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Vollständiger Abdruck der von der Fakultät für Sport- und Gesundheitswissenschaften der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Philosophie (Dr. phil.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Henning Wackerhage

Prüfende der Dissertation:  1. Prof. Dr. David W. Franklin

2. Prof. Dr. Fabrice R. Sarlegna

3. Prof. Dr. Jeroen B. J. Smeets

Die Dissertation wurde am 13.06.2022 bei der Technischen Universität München eingereicht und
durch die Fakultät für Sport- und Gesundheitswissenschaften am 11.01.2023 angenommen.



Abstract

Humans utilise vision in various aspects of their daily interactions with the surrounding environment.

One such aspect is using vision as one of the inputs to produce physical movements, e.g. by

orienting in space, finding a movement goal before performing an action towards it, or reacting to

various changes in the surroundings. However, in order to efficiently apply visual information to the

control of movement, human brain needs to solve a feedback control task to map the observed noisy,

delayed visual information to an appropriate motor output. The work presented in thesis focusses

on these feedback control principles and the computational mechanisms that drive them, in order

to better understand the algorithmic processes implemented in human brain. In five presented

studies I focus on the human control behaviour in goal directed reaching (studies I-III), as well as

in balancing (studies IV and V). The first assesses the optimality of human reaching movements

in presence of visual perturbations, verifying earlier evidence that optimal feedback control can

well describe such movements. In addition, the results of study I demonstrate that the feedback

responses generated by such control are primarily regulated by time-to-target via a characteristic

relationship, and not by other kinematic variables such as position, speed or acceleration. As such

control requires an accurate estimate of the future in form of time-to-target, study II proposes a

computational implementation–a mixed-horizon optimal feedback controller–that provides access

to the estimation of this variable. In turn, the mixed-horizon OFC then allows for computational

modelling of perturbed goal-directed reaching movements without the need of external information

of time-to-target, enabling novel methods for post-hoc evaluations of experimental results, as well

as raising new hypothesis. In study III we test our participants in two separate tasks that require

different feedback controllers, showing that human behaviour well matches with the predictions of

the mixed-horizon model. Moreover, here we also demonstrate that participants can flexibly switch

between these feedback controllers on-cue, similarly as they do in feedforward control.

In studies IV and V we explore the mechanisms of visuomotor feedback control in balancing, by first

introducing a novel experimental setup of simulated inverted pendulum on the cart, which allows

us to flexibly induce various perturbations in experimental design. More specifically, in study IV we

then evaluate human control behaviour of such a pendulum of various lengths, showing that it is

consistent with the equivalent balance of real, fully mechanical pendulum. Furthermore, we also

demonstrate that a proportional-derivative controller with time-lag matching that of the visuomotor
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system can well describe the human control behaviour. Finally, in study V we distort the visual

feedback, present in a similar balancing task, demonstrating that our participants produced the most

stable control when the visual feedback best matched the dynamical behaviour of the pendulum.

The contributions of work, presented in this thesis is novel understanding that the time-to-target is

an important control input in visuomotor control, and more generally – optimal feedback control. In

addition to this fundamental result, here I also present a new computational model that allows for the

accurate modelling of reaching movements, as well as the formulation of hypotheses, which helped

to revise some long standing phenomena (such as the temporal evolution of feedback intensities).

Finally, this work also contributes towards the accumulating evidence of the relationship between

feedforward and feedback control, specifically that the two systems are likely not independent.
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“With great power comes high

feedback gains”

-Unknown

“You know what’s cooler than

magic? Math!”

-Peter Parker

1 Introduction

Human sensorimotor system has to solve a range of different problems in order to produce skilful

movements that are usually taken for granted. For example, throughout the course of PhD, a typical

doctoral student will take about 70000 sips of coffee by reaching to a mug, grasping it, lifting and

bringing it towards the lips, and putting it back down. However, for every such action to be successful,

the sensorimotor system needs to perform numerous smaller tasks, such as plan the movement,

send the feedforward motor command and then correct for errors using feedback information. In

addition, these tasks are further complicated by an infinite number of joint orientations and muscle

activations that are possible when reaching for the cup, change in motor commands required as the

cup gets lighter over time, or a possible knock on the arm when navigating around a crowded café.

Finally, all this is executed amid uncertainty due to sensory noise, motor noise or even delays within

feedback systems, yet spectacularly not one of the 70000 sips missed the target.

While different aspects of human movements, such as planning, feedforward control, feedback con-

trol or others can be studied independently, current research increasingly shows that these modal-

ities are not independent from each other. For example, recent neurophysiological studies now

support parallel processing of action selection, and sensorimotor control [1, 2], thus suggesting that

motor planning and motor control are taking place simultaneously and interactively, as opposed to

serially one after the other. In addition, behavioural research examining relations between feed-

forward and feedback control have demonstrated that adaptation of feedforward control affects the

performance of feedback control [3–7]. Thus, even though the research, presented in this thesis

primarily focuses on the aspects of feedback control during the goal-directed reaching movements

of humans, implications of the results are also discussed more holistically.
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1.1 Feedforward and feedback control

Feedforward and feedback control are continuously present in motor systems of humans, acting

together to produce effortless and coordinated movements. The main difference between the two

control schemes, is that feedback controller generates movements by utilising live feedback, such as

the sensory information, while feedforward controller does not. Instead, the feedforward controller

relies on understanding the internal dynamics of the controlled system and produces a signal that

will achieve the intended output [8]. For example, in order to shoot the basketball well, a player has

to instinctively understand the dynamics of his own body to know that a particular pattern of muscle

activation will bring the ball to a set point, and then will launch the shot. In addition, the external

dynamics such as gravity and the weight of the ball also have to be accounted for in order to shoot

the ball precisely to the basket. However, after the ball has left the contact with the player’s hand,

the motor action is over and the shot can not be influenced anymore by any feedback signal. While

adjustments will be made based on the outcome of the shot (hit or miss), they will update the internal

models of the body (e.g. in case of fatigue) or the world (e.g. if the wind is consistently blowing from

a single direction), but not the outcome of the current shot.

On the other hand, feedback control typically utilises the sensory information throughout the duration

of the movement. In a similar basketball example, a defending player will attempt to rebound a

missed shot by catching the ball after it bounces from the basket. Here the player will first observe

that the ball did not hit the basket, triggering a motion towards it. In addition, as the ball falls to the

ground, the player will continuously track its location while simultaneously reaching towards it. Even

if the ball is further displaced by teammates or opponents, the player will be able to track it down,

as he can continuously produce an appropriate motor action that eventually reduces the distance

between him and the ball.

While the two control systems can be isolated in these examples to emphasise their contributions, in

human motor control they are constantly interacting. First, the attacking player can still utilize haptic

feedback when launching the shot and slightly tweak his feedforward command if he did not catch

the ball precisely. Second, a great rebounder will use the feedforward control to get into the perfect

position even before the ball hits the rim of the basket. Such interactions are critical for a successful

control system, as the two controllers have their individual strengths and limitations. For example,

the feedback controller can always produce an appropriate action towards the goal, however it is

limited by the delays that are present in the feedback loop due to signal propagation and cortical

processing. While this is not always an issue, particularly when the goal of the movement is sta-

tionary, even physiological delays in human motor system have been shown to significantly increase
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the uncertainly of the feedback signal [9], while slightly longer delays may render balancing tasks

completely impossible [10]. In contrast, the feedforward commands are executed in anticipation of

the system dynamics, and are therefore produced without any delay [8]. In case of a systematic per-

turbations, e.g. gravity, the feedforward system produces motor commands that directly accounts

for such stimulus. However, without feedback the feedforward controller can not account for any

unforeseen disturbances such as a gust of wind or a knock on the arm, and would produce an

erroneous action. As a result, while in our work we primarily focussed on feedback control, the mu-

tual relationship between two systems also allows us to discuss the mechanisms of the feedforward

control.

1.2 Visuomotor control

Central to this doctoral thesis and different studies presented here is the feedback system of visuo-

motor control. In broad terms, such control happens when motor output is produced as a result

of some visual stimulus. This chapter presents the background about such control, with particular

emphasis to the phenomenon of the visuomotor feedback response.

1.2.1 Rapid onset of visuomotor feedback responses

When producing hand movements from one point to another, for example in reaching, humans

make use of visual information of the environment, as well as the hand. Specifically, in addition to

observing where the reach goal is positioned in relation to the hand when planning the movement,

visual information is used throughout the reaching action in a feedback process that guides the

movement amid various sources of noise [11, 12]. While early studies entertained a hypothesis that

these visual feedback processes are only recruited near the end of the movement in order to adjust

the accuracy [13], it is now well known that the use of vision is continuous, and produces corrections

to various visual perturbations as rapidly as within 150 ms after the perturbation [11, 12, 14]. In

addition, such corrections are largely automatic [15] and cannot be entirely suppressed [14], even

if they actively impede the performance of the task [14, 16], leading to discussions whether or not

these responses should be characterised as reflexes [17].

Numerous studies have now investigated properties of visuomotor feedback responses via visuo-

motor perturbation tasks, where a reaching effector (e.g. hand) or a target is perturbed by a spacial

shift or a jump during an ongoing movement. A typical visuomotor feedback response is produced

as a response, and in a direction to correct for these perturbations. Even when instructed to move in

the opposite direction, that would effectively further increase the error, participants initially produce a

corrective response, only later reversing the movement direction to complete the instruction [14, 16].
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As a result, such paradigms allowed for measuring of the voluntary timing of visuomotor control, with

earliest conventionally accepted voluntary responses produced no earlier as 230 ms after the per-

turbation onset [16]. Note, that this voluntary timing is much later than the initial responses recorded

at 150 ms, leading to conclusions that visuomotor responses between 150 ms - 230 ms are entirely

involuntary. In turn, some recent studies now consider these responses in two separate stages:

early, with onsets before 230 ms, and late, with onsets after 230 ms [5, 18–20].

1.2.2 Modulation of visuomotor feedback responses

The key feature that makes visuomotor feedback responses fascinating, is that in addition to very

rapid onsets, these responses also manifest complex modulation. Early work by [14] demonstrated

that with practice human participants reduced their response intensities, when instructed to produce

movements that oppose the natural direction of visuomotor corrections. Similar findings by [16] also

demonstrated that such responses get reduced if the perturbations are task-irrelevant (e.g. if they

“self-correct” after a short duration), hence showing the capability of visuomotor responses to grad-

ually adapt to the environment, similar to what is known for feedforward controllers. However, the

visuomotor feedback responses are also regulated by the properties of the environment in another,

much faster way, where different intensity responses could be produced in two consecutive move-

ments if the perturbations occurred at different timings [21], positions [22], or if otherwise identical

movements were performed to targets of differing width [23].

Two similar studies of visuomotor feedback responses demonstrated spectacular variability of these

responses by perturbing a target [21] or a cursor, representing hand location [22] at various differ-

ent onsets throughout the movements. While the requirements for forward motion were kept fixed

within a given condition – reaching to the same target with the same kinematic requirements – the

perturbations were spontaneously cued at one of many possible onset locations, spaced throughout

the movement distance. Interestingly, both studies demonstrated that even on timescales of a single

trial, the visuomotor feedback system can produce vastly different responses that are modulated

by an inverse of time to movement end after the perturbation [21], or in a non-monotonic fashion

related to the perturbation onset location [22]. While the two control schemes seem to contradict

each other on a surface level (but can be integrated together in light of the results of this thesis),

they both demonstrate elaborate variability of visuomotor feedback control, raising further questions

about how such responses can be both so flexible and so fast.

Further studies have analysed properties of visuomotor feedback responses. Target uncertainty

seems to modulate the visuomotor feedback responses, with higher uncertainty reducing the in-

tensities [24]. In a similar fashion, visual gaze location directly at the target produces stronger
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responses than in otherwise identical movements where the visual fixation is away from the target

[25, 26]. Moreover, while background force-load does not seem to affect the visuomotor feedback

responses, adapting to a viscous force field increased the overall visuomotor feedback responses

for stronger force fields [5].

1.2.3 Effectors for visuomotor control

Various research has demonstrated that visuomotor feedback responses can be invoked by perturb-

ing different effectors, such as the cursor (i.e. the visual representation of the hand, [12, 16, 18, 22,

23, 27–30]), the target [11, 14, 18, 21, 28, 30–33], external tools (e.g. computer mouse [34]), or the

background motion [33, 35]. Our own work, presented in this thesis (Studies I and III), as well as

the general overview of all the aforementioned studies suggest that all these feedback responses

behave qualitatively similarly, independent of the actual effector. For example, [18] contained both,

perturbations of only the target, as well as the perturbations of only the cursor, the regulation of

which were qualitatively similar. Moreover, while not a direct comparison, but the regulation of re-

sponses to cursor jumps in our Study I and target jumps in Study III both matched very well with

mixed-horizon OFC predictions in Study II, which is in general agnostic to the effector. However,

despite these qualitative similarities, it is now well known that visuomotor responses to cursor and

target perturbations are processed at least partially via separate feedback loops [18, 28, 30]. Specif-

ically, a study where both responses to cursor and to target jumps were compared [28], observed

that responses to cursor jumps were generally weaker, likely because additional sensory information

is available about the hand position through proprioception, while vision is the only source in esti-

mating the target location. Further research demonstrated the existence of a dedicated visuomotor

binding mechanism, that links the visual position of the hand with its internal motor representation,

making visuomotor feedback control of the hand much less susceptible to environmental distractors,

unlike in the case of target perturbations [30]. Finally, [18] proposed and experimentally tested a

model for the integration of target and cursor information in visuomotor control, showing that only

the integration of the two separate pathways that are combined in a later visuomotor processing

stage can explain the observed human behaviours.

1.2.4 Optimality of visuomotor feedback responses

Visuomotor feedback responses, and goal directed reaching movements in general have been

shown to demonstrate some behaviours that are optimal. Various early models that assume opti-

mality, such as minimum jerk [36], minimum torque-change [37] or minimum end-point variance [38]

have all been able to mimic human-like movement trajectories or velocity profiles with increasing

success, suggesting that similar computational principles could be happening in humans. However,
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many of these models inherently implied that the control is open-loop, and that the entire movement

trajectory is pre-planned, limiting the ability to correct for any deviation from the set path. In con-

trast, the mere presence of visuomotor feedback responses suggests that feedback components

are critical to overall control of trajectory. Moreover, many studies have now demonstrated reg-

ulation of these responses that can be considered optimal, such as reduced corrections to wide

targets [23] (which follows the minimal intervention principle [39]), trajectory variability in via-point

moving task (i.e. utilising the redundancies of the biomechanical system [39]), weaker responses to

task-irrelevant disturbances [16], stronger responses for more "urgent" perturbations [21], and again

reduced responses when corrections are "too late" to be made [22, 31]. Finally, similar movement

control has been observed in other feedback systems, for example when responding to mechanical

perturbations [17, 40–44], suggesting that similar algorithms are used among multiple control sys-

tems in humans. As a result, optimal feedback control has recently taken the forefront as the primary

theory for the control of various movements, but particularly in the visuomotor system.

1.2.5 Visuomotor control in balance

Another contribution of visuomotor control in humans could be to stabilise unstable objects. For

example, a child trying to balance a broomstick vertically on her fingers would inevitably perform

better with her eyes open than closed. Such system, also known as controlling an inverted pendulum

above the cart, could be stabilised either through increased stiffness (i.e. grasping the bottom of the

broomstick and not allowing it to tip), or dynamically, by always correcting for the support to be under

the centre of mass. While proprioception and tactile feedback play a significant role in such control,

in order to achieve dynamic stability, visuomotor feedback is invaluable, as the observed visual

errors can be rapidly corrected by adjusting the support. However, it is still unclear how exactly

the visual feedback is used on the computational level to produce the responses in human motor

system. Therefore, we have developed an experimental setup where we can distort or completely

remove different feedback modalities, feedback delays or dynamics of the system in order to test the

importance of visuomotor feedback in dynamic stability (Study IV). Furthermore, we tested multiple

control models in order to gain better insights into the computations happening in such system

(Studies IV-V, [45]).

1.3 Optimal control

1.3.1 Definition of optimal control

While much research in human motor control operates under the premise that humans have evolved

to produce movements that are optimal in some aspect, it is still widely debated what precisely

“optimal” means for the human motor system. As briefly discussed in an earlier chapter, early
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control models simply assumed that humans aim to produce smooth movements by minimising joint

torque-change [37], hand acceleration or hand jerk (the first derivative of hand acceleration, [36]).

Later optimal control models also considered minimising the effect of the noise [46], reducing end-

point variability [38] or minimising the effort while simultaneously achieving the reward of the goal

[47–49]. Mathematically all these models are formulated through defining a “cost” (i.e. total noise

over the movement, end point variability, effort) that a particular action will cost to perform and aim to

minimise it. Therefore, an optimal model is not necessarily the “best” solution in a colloquial sense,

but rather the one that produces an action with the minimum cost for a given cost function.

1.3.2 Optimal feedback control frameworks

A particular subset of optimal control models are the optimal feedback controllers (OFC). OFC is par-

ticularly prominent in this thesis, as the variability of visuomotor feedback responses (and also other

feedback responses such as stretch or oculomotor) have conventionally been explained using this

framework. Multiple phenomena in human motor control have been explained using OFC, particu-

larly the minimum intervention principle, redundancy, movement variability patterns (all summarised

in [39])) or undershooting when moving to the target [31]. However, the implementation of the vast

majority of these models is based on a linear-quadratic regulators (LQR) or linear-quadratic Gaus-

sians (LQG) – two optimal feedback controllers with convoluted cost functions [50, 51]. Typically,

when applied to goal-directed reaching movements, such cost functions consider information about

position, velocity and acceleration of the hand, as well as positions of target and any obstacles, and

thus require seemingly heavy computations, raising a question how this process is executed so fast

by humans.

To explain this, recent work suggested that feedback control gains could be precomputed in the

movement planning stage and recalled if needed [52], however that would require storing an infinite

number of discrete response mappings. In the first publication of this thesis we instead propose

that a characteristic function, unique for the movement goal and independent of the movement kine-

matics could directly map the time left in the movement (time-to-target) to the optimal feedback

intensities (gains). Specifically, through our experimental design we uncoupled the natural relation-

ship between movement kinematics and the time-to-target, showing that the time-to-target, and not

any of the kinematic variables are the independent variable that controls the responses.

Another distinct general framework that is relevant to the studies in this thesis is the proportional-

integral-derivative (PID) control, or its special case proportional-derivative (PD) control, where any

corrections related to the integral component are ignored. Particularly, PD and PID controllers aim to

reduce the error between the target point in the system, and the current state, and have previously
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been shown to well capture human behaviour in upright posture balancing [53, 54]. In essence,

such controllers aim to minimise the sway of posture (or any other balanced object in a more general

case) by correcting the error (e.g. the tilt angle of the body) by a fixed "proportion", as well as issuing

additional corrections based on how fast the error is changing (e.g. proportional correction based on

the angular velocity, or the derivative of error), and on the history (integral) of these errors. While our

work has shown that LQG can very well explain the human behaviour when balancing an inverted

pendulum on the cart [45], in studies IV and V we also test the performance of PD controllers for

such balancing tasks.

1.4 Normative modelling

In addition to experimental work, we also relied on computational modelling to explain our results

or to motivate hypotheses for these and future studies. One standard approach in such modelling

is to find a best-fit model to a given dataset by minimising the error between the data and the

model predictions. Such models by definition well describe the available data, however may not

always result in a clear underlying mechanism of why the data behaves in such way. Instead, in our

work we primarily adopted a normative modelling approach, where we built a computational model

from the bottom-up and evaluated its behaviour in comparison to experimental results [55]. Such

approach is useful for multiple reasons, and has therefore been used in multiple studies. First, by

building a model (or in our case a control system) we know exactly the computational principles

involved in producing its behaviour. Consequently, if this behaviour matches that observed in the

experimental results, a parallel can be drawn between the known computational mechanism, and

the unknown mechanism governing the human sensorimotor control. On the other hand, in case the

behaviour between the model and the data does not match, additional or different mechanisms may

be recruited in real-life behaviour. Second, such models can raise clear and testable hypotheses for

new experimental studies, particularly if multiple alternative models can be compared. While we did

demonstrate the influence of the time-to-target using the model simulations in our first study, such

modelling was key to our second and third publications. Here, we could not only revisit the results

of previous studies in context of model predictions that suggest alternative explanations, but also

clearly formulate a new hypothesis for an experimental study.



2 Methods

2.1 Experimental setup

All studies presented in this thesis rely on the experimental results in some capacity. Particularly, for

every study with the exception of [56] a separate experimental dataset was collected. For [56] we in-

stead used previously collected datasets that followed similar experimental procedures as described

in this chapter.

2.1.1 Participants

Participants in all presented studies were aged 18-45 years, had no known neurological diseases

and were of normal, or corrected to normal vision. In addition, all participants self-reported as

being right-handed according to the Edinburgh Handedness Questionnaire [57]. Before each study

participants signed an informed consent to the voluntary nature of the study, and were compensated

with 8 euros/h for their time. All studies and informed consent formulations were approved by the

Ethics Committee of the Medical Faculty of the Technical University of Munich.

2.1.2 vBot

All experimental data presented in this thesis was collected via the vBot robotic manipullandum [58].

Participants were seated in an adjustable chair and restrained using a four-point harness in order

to limit the movement of their shoulder. A six-axis force transducer (ATI Nano 25; ATI Industrial

Automation) measured the end-point forces applied by the participant on the handle. Position and

force data were sampled at 1 kHz, while velocity information was obtained by differentiating the

position over time. Visual feedback was provided via a computer monitor and mirror system, such

that this system prevented direct vision of the hand and arm, and the virtual workspace appeared in

the horizontal plane of the hand (Figure 1).

2.2 Visuomotor feedback response studies

2.2.1 Experimental paradigm

In visuomotor feedback studies participants were required to perform goal directed reaching move-

ments from a given start position to a target. Participants controlled a cursor (a small circle) by

moving the robotic handle of vBot. A standard procedure would require participants to bring this
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Figure 1: Schematic of vBot robotic system. Participants were seated with their arm supported on an airsed

and grasping the handle of the robotic manipulandum. The direct feedback of the hand and arm was blocked

by a mirror, which projected the computer screen to the plane of the hand. In this virtual workspace partici-

pants saw the hand represented as a small circular cursor (here presented in yellow), that was moved from a

start position (grey circle) to the target (here presented as a blue circle).

cursor to a start position (typically a grey circle of a larger diameter than the cursor), then wait for

a go cue and reach to the target. After each trial, feedback about the kinematics was presented

to participants, indicating their speed in relation to the task requirements, as well as the temporal

evolution of the kinematics. If participants produced a movement that fit the requirements of a suc-

cessful trial, they were awarded with an increase in the total score to motivate their performance.

During these reaching movements perturbations to the cursor or to the target could be applied by

suddenly shifting them by a small distance, perpendicularly to the line joining the target and the start

position (Figure 2A). This perturbation typically evoked sizeable responses from the participants,

who produced the corrections in the task-relevant direction, and with onset times in sub-voluntary

range ( 150 ms) (Figure 2B). Perturbation types and onset criteria varied across different studies,

with specifics presented in the Methods of a given study.

2.2.2 Channel trials and maintained perturbations

In order to evaluate the intensity of feedback responses we measured the forces that our participants

produced as a result of the perturbation. To do so, we utilised virtual mechanical channels [59] of

stiffness K = 2 N/m and damping D = 4000 Ns/m, that were generated by the vBot. In these trials

participants were constrained by lateral forces to move along a single line, connecting the start

position and the target. Any attempt to move perpendicular to the required movement direction was

met with the counteracting force, effectively constraining the movement to this channel. As a result,
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any corrective force, produced by the participants could be recorded with high accuracy by the force

transducer, mounted on the robotic handle.

While these channel trials allow us to accurately record participant responses, they also pose certain

challenges. First, as any corrective movement after the perturbation is resisted by the channel,

any perturbations in these trials are uncorrectable, and thus the movement can never converge

to the target. As a result, in the channel trials we induced perturbations that are task irrelevant.

Specifically, these perturbations are only maintained for a short duration of 250 ms, before they

are removed, and the cursor or the target come back to their original path or location. In this way,

the movements can be successfully completed and the responses can be measured. However,

as these perturbations are task irrelevant, the most efficient behaviour is to completely ignore the

perturbation, thus producing no responses. Indeed, when presented with only channel trials and

task irrelevant perturbations participants significantly reduce their response magnitude, increasing

signal-to-noise ratio and reducing the power of the study. One way to eliminate the decay of feedback

responses due to the channel trials is by interspersing these trials with maintained perturbations.

Here the movements are performed without any constraints, but the perturbations are maintained

beyond the 250 ms duration, and are therefore task-relevant. To successfully complete these trials

participants have to actively correct for the perturbations in order to bring the cursor to the target.

The reason why such trials are effective in keeping the responses upregulated, is that the movement

pre-perturbation is consciously indistinguishable between maintained perturbation trials and channel

trials. As a result, participants are forced to produce the corrective responses, otherwise risking to

fail the trial. However, as there is no force channel to push against, these trials provide less sensitive

feedback data, such as the change in trajectory over time, which then needs to be differentiated

twice to be even remotely comparable with force channel data. Hence, we typically do not use

the maintained perturbation data for the analysis, but rather use it to facilitate stronger feedback

responses.

Another reason why maintained perturbations can be tricky to use in a given design is that the

perturbed movements in channel trials take shorter time to complete than the maintained pertur-

bation trials. This is due to additional path that maintained perturbation trials take, often only left

with the corrective motion after the hand is already at the target distance. In contrast, channel trials

immediately end once the target distance is reached, as no lateral error is present by that time.

While these effects were not considered in traditional studies, our work presented in this thesis

suggests, that movement duration (more precisely the duration from the perturbation onset to the

movement end, or time-to-target) may be an important control variable in regulating the feedback

responses. Consequently, using maintained perturbations together with channel trials could affect
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Figure 2: Schematic of visual perturbations and their induced feedback. A. Target perturbations. As partic-

ipants moved their hand to the target, target perturbation was induced by shifting the target representation

(here a red circle) laterally to the direction of movement. As a result, participants produced corrective move-

ments to bring their hand to the target. Dashed horizontal line indicates the perturbation onset location. B.

Cursor perturbations. Similarly to target perturbations, the cursor perturbations were induced by shifting the

cursor in a direction, perpendicular to the movement. As a result, participants produced a corrective move-

ment in the opposite direction. Red circle represents the target and yellow circle represents the cursor. C.

Example feedback responses to target or cursor jumps, recorded experimentally. Zero-time indicates the per-

turbation onset. Force responses (orange line) are produced to correct for the perturbations, with onset times

150 ms. These responses, averaged over 180-230 ms window (grey area) constitute visuomotor feedback

intensities. Shaded error represents 95% CI. D. Modelled feedback responses to target or cursor jumps.

Simulated force (red line) is artificially delayed by a fixed delay (here 150 ms), representing the visuomotor

delay in humans. After that, the corrective response is produced rapidly and immediately due to the modelled

muscle being implemented as a first-order filter. Due to rapid onsets, the simulated feedback intensity time

window (grey rectangle) is shifted towards earlier times than in humans (160-210 ms).

the response regulation in a non-trivial way, as participants would not be able to reliably estimate the

time-to-target. As a result, in order to avoid uncontrolled effects that maintained perturbations could

possibly induce, our most recent study [60] did not anymore contain maintained perturbations.

2.2.3 Visuomotor feedback intensity

In studies, investigating visuomotor feedback responses, it is necessary to first quantify the strength

of the motor response to the visual perturbations in order to then study their modulation. To do

so, a force response, produced as a result of visual perturbation was measured and averaged over

a time window between 180 ms and 230 ms after the perturbation, to produce one value, usually

termed visuomotor feedback gain [16, 18, 22, 25, 26, 43] (Figure 2B). While conventionally earlier

studies call these force responses as visuomotor gains, in our work we refer to them as visuomotor

intensities. The main reason for such choice is to avoid confusion with other gains that are present
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in our computational models, specifically Kalman (observer) gains K or feedback (control) gains L.

The two extremes of the time window are selected between the typical force onset at about 150

ms after the perturbation [11], and earliest detectable voluntary produced force at 230 ms after

the perturbation [16]. As a result, these gains represent early, sub-voluntary visuomotor feedback

responses. Note that some studies [18, 19] also analyse the responses during later time windows,

where voluntary corrections are also contributing to the total response, however in our work we

primarily focussed on the early responses.

In a similar fashion, when evaluating the control performance of computational models we also es-

timated their simulated feedback intensities, equivalent to visuomotor feedback intensities. In order

to mimic the visuomotor delay within the model, we induced the simulated perturbations 150 ms

later than they would normally be induced for humans. Moreover, due to the difference in muscle

properties between human muscle and simple first order filter, the responses to simulated perturba-

tions typically ramped up much faster, requiring the further adjustment of the visuomotor feedback

window in model evaluations. Here we used a time window between 10-60 ms after the perturbation

onset, equivalent to 160-210 ms in humans (Figure 3C). Further details of the model implementation

are presented in the following sections.

2.3 OFC models

In the three main studies, presented in this thesis, we relied on computational modelling to interpret

the experimental results or to motivate new hypotheses. Our primary tools in simulating a human-

like control behaviour were optimal feedback control (OFC) models. This section details the general

implementation of different types of OFC models, as well as their features. However, as various

models, that are presented in the studies of this thesis are implemented with different numerical

values of parameters, for the exact implementations the reader should refer to the studies directly.

2.3.1 Optimality

In order to be precise when interpreting the results of our studies it is important to first define what

we mean by optimality and optimal control in general. As an example, let’s consider again reaching

towards a cup of coffee that is placed out of our reach. First, in order to get to this cup we need to

spend our energy to move our muscles – stand up, walk towards the cup, extend our arm and pick

the cup up. Here we have unlimited choices in how we move, from not moving at all to jumping up

and trying to get to the cup as fast as we physically can. Typically, faster, more vigorous movements

will cost us more energy as well as increase motor noise, leading towards additional corrections to

compensate for this noise. Second, depending on how much we want that particular cup of coffee
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at this given moment, we incur an intrinsic “penalty” for not already having that cup in our hands

with every passing second. These two factors, sometimes called movement cost and state cost are

contributing to the total cost of the movement, that optimal control aims to minimise. As a result,

optimality is defined in the context of the cost function for that movement, and is simply a solution for

a given cost function. In turn, an optimal movement with one cost function will most likely be non-

optimal, if instead another cost function were used. Hence, when we talk about optimal control, we

simply solve for the most efficient control signals that drive movements with a given cost function,

however the cost function itself is a model design problem, which might not always be the most

appropriate for the given task.

2.3.2 State-space representation

In order to simulate a controller we first need to describe the system that we aim to control, as

well as its properties. Here we defined the hand as a point of mass m and intrinsic damping b, to

simulate viscoelastic behaviour. This point mass is controlled in two dimensions by two orthogonal

force actuators that simulate muscles, and are regulated by a control signal u via a first-order filter

with time-delay τ . At time t within the movement, such system could be described by a set of

simultaneous equations:

dp = v (1)

mdv = f − bv, (2)

τdf = u− f (3)

The above equations in continuous time can be expressed as a matrix equation (also known as

state-space representation):

ẋ = Acx+Bcu (4)

In order to simulate the system numerically, we can discretise the system using Euler’s approxima-

tion, and include random processes that represent noise:

xt+1 = Axt +B(I + Ct)ut + ξt. (5)

Here xt is a state vector, containing variables of position p, velocity v, muscle force f and an aug-

mented target position p∗. ut is an external control force that is driving the system. A and B are

state-transition and control matrices respectively, and Ct is a 2x2 matrix, whose each element is

sampled from a zero-mean Normal distribution, representing control dependent noise. As in all of

our studies we aimed to simulate only the mean behaviour of our participants, we typically kept

control-independent noise ξt to zero in our simulations.
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2.3.3 Linear-quadratic regulator (LQR)

After we define the system dynamics, next step in simulating its behaviour is to define how such

system is controlled. Specifically, at any given state (a set of values like position, velocity and

acceleration) there is an infinite number of inputs that will propel such system. However, only a

small subset of all these inputs will bring the system towards our desired goal (for example the

target of reach), and even fewer will do that optimally (i.e. by minimising the movement cost). One

way of defining a cost of movement and then finding its optimal solution is through a linear-quadratic

regulator (LQR, [61]). LQR assumes linear state-space dynamics (as satisfied in Eq.5), as well a

quadratic movement cost with respect to state variables:

J =
N∑

t=0

xTt Qtxt + uTt Rtut. (6)

Here Q and R are known as state-dependent, and activation-dependent costs. As our state variable

x includes states of position p, velocity v and force f , as well as information about target position

p∗, the above equation at time t can also be expressed as:

J =
N∑

t=0

ωp,t(~pt − ~p∗)2 + ωv,t||~vt||2 + ωf,t||~ft||2 + ωr,t||ut||2, (7)

with ωp,t, ωv,t, ωf,t and ωr,t being numerical costs of position, velocity, force and motor input (activa-

tion). Finally, N is the time horizon of the movement (see Section 2.3.5 for further details),

The solution that minimises the cost function J is well known, and can be achieved by solving an

algebraic Riccati equation. The resulting control matrix L then defines an optimal feedback control

signal for any given state

ut = −Lxt. (8)

2.3.4 Linear-quadratic Gaussian (LQG)

LQR implementation, presented in the previous section is useful when we are only concerned with

bringing the system from one state to another. However, human motor system generally does not

have exact information about its state, but infers it using noisy sensory inputs. First, this requires an

optimum estimator, known as Kalman filter, to estimate the current state from sensory information

and the internal knowledge of system dynamics. Second, we need to generate an optimal control

solution, accounting for the fact that the state information xt is not exact, but estimated. Such a

problem, where optimal estimator (Kalman filter) and an optimal controller (LQR) are combined into

one is known as linear-quadratic Gaussian (LQG).

In addition to the state transition equation (Eqn. 5), for the LQG we also define a state observer

yt = Hxt + εt +Dtxt. (9)
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Here yt is sensory information, observed from the real state xt via observation matrix H , and cor-

rupted by stationary noise εt and state-dependent noise Dt.

In cases where multiplicative noise does not exist (Ct = 0 and Dt = 0 throughout the movement),

and the system is only disturbed by additive noise, the optimum solutions for Kalman gain K and

control gain L are separable. That is, both gains can be found independently, and then combined

to produce the LQG [62]. In turn, Kalman gain and control gain can then be used to estimate the

current state, and to produce the control signal:

ˆxt+1 = Ax̂t +But +Kt(yt −Hx̂t) (10)

ut = −Lx̂t. (11)

When multiplicative noise is present, the two gains become inseparable, and have to be optimised

iteratively, until the solution converges. An algorithm to achieve this has been proposed and demon-

strated by [63, 64].

2.3.5 Control horizon

Another distinction between various optimal control models (both LQG and LQR) is by their control

horizon. The three types of control horizons that are utilised in our studies are infinite [56, 65, 66],

finite [31, 43, 60, 63, 67] and receding [56, 68]. Each of the three types have slight differences in

implementation, which in turn leads to different predicted behaviours, uses and limitations.

Infinite horizon control assumes that the control action is infinite, and thus produces a control signal

indefinitely, as long as the current state and target state are different. Such a definition implies that

the time horizon N is infinite, and state and activation costs Q and R are stationary over time (Eqn

6). In turn, this results in a control gain L that is stationary as well.

Due to the infinite horizon, movements generated by such a controller always converge to their

target, as the control gain L will always drive the system towards the goal. As a result, such models

typically produce human-like kinematics, with bell-shaped velocity profiles, convergent trajectories,

and, importantly, can well capture the variability of movement duration in presence of disturbances

[56, 67]. On the other hand, due to the stationarity of the control gain L, infinite horizon control

always produces a consistent control signal if the state error is the same. This means that a lateral

target jump of the fixed size will always invoke identical control responses in the infinite horizon,

which has been showed in numerous studies to not be true in human behaviour [16, 18, 22, 67].

In contrast to infinite horizon control, finite horizon OFC is described not only by costs Q and R, but

also by a time horizon N , which is finite. In addition, such architecture allows the costs to also be
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time-dependent, resulting in a different simulated behaviours compared to infinite-horizon control.

First, for finite horizon control movement end is pre-defined and ends abruptly even if the target is

not reached. Liu and Todorov [31] have demonstrated, that such control well describes kinemat-

ics of perturbed human movement in conditions where getting into the target is not compulsory.

Specifically, such movements stereotypically undershoot and stop without reaching the target, both

in OFC simulation as well as in human data. Importantly, finite horizon control also produces vari-

able feedback gains, even if the state error is the same at two separate time points, which predicts

temporal evolution of feedback intensities, as demonstrated in human studies [16, 18, 22, 60, 67].

However, finite horizon control is limited by the need of knowing the movement duration in advance,

as otherwise the solution can not be computed.

Receding horizon control combines features of finite and infinite horizon. Mathematically the reced-

ing horizon OFC is implemented in the same way as the finite horizon control, however it does not

assume the time horizon of the whole movement but only of the portion of it. Particularly, in finite

horizon control, the cost function is computed over the whole duration from t = 0 to t = N . In

receding horizon control, the cost function is only computed over the duration from time t to time

t+Nrec, where Nrec � N is the fixed length of the horizon that the movement is accounting for. As

the time t advances, so does the planned end-time of the movement, so producing the control that

always converges to the target.

The receding horizon models of human movement assume that humans do not plan movements

from start to finish, but rather in stints through via-points. An analogy of receding horizon control

could be following a GPS route between two locations: each portion of the movement is only planned

until the next upcoming turn, even if the end goal is known before the journey. In spirit with this

analogy, receding horizon control well encapsulates some human behaviours that are present in

long, slow movements, for example oscillatory non-bell-shaped velocity profiles [68]. However, as

with infinite horizon control, receding horizon also fails to capture the temporal evolution of feedback

gains which are known to be present in humans.

2.4 Pendulum studies

In addition to studies where we analysed human behaviour in short, ballistic perturbed movements,

we also studied the feedback control systems in situations of extended control. In this section I

present the methods of studies where participants balanced a virtual inverted pendulum on a cart.
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2.4.1 Experimental paradigm

Participants were seated in a vBot robotic manipulandum and grasped the robotic handle to control

a cart (a red 3.0 cm x 1.5 cm rectangle) of mass M = 0.1 kg, which could be moved within the x-y

plane. The pendulum was simulated as a massless pole of variable length L, extending from the

middle of the cart in the positive y-direction (away from participant). At the tip of this pole, a point

mass with m = 1 kg was attached, and the gravity with g = 9.8 m/s2 was simulated in the negative

y-direction. Such system was marginally stable, if and only if the cart was directly below the point

mass. Otherwise, the system was pushed away from the equilibrium, with its dynamics described

by a set of equations:

Fx = ẍ(m sin2 θ +M)−mLθ̇2 sin θ +mg sin θ cos θ (12)

θ̈ = (g sin θ − ẍ cos θ)/L (13)

where Fx is a lateral force applied by the pendulum on the cart, θ is the angle between the pendulum

and the y-axis, and x is the position of the cart.

While the cart could be moved in all directions in the x-y plane, its movement in y-axis was con-

strained by a virtual mechanical channel with stiffness of 4000 N/m, damping of 2 Nm/s, and maxi-

mum applied force capped at 25 N, to encourage movements primarily along the x-axis. This channel

was also framed by two thin yellow lines (Figure 3). In order to maximise the range of motion, the

cart position did not exactly match the position of the hand, but was shifted in the negative y-direction

(towards the participant) by 13.0 cm. The x-coordinate was always matched between the cart and

the hand. In most studies, any force Fx, produced by the dynamics of the pendulum was applied to

the robotic handle to provide haptic feedback, but was capped at 5 N and completely turned off be-

yond the point of recovery (θ>30o) for safety reasons. However, in studies where this force interfered

with desired measurements this feedback was suppressed.

The pendulum itself was displayed as a line of 3 mm thickness, extending between the cart and the

point-mass for its actual length L. As this length was almost always longer than the screen height,

this line was truncated at the top. To provide the information about the pendulum beyond screen

size, a thin separated strip at the top of the screen contained a circle (d = 1.0 cm) that indicated

precisely the actual lateral location of the tip of the pendulum. Due to the pendulum implementation

as a point mass on a massless pole, this information also coincided with the centre of mass of the

pendulum, unless otherwise specified in the design of a particular study.

Typically, the trials were self-paced in pendulum experiments, with each trial starting after participant

brought the cart to the designated starting position. After that, the pendulum would be pushed from
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Figure 3: A. Schematic of the pendulum-above-cart system. The equilibrium of the pendulum (green) is

achieved through moving the cart (red) in order to minimise the angular deviation θ. B. A sample screenshot

of an experimental trial. The circular cursor at the top of the screen provides visual feedback of the centre

of mass as the pendulum (green line) is truncated at the top of the screen. The y-coordinate of the physical

hand location (not visible to subjects) is offset with respect to the cart position. The cart (red rectangle) is

constrained between the two yellow rails to allow unconstrained movement along the x-axis.

its equilibrium in a random direction with angular velocity θ̇ = 0.01 rad/s. A trial was finished either

after the pendulum was maintained upright for 5 s, or if it “fell” to the angle of θ = 90o. Participants

were instructed to maintain pendulum upright and as stable as possible, and were rewarded with a

score, indicating their performance, at the end of the trial.

2.4.2 PD controller

A proportional-derivative controller is a simple linear feedback controller that produces control signal

based on the error and the derivative of this error. For a linear system without a time-delay (also

sometimes called dead-time) a control input in continuous time is produced simply as:

u(t) = Kpe(t) +Kd
de

dt
(14)

whereKp andKd are proportional and derivative gains, set for the controller, and e(t) is the feedback

error signal at time t. In case of our pendulum system, the feedback error signal e(t) is the pendulum

angle θ, leading to the following specific form of the feedback controller:

u(t) = Kpθ(t) +Kdθ̇(t) (15)

As the control signal, produced by the PD controller scales linearly with feedback errors, such a

controller is best suited for linear systems. However, in its nature the feedback control system
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of the inverted pendulum is non-linear. First, even without feedback delays, the dynamics of the

pendulum-cart system are non-linear (Eq. 12, 13), with pendulum falling faster and thus requiring

disproportionally stronger control responses in order to stabilise it at larger angular deviations. In

an ideal case, even if such system is non-linear, a PD controller is capable to produce an adequate

control, as we can linearise the pendulum behaviour around the equilibrium point, resulting in close-

to-linear behaviour, provided the pendulum does not deviate far from the equilibrium point. However,

in addition to the inherent non-linearity of the system, the feedback loop in humans is time-delayed,

with a typical visuomotor feedback delay of ≈150 ms. This delay, in addition to making it difficult to

keep the pendulum within small deviations, also produces a non-linearity by itself, and thus needs

to be accounted for. Thus, in order to simulate the PD control for our pendulum system despite all

the non-linearities, we used Padè approximation, linearise our entire system and prepare it for the

linear PD control.



3 Studies

3.1 Overview of the publications

The primary results, presented in this thesis, consist of three journal publications, investigating the

phenomenon of the visuomotor feedback response:

Study I: Česonis, J., and Franklin, DW., (2020) “Time-to-Target Simplifies Optimal Control of

Visuomotor Feedback Responses”, eNeuro, 7(2)

Study II: Česonis, J., and Franklin, DW., (2021) “Mixed-horizon optimal feedback control as a

model of human movement”, Neurons, Behavior, Data analysis, and Theory

Study III: Česonis, J., and Franklin, DW., (2022) “Task-dependent switching of feedback con-

trollers”, accepted for publication at PLoS Computational Biology

In addition to these journal publications, two additional studies resulted in two peer-reviewed confer-

ence papers, where the author of this thesis is the first author:

Study IV: Česonis, J., Franklin, S., and Franklin, DW., (2018) “A Simulated Inverted Pendulum to

Investigate Human Sensorimotor Control”, 40th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC), 5166-5169, c© 2018 IEEE

Study V: Česonis, J., Leib, R., Franklin, S., and Franklin, DW., (2019) “Controller Gains of an

Inverted Pendulum are Influenced by the Visual Feedback Position”, 41st Annual Inter-

national Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),

5068-5071, c© 2019 IEEE. – also presented as a Poster presentation

Finally, in addition to the above publications, which are the foundation for this thesis, further work

has been presented at international conferences and/or resulted in peer reviewed articles, where

the author of this thesis was not the first author:

Česonis, J., and Franklin, DW., (2017) “Visuomotor feedback gains: optimal temporal evolution

or fixed relation to movement velocity?”, Poster presentation at NCM Annual Meeting 2017,

Dublin, Ireland

Česonis, J., and Franklin, DW., (2017) “Visuomotor feedback gains: optimal temporal evolution
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or fixed relation to movement velocity?”, Oral presentation at 23. Sportwissenschaftlicher

Hochschultag, München, Germany

Franklin, S., Česonis, J., and Franklin, DW., (2018) “Influence of visual feedback on the sensori-

motor control of an inverted pendulum”, 40th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), 5170-5173

Česonis, J., and Franklin, DW., (2019) “Retinal eccentricity modulates visuomotor feedback gains

along the movement”, Poster presentation at NCM Annual Meeting 2019, Toyama, Japan

Franklin, S., Česonis, J., Leib, R., and Franklin, DW., (2019) “Feedback Delay Changes the Control

of an Inverted Pendulum”, 41st Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC), 1517-1520

Franklin, DW., Česonis, J., Franklin, S., and Leib, R., (2019) “A Technique for Measuring Visuomo-

tor Feedback Contributions to the Control of an Inverted Pendulum”, 41st Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1513-1516

Leib, R., Česonis, J., Franklin, S., and Franklin, DW., (2019) “LQG framework explains performance

of balancing inverted pendulum with incongruent visual feedback”, 41st Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1940-1943 –

also presented as Oral presentation

3.2 Study aims

The general aim of all the work presented in this thesis is to better understand the computational

mechanisms that underlie the visuomotor feedback control in humans. It has been known that short

movements, simulated by OFC can achieve velocity profiles and trajectories of movements similar

to those of humans [31] by producing feedback gains that vary over the movement. Similarly, other

research has shown that visuomotor feedback intensities can vary over the movement with very fast

response times (<150 ms) [16, 18, 19, 22, 23, 43], drawing parallels between the feedback gains and

feedback intensities. However, it was still unclear whether the visuomotor feedback intensities are

really an outcome of the optimal control, as opposed to other sources. For one, OFC computations

are expensive – the system needs to account for various sources of the cost function, such as

position, velocity, force, as well as external states – but the control signal is produced at extremely

short timescales. In addition, studies that have mapped the feedback intensity profiles over the

course of the movement [22] showed that these profiles well track the velocity profiles, raising the

hypotheses that visuomotor intensities could simply be a simple scaling of velocity. Results of Study I

show that the visuomotor feedback intensities can indeed be explained using finite-horizon OFC, and

also demonstrate that only one input parameter is required for such control – time-to-target. Study

II then proposes a new control architecture of mixed-horizon OFC by combining the infinite horizon



Studies 27

Table 1: Overview of the design in first-author studies, presented in this thesis

Study Task Participants Outcome measures Analysis tools

I Goal directed

reaching with

cursor jumps

11 (5 females),

right-handed,

27.3 ± 4.5 y.o.

Reach kinematics,

visuomotor feedback

intensities

Normative OFC modelling,

BIC for model comparison,

ANOVA, Bayesian factors,

descriptive evaluations

II Re-evaluation

of earlier

reaching

studies

N/A Descriptive

evaluation of model

behaviour

Normative OFC modelling,

model fitting, descriptive

evaluations

III Goal directed

reaching with

target jumps

14 (5 females),

right-handed,

21-29 y.o.

Reach kinematics,

visuomotor feedback

intensities

Normative OFC modelling,

descriptive evaluations,

ANOVA, ANCOVA,

Bayesian factors.

IV Balance of an

inverted

pendulum

6 (1 female),

right-handed,

mean age 29

y.o.

Balance score,

balance time,

kinematics

Descriptive analysis, PD

controller modelling,

model fitting.

V Balance of an

inverted

pendulum

6 (1 female),

right-handed,

mean age 24.7

y.o.

Balance score,

balance time,

kinematics

ANOVA, Least-squares

model comparison,

descriptive evaluation.

OFC to reliably estimate the upcoming movement duration, and then using finite-horizon control to

generate the movement. In Study II we also revise the results of earlier studies, showing how we can

use the mixed-horizon control to uncouple control behaviours that could be masking one another.

Finally, Study III directly tests the predictions of time-to-target control by testing participants in two

tasks with different task requirements, strengthening the evidence for time-to-target as the primary

control input. Moreover, Study III also demonstrates that humans are able to utilise the contextual

cues to switch between two different feedback controllers, similar to numerous evidence of such

switching in feedforward control [69–75].

Studies IV and V study visuomotor control in terms of stabilising an unstable object, rather than

simply guiding short movements from one point to another. While control of an inverted pendulum
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has been a classic approach in studying the processes of balance and dealing with delays, tradi-

tionally such research involves balancing a real mechanical pendulum [76–78]. Often such designs

are not only inconvenient, but also limit experimenter’s ability to control the experimental design, for

example by suppressing or altering a particular source of feedback. In Study IV we propose a fully

virtual inverted pendulum setup, simulated in vBot, which allows us to selectively remove or tweak

a particular feedback modality (visual, haptic or temporal). In addition, we also demonstrate that

the control of such a pendulum can be well explained by a proportional-derivative (PD) controller

with time delay ∆t=150 ms – roughly coinciding with a visuomotor delay, and thus consistent with a

control of a mechanical pendulum. Finally, in Study V we expand on earlier work [79] that studied

the balance of inverted pendulum in presence of imprecise visual feedback. The results of this study

show that the human control behaviour is the most efficient when the visual feedback is directly

matching the haptic feedback, and decays away from this matching point.

3.3 Study design

The Table 1 presents the design of each study, including experimental setup, tasks, participant

information, outcome measures as well as analysis techniques. Note that all studies (including

earlier, re-evaluated studies) were performed in a vBot robotic manipulandum.



3.4 Study I

Time-to-Target Simplifies Optimal Control of Visuomotor Feedback Responses

This study, authored by Justinas Česonis and David W. Franklin was published in eNeuro in March,

2020. The study analyses the temporal evolution of visuomotor feedback intensities in neurologically

healthy, right-handed adults under five different movement kinematics. The methods of this study

are carefully designed to dissociate the bell-shaped temporal evolution of velocity profiles during

the reaching movements from the temporal evolution of visuomotor feedback intensities that also

followed similar shape in earlier research [22]. The results demonstrate, that time-to-target (i.e. time

left in the movement at the time of the perturbation) is a strong predictor for the visuomotor feedback

intensities, produced by human participants.

Contributions

Justinas Česonis was the primary contributor and lead author in this research. In addition, Justinas

Česonis implemented the experimental design, collected and analysed the data, built the computa-

tional models and wrote the first draft. Both authors designed the experimental paradigm, selected

the analysis methods and revised the final version of the manuscript.

Abstract

Visuomotor feedback responses vary in intensity throughout a reach, commonly explained by optimal

control. Here we show that the optimal control for a range of movements with the same goal can

be simplified to a time-to-target dependent control scheme. We measure our human participants’

visuomotor responses in five reaching conditions, each with different hand or cursor kinematics.

Participants only produced different feedback responses when these kinematic changes resulted in

different times-to-target. We complement our experimental data with a range of finite and non-finite

horizon optimal feedback control models, finding that the model with time-to-target as one of the

input parameters best replicates the experimental data. Overall, this suggests that time-to-target is

a critical control parameter in online feedback control. Moreover, we propose that for a specific task

and known dynamics, humans can instantly produce a control signal without any additional online

computation allowing rapid response onset and close to optimal control.
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Abstract

Visuomotor feedback responses vary in intensity throughout a reach, commonly explained by optimal control.
Here, we show that the optimal control for a range of movements with the same goal can be simplified to a
time-to-target dependent control scheme. We measure our human participants’ visuomotor responses in five
reaching conditions, each with different hand or cursor kinematics. Participants only produced different feed-
back responses when these kinematic changes resulted in different times-to-target. We complement our ex-
perimental data with a range of finite and non-finite horizon optimal feedback control (OFC) models, finding
that the model with time-to-target as one of the input parameters best replicates the experimental data.
Overall, this suggests that time-to-target is a critical control parameter in online feedback control. Moreover,
we propose that for a specific task and known dynamics, humans can instantly produce a control signal with-
out any additional online computation allowing rapid response onset and close to optimal control.

Key words: motor control; optimal feedback control; reaching; time-to-target; visuomotor control; visuomotor
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Significance Statement

Human behavior has widely been explained using stochastic optimal feedback control (OFC), formulating
movement control as a set of time-dependent feedback and control gains. However, OFC is computational-
ly expensive leading to questions about whether such a theory could be implemented in real time. Here, we
show that OFC could be approximated by a simple relationship between feedback gains and the time-to-
target over a variety of movement kinematics, matching the evolution of visuomotor feedback gains of our
human participants during reaching. As this relationship to time-to-target is similar across a wide range of
kinematics, this suggests that early stages of the OFC controlled movement could be approximated by a
time-to-target control, saving computational costs and allowing for rapid execution.

Introduction
From intercepting a basketball pass between opponents

to catching a vase accidentally knocked off the shelf, visuo-
motor feedback responses play a familiar role in human
motor behavior. Previous research has extensively analyzed

these responses in human reaching movements (Day
and Lyon, 2000; Saunders and Knill, 2003, 2004, 2005;
Sarlegna et al., 2003; Knill et al., 2011; Reichenbach et
al., 2014; de Brouwer et al., 2017, 2018), and showed an
interesting combination of task-dependent variability on
the timescale of a single movement (Dimitriou et al.,
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2013; Franklin et al., 2014, 2017; Cross et al., 2019), as
well as sub-voluntary feedback onset times (Prablanc
and Martin, 1992; Day and Lyon, 2000; Franklin and
Wolpert, 2008; Oostwoud Wijdenes et al., 2011; Zhang
et al., 2018). These visuomotor feedback responses
have been shown to modulate throughout a movement
depending on the perturbation onset location (Dimitriou
et al., 2013). This observation was explained through
optimality principles, however such control was mod-
eled only indirectly, by replicating velocity profiles and
trajectories of visually perturbed movements (Liu and
Todorov, 2007; Rigoux and Guigon, 2012). In this study,
we test to what degree optimal feedback control (OFC)
can be used to model the visuomotor feedback re-
sponses directly.
Optimal control as a theory of human movement has

normally been compared against other theories in terms
of prediction of kinematics and dynamics (Todorov and
Jordan, 2002; Izawa et al., 2008; Guigon et al., 2007,
2008; Nagengast et al., 2009; Yeo et al., 2016).
Nevertheless, OFC has been used to motivate extensive
studies investigating the control and task-dependent
modulation of feedback responses (Knill et al., 2011;
Pruszynski and Scott, 2012; Nashed et al., 2012, 2014).
The results of these and other studies have highlighted
the flexibility of the modulation of these feedback re-
sponses. While a few studies have compared the pre-
dictions of the controller feedback gains against the
feedback responses in human subjects (Knill et al.,
2011), such predictions have not been made about the
temporal evolution of these feedback responses during
reaching. For example, Dimitriou et al., 2013) show tem-
poral evolution of feedback response intensity through-
out a reaching movement, suggesting that this is similar
to the feedback gain predictions of Liu and Todorov
(2007). However, a direct comparison of these feedback in-
tensities has not been made. Here, we directly compare the
temporal evolution of visuomotor feedback response inten-
sities in human participants with the prediction of these in-
tensities in an OFCmodel.
Visuomotor feedback response intensity over a goal di-

rected reaching movement follows a roughly bell-shaped
profile, with peak intensity in the middle and decay toward
the beginning and the end of the movement (Dimitriou et
al., 2013). The results of Liu and Todorov (2007) suggest
that such modulation is a combination of gains related to
movement position, velocity and acceleration. However,
we do not yet know whether these gains would more
strongly depend on the visual kinematics or haptic kine-
matics. In addition, models of ball catching were shown to
produce systematic errors in the prediction of the hand ki-
nematics when using only velocity or acceleration based
gains (Dessing et al., 2002), suggesting an integration of
multiple state variables to produce the feedback re-
sponse. Evidence of such integration then raises two im-
portant questions. First, could there be other states than
position and its derivatives that also contribute to such
control? Second, how can these responses be produced
so rapidly, when multiple inputs need to be integrated into
one solution?

One method to solve these two problems would be a
controller based on time-to-target. Within a state-space
system, all state variables are constantly changing with
time with a fixed relationship to one another as described
by the state transition and control matrices. Such a sys-
tem can then be re-imagined as a system with time as its
input, and these physical states as the hidden states.
Such mapping simplifies the multiple input system where
the inputs are state variables, to a one-input (time) sys-
tem. Indeed, the expected time-to-target (or time-to-
contact) has been shown to be related to the control in
finger pointing (Oostwoud Wijdenes et al., 2011) and
catching tasks (Dessing et al., 2002). Therefore, we test
whether a simple relation to the time-to-target can ex-
plain the temporal profile of visuomotor feedback re-
sponses in humans. To test our hypotheses, we devised
an experimental paradigm where we offset the usual
bell-shaped velocity profile in the aim to separate the ef-
fect of the times-to-target from the effect of kinematics
(both, of the hand and of the cursor) on the visuomotor
feedback responses. Finally, we compare these results
with a normative OFC model of visuomotor feedback re-
sponses to better understand how and whether these re-
sponses can be the result of optimality and still maintain
rapid onset times.

Materials and Methods
Code availability
The code and the experimental data described in

the paper is freely available online at https://doi.org/
10.6084/m9.figshare.11323289. The code is available
as Extended Data 1.

Participants
Eleven right-handed (Oldfield, 1971) human partici-

pants (five females; 27.36 4.5 years of age) with no
known neurologic diseases took part in the experiment.
All participants provided written informed consent before
participating. All participants except one were naive to
the purpose of the study. Each participant took part in
five separate experimental sessions, each of which took
;3 h. One participant was removed from analysis as
their kinematic profiles under the five experimental ses-
sions overlapped. The study was approved by the Ethics
Committee of the Medical Faculty of the Technical
University of Munich.

Experimental setup
Participants performed forward reaching movements to

a target while grasping the handle of a robotic manipula-
ndum with their right hand. Participants were seated in an
adjustable chair and restrained using a four-point har-
ness. The right arm of participants was supported on an
air sled while grasping the handle of a planar robotic inter-
face (vBOT; Howard et al., 2009). A six-axis force trans-
ducer (ATI Nano 25; ATI Industrial Automation) measured
the end-point forces applied by the participant on the
handle. Position and force data were sampled at 1 kHz.
Visual feedback was provided in the plane of the hand via
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a computer monitor and a mirror system, such that this
system prevented direct visual feedback of the hand and
arm. The exact onset time of any visual stimulus pre-
sented to the participant was determined from the
graphics card refresh signal.
Participants initiated each trial by moving the cursor

(yellow circle of 1.0 cm diameter) into the start position
(gray circle of 1.6 cm diameter) located ;25 cm in front of
the participant, centered with their body. This start posi-
tion turned from gray to white once the cursor was within
the start position. Once the hand was within the start po-
sition for a random delay drawn from a truncated expo-
nential distribution (1.0–2.0 s, mean 1.43 s), a go cue
(short beep) was provided signaling participants to initiate
a straight reaching movement to the target (red circle of
1.2 cm diameter, located 25.0 cm directly in front of the
start position). If participants failed to initiate the move-
ment within 1000ms, the trial was aborted and restarted.
Once the cursor was within 0.6 cm of the center of the tar-
get, participants were notified by the target changing
color to white. The movement was considered complete
when the participants maintained the cursor continuously
within this 0.6 cm region for 600ms. If participants did not
complete the movement within 4 s from first arriving at the
start position (e.g., by undershooting or overshooting the
target), the movement timed-out and had to be repeated.
Otherwise, as long as participants arrived at the target
within 4 s, the trial was considered to have been com-
pleted. After each trial, the participant’s hand was pas-
sively returned by the robot to the start position while
visual feedback regarding the success of the previous
trial was provided (Fig. 1). Movements were self-paced,
and short breaks were enforced after every 100 trials.

Experimental paradigm
Participants performed the experiment under five differ-

ent conditions, each performed in a separate session.
In the baseline condition the cursor matched the forward
movement of the hand, with a peak velocity in the middle
of the movement. In the other four conditions, the cursor
location was scaled relative to the hand location in the for-
ward direction only (with no change in the lateral direction),

such that the cursor and the hand location matched only at
the start and end of the movements (Fig. 2). In two of the
conditions (matched-hand velocity), the hand velocity
matched the baseline condition throughout the movement
(with the peak in the middle of the movement) but the cur-
sor velocity peaked either earlier (33% of movement dis-
tance) or later (66% of movement distance). In the other
two conditions (matched-cursor velocity), the cursor veloc-
ity was matched to the baseline condition throughout the
movement (with the peak in the middle of the movement)
but the hand velocity peaked either earlier (33% of move-
ment distance) or later (66% of movement distance). The
difference between the cursor velocity and the hand veloc-
ity was produced through a linear scaling of the cursor ve-
locity as a function of the forward position (Fig. 2A).
Specifically, for the two conditions where the position of
the peak cursor velocity is earlier than the position of the
peak hand velocity (Fig. 2, top), this scaling was imple-
mented as:

vc
vh

¼ �0:012d1 1:6; (1)

where vc and vh are cursor and hand velocities, respec-
tively, and d is the distance along the movement direction
in %. The cursor velocity was therefore manipulated by a
linear scaling function such that its velocity is 160% of the
hand velocity at the beginning of the movement, linearly
decreasing to 40% at the target location (Fig. 2, top). For
the two conditions where the position of the peak cursor
velocity is later than the position of the peak hand velocity
(Fig. 2, bottom), this scaling was implemented as:

vc
vh

¼ 0:012d10:4; (2)

such that the velocity gain function linearly increased from
40% hand velocity at the start of the movement to 160%
at the end of the movement (Fig. 2, bottom). Desired ve-
locity profiles of both the hand and the cursor are shown
in Figure 2B for each condition.
Introducing the differences in velocity profiles across

five experimental conditions allows us to look at the effect
of the time-to-target separately from the kinematics of

Figure 1. Examples of feedback presented to the participants. Feedback regarding the peak velocity and the timing of the peak ve-
locity was provided after each trial. Large gray blocks indicate the velocity peak location target, while the bar chart at the top-right
corner indicates peak y-velocity magnitude. Feedback was provided on the modality (cursor or hand) that matched the baseline,
where the horizontal line indicated the location of the peak velocity in this modality. Left, Velocity peak location is within the target,
but the movement was too fast (unsuccessful trial). Middle, Velocity peak location is too early, but the movement speed is within the
target (unsuccessful trial). Right, Successful trial.
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physical movement. First, as the visual perturbations al-
ways occurred at the five preset hand positions, our de-
sign allows us to maintain the effect of the distance to the
target and distance in the movement constant across all
five conditions. Second, two perturbation locations (one-
third and two-thirds of movement distance) were chosen
so that velocities at those locations matched across multi-
ple conditions (early-peak condition velocity equals base-
line at one-third, and late-peak velocity equals baseline at
two-thirds), allowing for matching velocity contributions
across conditions as well. However, across the three dif-
ferent physical kinematics the time-to-target is varied, al-
lowing us to investigate whether time-to-target has an
effect. Finally, the relative scaling between cursor velocity
and hand velocity in the forward direction also separates
the relative contributions of these two inputs, allowing us
to examine the relative contributions of visual and physi-
cal kinematics in modulating the feedback responses.

Feedback regardingmovement kinematics
In all conditions, one of the velocity modalities (cursor

or hand) was required to be similar to the baseline velocity
profile. Feedback was always provided about the velocity
modality that matched the baseline. Ideal trials were de-
fined as trials in which this peak velocity was between
42 and 58 cm/s with the peak location between 45% and
55% of the movement distance with no target overshoot.
Participants were credited one point for achieving an ideal
trial and zero points otherwise, however all the trials were
included in the analysis. After each trial, visual feedback
about the peak velocity and the location at which this
peak occurred was provided to the participants graphi-
cally (Fig. 1). The peak velocity was indicated on the right-
hand side of the screen with the length of a bar and the
velocity target. This bar changed color from red to green if
the velocity was within the ideal range. The location of the
peak velocity was indicated as a horizontal line between

home and target positions at the exact location it was
achieved, along with the ideal range. This line was green
when the location of the peak velocity was within the ideal
range, and red otherwise. Overshooting the target was
defined as the position of the cursor exceeding the center
of the target in the forward direction by.0.9 cm. If partici-
pants reached the target while overshooting during the
movement, a message indicating the overshot was
shown, no points were scored and an error tone was
played to discourage further overshooting movements.

Probe trials
During each session, probe trials were used to measure

the visuomotor feedback intensity, the average strength
of corrective motor response to a change in the visual
feedback of hand position. To elicit these feedback re-
sponses (further visuomotor feedback responses), visual
perturbations were initiated laterally (62.0 cm) at five dif-
ferent hand distances (4.2, 8.3, 12.5, 16.7, and 20.8 cm)
from the start (Fig. 3A). In addition, a zero-amplitude per-
turbation (cursor matched to the lateral position of the
hand) was included, resulting in eleven different probe tri-
als. On these trials the visual perturbations lasted 250ms,
after which the cursor was returned to the lateral location
of the hand. The lateral hand position was constrained in
these trials in a simulated mechanical channel throughout
the movement, thereby requiring no correction to reach
the target. The simulated mechanical channel was imple-
mented with a stiffness of 4000 N/m and damping of 2
Ns/m acting perpendicularly to the line connecting the
start position and the target (Scheidt et al., 2000; Milner
and Franklin, 2005), allowing measurement of any lateral
forces in response to a visual perturbation.
In previous experiments, feedback response intensity

gradually decreased during the course of the experiment
(Franklin and Wolpert, 2008; Franklin et al., 2012). However,
it has been shown that including perturbation trials where

A B

Figure 2. Experimental design. A, top, Hand-cursor velocity scaling for conditions where the cursor position leads the hand position
in y-axis (matched-cursor late-peak hand velocity condition, blue, and matched-hand early-peak cursor velocity condition, yellow).
Bottom, Hand-cursor velocity scaling for conditions where the cursor position lags the hand position in y-axis (matched-cursor
early-peak hand velocity condition, green, and matched-hand late-peak cursor velocity condition, purple). B, Hand and cursor ve-
locity-position profiles required to achieve the ideal movement to the target. Left, Matched-cursor velocity conditions. Middle,
Baseline condition, where cursor position and hand position are consistent. Right, Matched-hand velocity conditions.
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the perturbations were maintained until the end of the move-
ment, and where participants had to actively correct for the
perturbation to reach the target, prevents this decrease in
the feedback intensity (Franklin et al., 2016). Therefore, half
of the trials contained the same range of perturbations as
the probe trials but where these perturbations were main-
tained throughout the rest of the trial and participants had to
correct for this perturbation. The hand movement was not
constrained in these maintained perturbation trials. These
maintained perturbations have now been used in several
studies (Franklin et al., 2016, 2017; de Brouwer et al., 2017).

Session design
Before each session, participants performed 100–300

training trials to learn the specific velocity profiles of the
reaching movements. All training trials contained no visual
perturbations and were performed in the null force field.
The training trials were stopped early once participants
achieved an accuracy of 75% over the last 20 trials and
were not used for the analysis.
Each session consisted of 40 blocks, where each block

consisted of 22 trials performed in a randomized order.
Eleven of these 22 trials were probe trials (five perturbation
locations� two perturbation directions 1 zero perturbation
condition) performed in the mechanical channel. The other
eleven trials consisted of the same perturbations but main-
tained throughout the trial and performed in the null field.
Therefore, in each of the five sessions, participants performed
a total 880 trials (440 probe trials). The order of the five differ-
ent conditions (sessions) was pseudo-randomized and coun-
terbalanced across participants. Participants were not told
about the physical implementation of the different mappings,
but were provided feedback after every trial and knew that
each session was different from previous sessions.

Data analysis
Data were analyzed in MATLAB R2017b and JASP

0.8.2. Force and kinematic time series were low-pass

filtered with a tenth-order zero-phase-lag Butterworth fil-
ter (40-Hz cutoff). The cursor velocity was calculated by
multiplying the hand velocity by the appropriate scaling
function. The visuomotor feedback response was meas-
ured for each perturbation location as the difference be-
tween the force responses to the leftward and rightward
perturbations within a block. To measure the visuomotor
feedback response intensity (mean force, produced as a
response to a fixed-size visual perturbation) this response
was averaged over a time window of 180–230ms, a com-
monly used time interval for the involuntary visuomotor
feedback response (Franklin and Wolpert, 2008; Franklin
et al., 2012, 2016; Dimitriou et al., 2013). In order to com-
pare any differences across the conditions a two-way re-
peated-measures ANOVA was performed with main
effects of condition (five levels) and perturbation location
(five levels). As a secondary method to frequentist analy-
sis we also used the Bayesian factor analysis (Raftery and
Kass, 1995) to verify our statistical results. Bayesian fac-
tor analysis is a method that in addition to the convention-
al hypothesis testing (evaluating evidence in favor of the
alternative hypothesis) allows us to evaluate evidence in
favor of the null hypothesis, therefore distinguishing be-
tween the rejection of the alternative hypothesis and not
enough evidence to accept the alternative hypothesis.
Although we used the time window of 180–230ms to

estimate visuomotor feedback intensity, we also verified
whether the onset of the visuomotor feedback response
in our data are consistent with previously reported values.
To estimate this onset time, we first estimated individual
onset times for each participant at each perturbation loca-
tion and movement condition. To do so, we used the re-
ceiver operator characteristic (ROC) to estimate where
the force reaction to leftwards cursor perturbations devi-
ated from the reaction to rightwards cursor perturbations
(Pruszynski et al., 2008). For each type of trials, we built
the ROC curve for the two signals at 1 ms intervals, start-
ing from 50ms before the perturbation, and calculated
the area under this curve (aROC) for each of these points

A B C

Figure 3. Human visuomotor feedback responses are modulated across the five experimental conditions. A, Lateral perturbations
of the cursor were applied in all five conditions. Perturbations were introduced as 2-cm cursor jumps perpendicular to the move-
ment direction. The perturbation onset occurred at one of five equally spaced hand locations. B, Mean velocity profiles of the hand
in five experimental conditions: matched-cursor early-peak (green), matched-cursor late-peak (blue), matched-hand early-peak (yel-
low), matched-hand late-peak (purple), and baseline (gray). Participants successfully modulated forward movement kinematics to
meet task demands, velocity profiles are skewed for matched-cursor conditions, and are similar to the baseline for matched-hand
conditions. C, Mean visuomotor feedback intensities (mean lateral force from 180 to 230ms after perturbation onset) across all par-
ticipants to cursor perturbations as a function of the hand distance in the movement. Error bars represent 1 standard error of the
mean (SEM). Significant regulation is observed for matched-cursor early-peak and matched-cursor late-peak conditions (blue and
green), but no significant regulation is seen for matched-hand conditions (yellow and purple), relative to the baseline.
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until the aROC exceeded 0.75 for 10 consecutive millisec-
onds. In order to find where the force traces start deviat-
ing from each other, we then fit a function of the form
maxð0:5; k � ðt� tÞ to the aROC curve. The time point
where the linear component of this function first overtakes
the constant component was taken as the threshold
value. Overall, the mean onset times across all conditions
and perturbation locations were 13867ms (mean 6 SD),
with onset times consistent among movement conditions
(F(4,36) = 1.410, p=0.25, and BF10 = 0.105), perturbation
locations (F(4,36) = 1.582, p=0.20, BF10 = 0.252), and their
interactions (F(16,144) = 1.350, p=0.176, and BF10 = 0.005)

Modeling
OFC
In addition to our linear models we implemented two

different OFC models: the classical model (Liu and
Todorov, 2007) and the time-to-target model. The only
comparison between the output of the optimal control
models and the experimental results is via the feedback
gains. For each movement we define time-to-target as the
duration between the onset of the perturbation and the
cursor first intercepting the target. In both models we
modeled the hand as a point mass of m=1.1 kg and the
intrinsic muscle damping as a viscosity b=7 Ns/m. This
point mass was controlled in a horizontal plane by two or-
thogonal force actuators to simulate muscles. These ac-
tuators were controlled by the control signal ut via a first
order low-pass filter with a time constant t = 0.05 s. The
state-space representation of the dynamic system used
to simulate the reaching movements can be expressed as

xt11 ¼ Axt 1BðI1CÞut 1j t; (3)

where A is a state transition matrix, B is a control matrix,
and C is a 2� 2 matrix, whose each element is a zero-
mean normal distribution representing control-dependent
noise. Variables xt and ut are state and control at time t,
respectively. State xt exists in the Cartesian plane and
consists of position~p (2 dimensions), velocity~v (2), force~f
(2), and target position ~pp (2). The presence of these four
states within the state vector means that the information
about all of these states is eventually used for the control.
For our simulation purposes we treat the control-inde-
pendent noise j t as zero.
The state of the plant is not directly observable, but has

to be estimated from noisy sensory information. We
model the observer as:

yt ¼ Hxt 1Dt; (4)

where H ¼ diag½1;1; 1;1; 1;1;0;0� is the observation ma-
trix, and Dt is a diagonal matrix of zero-mean normal dis-
tributions representing state-independent observation
noise. Therefore, our observer can infer the state informa-
tion of position, velocity and applied force of the plant,
consistent with human participants.
The simulated movements were guided by the LQG

controller with a state-dependent cost Q, an activation
cost R, a reaching time N, and a time step t=0.01 s.
However, due to the presence of the control-dependent

noise, the estimation and control processes are not any-
more separable as in the classic LQG theory. In order to
obtain optimal control and Kalman gain matrices we used
the algorithm proposed by Todorov and Li (2005), where
control and Kalman gain matrices are iteratively updated
until convergence.
For both the classical and time-to-target models we si-

mulated three different movement kinematics representing
three different conditions in our experiment, the baseline
and the two matched-cursor conditions. The state-de-
pendent costQwas identical for all three kinematics:

QðtÞ

¼ f 0; for t 6¼ N

ð ~vpð~pðtÞ � ~ppðtÞÞÞ2 1v vjj~vðtÞjj2 1v f jj~f ðtÞjj2; for t ¼ N ;

(5)

where ~vp ¼ ½0:5;1�; v v ¼ 0:02, and v f = 2. The activation
cost R(t) = 0.00001 was constant throughout the move-
ment for the baseline condition, but was modulated for
the two matched-cursor conditions by multiplying it ele-
mentwise by a scaling function:

R9ðtÞ ¼ expðp t1q
r Þ

meanðR9Þ ; (6)

where p, q, and r are constants.
Thus, each movement condition only differed from the

other two by the profile of this activation cost R, but not
by its magnitude. These modified activation costs shift
the timing of the peak velocity toward either the beginning
or the end of the movement by penalizing higher activa-
tions at either the end or beginning of the movements,
respectively.
The mean activation cost is kept constant across the

conditions resulting in each condition being equally “ef-
fortful.” All other simulation parameters were kept con-
stant across the three conditions.
Although LQG is a fixed time horizon problem, we did

not predefine the movement duration N. Instead, we ob-
tained the N, and constants p, q, and r using Bayesian
adaptive direct search (BADS; Acerbi and Ma, 2017) to
maximize the log-likelihood of the desired peak velocity lo-
cation and magnitude. We did not fit any other parameters
beyond this point. Rather, we analyzed our models’ quali-
tative behavior compared with human participant data.
The classical and the time-to-target models only differed

in the way the perturbations were handled. For the classical
model, we simulated perturbation trials at every time step
tp by shifting the target x-coordinate by 2cm at the time
tp 1 120ms. This 120 ms delay was used to mimic the vi-
suomotor delay in human participants, and was taken from
Liu and Todorov (2007). We then averaged the force re-
sponse of the controller over the time window [tp1130,
tp1180] as an estimate of the simulated feedback re-
sponses, equivalent of visuomotor feedback responses in
our participants. This means that our simulated feedback
responses arise due to separate contributions from the
controller position, velocity and acceleration gains. For per-
turbations occurring at times where the movement is over
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before the end of this time window, the intensity of this si-
mulated feedback response is set to zero.
For the time-to-target model we introduced an extension

in the time-to-target after the onset of any perturbation simi-
lar to that observed in our participants. Simulated feedback
intensities were modeled at five locations, matching the per-
turbation locations in our experiment to obtain the appropri-
ate increase in time-to-target after each perturbation. In
order to simulate the response to perturbations we first ex-
tracted the perturbation onset times from movement kine-
matics by performing an unperturbed movement and
recording the time point tp at which this movement passed
the perturbation onset location. We then simulated the post-
perturbation portion of the movement as a new LQG move-
ment with an initial state matching the state at tp 1 120ms
of the unperturbed movement, and movement duration
matching the time-to-target recorded in our participants for
the particular perturbation. Therefore, our time-to-target
model can only simulate the feedback intensities at the five
perturbation locations in the movement. Together, this
keeps our simulated reaches “naive” to the perturbation be-
fore its onset and allows the time-to-target of the simulated
reaches to match the respective time-to-target of our
human participants. Finally, we calculated the simulated
feedback intensities as described previously, using a time
window [10, 60ms] of the postperturbation movement. As in
the previous simulations, these simulated feedback re-
sponses arise due to separate contributions from the con-
troller position, velocity and acceleration gains.

Time-to-target tuning function
In order to understand the mechanisms that might

underlie the consistent relationship between the simu-
lated feedback intensities and the time-to-target, we fit a
mathematical expression to the simulated feedback inten-
sities. We modeled the relationship as the minimum of a
squared-hyperbolic function and a logistic function:

GðtÞ ¼ min
b

ðt� t1Þ2
;

a

11expð� t�t0
t
Þ

 !
; (7)

and used BADS to fit this function to our time-to-target-si-
mulated feedback intensity data by optimizing the log-
likelihood of this fit.
While the logistic function was chosen simply as it pro-

vided a good fit to the data, the squared-hyperbolic arises
from the physics of the system. Specifically, from the ki-
nematic equations of motion for a point mass (m) traveling
a distance (d) under the influence of force F, the distance
can be expressed as:

d ¼ Ft2

2m
1 v0t; (8)

where v0 = 0 is the lateral velocity at the start of perturba-
tion correction. Rearranging gives:

F ¼ 2md
t2

/ 1
t2
: (9)

Hence the lateral force necessary to bring a point mass
to the target is proportional to 1=t2.

Receding horizon OFC
In addition to our finite horizon control we also imple-

mented a receding horizon controller (Guigon et al.,
2019). Irrespectively of the current state of the movement
Xt, the receding horizon controller is defined to aim to ar-
rive at the target at time t1 Th. In essence, such controller
is therefore not different from the finite horizon controller
in its implementation for a single state of the movement.
We implemented the receding horizon controller by iterat-
ing a finite horizon controller described previously, but
with the Th = 500ms, and Q and R costs scaled from the
finite horizon model to fit the movement duration. For
each iteration we recorded the next movement state
(10ms away from the initial state), and used that as the ini-
tial state for the next iteration. This process was repeated
until the cursor was within the distance of 0.4 cm from the
target position, and remained there without overshooting
for 600ms.
Simulating differently skewed velocity profiles within

the framework of receding-horizon control is non-trivial.
As a result, we chose to only model one, the baseline, ex-
perimental condition, where the activation cost R is con-
stant within the movement. Therefore, we chose the costs

QðtÞ

¼ f 0; for t 6¼ Th

~vpð~pðtÞ � ~ppðtÞÞ21v vjj~vðtÞjj21v f jj~f ðtÞjj2; for t ¼ Th
;

(10)

where ~vp ¼ ½5;5�; v v ¼ 0:05, and v f = 5. and the activa-
tion cost R=0.000003. The values were selected so that
the movement durations, produced by the receding-ho-
rizon model would match the experimental durations for
the baseline condition. However, the resultant velocity
profiles of this model more closely resembled those of
the early-peak velocity condition, than those of the
baseline. To account for any effects of the velocity pro-
file we also fit the costs so the model prediction of
movement durations matched the durations of the early-
peak velocity condition. For this simulation we selected
~vp ¼ ½0:7; 0:7�; v v ¼ 0:007, and v f = 0.7, while the acti-
vation cost remained unchanged.
In this model we introduced the simulated perturbation

by shifting the target position by 2 cm at 120ms after the
y-coordinate of the movement passed the perturbation
onset location. We only simulated the perturbations
matching our experimental conditions, lateral 2 cm cursor
jumps, with the onset at five evenly distributed forward
distances. We calculated simulated feedback intensities
the same way as for the classical and time-to-target
models.

Infinite horizon OFC
We implemented the infinite horizon OFC to control our

simulated hand based on the previous work of Qian et al.
(2013). Specifically, we calculated the control gain matrix
L, and Kalman gain matrix K to control the same system
as in the previous models. We chose the state-dependent
costs ~vp ¼ ½1; 1�; v v ¼ 0:02, and v f = 0 for the baseline
condition simulation, and ~vp ¼ ½0:35;0:35�; v v ¼ 0:007,
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and v f = 0 for the early-peak condition simulation. For
both conditions, the activation cost R=0.002 was kept
the same. The protocol of simulating the mean trajecto-
ries, feedback responses and their intensities was other-
wise identical to the receding horizon simulations.

Model comparison
We compared the simulated feedback intensities from

each of the models with the experimental feedback re-
sponses intensities to evaluate our models. We do not
evaluate models in terms of kinematics or any other varia-
bles. As the predictive simulated feedback intensities for
each of the four models provided very different patterns,
the important comparison is qualitative. However, we
supplemented this qualitative comparison with a quantita-
tive model comparison using the Bayesian information
criterion (BIC). BIC is a conventional method for model
comparison which evaluates the log-likelihood of the
model fitting to the data while controlling for over-fitting
by penalizing additional model parameters (Schwarz,
1978). A BIC difference of 10 is very strong evidence for
the model with the lower BIC. Overall, we used individual
participant mean feedback intensities for baseline, early-
peak hand velocity and late-peak hand velocity condi-
tions, providing us with a total of 150 data points (10
participants� three conditions� five perturbations) to de-
termine the fit. Moreover, to compare the captured var-
iance of the data between our OFC models and the time-
to-target tuning curve we also calculated the sum of
squared-residuals (SSRs) between the models and the
data.

Results
Experimental results
In this study, we examine the relation between time-to-

target (the time difference between the perturbation onset
and the cursor intercepting the target) and the visuomotor
feedback responses. To do so, we devised an experiment
consisting of five different kinematic conditions. The
baseline condition required movements with a natural,
bell-shaped velocity profile, while the velocity profiles
were modified for the four other conditions. In these four
conditions, we introduced a manipulation between the
hand velocity and the cursor velocity in the forward direc-
tion, such that the cursor and hand had different velocity
profiles, but their positions matched at the start and end
of the movement (Fig. 2). Two of these four conditions
(matched-cursor conditions) required different kinematics
of the physical movement to successfully complete the
task, but the cursor velocity profiles matched the base-
line. This manipulation of hand velocity profiles also re-
sulted in different times-to-target at the same distance in
the movement. The two other conditions (matched-hand
conditions) required the same hand movement as for the
baseline condition, but as a result the cursor moved with
different velocity profiles (see Materials and Methods). This
manipulation of the cursor velocity profiles separates the
relative contributions of physical and visual hand informa-
tion in regulating the feedback responses. For each condi-
tion we measured the visuomotor feedback intensities

(mean corrective force applied during the 180 to 230 ms
time window after a visual perturbation) at five different
locations in the movement (Fig. 3A). Overall, our paradigm
allowed us to modulate the times-to-target across condi-
tions, as well as separate proprioceptive (hand) and visual
(cursor) kinematics to examine their individual contribution
to visuomotor feedback responses.
Different movement conditions exhibited differences in

visuomotor feedback intensities (Fig. 3). Two-way re-
peated-measures ANOVA (both frequentist and Bayesian;
Materials and Methods) showed significant main effects
for both condition (F(4,36) = 10.807, p,0.001, and
BF10 ¼ 9:136� 1012), and perturbation location (F(4,36) =
33.928, p, 0.001, and BF10 ¼ 6:870� 109). Post hoc
analysis on movement conditions revealed significant dif-
ferences between baseline (gray line) and matched-cursor
late-peak hand velocity condition (blue line; t(9) = 4.262,
pbonf , 0.001 and BF10 = 247.868), and between baseline
and matched-cursor early-peak hand velocity condition
(green line; t(9) = –8.287, pbonf , 0.001 and BF10 = 1.425 �
108). However, no significant differences were found be-
tween the baseline and the two matched hand velocity
conditions (t(9) = 1.342, pbonf = 1.0 and BF10 = 0.357 for
early-peak cursor velocity, yellow; t(9) = 0.025, pbonf = 1.0
and BF10 = 0.154 for late-peak cursor velocity, purple).
Our results show that different kinematics of the hand
movement have a significant effect on visuomotor feed-
back response regulation, but that different kinematics of
the cursor movement do not.
One possible explanation for differences between the

two matched-cursor conditions (Fig. 3C, blue and green)
and the baseline condition (gray) might arise from a differ-
ent mapping between cursor and hand velocities (Fig. 2A)
that had to be learned. Alternatively, the incongruency be-
tween the vision and proprioception might be another ex-
planation. However, the two matched-hand conditions
(yellow and purple) had the identical mappings (and in-
congruencies) as the two matched-cursor conditions
(blue and green, respectively) and yet no differences were
found in these conditions. Instead, the only conditions in
which differences in the feedback gains were found, were
conditions in which the timing of the peak hand velocity
was shifted.
In order to test whether a simple relationship between

movement kinematics and visuomotor feedback inten-
sities exists, we mapped visuomotor feedback intensity
magnitudes as a linear function of the hand velocity and
the cursor velocity. For each experimental condition, we
find a different regression slope between the velocity and
the feedback intensities regardless of whether this is the
cursor or the hand velocity (Fig. 4A,B). Consistent with
our previous results, this difference in slopes is significant
for conditions where the hand, but not cursor, movement
was different (Fig. 4C,D). Although feedback intensities in-
crease with increasing velocity in both cursor and hand
coordinates, no one coordinate modality could predict the
changes in the feedback intensity.
To successfully complete each trial, participants were

required to reach the target. However, the distance to
reach the target is affected by the perturbation onset,
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later perturbation locations lead to larger correction an-
gles (Fig. 5A) and thus longer movement distances (Fig.
5B). That is, an earlier correction means that the trajectory
can go directly toward the target, whereas a later correc-
tion would require a new corrective movement and there-
fore further distance. This effect is clearly seen where the
extension of movement distance is enhanced for the per-
turbations closest to the target, with movement distance
extended by almost 0.5 cm compared with less than 1
mm for the closest perturbations. Any extension of the
movement distance requires an appropriate increase in
movement duration. Consequently, participants extended
their movement time, with longest durations for perturba-
tions close to the target (Fig. 6A). This increase in move-
ment duration increases the time-to-target for these late
perturbations (Fig. 6B), and now allows sufficient time for
the controller to issue any corrective commands.

Finite horizon OFC
As optimal control has been suggested to predict the

temporal evolution of feedback intensities (Liu and
Todorov, 2007; Dimitriou et al., 2013), we built two finite-
horizon OFC models: the classical model (Liu and
Todorov, 2007), and a time-to-target model. For the classi-
cal model we implemented an OFC (Todorov, 2005) to sim-
ulate movements with different velocity profiles, similar to
the experiments performed by our participants. We

extended this classical model to the time-to-target model,
by increasing the movement duration after each perturba-
tion onset according to experimental results (Fig. 6). For
both models we only simulated different hand kinematics
for computational ease and as our participants showed lit-
tle effect of cursor kinematics on their feedback intensities.
For both models we controlled the activation cost R to

simulate three conditions in which the location of the peak
velocity was shifted to match the experimental hand kine-
matics (Fig. 7A). Specifically, we solved for the activation
cost R and movement duration N by optimizing the log-
likelihood of our model’s peak velocity location and mag-
nitude using BADS (Acerbi and Ma, 2017). The optimized
movement durations (mean 6 SEM) were N=9306 0ms
for the baseline condition, N=10506 10ms for the late-
peak condition and N=11306 20ms for the early-peak
condition (10 optimization runs per condition). In compari-
son, experimental movement durations were N=9326
30ms for the baseline condition, N=10486 47ms for the
late-peak condition and 12016 59ms for the early-peak
condition, matching well with the OFC predictions. Overall,
this shows that specific constraints on the magnitude and
location of peak velocity that we imposed on our partici-
pants resulted in a modulation of reaching times that
matched OFC predictions under the same constraints.
For the classical model we estimated simulated feed-

back intensities by shifting the movement target at each
time point in the movement and measuring the mean

A B

C D

Figure 4. Visuomotor feedback intensities as a function of (A) hand velocity and (B) cursor velocity at the time of perturbation for all
experimental conditions. Error bars represent 1 SEM, and the arrowheads represent the order of the perturbation locations. C, D,
Regression slopes of feedback intensities for each condition as a function of hand and cursor velocities, respectively. Error bars
represent 95% confidence intervals of the slopes. The slopes for the two matched-cursor conditions were significantly different
(based on the confidence intervals) than for the baseline condition.

Research Article: New Research 9 of 17

March/April 2020, 7(2) ENEURO.0514-19.2020 eNeuro.org



magnitude of the simulated force response over a 130- to
180-ms time window in the direction of this shift. The si-
mulated feedback intensity profiles follow the same gen-
eral shape as in human participants, intensity increases
from the beginning of the movement and then falls off at
the end (Fig. 7B). However, the overall profile of these si-
mulated feedback intensities is very different for each of
the kinematic conditions. For the early-peak velocity con-
dition, the simulated feedback intensity peaks toward the
end of the movement (green line), whereas for the late-
peak velocity condition the simulated feedback intensity
profile peaks early in the movement (blue line). These si-
mulated feedback intensities do not appropriately capture

the modulation of visuomotor feedback intensities in our
experimental results. Specifically, they predict a temporal
shift in the peak intensity that is not present in our partici-
pants data, and predict similar peak levels of feedback in-
tensities across all three conditions. While the simulated
feedback intensities are qualitatively similar to the experi-
mental results within each condition; overall, this model
cannot appropriately capture the modulation of visuomo-
tor feedback responses across the conditions.
For the time-to-target OFC model, we extended the

classical model to account for the different movement du-
rations for each perturbation location (and movement
condition) that is seen in the experimental results. After a

A B

Figure 5. A, Mean hand movement trajectories for matched-cursor late-peak (left), matched-cursor early-peak (middle), and base-
line (right) conditions recorded in our participants, with perturbation onset at five locations [color light to dark: 4.2 cm (16.7%),
8.3 cm (33.3%), 12.5 cm (50%), 16.7 cm (66.7%), and 20.8 cm (83.4%) from the start position; dashed lines]. Corrections to right-
ward perturbations were flipped and combined with leftward corrections. B, Distance increase for each perturbation location re-
corded in our participants. Perturbation locations closest to the target required the largest increases in movement distance. Error
bars represent 1 SEM.

A B

Figure 6. A, Movement durations in maintained perturbation trials recorded by our participants in late-peak, early-peak and baseline
conditions. Separate bars within the same color block represent different perturbation onset locations (left to right: 4.2, 8.3, 12.5,
16.7, and 20.8 cm from the start position). Error bars represent 1 SEM while the horizontal dashed lines represent movement dura-
tions in the same movement condition for non-perturbed movements. B, Full bars represent times-to-target (time between a pertur-
bation onset and target interception) in maintained perturbation trials in our participants for late-peak, early-peak, and baseline
conditions. White bars represent the time-to-target for a respective non-perturbed movement, at the time when the perturbation
would have happened. The colored part of the bars represents the extension in times-to-target due to the perturbation in a non-con-
strained movement. This shows that the perturbation during the movement evokes an extension in the time-to-target and subse-
quently in movement duration Each of the five bars represents a different perturbation onset location, as in A. Error bars represent 1
SEM.
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perturbation, the remaining time-to-target was adjusted
to match the experimentally recorded times-to-target for
this specific movement, while before the perturbation
both the classical model and the time-to-target model
were identical. After adjusting for the individual durations
of each perturbation condition we are now able to qualita-
tively replicate the general regulation of feedback intensity
profiles for different kinematics using OFC (Fig. 7C). In the
late-velocity peak condition we predict a general increase
in the feedback responses throughout the movement
compared with the baseline condition, whereas in the
early velocity peak condition we predict a general de-
crease in these feedback responses compared with the
baseline condition. Thus, we show that within the OFC the
time-to-target is critical for the regulation of feedback re-
sponses, and when we take this into account, we are able
to replicate the feedback intensity modulation of our
participants.
While in our experiment we manipulated the time-to-

target through skewing the velocity profiles, time-to-tar-
get is naturally modified through changing the peak veloc-
ity. Therefore, we can further analyze the effect of the
time-to-target by calculating the feedback intensities for
movements with different peak velocities (Fig. 8A). The si-
mulated feedback intensities vary widely across peak ve-
locities, with a shift of peak feedback intensities toward
the earlier locations for faster movements (Fig. 8B).
However, when these distinct simulated feedback inten-
sity profiles are re-mapped as a function of time-to-target,
the simulated feedback intensities follow a consistent, al-
beit non-monotonic, relationship (Fig. 8C). This relation-
ship is also consistent over a range of peak velocities
across all three kinematic conditions and is well described
by a combination of a square-hyperbolic and logistic
function (Fig. 8D). The squared-hyperbolic arises from the
physics of the system: the lateral force necessary to bring
a point mass to a target is proportional to 1=t2 (Materials
and Methods; Eq. 9). The logistic function simply provides
a good fit to the data. Overall, our models show that the

feedback intensity profiles under OFC are independent of
the peak velocity or movement duration. Instead, our sim-
ulations suggest that time-to-target is a key variable in
regulating visuomotor feedback responses.
It has been shown that the optimal controller gains (Liu

and Todorov, 2007), as well as the visuomotor feedback
intensities (Knill et al., 2011; de Brouwer et al., 2017) are
influenced by task definition (e.g., instruction to hit the tar-
get or stop at the target). Here, we simulated the hit, fast
hit and stop instructions for our classical model to test
how it influenced the relation between simulated feed-
back intensity and time-to-target. Our previous simula-
tions represent the stop instruction. We modified the v v

and v f to simulate the baseline equivalent of hit and fast
hit instructions. Specifically, we set v v;hit ¼ v v=4 ¼ 0:05;
v f;hit ¼ v f=4 ¼ 0:005 for hit instruction, and v v;fasthit ¼
v v=10 ¼ 0:02; v f;fasthit ¼ v f=10 ¼ 0:002 for fast hit in-
struction. As changing the terminal costs also results in a
change in peak velocity, we further reduced the desired
movement times to N=800ms for the hit instruction and
N=750ms for fast hit instruction, such that all three peak
velocities match (Fig. 9A). According to our simulations,
such modification of task demands produced different si-
mulated feedback intensity profiles (Fig. 9B). However,
the intensity relationship with time-to-target maintained
the same structural profile independent of the task de-
mand (Fig. 9C). Specifically, both the squared-hyperbolic
and logistic segments of the control are still present,
although we observe the shift in the temporal location of
the crossover point. While each task requires a different
pattern of feedback gains (and will therefore produce dif-
ferent responses), variations of the kinematic require-
ments within a task do not change these gains and
therefore do not require recalculation.

Receding horizon and infinite horizon control
A limitation of the finite-horizon implementation used in

classical and time-to-target models is that the variable
movement duration (Fig. 6) is the model input rather than

A B C D

Figure 7. Comparison of feedback intensities between the two OFC models and experimental data. Simulated velocity profiles (A) and
simulated feedback intensity profiles (B) of baseline (black), early-peak (green), and late-peak (blue) velocity condition simulations for
the classical OFC model. Velocity profiles were obtained by constraining the velocity peak location and magnitude and optimizing for
movement duration and activation cost function. Simulated feedback intensity profiles were obtained by applying virtual target jumps
perpendicular to the movement direction during these movements and calculating the force exerted by the controller in the direction
of the target jumps. The jagged appearance of the intensity traces is simply an outcome due to the simulation time step. C, Simulated
feedback intensities obtained via the time-to-target OFC model. Preperturbation movements were simulated as if no perturbation
would occur, to keep the controller naive to an upcoming perturbation. At the perturbation onset the remaining movement duration is
adjusted to match the mean time-to-target for a similar perturbation onset in human participants (Fig. 6B). Therefore, this model only
simulates the feedback intensities at the five perturbation locations in the movement. The velocity profiles for the time-to-target model
match the velocity profiles of the classical model, shown in A. D, Visuomotor feedback intensities recorded in human participants.
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output. Therefore, in addition to finite-horizon models we
also modeled our task in receding and infinite horizon for
a single movement condition. Specifically, for the infinite
horizon model both state-dependent and regulator costs
were kept constant throughout the simulated movement.
For the receding horizon model, the regulator cost was
kept constant, while the state-dependent cost was zero
for all but last “foreseeable” state. Such models were ex-
pected to simulate the baseline experimental condition,
however the resultant velocity profile better resembled
the early-peak condition (Fig. 10A). As a result, we com-
pared these simulations with both baseline and early-
peak velocity condition data and with the time-to-target
model simulations (Fig. 10B–D).
Both receding horizon and infinite horizon LQG models

were able to successfully capture the nonlinear change in
trial durations for different perturbation onsets (Fig. 10B)
matching the experimental results. In addition, these
models also predicted variable times-to-target for the five
perturbation onset locations: 700, 660, 620, 600, and

580ms for the infinite horizon and 690, 640, 610, 610, and
600ms for the receding horizon. However, neither model
showed variation of the simulated feedback intensities for
different perturbation onset locations (Fig. 10C,D), a result
that was present in the experimental data and captured
by our time-to-target model. Instead both models pre-
dicted constant feedback intensities for all perturbations
locations. Therefore, neither the receding nor the infinite
horizon models are able to explain our experimental
results. While both of the approaches can accurately cap-
ture the variability in movement duration, only the time-to-
target model well describes the behavioral variation in vi-
suomotor feedback responses.

Quantitative model comparison
Qualitatively, our results suggest that the time-to-target

is an important variable when correcting for visual pertur-
bations in a visuomotor task. In order to supplement
these findings quantitatively, we also evaluated model fits

A B

C D

Figure 8. OFC simulations of (A) velocity profiles and (B) simulated feedback intensity profiles for different desired peak velocities (in order
from light to dark line colors: 40, 50, 60, 70, and 80cm/s). C, Simulated feedback intensities of (B) re-mapped as a function of time-to-tar-
get at the time of perturbation. D, Simulated feedback intensities vs time-to-target for the three kinematic conditions over the five peak ve-
locities simulated by OFC (colored dots). Solid lines represent the tuning curves (Eq. 7) fit to the data. Both the tuning curves and the
simulated feedback intensity profiles are similar across a variety of different kinematics when expressed as a function of time-to-target.

A B C

Figure 9. Comparisons between hit and stop instructions. A, Velocity profiles for the stop, hit and fast-hit conditions. B, Simulated
feedback intensity profiles as a function of hand position. C, Simulated feedback intensities of (B) re-mapped as a function of time-
to-target at the time of target perturbation.
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between the data and the models using BIC and calculat-
ing the SSR for each of the models. We compared the
OFC-based models with respect to the classical, finite ho-
rizon OFC model as our baseline model. Consistent with
our qualitative estimations, the time-to-target OFC model
performed the best of all OFC-based models (D BICttt =
38.2). In addition, both receding-horizon and infinite-hori-
zon models provided bad fits to the data (DBICrec ¼
�23:4;DBICinf ¼ �18:4). We also compared, using SSR,
the fit of our OFC models with the simpler time-to-target
tuning curve (Eq. 7; Fig. 11A). While the tuning curve is only
a simple approximation to the time-to-target adjusted OFC
feedback predictions, it is still able to explain a similar amount
of variance in the data (R2 = 0.33; SSRtuningcurve ¼ 28:5;
SSRclassical ¼ 33:3;SSRttt ¼ 24:9;SSRinf ¼ SSRrec ¼ 38:9).
Overall, both the BIC and SSR comparison confirms that the
time-to-target OFC model best explains the feedback modu-
lation during human reaching and suggests that time-to-tar-
get is a critical variable in online control.
Overall, our simulations suggest that, independent of

movement kinematics (different temporal position, velocity,
and acceleration profiles), the visuomotor feedback inten-
sities follow the same profile with respect to the time-to-tar-
get. We further verified how our time-to-target prediction
matches our actual experimental results by plotting partici-
pants’ visuomotor feedback intensities against the average
time-to-target for the respective perturbation locations and
movement conditions (Fig. 11A). Specifically, the intensities
monotonically increase with decreasing time-to-target until
the peak (following the squared-hyperbolic function) and
then reduce (the logistic function range).

Validation of the time-to-target model
We also compared the prediction of the time-to-target

model to independent results from an external data set
(Dimitriou et al., 2013). In the article, the authors could not
rigorously encapsulate both conditions within a simple re-
lationship to movement distance, movement fraction or
movement velocity. We plotted visuomotor feedback in-
tensities against time-to-target for two experimental

conditions: goal directed reach of 17.5 cm and of 25 cm
(Fig. 11B,C). Two observations can be made from these
results. First, the time-to-target model prediction and the
experimental data follow the same qualitative features, in-
dependent of the target distance (experimental condition).
Second, the feedback intensities for both conditions are
well explained by a single relationship with time-to-target
(Fig. 11C; R2 = 0.56, SSRtuning curve = 2.3). Thus, the vali-
dation against an external dataset supports our results
that visuomotor feedback intensities vary with the time-
to-target.
Finally, we evaluated our optimal control models (the

classical and the time-to-target) on this dataset. Similar to
our original fitting, we fit both of our OFC models to match
the kinematics of the human participants, and then simu-
lated the virtual experiment to extract simulated feed-
back intensities for the models. We found that model
parameters ~vp ¼ ½0:5;1�; v v ¼ 0:03, and v f = 0.03 and
R(t) = 0.00000235 provide the best fit of kinematics be-
tween OFC models and data. As with our data, the
time-to-target OFC model provided a better fit of the si-
mulated feedback gains than the classical OFC model
(DBIC=19.2, SSRttt = 8.6, SSRclassical = 10.7). Together,
both our data and Dimitriou et al. (2013) data strongly
support our time-to-target model.

Discussion
Here, we examined how movement kinematics regulate

visuomotor feedback responses. Participants extended
their movement duration after perturbations to successfully
reach the target. In addition, visuomotor feedback re-
sponses were modulated when the hand followed different
kinematics, but not when the cursor followed different kine-
matics. In order to better understand this modulation we
built four normative models using OFC: a classical finite-ho-
rizon OFC (Liu and Todorov, 2007), a finite-horizon time-to-
target adjusted OFC, a receding-horizon OFC (Guigon et
al., 2019), and an infinite-horizon OFC (Qian et al., 2013).
While the classical, receding and infinite horizon models
failed to predict the experimental visuomotor feedback

A B C D

Figure 10. Receding horizon and infinite horizon model simulations. A, Simulated velocity profiles of receding horizon (dashed) and
infinite horizon (dot-dashed) models. Both models naturally produce positively skewed velocity profiles, more closely resembling
early-peak velocity, rather than the baseline condition. B, Mean experimental movement durations (bar chart) compared with the re-
ceding and infinite horizon model predictions. Both models accurately simulate the variations in the reach durations with perturba-
tion location. Baseline (C) and early-peak velocity condition (D) simulations for receding horizon, infinite horizon and time-to-target
(dot-solid lines) models, compared with the experimental data. Only the time-to-target model predicts different visuomotor feedback
response intensities for different perturbation onset locations, while receding and infinite horizon models predict constant inten-
sities. Note that models were not fit to match the intensities, only to qualitatively demonstrate the behavior.
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response intensities, the time-to-target model qualitatively
replicated the visuomotor feedback intensity profile of our
participants. Overall, OFC models suggested that feed-
back intensities for each perturbation location depended
on the time-to-target (i.e., time between perturbation onset
and target interception) rather than distance or velocity.
Moreover, this explains why any mismatch between visual
and haptic kinematics had no effect on the feedback inten-
sities, as these manipulations did not affect the time-to-tar-
get. Simulated feedback intensities under all movements
followed the same profile with respect to time-to-target,
suggesting a critical role in the regulation of visuomotor
feedback responses.
Experimentally, our participants exhibited a temporal

evolution of visuomotor feedback intensities for each con-
dition, confirming the findings of Dimitriou et al. (2013). In
addition, we also showed the regulation of visuomotor
feedback responses across conditions, allowing us to in-
vestigate the underlying mechanism of this temporal evolu-
tion. Specifically, our experimental results demonstrated
strong regulation of visuomotor feedback intensity profiles
with different hand kinematics, but not with different cursor
kinematics (Fig. 3C). Compared with the baseline condi-
tion, in the matched-cursor early-peak velocity condition
participants produced longer times-to-target at each per-
turbation location (Fig. 6B), resulting in weaker feedback
responses based on the relationship between time-to-tar-
get and visuomotor feedback intensities (Fig. 11A). The op-
posite is true for the matched-cursor late-peak velocity
condition. As the two matched-hand conditions produced
similar times-to-target as the baseline due to similar hand
kinematics, we did not observe a different regulation in
feedback responses. Therefore, the condition-dependent
visuomotor feedback response modulation exhibited by
our participants meshes nicely with a control policy where-
by the time-to-target regulates the feedback responses.
It has long been suggested that we select movements

that minimize the noise or endpoint variability (Harris and
Wolpert, 1998). Within the framework of optimal control,
this idea has been expanded to the corrective movements,
that is, optimality in reaching movements is achieved in

part by minimizing the noise during any corrective re-
sponse (Todorov and Jordan, 2002). As motor noise scales
proportionally to muscle activation (Jones et al., 2002;
Hamilton et al., 2004), one way of minimizing such noise is
reducing the peak levels of muscle activation during the
correction. Mathematically, the optimal solution to correct
any perturbation approximates a constant activation, re-
sulting in a constant force for the whole duration between
perturbation onset and target interception. Such a solution
assumes that the brain is capable of estimating the remain-
ing duration of the movement (McIntyre et al., 2001;
Benguigui et al., 2003; Zago et al., 2004) and that the force
follows the squared-hyperbolic relationship to this duration
(Eq. 9). The parallel can be drawn here between our results
and the results of Oostwoud Wijdenes et al. (2011), where
the authors showed a similar temporal evolution of peak
acceleration against the time-to-target in a single forward
velocity condition. Our results further show that time-to-
target strongly modulates visuomotor feedback responses
across a range of different kinematics, consistent with the
idea that human participants aim to behave optimally.
More specifically, we suggest that, among different opti-
mality variables, the temporal evolution of visuomotor feed-
back response intensities serves to reduce effects of
system noise.
Finite-horizon OFC predicts a time beyond which feed-

back responses are suppressed. Beyond this critical time,
a logistic function well describes the relation between
time-to-target and feedback responses, with response in-
tensities reducing as the time-to-target decreases. The
controller gains at this stage are the most sensitive to ac-
celeration, suggesting a more “behavioral” outcome, the
controller is trying to stop, rather than correct errors. The
neural recordings in rhesus macaque monkeys’ supple-
mentary motor area and M1 (Russo et al., 2019) show that
supplementary motor area can signal movement termina-
tion as far as 500ms before the end of the movement. This
further suggests that there may be multiple stages within a
movement, where our control system might “care” more
about error correction in one or movement termination in
another. On the other hand, the suppression of responses

A B C

Figure 11. Validation of the time-to-target model. A, Experimental visuomotor feedback intensities for all five experimental condi-
tions (scatter plot) overlaid with the time-to-target tuning curve. The data and the tuning curve show similar qualitative features.
Error bars represent 1 SEM. Marker colors indicate five experimental conditions as described in Figure 2B. B, Experimental data of
the visuomotor feedback intensities of Dimitriou et al. (2013), mapped against the time-to-target. Black and orange traces represent
mean participant data for 17.5 and 25 cm movement conditions, respectively. C, A scatter plot of individual subjects’ data from B,
overlaid by the time-to-target tuning curve. Both, 17.5 and 25 cm movement conditions are combined to a single representation.
Different colors represent different perturbation onset distances as in Dimitriou et al. (2013).
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close to the target leads to undershooting the target. Our
participants, however, had to bring the cursor to the tar-
get to advance to the next trial. As a result, they extended
the movement durations postperturbation to return to the
squared-hyperbolic range of control. The control perform-
ance of such behavior is well accounted for by our time-
to-target model. Moreover, our time-to-target model also
well explained the modulation of visuomotor feedback in-
tensities from an external data set (Dimitriou et al., 2013).
However, an important distinction from our study is that in
Dimitriou et al. (2013), the suppression of feedback re-
sponses toward the end of movements would not inter-
fere with reaching the target as perturbation trials were
always in a mechanical channel so that no corrections
were required. As a result, the times-to-target were short-
er and the data clearly exhibits both logistic and squared-
hyperbolic segments of the control.
All of the variations of optimal control models are formu-

lated as two controllers in x- and y-axes (coupled through
control-dependent noise), with no modeling of the muscu-
loskeletal dynamics. However, the experiments were per-
formed using multijoint reaching movements of the arm.
One possibility is that the presence of these musculoskel-
etal dynamics in the human participants could explain the
differences in the feedback intensities, as the matched cur-
sor conditions required different hand accelerations. One
might therefore imagine that the condition with the fastest
initial movements (early-peak velocity) requires the largest
initial forces and could therefore produce larger initial feed-
back intensities as a default. However, several studies have
shown that there is no scaling of visuomotor feedback
gains with background loads or muscle activity (Franklin et
al., 2012, 2017). More critically, this condition actually
shows the lowest feedback gains early in the movement,
whereas the condition with the slowest initial acceleration
produces the highest feedback gains. Therefore, we sug-
gest that the neuromuscular dynamics cannot explain the
modulation of these feedback responses.
Both of the matched cursor conditions (early and late

peak) require a change in the physical kinematics away
from the naturally occurring bell-shaped velocity profile.
One possibility is that this manipulation could have driven
the changes in feedback intensity. We argue against this
possibility for two reasons. First, all participants were able
to fairly quickly learn this pattern of movement with train-
ing before the testing of the feedback intensities. Second,
if this manipulation away from the naturally occurring bell-
shaped profile affects these feedback intensities, we
would expect the feedback gains in these two conditions
to either both increase or both decrease. Instead we find
that the feedback intensity profile for each condition
changes in a manner that is explained by the change in
the time-to-target.
A limitation of our time-to-target model is that it takes

time-to-target as an input to generate feedback intensity
predictions, rather than obtain the time-to-target as a
model output. As a result, our time-to-target model does
not describe exactly how the change in movement geom-
etry after the perturbation influences this time-to-target,
which in turn regulates the visuomotor feedback

responses. On the other hand, both receding and infinite
horizon models did predict the movement duration
change after perturbations very well, but could not at all
describe the changes in visuomotor response intensity.
However, utility of movement has recently been used
within optimal control to characterize reaching move-
ments (Rigoux and Guigon, 2012; Shadmehr et al., 2016)
in which optimal movement time falls out automatically
from a trade-off between reward and effort. With respect
to our models, this adds additional complexities to cap-
turing the different movement conditions. Future ap-
proaches could attempt to model these results within the
utility of movement framework.
In addition, our time-to-target model does not directly

show the causality of the time-to-target as a control variable
for the visuomotor feedback intensities. Particularly, the
time-to-target relation to feedback intensity could be a by-
product of a more sophisticated control scheme. Additional
arguments for the time-to-target control scheme could be
two-fold. First, there is evidence that humans are well capa-
ble of estimating the time-to-target of a moving stimulus,
even if it is accelerating (McIntyre et al., 2001; Benguigui et
al., 2003; Zago et al., 2004), indicating that time-to-target is
at least an available input for such a controller. Second,
while we have tested finite-horizon OFC and two other (re-
ceding and infinite horizon) OFCs, only the finite horizon
controllers had any effect on the variation of simulated feed-
back intensities. Importantly, neither the receding nor infi-
nite horizon models use time-to-target as an input to the
controller. We posit that this time-to-target control input is
the one key difference between the finite and non-finite
models and is therefore the simplest explanation for our
results.
Our results show that models incorporating time-to-tar-

get (the time-to-target OFC and the simple time-to-target
tuning curve) better describe our experimental data and
those of Dimitriou et al. (2013) than do other optimal control
models. Specifically, the relative scaling of the conditions
is explained using the time-to-target tuning curve (Fig.
11A): the times-to-target are longer for the early-peak ve-
locity condition compared with the baseline, and therefore
fall in the lower intensity range (and vice versa for the late-
peak condition). However, there are still some qualitative
differences between the experimental and model predic-
tions. That is, our experimental results exhibited an in-
verted U-shape for the feedback intensity profiles, whereas
the model predicts only a slow increase in some conditions
(Fig. 8C, green curve). Our time-to-target model suggests
that this inverted U-shape is not characteristic of the feed-
back intensity profile, but is simply an outcome of the ex-
perimental design (particularly the reaching duration).
Indeed, the time-to-target model makes specific predic-
tions about the feedback intensities for much faster move-
ments, which should not show an inverted U-shape but
instead decrease throughout the movement. Our model,
therefore, makes strong predictions that can be tested in
future studies.
Rapid feedback responses scale with the temporal ur-

gency to correct for mechanical perturbations (Crevecoeur
et al., 2013). Here, we have shown that visuomotor feedback
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responses also follow a similar regulation, suggesting that
these two systems share the same underlying control policy.
Our work further extends this finding of Crevecoeur et al.
(2013) by not just showing that temporal urgency affects
feedback responses, but explaining the manner in which
these responses are regulated with respect to urgency.
That is, here, we have shown that for visual perturbations
the feedback intensities scale with a squared-hyperbolic of
the time-to-target, which is a direct measure of urgency.
Moreover, the feedback intensities were rapidly adjusted
due to the change in urgency as the task changed.
Specifically, when the cursor jumps close to the target, the
expected time-to-target is prolonged, and therefore the
optimal visuomotor feedback response needs to be ad-
justed appropriately to this increase in time. Our results
show that participants produce a visuomotor response
consistent with the actual, postperturbation, time-to-tar-
get, as opposed to the expected time-to-target before the
perturbation. Therefore, our results not only suggest that
similar computations might occur for both stretch and vi-
suomotor feedback response regulation, but also that this
regulation originates from task-related OFC.
Our proposed time-to-target model is not meant to con-

tradict the conventional OFC models, but rather show that
the OFC could be approximated by a simple time-to-target
control. Our work has shown that simulated feedback in-
tensities from OFC exhibit the same underlying pattern as
a function of time-to-target over a wide range of movement
kinematics, matching well the feedback intensities of our
human participants (Fig. 7). As expected, changes in the
task goals (e.g., hit vs stop) changed the relation between
feedback responses and time-to-target. However, the
qualitative features, the squared-hyperbolic and logistic
function, remained consistent across these tasks. These
results suggest that, for a specific task and known dynam-
ics, we do not need to recalculate the feedback gains
before each movement, but instead can access the appro-
priate pattern as a function of the estimated time-to-target
in each movement. Therefore, gain computation in reach-
ing movements may not be a computationally expensive
process, but instead could be part of an evolutionary con-
trol strategy that allows for rapid estimation of the appro-
priate feedback gains. Moreover, the fact that both stretch
reflex and visuomotor feedback systems exhibit similar
control policies despite different sensory inputs, perhaps
only sharing the final output pathway, suggests that this
simple feedback pathway may be an evolutionary old sys-
tem. Indeed, several studies have suggested that visuomo-
tor feedback is controlled via a pathway through the
colliculus (Corneil et al., 2004; Reynolds and Day, 2012; Gu
et al., 2019). Furthermore, it has been suggested that vi-
suomotor feedback responses involve two different phases
that are behaviorally different Cross et al. (2019). This
might reflect two different pathways, the early through the
colliculus and the later through cortex. The nature of our
analysis only focuses on the earlier of the two phases,
which shows limited sensitivity to environment, but is still
sensitive to goal redundancy. We suggest that this limited
sensitivity could be the outcome of the time-to-target
model in action, providing simplified, yet still flexible control

in the early phase of the visuomotor response. Such a sys-
tem would then only need to be adapted as the dynamics
or overall task goals change, allowing for fine tuning of the
feedback gains according to changes in the environment
(Franklin et al., 2017).
Our results have shown the connection between the vi-

suomotor feedback response regulation and the time left
to complete the movement. Specifically, in our human
participants we recorded the increase in the time-to-tar-
get after the perturbation onset, which consequently in-
creased the movement durations (Fig. 6). This increase
was also longer for later perturbations, consistent with
previous studies (Liu and Todorov, 2007). According to
our normative time-to-target OFC model, the time-to-tar-
get alone is enough to successfully regulate visuomotor
feedback responses as observed in humans. This result
was independent of the physical kinematics of the move-
ment or the onset times of the perturbations. This sug-
gests that there is no recalculation of a control scheme for
the rest of the movement after the perturbation, but rather
a shift to a different state within the same control scheme.
Such findings are consistent with the idea that visuomotor
feedback gains are precomputed before the movement,
allowing for faster than voluntary reaction times (Franklin,
2016). Moreover, through our results, we gain a deeper in-
sight into how OFC governs these feedback gains,
through a straightforward relationship to the estimated
time-to-target, based on physics.
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3.5 Study II

Mixed-horizon optimal feedback control as a model of human movement

This study, authored by Justinas Česonis and David W. Franklin was published in Neurons, Behavior,

Data Science and Theory in September 2021. The study expands on results of Study I, suggesting

that infinite-horizon OFC can be used as a source for the expected movement duration, which is

a required input for finite-horizon control. The two controllers connected in series, here termed as

mixed-horizon OFC are then evaluated against the results of earlier published studies and are able to

explain some previously discussed, but not conclusively described phenomena of human visuomotor

control. Overall, the results of Study II provide additional support for time-to-target based visuomotor

control, as well as provide new powerful methods that can be used in modelling visuomotor control

computationally.

Contributions

Justinas Česonis was the primary contributor and lead author in this research. In addition, Justinas

Česonis designed, built and fit the computational models, as well as drafted the manuscript. Both

authors designed the research, interpreted the model behaviour and revised the final version of the

manuscript together.

Abstract

Computational optimal feedback control (OFC) models in the sensorimotor control literature span

a vast range of different implementations. Among the popular algorithms, finite-horizon, receding-

horizon or infinite-horizon linear-quadratic regulators (LQR) have been broadly used to model human

reaching movements. While these different implementations have their unique merits, all three have

limitations in simulating the temporal evolution of visuomotor feedback responses. Here we propose

a novel approach – a mixed-horizon OFC – by combining the strengths of the traditional finite-

horizon and the infinite-horizon controllers to address their individual limitations. Specifically, we

use the infinite-horizon OFC to generate durations of the movements, which are then fed into the

finite-horizon controller to generate control gains. We then demonstrate the stability of our model by

performing extensive sensitivity analysis of both re-optimisation and different cost functions. Finally,

we use our model to provide a fresh look to previously published studies by reinforcing the previous

results, providing alternative explanations to previous studies, or generating new predictive results

for prior experiments.
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K E YWORD S

mixed-horizon, motor control, optimal feedback control,
visuomotor responses, temporal evolution, feedback gains

1 | INTRODUCTION

Computational modelling has driven our understanding of human sensorimotor control by supplementing experimen-
tal results andmotivating new hypotheses [1–4]. In particular, inspiration from control engineering theory has recently
contributed to new ideas of how humans plan and execute movements [5]. For example, robust control inspired mod-
els have been considered in order to guarantee stability in the presence of noise [6–10]. Similarly, optimality principles
have been proposed to explain humanmovement and solve issues of redundancy through trade-offs between different
elements of the cost function, for example task goals and energy consumption [11–14]. Overall these computational
approaches have been very successful at reproducing and explaining human-like behaviours [15–18]. Among numer-
ous studies, different optimal control algorithms are applied to seemingly similar experimental paradigms. However,
there are subtle differences in implementations of different optimal control paradigms that could result in meaningful
behavioural differences, so the motivation of using any one specific algorithm is not always clear.

The majority of the control algorithms used for simulating optimal feedback control strategies rely on the linear-
quadratic regulator (LQR) or linear-quadratic Gaussian (LQG) techniques. However, distinctions between the types of
LQG or LQR implementations, such as the infinite, finite or receding time horizon, are still underdiscussed, which is
particularly important as these different implementations result in different simulated behaviours. For example, in goal
directed reaching movements, the finite-horizon control will accurately predict human-like dynamics such as feedback
responses to a perturbation [13, 19], as well as some kinematics, like undershooting the target. However, in many
experimental studies, where participants are required to finish each trial within the target, this undershooting also
becomes an inconsistency, and a model limitation. In contrast, similar simulations with infinite or receding horizon
models will produce appropriate kinematics [20, 21], but will fail to accurately model the feedback responses [19].
Here, we propose that in order to simulate more realistic movements using these paradigms we should utilise the
strengths of multiple different implementations, rather than weighing the pros and cons of each algorithm to minimise
the drawbacks.

Previous research has shown that humans plan and execute movements in separate steps, which likely occur in
different brain areas [22, 23]. As such, it is not unreasonable to assume that these steps could bemodelled by different
algorithmic implementations. Particularly, here we propose a new, mixed-horizon approach in modelling movement
planning and executionwhere the planning stage is represented by an infinite-horizon optimal feedback controller, and
the execution stage is represented by a finite-horizon OFC, with the infinite-horizon controller providing movement
durations to the finite-horizon controller. While we often consider planning as occurring prior to the movement
initiation, here themixed-horizonmodel uses the infinite-horizon controller to re-plan themovement duration (or time-
to-target) after any perturbation throughout the movement. That is, the planning and execution processes continue
throughout the entire movement, allowing the model to respond to any unseen or unpredicted perturbations with
appropriate human-like changes. As a result, the combined system allows us to benefit from the individual strengths
of the two controllers while addressing each of their limitations.
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2 | MATERIALS AND METHODS

2.1 | Mixed-horizon optimal feedback controller

In this article we propose a new optimal feedback control (OFC) framework for modelling human reaching movements,
called the mixed-horizon OFC. We have termed this framework as mixed-horizon, as it combines the features of
finite-horizon control [12, 24], and infinite-horizon control [20, 25]. Specifically, we have previously shown [19] that
even though the infinite-horizon controllers produce reaching movements of an appropriate duration even after the
movement is visually perturbed, the corrections to these perturbations do not vary in intensity in the sameway as they
do in human movements [19, 26–29]. On the other hand, the finite-horizon controller produces feedback responses
with variable intensity that depend on the time-to-target [19], consistent with the data of human participants, but
inherently requiring movement duration as an input variable. By combining the two frameworks into the single mixed-
horizon controller we can overcome the limitations of each individual model and generate a more human-like control
response. For completeness, we present two different types of models: a simplistic, separable model, implemented
as a linear-quadratic regulator (LQR) and assuming a perfect observer, and a more advanced non-separable model
implemented as iterative linear-quadratic Gaussian (iLQG) and with signal-dependent noise present.

A particular limitation of finite-horizon implementations for the modelling of perturbed goal directed movements
is that they inherently require movement duration (or time-to-target) as an input variable. However, in most real-life
and experimental cases this movement duration is not predefined. While it is possible to estimate this duration from
the data, or set experimentally for non-perturbed movements, we have previously demonstrated that human partic-
ipants non-trivially extend their movement times post-perturbation if the goal of the task is to reach the target [19].
Thus, for every perturbed movement, unless all movement variables (time, distance, perturbation onset, perturbation
magnitude) perfectly match, the movement duration would need to be separately estimated in order to accurately
apply the finite-horizon OFC. For tasks where model fitting is of interest such limitations may be addressed by individ-
ually assessing different types of movements within the task, however such implementation would still not generalise
to unseen perturbations.

The limitation of the required input duration for the finite-horizon models can technically be addressed in a multi-
tude of different ways: arbitrary choice, use-dependence, temporal discounting of reward [14], feed-forward learning,
or feedback control (particularly infinite [20, 25] or receding horizon [21]). However, while there could definitely be
feedforward effects in non-perturbed baseline movements, previous research indicates that feedback processes play
a significant role in setting the movement duration post-perturbation [19, 30], as this duration is adjusted based on
perturbation onset, type or magnitude. On the other hand, both infinite and receding horizon OFC implementations
have been shown to reliably predict movement durations for both non-perturbed and perturbed movements, inde-
pendent of the perturbation onset, and without changing control parameters. Therefore, there exists an infinite (or
receding) horizon OFC with a fixed set of control gains, that could immediately and reliably compute the movement
duration for the non-perturbed movement, and in case of a perturbation at any point during this movement – imme-
diately recompute an appropriate, extended movement duration. In turn this duration can then be used to adjust the
finite-horizon control policies post-perturbation. Finally, while we previously have shown that the infinite-horizon
OFC and receding-horizon OFC can both predict the post-perturbation movement durations equally well, for this
paper we utilised the infinite-horizon architecture due to fewer model parameters (i.e. no required length of horizon
as an additional input).
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2.2 | Experimental data

The focus of this article is on building the computational model using the OFC framework. However, to illustrate
the usability of our model, we apply it to model the results of previous behavioural studies. Specifically, we model
the findings of goal directed reaching movement studies with cursor and/or target perturbations [19, 28, 29]. We
chose these particular studies, as their experimental findings show the regulation of feedback responses to cursor or
target perturbations that traditional OFC models could not replicate. Moreover these studies demonstrate complex
modulation of feedback gains across a variety of time points, perturbation magnitudes, and conditions that we can
use to test our models.

2.3 | State space representation

For all models we used the same state space representation. The hand was modelled as a point mass with m = 2

kg. The intrinsic muscle damping was modelled as viscosity b = 10 Ns/m (consistent with [13] for movements of
comparable speed). This point mass was controlled in a two dimensional x-y plane by two orthogonal force actuators
that simulated muscles. These actuators were regulated by a control signal ut via a first-order low-pass filter with a
time constant τ = 0.06 s. The generic state-space representation at time t , used to simulate the system, could be
written as

xt+1 = Axt + But + εtBCut + ξt , (1)

where A is a state transition matrix (in discrete time, here only shown for one spatial dimension):

A =



1 δt 0

0 1 − bδt/m δt/m
0 0 1 − δt/τ


and B is a control matrix (in discrete time, here only shown for one spatial dimension):

B =



0

δt/τ
0


ξt represents additive control noise, which for our simulation purposes was always set to zero. εtC represents signal-
dependent multiplicative noise where εt is sampled at time t from zero mean and unit variance Gaussian noise, and C
is a 2 × 2 scaling matrix defining the magnitude of this noise. The numeric values of C were adjusted to simulate low,
medium or high noise levels for non-separable models, or set to zero for the separable model. State xt exists in the
Cartesian plane and consists of position ®p , velocity ®v and force ®f (two dimensions each). For our model implementa-
tions in discrete time we used the sampling rate δt = 0.01 s

The state of the plant that is used for control, xt , is not directly observable, but has to be estimated from the
system’s output, yt via the output equation
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F IGURE 1 An example of visuomotor feedback responses and intensities. A. A typical movement trajectory to
the visual perturbation of the target, perpendicular to the direction of movement. The perturbation is induced as a
target jump from its original position (dashed red circle) to the new position (solid red circle) when the movement
trajectory passes the perturbation onset location. An example here shows perturbation induced at the mid-distance
along the movement. Note that x and y axes are not shown to scale for better visibility, and participants do not
undershoot the target in experimental data. B. A typical motor response to the visual perturbation of the target,
perpendicular to the direction of movement. No force responses are present in the perturbation direction until the
perturbation is induced. An exemplar perturbation (same as in A) at t = 330 ms from the beginning of the movement
produces a force response in the direction of the perturbation approximately 150 ms later, due to visuomotor delays.
C. Same data as in B, zoomed to time of the perturbation and the response. Force response is averaged over the
time window of [180 ms - 230 ms] from the onset of the perturbation (grey shaded area) to determine the response
intensity. D. Equivalent perturbation induced in the model simulations. Due to no delays in the computational model,
the perturbation is induced 150 ms later compared to the human participants. In addition, due to the faster ramp-up
of the model responses, the feedback intensity is computed by averaging the response over [10 ms - 60 ms] after
the perturbation (gray shaded area).

yt = Hxt + σtD . (2)

For our models we set H = I6 = d i ag (1, 1, 1, 1, 1, 1) , meaning that all our hidden state variables (position, velocity,
force) are observable by the controller which is consistent with human physiology. σt is sampled at time t from zero-
mean unit variance Gaussian noise and D is a diagonal matrix representing the intensity of this noise on all output
states. In the non-separable models we set D = 0.015 d i ag (1, 1, 1, 1, 10, 10) , consistent with values in [13]. Even
though the same values could be used, in the separable models, for simplicity we set D = 0.

2.4 | Estimation of feedback responses

We apply all our models described in this paper to simulate visuomotor feedback responses [26, 31–33] by mimicking
the target jump or cursor jump paradigms. In these studies, a visual perturbation of either a target or a cursor during
a movement induces a feedback motor response that allows participants to bring the cursor to the target (Figure 1A).
When measured in terms of corrective force, this response is typically delayed about 150 ms from this perturbation
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onset until the corrective force is produced (Figure 1B). In order to quantify the magnitude of this response, the
force is typically averaged over a time window of [180 - 230] ms after the perturbation [19, 26, 28, 29] to produce a
visuomotor feedback intensity (Figure 1C). This intensity has previously been shown to vary based on the perturbation
onset location [28], magnitude [29], time-to-target [19] or task dependency [26]. Note that in many previous studies
the feedback intensity was referred to as the feedback gain, however as we use the term gain to describe the control
gains in this article, we opted to use feedback intensities to define these averaged force responses.

In order to estimate the appropriate kinematic behaviour and simulated feedback responses we first trigger the
perturbations based on the forward movement of the cursor. Specifically, based on the experimental design of the
simulated study there exists a perturbation onset location along the forward movement. Once the cursor crosses
this location, the perturbation timer of 150 ms is started to simulate the visuomotor feedback delay. After this delay,
the perturbation is triggered by shifting the cursor or the target appropriately to the task design (Figure 1D). Thus,
from the external observer’s perspective any perturbations in our model are happening 150 ms later than in human
experiments. However, considering the delays present in human visuomotor system, the motor responses in human
participants would be observed at the similar time as in our model, for the perturbations with the same onset.

In our models in this study we induced the visuomotor delays to the feedback system of our model by simply
delaying the perturbation by the fixed duration. This results in the similar behaviour between the model and human
participants, as the responses are produced at the matching times. An alternative implementation for the delay could
be a fixed intrinsic system delay. However, this implementation would require expanding the state space by 15 times
(with ourmodel sampling rate of 100Hz and 150ms visuomotor delay), and adding additional computational load. Our
preliminary work showed little differences in these two implementations for simulation of these visuomotor feedback
responses.

After the perturbation is physically induced we record the average response of the model to the perturbation
over the time window of [10 - 60] ms to calculate the feedback intensity. This is equivalent to [160 - 210] ms time
window in humans which is somewhat shorter than the conventional [180 - 230] ms time window. However, this is
necessary as our models produce faster responses than humans and is also consistent with our previous work [19].

Finally, while there is a distinction between responses to cursor perturbations and target perturbations in human
participants [34], in terms of the modelling there is no functional distinction between the target or cursor jumps, as
our models only account for the difference vector between them to estimate an appropriate control signal. Therefore,
the selection of the perturbed entity (cursor or target) has no effect on our final simulation results.

2.5 | Separable mixed-horizon OFC

Separable mixed-horizon OFC is a simplified model with no additive or multiplicative control noise and perfect state
information. This model consists of two major building blocks: the infinite-horizon controller, implemented as an
infinite-horizon linear quadratic regulator (LQR), and a finite-horizon LQR controller. First, we use the infinite-horizon
LQR to simulate the movement from start to target position in order to estimate the appropriate movement duration
for such a movement. This could be considered as a movement planning stage. Second, we use that movement
duration as a parameter for the simulation using the finite-horizon controller. As a result, the two parts are connected
linearly and can thus be implemented separately and then combined together.

Infinite-horizon LQR is a simplistic optimal controller that generates an optimal control solution to a given system
with state cost xTt Qxt and control cost uTt Rut . We define the generic form of the performance index J as
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J =
∞∑
t=0

xTt Qxt + u
T
t Rut =

∞∑
t=0

ωp ( ®pt − ®p∗)2 + ωv | | ®vt | |2 + ωf | | ®ft | |2 + ωr | |ut | |2 (3)

where ωp , ωv and ωf are position, velocity and force state cost parameters, ωr is the activation cost parameter and ®p∗
is a target position. For the finite-horizon controller this performance index is instead

J =
N∑
t=0

xTt Q t xt + u
T
t R tut =

N∑
t=0

ωp,t ( ®pt − ®p∗)2 + ωv ,t | | ®vt | |2 + ωf ,t | | ®ft | |2 + ωr ,t | |ut | |2 (4)

where N is the duration of the movement obtained via the infinite-horizon controller. Note here that the control
parameters for the finite horizon can be non-stationary and thus be different for every time-point. As a general rule
unless stated otherwise, for fast, goal-directed reaching movements we set Q = 0 for t , N , and kept R stationary,
consistent with [12, 13].

2.5.1 | Model optimisation

For a given mechanical system, the behaviour of the LQR system is defined by the control parameters ωp , ωv , ωf and
ωr . Thus, instead of selecting the values of control parameters arbitrarily (e.g. from previous literature or by qualitative
inspection of final system kinematics or dynamics) we opted to quantitatively optimise our model for the best suited
parameters. We executed the optimisation for the infinite-horizon part and the finite-horizon part separately due to
their linear relation.

Within our mixed-horizon implementation we use the infinite-horizon part to estimate the durations of individual
movements. As a result, we optimise the control parameters of the infinite-horizon part based on the fit between the
experimental movement durations, and the movement durations produced by our model in an equivalent paradigm.
Specifically, we optimise these parameters on the mean durations of all available perturbed movements simultane-
ously for the study that we are modelling. Thus, with a single set of optimal control parameters, the infinite-horizon
controller produces the movement duration that matches the movement duration of any experimentally perturbed
movement, when this matching perturbation is induced. In this way, instead of searching for a new set of control
parameters (and thus deriving new controller gains) for every different perturbation, we ensure that for any perturba-
tion our infinite-horizon controller always produces amovement duration that matches that of the human participants,
without changing control parameters or control gains. We used the sum of squared-residuals as a goodness of fit mea-
sure between the real experimental movement durations and those produced by our models, and the Nelder-Mead
algorithm to find the best fit. Furthermore, in order to reduce the chance of finding a local minimum we instantiated
the optimisation 10 times with random initial conditions and selected the solution with the lowest sum of square-
residuals (SSR).

We use the finite-horizon implementation in order to obtain the kinematics and dynamics for each model. As a
result, we aim to fit the kinematics of the finite-horizon simulations to the kinematics of the movement from exper-
imental data. In order to evaluate how well the model kinematics fit to the experimental kinematics we devised a
kinematic cost function
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Γ = γ1 (vpeak , r eq − vpeak ,model )2 + γ2 (ppeak , r eq − ppeak ,model )2

+ γ3 (vend , r eq )2 + γ4 (pend , r eq − pend ,model )2
(5)

where the four components are squared-errors of the peak velocity magnitude, forward position of where the peak
velocity was achieved, the end-point velocity and the end position (i.e. the distance of the under/overshoot). The
parameters γ1−4 are the relative weights assigned to each of the components. The vpeak , r eq , ppeak , r eq and pend , r eq
are fixed quantities dependent on the experiment of interest and are measured in cm/s and cm respectively. Equation
5 is designed to specifically simulate the experimental conditions that participants in the experiments were instructed
to follow. Instead of fitting the whole kinematics, we optimise the kinematics to the similar “instructions” as the
participants are given. For example, if participants are instructed to “stop at the target” (meaning have zero velocity
and zero error from the target), “try to produce movements that are the right speed” (indirectly instructing peak
velocity via “too fast” and “too slow” feedback), or in some specific cases (i.e. experiments in study 1) providing a
direct feedback of peak velocity location, our kinematic cost function provides similar constraints to our model via
parameters γ1 − γ4.

2.5.2 | Model sensitivity to the kinematic cost function

The kinematic cost function influences the desired model behaviour. For example, based on Equation 5, a model
where γ1 >> γ2, γ3, γ4 would reward kinematics that match the peak velocity requirement, while placing less emphasis
on the peak velocity location, final position or final velocity. In contrast, a model with γ3 >> γ1, γ2, γ4 would prefer
kinematics with no residual velocity while relaxing demands on the other three components. As a result, we conducted
a sensitivity analysis on the kinematic cost function to estimate a range of differentmodel behaviourswhen performing
the same task. To do so, we first selected a range of different kinematic cost functions. For the baseline Γ we used
relative weights (γ1, γ2, γ3, γ4) = (4, 4, 0.25, 25). For all other Γ we kept three of the relative weights at their baseline
value, while varying the fourth one. We chose γ1 ∈ [0.125, 16], γ2 ∈ [0.125, 16], γ3 ∈ [0.125, 16] and γ4 ∈ [0.25, 400].
For each Γwe then performed a full model optimisation to find the control parameters ωp , ωv , ωf and ωr that minimise
this given Γ. As previously, we conducted a Nelder-Mead optimisation with 10 different instances and selected a
solution with the minimum Γ as a single output. Finally, we analysed the resultant model dynamics qualitatively by
comparing the simulated force responses (intensities) to the visuomotor feedback intensities in the experimental data.

2.5.3 | Model sensitivity to individual optimisations

We also tested how sensitive our model is to individual optimisation instances. Specifically, for every individual optimi-
sation the best fit behaviour is achieved with a different set of parameters (ωp , ωv , ωf , ωr ). Thus, we also analysed the
relative distribution of these best fit parameters of individual optimisations, and how this change influences the dy-
namics and kinematics of the control system. We performed optimisation sensitivity analysis 40 times on the baseline
kinematic cost function.
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2.6 | Non-separable mixed-horizon OFC

The implementation of non-separable mixed-horizon OFC is similar to the separable mixed-horizon OFC. The main
difference between the two is the presence of multiplicative control noise in the finite and infinite-horizon blocks. For
the infinite-horizon part, instead of using an infinite-horizon LQR implementation we adapted the implementation
used by [25], where the control noise was transformed to a loss on control gains and iteratively optimised until con-
vergence. For the finite-horizon part of the model we used the iterative LQG algorithm to obtain the control policy in
presence of noise [12, 13].

In presence of multiplicative control noise both infinite and finite-horizon LQG become computationally more
expensive due to the iteration until convergence when calculating control and observer gains. As a result, to make
the optimisation manageable, for the models with multiplicative noise we initiated every individual optimisation three
times instead of the 10 that we used for the separable models, and selected the best value. While this increased the
chance that the performance of the model is sub-optimal, our models still behaved generally similar to the separable
conditions.

2.6.1 | Noise parameters

In total we tested the optimisation and controller behaviour in three different noise conditions. We introduced these
conditions via a noise scaling matrix C (Equation 1). The scaling matrix was defined as

C = k

[
0.15 0.05

−0.05 0.15

]
(6)

with k = 1 for low noise condition, k = 3 for medium noise condition and k = 5 for high noise condition. The implemen-
tation of C , where noise is proportional not only on the activation of the actuator responsible for moving in a desired
direction, but also to the activation of a perpendicular one, induces a coupling between the two Cartesian actuators,
consistent with human muscles. The values of k were selected by trial and error: k = 1 produces a control behaviour
which is generally stable, but different from no-noise behaviour, and k > 5 often results in optimisation timing out
without finding a minimum. In comparison, a typical human participant from [19] produced motor variability that is
comparable to our model at k = 5, but ranged between k = 3 and k = 10 for different participants. As the human
participants experience contributions from other variability sources (e.g. planning variability, signal independent noise,
measurement noise) in addition to the control-dependent noise, the actual level of control-dependent noise is there-
fore likely comparable to our selected values. Finally, while this does not strictly mean that k = 5 mimics high motor
noise, with our implementation we could not consistently test any higher noise values.

2.7 | Specific model implementations

In order to demonstrate the versatility of the mixed-horizon model, we used our model to replicate the experimental
behaviour results of previous studies. As different studies have slight differences in implementations, our model had
to be adapted for an individual study to comply with the design. While the methods listed above are common across
different studies that are modelled in this article, the current section details specific differences for each study.
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2.7.1 | Study 1: Česonis & Franklin 2020 [19]

In the original study participants were asked to reach to the target while producing a specific velocity profile: baseline,
early peak (movement accelerated early and slowed for the latter portion), or late peak (velocity gradually increased
and reached the peak late in the movement) [19]. From the modelling perspective, these three different conditions
were implemented in the finite-horizon OFC by making the activation cost ωr time-dependent:

R ′ (t ) = exp(p t+qr )
mean (R ′) (7)

ωr = ωr R
′ (t ) (8)

Here p , q and r are the three parameters governing the temporal shape of the activation cost function. In order
to maintain activation cost of an equivalent magnitude between conditions, the R ′ was normalised to the mean value
of 1.

For the finite-horizon part of our model we implemented this scaling to produce the local offset of the peak
velocity. However, the same approach can not be applied to the infinite-horizon part of the model. Particularly, the
temporal evolution of the ωr assumes the known movement duration, so that it can then be normalised over the
movement duration. If this duration is not known, then this temporal profile becomes undefined. As a result, the
infinite-horizon part did not modulate peak velocity locations, but instead we re-fit the control parameters to adapt
the movement duration to the experimental condition.

While selecting a new set of controller parameters seems unreasonable for modelling human-like systems, we
utilised the model (in)sensitivity to different optimisations to find a parameter space, such that we can switch between
conditions within the infinite-horizon part by only changing one of ωp , ωv , ωf and ωr . Such adaptation is more realistic
than changing all parameters – it is reasonable to assume that different required movement kinematics would impart
a change in some, but not necessarily all, control parameters.

In order to evaluate the model performance in modelling study 1, we simulated feedback responses equivalent
to those in the experiment. In the experiment, as the participants reached towards a target located 25 cm away from
the start position, their cursor representation was occasionally perturbed perpendicularly to the movement direction
by 2 cm. These perturbations were implemented as cursor jumps either to the left or to the right, and induced as the
hand crossed one of five onset locations (P1, P2, P3, P4, P5), evenly spaced along the movement distance (4.2, 8.3,
12.5, 16.7, 20.8 cm). Similarly, our model simulated each of these perturbation conditions – five different perturbation
onset locations for each of the three velocity conditions – and generated a total of 15 responses.

2.7.2 | Study 2: Dimitriou et al. 2013 [28]

Experiment 1 in [28] is conceptually very similar to the study described above. As a result, here we focus on simulating
the results of experiments 2 and 3. In total, for each experiment we simulated four different perturbed movements.
Two of these movements were to a stationary target: cursor-perturbed reaching to a "far" target (25 cm) and cursor-
perturbed reaching to a "near" target (17.5 cm), where the cursor was perturbed laterally by 2 cm. In the other two
movements, in addition to these cursor perturbations the target was also perturbed in the movement direction: in
movements where the starting target was "near", the target was perturbed to "far" and vice-versa. In all conditions
of experiment 2 both cursor and target perturbations were induced simultaneously when the participant had moved
15.75 cm from the start position. In experiment 3 the target perturbations were induced at 10.5 cm, instead of 15.75
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cm, and the cursor perturbations were still induced at 15.75 cm. In experimental data this resulted in about a 100 ms
time difference between the two perturbations [28].

The major difference between study 1 and study 2 is that in study 2, perturbations only happened in channel
trials (there were no maintained perturbations as in study 1). As a result, we modified our model implementation to
simulate these channel trials by fixing the x-position (position perpendicular to the start-target axis) to 0 when the
cursor is not perturbed, and to 2 cmwhen the cursor is perturbed. We only constrained this position in the simulation
of the movement, but not during the planning of the movement (i.e. when the controller is being calculated).

In terms of the baseline movements (no perturbations) study 2 has similar requirements to study 1. As a result,
for the finite-horizon part of our model we used the same model parameters as in the study 1 baseline condition.
However, we have tuned the parameters of the infinite-horizon part of the model so that durations of simulated
movements better fit the durations of the movements in the experimental data. Here for all the 4 types of movement
and both experiments we used the same set of parameters.

2.7.3 | Study 3: Franklin et al. 2016 [29]

In this study participants were asked to reach to a target 25 cm away from the start position with some trials being
perturbed during the movement. The perturbations could happen either to the target, the cursor, or both, and were
always lateral to the movement direction. In terms of magnitude, perturbations could be 0 cm, 1 cm, 2 cm or 3 cm
for both target and cursor, and could occur to either left or right. As one of the findings, the authors showed that for
isolated perturbations (only cursor or only target perturbations) the response intensity increased with perturbation
magnitude in a non-linear, saturating manner (see Figure 1D,E in [29]). We simulated these isolated perturbations in
ourmodel in order to first replicate, but also gain further insight into possiblemechanisms governing this phenomenon.

In the original study, the lateral cursor or target perturbation always occurred when participants had moved 12.5
cm from the start position. However, in a simulated experiment we induced these perturbations at five equally spaced
locations along the movement (one of them being at 12.5 cm). With more simulated perturbations we can analyse
the behaviour of the controller not only at the original (experimental) perturbation, but also around it in order to see
whether this non-linear modulation arises from the general regulation of the response, or if it can be explained by the
time-to-target regulation [19]. In the former case, we would expect to see stronger overall responses with increasing
perturbation size, independent of the onset position/time. In the latter case, we would expect to see comparable
responses across the conditions as long as the time-to-target matched.

Similar to our model of study 2, we maintained the same finite-horizon parameters as the baseline model of our
study 1, as the requirements for movements are similar. However, we again fit the infinite-horizon parameters to
better match the movement durations between the model and the data.

2.8 | Code implementation

All code was written in Python 3.7.1 in a Spyder 4.1.3 environment. Array computations and optimisations were
executed with NumPy v1.19.0 and SciPy v1.5.1 libraries. Where necessary, state-space systems were discretised
from continuous time using a zero-order hold method available in control v0.8.3.
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2.9 | Code availability

The code for all the simulations that are described in the paper, as well as the data obtained via these simulations is
freely available online at https://doi.org/10.6084/m9.figshare.14356346.

3 | SENSITIVITY ANALYSIS

We performed sensitivity analysis on our model before selecting the model parameters for any given simulation of an
experiment. For this analysis we used the mixed-horizon model implementation that we built to simulate our previous
results [19]. In order to understand how sensitive the model behaviour is to individual optimisations with the same
kinematic cost function (Equation 5), we first performed optimisation sensitivity analysis. This is necessary due to
the fact that our optimisation minimum is not a single point within the parameter state-space, but a set of points.
Each set of points could potentially result in different model behaviour, as each optimisation run produces a different
set of model parameters. However, such a model would not be reliable for our applications, so this has to be tested
first. On the other hand, such analysis might allow us to uncover an underlying structure of the optimal parameter
space, if multiple parameter sets produce identical optimal behaviours. Second, we performed sensitivity analysis on
different kinematic cost functions that we use to optimise the model behaviour. While it is expected that changing
the kinematic cost function will affect the model behaviour in general, our purpose with this analysis is to see how
sensitive the relative behaviour is between the conditions (e.g. the relative regulation of simulated responses in three
different kinematics of our previous work [19]). Specifically, by analysing the cost sensitivity we can test whether
particular outcomes of the model simulations result from model fitting, or whether that behaviour arises from the
structure within the model. This distinction is important, as the former would indicate that a vast range of behaviours
could be fit to a specific model, indicating that the model structure is not meaningful. However, the latter would
indicate that the behaviour itself is not an outcome of the parameter choice, but results from the model structure,
and thus the behaviour is robust.

3.1 | Optimisation sensitivity

The mixed-horizon OFC consists of two main parts – the infinite-horizon and the finite-horizon OFCworking in series.
As each part is responsible for different functions within the whole model, namely, determining the movement dura-
tion, or, computing the optimal kinematics and dynamics for that duration, the two parts can be optimised separately.
In this section we present the optimisation sensitivity analysis for both parts of separable (without control noise) and
non-separable (with control noise) models.

3.1.1 | Separable infinite-horizon controller

An infinite-horizon controller in the mixed-horizon framework is used to estimate the total movement duration, which
is then passed to the finite-horizon controller to generate movement. In order to fit this controller to produce move-
ment durations, we optimised its state and activation costsωp , ωv , ωf andωr so that themovement durationsmatched
those of human participants in equivalent conditions [19]. Specifically, for each of the three kinematics (baseline, early-
peak velocity and late-peak velocity) we simulated a movement where the cursor was perturbed in each of the five
perturbation onset locations (once per movement) and evaluated the goodness of fit by calculating the sum of square
residuals (SSR) between the generated and actual movement durations. We used this goodness of fit, together with
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F IGURE 2 Optimisation sensitivity analysis for the separable model. A. Distribution of the best LQR
infinite-horizon control parameters in the ωp -ωv -ωr parameter space. Each dot represents one set of parameters,
while separate plots show the same parameters in a different projection. The fourth control parameter ωf is not
shown, as it is tied to ωv in a fixed relationship. Black triangles represent the baseline condition, green squares the
early-peak velocity condition, blue circles the late-peak velocity condition simulations. Optimal parameters from
different conditions do not overlap in ωp − ωv projection except at the origin, but do in the other two projections. B.
Movement duration sensitivity to different optimisation instances. Blue (left), green (middle) and black (right) bars
represent the movement durations of the late-peak, early-peak and baseline conditions. Lighter shaded bars (left
bars for each perturbation) show the mean and 95% confidence intervals (95% CI) of the experimental movement
durations for each condition and each of five perturbations (P1-P5). Darker shaded bars (right bars for each
perturbation) show the movement durations (and 95% CI) simulated by our separable infinite-horizon model. C.
Distribution of the best LQR finite-horizon control parameters in the ωp -ωv -ωr parameter space for the baseline
condition. Each dot represents one set of parameters, while separate plots show the same parameters in a different
projection. The fourth control parameter ωf is not shown, as it is tied to ωv in a fixed relationship. Optimal
parameters are systematically distributed on a line in the parameter space. Early-peak and late-peak conditions are
not shown, as they share the same parameter values (with additional parameters to determine the shape of the
velocity profile). D. Finite-horizon LQR simulated feedback intensities for the baseline condition. Each set of
parameters (one dot) from C is used to generate one profile (trace) of simulated feedback intensities by simulating
five perturbed movements with different perturbation onset locations. Each of five dots here represents the
perturbation onset position, and the corresponding response intensity. All 40 of simulated intensity profiles overlap
demonstrating consistency across optimisations.
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Nelder-Mead optimisation, to find the ωp , ωv , ωf and ωr that provide the best fit between model and data durations.
We repeated this optimisation 40 times for each condition, generating a set of control parameters per optimisation.
These parameters are shown in Figure 2A.

In order to evaluate the sensitivity of the simulated movement durations to different optimisation runs we com-
puted the 95% confidence intervals (95%CI) for these simulated durations and compared them to the equivalent
95%CI for human movements. Despite the wide variations in model parameters for each optimisation, our 95%CI
for simulated data is well within the respective intervals for human data, meaning that our simulations are less vari-
able than human movements. Thus, these results show that the model is not sensitive to different instances of the
optimisation.

3.1.2 | Separable finite-horizon controller

Similar to the infinite-horizon part of the model, we analysed the sensitivity of the finite-horizon controller to different
runs of optimisation. While for the infinite-horizon part we evaluated the goodness of fit during the optimisation via
the SSR between movement durations, here we already use the movement duration as the model input. Instead, for
the finite-horizon part we minimise the kinematic cost function Γ (Equation 5) in order to produce movements that
are kinematically similar to those of the human participants.

The distribution of the optimal state and activation costs over different optimisations is shown in Figure 2C.While
every optimisation yielded a different solution numerically, all of these solutions were distributed on the same line
in the parameter state-space. In addition, no differences were observed across simulations in either the kinematics
or dynamics. Moreover, each simulation produced a consistent variation of the feedback intensities across perturba-
tion locations (Figure 2D). Thus, all together this shows that the separable finite-horizon OFC is extremely robust to
different instances of optimisation.

3.1.3 | Non-separable infinite-horizon OFC

Here we analysed the sensitivity of the non-separable infinite-horizon OFC to different optimisation runs. While the
non-separable model is similar to the separable model in its implementation, a key difference is the noise in the system
which influences model behaviour and leads to a different optimal control solution. Similar to the separable model, the
non-separable infinite-horizon OFC is used to compute the required movement duration that would be used by the
finite-horizon part. As a result, the sensitivity analysis for the non-separable model is largely similar to the separable
model – we used the SSR between themodel predicted movement duration and the experimental movement duration
as a goodness of fit measure.

In total we simulated the non-separable models with three different levels of noise (Equation 6) k = 1, k = 3

and k = 5. For each of the three noise levels we initially ran the optimisation 120 times per kinematic condition (360
optimisations total per noise level). For each of these optimisations we observed one of three different outcomes:

1. Optimisation converged to a global minimum, with parameters producing consistent and replicable movement
durations;

2. Optimisation converged to a local minimum due to random initial conditions, with parameters producing incon-
sistent movement durations;

3. Optimisation did not converge, or converged with parameters that are out of bounds (e.g. negative costs).
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F IGURE 3 Optimisation sensitivity analysis for the non-separable model. A. Distribution of the best LQG
infinite-horizon control parameters in the ωp -ωv -ωr parameter space for noise level k = 1. Each dot represents one
set of parameters, while separate plots show the same parameters in a different projection. The fourth control
parameter ωf is not shown, as it is tied to ωv in a fixed relationship. Black triangles represent the baseline condition,
green squares the early-peak velocity condition, blue circles the late-peak velocity condition simulations. Successful
optimisations converge onto the parameter plane perpendicular to the ωp − ωv plane and do not overlap across the
conditions. Non-successful optimisation outputs are also shown even though they did not converge, and produce
undesirable behaviour. B, C. Same as in A, but for noise levels k = 3 and k = 5 respectively. D. Distribution of the
best LQG finite-horizon control parameters in the ωp -ωv -ωr parameter space for noise level k = 1 in the baseline
condition. Successful optimisations converged to a line in the parameter space. Unsuccessful optimisations deviate
from this line, and are not shown as they are mainly outside of figure boundaries. Early-peak and late-peak
conditions are not shown, as they share the same parameter values (with additional parameters to determine the
shape of the velocity profile). E, F. Same as in D, but for noise levels k = 3 and k = 5 respectively. Interestingly, the
optimal parameter space for k = 3 results in two lines in the parameter space.

For each noise level we selected only the parameters that converged to a reliable solution (outcome 1). Specifically,
with each set of obtained (ωp , ωv , ωf and ωr ) we simulated the movement durations via the infinite-horizon controller
three times, and only selected those sets of parameters where the geometric mean of the sums of squared-errors
between simulated durations and experimental durations was less than 2.15 × 10−3 s2. This method helped filter out
solutions that belong to option 2, however occasional outliers were still present after such filtering. As a result, we
performed an additional outlier removal step using the 1.5I QR (interquartile range) rule, applied on mean simulated
movement durations. After the outlier removal, there remained 132 parameters sets for k = 1 , 182 parameter sets
for for k = 3 and 177 parameter sets for k = 5. Finally, in order to keep the number of reliable solutions for k = 1

comparable to the other two noise conditions, we ran an additional 60 optimisations per kinematic condition (180 total
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optimisations) for this noise condition. This brought the total of remaining parameter sets for k = 1 noise condition
to 206.

The resulting optimal parameters for all three noise levels are visualised in Figure 3A-C. From all successful simu-
lations we also estimated the mean and 95%CI of movement durations for each noise level (Figure 4A,C,E). Except for
k = 1 baseline condition, all model simulations show lower or comparable variation than the human data, suggesting
that the model is sufficiently insensitive to different optimisations. For the k = 1 baseline condition, the model mean
is shifted towards high values due to a few outliers. While these outliers generally worsen our results, they can easily
be spotted qualitatively and thus removed, not compromising model behaviour when performing simulations.

3.1.4 | Non-separable finite-horizon OFC

As previously, we optimised non-separable finite OFC by evaluating the goodness of fit via a kinematic cost function
Γ (Equation 5). For each of the three noise levels k = 1, k = 3 and k = 5 we fit our model to the baseline condition
200 times. As in the infinite-horizon optimisations, some of these optimisations did not converge to a stable solution
(e.g. by producing negative parameter values). In total, there were 89, 107 and 114 successful optimisations for k = 1,
k = 3 and k = 5 respectively, shown in Figure 3D-F.

We then randomly took 12 sets of our baseline optimisation output parameters, and used them to find best-fit
values p , q and r (Equation 7) for generating early-peak and late-peak velocity conditions of the movement. For each
set of these 12 baseline parameters we repeated the process 5 times per non-baseline condition to generate a total
of 120 sets of (p , q , r ) parameters (60 per non-baseline condition). Although these parameters differed numerically,
the resulting behaviour was similar (Figure 4B,D,F).

3.1.5 | Mixed-horizon OFC sensitivity to different optimisations

Overall our results of model sensitivity show that the model is reasonably robust to different optimisations. Depend-
ing on the noise level in the system the optimisation may time-out without converging to the minimum. However,
when the optimisation successfully converged, even though the resultant parameters were numerically different, they
produced largely similar behaviour within our model.

3.2 | Cost sensitivity

The optimisation sensitivity analysis presented above is aimed towards testing the reliability of our model. Specifically,
it demonstrates that given the actual parameters and cost functions that we use to obtain the final output, our model’s
behaviour can be reliably replicated, even though the parameter solution is numerically different. However it is also
important to test whether the behaviour of our model is a result of model structure and the algorithm itself, or if it
is heavily influenced by the optimisation settings (i.e. a cost function). Thus, in addition to optimisation sensitivity
we also analyse the model sensitivity to different cost functions. Particularly, as there is no variability in cost func-
tion choice for the infinite-horizon part of the model (as the desired output is straightforward), we will focus on the
kinematic cost function relative weights γ1, γ2, γ3, γ4 (Equation 5), and their effect on the model behaviour.

We performed this sensitivity analysis in the context of the model for our earlier study [19]. Here two alternatives
are possible when we optimise the model parameters for different weights γ1, γ2, γ3, γ4. On the one hand, modifying
the kinematic cost function Γ could impact the kinematics and dynamics of each condition independently, and as
a result this would offset the relative regulation of feedback intensities across these conditions. This would imply
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F IGURE 4 Sensitivity of the non-separable mixed-horizon OFC to different optimisation instances. A. Blue (left),
green (middle) and black (right) bars represent the late-peak, early-peak and baseline movement durations for noise
level k = 1. Lighter shaded bars (left bars for each perturbation) show the mean and 95% CI of the experimental
movement durations for each condition and each of five perturbations (P1-P5). Darker shaded bars (right bars for
each perturbation) show the movement durations simulated by our non-separable infinite-horizon model. B.
Simulated feedback intensity sensitivity to different optimisation instances using the mixed-horizon OFC for noise
level k = 1. Each line trace represents a feedback intensity profile, generated by simulating five perturbed
movements with different perturbation onsets, but with the same control parameters. Twelve simulated profiles are
shown for the baseline condition (black lines) along with sixty profiles each for the early peak (green) and the
late-peak (blue) conditions. Only convergent optimisation outputs are used. The converging outputs produce
consistent behaviour even when the final parameters are different. C, D. Same as A, B. but noise level k = 3. E, F.
Same as A, B. but noise level k = 5. In F. 58 out of 60 simulation profiles overlap, while two simulations produced
lower intensities.

that the observed experimental behaviour replicated by our model is mostly influenced by the cost function used
to generate a specific movement. On the other hand, it is also possible that modifying the kinematic cost function
will impact the kinematics and dynamics of the model in a way that the relative regulation of feedback intensities
remains similar. This result would imply that the observed experimental behaviour is influenced by the underlying
model structure, and not by the choice of the control parameters.
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F IGURE 5 Cost sensitivity analysis for the separable and non-separable mixed-horizon OFC models. A.
Simulated feedback intensity for different kinematic cost functions for the separable model. Every different cost
function is represented by three points (blue, green and black), connected via a grey line. Each point represents a
mean simulated feedback intensity for the respective simulated condition across five perturbation locations.
Different marker styles represent a different family of kinematic cost functions. Overall the relative variation across
different experimental conditions is consistent for a variety of cost functions. B. Simulated separable model
kinematics for different kinematic cost functions represented as a combination of peak velocity location and
magnitude. Altering the cost function affects the separation of the kinematic profiles where for some cost functions
the baseline and the late-peak condition converge towards similar kinematics. Vertical dashed lines indicate desired
location of peak velocity for each condition C. Simulated feedback intensities and D. simulated kinematics for the
non-separable model. Different marker styles and colors represent different families of cost functions and noise
levels respectively.
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We performed the cost sensitivity analysis by first setting the kinematic cost function Γ to its default value, with
(γ1, γ2, γ3, γ4) = (4, 4, 0.25, 25). In turn, we then varied each of the γs within their boundary range while keeping
the other three fixed. We chose the boundary ranges for γ1 ∈ [0.125, 16], γ2 ∈ [0.125, 16], γ3 ∈ [0.125, 16] and
γ4 ∈ [0.25, 400]. Furthermore, we also tested different values of vpeak , dat a in the range [47, 75] cm/s.

For the separable model we initially tested 80 different cost functions (20 for each γ1−4, evenly spaced within
the boundary range, with vpeak , dat a = 60 cm/s). For each simulation we looked at the kinematic features (location
and magnitude of peak velocity) and dynamics (qualitative distribution of simulated feedback intensities, as well as
mean intensity per condition). The summary of these simulation results is shown in Figure 5A,B. Generally, the results
indicate that for separable models, within the range of parameters tested, varying parameters γ2−4 has no effect on
model behaviour, while changing γ1 influences the peak velocity magnitudes slightly. However, independent of the
cost function, the model maintains the relative regulation of the three kinematic conditions producing consistent
kinematics that satisfy the task requirements (Figure 5A).

As we only observed the variance in model behaviour within the modulation of γ1, we further tested the effect
of different target peak velocities in range [47, 60] cm/s and their relative weights (Figure 5AB). By changing the
target peak velocity magnitude within the cost function we alter the model behaviour in two ways. First, reducing
the peak velocity changes the movement kinematics. While the early-peak velocity condition can be successfully
optimised to still produce the target kinematics, both baseline and late-peak conditions deviate further from the
target kinematics (Figure 5B). Second, the movement dynamics (feedback intensities) also change. The early-peak
condition continues to produce weaker responses than the baseline condition, but the late-peak condition response
decreases to the point where it is no longer upregulated in comparison to the baseline. It is important to note, that
although we altered the kinematic cost function, we did not alter the movement duration when changing this function
– the movement duration is solely produced by the infinite-horizon part of the model. Thus, by changing the target
velocity we demonstrate the model behaviour when moving away from its designed optimum point.

We repeated the sensitivity analysis for the non-separable model in the same way as for the separable model,
except that we only simulated 10 equally spaced values for each γ1−4 due to increased computational complexity
(Figure 5CD). In addition, we only analysed two select peak velocities: vpeak , dat a = 60 cm/s, and vpeak , dat a = 75 cm/s.
The 60 cm/s were selected based on our results for the separable model providing the best separation among the
kinematic profiles at this velocity (Figure 5B). The 75 cm/s provides even better separation across the kinematics for
the non-separable model (Figure 5D). For both peak velocities we performed our simulations at the three different
noise levels. Importantly, here again we do not observe any meaningful differences across different noise levels in
terms of the relative control gain regulation or kinematic targets (peak velocity position or magnitude, Figure 5C,D).
Overall our cost sensitivity analysis shows that, within the range of cost functions that we tested, themodel behaviour
remains consistent and thus the results are not strongly affected by the choice of the specific kinematic cost function.

4 | RESULTS

Our sensitivity analysis demonstrated that our models can produce kinematics and dynamics with some systematic
differences that depend on the parameters and cost functions. The flexibility of our model allows the simulation of
many different types of perturbations or movement conditions. To demonstrate and test the generality of our mixed-
horizon model, we can simulate specific conditions from previous studies to compare against experimental results.
Here we use our model to replicate the experimental behaviour of three previous studies [19, 28, 29]. To do this, we
now select a final set of parameters to model our data. Specifically, we select these parameters to fit study 1, and then
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apply these same parameters to study 2 and study 3, unless the difference in behaviour requires a specific update
(any differences detailed below).

4.1 | Study 1

4.1.1 | Separable mixed-horizon OFC

Final model parameters
In our sensitivity analysis we already demonstrated that for the separable model there exists a set of values (ωp , ωv , ωf ,
ωr ), with which our mixed-horizon OFC produces movements with durations matching our earlier experiment [19].
However, for each type of kinematics, in order to produce a required movement, three different parameter values
are required (ωp , ωv and ωr , as ωf = ωv *10). From the human motor control perspective this becomes challenging
– optimising for, and learning a new set of control parameters for each new movement would be computationally
expensive. On the other hand, it could be faster to produce a novel movement if a single hyper-parameter could be
used to switch between these different kinematics.

Figure 2 demonstrates the relationship of the optimum parameter spaces across all three different kinematics
for the infinite-horizon part of the model. As parameters for each condition are distributed in a plane, such that its
projection to the ωp -ωv plane is a line, we can select parameters ωp and ωr , common across all three conditions, and
find a value of ωv , unique for each condition. Indeed, by arbitrarily selecting (ωp , ωr ) = (1500, 0.006) and performing
optimisation on ωv for each condition we found ωv = 0.106, ωv = 0.0713 and ωv = 0.0501 for the early peak, late
peak and baseline kinematics respectively. With these control parameters, our model produced movement durations
that fit within the 95% confidence intervals of the experimental durations, showing that infinite-horizon OFC could
be used to estimate the duration of the movement for the finite-horizon control (Figure 6A).

In order to now select final model parameters for the finite-horizon part of the model, we first need to select
the values for the kinematic cost function Γ (Equation 5). Figure 5 represents the summary of resultant kinematics
and relative regulation of dynamics for each Γ tested. In order to best represent the experimental design and require-
ments for participants, we selected a kinematic function that maximises the separation of the three velocity profiles
(i.e. the peak velocity locations are closest to their experimental requirements). As a result, the best parameters of
the kinematic function suitable for simulation of the experimental data are (γ1, γ2, γ3, γ4) = (4, 4, 0.25, 25), with the
vpeak , dat a = 60 cm/s.

Unlike the infinite-horizon part, the finite-horizon part of the model does not require a different set of parameters
to produce each of the three different kinematics. Instead, the early-peak and late-peak conditions are generated with
the same base parameters ωp , ωv , and ωf . The ωr is modulated according to Equation 8 to produce the skew in the
velocity profile over time, where its mean over the movement duration is identical across the three conditions. In
terms of the optimisation to find the parameters for the two conditions, we fixed ωp , ωv , ωf and ωr to their baseline
values and found the p , q and r (Equation 7) that produced closest to desired kinematics. As a result, for the baseline
condition we used (ωp , ωv , ωf , ωr ) = (329.5, 9.859, 98.59, 5.568 × 10−6). For early peak condition, in addition to the
baseline parameters we used (p , q , r ) = (52.72, 50.37, 741.2), and for late peak condition we used (p , q , r ) = (-13.24,
21.08, 347.5).

Model behaviour
Here we propose the mixed-horizon OFC implementation as an extension of the finite-horizon OFC and infinite-
horizon OFC when simulating perturbed movements. The goal of this mixed-horizon implementation is to address
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F IGURE 6 Movement duration comparison between the data (solid bars) and the final mixed-horizon model
(white bars). Error bars on the data show 95% CI. No error bars are shown for the model results, as the durations
result from a single simulation with final model parameters. P1-P5 indicate movements with different perturbation
onsets. A. Comparison for the separable model. B. Comparison for the non-separable model.

the limitations that the fixed horizonOFC encounters whenmodelling suchmovements. First, we compared themove-
ment trajectories between the finite-horizon OFC controlled movement and the mixed-horizon OFC controlled move-
ment (Figure 7A). We simulated movements where the target was perturbed laterally at one of five different distances
along the movement, requiring a correction to reach the target. For the finite-horizon OFC generated trajectories we
observe the stereotypical undershooting for later perturbations, arising from the fact that the perturbation occurs
near the end of the planned movement. As a result, it is more optimal for the controller to pay an end-point penalty,
than to produce a vigorous and effortful movement in the short remaining time. On the other hand, the mixed-horizon
controller produces movements that always converge to the target, consistent with the task requirements and human
behaviour. Note that the infinite-horizon controlled movements also always converge to the target due to the nature
of the controller and thus are not shown in Figure 7A.

In terms of the model dynamics, the mixed-horizon OFC model qualitatively replicated the feedback intensity
profiles of human participants. In the original study, human participants regulated the intensity of visuomotor feedback
responses to lateral cursor jumps, both within the same movement, as well as across different movement kinematics.
Our mixed-horizon OFC model shows similar behaviour. When compared to the infinite or finite-horizon models, our
mixed-horizon model shows a visible improvement (Figure 7B). In addition, while the mixed-horizon model shows
similar qualitative behaviour as the time-to-target model (Figure 7C in [19]), it requires fewer inputs and is thus more
useful when modelling novel behaviours.

Finally, we compared the separable mixed-horizon model to infinite-horizon and finite-horizon models in their
ability to modulate the velocity across three different experimental conditions (Figure 7C). In terms of peak velocity
separations, both the finite-horizon and mixed-horizon models produced the required modulations in the shape of the
velocity profiles. However, the infinite-horizon OFC could not produce such modulation. Instead, all three conditions
in the infinite-horizon OFC manifested in similar velocity profiles with only differences in peak velocity to produce
different movement durations. In addition, the velocity profiles were always positively-skewed. However, even with
such skewed profiles of the infinite-horizon OFC as a component, the mixed-horizon model is able to capture the ap-
propriate movement durations, condition dependent velocity profiles, and human-like modulation of feedback gains.

4.1.2 | Non-separable mixed-horizon OFC

The non-separable mixed-horizon OFC model differs from the previously presented separable model in its implemen-
tation. The main difference between the twomodels is that the non-separable model contains the multiplicative noise
factor, which is equivalent to control dependent noise in humans. Thus, the control policies that emerge from this
model may be different than the ones used when no such noise is present. However, at the operational level both
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F IGURE 7 Comparison of simulation results across different models. Blue, green and black lines represent
late-peak, early-peak and baseline conditions respectively. A. Kinematic trajectory comparison between
finite-horizon model (left) and an equivalent mixed-horizon model (right). Mixed-horizon model always converges to
the target while the finite-horizon model produces undershoots due to the lack of time to complete the movement
after the perturbation. Differently shaded lines indicate the five different perturbation onset locations. Three panels
in each figure indicate early-peak, late-peak and baseline conditions. B. Temporal evolution of feedback intensities
for infinite-horizon (left), finite-horizon (middle) and mixed-horizon (right) separable models across different
kinematic conditions. Human-like temporal evolution is only observed in the mixed-horizon model. C. Velocity
profiles in non-perturbed movements across three different kinematic conditions for the three separable models.
The separation of different kinematics is not achieved by the infinite-horizon model. D. Velocity profiles during
non-perturbed movements for non-separable models. Importantly, compared to the separable models, the velocity
profiles of non-separable models are skewed towards the beginning of the movement, producing lower separation
among different kinematic conditions.



Česonis and Franklin 23

types of models are used in a similar fashion, and hence similar behaviours can be simulated. As a result, here we
replicate the same experimentally tested human behaviours as we did with the separable model. Importantly, as we
already described the effect of different control-dependent noise levels on the model behaviours, we will only use
the control dependent noise with a scaling factor k = 1 for further simulations.

Final model parameters
The final parameters for the study 1 model were selected based on our previous sensitivity analysis, using the same
criteria as for the separable model. First, based on results shown in Figure 3A we know that for each kinematic
condition the optimum parameters are distributed in a plane, similarly to the separable model parameters. Thus, for
each kinematic condition we fixed two out of the three controller costs (ωp , ωr ) = (2000, 0.009) and optimised for the
ωv for each condition so that the resultant movement durations match those in the experimental data. For late-peak,
early peak and baseline kinematic conditions we obtained ωv = 0.0969, ωv = 0.144 and ωv = 0.0663 respectively.
With the resulting controller parameters our model produced movement durations that fit within the 95% confidence
intervals of these durations in experimental data, showing that infinite-horizon OFC could be used to estimate the
duration of the movement for the finite-horizon control (Figure 6B).

In order to determine the controller costs for the finite-horizon part of the model we followed the same strategy
as for the separable model. Particularly, we first selected a kinematic cost function Γ, and then used it to optimise for
the best fit values for controller parameters. As our sensitivity analysis showed that no significant changes in mean
behaviour of the model are introduced with the different levels of control-dependent noise, we only analysed the
conditions where k = 1. However, with the overall presence of control dependent noise we no longer have a clear-cut
best Γ to describe our kinematics. Instead, we observe a trade-off between peak velocity location and magnitude for
the late-peak velocity condition (Figure 5D). Hence, to fully analyse the model behaviour we will look at the best-fit
kinematic cost function for vpeak = 60 cm/s and vpeak = 75 cm/s, as the former sufficiently meets the peak velocity
criterion while the latter produces the best separation between the peak locations.

First, we chose the values for the kinematic cost function Γ as (γ1, γ2, γ3, γ4) = (4, 4, 0.25, 25) and the vpeak , desi r ed =
60 cm/s. With these values we then found the baseline parameters (ωp , ωv , ωf , ωr ) = (1307, 10.7, 107, 2.27×10−4). In
addition to the baseline parameters, for the early peak condition we used (p , q , r ) = (52.66, 81.05, 772.6), and for the
late peak condition we used (p , q , r ) = (-13.45, 60.29, 322.3). The best-fit control parameters for vpeak , desi r ed = 75
cm/s were obtained by optimising the kinematic cost function Γ with (γ1, γ2, γ3, γ4) = (1.44, 4, 0.25, 25), which yielded
(ωp , ωv , ωf , ωr ) = (627.6, 2.243, 22.43, 2.321×10−6) for the baseline condition, and (p , q , r )ear l y = (32.24, 18.61, 520.4)
and (p , q , r )l at e = (-14.83, 37.55, 260.5).

Non-separable model behaviour
In order to evaluate the model behaviour for the non-separable model, we compared the kinematics and feedback
intensities of this model with the separable model, and with the experimental feedback intensities [19]. First, the
velocity profiles produced by non-separable infinite-horizon OFC still showed similar lack of variation as in the sepa-
rable case (Figure 7D). In addition, the finite-horizon and mixed-horizon models produced velocity profiles that were
positively-skewed compared to the separable models, demonstrating the effect of the control dependent noise. That
is, with control-dependent noise and a peak velocity target, the controller chooses to reach this velocity earlier in the
movement to be able to have lower velocity and lower noise near the target. While qualitatively this change appears
minor (Figure 7CD), quantitatively this results in earlier perturbation onset times (as our model moves faster in the
beginning of the movement) and subsequently longer times-to-target for each perturbation. In turn, longer times-to-
target for these perturbed movements should result in weaker feedback response intensities, particularly for baseline
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and late-peak velocity conditions where the effect of such velocity front-loading is the largest.

Second, we compared just the baseline kinematics of the finite-horizon parts of the separable and non-separable
models, as this demonstrates the default, non-perturbed behaviour (Figure 8A). Here the separable model produces
the classic bell-shaped velocity profile peaking at the required velocity of 60 cm/s and stopping at the target. In
contrast, the 60 cm/s peak velocity requirement for a non-separable model produces a movement that satisfies the
required peak velocity, but fails to stop at the target. An attempt to reduce this terminal velocity by increasing γ3
would only increase the priority of stopping by compromising some of the other requirements – either by shifting
the peak velocity (magnitude or location), or by overshooting or undershooting the target. This is illustrated by the
kinematics of the 75 cm/s condition, where an increase in the peak velocity allowed the model to stop at the target.
The addition of control dependent noise, therefore, changes the default kinematics of the model, particularly affecting
the velocity profiles which in turn can affect the dynamics of the system.

Finally, we compared the overall kinematics and feedback intensities across separable, non-separable 60 cm/s and
non-separable 75 cm/s models (Figure 8BC). Importantly, all three models were able to reproduce the different kine-
matic requirements for each condition. In addition, in all three models the response intensities for the early-peak con-
dition were downregulated compared to the other two conditions. However, as expected from the control-dependent
noise effects on kinematics, the major difference between the two non-separable models compared with the separa-
ble model and experimental data was in the relative regulation of baseline and late-peak response intensities. While
the experimental data and separable model showed a clear upregulation for the late-peak intensities, this difference
is reduced significantly for the non-separable models. Specifically, for the 60 cm/s model the two profiles are virtually
indistinguishable, while for the 75 cm/s model this difference is slight but consistent. Notably, it appears that this ab-
sence of regulation in the non-separable 60 cm/s model results from the late-peak condition, as the baseline feedback
responses are just slightly lower than for the separable model (Figure 8C).

Overall, the presence of control dependent noise in themixed-horizonmodel distorts the experimentally observed
regulation of feedback intensities across the three kinematic conditions (Figure 8C, middle), which was successfully
simulated without the control dependent noise (Figure 8C, left). The source of this mismatch is due to the regulation
of the late-peak velocity condition, which required unusual and unnatural movements and is thus unlikely to be en-
countered in typical model applications. Finally, for this and the other conditions, our mixed-horizon model produced
the variation in temporal evolution closer to that of the human participants than other model candidates (Figures 7B
and 8C).

4.2 | Study 2

4.2.1 | Separable mixed-horizon OFC

Final model parameters
Here we modelled the experimental paradigm of [28], experiments 2 and 3, where the reaching target was perturbed
in the forward movement direction simultaneously with, or 100 ms before, the cursor perturbations used to measure
the feedback intensities. Specifically, we modelled 6 conditions: 2 × cursor perturbations, 2 × target perturbations
(near to far and far to near), and 2 × combined target and cursor perturbations. As all conditions appeared in the same
experiment in a randomised order, we used the same control parameters across all conditions.

The infinite-horizon part of the model is used initially by the controller in order to produce movements of an
appropriate duration. Thus, we optimised the infinite-horizon control parameters formodelling this study by fitting the
modelled movement durations to experimentally recorded movement durations for each experiment. For experiment
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F IGURE 8 Comparison of separable and non-separable model simulations of kinematics and feedback intensities
for study 1. Left, middle and right columns demonstrate the results for the separable, non-separable 60 cm/s
velocity target, and non-separable 75 cm/s velocity target models. A. Forward velocity as a function of time for the
finite-horizon part of the mixed-horizon model. The separable model produces a movement that successfully fulfils
requirements of both peak velocity and zero final velocity. In the non-separable models, the noise introduces a
trade-off between either finishing the movement with non-zero velocity (60 cm/s model) or increasing the peak
velocity (75 cm/s model). B. Position-velocity dependency. All three models successfully produce the required
velocity profiles across the conditions. Note that the 75 cm/s model produces a clearer separation of peak velocities
across the conditions compared to the non-separable 60 cm/s model. C. Simulated feedback intensities. The
separable model successfully replicates experimental results. Non-separable models show limitations in successfully
up-regulating the late-peak velocity condition, but capture the down-regulation of the early-peak velocity condition.

2 the obtained values were (ωp , ωv , ωf , ωr ) = (5448, 0.05285, 0.5285, 0.002460). For experiment 3 the values were
(ωp , ωv , ωf , ωr ) = (5606, 0.04114, 0.4114, 0.0003922). However, for the finite controller we used the identical
control parameters to study 1 as the task requirements such as movement distance, speed and perturbation size were
comparable.

Model behaviour

We compared the simulated feedback responses of only cursor perturbations to the combined cursor and target
perturbations. In experiment 2 of the original study [28], cursor and target perturbations occurred simultaneously.
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F IGURE 9 Data and model simulation comparisons for study 2. A,C. Figures adapted from the original published
paper [28] showing the feedback response intensities in experiment 2 (simultaneous perturbations) and 3 (cursor
and target perturbations separated by 100 ms) respectively. Red bars show responses to cursor-only perturbations
while blue bars show responses to combined perturbations. B, D. Respective model simulations with separable and
non-separable models. For experiment 3 we also include another non-separable model where the perturbation
onset times are adjusted to time-match the perturbations in the data.

Participants produced stronger corrective responses to perturbations of only the cursor, than when both the target
and the cursor were perturbed (Figure 9A, Figure 3FG in [28]). Our mixed-horizon model similarly produced weaker
corrective responses for simultaneous cursor and target perturbations, compared to just cursor perturbations (Figure
9B). However, while experimental data showed overall stronger responses for conditions where the starting target
was "far" compared to when the starting target was "near", our model simulations showed the opposite.

In experiment 3 of the original study, target jumps (when present) were induced earlier in the movement than
the cursor jumps. For the conditions with the "far" starting target, the results of this experiment were similar to the
results of the equivalent conditions from experiment 2 (Figure 9C, Figure 4FG in [28]). Our model also produced such
responses, with corrections to cursor perturbations being stronger than the combined cursor and target perturbations
(Figure 9D). However, participants produced stronger responses to the combined perturbations than only to the cursor
perturbations when the starting target was "near", which was not consistent with the results of our model.

4.2.2 | Non-separable mixed-horizon OFC

Final model parameters
As previously, in the separable model, we fit the infinite-horizon part of the model to reproduce the movement du-
rations recorded by experimental participants. For both experiment 2 and experiment 3 we set (ωp , ωv , ωf , ωr ) =
(3585.9, 0.04073, 0.4073, 0.009247) for the infinite models. For the finite-horizon part of the model we maintained
the parameters we previously found for study 1 60 cm/s condition. The 60 cm/s parameters were chosen over the
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75 cm/s parameters because for both settings the baseline condition was producing kinematics consistent with the
task requirements – only the late-peak condition was causing discrepancies between models and data. As for both
study 2 and study 3 we only use the natural, baseline kinematics, here we opted for the 60 cm/s as it is closer to the
kinematics in the data.

Model behaviour
We implemented the non-separable model to simulate experiment 2 and experiment 3 of study 2, similar to the
separable model simulations. Qualitatively the non-separable model produced similar results as the separable model
(Figure 9BD). Specifically, conditions with combined target and cursor perturbations produced weaker responses to
the cursor perturbations, and conditions that startedwith the near target also produced stronger responses to isolated
cursor perturbations. In addition, the non-separable model, similar to the separable model, also failed to replicate
the response modulation when the cursor and target were perturbed at different times (starting with near target,
experiment 3). Instead, similar to the separable model, the combined perturbation produced weaker responses than
the isolated cursor perturbation.

The original study describes combined perturbations in experiment 3 as "separated by 100 ms", however both
of these perturbations are induced via the hand position crossing an onset location. Thus, such time dependency is
dependent strongly on the shape of the velocity profile. Indeed, in our simulations these perturbations were only
separated by 60-70 ms which could have influenced the results. We performed another simulation where instead of
perturbing the target once the cursor crosses 10.5 cm distance from the start, we induced this perturbation at 8.5
cm resulting in 100 ms delay between the target and cursor perturbations. Still this modification did not change our
results significantly, with combined perturbation still producing lower gains than isolated perturbation for the near
target condition (Figure 9D).

4.3 | Study 3

4.3.1 | Separable mixed-horizon OFC

Final model parameters
In order to simulate the control behaviour when subjected to different perturbation sizes we modelled a part of
the experimental paradigm of [29]. Particularly, we simulated the conditions where either a cursor, or a target, was
perturbed by 1, 2 or 3 cm, at the mid-point in the forward movement. In order for our modelled movement durations
to match the experimentally recorded movement durations we again optimised the infinite-horizon part of the model,
and we used the same set of infinite-horizon parameters across all conditions. The obtained values were (ωp , ωv , ωf ,
ωr ) = (2292, 0.05868, 0.5868, 0.006573). However, in terms of control requirements, movements in this study were
similar to the ones in study 1 baseline condition, thus we used the previous parameters for the finite-horizon part of
the model.

Model behaviour
In the original study, 1, 2, and 3 cm lateral perturbations in themiddle of the forwardmovement resulted in visuomotor
feedback intensities (early responses 170-230 ms) that did not scale linearly, but saturated or even reduced for larger
perturbation sizes (Figure 10A, Figure 1DE in [29]). We simulated these conditions with our mixed-horizon model.
First, our feedback response intensities showed similar regulation – responses to increasing perturbation sizes initially
increased and then slightly reduced. In the experiment, the late responses (370-430ms) corresponded roughly to the
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peak forces within the correction. Therefore, we used the simulated peak response intensities as a proxy for these
late responses. While these responses were stronger in intensity compared to the early simulated responses, they
also saturated with increasing perturbation size, similar to the early human responses (Fig. 10B).

It is worth noting that, due to the linearity of our controller, one could reasonably expect the feedback intensities
to scale linearly with perturbation size, particularly as the perturbations in the original experiment happen at the same
time, speed and forward distance. Therefore, it is important to understand how our linear, mixed-horizon OFC can
produce non-linearly increasing responses with linearly increasing stimuli. To illustrate the source of this behaviour,
we can use the strength of the mixed-horizon implementation and simulate additional conditions (i.e. perturbations
at different onsets) that provide broader context to the available data, but were not experimentally tested. Thus, for
each of three perturbation sizes (1, 2 and 3 cm) we additionally simulated four other perturbed movements: 1/6, 1/3,
2/3 and 5/6 of the distance along the movement, similar to study 1. In total, at each of the five perturbation onset
locations we simulated 3 perturbations, one of each magnitude (1 cm, 2 cm and 3 cm). As the velocity requirements
were identical for non-perturbedmovements independent of the upcoming perturbation size, the perturbations at the
same onset location therefore happened at the same position, same movement time, and same movement velocity.

Even though the movement kinematics and dynamics, as well as perturbation onset completely matched before
the perturbations, introduction of the perturbation resulted in the remaining movement time (time-to-target) being
differently adjusted by the controller after the perturbation. Importantly, the resultant times-to-target were always
longer for larger perturbations, which is an intuitive result, given that larger corrections were necessary to reach the
target (Figure 10C). Also notably, perturbations of a specific magnitude occurring close to the target could extend the
movement duration beyond the same perturbation occurring earlier in the movement. For example, in some cases (e.g.
perturbations at 2/3 and 5/6 of the movement) a perturbation that occurred closer to the target produced a longer
time-to-target than an earlier perturbation with the same magnitude. While this result is less intuitive, it is consistent
with our previous experimental results ([19]).

The time-to-target is an important parameter in the LQG and LQR implementation, as the control gains are com-
puted in the backwards-pass calculation, where at every future time point, starting from the end of the movement,
the movement cost-to-go and thus the appropriate optimal control gains are computed [12]. Thus, we looked at our
simulated feedback intensities for the newly induced perturbations with respect to the time-to-target (Figure 10D).
Two important results were observed: first, there is a systematic relation between the time-to-target and the feed-
back intensities, with higher intensities produced for shorter times-to-target within these responses. Second, due to
the extension in movement time post-perturbation, the perturbations happen at different times-to-target, even when
they occur at the same location, or same movement time. Due to this difference we also observe a non-monotonic
response regulation with perturbation onset location or onset time. Thus, even though, due to the linearity of the
controller, the responses that happen at the same time-to-target scale linearly with perturbation size as expected
(Figure 10E), the overall regulation of feedback intensities induced at the same location or onset time is non-linear
(Figure 10AB).

4.3.2 | Non-separable mixed-horizon OFC

Final model parameters
For the non-separablemodel of study 3we again re-fit the infinite-horizon parameters so that themovement durations
generated by our model match those in the data. This resulted in the following infinite-horizon parameters: (ωp , ωv ,
ωf , ωr ) = (2321, 0.05999, 0.5999, 0.001706). For the finite-horizon part of the model we maintained the parameters
we previously found for study 1 60 cm/s condition and already used for study 2.
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F IGURE 10 Data and model simulations for study 3. A. Experimental results. Early feedback intensity to a
perturbation at 12.5 cm along the movement in relation to perturbation size in cm. Left plot shows the modulation
to target perturbations while the right plot shows for the equivalent cursor perturbations. A non-linear saturation in
response intensity is observed. Figure adapted from the original study [29]. B-E.Model simulations. Left half shows
results for the separable model, right half for the non-separable model. B. Simulated intensities for different
perturbation sizes. Green bars show early responses, purple bars show peak responses. Similar behaviour to
experimental results is achieved by the model simulations. C. Simulated time-to-target for perturbations of sizes 1
cm, 2 cm and 3 cm, and with onset at one of the five locations P1-P5. Perturbation onset location and magnitude
has a non-monotonic effect on the time-to-target. D. Same perturbation responses visualised against time-to-target.
Perturbations with matching onset locations produce different times-to-target. E. Time-to-target effect on response
intensity generalised to all perturbations simulated by the mixed-horizon model. Modelling results show a linear
increase in response intensity to perturbations happening at the same time-to-target.
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Model behaviour
We did not observe any significant qualitative or quantitative changes in our simulations for study 3 when comparing
the non-separable model results with previously simulated separable model results (Figure 10B-E). Thus, introducing
control-dependent noise to this particular model did not have a behavioural effect, demonstrating consistency in the
simulated behaviour.

5 | DISCUSSION

Here we built and analysed a novel implementation of the optimal feedback controller (OFC) for reaching movements
– a mixed-horizon OFC. In order to do this, we not only evaluated the behaviour of the controller when applied to
motor control problems, but also analysed the parameters that generate the optimal behaviour. Specifically, ourmixed-
horizon OFC could successfully replicate kinematics as well as many dynamic features shown by human participants
[19, 28, 29], that were not previously possible with either a finite-horizon or infinite-horizon OFC. In addition, our
model allowed us to test new hypotheses and alternative explanations to previously published results that could fur-
ther strengthen original conclusions (study 2) or find new explanations to previously observed interesting features
(study 3). Furthermore, by testing the model sensitivity we demonstrated the distinction between fundamental be-
havioural differences across experimental conditions of study 1, and showed that these differences are not the effect
of deliberate model fitting, but maintained across different cost functions.

Prior implementations of either a finite-horizon OFC or infinite-horizon OFC had strong limitations in predicting
human behaviour. First, a conventional finite-horizon OFC requires a movement duration as an input. Real world
movements on the other hand are almost always free from a specified movement duration. For example, no-one
reaches for their coffee cup in the morning with a specified duration of 550 ms. Even if we consider laboratory exper-
iments, most motor control study paradigms are paced not by movement duration, but rather by movement speed.
For such paradigms, movement duration has to be non-trivially estimated, or recorded from the data before modelling
is even possible. Furthermore, for both visual and physical perturbation paradigms the movement duration is further
modulated by movement speed or perturbation timing [19, 35–37]. Our mixed-horizon controller allows us to bypass
the requirement of movement duration all together, making this controller more human-like. Second, the requirement
of a movement time can be reliably bypassed via infinite-horizon control [20, 25] or receding-horizon control [21] to
generate controller movements with kinematics similar to experimental results. However, such simulated movements
do not contain any variations in the feedback gains throughout a movement (Figure 7B and [19]), while the presence
of such feedback variations is foundational to numerous motor control studies [19, 26–28, 34, 36, 38–40]. Instead,
the mixed-horizon OFC is able both select an appropriate movement duration and predict the temporal pattern of
feedback responses.

We constructed the mixed-horizon OFC by employing the infinite-horizon controller and finite-horizon controller
in series. One of our key motivations for such a combination was that the finite-horizon controller needs movement
durations as an input argument. In particular cases, where only data-descriptive modelling is of interest, this is not
a major technical issue – simply extracting movement durations from the data for different types of movements,
and using it with the finite-horizon OFC would produce identical behaviour to the behaviour of the mixed-horizon
model. However, themixed-horizon control allows us to also generalise themodel behaviour beyond only the available
data-points to either make predictions about unseen conditions, for novel studies, or to provide some context to
the available data. The latter was particularly critical for our simulations of study 3 [29], where we could simulate
new experimental predictions even in the absence of experimental data, and therefore movement durations. On the
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other hand, adjoining a finite-horizon controller to the infinite-horizon controller produces appropriate modulation of
feedback responses throughout themovement that better resemble those of human participants. While this approach
may not be required if the only goal is to reproduce kinematics recorded in the data, it nevertheless produces a more
human-like response.

Our mixed-horizon controller aims to combine the benefits of finite-horizon and infinite-horizon controllers, here
focusing on perturbed, goal-directed movements. The receding-horizon control [21] is another OFC implementation
that combines the strengths of the infinite and finite-horizon control, although there are important differences be-
tween the two implementations. The receding-horizon OFC uses a similar architecture as the finite-horizon OFC,
however it neither needs, nor has any information about the movement duration prior, or even during the movement.
Instead, the movement is executed as a series of control signals with the horizon a fixed time away from the cur-
rent state, until the end of the movement simply “happens” as the hand arrives at the goal. Such implementation
is very powerful when modelling long, slow movements, as these movements can be subdivided into movements
with via-points, and consequently can accurately replicate the human behaviour in these situations. However, for
short, goal-directed movements without via-points the receding-horizon OFC could not replicate some features like
visuomotor feedback responses in humans [19]. On the other hand, our mixed-horizon OFC combines the strengths
of infinite and finite implementations into a different architecture, which continuously monitors the remaining time
horizon for the movement and produces a control signal that matches that of humans. While for long or via-point
movements the assumption that the whole time-horizon is predefined in advance may not be realistic, this is critically
important to simulate the human-like behaviour in the fast, goal-directed reaching movements.

The combination of two separate control stages in series has previously been discussed in the neuroscience
literature [22, 41, 42]. In such a context the process of the infinite-horizon part of the control would be considered
motor selection, whereas the finite-horizon part would be considered motor planning. If the finite-horizon part is
switched off, the controller is still capable of producing movements to the target, albeit showing less task-dependent
modulation. Similarly, human participants are also capable of reaching towards a target (with reduced accuracy) even
if no motor planning is allowed [43]. A more recent study has also associated the movement planning stage with
trajectory calculation in obstacle avoidance tasks [44]. In that study, the authors demonstrated that a significant
portion of reaction time after a go cue is spent calculating themovement trajectory if a specific trajectorywas required,
while these reaction timeswere reducedwhen no trajectory planningwas necessary. Here the finite-horizon controller
is again consistent with the motor planning stage, as it adds the complexity to the movement features (in our case
to movement dynamics). While we have interpreted our two controllers as motor selection and motor planning, the
literature also suggests other possible interpretations, e.g. motor planning and execution [23, 42].

While motion planning and execution are generally considered as two processes in series, with planning occurring
before execution, it is important to note that some kind of re-planning must occur in order to complete the task if the
movement goal suddenly changes [30]. In our mixed-horizon implementation, the perturbation triggers the recalcula-
tion of the remaining movement duration (time-to-target) via the infinite-horizon OFC whenever it occurs. This new
duration is then used by the finite-horizon OFC to update the remaining control policy. While these processes appear
to be in series at any particular time point, both processes continually operate throughout the entire movement: the
infinite-horizon is continuously waiting for any possible changes to trigger the re-planning and sending an updated
time-to-target (or “urgency” signal [19, 38]) to the finite-horizon controller. Importantly, both controllers still function
with the same control weights, thus the only necessary stimulus from the environment to successfully complete the
control is the error signal of the perturbation. A similar idea has been previously described by [45], where fast visuo-
motor responses were explained via the pre-computation of feedback gains for possible perturbations. Here, instead
of pre-computing the responses to particular perturbations, the controller maintains fixed time-variable finite-horizon
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gains. In turn, the infinite-horizon controller updates the time-to-target in case of any perturbations, which modulates
the response of the finite-horizon, and thus overall the mixed-horizon controller. An alternative explanation is that
both the infinite and finite controllers are continually re-calculated throughout the entire movement (rather than wait-
ing for a discrete error signal), producing similar updates of the time-to-target or urgency after any perturbation. While
this would not change the model predictions in this paper, it is an open question whether the biological sensorimotor
control system implements such continuous computation or re-computation only in the case of errors signals.

In this article we were interested not only in building the model and evaluating its dynamics, but also in how
the model parameters and costs affect the outcome of the simulation. Particularly, we analysed our mixed-horizon
OFC sensitivity to individual optimisations for the same kinematic cost function, as well as sensitivity to different
kinematic cost functions 5. Across multiple optimisations to the same cost function (optimisation sensitivity analysis)
we observed the structure within controller costs ωp , ωv and ωr (ωf was fixed to ωv , consistent with [13]). For the
infinite-horizon part, outputs ωp , ωv and ωr of repetitive identical optimisations were distributed on the same plane
perpendicular to the plane ωp -ωv . As such, instead of optimising for all three parameters simultaneously to obtain
best fit controller costs, the problem can be reduced to a one-dimensional optimisation on ωv for an arbitrary selected
pair of (ωp ,ωr ). Similarly, the finite-horizon part of controller outputs to the same repeated optimisation were generally
distributed along a single line in the parameter space, which can also be reduced to a one-dimensional optimisation.
This is conceptually similar to the idea of structural learning [46, 47], where one meta-parameter could represent a
movement along a task structure which is otherwise non-trivial if the entire parameter space needs to be searched.
Computationally it can be used to significantly reduce optimisation durations for similar problems by reducing the
dimensionality of the problem. That is, new movements may not require optimisation across a huge parameter space,
but instead only optimisation along a single dimension which might easily be implemented during learning.

In addition to examining multiple optimisations to the same cost function, we also looked at the outcomes of
optimisations with different kinematic cost functions. We analysed this cost sensitivity in the context of our model
for study 1 [19] as it involves three different kinematics conditions and their corresponding dynamics. Our mixed-
horizon model provided mixed results when simulating the relative regulation of the response intensities between
the conditions in our previous work [19]. Specifically, while the separable model could reliably simulate the upreg-
ulation and downregulation of the two conditions with changed kinematics, the non-separable model struggled to
convincingly simulate the upregulation of the late-peak condition responses (Figure 8). We suggest that this limita-
tion arises, at least partially, from specific task requirements and their interactions with features of the OFC. First,
evidence from simulations suggests that contrary to humans, OFC simulates movements that are not exactly bell-
shaped [13, 19, 39, 48] but instead have positively skewed asymmetric velocity profiles (peak velocities early in the
movement). This feature is particularly emphasised in the infinite-horizon problems [19, 20, 25], as the movement
costs are constant throughout themovement. Furthermore, as we previously showed [19], we can not easily modulate
the shape of this velocity profile for the infinite-horizon control, which means that our infinite-horizon controller is
always projecting a movement with a velocity profile that peaks within the first half of the movement. In turn, even if
we fit the infinite-horizon controller to produce appropriate movement durations after perturbations, the difference in
profile still introduces differences in perturbation timings, which then influences the responses. This is most strongly
emphasised for the late-peak condition, as the separation between the finite-horizon and infinite-horizon kinematics
is largest. As a result, we posit that while this is indeed a model limitation, it minimally affects the movements that
could be considered natural.

The cost sensitivity analysis of our models allows us to evaluate the general features of model behaviour. That is,
we can separate model predictions that are outcomes of the parameter fitting from the predictions that are fundamen-
tal to the model (i.e. independent of the cost function or parameters). Our results for study 1 [19] and for sensitivity
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analysis (Figure 5) demonstrate consistent relative regulation of feedback responses across the three experimental
conditions, with early-peak condition down-regulated and late-peak condition up-regulated from the baseline. Impor-
tantly, these results are consistent throughout our vast set of explored kinematic cost functions that result in an even
broader set of model parameters. Furthermore, our model has no further assumptions beyond the LQG-governed
optimal feedback controller, which is enough to replicate the behaviour of human participants. This suggests that
the behaviour observed in the data could be entirely governed by the response of the optimal control policy to the
movement requirements, and does not require any additional control components.

Our results for study 2 replicated the main behaviour of experiment 2 from Dimitriou and colleagues [28], show-
ing that combined cursor and target perturbations produce weaker responses than those to an isolated perturbation
(Figure 9). We obtained this result for both separable and non-separable models. While the original authors discussed
this down-regulation as arising due to the uncertainty of the limb, our models included no assumptions about the
certainty and thus such behaviour is a direct outcome of the OFC. In contrast, we were not able to replicate the
behavioural results of experiment 3 [28], where the feedback gains were conditionally modified (either up- or down-
regulated) when the target perturbation preceded the cursor perturbation. Instead, our model continued to produce
similar down-regulation for combined perturbations as in experiment 2. The original authors suggested that the ex-
periment 3 results may have occurred from a recalculation of the control gains during the 100 ms between the target
and cursor perturbations. However, our model implementation immediately recalculates optimal control gains after
any perturbations by default (including in the model for experiment 2). Here, based on the model-data discrepancies,
we presume that instead of just recalculating the control policy after the target is perturbed along the movement
direction, human participants could have also updated the kinematic cost function in a non-trivial way that generated
such behaviour.

Our simulations of study 3 [29] demonstrate the applicability of the mixed-horizon OFC in situations where data
is not currently available. Specifically, in the original study only a single perturbation location was used to measure the
visuomotor feedback responses across a range of conditions. One particular observation was a non-linear increase
in feedback responses with perturbation size (Figure 10A), which was not explained. Here we examined whether
our mixed-horizon optimal controller could explain this non-linear increase in feedback intensities by simulating more
data points than experimentally collected. In turn, we demonstrated that such scaling is a combination of a linear
gain regulation with perturbation size further modulated by the extension in movement duration, which also depends
on perturbation size. It is important to note that we would not have been able to generate such results with only
finite, infinite or receding horizon models, either due to the lack of input data (movement durations for not recorded
perturbation locations in finite-horizon simulations), or due to model’s inability to simulate the temporal evolution of
feedback gains (infinite and receding horizon).

Our proposed mixed-horizon model is able to both predict movement durations for untrained conditions, and
generate human-like modulation of feedback intensities throughout movements, by combining features of both the
infinite and finite-horizon controllers. However, one limitation in combining these two separate models, as currently
implemented, is that each model has their individual control parameter sets. While in the ideal case the two parts
would share parameters, this is not possible due to the mathematical implementations of infinite and finite-horizon
OFC. Finite-horizon OFC models utilise cost functions Q and R that are (or at least can be) variable over time, while
infinite-horizon models use stationary costs. As both of these models serve different purposes within the whole
mixed-horizon control, such architecture implies that the infinite and finite-horizon models are two separate systems
within the overall control, rather than one holistic system. Despite these limitations, the mixed-horizon OFC is able
to model a large range of behaviours and paradigms that were not previously possible, as well as make predictions for
new studies.
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In this paper we have demonstrated a new mixed-horizon approach to optimal feedback control modelling of
human behaviour. Specifically, we have contrasted the results of the finite and infinite-horizon simulations. While
each implementation is valuable on its own, it also has limitations in modelling specific features of human motor
control, such as the temporal evolution of feedback gains or variable movement duration of perturbedmovements. By
combining the infinite-horizon and finite-horizon controllers into a mixed-horizon controller we were able to better
model the results of previously published studies and provide alternative explanations of their results [28], further
reinforce the results [19], or model the results that could not previously be simulated [29]. All together our results
demonstrate a novel and powerful approach to optimal feedback control models that can more accurately represent
behaviours observed in humans.
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3.6 Study III

Contextual cues are not unique for motor learning: Task-dependant switching of feedback

controllers

This study, authored by Justinas Česonis and David W. Franklin has been accepted for publication

at PLOS Computational Biology. At the time of submission of this thesis the article is in print ("forth-

coming"), and therefore a plain-formatting version of the article is submitted with this thesis. In this

study we definitively test the time-to-target based control hypothesis by first simulating the expected

behaviour under a selectively tweaked movement requirements compared to our earlier work. In

addition, we then experimentally test this control under two separate movement goals, validating the

model predictions. Finally, we compare human behaviour under different experimental schedules –

blocked (steady state) and mixed, showing that task specification acts as a contextual cue, allowing

humans to rapidly switch between multiple feedback controllers.
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Abstract

The separation of distinct motor memories by contextual cues is a well known and well studied

phenomenon of feedforward human motor control. However, there is no clear evidence of such

context-induced separation in feedback control. Here we test both experimentally and computation-

ally if context-dependent switching of feedback controllers is possible in the human motor system.

Specifically, we probe visuomotor feedback responses of our human participants in two different

tasks – stop and hit – and under two different schedules. The first, blocked schedule, is used to

measure the behaviour of stop and hit controllers in isolation, showing that it can only be described

by two independent controllers with two different sets of control gains. The second, mixed schedule,

is then used to compare how such behaviour evolves when participants regularly switch from one

task to the other. Our results support our hypothesis that there is contextual switching of feedback

controllers, further extending the accumulating evidence of shared features between feedforward

and feedback control.
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Abstract

The separation of distinct motor memories by contextual cues is a well known and well
studied phenomenon of feedforward human motor control. However, there is no clear
evidence of such context-induced separation in feedback control. Here we test both
experimentally and computationally if context-dependent switching of feedback
controllers is possible in the human motor system. Specifically, we probe visuomotor
feedback responses of our human participants in two different tasks – stop and hit – and
under two different schedules. The first, blocked schedule, is used to measure the
behaviour of stop and hit controllers in isolation, showing that it can only be described
by two independent controllers with two different sets of control gains. The second,
mixed schedule, is then used to compare how such behaviour evolves when participants
regularly switch from one task to the other. Our results support our hypothesis that
there is contextual switching of feedback controllers, further extending the accumulating
evidence of shared features between feedforward and feedback control.

Author summary

Extensive evidence has demonstrated that humans can learn distinct motor memories
(i.e. independent feedforward controllers) using contextual cues. However, there is little
evidence that such contextual cues produce similar separation of feedback controllers.
As accumulating evidence highlights the connection between feedforward and feedback
control, we propose that context may be used to separate feedback controllers as well. It
has not been trivial to test experimentally whether a change in context also modulates
the feedback control, as the controller output is affected by other non-contextual factors
such as movement kinematics, time-to-target or the properties of the perturbation used
to probe the control. Here we present a computational approach based on normative
modelling where we separate the effects of the context from other non-contextual effects
on the visuomotor feedback system. We then show experimentally that task context
independently modulates the feedback control in a particular manner that can be
reliably predicted using optimal feedback control.
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Introduction 1

Whether it is touching a hot surface, returning a tennis serve or simply lifting an object, 2

the human body utilises a variety of sensory inputs to produce movements of any 3

complexity. Indeed, different feedback modalities of human motor control, such as 4

stretch reflex [1–3], vestibulo-ocular reflex [4, 5], visuomotor [6–14], or even auditory 5

feedback [15,16] have extensively been studied in prior literature. However, most studies 6

have investigated feedback control in paradigms of either a single task [17–21], or 7

multiple tasks presented in their own dedicated blocks [22–26]. While such designs 8

provide key insights into the behaviour of the feedback controller in isolation, they are 9

not entirely reflective of human behaviour in real-life situations. For example, a realistic 10

sequence of events could require a volleyball player to first pick up the ball from the 11

ground by reaching for it with their hand and stopping on contact, only then to hit the 12

same ball with the same hand a few moments later while serving. While studying both 13

components independently has received focus in the field of motor control, any 14

interactions between the feedback controllers in the context of rapid switching have not 15

been broadly studied. 16

While feedback control in human movement is critical in correcting for random 17

errors within movements, feedforward control corrects for movement errors that are 18

predictable. In order to systematically predict and compensate for specific errors 19

upcoming in a given movement, the mechanism of contextual switching via contextual 20

cues is broadly accepted. It is now well understood that performing two opposing tasks 21

in an alternating manner will lead to interference [27–29], resulting in behaviour that is 22

averaged between the two tasks, failing to deal with either task. However, if the two 23

tasks are performed in sufficiently different contexts, such as separate physical or visual 24

workspaces [30–32], or different lead-in [33,34] or follow-through movements [35,36], this 25

interference can be reduced, allowing the formation of two separate motor memories. 26

Hence, it is reasonable to expect, that a similar contextual regulation could be present 27

in feedback controllers. Therefore, in this study we test whether the feedback control 28

policies exhibit such modulation when humans are presented with different tasks in an 29

alternating manner. 30

One difference between studying contextual switching in feedforward and feedback 31

control is that it is difficult to evaluate whether the feedback control policy has changed 32

after the intervention. Specifically, it has been shown computationally that the optimal 33

feedback controller (OFC) with fixed parameters can produce variable responses when 34

correcting for perturbations within the movement, for example, when the comparable 35

perturbations are induced in different parts (e.g. early or late) of otherwise identical 36

movements [26, 37–39]. Furthermore, such behaviour was also observed in experimental 37

studies [7,20,26,39–41]. Hence, merely observing a difference in the feedback response is 38

not enough to conclude a change in the control policy. However, recently we 39

demonstrated that as long as two perturbations of the same magnitude are induced at 40

the same time-to-target (which is defined as a difference between the perturbation onset 41

and movement end), the same feedback control policy produces the same magnitude 42

response, independent of whether the two perturbations occurred at the same location, 43

time from the beginning of the movement, or the movement velocity [26]. Thus, we can 44

utilise this relationship between the magnitude (or intensity) of the feedback response to 45

a perturbation at the same time-to-target to quantify whether the difference in the 46

response is due to the change in the control policy or not. 47

There are several studies that have already looked into contextual regulation in 48

feedback control tasks. Most of such studies, to our knowledge, approached this 49

question by modulating the structure of a target (wide vs. narrow, long vs short, 50

etc.) [42–45], or by including obstacles along the reaching path [42, 45]. Results of these 51

studies are consistent with optimal control-like behaviour with separate controllers for 52
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different tasks, even when the target structure is changed on random trials [42,44,45], 53

however one study suggests that control when the target is unpredictable may be 54

sub-optimal [43]. In this study we test whether such rapid switching also holds true for 55

tasks, where target structure remains unchanged, but the tasks themselves require a 56

change of movement properties. Specifically, we test how the feedback control policies 57

are affected when our participants are presented with a ”multitasking” scenario where 58

they have to switch between performing two distinct tasks, i.e. reaching to and stopping 59

at the target, or hitting through the target and stopping behind it. While the two tasks 60

are fundamentally different, and in isolation should require different feedback control 61

policies, here we also test whether the same relationship holds true in the mixed 62

schedule (as it would for contextual switching in feedforward control), or if the 63

interference between two control policies results in a single policy, averaged or weighted 64

between the two independent controllers. 65

Results 66

In this study we tested the behaviour of the human feedback controller when switching 67

between two different tasks. Specifically, we presented our human participants with two 68

tasks requiring different control policies – a stop task, where participants had to reach 69

and stop at the target, and a hitting task, where participants had to punch through the 70

target and stop behind it. In our previous work we demonstrated computationally that 71

these two different types of movements trigger feedback responses of different 72

magnitudes, even if the perturbations occur at the same position, time, or 73

time-to-target [26]. However, if the two movements share the same goal (for example 74

the goal of stopping at the same target), then these feedback responses match in 75

magnitude if the time-to-target matches in both movements, irrespective of other 76

movement parameters like peak velocity, movement distance, distance to the target or 77

current velocity. Therefore, such a relation between time-to-target and feedback 78

response intensity could be used to characterise the feedback control policy. 79

We use the relationship between the time-to-target and the feedback response 80

intensity (which serves as a proxy for feedback controller gain) as a means to analyse the 81

controller behaviour when the task changes. Specifically, we propose two alternatives for 82

the architecture of such control: a single universal feedback controller that exhibits 83

adaptation to a given task (Fig 1A), or multiple task-specific controllers, gated by task 84

context (Fig 1B). When presented with a single task in a blocked schedule (e.g. blocked 85

stop or blocked hit), both the universal controller and task specific controllers are 86

expected to behave similarly, as the universal controller should easily adapt its gains 87

appropriately for the required task. However, if multiple tasks are presented in a mixed 88

schedule (i.e. task can randomly switch from trial to trial), the different control 89

architectures predict different responses. Particularly, a single universal controller would 90

aim to adapt to each presented task, thus on average producing responses somewhere in 91

between the two given tasks within the mixed schedule (Fig 1C). In contrast, a set of 92

task-specific controllers would produce similar responses in the mixed schedule as they 93

would in a blocked schedule, as for every trial an appropriate controller is selected from 94

a set of controllers, rather than being adapted for the task (Fig 1D). 95

In order to probe the control policies of human participants within these different 96

tasks, we occasionally perturbed participants during the movement by visually shifting 97

the target perpendicular to movement direction and inducing a reactive visuomotor 98

feedback response (Fig 2A). Recently it has become common practice to maintain these 99

perturbations until the end of the movement, such that an active correction is required 100

to successfully complete the trial [19, 26,41,46–51]. However, we have noticed in our 101

previous work that such maintained perturbations significantly impact the overall 102
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time-to-target, which in turn affects the visuomotor feedback gains [26]. Thus, to keep 103

the measurements of visuomotor feedback responses consistent within time-to-target, in 104

this study we only perturbed our participants laterally in channel trials [7, 40,52] and 105

maintained these perturbations for 250 ms before switching them off, making any 106

corrections redundant. As a result, even when producing the feedback response, 107

participants’ hands are constrained along the path of forward movement, resulting in 108

matching movement durations independent of different perturbation onsets. 109

Participants produced involuntary feedback responses to the target jumps. These 110

responses, observed as a lateral force exerted by the participants on the handle of the 111

robotic manipulandum, were modulated by the different perturbation onsets (Fig 2B 112

and Fig 2C). From these force responses we computed feedback intensities, by averaging 113

individual responses over a time window 180 ms - 230 ms relative to the perturbation 114

onset on each individual trial. This time window has now been used in numerous 115

studies to quantify such responses and is associated with the involuntary, early 116

Fig 1. Theoretical predictions of two different architectures for feedback regulation. A. Universal
feedback controller. A single feedback controller is used to produce both stop and hit movements,
and is adapted to the given task over multiple trials. Such adaptive behaviour is reminiscent of the
behaviour of the feedforward controller when learning two opposing force-fields without separable
context. Cn indicates a feedback controller at trial n B. A feedback controller as a set of
task-specific controllers. A task-specific controller (stop or hit) is selected based on the task-related
context and is used during the given movement. Such contextual switching behaviour is
reminiscent of the behaviour of the feedforward controller when learning two opposing force fields
with separable context. C. Expected regulation of feedback responses by the universal feedback
controller. When exposed to a single task for a long time (blocked schedule) the controller adapts
to the given task, producing optimal responses for both stop and hit conditions. However, due to
interference within the mixed schedule, such a controller would settle to the average (or weighted
average) gains between the two blocked conditions. D. Expected regulation of feedback responses
by a set of task specific controllers. Within the blocked schedule, similar regulation is expected
between hit and stop as in the case of the universal controller (C). However, in the mixed schedule,
due to the task-related context, an appropriate controller is recalled on a trial-to-trial basis,
producing similar regulation as within the blocked schedule.
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visuomotor responses [7, 25,40,50,51]. 117

OFC model predicts differences between hit and stop conditions 118

We utilised the mixed-horizon OFC [38] model, presented in our earlier work, to 119

generate predictions of feedback control policies in our current study. Due to the 120

experimental design of this study not requiring an extension in movement times after 121

perturbations, the predictions of the mixed-horizon model also matched the predictions 122

of our earlier time-to-target OFC model [26]. In order to compare differences in control 123

throughout hit and stop movements, we first simulated two movement conditions: a 25 124

cm long movement with 60 cm/s peak velocity and velocity at the target distance <1 125

cm/s (stop condition), and a similar movement, but with velocity at the target >20 126

cm/s (hit condition) (Fig 3A). Both models were implemented using a linear quadratic 127

regulator (LQR), and were identical, apart from the difference in state-dependent costs 128

of terminal velocity and terminal force. Here we reduced these cost parameters for the 129

hit model by a factor of 50 in order to reduce the incentive to stop at the target, and 130

thus successfully simulate hit-like movements. In addition, we also simulated a third 131

condition, that we term the long-stop condition, where we used the same position, 132

velocity, force and mean activation costs as in the stop model, but applied for reaching 133

movements of 28 cm. The concept of the long-stop model is to compare the actual hit 134

behaviour, executed through a different controller, with ”cheating” behaviour where the 135

same stop movement is performed to an imaginary target, located beyond the actual 136

target, resulting in non-zero velocity at the actual target, and thus appearing as a hit 137

movement. For all three conditions we then induced virtual target perturbations by 138

shifting a target laterally by 2 cm at every time step from movement onset to movement 139

end. With these simulations we obtained one continuous feedback response profile per 140

condition, showing a dependency of feedback response intensity on time-to-target (Fig 141

3B and Fig 3C). This feedback response profile is characteristic of the particular 142

Fig 2. Experimental perturbations and responses. A. Perturbations in stop (left) and hit (right) conditions.
Participants performed a forward reaching movement towards a target, positioned 25.0 cm in front of the
start position. When the hand crossed one of five evenly spaced locations (dashed lines), a perturbation could
be induced by shifting the target by 2 cm laterally for 250 ms and then returned back to the original position.
Participants were instructed to either stop at the blue target (stop condition), or hit the red target and stop
within the blue rectangle (hit condition). B. Net unscaled feedback responses to the target perturbations in
the stop condition, measured via the force channel. Participants produced corrective responses to the target
perturbations that varied by different perturbation onsets. Different traces represent different perturbation
onsets, with darker colours indicating earlier perturbations. Shaded areas represent one standard error of the
mean (SEM). The grey rectangle represents the time window of 180 – 230 ms, where the visuomotor feedback
intensities are measured. C. Net unscaled feedback responses to the target perturbations in the hit condition.
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movement control policy associated with the movement goal, as it is maintained even if 143

the kinematics of the movement change (Fig 8 in [26]). 144

Even with similar simulated kinematics, that deviate from each other only in the last 145

portion of the movement, the OFC model predicts striking differences in the control 146

policies for stop and hit conditions (Fig 3B and Fig 3C, blue and red traces) or hit and 147

long-stop conditions (Fig 3B and Fig 3C, red and green traces) when expressed against 148

time-to-target. On the other hand, when expressed against position, even different 149

controllers (hit vs stop) show no differences in feedback intensities, while identical 150

control (stop vs long-stop) exhibit clear differences (Fig 3D). Among other things, these 151

results point out limitations of position as a dependent variable in determining the 152

changes of control policies, and provide yet additional support for time-to-target. 153

Our models make a few predictions for the behaviour of human participants. First, 154

it challenges the classic assumption that visuomotor feedback response profiles are 155

always bell shaped, if probed at evenly spaced locations or movement times. Instead, we 156

propose that the bell-shaped feedback response profiles are consequential to the specific 157

kinematic values imposed by the experiments, and other, for example monotonically 158

decreasing intensity profiles, are also possible with faster movements (Fig 3D). Second, 159

our simulations also make predictions on relative differences between the feedback 160

intensity profiles in stop and hit conditions. Particularly, we expect the hit condition to 161

produce stronger responses than the stop condition for short times-to-target, with this 162

relationship inverting for long times-to-target if the two types of movements require 163

different feedback controllers (Fig 3B and Fig 3C). Note, that while in previous studies it 164

is typical to compare such response profiles in terms of perturbation onset location, here 165

no difference between hit and stop is predicted in position-dependent profiles (Fig 3D). 166

Human control policies match model predictions in hit and stop 167

conditions 168

In order to compare the behaviour of our participants to the model predictions, we first 169

analysed our results from the blocked schedule of the experiment. Here every 170

participant has completed a block of 416 trials of hit condition and another block of 416 171

trials of stop condition, with the order counterbalanced across all participants. Our 172

experimental results qualitatively match the predictions of our model. First, 173

participants successfully differentiated between the kinematics of the hit and the stop 174

condition, with both types of movements resulting in matching early and peak velocity 175

(vpeak,stop = 58.9 cm/s, vpeak,hit = 58.1 cm/s), but with differences towards the end of 176

the movement such that the velocity at the target is higher for the hit condition (Fig 177

3E). Specifically, in the hit condition participants produced movements with average 178

velocity at the target of 38.5 cm/s, while successfully stopping at the target in the stop 179

condition. In addition, similar to the model simulations, movements in the hit condition 180

were of slightly shorter duration (630 ms vs 700 ms). 181

Qualitatively, the experimental feedback responses also match the model predictions 182

(Fig 3F and Fig 3G). First, due to relatively fast reaching velocities in our experiment, 183

as well as the lack of maintained perturbations, all perturbations were induced at short 184

times-to-target (under 550 ms). For comparison, in our previous study [26] 185

perturbations were induced at times-to-target that ranged between 300 ms and 1000 ms, 186

with peak feedback intensities recorded for perturbations with time-to-target at 400 ms. 187

Second, both our data and the model produce feedback intensities at short 188

times-to-target that are higher for the hit condition than for the stop condition, even in 189

movement segments where the kinematics are otherwise similar. In addition, we also 190

observe no learning effects within this regulation, as the relative behaviour across 191

conditions is present in the first few blocks of the study, and remains throughout the 192
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Fig 3. Comparison of OFC model predictions and experimental results. A. Simulated kinematics of stop, hit and long-stop
conditions. Stop and hit conditions produce matching kinematics that only deviate shortly before movement end. The
long-stop condition is a control simulation, that matched the kinematics of the hit condition for the duration of the hit
movement, but was achieved with the same stop controller. B. Simulated feedback intensities as a function of time-to-target
and C. time-to-movement-end. Simulations predict a faster increase of response intensities for hit condition than for stop
condition. As the long-stop condition is simulated via a longer (28 cm) movement, the time-to-target represents a time until
the simulated movement crosses a point of 25 cm distance (the target distance). For hit and stop conditions, time-to-target
and time-to-movement-end are identical. When expressed against time-to-movement-end, long-stop produces matching
responses to the stop condition, as the feedback controller used for these movements is identical. With respect to the
time-to-target, long-stop responses are time-shifted from the stop responses. D. Simulated feedback intensities as a function
of the position. Stop and hit simulations with these particular kinematics produce matching feedback intensity profiles when
expressed against position, even if the feedback controllers are different. In contrast, the long-stop simulation with a feedback
controller matching that of the stop condition still produces different intensity profile against position. Shaded areas in
simulated traces represent 95% confidence intervals for simulated results. E. Velocity profiles of participants in blocked stop
and blocked hit conditions. The profiles match the task requirements. F. Normalised feedback intensity profiles of
participants in blocked stop and blocked hit conditions, expressed against time-to-target. Participants produce stronger
responses at matching time-to-target in the hit condition, consistent with simulation results for hit and stop. G. Normalised
feedback intensity profiles of participants in blocked stop and blocked hit conditions, expressed against position. Participants
produce matching responses within hit and stop conditions, supporting model simulations for stop and hit conditions, and not
stop and long-stop. Error bars in experimental results represent 95% confidence intervals.
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entire experiment (S1 Text). Importantly, we do not fit the model to match the data, 193

but instead use it to qualitatively describe the relative regulation of stop and hit 194

conditions. As such, matching features between the intensity profiles of the model (Fig 195

3B, Fig 3C and Fig 3D) and the data (Fig 3F and Fig 3G) imply that similar 196

computational mechanisms may be in action. Finally, our results also indicate that 197

participants utilise different feedback controllers for the hit and stop conditions, as the 198

experimental results for the blocked hit condition match the model simulations of the 199

hit, rather than the long-stop condition. 200

Human participants utilise contextual switching of feedback 201

controllers 202

In the previous sections we established the differences between the baseline control 203

policies of hit and stop conditions. Here, we test how these policies change when the 204

exposure to these conditions is no longer blocked. For example, it is natural in our daily 205

activities to continuously switch between tasks, rather than doing a single task for many 206

repetitions before switching to a new task. However, the question remains, how 207

switching between different tasks affects the underlying feedback control policies. To 208

test this, in the second half of the experiment we presented our participants with the 209

same two types of movements (hit and stop), but now with the conditions randomly 210

mixed across trials, instead of being presented in two separate blocks. As such, we could 211

test for one of two possible outcomes: 212

1. Control policies for stop and hit movements in the mixed schedule match 213

respectively the control policies in the stop and hit movements in the blocked 214

schedule (Fig 1D). Such an outcome would indicate that participants are able to 215

easily switch between different control policies (at least within consecutive trials). 216

2. Control policies for stop and hit movements in the mixed schedule do not match 217

with the respective baseline policies, indicating interference when switching among 218

multiple conditions (Fig 1C). 219

While both outcomes have previously been discussed from the sensorimotor adaptation 220

perspective, to our knowledge they have not yet been demonstrated for feedback control. 221

Our participants successfully produced the movements required in the experiment 222

(Fig 4A). Particularly, we observed clear distinctions in the terminal velocity between 223

the hit and stop conditions, independent of the experimental schedule (blocked or 224

mixed). A two-way repeated-measures ANOVA showed a significant main effect on 225

condition (hit or stop, F1,13 = 544.2, p� 0.001), but no significant main effect on 226

experiment schedule (blocked or mixed, F1,13 = 0.710, p = 0.42) or schedule/condition 227

interactions (F1,13 = 0.681, p = 0.42). In addition, a complementary Bayesian 228

repeated-measures ANOVA analysis showed similar results, with a very strong 229

effect [53] of condition (hit or stop, BFincl = 1.6× 1025), and with a tendency towards 230

no effect of schedule (blocked or mixed, BFincl = 0.379), or condition/schedule 231

interaction (BFincl = 0.409). A similar analysis for peak velocities showed a significant 232

main effect of condition (hit or stop, F1,13 = 5.94, p = 0.03; although BFincl = 1.12 233

indicates not enough evidence to either reject or accept the null hypothesis) and 234

condition/schedule interaction (F1,13 = 19.3, p� 0.001; BFincl = 32.6), but not on 235

schedule (blocked or mixed, F1,13 = 1.52, p = 0.24; BFincl = 0.56 shows a weak 236

tendency towards accepting null hypothesis). The Holm-Bonferroni corrected post-hoc 237

analysis for the interaction term revealed that participants produced slightly faster 238

movements in the mixed-hit condition, with the peak velocities matching otherwise. 239

We examined the evolution of the experimental visuomotor responses as a function 240

of perturbation onset position or onset time across the four different conditions (Fig 4C 241
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and Fig 4D). When expressed against either position or time, the visuomotor intensity 242

profiles do not show the classical bell-shaped profile where strongest responses occur in 243

the middle of the movement and are reduced towards the beginning and end. Instead, 244

our participants produced the strongest responses for the earliest perturbations, induced 245

at 1/6 of the total forward movement, with further responses decaying in intensity as 246

perturbations occurred closer to the target. Moreover, we observed no significant 247

differences in visuomotor responses across the different conditions and schedules. 248

Three-way repeated-measures ANOVA with condition (stop or hit), schedule (blocked or 249

mixed) and perturbation location (5 levels) as main factors showed no effect of condition 250

(F1,13 = 0.486, p = 0.50; BFincl = 0.238 shows substantial evidence towards no effect), 251

schedule (F1,13 = 0.096, p = 0.76; BFincl = 0.142 shows substantial evidence towards no 252

effect) or condition/schedule interaction (F1,13 = 0.657, p = 0.43; BFincl = 0.305 shows 253

substantial evidence towards no effect). While we observed a significant main effect of 254

Fig 4. Experimental results of stop and hit conditions in both blocked and mixed
schedules. A. Velocity profiles against position. Both stop conditions and both hit
conditions produce respectively similar velocity profiles, showing that participants
successfully performed the task in the mixed schedule. B. Normalised feedback response
intensities represented as a function of time-to-target. Hit and stop movements in the
mixed schedule demonstrate differences when expressed against time-to-target, that
match the differences between hit and stop conditions in the blocked schedule. This
supports the hypothesis of contextual controller switching between multiple task-specific
controllers. C. Normalised feedback intensities in all four conditions show no differences
when expressed against position or D. movement time at perturbation onset, as
predicted by the OFC simulations. This questions the appropriateness of position or
movement time as the reference frames in which to compare multiple feedback
controllers. Error bars and shaded areas indicate 95% confidence intervals of the mean.
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the perturbation location (F2.9,37.7 = 61.2, p� 0.001 after Greenhouse-Geisser 255

sphericity correction; BFincl = 9.3× 1036), such an effect was expected due to the 256

temporal evolution of feedback responses. In addition, we observed a significant 257

interaction between perturbation onset location and the condition (F2.1,27.0 = 6.26, 258

p = 0.005 after the sphericity correction; BFincl = 6.86), however a Holm-Bonferroni 259

corrected post-hoc analysis on the interaction term did not indicate any meaningful 260

interaction effects, with none of the significant interactions appearing at the same 261

perturbation onset location. Finally, the remaining interactions of schedule/perturbation 262

(F2.6,33.9 = 2.67, p = 0.07 after Greenhouse-Geisser sphericity correction; 263

BFincl = 0.289) and condition/schedule/perturbation (F2.8,36.8 = 0.233, p = 0.86 after 264

Greenhouse-Geisser sphericity correction; BFincl = 0.075) showed no significant effects. 265

Thus, as a whole our analysis indicates that the feedback controllers could not be 266

differentiated when expressed as a function of the position within the movement. 267

When expressed against time-to-target, the visuomotor feedback responses show 268

decreasing feedback intensities with decreasing time-to-target, with responses virtually 269

vanishing when the time-to-target approaches zero (Fig 4B). This behaviour is 270

consistent with our previous models describing the time-gain relationship [26]. In 271

addition, we observe stronger increases in visuomotor feedback intensity with increasing 272

time-to-target for the hit condition compared to the stop condition, in both blocked and 273

mixed schedules. Such regulation was previously predicted by our time-to-target OFC 274

model (see Fig 9C in [26]) for short times-to-target. Finally, we also observe a 275

qualitative match between the two stop conditions (mixed and blocked) as well as 276

between the two hit conditions (mixed and blocked), suggesting first evidence of rapid 277

feedback controller switching in the mixed schedule. This finding holds equally well in 278

trials immediately after a condition switch, as well as after the trials of the same 279

movement condition (S2 Text). Qualitatively the increase of visuomotor response 280

intensities with time-to-target for our specific results could be well described by a line 281

function for each of the four combinations of condition and schedule. In order to get a 282

quantitative estimate of the differences between the conditions we performed a Two-way 283

ANCOVA analysis of visuomotor response intensity, with schedule and condition as the 284

two factors, and time-to-target as the covariate. The results showed a significant main 285

effect of condition (hit or stop, F1,275 = 24.8, p� 0.001; BFincl = 9.46× 103), and 286

time-to-target (F1,275 = 222.8, p� 0.001; BFincl = 1.04× 1033), but no effect of the 287

experimental schedule (blocked or mixed, F1,275 = 0.098, p = 0.75; BFincl = 0.138) or 288

of schedule/condition interaction (F1,275 = 1.06, p = 0.30; BFincl = 0.304 shows 289

tendency towards no effect). Such results indicate that we can successfully separate the 290

two different controllers when expressing their feedback response intensities (or their 291

gains) against the time-to-target. Furthermore, we also show that such differences are 292

only present when comparing the controllers for different tasks, and are not dependent 293

on the presentation schedule of these tasks. Thus, we demonstrate that our participants 294

successfully selected an appropriate controller for a hit or a stop task, even in a schedule 295

where the task could change on consecutive trials. 296

Discussion 297

In this study we have demonstrated that humans are capable of rapid switching between 298

appropriate feedback controllers in the presence of different contextual cues. Specifically, 299

our participants show systematic differences in feedback responses when performing 300

hitting movements, compared to reach-and-stop movements. Moreover, the same 301

systematic differences are present, both when the two tasks are performed in isolation 302

(blocked schedule), or when rapidly switching from one task to the other (mixed 303

schedule), showing that these differences are evoked within a single trial, and not 304
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gradually adapted. Finally, these feedback responses are also well matched with the 305

optimal feedback control predictions for these responses in hit and stop tasks, further 306

reinforcing accumulating evidence of optimality principals in the feedback control of 307

human movements. 308

In order to gain insight into computational mechanisms that are employed when 309

humans switch between hit and stop conditions, in this study we formulate our 310

hypothesis through normative modelling [37,54–58]. Such an approach compares the 311

behavioural experimental data to the results simulated computationally through a 312

known bottom-up design. In turn, any mismatch between the data and the model rules 313

out the mechanism, while matching behaviour provides support for the likelihood of 314

such a mechanism. Specifically, here we simulate three different types of control 315

movements: stop movement, where a point mass is stopped at a target 25 cm away from 316

the start position; hit movement, where the point mass is instead brought to the same 317

target with nonzero terminal velocity; and a long-stop movement, with similar 318

kinematics to the hit movement within the 25 cm segment, generated by a stop 319

movement to a secondary virtual target at 28 cm distance. The hit and stop simulations 320

differed in the implementation of the feedback controller, with the state dependent costs 321

for the terminal velocity and terminal acceleration reduced by a factor of 50 for the hit 322

condition. As a result, the two models inherently simulate the behaviour that is 323

achieved via different controllers. On the other hand, the long-stop condition was 324

simulated by using the same controller as the stop condition, but to a target at 28 cm 325

instead of 25 cm. Consequently, such a movement still maintained a non-zero velocity at 326

25 cm, virtually simulating a hit-like movement. Notably, in order to better match the 327

kinematics of a long-stop movement to the kinematics of the hit and stop movements, 328

we temporally modulated the activation cost R of the long-stop controller, which we 329

have previously shown does not affect the overall feedback responses in terms of 330

time-to-target [26]. In general, while kinematics of hit and long-stop models matched 331

well, the two simulations predicted very different feedback response profiles when 332

expressed both against time-to-target and against position. Finally, the responses of our 333

participants in the hit condition matched better with the model simulation of the hit 334

condition, rather than the simulation of the long-stop, providing evidence that humans 335

use different feedback controllers for different tasks. 336

Principles of contextual switching have been extensively studied in the context of 337

feedforward adaptation [30,31,34,59–62]. While these cues vary in effectiveness [30,59] 338

and are typically considered as relative weightings of multiple feedforward models [63], 339

strong dynamic cues such as differences in follow-through [35,36], lead-in [33,61], or 340

visual workspace [31,32] can effectively separate the feedforward models. As multiple 341

recent papers have demonstrated that voluntary (feedforward) and feedback control 342

likely share neural circuits [24,39,64–67], it is reasonable to believe that similar 343

contextual regulation would also be present in feedback control. However, studies that 344

have shown this parallel changes in the feedback responses to the learning of the 345

feedforward dynamics, either examined before and after adaptation to novel 346

dynamics [24,64,68,69], or during the process of adaptation [19,70–72], meaning that 347

the they could not distinguish between the slow adaptation of the feedback controller to 348

each condition or the rapid switching between two controllers. Moreover, other studies 349

have suggested that feedforward and feedback controllers are learned separately [73,74] 350

and may even compete with one another [75], suggesting that these share different 351

neural circuits and may have different properties. In this study we showed that in the 352

mixed schedule, where the task goal unpredictably switched between hit or stop tasks 353

on consecutive trials, participants evoked different control policies for each task. 354

Furthermore, these policies, evoked within mixed schedule, well matched with the 355

respective policies in the blocked schedule, suggesting that they were not only different 356
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from one another, but also appropriate for each task, showing the strong separation of 357

the two contexts. While this is not unexpected, as the two hit and stop tasks are 358

significantly different in their dynamics and thus should act as a strong contextual cue, 359

one important result is that we demonstrated that the context regulates the feedback, 360

and not only feedforward control. Finally, our results are also consistent with the 361

accumulating evidence of the shared relationship between feedforward and feedback 362

control in human reaching. 363

One reason why contextual effects on feedback control have not been broadly 364

studied, is that it is difficult to quantify what really constitutes a change in feedback 365

control policy. For example, we can trigger responses of different magnitudes by 366

changing the size of the perturbation [41,42], inducing perturbations at different 367

positions [26,40] or at different times [20,37,76]. However, computationally such 368

differences in response intensity can be achieved within the same optimal feedback 369

controller without ever changing control parameters [38]. On the other hand, 370

experimental tasks, presented in some of these studies, e.g. reaching towards narrow, 371

wide or long targets, inherently require different feedback controllers. Specifically, 372

assuming a similar controller to the one we present in this work, a wide target implies a 373

reduced ωp,t weight in x-axis compared to the narrow target, thus leading to a different 374

optimum of control matrix L (Eq. 2 and 3). Indeed, human responses in tasks where 375

the target structure changed (either by shape or by the presence of obstacles [42, 44, 45]) 376

were consistent with the OFC predictions of two independent controllers [42]. In this 377

article we present two tasks that also require different feedback controllers, but achieve 378

that while maintaining the target shape. Instead, we invoke different controllers by 379

modulating the task requirement of either stopping at the target, or hitting through it. 380

In addition, by combining an OFC model predictions with our previous work, showing 381

that the time-to-target is a strong predictor of the feedback intensity in optimal control 382

tasks [26], we not only show that the human behaviour is consistent with two 383

independent controllers, but also that it cannot be explained by one controller. 384

Specifically, we simulate the behaviour either by recomputing the controller L (Fig 3B, 385

Fig 3C and Fig 3D, hit and stop), or by updating the state estimate x̂ and using the 386

same controller L (Fig 3B, Fig 3C and Fig 3D, stop and long-stop), to compare with the 387

experimental results (Fig 3F and Fig 3G). These results show that humans indeed 388

change their control policies when the task goal (e.g. hit or stop) changes. Thus, by 389

combining behavioural results with normative control models we can clearly identify 390

that it is specifically the change in control, and not other mechanisms, that is 391

responsible for the regulation observed in the experimental data. 392

Previous studies have demonstrated that visuomotor feedback intensity profiles are 393

roughly bell-shaped along the movement – low at the beginning and the end, and 394

peaking in the middle [26,40] – leading to assumptions that these gains might parallel 395

the velocity [39,67]. Our simulations and experimental results (Fig 3D and Fig 3G) 396

demonstrate that this bell-shape profile is not fixed, and that other profiles are possible. 397

In our previous work, we established a robust relationship between the visuomotor 398

feedback intensities and time-to-target, demonstrating that time-to-target is the 399

fundamental variable that modulates the responses, given that the task goal (and thus 400

the feedback controller) remains the same [26]. This means that the bell-shaped profile 401

is simply a by-product of a specific timing of perturbations, and is not regulated by 402

their onset location. As a consequence, the shape of these feedback intensity profiles can 403

be modulated away from the bell-shaped profile by changing movement speed, target 404

distance or acceleration profile. Such results illustrate possible caveats in the 405

experimental paradigms of motor control: historically, some of the task requirements 406

have been largely consistent, particularly in terms of reaching distance, reaching speed 407

or duration. This may result in some measured behavioural outcomes being specific to 408
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these kinematics or conditions rather than representing the general features of the 409

motor control system. Thus, while we do not advocate for routinely altering the 410

standard experimental and analytical methods, it is worth considering the specific 411

biases that such methods may contribute to a given study. 412

One popular way of looking at the visuomotor responses in humans is how they vary 413

with position in a movement. Indeed, numerous studies either analyse the evolution of 414

responses against position [26,39,40], or induce perturbations based on a fixed 415

position [7, 9, 25, 41, 49–51], with the expectation that these perturbations induce similar 416

responses unless the control changes. For example, [9] demonstrated different feedback 417

responses, induced at a matched position in movements towards different targets. While 418

we believe that these different target properties indeed suggest different feedback 419

controllers, such a distinction cannot be reliably tested with only one perturbation, 420

matched by position. Our results clearly demonstrate the limitations of position as the 421

main variable to probe such control. On one hand, even with similar kinematics for the 422

majority of the movement, simulations of stop and long-stop movements predict 423

radically different responses at matching positions (Fig 3D), despite the fact that these 424

are generated with identical controllers. On the other hand, different controllers for hit 425

and stop conditions still produced roughly matching feedback responses at the same 426

position, consistent with the experimental data (Fig 3D and Fig 3G). In contrast to 427

position as the main variable, OFC simulations in both this study and our previous 428

work [26] show that the same controller, when expressed against time-to-target, 429

produces matching response profiles, independent of other kinematic factors such as 430

movement velocity or position of the perturbation onset (Fig 3B and Fig 3C). 431

Furthermore, different controllers, such as hit and stop, produce feedback responses 432

with systematic differences when expressed against time-to-target, exactly as 433

demonstrated by our participants. Thus, we propose that time-to-target is the better 434

reference frame for comparing feedback responses. 435

In this study we have raised two alternative hypotheses about the regulation of 436

feedback controllers within the mixed schedule. The first possibility is that the feedback 437

control gradually adapts to a given task over a few consecutive trials, similar to the 438

feedforward control during learning of a force field or visuomotor rotation. If such 439

adaptation was true, we expect different feedback intensities between the hit and stop 440

conditions in the blocked schedule as the controller has enough trials to reach 441

steady-state behaviour. However, in the mixed schedule the controller would drift 442

between the equilibrium of hit and stop conditions, producing similar responses for 443

mixed hit and mixed stop conditions. Note that even in such a case where only a single 444

controller is performing both hit and stop trials, we would not necessarily expect any 445

effects on the kinematics or the participant’s ability to complete the task. Instead, due 446

to the feedback nature of the control, a sub-optimal controller would still complete the 447

movement, but produce sub-optimal (e.g. more costly) responses in the presence of 448

external disturbances. The second possibility is that an appropriate controller is 449

selected before each movement based on the provided context, allowing immediate 450

switching between tasks. In this case, the feedback intensity profiles would match for 451

the same task, regardless of the schedule of their presentation. That is, we expect to see 452

similarities between both hit conditions, as well as between both stop conditions, but 453

differences between any two hit and stop conditions. Our experimental results strongly 454

support the latter option, as we not only observe differences between mixed hit and 455

mixed stop conditions, but also observe their respective match with the blocked 456

conditions. While our results do not rule out the adaptation of feedback controllers in 457

general, we do demonstrate that different optimal controllers can be rapidly selected 458

and switched between for familiar tasks. 459

One important aspect of the relationship between feedforward and feedback control 460
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is that modulating one of them should affect the behaviour of the other. Indeed, 461

previous work has demonstrated that human participants changed their feedback gains 462

after adapting their feedforward models to novel dynamics [11,19,24,64,68–72]. 463

However, an adapted movement in the force field typically produces kinematics that are 464

similar to those in baseline movements, suggesting that such change of gains is achieved 465

at matching times-to-target, and with the same task goal. Thus, our proposed 466

framework that the relation between feedback intensities and time-to-target is unique 467

for a unique controller would predict that the feedback gains would remain unchanged. 468

As a result, we can not directly explain this change of control gains, unless the feedback 469

controller somehow changes during adaptation. One factor driving such a change is that 470

adapted movements in the force field are more effortful than baseline movements, due to 471

additional muscle activity required to compensate for the force. An increased effort in 472

the context of OFC simulations would thus increase the model activation cost R, 473

resulting in a change of optimal feedback gains and intensities at matching 474

times-to-target. In addition, the presence of a force field likely influences the 475

biomechanics of the movement (particularly the muscle viscosity b), changes the state 476

transition due to the external dynamics (via state transition matrix A), and updates the 477

state uncertainty [77], resulting in the same controller being applied to a different 478

control plant, and thus producing different responses. Moreover, if the controller is 479

optimised to to this new control plant, adaptation will inevitably require a new feedback 480

controller. Therefore, such changes in feedback control are expected, even though 481

conventionally it appears that the task goal remains the same after adaptation to the 482

novel dynamics. 483

Even though many recent studies use force channel trials [52] to accurately measure 484

the visuomotor feedback responses [7, 11], often these brief perturbation trials are 485

complemented with maintained perturbation trials [19,26,41,46–48,50,51]. This is 486

because brief perturbations within a channel trial are task-irrelevant, and can be 487

ignored without compromising the task, whereas maintained perturbations strengthen 488

these responses as they require an active correction for the participant to reach the 489

target. However, we have recently shown that these maintained perturbations also force 490

a non-trivial extension of the movement duration compared to the non-perturbed 491

movement, and thus complicate the relationship between the perturbation onset 492

location and the time-to-target. Hence, in order to consistently evaluate the control 493

behaviour and its relation to the time-to-target, here we deliberately chose to only 494

induce perturbations within the force channels and not to include the maintained 495

perturbations. Although this generally decreases overall feedback intensities, our 496

participants produced clear responses that exhibited the temporal evolution as 497

predicted by the OFC model simulations. 498

Another possible limitation of using channel trials to probe the feedback control is 499

the potential interference of the stretch reflex. Specifically, small forces produced on the 500

hand by the channel could set on the feedback corrections [78] that superimposed onto 501

the measured visuomotor responses. However, as the onset of the force channel occurs 502

prior to any movement of the participant, long before the time of the visual 503

perturbation, the channel onset will not produce a stretch reflex response timed to the 504

visual stimuli. More importantly, such effects, as well as any other corrections to the 505

channel onset would be present in all channel trials (including zero-perturbation trials), 506

and thus would cancel-out in the net feedback responses, as they would not depend on 507

the direction of the visual perturbation. As a result, it is unlikely that the force 508

channels introduced systematic effects into our recorded visuomotor feedback signal. 509

Similarly, we also saw no behaviour differences between simulations of free movements, 510

that we presented in our results, and analogous simulations of matching duration 511

movements in channel trials (S1 Fig). 512
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Most studies of motor learning study contextual switching in conjunction with dual 513

adaptation by introducing participants to novel force fields or visuomotor rotations, for 514

which they do not have pre-existing feedforward controllers. In turn, we typically see 515

slow, simultaneous adaptation to applied perturbations, as well as context-induced 516

switching of the memories after the transient learning phase is over. Importantly, for 517

familiar tasks this switching is evoked immediately, without the need to re-learn the 518

dynamics again on re-exposure. This is clearly seen on the second or later days after 519

adapting to dual force fields [35,79]. In this study, our main goal was to demonstrate 520

that such contextual switching is also possible for feedback controllers, rather than to 521

demonstrate gradual adaptation. Therefore, in our experimental design we consciously 522

selected two tasks (stop or hit) that were not novel to our participants. While there 523

remains a possibility that due to the dynamics of the vBot environment both tasks were 524

different to stop or hit movements outside of the lab, and thus novel to participants, we 525

always started our studies with the blocked schedule, and only then followed with the 526

mixed schedule to make sure that the different baseline controllers are already available 527

to our participants. An interesting control would be to first test the participants in the 528

mixed schedule, followed by the blocked schedule. However, we believe such control 529

would mainly test whether the two task choices were novel to participants or not, which 530

is not the focal point of our study. 531

In summary, here we again demonstrate that time-to-target (which could be 532

considered as one form of urgency) [20, 26, 39, 76, 80], and not position or velocity, act as 533

a primary predictor for the feedback response intensity when the task goal is fixed. 534

Moreover, when comparing multiple tasks, the time-to-target reference frame 535

consistently separates the feedback control policies for these tasks – an outcome that 536

fails when comparing two different controller gains within the position reference frame. 537

While position within the movement, and velocity at the time of a perturbation, 538

definitely influence the controller responses, our results clearly demonstrate that the 539

effect of these variables on overall control may be somewhat exaggerated in the previous 540

literature. For example, our participants produced temporal evolution of the responses 541

to visual perturbations that neither paralleled the velocity, nor showed the typical 542

variation with position (with peak responses achieved mid-movement), but could be 543

explained by the time-to-target dependency that was predicted by OFC. In addition, 544

participants were able to switch their feedback controller from one trial to another, 545

demonstrating the principle of contextual switching for feedback control. Such 546

switching, well known in feedforward control, further reinforces accumulating evidence 547

of the shared connections between feedforward and feedback control. Most importantly, 548

our results demonstrate that the visuomotor feedback control in humans not only 549

follows the principles of optimal control for a singular task, but also selects an 550

appropriate controller for that task upon presenting the relevant context. 551

Methods 552

Ethics statement 553

The study was approved by the Ethics Committee of the Medical Faculty of the 554

Technical University of Munich. All participants have provided a written informed 555

consent before participating in the study. 556

Experimental setup 557

Fourteen right-handed [81] human participants (age 21-29 years, 5 females) with no 558

known neurological diseases and näıve to the purpose of the study took part in the 559
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experiment. Participants performed forward reaching movements either to a target 560

(stop condition) or through the target (hit condition) while grasping the handle of a 561

robotic manipulandum (vBOT, [82]) with their right hand, with their right arm 562

supported on an air sled. Participants were seated in an adjustable chair and restrained 563

using a four-point harness in order to limit the movement of the shoulder. A six-axis 564

force transducer (ATI Nano 25; ATI Industrial Automation) measured the end-point 565

forces applied by the participant on the handle. Position and force data were sampled at 566

1 kHz, while velocity information was obtained by differentiating the position over time. 567

Visual feedback was provided via a computer monitor and mirror system, such that this 568

system prevented direct vision of the hand and arm, and the virtual workspace appeared 569

in the horizontal plane of the hand (Fig 5A). The exact timing of any visual stimulus 570

presented to the participant was determined from the graphics card refresh signal. 571

Participants controlled a yellow cursor (circle of 1.0 cm diameter) by moving the 572

robotic handle. The centre position of this cursor in the virtual workspace always 573

matched the physical position of the handle. Every experimental trial was initiated 574

when the cursor was brought into the start position (grey circle of 1.6 cm diameter), 575

which was located 20 cm in front of participants’ chest and centred with the body. 576

When the cursor was within this start position, the circle changed from grey to white 577

and the type of experimental trial was indicated by the presentation of a target. After a 578

random delay, sampled from an exponential distribution with λ = 0.7 and truncated 579

outside 1.0 s - 2.0 s interval, a tone was played to indicate the start of the movement. If 580

participants failed to leave the start position within 1000 ms after this tone, the 581

procedure of the current trial was aborted and restarted. 582

Over the course of the experiment the participants were tasked to complete two 583

types of movements: stop movements, where they were required to stop within the 584

target (a circle of 1.2 cm diameter, located 25.0 cm in front of the start position) (Fig 585

5B), or hit movements, where they had to intercept the target without stopping, and 586

instead stop in a designated stopping area (a blue rectangle, [width, height] = [15 cm, 4 587

cm], centred 5 cm beyond the target) (Fig 5C). The reaching movement was considered 588

complete once the centre of the cursor was maintained for 600 ms either within the area 589

of the target in stop trials, or within the stopping area in the hit trials. In addition, if 590

the movement duration was longer than 4.0 s, the trial was timed-out and had to be 591

repeated. After each trial, the participant’s hand was passively moved back to the start 592

position by the vBOT, while the feedback of the previous trial was provided on screen 593

(Fig 5D). All movements were self-paced, with short breaks provided every 208 trials, 594

and a longer break (5-10 minutes) provided at the half-way point of the experiment. 595

Experimental paradigm 596

Participants performed reaching movements in four conditions – blocked stop, blocked 597

hit, mixed stop and mixed hit – that were part of a single experiment. Across these 598

conditions, participants were required to either reach to the target and stop there (the 599

stop conditions), or to reach through the target and stop in the designated stopping 600

area (hit conditions). In order to easily cue the distinction between the hit and stop 601

conditions, the two types of trials had small visual differences. For the hit condition 602

participants were presented with a red target (a red circle of 1.2 cm diameter) and a 603

rectangular blue stopping area of dimensions 15 cm by 4 cm, centred 5 cm beyond the 604

target (Fig 5C). For the stop condition participants were presented with a target that 605

was otherwise identical to the target in hit condition, but was blue in colour, and with a 606

horizontal, 15 cm wide red line, that was placed 3 cm before the target (Fig 5B). While 607

this line had no functional interaction with the experiment, it allowed us to consistently 608

instruct the participants to always perform reaching movements so that they intercept 609

the red element in the workspace, and stop within the blue element. 610
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In order to probe the visuomotor feedback responses of participants, during some 611

reaching movements we briefly perturbed the target by shifting it 2.0 cm laterally for 612

250 ms before returning back to the original position (Fig 2A). These perturbed trials 613

were always performed within the virtual mechanical channel, where participants were 614

free to move along the line between the start position and the target, but were laterally 615

Fig 5. Experimental setup. A. Participants controlled a yellow cursor by moving a robotic handle.
The cursor was projected via a screen-mirror system directly into the plane of the participant’s
hand. Figure copyright 2008 Society for Neuroscience. B. Stop condition. Participants were
instructed to reach with the cursor through a red line and stop within the blue target. Target
perturbations were occasionally induced via target jumps of 2 cm laterally. C. Hit condition.
Participants were instructed to reach through the red target and stop within the blue area. Target
perturbations (2 cm laterally) were again induced on random trials. D. Visual feedback was
presented after each trial. Participants were shown the workspace with the start position and the
target still present. In addition, two indicators were displayed. A bar chart at the top-right part of
the workspace scaled proportionally with the absolute peak velocity, and was green if the velocity
was within the required range as indicated by two grey brackets. A horizontal bar indicating the
actual forward location where this peak velocity was achieved was displayed between the start and
target positions. This bar was green if the peak location matched the experimental requirements,
indicated by two large rectangular blocks. If both location and peak amplitude criteria were
successfully fulfilled, participants were rewarded with one point. If at least one of the two criteria
was not fulfilled, the respective indicator turned red instead of green, and no point was provided.
In both hit and stop experiments participants were instructed to move through the red workspace
element and stop at the blue, and were rewarded with one point if they both intercepted the target
and fulfilled both velocity requirements.
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constrained by a virtual viscoelastic wall with stiffness of 2 N/m and damping 4000 616

Ns/m [7,40,52]. As the perturbations were always task-irrelevant, this channel therefore 617

did not obstruct participants to complete the trial. However, as participants still 618

produced involuntary feedback responses due to the target shift, the virtual channel 619

allowed us to record the forces that participants produced due to the perturbations and 620

measure the intensities of the visuomotor feedback responses. 621

For each type of movement (i.e. hit or stop) there was a total of 11 different 622

perturbations. Ten of these perturbations were cued during the reaching movement as 623

participants crossed one of the five perturbation onset locations, equally spaced between 624

the start position and the target position (4.2, 8.3, 12.5, 16.7, and 20.8 cm from the 625

centre of the start position). At all of these five locations the target could either shift to 626

the left or to the right. In addition, one zero-magnitude perturbation was also included, 627

where the movement was simply performed within the channel without any target shift 628

in order to probe the force profile of the natural movement. Finally, in addition to the 629

perturbation trials we also included non-perturbed trials where participants simply 630

reached towards the target without any target perturbation and without the virtual 631

channel constraining the hand. 632

In order to present the different perturbations in a balanced manner, we combined 633

different types of trials in blocks of 16 trials. One block of 16 trials contained 11 634

perturbed trials (5 perturbation onset locations x 2 directions, plus one neutral 635

movement in the force channel), and 5 non-perturbed movements without the force 636

channel. Each of the four experimental conditions consisted of 26 such blocks, with the 637

order of trials fully randomised within each block, resulting in 416 trials per condition 638

and 1664 trials overall. 639

In the first half of the experiment, participants were always presented with the two 640

blocked-design conditions (blocked hit and blocked stop), with the order of the 641

conditions balanced across the population of participants. That is, each participant 642

started with 416 trials of stop trials, followed by 416 hit trials or vice-versa. In the 643

second half of the experiment, the two final conditions – mixed hit and mixed stop – 644

were presented in a pseudo-random order within the same blocks. While individual 645

trials within mixed conditions were identical to the individual trials within the 646

respective blocked conditions, they were now presented in a pseudo-randomised order. 647

Specifically, the remaining 832 trials were divided into 26 blocks of 32 trials, with each 648

block consisting of 16 hit and 16 stop trials fully randomised within this block. Such 649

randomisation resulted in a percentage split where 52% of trials were presented after a 650

condition switch, 26% of trials were presented after exactly one trial of the same 651

condition, 12% – after exactly two trials of the same condition, and larger clusters with 652

diminishing frequency. 653

Feedback regarding movement kinematics 654

In theory, the movements in hit condition could be interpreted as the movements, where 655

the goal is to go through the via-point (the red target) and stop at the blue stopping 656

area. As a result, such movements could simply be treated by participants as the stop 657

movements with longer movement distance and a less restrictive target. Typically for 658

such reaching movements, humans would produce a velocity profile that is bell-shaped, 659

with peak velocity near the middle of the movement, and therefore further along the 660

movement than in the stop condition. In order to avoid such differences and keep the 661

velocity profiles comparable between the two conditions, we provided the task-relevant 662

feedback on the velocity profiles, specifically the peak velocity and peak velocity 663

location, to our participants (Fig 5D). 664

Independent of the experimental condition, participants were required to produce the 665

movements with the peak velocity of 60 cm/s ± 8 cm/s, and the peak velocity location 666
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within 11.25 cm - 13.75 cm movement distance (or 45%-55% of the distance between the 667

start location and the target). The peak velocity was indicated as the small bar chart at 668

the top-right of the screen, with the required velocity range indicated by two grey 669

brackets. If the velocity target was matched, the bar chart turned green, otherwise it 670

was red. Similarly, the peak velocity location was shown as a horizontal bar, centred 671

around the movement distance where the peak velocity was reached. If this location was 672

within the target range (also indicated by grey brackets), it was displayed as green, 673

otherwise it was red. Participants were rewarded one point if both velocity requirements 674

were successfully met, and the cursor intercepted the target during the movement. 675

Data Analysis and Code Availability 676

All data was pre-processed for the analysis in MATLAB 2017b: force and kinematic 677

time series were low-pass filtered with a tenth-order zero-phase-lag Butterworth filter 678

with 15 Hz cutoff and resampled at 1 kHz to account for an occasional missed sample 679

during the signal recording. All subsequent analysis was performed in Python 3.9.4 and 680

JASP v0.14.1 [83]. First, raw visuomotor feedback intensities were calculated from the 681

force responses, recorded after the induction of a target perturbation. Specifically, for 682

every perturbation trial we averaged the lateral force response over a time window of 683

180 ms - 230 ms after the onset of the perturbation, and subtracted a neutral force 684

profile over the matching time window. This method and the particular time window 685

has now been used in numerous studies to calculate the intensity of the early involuntary 686

visuomotor feedback response [7, 25,26,40,41,50,51]. As the direction of the response 687

differed based on the perturbation direction, we reversed the direction of the intensities 688

of responses to the leftward perturbations, so that positive intensities always indicate 689

movements in correct direction, and grouped all intensities by the perturbation onset 690

location. Second, we normalised mean feedback responses between 0 and 1 for each 691

participant in order to avoid the group effect being biased towards participants with 692

stronger responses. Finally, in our analysis the start of all movements was defined as the 693

last time sample where the cursor is still within the area of the start circle, and the end 694

of the movement was defined as the last time sample before the cursor enters the target 695

circle. Time-to-target values were extracted from the data for every perturbation trial 696

by subtracting the perturbation onset time from the movement end time. 697

In this article we provide two types of statistical analysis: the conventional 698

frequentist statistics, as well as complementary Bayesian analysis that is presented as 699

Bayesian factors [53], which instead of a simple hypothesis testing provides evidence for 700

or against the null hypothesis. As a result, among other things, Bayesian analysis allows 701

us to distinguish between accumulating evidence for the null hypothesis, and simply 702

lacking evidence in either direction due to low power or small sample size. 703

All the Jupyter notebooks for the data analysis, pre-processed experimental data 704

and statistical analysis conducted in this article are available at 705

https://doi.org/10.6084/m9.figshare.17113904.v1. 706

Computational modelling 707

In this study we formulated our initial hypothesis about the feedback control 708

mechanisms in humans by first simulating the behaviour of the optimal feedback 709

controller (OFC). Specifically, we used a finite-horizon linear-quadratic regulator 710

framework – a relatively simple OFC that assumes perfect sensory input, as well as no 711

control-dependent noise, while still being able to capture a significant part of the 712

variance of human reaching movements [38,84]. In order to model the feedback 713

behaviour of our human participants, we first simulated virtual movements of a point 714

mass with m = 1 kg, and an intrinsic muscle damping b = 0.1 Ns/m. This point mass 715
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was controlled in two dimensions by two orthogonal force actuators that simulated 716

muscles, and regulated by a control signal ut via a first-order low-pass filter with a time 717

constant τ = 0.06 s. At time t within the movement, such system could be described by 718

the state transition model: 719

xt+1 = Axt +B(ut + ξt), (1)

where A is a state transition matrix, B is a control matrix, and ξt is additive control 720

noise. For one spacial dimension A and B are defined in discrete time as: 721

A =




1 δt 0
0 1− bδt/m δt/m
0 0 1− δt/τ




, 722

B =




0
δt/τ

0




Finally, to simulate our model in discrete time we used the sampling rate δt = 0.01 s 723

State xt exists in the Cartesian plane and consists of position ~p, velocity ~v and force 724

~f (two dimensions each). The control signal ut is produced via the feedback control law: 725

ut = −Lxt (2)

where L is a matrix of optimal feedback control gains, obtained by optimising the 726

performance index (also known as the cost function): 727

J =

N∑

t=0

xTt Qtxt +uTt Rtut =

N∑

t=0

ωp,t(~pt− ~p∗)2 +ωv,t||~vt||2 +ωf,t||~ft||2 +ωr,t||ut||2. (3)

Here xTt Qxt and uTt Rut are two components of the total cost, known as state-cost and 728

a control-cost respectively. In addition, ωp, ωv and ωf are position, velocity and force 729

state cost parameters, ~p∗ is a target position, ωr is the activation cost parameter and N 730

is the duration of the movement, here required as a model input. Within the 731

finite-horizon formulation, the cost parameters can be non-stationary and thus be 732

different for every time-point. However, in our simulations we set Q = 0 for t 6= N , 733

consistent with [37,85]. 734

In this study we simulate three different controllers that we call stop, hit and 735

long-stop. While the stop and long-stop controllers are derived from the identical set of 736

costs state-costs Q, they are used for slightly different movements (25 cm and 700 ms 737

for stop, 28 cm and 800 ms for long-stop). We used ωp = 1.5, ωv = 1 and ωf = 0.1 as 738

the values for the state cost parameters in this model, and the activation cost R = 3 739

×10−6. Furthermore, in order to better match the forward velocity profiles, we also 740

introduced a non-stationarity in the activation cost R of the long stop movement, where 741

the total integral of the activation cost over the movement is not changed, but this cost 742

develops over time during the movement. Specifically, at a time t in the trial, the 743

activation cost for the long-stop movement was computed by: 744

Rlong−stop(t) = RC(t), (4)

where 745

C(t) ∝ exp
(
p
t+ q

r

)
, (5)
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and the mean of C(t) equals 1 for the duration of the trial, so that Rlong−stop produces 746

the same amount of activation as R over the duration of the trial. Here p = 1, q = 747

-1000 and r = 65 are constants, fit via trial and error in order to produce the forward 748

velocity profile of long-stop condition that matches the velocity of stop and hit 749

conditions. We have previously shown that such modulation only affects the kinematics 750

of the movement, but does not change the feedback responses when expressed against 751

the time-to-target [38]. On the other hand, in order to incentivise the hit controller to 752

produce faster movements at the target, we reduced the cost parameters for terminal 753

velocity and terminal force by a factor of 50. As a result, such controller produced 754

hit-like movements that were aimed directly at a target, positioned at 25 cm distance, 755

over 620 ms, which matched the kinematics of the long-stop controller over this 756

movement segment. 757

Finally, for each controller we simulated feedback response intensity profiles along 758

the movement, which we then used to compare the control policies predicted by each 759

controller. To do so, we induced lateral target perturbations of 2 cm magnitude during 760

the simulated movement to the target and recorded the corrective force, produced by 761

each controller as a result of these perturbations. While in the experimental study we 762

only induced such perturbations at five different onsets due to practical reasons, in our 763

simulations we could perturb the movements at every point in time and fully map the 764

response intensity profiles over the movement. Thus, for each model we simulated 765

different movements with perturbations at each movement time-step (i.e. every 10 ms), 766

with one perturbation only happening once per movement. In addition, to simulate the 767

visuomotor delay that is present in humans, we delayed the onset of each perturbation 768

by 150 ms, so that for the perturbation triggered at time t, the target is shifted at time 769

t+ 150 ms. We then averaged the force, produced by our model over a time interval 10 770

ms – 60 ms after the target was shifted (160 ms – 210 ms after the perturbation was 771

triggered), representing the visuomotor response window of 180 ms – 230 ms in human 772

subjects. Note that we used an earlier window for the model simulations than for the 773

human subjects as the responses in the simulations ramp up fast due to muscles 774

simplified to a single low pass filter. 775
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S1 Text Initial learning of feedback controllers. Here we verify whether our
participants developed different feedback controllers for hit and stop tasks over
the blocked schedule, or if these controllers were innate. To do so, we analyse the
visuomotor responses in the first few blocks of the study, showing that these
responses can be considered innate.

S2 Text Effect of condition clustering in mixed schedule. Visuomotor
responses were analysed in trials immediately following the condition switch (hit
to stop or stop to hit) in mixed schedule. Analysis shows same regulation as in
the entirety of the mixed schedule, implying rapid switching.

S1 Fig OFC model simulations in channel trials. Model simulations performed
in cbannel trials, instead of free movement responses. A. Velocity profiles for stop
(blue), hit (red) and long-stop (green) conditions. B. Model simulations of
feedback intensities as a function of time-to-target and C. position for the three
conditions. Simulations in the channel trials qualitatively predict the same
regulation as do the simulations of free movements.
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S1 Text. Initial learning of feedback controllers

One of our main goals in this study was to test whether participants could or could not
rapidly switch between two feedback controllers. As a result, we selected two tasks (stop
and hit) that we expected participants would have innate controllers for. However, it is
possible that these controllers were not in fact innate, and participants only developed
them over the extended exposure to different tasks during blocked schedule. We
therefore analysed the feedback responses of our participants over the first three blocks
of each condition qualitatively (Fig S1). Even within the early portion of the
experiment, we observe a clear distinction between feedback responses in hit and stop
conditions, suggesting that controllers were indeed innate to our participants, or at least
developed rapidly enough to be considered as innate for the purposes of our study.

Fig S1. Visuomotor feedback intensities during the first three blocks of the experiment.
A. Normalised feedback intensity profiles of participants in blocked stop and blocked hit
conditions, expressed against time-to-target. Participants produce stronger responses at
matching time-to-target in the hit condition, consistent with simulation results for hit
and stop (same as Fig 3E). B. Normalised feedback intensity profiles of participants in
blocked stop and blocked hit conditions during the first three blocks of each condition,
expressed against time-to-target (solid lines, primary axis). Dashed lines represent the
responses over the entirety of the blocked schedule (secondary axis). Error bars
represent 95% CI
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S2 Text. Effect of condition clustering in mixed schedule

Fig S2. Visuomotor feedback intensities in the trials after the switch of condition. A. Normalised
feedback intensity profiles of participants in blocked stop and blocked hit conditions, expressed against
time-to-target. Participants produce stronger responses at matching time-to-target in the hit condition,
consistent with simulation results for hit and stop (same as Fig 3E). B. Normalised feedback intensity
profiles of participants in mixed stop and mixed hit conditions, only in trials immediately after condition
switch, expressed against time-to-target. Similar regulation is observed as in the blocked schedule. C.
Raw feedback intensity profiles of participants in mixed stop and mixed hit conditions, only in trials
immediately after condition switch, expressed against time-to-target. Error bars represent 95% CI

In our study design we took deliberate care in shuffling the conditions in mixed
schedule. Particularly, if we simply shuffled the 832 trials in the mixed schedule
together, we are likely to observe large clusters of the same condition without switching,
which may allow for adaptation of feedback controllers and thus would provide false
support for the rapid switching hypothesis. In order to avoid such effects we used a
pseudo-random design, where we divided the 832 trials in the mixed schedule into 26
consecutive blocks of 32 trials each. Every block contained 16 trials of hit condition,
and 16 trials of stop condition, where the 16 trials contained 11 perturbation trials (5
perturbation onset locations ⇥ 2 directions, plus one zero-perturbation trial) and 5 free
(null-field) trials. Within each block all trials were randomly shuffled, but one block had
to be completed entirely before the next block started. Similar shuffling was also
performed in the blocked schedule, only that each block contained 16 trials of a single
condition, and all 26 blocks of one condition had to be completed before the opposite
condition was first introduced.

Even under the aforementioned constraints of the randomisation there still remains a
chance of condition clustering. In fact, on average in the mixed-schedule each
participant experienced 52% of trials after condition switch, with remaining trials
following the same condition as on the previous trial (26% after exactly one trial of the
same condition, 12% after exactly two trials, and the larger clusters in diminishing
quantity). As a result, we performed a control analysis where we compared the hit and
stop conditions only in trials immediately after the condition switch (Figure S2). A
one-way ANCOVA analysis of normalised visuomotor response intensity in the mixed
schedule with condition as a fixed factor and time-to-target as the covariate still showed
a significant main effect of condition (hit or stop, F1,127 = 5.51, p = 0.02), despite
reduced statistical power. However, a similar Bayesian ANCOVA analysis only showed a
weak tendency towards main effect for condition (BFincl = 1.96). Both analyses showed
a significant effect of time-to-target (F1,127 = 94.3, p ⌧ 0.001; BFincl = 2.86 ⇥ 1013).
Thus, qualitatively and quantitatively the control behaviour of our participants during
the first trials after condition switching matched that demonstrated for the whole
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duration of the experiment, showing no effect of learning due to consecutive trials of the
same condition. As this analysis uses only a subset of our data, these results are
sensitive to noise, and thus the normalisation of the data, shown in Figure S2B could be
affected by an occasional outlier. As a result, for completeness, and a clearer picture,
present both normalised data (S2B), and raw data (S2C).
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This study, authored by Justinas Česonis, Sae Franklin and David W. Franklin was published in the

proceedings of 2018 40th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBC). In this study we presented an inverted pendulum balancing task, that was

completely virtual, and therefore allowed for flexible modifications of the design when studying the

human control behaviour. In addition, we also modelled this control behaviour computationally by

using a set of PD controllers, showing that our results can be best described by a PD control with a

time delay of 150 ms.
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Abstract

Sensorimotor control regulates balance and stability as well as adaptation to the external environ-

ment. We introduce the use of a simulated inverted pendulum to study human sensorimotor control,

demonstrating that this system introduces similar control challenges to human subjects as a phys-

ical inverted pendulum. Participants exhibited longer stabilization of the system as the pendulum

length between the hand and the center of mass increased while the required control input varied

in a non-monotonic, yet predictable manner. Finally, we show that the experimental results can be

modelled as a PD controller with a time delay of τ = 140 ms, matching the human visuomotor delay.

Our results provide evidence of the importance of vision in a control of unstable systems and serve

as a proof of concept of a simulated inverted pendulum.
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Abstract—Sensorimotor control regulates balance and stability 
as well as adaptation to the external environment. We 
introduce the use of a simulated inverted pendulum to study 
human sensorimotor control, demonstrating that this system 
introduces similar control challenges to human subjects as a 
physical inverted pendulum. Participants exhibited longer 
stabilization of the system as the pendulum length between the 
hand and the center of mass increased while the required 
control input varied in a non-monotonic, yet predictable 
manner. Finally, we show that the experimental results can be 
modelled as a PD controller with a time delay of τ = 140 ms, 
matching the human visuomotor delay. Our results provide 
evidence of the importance of vision in a control of unstable 
systems and serve as a proof of concept of a simulated inverted 
pendulum. 
 

I. INTRODUCTION 

The inverted pendulum is a classic problem in control 
theory, often used as an assessment tool to test control 
strategies. This system is both unstable without control and 
contains nonlinear dynamics. The inverted pendulum is 
normally implemented with a pivot point mounted on a cart 
that moves horizontally under the control of a servo motor 
system. Here we implement this classic model within our 
virtual reality robotic system in order use this unstable 
system as a tool to assess human motor control and 
behaviour. 

The use of the inverted pendulum system is also a classic 
approach to investigating human motor control [1]-[3]. 
Normally the subject is asked to control a fully mechanical 
inverted pendulum after training in order to investigate the 
delays and processes that govern this balancing control. In 
certain cases the inverted pendulum has been simulated in 
order to briefly suppress visual feedback and examine the 
predictive control strategies [1]. Here we fully simulate a 
virtual inverted pendulum in the horizontal plane in order to 
further investigate the processes of control. As the system is 
fully simulated, this allows the experimenter to control every 
aspect of the feedback (visual, haptic or temporal) in order to 
understand how each parameter is used by the sensorimotor 
control system.   

Stability is an essential component of human motor 
control and learning [4]. However the mechanisms used by 
the human sensorimotor system vary depending on both the 
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task and the effectors used [5], [6]. While reaching 
movements in an unstable environment have promoted the 
use of predictive co-contraction to modify the endpoint 
stiffness of the limb [7]-[9], balance of postural sway has 
strongly supported the use of feedback control for 
stabilization [10]-[12]. These differences have been 
suggested to arise due to the different timescales of the 
system [5], allowing for the use of delayed feedback for long 
lengths such as full body sway. The simulation of a virtual 
inverted pendulum allows for changes in the lengths of the 
pendulum to be investigated. The objective of this task is to 
actively balance the inverted pendulum by applying a force to 
the cart. Here we applied this one degree of freedom 
pendulum onto a two-dimensional virtual reality robotic 
system. This apparatus can apply visual and haptic feedback 
to the participants as they interact with the virtual cart and 
pendulum. Such a system allows manipulation of the 
supplied feedback in order to investigate the control 
strategies of the human subjects in this complex task. 

II. MATERIALS AND METHODS 

A. Subjects 
Six neurologically healthy, right-handed [13] human 

subjects (1 female) took part in the experiment (mean age 
29.0 years). All subjects were naïve to the study purpose and 
provided written informed consent before participation. The 
study was approved by the institutional ethics committee at 
the Technical University of Munich. 

B. Experimental apparatus 
Participants performed a balancing task of an inverted 

pendulum simulated with a robotic manipulandum. Subjects 
were seated with their right arm resting on an airsled and 
grasping the endpoint handle of the vBOT robotic interface 
(Fig 1A). The vBOT is a custom made planar robotic 
interface that generates state-dependent forces on the hand at 
1kHz [14] (Fig. 1A). A six-axis force transducer (ATI Nano 
25; ATI Industrial Automation) measured the end-point 
forces applied on the robotic handle by the participants, 
while handle position was calculated from joint-position 
sensors (58SA; Industrial Encoders Direct). Position and 
force data were sampled at 1 kHz. Visual feedback was 
projected via a computer monitor and a mirror system to the 
plane of the movement in such a way that the direct visual 
feedback of the hand was prevented. 

C. Experimental paradigm 
The inverted pendulum was simulated in the x-y plane with 
the gravity acting in the negative y direction while corrective 
movements were performed in the x-axis. Mechanically the  
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Figure 1. Experimental design. A, Subjects attempted to balance an inverted 
pendulum simulated using a planar robotic manipulandum providing both 
visual and haptic feedback. B  A sample screenshot of an experimental trial. 
The circular cursor at the top of the screen provides visual feedback of the 
center of mass while the pendulum (blue line) is truncated at the top of the 
screen. The y-coordinate of the physical hand location (not visible to 
subjects) is offset with respect to the cart position. 
 
pendulum was represented as a point mass (m = 1 kg) 
balanced at height (L) above a cart (M = 0.1 kg). The 
dynamic equations of motion describing the system are:  

𝐹! =  𝑥 𝑚 sin! 𝜃 +𝑀 −𝑚𝐿𝜃! sin 𝜃 +𝑚𝑔 sin 𝜃 cos 𝜃    (1) 

𝜃 = (𝑔 sin 𝜃 − 𝑥 cos 𝜃) 𝐿             (2) 
       
where Fx is the lateral force applied by a pendulum on the 
cart, θ is the angle between the pendulum and the y-axis, x is 
the position of the cart and g is the gravitational acceleration 
constant.  

The cart, controlled directly by the hand of a subject, was 
represented as a 1.5 cm by 3.0 cm red block. It was 
constrained to a single axis of motion in the x direction 
approximately 30 cm in front of participant’s chest by a 
simulated mechanical channel (stiffness 4000 N/m; damping 
2 Ns/m and maximum force value of 25 N). This channel 
was framed visually on the screen by two yellow lines of 1.0 
mm thickness. Any force Fx exerted by the pendulum on the 
cart was applied on the subject’s hand in the x direction. For 
safety reasons this force was saturated at the absolute value 
of 5 N and switched off completely when the pendulum 
angle exceeded 30° from the vertical. In order to maximize 
visual range, the visual representation of the task was shifted 
13.0 cm towards the participant. The x-coordinate of the cart 
and the handle were always matched. The pendulum itself 
was represented as a blue line of 3.0 mm thickness 
connected to the center point of the cart (Fig. 1B). Due to the 
limitations of the screen size the whole pendulum could not 
be visualized and therefore it was truncated at the top of the 
screen. In addition, a blue circle (d = 1.0 cm) moving only in 
x direction was presented at the top of the screen. This circle 
represented the lateral position of the center of mass of the 
pendulum.  

Trials were self-paced: subjects initiated each trial by 
moving the cart to the start position, indicated by a grey 
rectangle (3.0 cm by 1.5 cm). Participants were notified that 
they were within the home position by a yellow circle (d = 
1.0 cm) appearing at the center of the cart. The trial initiation 
cue was a short beep followed by the pendulum starting to 
fall after 600 ms with initial angular velocity 𝜃 = 0.01 rad/s. 
The direction of the fall was randomized with equal 

probabilities for left and right. Subjects were required to 
maintain the pendulum in an upright position and with as 
little oscillation as possible. A trial was considered to have 
terminated when the angle between the pendulum and the y-
axis reached 90o or when the pendulum was successfully 
balanced for 5.0 s. Subjects were then free to return to the 
start position and initiate the next trial while the feedback 
about the previous trial was shown. 

In order to provide consistent feedback for participants a 
score variable (S) was introduced: 
 

 𝑆 = 100 ln !"""
!(!)!!

!!!.!!"
 (3) 

 
where t is the time of the sample. If the pendulum was not 
maintained upright for the duration of the trial, θ = 90o was 
used for all the remaining samples until the end of the trial.  

Participants were introduced to a range of different 
pendulum dynamics. Specifically, participants were required 
to control a pendulum of mass m = 1 kg and lengths L = 
[0.25 m, 0.5 m, 0.75 m, 1 m, 1.5 m, 2 m, 4 m, 6 m, 8 m]. 
Each experimental block consisted of 20 trials of one given 
pendulum length. The nine different blocks were presented 
twice to participants in a pseudo-random order, so that every 
pendulum length was presented before any condition was 
repeated. Between blocks a short break was provided (3 s) 
where an illustration of a teapot was shown to notify 
participants that conditions would change. This resulted in 
40 repetitions of each pendulum condition and a total of 360 
trials per participant. 

D. Data analysis 
The data were analysed using Matlab R2016b. Force and 

kinematic time series were low-pass filtered with a fifth-
order, zero-phase-lag Butterworth filter with 40 Hz cutoff. 
Acceleration data were obtained online by differentiating 
velocity data and then filtering it with an eight-order 
Butterworth filter (40 Hz cutoff). 

III. RESULTS 

A. Experimental data 
Participants balanced a simulated inverted pendulum of 

unknown length while being provided the visual feedback of 
the end point, which coincided with the centre of mass of the 
pendulum. Participants’ ability to maintain the pendulum 
upright increased with the length of the pendulum until the 
critical length, where consistent balance was achieved. 
Beyond this point increasing the length of the pendulum did 
not improve the stability (Fig. 2). 

A small, but consistent, effect across participants was a 
decrease in the score for the longest length of the pendulum 
(Fig. 2A). However, a decrease was neither found for the 
balance time (Fig. 2B) nor angular velocity, which is a 
measure for the total system instability. Instead, a small 
increase in corrective movements was recorded for longer 
lengths (Fig. 2C). Such behaviour may arise due to the 
higher innate stability of longer pendulums. A long 
pendulum can be maintained upright even with only a small 
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Figure 2. Effect of pendulum length on the controllability of the inverted 
pendulum. A, The score. Individual subject data is represented by grey 
lines, average response for all subjects is represented by the blue line. 
Shaded areas represent 95% confidence intervals of the mean. B, Average 
time the pendulum was maintained upright (maximum trial length 5s). C, 
Average velocity of the handle (cart). Cart velocity primarily reflects the 
subjects’ control actions. 
 
angular displacement, resulting in cart movement and 
increasing the average corrective velocity (Fig. 2C).  

B. Computational model 
The experimental data allowed us to compare control 

strategies of participants to a PD controller. We simulated a 
PD controlled virtual pendulum with a feedback delay in 
Matlab over a range of different controller parameters and 
compared the results with the experimental data. The 
performance of the controller was evaluated by comparing 
normalised output of the controller to the subject data in 

 
Figure 3. Comparison of experimental data with a delayed PD controller.  
A-C, Score, time balanced, and average cart velocity respectively. 
Individual lines represent the best fit PD controller (kp=23, kd=1.3) with 
different time delays. Secondary axes represent magnitudes of the controller 
output (non-normalized). Blue line and shaded region are experimental 
results as in Fig 2. 

 
terms of score, time, angular error, and handle velocity. The 
fit between simulation and experimental results was then 
obtained by ranking each parameter set by least-squares 
error (LSE) for all four state variables. We then selected the 
best-fit PD controller by minimising the combined ranking 
for each parameter set resulting in parameters of kp = 21, kd = 
2.3 and delay τ = 0.14 s. 

The effect of delay can be seen (Fig. 3) where the 
prediction of the PD controllers with the same PD 
parameters but different delays are shown. The model 
prediction was found to closely match subject data for short 

5168

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 30,2022 at 17:20:03 UTC from IEEE Xplore.  Restrictions apply. 



  

lengths of the pendulum. At these lengths, due to innate 
instability of the system a constant control action is required 
making the controller output comparable to subject data. 
Subtle differences were observed at longer lengths, likely 
occurring from increased observation noise due to the higher 
visual motion for the human subjects. In contrast the PD 
controller has perfect information about the system, so 
longer lengths with increased stability will exhibit a 
monotonic increase in score and smaller control actions. 

IV. DISCUSSION 
 A simplified pendulum is a system consisting of a point 
mass, connected to a frictionless pin via a rigid weightless 
link. Such system is stable at the minimum energy 
configuration with a point mass hanging underneath the pin-
joint or resting at the support. In its inverted configuration, 
the system can achieve marginal stability when no noise is 
present, however for it to be balanced consistently an online 
control action is required. The inverted pendulum model is 
therefore interesting from human motor control perspective, 
as it allows us to investigate the interaction of these two 
strategies. For example, a human could stay upright by 
maintaining a wider stance and co-contracting the muscles, 
therefore increasing the state-space of marginal stability, or 
engage the active control of the full-body oscillations.  
 Another reason why an inverted pendulum system is 
interesting is that its stability can be varied by changing its 
parameters such as length or mass. As expected our results 
show that human subjects have more difficulty to maintain 
the pendulum upright when its length is decreased (Fig. 2A). 
Such effects are likely caused by the delays in the human 
sensorimotor system; as a control action is applied to a 
delayed state of the pendulum, a less stable system may be 
too far away from the original state at the time when control 
input reaches the system, to be successfully balanced.  
 In this paper we present a simulated inverted pendulum 
system that could be employed to evaluate the human 
behavior when controlling external dynamics. We show that 
from a control perspective a simulated pendulum behaves 
similarly to a real pendulum as it is increasingly easier to 
maintain with an increasing length. Moreover, in our study 
the control input by the subjects was minimized at medium 
lengths (Fig. 2C, L = 2 m, 4 m). We would expect a similar 
behavior while controlling a real pendulum due to 
competing mechanisms: a decreasing control input with 
increasing length due to improving stability, and an 
increasing control input with increasing length due to the 
fact that same angular deviation moves center of mass of the 
pendulum further away for a longer system.  

The results of our study can be used to examine the 
sensory feedback mechanisms used by the subjects. 
Different input modalities e.g. vision or proprioception, have 
different delays [15], [16] and different noise characteristics 
[17]. Therefore, comparison of our results with a time 
delayed PD controller can be used to estimate the way 
humans integrate sensory information to control external 
objects. A controller with time delay τ = 140 ms best 
explained the experimental data (Fig. 3). Similar delays are 
known to be present in a human visuomotor system [15], 

thus suggesting the importance of visual feedback in the 
control of an inverted pendulum. This may be explained by 
the fact that an inverted pendulum is largely controlled 
within a state-space of small angle deviations. At small 
angles the forces applied on the hand due to the pendulum 
drifting sideways are negligible and vision is a more reliable 
estimator of the state. Here we introduce a simulated 
pendulum for the study of control processes underlying 
stabilization. Future studies will investigate the relative role 
and adaptation of visual and haptic feedback to this control.  
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3.8 Study V

Controller Gains of an Inverted Pendulum are Influenced by the Visual Feedback Position. c©
2019 IEEE. Reprinted, with permission, from [81]

This study, authored by Justinas Česonis, Raz Leib, Sae Franklin and David W. Franklin was pub-

lished in the proceedings of 2019 41st Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC). In this study we tested how human participants balanced a

range of pendulums with visual feedback of the pendulum that was congruent or incongruent with

the actual dynamic length. As a result, we showed that participants heavily rely on the provided vi-

sual feedback of the pendulum tip, as the control behaviour deteriorated with increasing separation

between the dynamics and the visual feedback.
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Abstract

In this study we experimentally test and model the control behavior of human participants when

controlling inverted pendulums of different dynamic lengths, and with visual feedback of varying

congruence to these dynamic lengths. Participants were asked to stabilize the inverted pendulum

of L = 1 m and L = 4 m, with visual feedback shown at various distances along the pendulum. We

fit a family of linear models to the control input (cart velocity) applied by participants. We further

tested the models by predicting this control input for a pendulum with dynamic length L = 2 m and

comparing the prediction to the experimental data. We show that the sum of proportional error

correction and a term inversely proportional to visual feedback gain can well describe the control in

human participants.

c© 2019 IEEE. Reprinted, with permission, from [81]



  

 

Abstract—In this study we experimentally test and model the 

control behavior of human participants when controlling 

inverted pendulums of different dynamic lengths, and with 

visual feedback of varying congruence to these dynamic lengths. 

Participants were asked to stabilize the inverted pendulum of L 

= 1 m and L = 4 m, with visual feedback shown at various 

distances along the pendulum. We fit a family of linear models 

to the control input (cart velocity) applied by participants. We 

further tested the models by predicting this control input for a 

pendulum with dynamic length L = 2 m and comparing the 

prediction to the experimental data. We show that the sum of 

proportional error correction and a term inversely proportional 

to visual feedback gain can well describe the control in human 

participants. 

I. INTRODUCTION 

Humans are regularly exposed to tasks where control of 

unstable dynamics is required, such as walking, cycling, 

slicing an apple or balancing a broom on the fingertips [1]. 

The performance in these tasks improves with learning (i.e. 

cycling) or deteriorates with suppression of feedback [2, 3]. 

Many studies have previously looked at learning (or 

predictive control) in the unstable environments [4, 5], 

however feedback control in those conditions was 

investigated much less [6, 7]. While control engineering 

approaches, such as PD control or LQG, have successfully 

been applied to model the feedback control of human 

movement in stable environments with congruent feedback 

[8, 9], the control with incongruent feedback has not yet been 

modelled.  

The overall importance of visual feedback in human motor 

learning and control has been broadly investigated. We have 

previously experimentally shown that the control of a virtual 

pendulum with variable visual feedback was the most stable 

when this feedback was congruent with the dynamics of the 

pendulum [10]. Various hypotheses, such as the limited 

resources hypothesis, could be used to explain this paradigm 

qualitatively, but they do not quantify the development of the 

control stability with a change in visual feedback. Here we 

suggest a model that may describe the development of control 

input applied by humans when controlling an inverted 

pendulum with visual feedback incongruent with the 

pendulum dynamics. We further use the model to normatively 

simulate the control input for a novel condition and compare 

the results with experimentally collected data. 

 
J. Česonis, D.W. Franklin and R. Leib are with Neuromuscular 

Diagnostics, Department of Sport and Health Sciences, Technical University 
of Munich, Munich, 80992 Germany (phone: +49 89289 24536; e-mail: 

david.franklin@tum.de, justinas.cesonis@tum.de, raz.leib@tum.de). 

II. METHODS 

A. Participants 

Six right-handed [11], neurologically healthy human 

participants (1 female, mean age 24.7 years), naïve to the 

purpose of this study, participated in the experiment. The 

participants were drawn from a pool of our previous inverted 

pendulum studies [10, 12], and therefore were familiar with 

the setup. All participants provided a written informed 

consent before participating in this study. The study was 

approved by the Ethics Committee of the Medical Faculty of 

the Technical University of Munich. 

B. Experimental apparatus 

Participants performed a balancing task of an inverted 

pendulum in a robotic manipulandum. Participants were 

seated in an adjustable chair in front of a robotic rig, with their 

shoulder movement restrained by a seatbelt. The subject’s 

right arm rested on an airsled and their right hand grasped the 

handle of the vBOT robotic interface [13]. All hand 

movements were performed in an x-y plane parallel to the 

ground. Position and force data was sampled at 1 kHz. Visual 

feedback was projected via a computer monitor and a mirror 

system to the plane of the movement in such a way that the 

direct visual feedback of the hand was prevented.  

C. Experimental paradigm 

The inverted pendulum was simulated in the x-y plane, 

with the gravity acting in the negative y direction (towards the 

participant) and corrective movements executed by 

participants along the x axis (parallel to participant’s chest). 

Pendulum kinematics and the interface were simulated and 

presented as described in [12] (Fig. 1A).  

Trials were self-paced: participants initiated each trial by 

moving a cart to the start position, indicated by a grey 

rectangle (3.0 cm by 1.5 cm) and positioned in the middle of 

the control channel. The start of the trial was then cued via a 

short beep, followed by a perturbation of 𝜃 ̇ = 0.01 rad/s on 

the pendulum 600 ms later. The direction of this perturbation 

was pseudo-randomised, with equal number of trials for left 

and right. During each trial participants were instructed to 

maintain the pendulum upright and with as little of angular 

movement as possible for 5 seconds. A trial was considered 

over when the pendulum was successfully maintained for 

these 5 seconds, or when the angular deviation between the 

pendulum and the y axis reached 90o. Participants were then 
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provided with their score, indicating their task success [12], 

and were free to initiate the next trial. 

 Participants were required to control two different 

pendulums of dynamic length L = 1 m and L = 4 m. Each of 

the lengths was presented in a blocked fashion, with three 

participants starting with L = 1 m and then L = 4 m, and three 

participants with this order reversed. For each of the dynamic 

lengths participants were provided visual feedback equivalent 

to nine different visual distances from the cart: Lv=[0.25 m, 

0.5 m, 0.75 m, 1 m, 1.5 m, 2 m, 4 m, 6 m, 8 m]. Each length 

was also presented in a blocked fashion, with 20 trials in each 

block and block order randomized (Fig. 1B). Each of these 

blocks was repeated twice, so that every pendulum condition 

was repeated for 40 trials in total, resulting in 720 trials per 

participant. Short breaks (5 s) were provided after every 

block, indicating participants that the condition would 

change. 

D. Data analysis 

Data collected in this experiment was analyzed and 

compared to the data of [10]. We used MATLAB 2017b for 

the data analysis. Kinematic time series were low-pass filtered 

with a zero-phase-lag, fifth-order Butterworth filter with 40 

Hz cutoff frequency. Linear acceleration was obtained by 

differentiating the velocity data online and filtering it with 

eight-order low-pass Butterworth filter (40 Hz cutoff) 

E. Modelling 

Previously we have suggested a theoretical proportional 

feedback control model that could explain the development of 

the pendulum control input (cart velocity) [10]. In this study 

we test our theoretical model, as well as compare this model 

with alternative models. In order to quantify our model 

performance, we fit the model coefficients on the dynamic 

pendulum lengths L = 1 m and L = 4 m, and test the model by 

calculating the residual sum of squares (RSS) between the 

normative prediction of dynamic length L = 2 m and the 

respective data, collected in our previous study [10]. 

Our previously proposed model follows the mathematical 

expression: 

𝑀0: 𝑣𝑥 =  𝐴 ⋅
1

𝐿𝑣
+ 𝐵 ⋅ 𝑒𝑥,  (1) 

where 𝑣𝑥 is the average cart velocity applied by participant, 

𝑒𝑥 is the visual feedback error, and 𝐴 and 𝐵 are model 

constants. However, in this study we examine a family of 

models of the general form 

𝑀: 𝑣𝑥 =  𝐴 ⋅
1

(𝐿𝑣−𝐶)
+ 𝐵 ⋅ 𝑒𝑥 + 𝐷,  (2) 

where 𝐶 and 𝐷 are also model constants. Model constants 

may be dependent on the dynamic length, in which case they 

will be denoted with the subscript L (eg. AL). We will further 

refer to separate models by these model constants [A, B, C, 

D]. 

III. RESULTS 

A. Experimental data 

Performance of six participants was compared across three 

different pendulum lengths in a balancing task. In order to test 

the effect of the dynamic length (L) and the visual feedback 

length (Lv) on the stability of the control, we performed a two-

way repeated-measures ANOVA on the balance score as the 

dependent variable, with dynamic length (3 levels) and visual 

feedback length (9 levels) as within-subject independent 

factors. The analysis showed a significant main effect in both 

factors and their interactions (L: F2,10=51.94, p<0.001; Lv: 

F8,40=32.11, p<0.001; L*Lv: F16,80=12.28, p<0.001). Post-hoc 

analysis (Holm-Bonferroni) revealed significant pairwise 

differences across all three dynamic lengths, with L = 4 m 

being most stable, and L = 1 m being the least stable, 

indicating an increase in stability for each increasing dynamic 

pendulum length (Fig. 2, top).  

 

Figure 1. A. A sample snapshot of the experimental design. Participants controlled a cart (1.5 cm by 3 cm rectangular red block) directly, 

by moving the robotic handle along a mechanical channel (white lines and hand, not visible to participants; position dependent force field; 

stiffness 4000 N/m, damping 2 Ns/m, maximum force of 25 N). This channel constrained participants to move in x-axis only, at a distance 

approximately 30 cm in front of participant’s chest, and was framed in the visual workspace by two yellow lines of 1.0 mm thickness. From 

participant’s perspective, the physical hand location did not match with its visual representation (cart), but was shifted 13.0 cm forward in 

order to maximize the amount of visual feedback and the range of motion. However, the x-coordinate of the cart always matched the x-

coordinate of the hand. B. Experimental paradigm schematic. Participants were introduced to pendulums of two different dynamic lengths 

(1 m, red and 4 m, yellow), and had previously participated in a similar experiment of a different dynamic length (2 m, green). Participants 

were provided with visual feedback at different locations. These locations were the same for all three dynamic conditions. As the horizontal 

displacement of the visual feedback point at the same pendulum angle is proportional to the visual feedback distance, this distance can be 

treated as the visual feedback gain. 
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In order to better understand the interaction effects we also 

performed three one-way repeated-measures ANOVAs with 

visual feedback lengths (Lv) as factors (9 levels), and where 

dynamic pendulum length (L) was constant. For each of the 

dynamic lengths we found significant main effects in visual 

feedback length (L=1 m: F8,40 = 17.32, p<0.001; L=2 m: F8,40 

= 13.74, p<0.001; L=4 m: F8,40 = 53.77, p<0.001). Moreover, 

for each pendulum, participants exhibited the most stable 

control when presented with a visual feedback length 

matching its dynamic length (Fig. 2, middle), with decay in 

controllability away from this point. Such a result is 

consistent with our previous findings [10], as well as with 

optimal feedback control models of an inverted pendulum 

where the observer and the plant have conflicting dynamic 

models. 

B. Modelling 

We fit a family of linear models (2) to our experimental data 

and evaluated their performance by comparing the model 

predictions for dynamic length L = 2 m to our previously 

collected data [10]. Here we present two best-fit models and 

compare them to the baseline models. 

 The two baseline models were chosen of the form [A, 0, C, 

D] and [0, B, 0, D]. The former model represents the control 

strategy where only the visual feedback location (Lv) 

influences the controller input. The best fit model of this form 

showed RSSfit = 1899.2 and RSStest = 862.6. The latter model 

represents the control strategy where only the visual endpoint 

error (Fig. 2, bottom) is corrected, with no estimate of the 

pendulum dynamics based on visual feedback location. The 

best fit model of this form showed RSSfit = 1491.4 and RSStest 

= 873.0. These both models show only a marginal 

improvement over the constant model [0,0,0,D], with RSSfit 

= 2040.5, and RSStest = 1034.9, suggesting that neither of the 

two mechanisms are enough to represent the control system 

in our human participants.  

 Our two best-fit models were of the form [A,B,C,0] and 

[AL,B,C,0]. The former model represents the control strategy 

where both inverse term and visual error are combined in a 

linear manner (Fig. 3, left). The best fit model of this form 

showed RSSfit = 800.7 and RSStest = 494.6, a significant 

improvement over any of the baseline models. The latter 

model assumes additional modulation of the inverse term with 

dynamic pendulum length. The best fit model of the latter 

form showed RSSfit = 726.1, RSStest = 489.7, a significant 

improvement (Fig. 3, right). Although more complex, the 

model [AL,B,C,0] better describes our experimental data, and 

therefore is selected as a best-fit model.  

IV. DISCUSSION 

In this study we tested and modelled a control behavior of 

human participants when controlling inverted pendulums of 

different mechanical properties under different visual 

feedback conditions. Our participants showed increasingly 

stable control behavior the closer visual feedback location 

was to the dynamic center of the pendulum, a result matching 

our previous study [10]. In addition to replicating this result 

for two new dynamic lengths (L = 1 m and L = 4 m), we also 

tested our previously proposed model of the control behavior. 

Our normative prediction of this control behavior generated 

results comparable to those recorded in human participants, 

with the model predictions within 1SEM from the human data 

(Fig. 3).  

 

 

 

Figure 2. Top. Mean score across participants for different dynamic 

conditions and visual feedback distances. Middle. Score across all 

participants, as a function of visual feedback distance normalised 

by the dynamic pendulum length. Participants show the highest 

stability when controlling a pendulum with visual feedback 

congruent to the dynamic length. Bottom. Visual feedback point 

errors with respect to cart position. Participants successfully 

mitigate errors for visual feedback distances shorter than the 

dynamic lengths, but errors increase proportionally at longer than 

dynamic visual feedback lengths. 
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Our proposed model qualitatively captures the human 

control behavior of an inverted pendulum by combining 

mechanisms of proportional error correction and a term 

inversely proportional to visual feedback length. While the 

idea of error correction is widely accepted in human motor 

control, the purpose of a hyperbolic term is yet unclear and 

could have multiple explanations. One explanation for the 

presence of this term could be that humans experience an 

illusionary effect of reduced inertia of the pendulum with 

increasing visual length. Assuming a prior of Newton’s 2nd 

law, the inertia of the pendulum would be estimated by a ratio 

between applied force and the acceleration of the visual 

feedback point. However, as the acceleration of this point 

scales with Lv, the perceived inertia would scale inversely. As 

a result, conditions with short visual feedback would feel 

“heavy” and would invoke stronger corrective responses, 

while the opposite is true for the long visual feedback 

locations.  

Our participants exhibited significantly better stability 

when controlling a pendulum of a dynamic length L = 4 m, 

compared to L = 2 m and L = 1 m, at a visual feedback length 

Lv = L, while stability of L = 2 m was not different from L = 

1 m in the same conditions. Previously we [12] have shown 

that virtual pendulums of L = 4 m and L = 2 m, simulated in 

a similar environment as in our experiment, were significantly 

more stable than a pendulum of L = 1 m. We believe that this 

difference stems from learning effects – all of our participants 

started with dynamic length L = 2 m, followed by the other 

two conditions in a balanced order, while in the previous 

study all three lengths were presented in a random order. 

Therefore, our participants managed to significantly improve 

their stability by performing the control task on different 

conditions. As a result, this may mean that the control 

strategies observed in our study have not yet converged to the 

optimal control. Further studies may compare how the 

controller changes with experience within this inverted 

pendulum environment. 

 In this article, we proposed a normative model of how 

humans may try to stabilize an inverted pendulum. More 

importantly, we showed the importance of a controller 

modality in which the control gains are inversely proportional 

to the visual feedback gains, suggesting that similar 

processing may occur in humans when controlling an unstable 

system. This result may allow us to better understand what 

control strategies or cost functions are used by humans, 

leading to a better understanding of human brain as well as a 

possibility to develop more efficient control algorithms by 

mimicking it.  
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Figure 3. Two best-fit cart velocity models (solid lines), overlaid with the experimental data (dashed lines). Shaded areas represent 1SEM 

across participants. Both models capably represent our experimental data, with model predictions within 1SEM from the experimental data. 

Left. Model [A,B,C,0] (2nd best model). Right. Model [AL,B,C,0] (best-fit model). 
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4 Discussion

This section provides a summary and discussion of main findings across all studies included in

this thesis. The reader should approach this section as an addition to, and a summary of, individual

discussions presented with each of the five studies. Even though all the studies in this thesis focus on

various aspects of visuomotor control, major findings from studies I - III are summarised separately

from studies IV - V due to different approaches and methodology. In addition, this section also

discusses methodological suggestions for future work, that stem from the findings throughout this

thesis, as well as statistical methods that may not yet be popularised within the current scientific

practices, but are extremely effective. Finally, here we also discuss limitations that our studies were

subjected to, and suggest future directions for studies that can build upon this presented work.

4.1 Summary of the visuomotor perturbation studies

The primary goal when designing studies I, II and III was to answer the question of how visuomo-

tor feedback responses are regulated in humans. As a foundation to this work, it has been known

that these responses are much faster than voluntary [11, 16]. To achieve this, it was suggested that

visuomotor gains could be regulated via a simple constant-gain scaling, so avoiding cortical process-

ing [82]. Yet, these responses are also flexible enough to demonstrate modulation on timescales of

a single trial [22], implying some non-trivial processing. In addition, qualitatively this modulation also

appeared optimal, as the response intensities increased when the perturbation happened closer to

the target (leaving less time to correct), up until the point where they decreased again, indicating

a giving-up (where perturbation happens so close to the target that correcting in time is physically

impossible due to delays). As most of the known computational implementations of the OFC, par-

ticularly in presence of control-dependent noise, are computationally heavy [31, 43, 63–66, 83], the

question remains whether the visuomotor feedback responses are controlled by OFC, or another

variable-gain scaling could explain the results.

In Study I we have analysed the dependence of the visuomotor feedback intensities on the time-

to-target, by dissociating various kinematic variables from each other. Specifically, even though the

vision is a critical input for visuomotor responses to even occur, visual cursor trajectory or velocity

provided no significant modulation of these responses. In contrast, modulating physical movement
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kinematics provided significant regulation, even for perturbations that matched in onset location and

velocity (Figure 3 in Study I). However, as such modifications to movement kinematics naturally

altered movement durations and times-to-target, our experimental design allowed us to uncover the

modulation where the responses produce matching intensities, as long as the time-to-target and

the task goal, but not necessarily movement kinematics match. Finally, through additional OFC

simulations we established a simple variable-gain tuning function that provides a simple mapping

between time-to-target and visuomotor feedback intensities for a given feedback controller, in line

with earlier hypothesis that visuomotor gain regulation could be precomputed before the movement

[52].

Even though Study I demonstrated that we can reliably predict the visuomotor feedback response

regulation via the time-to-target, the whole such control depends on the premise that time-to-target

is an available variable to such a controller. On the one hand, time-to-contact studies in ecological

physiology have long since demonstrated that such estimation is possible, as long as the moving

object follows natural laws of motion [84–86]. However, it is unclear how such estimation happens

on an algorithmic level. Some recent studies have suggested approaches that use utility functions,

where an optimal movement duration maximises a utility – a trade-off between effort and reward

[48, 49]. While in few of these studies accurate movement durations can be estimated for given

movements, such approaches are difficult to generalise to novel or perturbed movements due to a

non-trivial change in one or multiple parameters. In contrast, as we demonstrated in simulations

of Study I, infinite-horizon or receding-horizon OFC can accurately predict the movement durations

of unseen perturbed movements. As a result, in Study II we expand on this idea and propose a

mixed-horizon control that first determines the expected movement duration and then generates the

movement that produces variable feedback gains.

In Study II we provide a computational model that allows us to simulate complete perturbed move-

ments and bypasses individual limitations of infinite-horizon OFC, and of finite-horizon OFC. To

achieve this computationally, we combined an infinite-horizon and a finite-horizon OFCs in series,

which we likened to motor selection and motor planning stages respectively. While this interpreta-

tion is a subject of ongoing scientific discussions [87, 88], its usefulness in computationally modelling

previously unexplained behaviours is evident from case studies, presented Study II. For example,

the mixed-horizon OFC allows us to simulate perturbed movements that were not performed exper-

imentally due to experimental limitations [18]. In turn, such simulations can not only replicate the

behaviour results at the measured data points, but also provide context around them by simulat-

ing unseen perturbations, in turn helping explain interesting phenomena, such as an unexpected

saturation of visuomotor feedback intensities. Note that this would not be possible without the
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infinite-horizon component, as the expected movement duration would not be known to simulate

such movements in finite-horizon.

Indirectly, the mixed-horizon OFC further reinforces the importance of time-to-target in the optimal

feedback control of various human movements. Specifically, from the functional perspective an

infinite-horizon component simply provides a reliable source of time-to-target to the finite-horizon

controller, which then does the heavy lifting in producing actual movements. As these simulations

do provide a better fit to the data compared to just the finite-horizon simulations (see Figure 7B

in Study II), this emphasises that the time-to-target is a key variable in controlling the feedback

intensities. However, in order to test this regulation directly we can now use this model to make

behavioural predictions and test them experimentally.

In Study III we demonstrated two major outcomes. First, we definitively verified the time-to-target

based feedback intensity regulation by first generating a prediction through a finite-horizon OFC

(which due to our experimental design, matched the predictions of the mixed-horizon OFC), and

then observing the predicted regulation in the experimental data. Second, we also tested this control

for two different tasks, first in blocked schedule, and then in a mixed schedule, to demonstrate that

humans can reliably switch between multiple feedback controllers when cued by context – similarly

to the contextual switching of the feedforward control. This latter finding was also facilitated by

our earlier findings of the time-to-target control: as time-to-target regulates the feedback response

intensities through a characteristic function, we can establish these characteristic functions for each

movement condition from experimental data. As a result, comparing the two functions then allows

us to conclude whether the two controllers can be similar or distinct.

Overall, the primary take-away from studies I - III is that the time-to-target seems to be a critical

independent variable in the control of the visuomotor feedback gains (and intensities). In addition,

we have also uncovered the characteristic relationship between the two variables, expressed as a

time-to-target tuning function (see Study I for more details). This function is unique for the task

goal and is independent from movement kinematics, such as peak velocity, general velocity pro-

files or movement distance, but will differ for movements with different goals (such as stop or hit

movements in Study III). Moreover, this difference across different movement goals stems specifi-

cally from different feedback controllers, and thus the time-to-target tuning curves can be used to

verify whether the two separate types of movements share the same feedback controller, or use

different feedback controllers. Indeed, in such a fashion we compared the feedback controllers for

hit and stop movements in Study III, not only showing that these controllers were different, but also

that they can be rapidly switched on a trial-by-trial schedule. Finally, while it is known from ear-
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lier work that humans seem to have the ability to estimate the time-to-target in their movements,

infinite-horizon or receding-horizon OFC provide a well-functioning algorithmic implementations for

this variable in computations, enabling a powerful, mixed-horizon OFC approach for predicting and

modelling human-like behaviour.

4.2 Summary of the pendulum studies

While the author of this thesis was the lead author and primary contributor to Studies IV and V, he

also contributed to additional studies, lead by other lab members, that also investigated the control

of the inverted pendulum. Hence, this section summarizes the outcomes of Studies IV and V within

the broader context of all inverted pendulum studies.

Study IV is primarily a methodological publication, where we tested the viability of the simulated

inverted pendulum, and how its control compares to the control of a similar, fully physical pendulum.

Here we presented a set of dynamic equations that govern the behaviour of a cart-pendulum system,

as well as produce lateral forces that the pendulum dynamics exert on the cart. The results of the

experiment, where participants controlled various such pendulums of different lengths, matched

well with our hypotheses, informed by the understanding of the physical control of such pendulums

– longer pendulums lead to longer balance, smaller oscillations and reduced corrective movements.

In addition, we also compared human-controlled pendulum kinematics with the same pendulum,

where the control was simulated using a PD controller with various delays. Here the best-fit delay

of 150 ms, similar to the delay in the visuomotor feedback loop in humans [11], provided additional

support that visual feedback is critical in stabilising such a system.

In [79] and Study V we modulated the feedback of the virtual pendulums so that the visual infor-

mation was not anymore directly matching with pendulum dynamics. Here we tested pendulums of

different dynamic (physical) lengths, and for each length the visual feedback was provided either at

the centre of mass, or at various positions away from the centre of mass. In both these studies we

recorded the most stable control when the visual information provided direct feedback on the centre

of mass, as opposed to other feedback locations, indicating the importance of consistent information

for efficient multisensory integration. Indirectly, the results also demonstrate that for control of such

pendulum humans used the feedback of a single point – the provided “tip” of the pendulum (relative

to the cart position) – and not any angular information. This is because any angular information

would remain invariant to the modulation of the visual feedback length, as such modulation is simply

equivalent to looking at a different length on the same rod, which does not affect its angular prop-

erties. However, the changes in produced control as this feedback length changed suggest that the
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angular information is not the primary visual feedback source.

The results of these foundational studies have lead to further research that is of interest to our

research group. First, fully virtual environment allowed us to test the effect of feedback delays to

human control behaviour, demonstrating that additional delays gradually reduce the controllability of

the system [10]. Second, in addition to PD control, which is commonly used to explain the motor

performance in balance, we tested alternative, LQG based models, showing a good fit between data

and the model [45]. Finally, as the singular feedback point was used as a source of primary feedback

in balancing tasks, we also tested the contribution and behaviour of visuomotor feedback responses

in the balancing task, showing that these responses are present not only in reaching, but also in

balancing tasks, and likely contribute to the feedback control in stabilisation tasks [89].

4.3 Outlook on the methods

Over the published experimental studies, as well as multiple pilot designs that were tested in the

process of this thesis we raised a few methodological considerations for future studies. These are

summarised in this chapter.

4.3.1 Channel trials and maintained perturbations

Many recent studies on visuomotor feedback responses have included perturbations that are in-

duced within channel trials, where the movements are laterally constrained in a force channel and

perturbations only last for a short duration [18, 22, 25, 26]. Such channel trials are extremely useful

in recording the feedback responses, as the force can be measured directly, as opposed to obtaining

it through double differentiation of velocity, which reduces accuracy. On the other hand, due to task

irrelevance of perturbations in the channels participants tend to reduce their responses over the

duration of the experiment, which has given rise to an inclusion of maintained perturbations where

the cursor or target remained perturbed throughout the trial after the initial perturbation onset, so

requiring an active correction. Typically, any unperturbed movement with or without force channel is

very similar, with matching movement duration and kinematics. However, in trials where reaching a

target is critical, the movement durations are significantly shorter in channel trials than in free trials

if a lateral perturbation is induced (Figure 6 in Study I). As a result, having a mixture of both channel

trials and maintained perturbation trials lead to inconsistent times-to-target for otherwise matching

trials.

Even if a mixture of maintained and channel perturbation was not a problem for participants to

successfully complete the trials, researchers are forced to make assumptions on what the perceived

movement duration is. In Study I we worked around this issue by averaging the durations of matching
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free and channel trials, weighed by the density of each type of trial. However, to properly control the

time-to-target in Study III we instead opted to not have any maintained perturbations and instead

only used the channel trials. As a downside, we observed reduced feedback intensities, which in

turn required a larger experimental sample to maintain the power of the study. Thus, while we do

not advocate for a particular design regarding a combination of maintained perturbation and channel

trials, the effects of each of them should be considered before designing an experimental study.

4.3.2 Statistical approach

Frequentist statistical analysis is widely spread and accepted in scientific literature. However, such

analysis is significantly limited by its single decision boundary (null hypothesis or alternative hypoth-

esis), and a binary outcome (H0 accepted or H0 rejected). In contrast, Bayesian Factor analysis

considers each available datapoint as evidence towards either a null hypothesis, or an alternative

hypothesis, effectively providing two decision boundaries with three outcomes (H0 accepted, H1

accepted, or not enough evidence to accept either hypothesis). Moreover, Bayesian evidence can

be interpreted in a continuous scale, which is helpful to observe tendencies in the results, even if

no significance is determined. As a result, in addition to traditional frequentist methods, we sup-

plemented all our statistical analysis with equivalent Bayesian tests, easily implemented via JASP

software [90].

4.3.3 Modelling of noise

As noise is one of the key problems that human motor control system has to deal with, previous

literature presented models that account for such noise [31, 38, 63, 65, 66, 83]. Specifically, two

types of noise – additive and multiplicative – are considered, as they both influence the control

system in different ways. On the one hand, additive noise simply corrupts the output of the system

(i.e. the state of the controlled object) by adding a zero-mean random variable, sampled from a

Normal distribution. In experimental paradigms where only mean effect is of interest, the effects

of such noise are diminished by recording repeated samples (usually ranging between 25 and 40

in our studies). As a result, when modelling mean behaviours, the additive noise term can simply

be ignored. On the other hand, multiplicative noise systematically affects the control system, as

it usually scales with the control signal (or a state variable, if such noise is affecting the sensory

system). It was demonstrated by earlier work [31, 38, 39] that inclusion of multiplicative noise that

scales with a control signal can capture additional variance of human movements, compared to

similar models without multiplicative noise. However, as shown in Study II, where we compared

models with and without multiplicative noise in simulating visuomotor feedback intensities, even

models without multiplicative noise capture the temporal evolution of the intensities well enough to
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separate different movement conditions or even nearby perturbations. While more complex models

with control dependent noise indeed improve on the overall accuracy of the simulations compared

to the data, this difference is much smaller than the effect of the simulated perturbations. Hence, for

simplicity we did not include multiplicative noise in our simulations in Study III.

4.4 Limitations

All research, presented in this thesis is to some extent subject to limitations, arising primarily from

study logistics, study design, or methodological constraints. While some of these limitations can be

addressed by specifically testing them in future work, others need to be critically considered when

evaluating the results of this thesis. Overall, all five studies, as well as other studies where the

author contributed, only focus on neurologically healthy younger adults. As a result, without further

testing the outcomes from this work should not be generalised to older populations or to neurological

patients.

4.4.1 Visuomotor feedback response studies

Few earlier visuomotor feedback response studies have looked at response time windows not only

between 180-230 ms, but also later, beyond 230 ms [5, 18, 19]. As the threshold at 230 ms signifies

the onset of voluntary responses [16], these later responses contain a mixture of voluntary and

involuntary control, which may manifest in different behaviour compared to purely involuntary control.

Indeed, [19] have demonstrated differences between earlier and later responses, for example, in

successfully avoiding obstacles, which require a more complex control behaviour. Even though

we expect that our results would hold for later time windows, in our work we only experimentally

evaluate human behaviour in the involuntary, early visuomotor window, and thus can not make strict

conclusions about later control.

Another limitation of our work pertains to the model-based support for our experimental data. Specif-

ically, due to an infinite set of theoretically available model parameters it is likely possible that fitting

a control model to the data post-study would eventually provide a good fit. In order to avoid such

overfitting, we deliberately aimed to maintain a fixed set of model parameters wherever possible and

compare the models to the data qualitatively in terms of common features, such as relative intensity

regulation across conditions or shapes of response profiles. While we maintain that such compar-

isons are extremely valuable, they ultimately are subject to interpretation, as they do not provide

objective, statistically-backed hard evidence.
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4.4.2 Pendulum studies

While vBot environment enables interesting manipulations for our pendulum balance studies, the

control of long pendulums (up to 8 m) is limited by the workspace size and orientation. First, as we

could not fit the entire lengths of pendulum into the screen, we cropped most of the length outside of

the screen and provided a cursor, representing the tip of the pendulum. Second, the whole motion

was simulated in the plane parallel to the ground, and therefore the gravity was experienced in the

direction towards participant’s chest, with haptic feedback only available in one axis. Such a design

might have biased participants into more visuomotor control simply out of necessity, as the haptic

feedback or any angular information was scarce, compared to the visual feedback of the cart and

the tip of the pendulum.

Finally, our pendulum studies aimed to conceptually test the paradigms for future experimental stud-

ies, as well as to verify the viability of our hypotheses. As a result, these studies were performed by a

small sample of experienced participants, rather than a larger samples from the general population.

In turn, while such a sample should not have significantly reduced the effect sizes (due to generally

lower variance in experienced participants), it may have introduced biases to the results.

4.5 Future work

Studies I - III in this thesis all provide some direct or indirect evidence into time-to-target based con-

trol of feedback responses. However, as a whole, there is yet not much experimental evidence for

this phenomenon outside of these studies. Further work could test additional predictions of our mod-

els. An interesting control would be to test the regulation of responses in matching movements with

maintained perturbations and channel trials, as earlier studies combining the two did not assume

any differences between them. Importantly, the forward kinematics in the two types of movements

would be matched, and thus perturbation onset times, kinematics and locations would also be con-

sistent, meaning that the major difference between the two conditions would arise from extended

time-to-target for maintained perturbations. Moreover, this difference can be easily predicted using

a mixed-horizon OFC model.

In Study III we demonstrated that different task goals act as a strong contextual cue for different

feedback controllers. However, stop and hit movements were kinematically different, not ruling out

the possibility that the context was cued by different movement kinematics or dynamics. A possible

extension of this work could compare in a similar design the control between hit and long-stop move-

ments, where we expect to see matching kinematics along the entire movement, yet our simulations

suggest entirely different feedback intensity profiles. If such model predictions were experimentally



Discussion 135

confirmed, this would demonstrate that task context can simply be cued by instruction, rather than

any change in observable kinematics.

While most of our work was experimental, our results were also reinforced by simulations of a similar

task within OFC framework. However, all our studies only focused on the early visuomotor feedback

response (before 230 ms), and none of our models contained any assumptions, specific to the

early visuomotor response, but not to the late visuomotor response. Yet new evidence emerges,

suggesting that the regulation of early response may differ from the regulation of later response

[19]. Similarly, while lateral target jumps seem to simply evoke a feedback response by the current

controller, other transformations such as target jump away or towards the hand seem to require

a recomputation of the feedback control gains [22]. Further work could investigate the origins of

these differences, which will lead to further increased understanding of the feedback processing in

humans.

Studies IV and V have laid the foundation for further tests in the control of balance of unstable

objects. In addition of analysing specific algorithmic strategies for such balance in humans, future

work can test relative contributions of vision and haptic information by modifying uncertainty of the

sensory inputs or by inducing feedback delays on all or some modalities. Finally, as humans seem to

combine optimal control and robust control (i.e. through modulating limb stiffness) in various motor

actions, we can test how each of these systems are modulated individually.

4.6 Summary, conclusions and outlook

This thesis suggests a new theoretical mechanism of visuomotor feedback control, grounded in the

relation between feedback gains and the time-to-target. As this mechanism stems primarily from

optimal feedback control theory and computationally contains no assumptions about the effector,

similar effects could be tested for other feedback mechanisms where optimal control is suspected

(i.e. eye saccades or stretch reflexes). Moreover, we have successfully used the time-to-target

model, as well as mixed-horizon OFC, the idea of which is grounded in the time-to-target based

control, to model a vast array of human behaviours. Thus, our results could also be considered as

methodological contributions to the field of motor control, and will hopefully inspire novel hypotheses

for new studies in the future.

Numerous studies, both with visual perturbations [16, 18, 19, 22, 23, 25, 26, 33], as well as mechan-

ical [20, 42, 91, 92] often cue perturbations based on position, which may not necessarily lead to

consistent time-to-target across the compared perturbations. Our work demonstrates that outcomes

of such comparisons could need to be re-evaluated, as even the same controller may produce dif-
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ferent responses to perturbations cued at the the same location if the times-to-target do not match.

Similarly, while in recent practice multiple visuomotor feedback response studies combined main-

tained perturbations and channel trials in order to keep responses high, such designs may have

induced unforeseen and unwanted inconsistencies between measured responses and similar re-

sponses outside the lab. Taken together, our results indicate that various different interventions

should be controlled with respect to the time-to-target, rather than conventionally used variables of

position or time from the start of the movement.

Finally, the balance of an inverted pendulum is a fundamental motor skill that keeps humans standing

on two feet. While locomotion and gait have received broad interest and research focus in the past

many years, pendulum balancing remains relatively under-studied. I hope, that our proofs of concept

of experimental design in virtual environment, as well as first results that match earlier hypotheses

for such control, will lay new ground for more similar studies in the future.
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