 0.6443
(% improv. w.r.t.
best competitor) 6.62% 6.68% 0.43% 0.26% 4.14% 5.00%

PEAGAT 0.5375 0.2983 0.8249 0.5414 0.9057 0.6382

PEAGAT* 0.5477 0.3045 0.8284 0.5475 0.9128 0.6641
(% improv. w.r.t.
best competitor) 4.72% 6.99% 1.62% 2.39% 4.18% 8.23%

PEASage 0.5444 0.3003 0.8176 0.5383 0.8772 0.6247

PEASage* 0.5609 0.307 0.8273 0.5462 0.8837 0.6308
(% improv. w.r.t.
best competitor) 7.25% 7.87% 1.48% 2.15% 0.86% 2.80%

Table 4.2: Overall Performance Comparison. The scores are average of five runs. Bold indicates
best results for the dataset. * denotes entity-awareness.

improvement of 1.9% on HR@10. On the other hand, models with entity-awareness
slightly outperform base models on the larger and denser datasets. It indicates that
leveraging local structure on sparse datasets proves beneficial. Nonetheless, NDCG@10
benefits more from the entity-awareness in comparison with HR@10 on both MovieLens
and Yelp datasets. For instance, on Yelp, PEAGAT shows 4.06% performance gain
in terms of NDCG@10. These results signify the importance of explicit modelling of
first-order relations in RSs.

4.4.4 Effect of Metapaths (RQ3)

We have conducted various ablation studies, In order to gain insight into the effect
of different metapaths on the performance of PEAGNN, we have conducted various
experiments. In the interest of space, we only include the results of our best model
PEASage on ML-small dataset. We have total 9 metapaths for ML-small dataset. These
metapaths are shown as columns in the Table 4.3. We drop only 1 specific metapath at a
time and then compare the model performance drop with the original one. The table
summarizes the percentage performance drop as compared to the original model. We ran
the experiments 5 times with different random seeds for fair evaluation.

First we observe that, there are some metapaths droping which results in significant
decrease in the model performance. That is, PEASage learnt three different key metapaths
combinations. Namely: U-M-U, M-U-M and Y-M-U. Second, we observe that each
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# U-M-U M-U-M Y-M-U A-M-U W-M-U D-M-U G-M-U T-M-U T-U-M

1 -27.45 -4.41 -24.3 -2.21 -1.9 -0.96 -0.96 -2.53 -6

2 -30.31 -46.98 -11.51 -6.37 -7.28 -8.18 -5.16 -9.71 -5.45

3 -1.88 -5.3 -40.62 -4.37 -3.12 -0.3 -0.63 -4.69 -15.32

4 -6.38 -48.77 -23.63 +1.53 -1.85 -0.62 +0.3 -2.06 -7.67

5 -8.97 -42.24 -49.38 -4.34 -3.1 -1.55 -5.29 -1.55 -4.04

Table 4.3: Percentage drop in the performance of PEASage on ML-small w.r.t. HR@10 when
one metapth is removed during training. Bold indicates greater than 10% drop in
performance. (Abbreviation for nodes: U-User, M-Movie, Y-Year, A-Actor, W-Writer,
D-Director, G-Genre and T-Tag)

metapath is contributing something in the performance of PEASage although the effect
of six metapaths is not that significant.

Third, we note that the published year of movies has the most significant impact
on users’ choice. That is, the metapath Y-M-U comes out as key metapath in all 5
runs. Those metapaths which capture collaborative effects such as U-M-U and M-U-
M take critical role in the high performance of PEASage model. Another interesting
phenomenon, which warrants further investigation, is that the tag given by users might
have a complementary relation of user-item interactions as shown in the third run in the
table.

These results also indicate another strength of PEAGNN, i.e., even without prior
knowledge and careful selection, the effectiveness of each metapath and different metapath
combinations can be verified in a convenient way by comparing attention factors or
“disabling” specific metapath. Thus, an incremental training and metapath selection is
achievable. Therefore, more insightful research for HCI community can be expected.
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5 Compositional Learning of Image-Text
Query for Image Retrieval

This chapter is based on the following peer-reviewed publication:

Anwaar, Muhammad Umer[*]; Labintcev, Egor [*] and Kleinsteuber, Mar-
tin. Compositional Learning of Image-Text Query for Image Retrieval. In IEEE
Winter Conference on Applications of Computer Vision (WACV ’21). 2021.
[*] indicates that the authors contributed equally to this work.

5.1 Introduction

One of the peculiar features of human perception is multi-modality. We unconsciously
attach attributes to objects, which can sometimes uniquely identify them. For instance,
when a person says apple it is quite natural that an image of an apple, which may be green
or red in color, forms in their mind. In information retrieval, the user seeks information
from a retrieval system by sending a query. Traditional information retrieval systems
allow a unimodal query, i.e., either a text or an image. Advanced information retrieval
systems should enable the users in expressing the concept in their mind by allowing a
multi-modal query.

In this work, we consider such an advanced retrieval system, where users can retrieve
images from a database based on a multi-modal query. Concretely, we have an image
retrieval task where the input query is specified in the form of an image and natural
language expressions describing the desired modifications in the query image. Such a
retrieval system offers a natural and effective interface [40]. This task has applications
in the domain of E-Commerce search, surveillance systems and internet search. Fig. 5.1
shows a potential application scenario of this task.

Recently, Vo et al.[127] have proposed the Text Image Residual Gating (TIRG) method
for composing the query image and text for image retrieval. They have achieved state-of-
the-art (SOTA) results on this task. However, their approach does not perform well for
real-world application scenarios, i.e. with long and detailed texts (see Sec. 5.4.4). We
think the reason is that their approach is too focused on changing the image space and
does not give the query text its due importance. The gating connection takes element-wise
product of query image features with image-text representation after passing it through
two fully connected layers. In short, TIRG assigns huge importance to query image
features by putting it directly in the final composed representation. Similar to [128, 129],
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Figure 5.1: Potential application scenario of this task
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they employ LSTM for extracting features from the query text. This works fine for simple
queries but fails for more realistic queries.

In this paper, we attempt to overcome these limitations by proposing ComposeAE, an
autoencoder based approach for composing the modalities in the multi-modal query. We
employ a pre-trained BERT model [130] for extracting text features, instead of LSTM.
We hypothesize that by jointly conditioning on both left and right context, BERT is able
to give better representation for the complex queries. Similar to TIRG [127], we use a
pre-trained ResNet-17 model for extracting image features. The extracted image and
text features have different statistical properties as they are extracted from independent
uni-modal models. We argue that it will not be beneficial to fuse them by passing through
a few fully connected layers, as typically done in image-text joint embeddings [131].

We adopt a novel approach and map these features to a complex space. We propose
that the target image representation is an element-wise rotation of the representation of
the source image in this complex space. The information about the degree of rotation is
specified by the text features. We learn the composition of these complex vectors and their
mapping to the target image space by adopting a deep metric learning (DML) approach.
In this formulation, text features take a central role in defining the relationship between
query image and target image. This also implies that the search space for learning the
composition features is restricted. From a DML point of view, this restriction proves to
be quite vital in learning a good similarity metric.

We also propose an explicit rotational symmetry constraint on the optimization problem
based on our novel formulation of composing the image and text features. Specifically,
we require that multiplication of the target image features with the complex conjugate of
the query text features should yield a representation similar to the query image features.
We explore the effectiveness of this constraint in our experiments (see Sec. 5.4.6).

We validate the effectiveness of our approach on three datasets: MIT-States, Fash-
ion200k and Fashion IQ. In Sec. 5.4, we show empirically that ComposeAE is able to
learn a better composition of image and text queries and outperforms SOTA method. In
DML, it has been recently shown that improvements in reported results are exaggerated
and performance comparisons are done unfairly [132]. In our experiments, we took special
care to ensure fair comparison. For instance, we introduce several variants of TIRG.
Some of them show huge improvements over the original TIRG. We also conduct several
ablation studies to quantify the contribution of different modules in the improvement of
the ComposeAE performance.

Our main contributions are summarized below:

• We propose a ComposeAE model to learn the composed representation of image
and text query.
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• We adopt a novel approach and argue that the source image and the target image
lie in a common complex space. They are rotations of each other and the degree of
rotation is encoded via query text features.

• We propose a rotational symmetry constraint on the optimization problem.

• ComposeAE outperforms the SOTA method TIRG by a huge margin, i.e., 30.12%
on Fashion200k and 11.13% on MIT-States on the Recall@10 metric.

• We enhance SOTA method TIRG [127] to ensure fair comparison and identify its
limitations.

5.2 Related Work

Deep metric learning (DML) has become a popular technique for solving retrieval problems.
DML aims to learn a metric such that the distances between samples of the same class
are smaller than the distances between the samples of different classes. The task where
DML has been employed extensively is the cross-modal retrieval, i.e. retrieving images
based on text query and getting captions from the database based on the image query
[131, 133, 134, 135, 136, 137].

In the domain of Visual Question Answering (VQA), many methods have been proposed
to fuse the text and image inputs [128, 138, 139]. We review below a few closely related
methods. Relationship [128] is a method based on relational reasoning. Image features
are extracted from CNN and text features from LSTM to create a set of relationship
features. These features are then passed through a MLP and after averaging them the
composed representation is obtained. FiLM [138] method tries to “influence” the source
image by applying an affine transformation to the output of a hidden layer in the network.
In order to perform complex operations, this linear transformation needs to be applied
to several hidden layers. Another prominent method is parameter hashing [139] where
one of the fully-connected layers in a CNN acts as the dynamic parameter layer.

In this work, we focus on the image retrieval problem based on the image and text
query. This task has been studied recently by Vo et al.[127]. They propose a gated
feature connection in order to keep the composed representation of query image and text
in the same space as that of the target image. They also incorporate a residual connection
which learns the similarity between concatenation of image-text features and the target
image features. Another simple but effective approach is Show and Tell[129]. They
train a LSTM to predict the next word in the sequence after it has seen the image and
previous words. The final state of this LSTM is considered the composed representation.
Han et al.[140] presents an interesting approach to learn spatially-aware attributes from
product description and then use them to retrieve products from the database. But their
text query is limited to a predefined set of attributes. Nagarajan et al.[141] proposed
an embedding approach, “Attribute as Operator”, where text query is embedded as a
transformation matrix. The image features are then transformed with this matrix to get
the composed representation.
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This task is also closely related with interactive image retrieval task [142, 143] and
attribute-based product retrieval task [144, 127]. These approaches have their limitations
such as that the query texts are limited to a fixed set of relative attributes [144], require
multiple rounds of natural language queries as input [142, 143] or that query texts can be
only one word i.e. an attribute [140]. In contrast, the input query text in our approach is
not limited to a fixed set of attributes and does not require multiple interactions with the
user. Different from our work, the focus of these methods is on modeling the interaction
between user and the agent.

5.3 Methodology

5.3.1 Problem Formulation

Let X = {x1, x2, · · · , xn} denote the set of query images, T = {t1, t2, · · · , tn} denote
the set of query texts and Y = {y1, y2, · · · , yn} denote the set of target images. Let
ψ(·) denote the pre-trained image model, which takes an image as input and returns
image features in a d-dimensional space. Let κ(·, ·) denote the similarity kernel, which
we implement as a dot product between its inputs. The task is to learn a composed
representation of the image-text query, denoted by g(x, t; Θ), by maximising

max
Θ

κ(g(x, t; Θ), ψ(y)), (5.1)

where Θ denotes all the network parameters.

5.3.2 Motivation for Complex Projection

In deep learning, researchers aim to formulate the learning problem in such a way that
the solution space is restricted in a meaningful way. This helps in learning better and
robust representations. The objective function (Equation 5.1) maximizes the similarity
between the output of the composition function of the image-text query and the target
image features. Thus, it is intuitive to model the query image, query text and target
image lying in some common space. One drawback of TIRG is that it does not emphasize
the importance of text features in defining the relationship between the query image and
the target image.

Based on these insights, we restrict the compositional learning of query image and text
features in such a way that: (i) query and target image features lie in the same space,
(ii) text features encode the transition from query image to target image in this space
and (iii) transition is symmetric, i.e. some function of the text features must encode the
reverse transition from target image to query image.

In order to incorporate these characteristics in the composed representation, we
propose that the query image and target image are rotations (transitions) of each other
in a complex space. The rotation is determined by the text features. This enables
incorporating the desired text information about the image in the common complex space.
The reason for choosing the complex space is that some function of text features required
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Figure 5.2: Conceptual Diagram of Rotation of the Images in Complex Space. Blue and Red
Circle represent the query and the target image respectively. δ represents the
rotation in the complex space, learned from the query text features. δ∗ represents
the complex conjugate of the rotation in the complex space.

Figure 5.3: ComposeAE Architecture: Image retrieval using text and image query. Dotted
lines indicate connections needed for calculating rotational symmetry loss (see
Equations 5.12, 5.13 and 5.14). Here 1 refers to LBASE , 2 refers to LBASESYM , 3 refers
to LRI and 4 refers to LRT .
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for the transition to be symmetric can easily be defined as the complex conjugate of the
text features in the complex space (see Fig. 5.2).

Choosing such projection also enables us to define a constraint on the optimization
problem, referred to as rotational symmetry constraint (see Equations 5.12, 5.13 and
5.14). We will empirically verify the effectiveness of this constraint in learning better
composed representations. We will also explore the effect on performance if we fuse image
and text information in the real space. Refer to Sec. 5.4.6.

An advantage of modelling the reverse transition in this way is that we do not require
captions of query image. This is quite useful in practice, since a user-friendly retrieval
system will not ask the user to describe the query image for it. In the public datasets,
query image captions are not always available, e.g. for Fashion IQ dataset. In addition
to that, it also forces the model to learn a good “internal” representation of the text
features in the complex space.

Interestingly, such restrictions on the learning problem serve as implicit regularization.
e.g., the text features only influence angles of the composed representation. This is in line
with recent developments in deep learning theory [145, 146]. Neyshabur et al.[147] showed
that imposing simple but global constraints on the parameter space of deep networks
is an effective way of analyzing learning theoretic properties and aids in decreasing the
generalization error.

5.3.3 Network Architecture

Now we describe ComposeAE, an autoencoder based approach for composing the modal-
ities in the multi-modal query. Figure 5.3 presents the overview of the ComposeAE
architecture.

For the image query, we extract the image feature vector living in a d-dimensional
space, using the image model ψ(·) (e.g. ResNet-17), which we denote as:

ψ(x) = z ∈ Rd. (5.2)

Similarly, for the text query t, we extract the text feature vector living in an h-
dimensional space, using the BERT model [130], β(·) as:

β(t) = q ∈ Rh. (5.3)

Since the image features z and text features q are extracted from independent uni-
modal models; they have different statistical properties and follow complex distributions.
Typically in image-text joint embeddings [127, 131], these features are combined using
fully connected layers or gating mechanisms.

In contrast to this we propose that the source image and target image are rotations of
each other in some complex space, say, Ck. Specifically, the target image representation
is an element-wise rotation of the representation of the source image in this complex
space. The information of how much rotation is needed to get from source to target
image is encoded via the query text features. During training, we learn the appropriate
mapping functions which give us the composition of z and q in Ck.
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More precisely, to model the text features q as specifying element-wise rotation of
source image features, we learn a mapping γ : Rk → {D ∈ Rk×k | D is diagonal} and
obtain the coordinate-wise complex rotations via

δ = E{jγ(q)},

where E denotes the matrix exponential function and j is square root of −1. The mapping
γ is implemented as a multilayer perceptron (MLP) i.e. two fully-connected layers with
non-linear activation.

Next, we learn a mapping function, η : Rd → Ck, which maps image features z to the
complex space. η is also implemented as a MLP. The composed representation denoted
by φ ∈ Ck can be written as:

φ = δ η(z) (5.4)

The optimization problem defined in Eq. 5.1 aims to maximize the similarity between
the composed features and the target image features extracted from the image model.
Thus, we need to learn a mapping function, ρ : Ck 7→ Rd, from the complex space Ck
back to the d-dimensional real space where extracted target image features exist. ρ is
implemented as MLP.

In order to better capture the underlying cross-modal similarity structure in the
data, we learn another mapping, denoted as ρconv. The convolutional mapping is
implemented as two fully connected layers followed by a single convolutional layer. It
learns 64 convolutional filters and adaptive max pooling is applied on them to get the
representation from this convolutional mapping. This enables learning effective local
interactions among different features. In addition to φ, ρconv also takes raw features z
and q as input. ρconv plays a really important role for queries where the query text asks
for a modification that is spatially localized. e.g., a user wants a t-shirt with a different
logo on the front (see second row in Fig. 5.4).

Let f(z, q) denote the overall composition function which learns how to effectively com-
pose extracted image and text features for target image retrieval. The final representation,
ϑ ∈ Rd, of the composed image-text features can be written as follows:

ϑ = f(z, q) = a ρ(φ) + b ρconv(φ, z, q), (5.5)

where a and b are learnable parameters.

In autoencoder terminology, the encoder has learnt the composed representation of
image and text query, ϑ. Next, we learn to reconstruct the extracted image z and text
features q from ϑ. Separate decoders are learned for each modality, i.e., image decoder
and text decoder denoted by dimg and dtxt respectively. The reason for using the decoders
and reconstruction losses is two-fold: first, it acts as regularizer on the learnt composed
representation and secondly, it forces the composition function to retain relevant text
and image information in the final representation. Empirically, we have seen that these
losses reduce the variation in the performance and aid in preventing overfitting.
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5.3.4 Training Objective

We adopt a deep metric learning (DML) approach to train ComposeAE. Our training
objective is to learn a similarity metric, κ(·, ·) : Rd × Rd 7→ R, between composed
image-text query features ϑ and extracted target image features ψ(y). The composition
function f(z, q) should learn to map semantically similar points from the data manifold in
Rd×Rh onto metrically close points in Rd. Analogously, f(·, ·) should push the composed
representation away from non-similar images in Rd.

For sample i from the training mini-batch of size N , let ϑi denote the composition
feature, ψ(yi) denote the target image features and ψ(ỹi) denote the randomly selected
negative image from the mini-batch. We follow TIRG [127] in choosing the base loss for
the datasets.

So, for MIT-States dataset, we employ triplet loss with soft margin as a base loss. It is
given by:

LST =
1

MN

N∑
i=1

M∑
m=1

log
{

1+exp{κ(ϑi,ψ(ỹi,m))

− κ(ϑi,ψ(yi))}
}
, (5.6)

where M denotes the number of triplets for each training sample i. In our experiments,
we choose the same value as mentioned in the TIRG code, i.e. 3.

For Fashion200k and Fashion IQ datasets, the base loss is the softmax loss with
similarity kernels, denoted as LSMAX . For each training sample i, we normalize the
similarity between the composed query-image features (ϑi) and target image features by
dividing it with the sum of similarities between ϑi and all the target images in the batch.
This is equivalent to the classification based loss in [127, 148, 149, 150].

LSMAX =
1

N

N∑
i=1

− log

{
exp{κ(ϑi, ψ(yi))}∑N
j=1 exp{κ(ϑi, ψ(yj))}

}
, (5.7)

In addition to the base loss, we also incorporate two reconstruction losses in our training
objective. They act as regularizers on the learning of the composed representation. The
image reconstruction loss is given by:

LRI =
1

N

N∑
i=1

∥∥∥zi − ẑi∥∥∥2

2
, (5.8)

where ẑi = dimg(ϑi).
Similarly, the text reconstruction loss is given by:

LRT =
1

N

N∑
i=1

∥∥∥qi − q̂i∥∥∥2

2
, (5.9)

where q̂i = dtxt(ϑi).
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5.3.5 Rotational Symmetry Loss

As discussed in subsection 5.3.2, based on our novel formulation of learning the com-
position function, we can include a rotational symmetry loss in our training objective.
Specifically, we require that the composition of the target image features with the complex
conjugate of the text features should be similar to the query image features. In concrete
terms, first we obtain the complex conjugate of the text features projected in the complex
space. It is given by:

δ∗ = E{−jγ(q)}. (5.10)

Let φ̃ denote the composition of δ∗ with the target image features ψ(y) in the complex
space. Concretely:

φ̃ = δ∗ η(ψ(y)) (5.11)

Finally, we compute the composed representation, denoted by ϑ∗, in the following way:

ϑ∗ = f(ψ(y), q) = a ρ(φ̃) + b ρconv(φ̃, ψ(y), q) (5.12)

The rotational symmetry constraint translates to maximizing this similarity kernel:
κ(ϑ∗, z). We incorporate this constraint in our training objective by employing softmax
loss or soft-triplet loss depending on the dataset.

Since for Fashion datasets, the base loss is LSMAX , we calculate the rotational symmetry
loss, LSMAX

SYM , as follows:

LSMAX
SYM =

1

N

N∑
i=1

− log

{
exp{κ(ϑ∗i , zi)}∑N
j=1 exp{κ(ϑ∗i , zj)}

}
, (5.13)

Analogously, the resulting loss function, LSTSYM , for MIT-States is given by:

LSTSYM =
1

MN

N∑
i=1

M∑
m=1

log
{

1+exp{κ(ϑ∗i ,z̃i,m)

− κ(ϑ∗i ,zi)}
}
, (5.14)

The total loss is computed by the weighted sum of above mentioned losses. It is given
by:

LT = LBASE + λSYM LBASESYM + λRI LRI + λRT LRT , (5.15)

where BASE ∈ {SMAX,ST} depending on the dataset.

5.4 Experiments

5.4.1 Experimental Setup

We evaluate our approach on three real-world datasets, namely: MIT-States[151], Fash-
ion200k [140] and Fashion IQ [152]. For evaluation, we follow the same protocols as
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MIT-States Fashion200k Fashion IQ

Total images 53753 201838 62145

# train queries 43207 172049 46609

# test queries 82732 33480 15536

Average length of
complete text query 2 4.81 13.5

Average # of
target images 26.7 3 1
per query

Table 5.1: Dataset statistics

other recent works [127, 140, 138]. We use recall at rank k, denoted as R@k, as our
evaluation metric. We repeat each experiment 5 times in order to estimate the mean and
the standard deviation in the performance of the models.

To ensure fair comparison, we keep the same hyperparameters as TIRG [127] and use
the same optimizer (SGD with momentum). Similar to TIRG, we use ResNet-17 for image
feature extraction to get 512-dimensional feature vector. In contrast to TIRG, we use
pretrained BERT [130] for encoding text query. Concretely, we employ BERT-as-service
[153] and use Uncased BERT-Base which outputs a 768-dimensional feature vector for a
text query.

5.4.2 Baselines

We compare the results of ComposeAE with several methods, namely: Show and Tell,
Parameter Hashing, Attribute as Operator, Relationship, FiLM and TIRG. We explained
them briefly in Sec. 5.2.

In order to identify the limitations of TIRG and to ensure fair comparison with our
method, we introduce three variants of TIRG. First, we employ the BERT model as a
text model instead of LSTM, which will be referred to as TIRG with BERT. Secondly,
we keep the LSTM but text query contains full target captions. We refer to it as TIRG
with Complete Text Query. Thirdly, we combine these two variants and get TIRG with
BERT and Complete Text Query. The reason for complete text query baselines is that
the original TIRG approach generates text query by finding one word difference in the
source and target image captions. It disregards all other words in the target captions.

While such formulation of queries may be effective on some datasets, but the restriction
on the specific form (or length) of text query largely constrain the information that a user
can convey to benefit the retrieval process. Thus, such an approach of generating text
query has limited applications in real life scenarios, where a user usually describes the
modification text with multiple words. This argument is also supported by several recent
studies [152, 142, 143]. In our experiments, Fashion IQ dataset contains queries asked by
humans in natural language, with an average length of 13.5 words. (see Table 5.1). Due
to this reason, we can not get results of original TIRG on this dataset.
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Method R@1 R@5 R@10

Show and Tell 11.9±0.1 31.0±0.5 42.0±0.8

Att. as Operator 8.8±0.1 27.3±0.3 39.1±0.3

Relationship 12.3±0.5 31.9±0.7 42.9±0.9

FiLM 10.1±0.3 27.7±0.7 38.3±0.7

TIRG 12.2±0.4 31.9±0.3 43.1±0.3

TIRG with BERT 12.3±0.6 31.8±0.3 42.6±0.8

TIRG with
Complete Text Query 7.9±1.9 28.7±2.5 34.1±2.9

TIRG with BERT and
Complete Text Query 13.3±0.6 34.5±1.0 46.8±1.1

ComposeAE 13.9±0.5 35.3±0.8 47.9±0.7

Table 5.2: Model performance comparison on MIT-States. The best number is in bold and the
second best is underlined.

5.4.3 Datasets

Table 5.1 summarizes the statistics of the datasets. The train-test split of the datasets is
the same for all the methods.
MIT-States [151] dataset consists of ∼60k diverse real-world images where each image
is described by an adjective (state) and a noun (categories), e.g. “ripe tomato”. There
are 245 nouns in the dataset and 49 of them are reserved for testing. This split ensures
that the algorithm is able to learn the composition on the unseen nouns (categories).
The input image (say “unripe tomato”) is sampled and the text query asks to change
the state to ripe. The algorithm is considered successful if it retrieves the correct target
image (“ripe tomato”) from the pool of all test images.
Fashion200k [140] consists of ∼200k images of 5 different fashion categories, namely:
pants, skirts, dresses, tops and jackets. Each image has a human annotated caption, e.g.
“blue knee length skirt”.
Fashion IQ[152] is a challenging dataset consisting of 77684 images belonging to three
categories: dresses, top-tees and shirts. Fashion IQ has two human written annotations
for each target image. We report the performance on the validation set as the test set
labels are not available.

5.4.4 Discussion of Results

Tables 5.2, 5.3 and 5.4 summarize the results of the performance comparison. In the
following, we discuss these results to gain some important insights into the problem.

First, we note that our proposed method ComposeAE outperforms other methods by
a significant margin. On Fashion200k, the performance improvement of ComposeAE
over the original TIRG and its enhanced variants is most significant. Specifically, in
terms of R@10 metric, the performance improvement over the second best method
is 6.96% and 30.12% over the original TIRG method . Similarly on R@10, for MIT-
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States, ComposeAE outperforms the second best method by 2.35% and by 11.13% over
the original TIRG method. For the Fashion IQ dataset , ComposeAE has 2.61% and
3.82% better performance than the second best method in terms of R@10 and R@100
respectively.

Method R@1 R@10 R@50

Han et al. [140] 6.3 19.9 38.3
Show and Tell 12.3±1.1 40.2±1.7 61.8±0.9

Param Hashing 12.2±1.1 40.0±1.1 61.7±0.8

Relationship 13.0±0.6 40.5±0.7 62.4±0.6

FiLM 12.9±0.7 39.5±2.1 61.9±1.9

TIRG 14.1±0.6 42.5±0.7 63.8±0.8

TIRG with BERT 14.2±1.0 41.9±1.0 63.3±0.9

TIRG with
Complete Text Query 18.1±1.9 52.4±2.7 73.1±2.1

TIRG with BERT and
Complete Text Query 19.9±1.0 51.7±1.5 71.8±1.3

ComposeAE 22.8±0.8 55.3±0.6 73.4±0.4

Table 5.3: Model performance comparison on Fashion200k. The best number is in bold and the
second best is underlined.

Method R@10 R@50 R@100

TIRG with
Complete Text Query 3.34±0.6 9.18±0.9 9.45±0.8

TIRG with BERT and
Complete Text Query 11.5±0.8 28.8±1.5 28.8±1.6

ComposeAE 11.8±0.9 29.4±1.1 29.9±1.3

Table 5.4: Model performance comparison on Fashion IQ. The best number is in bold and the
second best is underlined.

Second, we observe that the performance of the methods on MIT-States and Fash-
ion200k datasets is in a similar range as compared to the range on the Fashion IQ. For
instance, in terms of R@10, the performance of TIRG with BERT and Complete Text
Query is 46.8 and 51.8 on MIT-States and Fashion200k datasets while it is 11.5 for
Fashion IQ. The reasons which make Fashion IQ the most challenging among the three
datasets are: (i) the text query is quite complex and detailed and (ii) there is only one
target image per query (See Table 7.1). That is even though the algorithm retrieves
semantically similar images but they will not be considered correct by the recall metric.
For instance, for the first query in Fig.5.4, we can see that the second, third and fourth
image are semantically similar and modify the image as described by the query text.
But if the third image which is the labelled target image did not appear in top-5, then

73



5 Compositional Learning of Image-Text Query for Image Retrieval

Figure 5.4: Qualitative Results: Retrieval examples from FashionIQ Dataset

R@5 would have been zero for this query. This issue has also been discussed in depth by
Nawaz et al.[154].

Third, for MIT-States and Fashion200k datasets, we observe that the TIRG variant
which replaces LSTM with BERT as a text model results in slight degradation of the
performance. On the other hand, the performance of the TIRG variant which uses
complete text (caption) query is quite better than the original TIRG. However, for the
Fashion IQ dataset which represents a real-world application scenario, the performance of
TIRG with complete text query is significantly worse. Concretely, TIRG with complete
text query performs 253% worse than ComposeAE on R@10. The reason for this huge
variation is that the average length of complete text query for MIT-States and Fashion200k
datasets is 2 and 3.5 respectively. Whereas average length of complete text query for
Fashion IQ is 12.4. It is because TIRG uses the LSTM model and the composition is
done in a way which underestimates the importance of the text query. This shows that
TIRG approach does not perform well when the query text description is more realistic
and complex.

Fourth, one of the baselines (TIRG with BERT and Complete Text Query) that we
introduced shows significant improvement over the original TIRG. Specifically, in terms
of R@10, the performance gain over original TIRG is 8.58% and 21.65% on MIT-States
and Fashion200k respectively. This method is also the second best performing method on
all datasets. We think that with more detailed text query, BERT is able to give better
representation of the query and this in turn helps in the improvement of the performance.

5.4.5 Qualitative Results

Fig.5.4 presents some qualitative retrieval results for Fashion IQ. For the first query, we
see that all images are in “blue print” as requested by text query. The second request
in the text query was that the dress should be “short sleeves”, four out of top-5 images
fulfill this requirement. For the second query, we can observe that all retrieved images
share the same semantics and are visually similar to the target images.
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Method Fashion200k MIT-States Fashion IQ

ComposeAE 55.3 47.9 11.8

- without LSYM 51.6 47.6 10.5
- Concat in real space 48.4 46.2 09.8

- without ρconv 52.8 47.1 10.7
- without ρ 52.2 45.2 11.1

Table 5.5: Retrieval performance (R@10) of ablation studies.

5.4.6 Ablation Studies

We have conducted various ablation studies, in order to gain insight into which parts
of our approach helps in the high performance of ComposeAE. Table 5.5 presents the
quantitative results of these studies.

Impact of LSYM : on the performance can be seen on Row 2. For Fashion200k and
Fashion IQ datasets, the decrease in performance is quite significant: 7.17% and 12.38%
respectively. While for MIT-States, the impact of incorporating LSYM is not that
significant. It may be because the text query is quite simple in the MIT-states case, i.e. 2
words. This needs further investigation.

Efficacy of Mapping to Complex Space: ComposeAE has a complex projection
module, see Fig. 5.3. We removed this module to quantify its effect on the performance.
Row 3 shows that there is a drop in performance for all three datasets. This strengthens
our hypothesis that it is better to map the extracted image and text features into a
common complex space than simple concatenation in real space.

Convolutional versus Fully-Connected Mapping: ComposeAE has two modules
for mapping the features from complex space to target image space, i.e., ρ(·) and the
second with an additional convolutional layer ρconv(·). Rows 4 and 5 show that the
performance is quite similar for fashion datasets. While for MIT-States, ComposeAE
without ρconv(·) performs much better. Overall, it can be observed that for all three
datasets both modules contribute in improving the performance of ComposeAE.

5.4.7 Important Notes on Fashion IQ Dataset

In Fashion IQ dataset, ∼ 49% annotations describe the target image directly. While ∼
32% annotations compares target and source images, e.g. “is red with a cat logo on front”
and the second annotation is, “is more pop culture and adolescent”. The dataset consists
of three non-overlapping subsets, namely “dress”, “top-tee” and “shirt”. We join the two
annotations with the text “ and it” to get a description similar to a normal sentence a
user might ask on an E-Com platform. Now the complete text query is: “is red with a
cat logo on front and it is more pop culture and adolescent”. Furthermore, we combine
the train sets of all three categories to form a bigger training set and train a single model
on it. Analogously, we also combine the validation sets to form a single validation set.
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A challenge was conducted in ICCV 2019 on Fashion IQ dataset 1. The website also has
some technical reports submitted by the best performing teams. The numbers reported
in these reports are quite high, even for TIRG approach. We investigated the reasons
and reached the conclusion that these technical reports have have quite different settings.
It is not possible for us to compare our results with them in a fair manner. The reasons
and differences are delineated briefly as:

• They treat Fashion IQ as three independent datasets and train one model for each
category (“dress”, “top-tee” and “shirt”). This results in better performance for
each category.

• They do pre-training on external datasets like Fashiongen, Fashion200k etc. It is
well-known that such transfer learning (via pre-training) inevitably increases the
performance of any model.

• They employ product attributes as side information in their models. In our
experiments, we do not consider in such side information and rely solely on the
image and text query.

• They employ higher capacity models such as ResNet101, ResNet-152 etc. In original
TIRG and in all our experiments, we use ResNet17 as image model.

• Since these reports developed models specifically for the competition, they have
incorporated several hacks, like ensembeling, data augmentation techniques etc.

• Unfortunately, none of the technical reports have published their code. Thus, we
are not able to assess the performance of their model in our experiment setting.

In short, it is neither possible for us to reproduce their results nor are we able to fairly
compare the performance of their models in a common experiment setting.

1https://sites.google.com/view/lingir/fashion-iq
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6 A Contrastive Learning Approach for
Compositional Zero-Shot Learning

This chapter is based on the following under-review publication:

Anwaar, Muhammad Umer[*]; Khan, Rayyan Ahmad [*]; Pan, Zhihui and
Kleinsteuber, Martin. A Contrastive Learning Approach for Compositional Zero-
Shot Learning. In ICMI ’21: Proceedings of the 2021 International Conference on
Multimodal Interaction. 2021
[*] indicates that the authors contributed equally to this work.

6.1 Introduction

Objects, in the real world, exist in certain state(s). Human cognition is well set up
to process vague concepts and easily categorize them and assign attributes (states) to
objects. For instance, if a user wishes to buy a dress, their mind turns the attention
towards what color, size, style, price etc., they would prefer. Traditional information
retrieval (e.g. e-commerce websites) offer their customers a unimodal query, i.e., either
a text or an image. After the query, the user has to select many filters to “help the
algorithm” narrow down the options for the user. Future information retrieval (IR)
systems should be smart enough to “help the customer” in expressing the concept in
their mind by allowing a multi-modal query (see Fig. ??).

In this work, we focus our attention to a major aspect of such smart systems: learning
good state-object representations. Specifically, (1) we aim to learn such models which
understand different states of an object and can recognise even unseen combinations of
them. (2) The model should be able to retrieve images based on multi-modal (image-text)
query, where the text describes the changes sought by the user in the query image.

In the literature, these two tasks have been treated separately. The first task is referred
to as compositional zero shot learning (CZSL). In contrast to image classification, the goal
of CZSL classification is to simultaneously identify the class of the object and the state
in which the object appears. Sometimes the visual differences of the same object in two
states can be huge and that is where traditional classification methods fail. Several CZSL
methods have been proposed to address this challenge. Li et al. [155] subject the learning
of object embeddings to symmetry constraints under different state transformations.
Misra et al. [156] maximize similarity of learned joint state-object embeddings with
image features. Nagarajan et al. [157] treat states as operators (transformation matrices)
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and apply them to objects to yield the joint pair embeddings and then maximize the
similarity with image. The second task is image retrieval based on a multi-modal query.
Vo et al. [127] proposed the Text Image Residual Gating (TIRG) method for composing
the query image and text for image retrieval. Anwaar et al. [158] proposed that the
target image representation is an element-wise rotation of the representation of the source
image in a complex space. The information about the degree of rotation is specified by
the query text features.

The above mentioned methods do not focus on solving the two tasks in a systematic
way. Interestingly, the state-of-the-art (SOTA) methods for CZSL task employ such
data splits where all the objects and states are seen by the model during training. They
refer to it as zero-shot because the test set contains images with pairs (state-object
combinations) which were not seen in training. This will prove to be quite limiting for
the real-world image retrieval application. Since the model is expected to have seen not
only all the objects but also all the attributes the user can come up with. Naturally, a
user can use different words which carry the same semantic meaning. Thus, a good model
must have the ability to generalize to both unseen objects and unseen attributes. On the
other hand, the second class of methods do not learn any object or state classification.
They are focused on learning the fusion of query image and text for directly improving
the image retrieval. This approach results in poor performance on the first task (see
Sec.6.4.2).

In this work, we propose a unified approach, ContraNet , which bridges the existing
gap in these two tasks. ContraNet aims to predict a composition of multiple semantic
concepts in images. We adopt a contrastive learning approach to learn embeddings
which are visually grounded and semantically meaningful. In recent years, contrastive
learning has shown impressive results on a variety of tasks [159, 160, 161, 162]. Our
rationale behind adopting contrastive learning is that current SOTA methods (discussed
above), overwhelmingly rely on labels for learning. They overlook the fact that the
underlying data lives on a much complicated manifold than what sparse labels could
capture. Therefore, purely supervised methods converge to rigid solutions. In other words,
they lead to good task-specific solutions, rather than learning the multiple semantic
concepts in the data. ContraNet utilizes pretrained image and text models and then
learn their mapping onto a multimodal embedding space via contrastive loss. That is, by
maximizing the similarity between actual image-text pairs against random pairs through
a bidirectional contrastive loss between the text and image modalities. These embeddings
from this multimodal embedding space are then utilized for the downstream tasks. We
use cross-entropy losses for the task 1 and soft-triplet loss for the task 2.

Despite the simplicity of our model, ContraNet outperforms the SOTA methods
on benchmark datasets, namely: MIT-States, UT-Zappos and Fashion200k. Our exper-
imental evaluation shows that projecting the text and image features onto a common
embedding space and learning the representations via contrastive loss significantly en-
hances the performance of ContraNet .

Our main contributions are summarized below:
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• We propose ContraNet , a unified contrastive learning approach which not only
can recognize unseen combinations of state-object pairs but is also able to retrieve
images of never seen objects based on multi-modal query.

• ContraNet outperforms the SOTA methods by a substantial margin on state-
object composition zero-shot learning tasks. i.e., 8.7% on UT-Zappos and 8.1% on
MIT-States on the best HM metric.

• For the image retrieval task, ContraNet utilizes the common embedding space
learnt via contrastive loss and surpass the SOTA performance by 4% on MIT-States
and 5.3% on Fashion200k dataset on Recall@1 metric.

6.2 Related Work

In computer vision, a bulk of research centered around object recognition and classification,
treats attribute as a mid-level “feature” learned from the visual patterns. This has proved
amazingly successful in various tasks, e.g., zero-shot recognition, image description [163,
164, 165] and visual question answering [166].

Recently, there has been an increasing interest in compositional learning of attributes
(states) and objects. In compositional learning, learning correct attributes is given the
same importance as object prediction. That is, the model needs to predict the state-
object pair. Several approaches have been proposed to tackle this problem. LabelEmbed
(LE) proposed by [156] uses GloVe vectors[167] for state and object. They employ a
3-layered MLP to transform the word embeddings into a transformation matrix. The
prediction of the classifier is obtained by the product of transformation matrix with
image features. AnalogousAttr [168] trains several linear classifiers for seen compositions
and then leverages tensor completion techniques to do predictions for the unseen pairs.
AoP [157] uses GloVe vectors for objects. But they consider states (attributes) as linear
transformation matrices, which “operate” on the objects to yield pair embeddings. The
pair embedding with the minimum distance to image embedding in the joint embedding
space is the prediction of the model. Red Wine is another method proposed by [156]. It
replaces the GloVe vectors in LE with the SVM weights. TAFE [169] employs word2vec
vectors [170] of state-object composition pair to generate binary classifier for each
composition. Task-driven Modular Networks (TMN) [171] configures a set of modules
(fully connected layers operating in semantic concept space) through a gating function in
a task-driven way. It generalizes to unseen compositions by re-weighting these primitive
modules. SymNet [155] learns object embeddings showing symmetry under different state
transformations. They emphasize that leaning in such a fashion yields better embeddings
for the compositional learning task.

The task of image retrieval based on multimodal query has also been explored in
literature. Two state of the art methods are: TIRG [127] and ComposeAE [158].
In TIRG, the authors employ gated feature connection in order to keep the composed
representation of query image and text in the same space as that of the target image. They
also incorporate a residual connection which learns the similarity between concatenation
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of image-text features and the target image features. The authors of ComposeAE [158]
argue that the source image and the target image lie in a common complex space.
They are rotations of each other and the degree of rotation is encoded via query text
features. Some other approaches which are also closely related to this task are interactive
image retrieval task [142, 143] and attribute-based product retrieval task [144]. These
approaches have their limitations such as that the query texts are limited to a fixed set
of relative attributes [144], require multiple rounds of natural language queries as input
[142, 143] or that query texts can be only one word i.e. an attribute [140]. Unlike our
task, the focus of these methods is on modeling the interaction between user and the
agent.

6.3 Approach

6.3.1 Problem Setting and Overview

Let X denote the set of images, S denote the set of states, O the set of objects and
T = S × O denote the set of composition labels. Each image x is associated with a
compositional label t = (s, o).

We tackle the following two tasks:

1. Prediction of composition label (state, object) for a given image. During testing,
most of the composition labels are novel i.e. not seen during training. Hence,
this task is also called Compositional Zero Shot Learning Task. The model,
f : X → T test, is trained to maximize the number of correct predictions of
composition labels.

2. Image Retrieval based on a multi-modal (image-text) query. Specifically, the
query text prompts some state modification in to the query image x. The task is
to retrieve images with same object label o as in the query image but with the
desired state label s. The model, g : (X , T )→ X target, is trained to maximize the
similarity between composed representation of (image-text) query and the target
image representation.

6.3.2 Task # 1: Learning the Compositional Zero Short Prediction

ContraNet is an autoencoder based approach to learn composition of multiple semantic
concepts in images. In this section, we discuss the architecture of ContraNet and the
loss functions involved in CZSL task. Fig. 6.1 presents an overview of ContraNet .

In the figure, ψ(·) denotes the pre-trained image model (e.g. ResNet-18), which takes
an image as input and returns image features in a d-dimensional space. Analogously,
β(·) denotes the pre-trained text model (e.g. BERT), which takes an text as input
and returns text features in a h-dimensional space. It is to be noted that β(·) takes as
input both the state and object text and returns a single h-dimensional feature vector.
Typically in image-text joint embeddings [127, 131], these features are combined using
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Figure 6.1: ContraNet Architecture: Learning the compositional labels via contrastive learning

fully connected layers or gating mechanisms. In contrast to this, we project these features
onto a common multi-modal embedding space via separate projection modules. These
modules are denoted by φt : Rh 7→ Rk and φi : Rd 7→ Rk for text and image respectively.

In this common embedding space, we aim to learn such representations which bet-
ter capture the underlying cross-modal dependencies. ContraNet utilizes the text
information to learn multiple semantics present in the images. We adopt a deep metric
learning approach (DML) to train ContraNet in a contrastive fashion. During training,
we sample a batch of B input image-text pairs (x, t). We calculate the similarities
between the representations of images and texts in the common embedding space and
then calculate the contrastive loss, Lcont, as follows:

∆t =
∥∥∥B
j=1

φt(β(tj)), (6.1)

∆i =
∥∥∥B
j=1

φi(ψ(xj)), (6.2)

E = ∆t ∗∆T
i , (6.3)

Lcont =
1

2B

B∑
j=1

− log

{
exp{Ejj}∑B
p=1 exp{Ejp}

}

− log

{
exp{Ejj}∑B
p=1 exp{Epj}

}
, (6.4)

where ‖ denotes the concatenation operation of representation for each sample of the
batch, T denotes transpose of a matrix, ∗ denotes matrix multiplication, exp denotes
exponential function and E denotes the matrix of similarities of all image-text pairs in a
batch. The first term in the loss function corresponds to text-to-image contrastive loss
and the second term corresponds to image-to-text contrastive loss.
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Figure 6.2: ContraNet Architecture: Image retrieval based on multi-modal query. The weights
of the projection modules learned during task 1 are frozen.

As for the decoder part of ContraNet , we learn two separate decoders from the
representations embedded in the multi-modal embedding space. i.e., image decoder and
text decoder denoted by dimg and dtxt respectively. The reason for using the decoders and
reconstruction losses is two-fold: first, it acts as regularizer on learning of the embeddings
and secondly, it forces the model to retain relevant text and image information in the
common embedding space. Empirically, we have seen that these losses reduce the variation
in the performance and aid in preventing overfitting.

Thus, we also add two reconstruction losses, Limgdec and Ltxtdec, in our training objective,
each corresponding to dimg and dtxt respectively. They are given by:

Limgdec =
1

B

B∑
i=j

∥∥∥ψ(xj)− ẑi
∥∥∥2

2
, (6.5)

Ltxtdec =
1

B

B∑
i=j

∥∥∥β(tj)− q̂i
∥∥∥2

2
, (6.6)

where ẑi = dimg(·) and q̂i = dtxt(·).
For this task, during inference, we have to predict the composition label (state, object)

for a given image. Thus, ContraNet trains two separate classifiers for state and object
classification. These classifiers take as input the image representation projected onto the
common embedding space. They are implemented as two fully-connected (FC) layers,
followed by a softmax layer. They are trained with cross-entropy losses, denoted as LSCE
and LOCE , for state and object classification.

The total loss is computed by the weighted sum of above mentioned losses. It is given
by:

L = Lcont + λi Limgdec + λt Ltxtdec + λo LOCE + λs LSCE , (6.7)

6.3.3 Task # 2: Image Retrieval Based on a Multi-Modal Query

As discussed in Sec. 6.3.1, the goal in this task is to retrieve images which have same
object label as the query image but possess the state as desired by query text. For
instance, we have input image of an “unripe tomato” and the text prompts to retrieve
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images with the “ripe” state (see Fig. 6.4). Fig. 6.2 presents the modified ContraNet
architecture for this task. Since the goal is to retrieve images, we hypothesise that it is
better to compose the modalities in the multi-modal query and map them to the image
embedding space. This ensures that the image and compositional features are “aligned”.
In this way, during inference, we can simply compare the composed features with the
test images in the image embedding space.

For this task, we learn a composition function, Ω : R2k 7→ Rd, for composing the
embeddings of query image and text coming from the common embedding space. This
function maps the embeddings directly in to the image embedding space. Lets denote
the output of Ω(·) by ϑ. In our experiments, we work with three different variants of
Ω(·), namely: MLP, residual gating and image rotation based on text (see Sec. 6.4.4 for
details.)

We employ triplet loss with soft margin, Ltrip, for learning this composition function.
The loss aims to maximize the similarity between the composed features ϑ and the
target image features ψ(y) extracted from the image model. It also pushes the composed
representation ϑ away from non-similar images in Rd. Let κ(·, ·) denote the similarity
kernel, which we implement as a dot product between its inputs. The loss is given by:

Ltrip =
1

MB

B∑
j=1

M∑
m=1

log
{

1+exp{κ(ϑj ,ψ(ỹj,m)) − κ(ϑj ,ψ(yj))}
}
, (6.8)

where M denotes the number of triplets for each sample j and ψ(ỹj) denote the randomly
selected negative image from the batch. This is equivalent to the the soft triplet based
loss used in [172, 173].

6.4 Experiments

6.4.1 Experimental Setup

Datasets: In our experiments, we use three benchmark datasets, namely: MIT-
States[174], UT Zappos [175] and Fashion200k[140]. MIT-States consists of 53753 diverse
real-world images where each image is described by an object-attribute composition
label, i.e. an attribute (state) and a noun (object), e.g. “ripe tomato”. There are 245
objects, 115 attributes and 1962 possible pairs. UT-Zappos is a dataset of only shoes
with fine-grained annotations. A composition label consists of shoe type-material pair.
There are 12 shoe types (objects), 16 different materials (states) and 116 possible pairs.

Two different settings of these benchmark datasets are proposed in the literature for
evaluating the models. (1) Generalized CZSL (GCZSL) split [171]. Following Chao et al.
[176], they argue that performance of the model should also be evaluated on seen pairs. In
this setting, MIT-States utilizes 1262 pairs (the seen pairs) for training, whereas the test
set has 400 seen and 400 unseen pairs. This split also contains a validation set consisting
of 300 seen and 300 unseen pairs. The UT-Zappos dataset makes use of 83 pairs (the seen
pairs) for training, whereas the test set has 18 seen and 18 unseen pairs. The validation
set has of 15 seen and 15 unseen pairs. (2) CZSL split [156, 157], which ensures that
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there is no overlap between pairs in the train and test set. For MIT-states, the train
set still consists of 1262 pairs/34562 images and the test set now has 700 pairs/19191
images. For UT-Zappos, the train set still has 83 pairs/24898 images and the test set
now contains 33 pairs/4228 images.

The third dataset Fashion200k [140] is only used for the second task. It consists of
∼200k images of different fashion categories. Each image has a human annotated caption,
e.g. “beige bolero jacket dress”. In order to ensure fair comparison, for the second task,
we also follow the same train-test split as proposed by our competitors (TIRG [127] and
ComposeAE [158]) for both Fashion200k and MIT-States. Now the split for MIT-States
is that 196 objects out of total 245 are reserved for training and the rest 49 objects are
used during test. This split ensures that there is no overlap between training and testing
queries in terms of objects.

Implementation Details: Following [171, 155, 169], we compare the results of Con-
traNet with several baselines as well as previous state-of-the-art (SOTA) methods.
Unless otherwise specified, the default image feature extractor for all methods is ResNet-
18. We also extract 512-dimensional image features using ResNet18 pretrained on
ImageNet [177]. ContraNet employs pretrained BERT [130] for encoding texts. Con-
cretely, we employ BERT-as-service [153] and use Uncased BERT-Base++ which outputs
a 1024-dimensional feature vector. To ensure fair comparison, we employ the same strat-
egy for hyperparameter tuning as SymNet [155]. We use cross-validation to determine the
hyper-parameters, e.g., learning rate, weights, epochs. We employ Adam [118] optimizer.
For both datasets, M = 3 in Ltrip and the weights of the losses are: λs = λo = 1 and
λi = λt = 0.1. We repeat each experiment 10 times and report the average performance
of the models.

Metrics: For the task of CZSL, we follow [157, 155] and report Top-1, 2, 3 accuracies
on the unseen test set as evaluation metrics. For the task of GCZSL, we follow the
evaluation protocol from TMN [171] and use the same metrics as proposed by them.
Namely: best accuracy on only images of seen/unseen compositions (best seen/best
unseen), best harmonic mean (best HM ) and Area Under the Curve (AUC) for seen and
unseen accuracies by varying the bias values. For the task of image retrieval, following the
evaluation protocol from TIRG [127], we use recall at rank k (R@k), as our evaluation
metric. R@k estimates the proportion of queries where the target (ground truth) image
is within the top k retrieved images.

6.4.2 Discussion of Results for the GCZSL and CZSL Tasks

Tables 6.1 and 6.2 summarize the results of the performance comparison on the GCZSL
task. In the following, we discuss these results to gain some important insights into the
problem.

First, we note that our proposed method ContraNet consistently outperforms the
SOTA methods by a significant margin on both benchmark datasets. Specifically, on
UT-Zappos in terms of AUC metric, the performance improvement over the second best
method (TMN) is 18.4% and 32.9% over the third best method (RedWine). Similarly,
for best HM metric on UT-Zappos, ContraNet outperforms the second best method
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Method
MIT-States

Attribute Object Seen Unseen HM AUC

AoP 21.1 23.6 14.3 17.4 9.9 1.6
Red Wine 22.7 25.1 20.7 17.9 11.6 2.4
LabelEmbed 23.5 26.3 15.0 20.1 10.7 2.0
ComposeAE 23.8 26.4 21.4 22.6 14.9 2.7
TMN 23.3 26.5 20.2 20.1 13.0 2.9
SymNet 24.3 27.3 24.2 25.2 16.1 3.0

ContraNet 28.9 26.7 28.1 27.4 17.4 4.7
- without Lcont 22.9 27.1 14.8 18.6 9.7 1.9
- without Ldec 28.2 26.5 27.5 26.8 17.2 3.9

Table 6.1: Performance comparison on the Generalized CZSL split of MIT-States. The best
performance is in bold and the second best is underlined.

Method
UT-Zappos

Attribute Object Seen Unseen HM AUC

AoP 38.9 69.9 59.8 54.2 40.8 25.9
Red Wine 40.6 69.1 53.6 52.1 41.3 26.1
LabelEmbed 41.2 69.3 53.0 61.9 41.0 25.7
ComposeAE 41.9 68.8 57.2 58.9 44.2 29.2
TMN 40.8 69.2 58.7 60.0 45.0 29.3
SymNet 41.3 68.6 49.8 57.4 40.4 23.4

ContraNet 52.7 68.1 60.7 62.5 48.9 34.7
- without Lcont 42.4 69.2 54.9 52.6 42.9 27.4
- without Ldec 51.4 66.7 58.4 60.8 47.2 33.1

Table 6.2: Performance comparison on the Generalized CZSL split of UT-Zappos. The best
performance is in bold and the second best is underlined.
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(TMN) by 8.67% and by 15.53% over the third best method (RedWine). On MIT-States
dataset, ContraNet still outperforms the competitive methods but the margins are less
than those on UT-Zappos dataset. For instance, in terms of AUC and best HM metric,
the performance improvement over the second best method (SymNET) is 3.6% and 8.1%
respectively.

Second, we observe a very interesting pattern for the object classification accuracy
metric. On UT-Zappos dataset, the top-2 performing methods (AoP and LabelEmbed+)
are fairly simple models in comparison to more recent models like SymNET and TMN.
For the MIT-States, this pattern is reversed and AoP and LabelEmbed+ are performing
worse than advance models. Here, SymNET and ContraNet achieves best performance
with insignificant difference of 0.7%. We hypothesise that simpler model are better able
to capture the object class for UT-Zappos. We test this conjecture by removing φ(·)’s
and Lcont from ContraNet . The results support this conjecture as the performance is
improved by 1.1 and 0.4 for ContraNet without Lcont on UT-Zappos and MIT-States
respectively. Detailed investigation of this behavior is out of scope for this work.

Third, we note that all the methods perform better on UT-Zappos as compared to
MIT-States. This is due to differences in the underlying distributions of the two datasets,
which makes one dataset more “difficult” to learn. Another reason is that MIT-states
dataset was automatically labeled, which leaves the room for more incorrect labels. Our
quantitative analysis (Sec. 6.4.5) provides a better view of this issue. Briefly, even though
the algorithm retrieves semantically similar images but they will not be considered correct
due to noisy labelling. For instance, for the second query in Fig. 6.4, we can see that the
second and fifth image are semantically similar. But according to automated labels, only
the first and third images are “correct images”. This issue has also been discussed in
depth by Nawaz et al.[154].

Table 6.3 presents the results of CZSL task. We observe that ContraNet significantly
outperforms all the competitive methods. The second best method is also ContraNet
without Ldec. In this variant, we remove both the image and text decoder of our model.
Without these “regularizers” on the common embedding space, there is slight drop
in performance but still Lcont and classification losses are able to maintain a decent
performance.

Finally, we observe from Tables 6.1, 6.2 and 6.3, that the variant of ContraNet
without Lcont results in a huge degradation in the performance. This reinforces our claim
that contrastive learning of image and text embeddings in a common space helps in
learning better representations. These representations are then particularly useful for
the compositional learning tasks.

6.4.3 Visualization in Latent Space

We plot the representations of images projected unto the common embedding space to
visualize how well they are separated with respect to their labels. Fig.6.3 presents these
visualizations using t-SNE for the UT-Zappos and MIT-States datasets. It shows that
compositions with similar state-object are closer to each other than other compositions.
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Figure 6.3: Visualization (using t-SNE) of test image instances projected unto the learned
common embedding space

Method
MIT-States UT-Zappos

Top-1 Top-2 Top-3 Top-1 Top-2 Top-3

AnalogousAttr 1.4 - - 18.3 - -
LabelEmbed 13.4 17.6 22.4 25.8 39.8 52.4
Red Wine 13.1 21.2 27.6 40.3 52.8 67.1
AoP 14.2 19.6 25.1 46.2 56.6 69.2
TAFE-Net 16.4 26.4 33.0 33.2 45.8 57.3
SymNet 19.9 28.2 33.8 52.1 67.8 76.0
ContraNet 22.1 33.7 38.2 54.6 73.1 80.4
- without Lcont 14.7 18.8 24.6 39.9 50.2 62.4
- without Ldec 20.4 31.2 35.9 53.3 69.7 78.6

Table 6.3: Performance comparison on the CZSL split. The best performance is in bold and the
second best is underlined.
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Method R@1 R@5 R@10

Raw Image features only 3.3 12.8 20.9
Raw Text features only 7.4 21.5 32.7
Concatenation [Image,Text] 11.8 30.8 42.1

Show and Tell 11.9 31.0 42.0
AoP 8.8 27.3 39.1
Relationship 12.3 31.9 42.9
FiLM 10.1 27.7 38.3
SymNet 11.2 29.5 41.4
TIRG 12.2 31.9 43.1
ComposeAE 13.9 35.3 47.9

ContraNet -Ωres 14.5 40.7 51.4
ContraNet -Ωrot 13.9 39.1 50.8
ContraNet -Ωmlp 13.7 36.9 48.8
ContraNet -Ωres without
Common Embedding Space 12.0 31.2 42.9

Table 6.4: Model performance comparison on MIT-States. The best number is in bold and the
second best is underlined.

Method R@1 R@10 R@50

Raw Image features only 3.5 22.7 43.7
Raw Text features only 1.0 12.3 21.8
Concatenation [Image,Text] 11.9 39.7 62.6

Show and Tell 12.3 40.2 61.8
Param Hashing 12.2 40.0 61.7
Relationship 13.0 40.5 62.4
FiLM 12.9 39.5 61.9
SymNet 11.7 38.6 60.4
TIRG 14.1 42.5 63.8
ComposeAE 22.8 55.3 73.4

ContraNet -Ωres 24.0 58.4 79.2
ContraNet -Ωrot 18.5 54.8 76.3
ContraNet -Ωmlp 22.9 56.7 77.5
ContraNet -Ωres without
Common Embedding Space 17.8 50.6 71.1

Table 6.5: Model performance comparison on Fashion200k. The best number is in bold and the
second best is underlined.
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6.4.4 Discussion of Results for the Image Retrieval Based on Multi-modal
Query Task

Tables 6.4 and 6.5 presents the results of this task for MIT-States and Fashion200k respec-
tively. Depending on the composition function Ω, we get three variants of ContraNet
. Ωres means that we compose the modalities via the gated and residual connections
introduced by TIRG. Ωrot denotes that composition is modelled as rotation of image
embeddings from common embedding space. This idea was proposed by ComposeAE[158].
However, unlike them, we do not employ any rotational symmetry loss or complex rota-
tion. The third variant, Ωmlp, simply means that we fuse the two modalities via MLP
(two-fully connected layers with non-linear activations).

First, we note that the variant ContraNet -Ωres achieves impressive gains over all
the competitive methods. Specifically, on MIT-Sates in terms of R@10 metric, the
performance improvement over the second best method (ComposeAE) is 7.3% and 19.3%
over the third best method (TIRG). Similar performance trend can be seen for fashion200k
dataset. This supports our claim that the semantic meaning hidden in the labels helps in
learning better composition.

Second, we observe that several methods (like AoP, SymNet, FiLM) could not outper-
form simple baseline like concatenation of raw image and text features. While TIRG,
ComposeAE and ContraNet consistently outperforms this baseline by a significant
margin on both benchmark datasets.

Third, we note that all the variants of ContraNet outperform or achieve comparable
performance to ComposeAE and TIRG. Although ContraNet -Ωres comes out to be the
best variant, but ContraNet -Ωmlp and ContraNet -Ωrot are also able to perform the
task reasonably well. We hypothesize that the reason is that the projection modules to
the common embedding space learned in the task 1 have learned the underlying shared
information between two modalities quite well. Thus, a simple composition function like
MLP is also able to achieve competitive results. In order to confirm this intuition, we
drop the projection modules to the common embedding space from our best performing
variant, i.e., ContraNet -Ωres without Common Embedding Space. Consequently, we
observe an enormous drop in performance on both datasets.

6.4.5 Qualitative Results

Fig.6.4 presents some qualitative retrieval results for MIT-States dataset. For the first
query, we see that two “burnt bush images are retrieved. We can observe that other
retrieved images share the same semantics and are visually similar to the target images.
In second query, we note that same objects in different states can look drastically different.
This highlights the importance of incorporating the text information in the composed
representation. Some qualitative retrieval results for Fashion200k dataset are presented
in Fig. 6.5. In these results, we observe that the model is able to capture the style and
color information quite well. In the first row, we see similar sleeveless dresses with sequin.
Similarly, in the second query, the model successfully images from the same product
category, i.e. jacket and skirts. Moreover, the retrieved images seem to follow the desired
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Figure 6.4: Qualitative results for image retrieval task: MIT-States

Figure 6.5: Qualitative results for image retrieval task: Fashion200k
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modifications expressed in the query text remarkably well. It is pertinent to highlight
that the captions under the images are the ground truth. They are not available to the
model as additional input during training or inference.
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7 Leveraging Variational Graph Embeddings
for Compositional Zero-Shot Learning

This chapter is based on the following publication:

Anwaar, Muhammad Umer; Pan, Zhihui and Kleinsteuber, Martin. On
Leveraging Variational Graph Embeddings for Open World Compositional Zero-Shot
Learning. In Proceedings of the 30th ACM International Conference on Multimedia
(MM ’22), Lisbon, Portugal. Association for Computing Machinery, New York, NY,
USA, 4645–4654. https://doi.org/10.1145/3503161.3547798

7.1 Introduction

In their seminal works in vision and cognitive science, Biederman [178] and Hoffman et
al.[179] showed the compositional nature of human perception of the visual world. This
compositional nature is the motivation behind the feature compositionality which has
been exploited by modern vision systems. For instance, learning image features [180, 181]
and transfer learning [182, 183, 184]. It is well-known that unfamiliar compositions of
concepts dominate the long tailed distribution of visual concepts [185, 186]. However,
the bulk of the research is focused on composition in feature space, whereas composition
of concepts in the classifier space has received less attention.

Figure 7.1: Left: Open World CZSL Task. Most compositions of primitive concepts in the
model search space are infeasible. Right: A potential application scenario, where
CZSL aids the image retrieval system in addressing the multi-modal query.
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Recently, several works have focused on the so-called Compositional Zero-Shot Learning
(CZSL) problem [156, 171, 155]. The task is to learn the composition of concepts (objects
and states) in such a way that even their novel compositions can be classified without any
supervision. Interestingly, the baseline and state-of-the-art (SOTA) methods in CZSL
assume that the novel composition of concepts (objects and states) in the model output
space is already known at test time. The only exception is the work by Mancini et al.[187],
which do not impose any such constraint on the model output space. Following [187], we
refer to the former as Close-World (CW) CZSL task and the latter as Open-World (OW)
CZSL task. The left part of Fig. 7.1 presents the OW-CZSL task, whereas the right part
presents a potential application scenario where OW-CZSL can help E-commerce websites.
It is to be noted that underlined object and states can be recognized via Part-of-speech
(POS) tagging [188, 189], but this is out of scope of this work.

In this work, we propose CVGAE , a Variational Graph Autoencoder (VGAE) based
approach for tackling both CW and OW CZSL tasks in a principled way. We argue that
objects and states are being generated from a prior distribution. They are treated as
nodes of a graph and an edge between them indicates the existence of a compositional pair.
This formulation enables us to learn the latent representation of our primitive concepts in
a space of reduced dimensionality along with the feasibility of their compositions (edges).
The embeddings of the compositional pairs are obtained by simply concatenating the
respective state and object node embeddings. This is in contrast to CGE[190], which
requires nodes as well as all compositional pairs in the graph. Such problem formulation
by Naeem et al.[190] limits its applicability for the real-world scenarios. We discuss the
computational complexity in detail in subsection 7.4.4.

We hypothesize that there are two fundamental obstacles in learning models which ex-
hibit compositional generalization, i.e., (1) zero-shot nature of unseen labels (distribution-
shift) and (2) learning the “disentanglement” of primitive concepts from training samples.
In this paper, we do not claim to overcome these challenges. Rather, we recognize
these obstacles and draw inspiration from them in developing our model. This is the
reason for choosing a generative process for the primitive concepts in our graph. We
hypothesize that keeping only the primitives in the graph aids in learning of primitive
concepts in a disentangled way. Moreover, the variational modelling process also ensures
that CVGAE learns the underlying distribution rather than learning such spurious
correlations which hurt inference at test time. This enables CVGAE to achieve better
compositional generalization.

Our model focuses on learning the distribution of the primitive concepts and predicting
the existence (feasibility) of an edge between them by exploiting the graph information.
We argue that once good primitive representations are learned in a disentangled way,
it is more likely to be stable across training and test compositional labels. Following
the literature [190, 187, 155], we employ a pretrained image model to extract image
features. We learn a mapping of the compositional pair embeddings and image features
on the common embedding space. In this space, we employ contrastive loss to learn
embeddings which are visually grounded and semantically meaningful. That is, by
maximizing the similarity between image embeddings with target compositional pair
embeddings against random pairs and vice-versa through a bidirectional contrastive
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loss. Another big advantage of CVGAE is that we exploit the graph information and
augment the supervised contrastive loss with VGAE loss. This is in contrast to the
current SOTA methods, which overwhelmingly rely on supervisory labels for learning.
Such purely supervised methods disregard the fact that the underlying data lives on a
much complicated manifold than what sparse labels could capture. This often leads to
good task-specific solutions, rather than learning the multiple semantic concepts in the
data. We argue that representations learnt by CVGAE better capture the semantic
meaning of primitive concepts. We evaluate the validity of our approach via experiments
on three benchmark datasets (See Sec. 7.4).

Our main contributions are summarized below:

• We propose CVGAE , a variational graph-based approach for tackling both CW
and OW CZSL tasks. We argue that the node embeddings and edges between the
primitive concepts (object and states) are sufficient for achieving good compositional
generalization.

• We show that CVGAE is computationally cheaper than the current graph-based
SOTA method, CGE.

• CVGAE achieves better compositional generalization than SOTA methods on
three benchmark datasets, i.e., for OW-CZSL task, the performance gain with
respect to best harmonic mean metric is 12.5% on MIT-States, 8.3% on UT-Zappos
and 25% on C-GQA dataset.

7.2 Related Work

7.2.1 Compositional Zero-Shot Learning

Early works in CZSL see state (attribute) as a mid-level feature between visual patterns
and object recognition. It has been proved to help various tasks, including zero-shot
recognition, image description [163, 164, 165], visual question answering [166] and so
on. [165, 191] treat object as combination of states (attributes). [192] develop a random
forest algorithm on top of attribute classifiers. [193] propose using continuous instead
of binary state classifier and infer to unseen objects by relating its description to seen
objects. Skip-gram word embeddings can be used for both state and object to make
predictions on unseen relations [194].

Instead of being used as an intermediate feature, attribute classification becomes
another goal of learning in compositional learning, besides object classification. [195]
uses matrix factorization to get unseen object-specific attribute classifiers from seen ones.
[156] combine attribute and object classifier via a transformation network to get the
composition classifier. Instead of training classifiers for primitives, [171] use the state and
object label to control a gated network calculating a triplet loss of (image, state, object).

Besides the visual presentation, the semantic information of primitives are also utilized
to generalize to unseen compositions. [157] models object using its semantic representation
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and attribute as linear transformation for the object. [155] learns the coupling and
decoupling mechanism between attributes and objects.

7.2.2 Open World Recognition

Most previous works conduct their experiments on the closed-world setting, where they
assume prior knowledge of all test compositions. This weakens their generalizability to
practical settings. We adopt the more realistic open-world setting from [187]. The search
space now contains every possible combination of state and object. We show that most
previous models exhibit performance degradation in this setting, while our model can
handle this new problem well with the help of Graph Neural Network(GNN).

Both our work and CGE [190] use GNN to get the desired composition representation.
However, we propose a variational graph approach which requires much less nodes. This
is especially advantageous in the open-world setting considering the already enormous
search space.

7.3 Methodology

7.3.1 Task Formulation

Let X denote the set of images, S denote the set of states, O the set of objects and
Y = S ×O denote the set of all the compositions. The set Y can also be expressed as a
union of real compositional labels, denoted as Yr, and hypothetical compositional labels,
denoted as Yh. i.e., Y = Yr ∪ Yh. Yr consists of the “real” labels, i.e., we have images in
the dataset for these labels. Yr is partitioned into two disjoint subsets, depending on
whether the corresponding label was “seen” by the model during training or not. We refer
to them as “seen” Ys and “unseen” Yu respectively. i.e., Yr = Ys ∪ Yn and Ys ∩ Yn = ∅.
We can write the training set as: T = {(x, y)|x ∈ X , y ∈ Ys}, where Ys ⊂ Yr.

In this work, following [190, 187, 171, 196], we adopt the generalized compositional
zero-shot split where the test set includes images from both Ys and Yu. The goal of the
model f : X → Yξ is to predict compositional labels in a space Yξ ⊆ Y. Depending on
the output space Yξ of the model, we get two variants of this task: (1) Close-World (CW)
CZSL i.e., Yξ ≡ Yr and (2) Open-world (OW) CZSL i.e., Yξ ≡ Y . In other words, in CW
CZSL, the set of unseen compositions Yu is assumed to be known a priori. Thus, we
consider Yh = ∅. Whereas, OW CZSL does not have this assumption, which makes it a
more challenging task and closer to real-world application scenarios.

7.3.2 Proposed Method: CVGAE

Suppose an undirected and unweighted graph G consisting of N nodes, with adjacency
matrix A ∈ RN×N and a matrix F ∈ RN×m of m-dimensional node features. For
CVGAE , N = |S| + |O| and each row in F consists of word embedding of the
corresponding state or object. This is in contrast to CGE [190], which requires an
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additional |Yξ| nodes, corresponding embeddings and edges. Such formulation makes
CGE computationally very expensive than our approach (see subsection 7.4.4).

CVGAE jointly encodes the information in nodes and edges in a h dimensional latent
space. Let us denote the latent node embedding by zi ∈ Rh. We assume that these
latent random variables {z1, z2, · · · , zN} follow standard gaussian distribution. These
latent variables are stacked into a matrix Z ∈ RN×h. The joint distribution can be
mathematically expressed as

p(G,Z) = p(Z)pθ(G|Z), (7.1)

p(Z) =

N∏
i=0

p(zi), (7.2)

p(zi) = N (0,diag(1)) ∀i. (7.3)

For an unweighted and undirected graph G, we follow [1] and restrict the decoder to
reconstruct only edge information from the latent space. The edge information can be
represented by an adjacency matrix A ∈ RN×N where aij refers to the element in ith row

and jth column. If an edge exists between node i and j, we have aij = 1 else 0. Thus,
the decoder is given by

pθ(A|Z) =

(N,N)∏
(i,j)=(1,1)

pθ(aij = 1|zi, zj), (7.4)

pθ(aij = 1|zi, zj) = σ(< zi, zj >), (7.5)

where < ·, · > denotes dot product and σ(·) is the logistic sigmoid function. It is to be
noted that an additional restriction is imposed when sampling the nodes, i.e., zi ∈ S and
zj ∈ O. In order to ensure computational tractability, we introduce the approximate
posterior. i.e.,

qφ(Z|G) =

N∏
i

qφ(zi|G) (7.6)

qφ(zi|G) = N
(
µi(G),diag(σ2

i (G))
)

(7.7)

where G = (A,F ). We employ GraphSAGE [38] as node encoder to learn µi(.) and
σi(.) Reparameterization trick [9] is used to obtain samples of qφ(Z|G) from the mean
and variance.

The training objective should be such that the model is able to generate new data and
recover graph information from the embeddings simultaneously. We aim to learn the free
parameters of our model such that the log probability of G is maximized i.e.,

log
(
p(G)

)
= log

(∫
p(Z)pθ(G|Z) dZ

)
= log

(∫ qφ(Z|G)

qφ(Z|G)
p(Z)pθ(G|Z) dZ

)
= log

(
EZ∼qφ(Z|G)

{p(Z)pθ(G|Z)

qφ(Z|G)

})
, (7.8)
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In order to ensure computational tractability, we use Jensen’s Inequality [49] to get
ELBO bound of Eq. (7.8). i.e.

log
(
p(G)

)
≥ EZ∼qφ(Z|G)

{
log
(p(Z)pθ(G|Z)

qφ(Z|G)

)}
(7.9)

= EZ∼qφ(Z|G)

{
log
(
pθ(G|Z)

)}
+ EZ∼qφ(Z|G)

{
log
( p(Z)

qφ(Z|G)

)}
(7.10)

We follow Kipf et al.[1] and restrict the decoder pθ(G|Z) to reconstruct only edge
information from the latent space. The edge information is contained in the adjacency
matrix A. In other words, we choose the decoder to be an edge decoder i.e., pθ(A|Z).

log
(
p(G)

)
≥ EZ∼qφ(Z|G)

{
log
(
pθ(A|Z)

)}
−DKL

(
qφ(Z|G)||p(Z)

)
(7.11)

where, DKL denotes the Kullback-Leibler (KL) divergence between the prior and
approximate posterior distributions.

By using (2.2), (2.3), (2.7) and (2.8), the loss function can be formulated as negative
of ELBO bound (7.11) i.e.,

LELBO =

N∑
i=1

DKL

(
N
(
µi(G),σ2

i (G)
)
|| N (0,diag(1))

)
− EZ∼qφ(Z|G)

{
log
(
pθ(A|Z)

)}
. (7.12)

7.3.3 Network Architecture

Fig. 7.2 presents the overview of the architecture of CVGAE , a variational graph based
approach for learning composition of multiple semantic concepts in images. Here, ψ(·)
denotes the pre-trained image model (e.g. ResNet-18), which takes an image as input
and returns image features x in a d-dimensional space. We get the embeddings for all
the compositional pairs of interest Yξ by concatenating respective state and object node
embeddings. i.e., for each y ∈ Yξ, we have the pair embeddings e = concat(z, z′), where
z ∈ S and z′ ∈ O. We project these embeddings onto a common multi-modal embedding
space via separate projection modules. These modules are denoted by φe : R2h 7→ Rk
and φi : Rd 7→ Rk for compositional pair and image respectively.

In this common embedding space, we aim to learn such representations which better
capture the underlying cross-modal dependencies. Our aim is to maximize the similarity
between the projected compositional pair embedding φe(e) and the corresponding pro-
jected image features φi(x). We adopt a deep metric learning (DML) approach to train
CVGAE . Let κ(·, ·) denote the similarity kernel, which we implement as a dot product
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Figure 7.2: CVGAE : a variational graph-based approach for tackling both CW and OW
CZSL tasks. The key idea is that the node embeddings and edges between the
primitive concepts (object and states) are sufficient for achieving good compositional
generalization.

between its inputs. The objective is to learn a similarity metric, κ(·, ·) : Rk × Rk 7→ R,
between φe(e) and φi(x).

In other words, CVGAE should learn to map semantically similar points from the data
manifold in R2h × Rd onto metrically close points in Rk. Analogously, the model should
push the projected image features away from the wrong compositional pair embeddings
in Rk. For each training sample (x(j), y(j)) in the mini-batch of size B, we normalize
the similarity between the projected compositional pair embedding φe(e

(j)) and the
corresponding projected image features φi(x

(j)) by dividing it with the sum of similarities
between φi(x

(j)) and all the projected compositional pair embeddings. We denote this
loss as Le7→i.

Le7→i =
1

B

B∑
j=1

− log

{
exp{κ(φe(e

(j)), φi(x
(j))}∑|Yξ|

r=1 exp{κ(φe(e(r)), φi(x(j))}

}
, (7.13)

In the other direction, we also divide this similarity with the sum of similarities between
φe(e

(j)) and all the images in the batch. We denote this loss as Li 7→e.

Li 7→e =
1

B

B∑
j=1

− log

{
exp{κ(φe(e

(j)), φi(x
(j))}∑B

b=1 exp{κ(φe(e(j)), φi(x(b))}

}
, (7.14)

The total loss can be written as:

L = LELBO + λei Le 7→i + λie Li 7→e. (7.15)
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7.3.4 Feasibility Score

Mancini et al.[187] propose two variants of their model CompCos, with separate loss
functions for the CW-CZSL and OW-CZSL scenarios. The main difference is that in
the OW-CZSL setting, they employ a “feasibility score” of the unseen compositional
pairs in the loss function. In contrast to their approach, CVGAE gets the feasibility
score, denoted by Ξ, of the unseen compositional pairs as a byproduct of using the VGAE.
This is because our approach makes use of both the structural information existing
in the graph and the variational modelling of the nodes. i.e., CVGAE employs an
edge decoder, see Eq. (7.5), to reconstruct the edges of the graph. This enables us to
leverage the graph structure of states and objects in such a way that “edges” can be
predicted between them via a simple dot product of their embeddings. If an edge (link)
is predicted between a state-object pair, then it is treated as a proxy of the feasibility
of their composition. This major advantage arises naturally due to VGAE and we do
not need to change our loss function to incorporate feasibility scores. They are simply
calculated during inference time and we employ threshold (τ) to make a hard decision on
the feasibility of a compositional pair.

Ξ = 1(zz′T ≥ τ), τ ∈ [0, 1]. (7.16)

The threshold τ is calculated using validation set. But for all our experiments we fixed
τ = 0.2. Since the performance is quite similar for a long range of τ , i.e., from 0.05 to 0.3.

7.4 Experiments

7.4.1 Experimental Setup

In our experiments, we use three benchmark datasets, namely: MIT-States[174], UT
Zappos [175] and C-GQA [190]. MIT-States consists of 53753 diverse real-world images
where each image is described by an object-attribute composition label, i.e. an attribute
(state) and a noun (object), e.g. “broken glass”. UT-Zappos is a dataset of only shoes
with fine-grained annotations. A composition label consists of shoe type-material pair.
Recently, Naeem et al.[190] proposed C-GQA dataset which is built on Stanford GQA
dataset. This dataset has the largest label space among the publicly available CZSL
datasets. Table 7.1 presents the detailed statistics of the three datasets. Following
[176, 171, 190, 187, 155], we use the Generalized CZSL (GCZSL) split of these benchmark
datasets. In this split, the model performance is evaluated on both seen and unseen pairs.
For the image retrieval task, we follow the same train-test split and evaluation protocol
as used by ComposeAE [158], the SOTA method for this task. i.e., the split ensures that
there is no overlap between training and testing queries in terms of objects.

Baselines: We compare the results of CVGAE with several baselines as well as state-
of-the-art (SOTA) methods.

AoP [157] employs GloVe vectors [197] for objects. They model states (attributes) as
linear transformation matrices (“operators”) and their product with the object embed-
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dings yields corresponding pair embeddings. The compositional pair with the minimum
distance to image embedding is considered the prediction of the model.

LabelEmbed (LE+) was introduced by [157]. It employs Glove vectors for both state
and object. It projects the image, state and object vectors into a common semantic space.
The joint embeddings are then fed to the classifier.

Task-driven Modular Networks (TMN) [171] modifies a set of modules (fully con-
nected layers operating in semantic concept space) through a gating function. They
propose to re-weight these primitive modules for generalizing to unseen compositions.

SymNet [155] learns object embeddings showing symmetry under different state transfor-
mations. They propose that such symmetry constraints enable learning better embeddings
for the CZSL task.

CompCos [187] proposes that the cosine similarity among objects and states can be
used as a proxy to estimate the feasibility of each unseen composition. They argue that
similar objects share similar states whereas dissimilar objects are less likely to share
similar states.

CGE [190] learns a compatibility function between image features and classes of seen
and unseen compositions from a graph. The graph consists of not only the primitive
concepts but also the compositional pairs of interest.

Implementation Details: It has been recently shown that improvements in reported
results in deep metric learning are exaggerated and performance comparisons are done
unfairly [132]. In our experiments, we took special care to ensure fair comparison. We
follow the same evaluation protocol and metrics as current SOTA methods [190, 187, 171].
Following [187, 155, 157], all the methods considered in this paper use 512-dimensional
image features extracted by ResNet18 model pretrained on ImageNet [177]. Resnet18
model is not fine-tuned on the CZSL datasets due to fairness concerns for the baseline
methods i.e., since the baseline methods report results with fixed ResNet18 model, thus
it would be unfair to report the results of baselines without searching and choosing the
optimum learning rate of the image model for the baselines. We employ the same initial
graph embeddings as CGE [190], i.e., word2vec [198] for UT-Zappos and C-GQA; and
concatenation of word2vec and fasttext[199] embeddings for MIT-States. We use the
validation set to determine the hyper-parameters, e.g., learning rate, weights of the losses
etc. We employ Adam [118] optimizer with learning rate of 5e−5. The weights of the
losses are: λei = 10, and λie = 0.01. We repeat each experiment 10 times and report the
average performance of the models.

Metrics We follow the same evaluation protocol and metrics as current SOTA methods
[190, 187, 171]. For the task of GCZSL, we follow the evaluation protocol from TMN [171]
and use the same metrics as proposed by them. Namely: best accuracy on only images of
seen/unseen compositions (best seen/best unseen), best harmonic mean (best HM ) and
Area Under the Curve (AUC) for seen and unseen accuracies by varying the bias values.
For the task of image retrieval, following the evaluation protocol from TIRG [127], we
use recall at rank k (R@k), as our evaluation metric. R@k estimates the proportion of
queries where the target (ground truth) image is within the top k retrieved images.
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MIT-States UT-Zappos C-GQA

# pairs in output space i.e., |Yξ| for CW/OW 1962 / 28175 116 / 192 9378 / 394110
Percentage of hypothetical pairs in OW |Yh|/|Yξ| 92.7% 39.6% 97.6%
# states/objects 115 / 245 16 / 12 453 / 870
# images (train/val/test) 30k/10k/13k 23k/3k/3k 26k/7k/5k
# seen pairs (train/val/test) 1262/300/400 83/15/18 6963/1173/1022
# unseen pairs (val/test) 300/400 15/18 1368/1047

Table 7.1: Dataset statistics for CZSL Task

Method Concepts Close-World Open-World

State Object Seen Unseen HM AUC Seen Unseen HM AUC

AoP 21.1 23.6 14.3 17.4 9.9 1.6 16.6 5.7 4.7 0.7
LE+ 23.5 26.3 15.0 20.1 10.7 2.0 14.2 2.5 2.7 0.3
TMN 23.3 26.5 20.2 20.1 13.0 2.9 12.6 0.9 1.2 0.1
SymNet 26.3 28.3 24.4 25.2 16.1 3.0 21.4 7.0 5.8 0.8
CompCos 27.9 31.8 25.3 24.6 16.4 4.5 25.4 10.0 8.9 1.6
CGE 27.9 32.0 28.7 25.3 17.2 5.1 25.6 9.3 8.7 1.5

CVGAE 25.6 32.3 28.5 25.5 18.2 5.3 27.3 9.9 10.0 1.8

Table 7.2: MIT-States: Comparison of performance on benchmark datasets (in %): We report
state and object accuracy of the primitive concepts; area under the curve (AUC ),
best seen, unseen and harmonic mean (HM) accuracies of the compositional pairs in
both close-world and open-world settings. Best performance is in bold.

Method Concepts Close-World Open-World

State Object Seen Unseen HM AUC Seen Unseen HM AUC

AoP 38.9 69.6 59.8 54.2 40.8 25.9 50.9 34.2 29.4 13.7
LE+ 41.2 69.2 53.0 61.9 41.0 25.7 60.4 36.5 30.5 16.3
TMN 40.8 69.9 58.7 60.0 45.0 29.3 55.9 18.1 21.7 8.4
SymNet 40.5 71.2 53.3 57.9 39.2 23.9 53.3 44.6 34.5 18.5
CompCos 44.7 73.5 59.8 62.5 43.1 28.7 59.3 46.8 36.9 21.3
CGE 45.0 73.9 56.8 63.6 41.2 26.4 55.3 46.2 38.5 21.6

CVGAE 55.0 77.2 65.0 62.4 49.8 34.6 58.6 48.4 41.7 22.2

Table 7.3: UT-Zappos: Comparison of performance on benchmark datasets (in %): We report
state and object accuracy of the primitive concepts; area under the curve (AUC ),
best seen, unseen and harmonic mean (HM) accuracies of the compositional pairs in
both close-world and open-world settings. Best performance is in bold.
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Method Concepts Close-World Open-World

State Object Seen Unseen HM AUC Seen Unseen HM AUC

AoP 8.3 12.5 11.8 3.9 2.9 0.3 20.2 0.9 3.1 0.1
LE+ 7.4 15.6 16.1 5.0 5.3 0.6 20.9 0.9 3.1 0.1
TMN 9.7 20.5 21.6 6.3 7.7 1.1 - - - -
SymNet 14.5 20.2 25.2 9.2 9.8 1.8 24.6 2.1 5.1 0.4
CompCos 9.5 27.5 27.0 10.5 11.7 2.3 25.9 1.8 4.8 0.4
CGE 12.7 26.9 27.5 11.7 11.9 2.5 26.0 1.4 4.0 0.2

CVGAE 28.2 34.9 28.2 11.9 13.9 2.8 26.6 2.9 6.4 0.7

Table 7.4: C-GQA: Comparison of performance on benchmark datasets (in %): We report
state and object accuracy of the primitive concepts; area under the curve (AUC ),
best seen, unseen and harmonic mean (HM) accuracies of the compositional pairs in
both close-world and open-world settings. Best performance is in bold.

7.4.2 Discussion of Results: CZSL Tasks

We compare CVGAE with the state of the art methods on three benchmark datasets, i.e.
MIT-States, UT-Zap50k and C-GQA, for both close world and open world settings. It
can be seen from Table 7.4 that CVGAE outperforms all other methods and establishes
a new state-of-the-art for both close world and open world CZSL tasks.

Closed World Results. We observe from Table 7.47.2) that CVGAE achieves a
leading 5.3 AUC and 18.2 on the best harmonic mean metric on the MIT-States dataset.
We can also observe comparable performance on other metrics. We note that even though
CGE exhibit a higher accuracy on the state and seen composition predictions, CVGAE
achieve an overall better results, thanks to more balanced predictions between unseen
and seen compositions, as indicated by the harmonic mean metric. On the UT-Zappos
dataset (see Table 7.47.3), we observe a huge performance improvement by CVGAE over
SOTA methods. i.e., AUC and harmonic mean show an significant improvement of 18%
(29.3 to 34.6) and 10.7% (45 to 49.8) respectively, over the second best method, TMN.
Similarly, we note from Table 7.47.4. that on C-GQA dataset significant performance
gains are achieved by our approach in primitive concepts as well as compositional pairs.
These consistent performance gains supports on all 3 datasets support our claim that
by adopting the variational approach CVGAE better captures the underlying data
distribution than current SOTA methods.

Open World Results. The challenge of the open world setting can be seen clearly from
the performance degradation experienced by all the models (see right side of Table 7.4).
Due the the significantly huge search space, the accuracy on unseen compositions, and
as a consequence also the AUC and the best harmonic mean, decreases rapidly. On
both MIT-States and C-GQA, the performance of the models is halved on these three
metrics. On the other hand, the impact is relatively milder for the UT-Zappos dataset.
This is because the percentage of hypothetical pairs in the OW setting is just 40% for
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Method MIT-States UT-Zappos

R@1 R@10 R@1 R@10

ComposeAE 13.9 47.9 64.2 69.1

AoP 8.8 39.1 24.2 59.4
SymNet 11.2 41.4 37.4 62.8
CompCos 17.5 47.3 42.7 63.9
CGE 9.4 35.9 59.7 67.7

CVGAE 17.7 49.7 65.4 70.3

Table 7.5: Image retrieval results on MIT states and UT Zappos

UT-Zappos, whereas it is ∼93% and ∼98% for MIT-States and CGQA respectively (see
Table 7.1).

We observe from the results that CVGAE also exhibits superior performance in the
open world setting on all 3 datasets. On MIT-States, with respect to best HM metric,
CVGAE achieves 15% and 12.5% improvement over CGE and Compcos respectively.
Similar performance trend can be observed on UT-Zappos and C-GQA datasets, where
CVGAE outperforms other models on AUC and best HM metric. The performance gains
on the most challenging dataset for OW setting, i.e., C-GQA, are the most promising. For
instance, CVGAE improves the best HM by 8.3% and 25.5% in comparison to the second
best method on UT-Zappos and C-GQA datasets, respectively. This strengthens our
claim that by adopting a variational graph based approach and focusing on learning good
representation of primitive concepts in a disentangled way leads to better compositional
generalization.

One interesting observation is that, on C-GQA dataset, CVGAE experiences a huge
performance degradation of 75% when comparing its AUC with CW setting. Whereas,
CGE experiences a more dramatic performance degradation of 92%. This shows that even
when the number of hypothetical pairs is 98% (i.e., C-GQA, see Table 7.1), CVGAE
is quite effective relative to SOTA methods, in tackling the infeasible pairs in the open
world setting. This empirically shows the validity of our hypothesis that once good
representation of primitive concepts are learnt in a disentangled way, they are more likely
to be stable across seen, unseen and infeasible compositions. Thus, such node embeddings
and edges between the primitive concepts are sufficient for achieving good compositional
generalization.

7.4.3 Discussion of Results for the Image Retrieval Based on Multi-modal
Query Task

In order to gain further evidence that the embeddings learnt via CVGAE capture the
underlying data distribution better than current SOTA methods, we consider image
retrieval task. Recently, this task has been well-studied in the literature. The task is
inspired from the potential application scenario, presented in Fig. 1. i.e., a user sends a
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multi-modal query (an image with a text request for some change in the attributes) and
the task is to retrieve the images with desired modifications from the database. In the
literature, this task is simplified by limiting the text request to only one word attribute
(state) change. ComposeAE [158] is the current state-of-the-art method for this task. We
follow the same evaluation protocol as ComposeAE [158]. From Table 7.5, we observe
that CVGAE outperforms not only the competitive methods (i.e., CompCos and CGE)
but also ComposeAE on both datasets. Specifically, on MIT-States and UT-Zappos,
CVGAE achieves a Recall at position 1 (R@1) of 17.7 and 65.4, whereas CGE achieves
9.4 and 59.7 respectively. Similarly for R@10, the performance improvement over all the
methods (including ComposeAE) is quite significant.

Figure 7.3: Comparison of training times (one epoch) of top-3 approaches on the OW-CZSL
task. The y-axis is in log scale. We can see that CVGAE is quite time-efficient
than its direct graph-based competitor, CGE.

7.4.4 Computational Complexity

We now compare the computational complexity of CVGAE with the graph-based SOTA
method CGE. The graph in CVGAE consists of N nodes, where N = |S|+ |O|. Whereas
the graph proposed in CGE [190], consists of NCGE = |S|+ |O|+ |Yξ| nodes. In general,
|Yξ| � |S|+|O|, for instance, in the OW setting, |Yξ| = |S|×|O|. Such formulation makes
CGE model computationally more expensive than CVGAE . Formally, we assume that
the graph is sparse with the number of edges |E| = O(N) and each node is represented
by m-dimensional features. Thus, the time and memory complexity for a L-layered GCN
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Method Concepts Close-World Open-World

State Object HM AUC HM AUC

CGAE 24.7 30.3 11.4 2.5 4.2 0.4

ContraNet GAT 27.4 33.2 12.8 2.3 5.8 0.6
ContraNet GCN 27.9 33.7 13.5 2.6 6.1 0.6
ContraNet GCN−II 27.6 33.4 13.1 2.5 5.9 0.6

ContraNet 28.2 34.9 13.9 2.8 6.4 0.7

Table 7.6: Impact of Graph Encoder and Non-Variational approach on the performance of
ContraNet on the C-GQA dataset

model can be written as O(LNm2) and O(LNm + Lm2) respectively. We can clearly
see that CVGAE will be much more efficient than CGE, since |NCGE | � |N | for all
real-world datasets. e.g. for C-GQA dataset, CGE requires 3.94 · 105 nodes and 1.07 · 104

nodes for OW and CW setting, respectively. While CVGAE requires only 1323 nodes
for both settings. It is to be noted that the C-GQA dataset contains only 453 states and
870 objects, whereas any real-world application scenario will involve much more number
of states and objects. Thus, CGE fails to tackle the problem of scalability.

We also empirically compare the training times of top-3 performing algorithms in
Fig. 7.3 for the OW-CZSL task. As some of the methods (e.g. CGE) are more resource
intensive than others, we select AWS instance type g4dn.4xlarge1 for fair comparison
of training times. All hyperparameters are kept the same, e.g. batchsize is set to 128,
for all three methods. As expected, since Compcos does not employ any graph, so it is
the fastest among the three methods. We observe that between the two graph methods,
CVGAE is quite time efficient. e.g. for MIT-States, it is ∼4 times faster than CGE.
This provides empirical evidence for lower computational complexity of CVGAE as
discussed above.

7.4.5 Ablation Studies

We have conducted various ablation studies, in order to gain insight into the performance
of CVGAE . Table 7.6 presents the quantitative results of these studies.

Non-variational approach: CVGAE follows a variational approach to learn the
underlying data distributions of the concepts. Instead of VGAE, we used a non-variational
GAE to quantify the effect of using variational approach on the performance. Row 1 in
Table 4 shows that there is a drop in performance for both the CW and OW settings.
This strengthens our hypothesis that it is better to employ a variational approach for
learning the representation of concepts. This especially aids in the OW setting, where
the drop in performance is most significant. e.g., on AUC metric, there is a performance
degradation of 42.8%.

1https://aws.amazon.com/ec2/instance-types/
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k MIT-States UT-Zappos C-GQA

HM [CW/OW] HM [CW/OW] HM [CW/OW]

400 16.9/9.2 46.2/37.3 13.6/6.1
800 17.8/9.6 46.7/38.1 13.9/6.4
1200 17.9/9.8 48.6/38.9 13.5/6.2
1600 18.2/10.0 49.8/41.7 13.2/5.7
2000 18.1/9.7 49.5/40.8 13.1/5.8

Table 7.7: Effect of embedding dimension of common embedding space (k) on the performance
of CVGAE measured in terms of best Harmonic Mean (HM) in the Close-World
(CW) and Open-World (OW) settings

Figure 7.4: Qualitative Retrieval Results: Top-5 Predictions of CVGAE . Bold indicates the
true compositional label.

Impact of graph encoder: We now look at the impact of the graph encoder on the
performance of CVGAE . We employ three graph encoders, namely: Graph Attention
Network (GAT) [200], Graph Convolution Network (GCN) [12] and its recent improved
version (GCN-II) [201]. Due to space constraints, we show the results on the C-GQA
dataset only. Table 7.6 shows the effect of graph encoder on the performance of CVGAE .
We can observe that there is no significant decrease in the performance. The performance
of GCN variants is consistently better than attention based graph encoder (GAT).

Common Embedding Space: Table 7.7 shows the effect of dimensions of the common
embedding space on the performance of the model. In the interest of space, we only
report best Harmonic Mean (HM) for the Close World (CW) and Open World (OW)
settings. Rest of the metrics also follow a similar trend in performance. We observe
from the results that the choice of embedding dimension has a significant impact on the
performance for all three datasets. Specifically, the performance degradation is 7.1%,
7.2% and 5.6% with respect to CW-HM metric on MIT-States, UT-Zappos and C-GQA
datasets respectively.
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7.4.6 Qualitative Results

Fig. 7.4 presents some qualitative retrieval results for three datasets. Each row represents
image samples from one dataset and each column contains the top-5 composition label
predictions by CVGAE for an image. First we observe that the model is able to retrieve
the compositional labels which share similar semantics. For instance, “ancient church”
is actually a subset of “ancient building” in a conceptual world. Similarly, “broken
keyboard” and “cracked keyboard” capture same semantic meaning. Second, we note
that although model is able to predict several correct compositional labels but model is
rewarded only if it predicts the label as annotated in the dataset. We argue that the
task of CZSL is inherently multi-label task and benchmark datasets should be amended
to cater for this aspect. i.e., prediction should be considered true if the model predicts
any of the compositional concepts present in the image. Otherwise, the model has to
learn the annotator bias to perform well. For instance, the rightmost image in the third
row has both “wood fence” and “brown horse” in it. Similarly, second image in the first
row can be seen as both “ancient building” and “ancient church”.
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8 Conclusion

In this thesis we have leveraged the advances in representation learning and applied them
to several problems with graph-structured or multi-modal data. First, we looked at the
issue of over-pruning in variational graph autoencoder (VGAE). We demonstrated that
the way VGAE [1] deals with this issue results in a latent distribution which is quite
different from the standard gaussian prior. We proposed an alternative model based
approach EVGAE that mitigates the problem of over-pruning by encouraging more latent
variables to actively play their role in the reconstruction. We showed that EVGAE also
has a better generative ability than VGAE[1] i.e. better matching between learned and
prior distribution. In addition, our proposed algorithm achieves competitive results on
the link prediction task.

Second, we focused on simultaneously learning community detection and node rep-
resentation. We proposed a scalable generative method, J-ENC , that learns a single
community-aware node embedding for both the representation of the node and its context.
Our novel approach is scalable due to its low complexity, i.e. O(|E|K + NKd). The
experiments on several graph datasets show that J-ENC consistently outperforms all
the competitive baselines on node classification, overlapping community detection and
non-overlapping community detection tasks. Moreover, training the J-ENC is highly
time-efficient than its competitors.

Third, we investigated the necessity of incorporating sequential semantics in metapath
for recommendation. Instead of mixing up multi-hop messages in graphs, we devised
a unified GNN framework called PEAGNN, which explicitly performs independent
information aggregation on generated metapath-aware subgraphs. Specifically, a metapath
fusion layer is trained to learn the metapath importance and adaptively fuse the aggregated
metapath semantics in an end-to-end fashion. We also introduce a contrastive connectivity
regularizer called entity-awareness which exploits the first-order local structure of the
graph. For first-order local structure exploitation, the entity-awareness, a contrastive
connectivity regularizer, is employed on user nodes and item nodes representation. The
experiments on three public datasets have shown the effectiveness of our approach in
comparison to competitive baselines. It is to be noted that this work explored the
potential of explicitly injecting semantics in metapath into GNNs. However, the advance
performance achieved by our model relies on meaningful metapaths. In practice, selection
of representative metapaths is a challenging task and thus, it opens the door for future
research on the automatic sequential semantics discovery.

Fourth, we explore the task of image retrieval from a database based on a multi-modal
query, i.e., the query is specified in the form of an image and natural language expressions
describing the desired modifications in the query image. We propose ComposeAE to
compose the representation of source image rotated with the modification text in a
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complex space. This composed representation is mapped to the target image space and a
similarity metric is learned. Based on our novel formulation of the problem, we introduce
a rotational symmetry loss in our training objective. Our experiments on three datasets
show that ComposeAE consistently outperforms SOTA method on this task.

Fifth, we address both the image retrieval and CZSL tasks jointly. In order to
ensure that the model learns different states of an object and can recognise even unseen
combinations of them, we adopt a contrastive learning approach. That is, we propose
ContraNet , which learns text-aware image representations in a common embedding
space in a contrastive manner. The core idea is to ensure that the (state, object, image)
triples are distinguishable across the training batches. This prompts ContraNet to
learn efficient embeddings by simultaneously leveraging the information in multiple
modalities. The contrastive loss is complemented by image and text reconstruction
losses that not only regularize the learnt embedding but also attempt to preserve the
information in the individual modalities. The resultant architecture achieves SOTA
performance on generalized CZSL as well as multi-modal query-based image retrieval
task, as demonstrated by the extensive comparison with many competitive baselines on
three popular benchmark datasets.

At the end, we employ the insights learned in VGAE and compositional learning
to tackle the more challenging task of open-world CZSL task. This task is very close
to real-world settings and puts less restrictions on the unseen data. We proposed a
variational graph autoencoder based approach, CVGAE , to learn composition of objects
and states, in both close-world and open-world settings. CVGAE learns the variational
embeddings of the primitive concepts and treats the edge between them as proxy for
the feasibility of the compositions. The proposed approach outperforms the current
state-of-the-art methods by significant margin on three widely-used benchmark datasets.
We also showed that CVGAE is computationally cheaper than the SOTA method, CGE
[190]. The performance on the image retrieval task validates our claim that CVGAE
learns better representations of primitive concepts than current SOTA methods.

We now briefly discuss the limitations of current algorithms and datasets for the
compositional zero-shot learning tasks. The discussion below highlights the roadblocks
which hinders current approaches from achieving compositional generalization. Our work
tries to solve part of the problem and get rid of some prior assumptions. But there is
still a strong assumption that composition can be only done with two concepts. This is
quite limiting in practice. For instance, the approaches discussed in this work can not
directly compose “old red car”. Although, in comparison to CGE [190], CVGAE can
be extended relatively easy to more than two concepts i.e., by concatenating the graph
embeddings of all three concepts of interest. Furthermore, all the datasets considered
also assume that there exists only two kinds of primitive concepts i.e., objects and their
states. There is a need of new datasets which consider more kinds of primitive concepts.
Another limitation of current work can be observed in Fig. 7.4 i.e., the confidence of
model is not the same in predicting the composition of different concepts. The robustness
of predictions across different concepts plays a crucial role in the real-world application
of the model. This aspect needs to be investigated further in light of recent works
[202, 203, 204]. Another important limitation of our work is that we did not take into
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account the label noise in the datasets. For instance, we can see that there are certain
images, like the two rightmost images in the first row of Fig. 7.4, which are difficult for
even humans to uniquely annotate. Such issues hinder the model from achieving a good
prediction accuracy. In fact, one work has even argued against using MIT-States dataset
due to 70% label noise [205].

The journey towards achieving compositional generalization is an arduous one. The
discussion above points towards some avenues where future research is required to achieve
the lofty goal of compositional generalization.
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graph infomax. 2019.

[32] S. Cavallari, V. W. Zheng, H. Cai, K. C.-C. Chang, and E. Cambria. Learning
community embedding with community detection and node embedding on graphs.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, pages 377–386, 2017.

[33] C. Tu, X. Zeng, H. Wang, Z. Zhang, Z. Liu, M. Sun, B. Zhang, and L. Lin. A
unified framework for community detection and network representation learning.
IEEE Transactions on Knowledge and Data Engineering, 31(6):1051–1065, 2018.

[34] B. Rozemberczki, R. Davies, R. Sarkar, and C. Sutton. Gemsec: Graph embedding
with self clustering. In Proceedings of the 2019 IEEE/ACM international conference
on advances in social networks analysis and mining, pages 65–72, 2019.

[35] Y. Jia, Q. Zhang, W. Zhang, and X. Wang. Communitygan: Community detection
with generative adversarial nets. In The World Wide Web Conference, pages
784–794, 2019.

115



BIBLIOGRAPHY

[36] R. A. Khan, M. U. Anwaar, O. Kaddah, Z. Han, and M. Kleinsteuber. Unsupervised
learning of joint embeddings for node representation and community detection.
In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 19–35. Springer, 2021.
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