
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/CASE49439.2021.9551656
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Abstract— Big data continues to grow in the manufacturing
domain due to increasing interconnectivity on the shop floor in
the course of the fourth industrial revolution. The optimization
of machines based on either real-time or historical machine data
provides benefits to both machine producers and operators.
In order to be able to make use of these opportunities, it
is necessary to access the machine data, which can include
sensitive information such as intellectual property.

Employing the use case of machine tools, this paper presents
a solution enabling industrial data sharing and cloud col-
laboration while protecting sensitive information. It employs
the edge computing paradigm to apply differential privacy
to machine data in order to protect sensitive information
and simultaneously allow machine producers to perform the
necessary calculations and analyses using this data.

Index Terms— Anonymization, chatter analysis, edge com-
puting

I. INTRODUCTION

Due to the increasing digitization on the shop floor,
the amount of data produced in manufacturing constantly
increases. In order to unfold the full potential of this trend,
data needs to be shared between multiple stakeholders of the
value chain. Modern machine tools for example produce a
variety of data, not only valuable for machine operators, but
also for machine manufacturers. Using this information, the
manufacturers can analyze the machines’ behavior in various
setups and over long periods of time. This allows identifying
weaknesses and using the insights to optimize future series
of machines.

Although machine tool operators benefit from these opti-
mizations, they hesitate to share their data with third parties
due to concerns regarding the loss of intellectual property [1,
2]. This dilemma is underpinned by the increasing emergence
of third-party risks, such as attacks on the supply and
value chain respectively [3, 4]. While an established trust
relationship between the machine operator and the machine
manufacturer on the one hand is a necessity, this relationship
on the other hand also has been evolved to become a
serious attack vector leveraged by malicious actors. In order
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to mitigate this dilemma, the usage of edge computing in
combination with differential privacy (DP) is proposed. The
solution consists of different edge and cloud components
which have been practically tested in a lab environment with
a conventional machine tool.

Originally conceived to mitigate the tension between the
gain of knowledge and the protection of personally iden-
tifiable information (PII), DP can also be applied to use
cases other than those involving PII [5]. DP allows privacy-
preserving data analytics by adding noise to data sets to
provide a specific level of privacy while maintaining a
certain level of meaningfulness to be able to detect patterns
and derive statistical conclusions [6]. The proposed solu-
tion leverages these characteristics to conceal information
potentially able to leak intellectual property while providing
enough significance to enable machine producers to identify
their machines’ weaknesses and potential for optimization.

Edge computing provides the advantage that data obtained
from machines can be preprocessed within the company
boundaries. This is important, since raw machine data has to
be protected against access of third parties as it can contain
intellectual property. In addition, edge computing provides
the power to apply computationally intensive cryptographic
algorithms like DP to the gathered data. In this way, the data
can be secured for both the transmission over an insecure
channel, such as the Internet, as well as the utilization by
third parties, such as the machine tool producer.

In order to enable machine tool users and producers to
make use of the data, a privacy-preserving edge computing
framework is proposed as this work’s major contribution.
The framework enables vendor-agnostic collaboration along
the industrial value chain [7]. It uses a novel measure for
assessing the criticality of industrial data. Furthermore, it
enables machine tool users to retain full control over the data
after the transfer from the edge to the cloud. Novel privacy
models and algorithms were used and a fully implemented
software stack was implemented. The approach was validated
considering the use case of a cloud-based stability analysis,
which enables machine tool operators to continually assess
the process quality and enables the machine manufacturers
to assess possible deficits of their machine design.

The proposed solution was specifically developed for
machine tools but can generally be applied to a wide variety
of cyber-physical systems (CPS). For the sake of tangibility,
this paper remains with the practically implemented and
tested example of machine tools.



II. RELATED WORK
In [1], an edge computing based scheme for industrial

ecosystems was presented with an included privacy model.
An evaluation was performed on the given use case of the
chatter stability analysis as well, whereas the effects of the
privacy model on the machine tool data are not discussed.
A secure connection is available, however, the machine
operators lack control of the released data after its transfer
from the edge over the company boundary into the cloud.
Privacy-preserving measures are generally not considered in
industrial collaboration schemes [8]. However, applications
of DP [5] and privacy in general [9] to industrial data sets
are discussed in literature without edge computing schemes.

Furthermore, no criticality measure has been established
for industrial data and information streams yet. Typical
criticality assessments for general information sources which
are applied resemble confidentiality classes such as Secret,
Confidential, Restricted, or Unclassified. Usually, the classi-
fication is based on the impact of unauthorized disclosure of
the data or information. More advanced privacy classifica-
tion schemes for personal information classes are proposed
by [10] and [11].

III. METHODOLOGY
In this section, the approach aiming at enabling industrial

cloud collaboration of machine data is described in detail.
The approach provides useful data analytics tools for both
user-side monitoring (e.g. for improving of the machining
process) and manufacturer-side monitoring (e.g. for improv-
ing the machine performance over its lifetime). Nonetheless,
the needed information for such analyses can include sensible
or critical data for the machine operator.

The approach aims to close this gap by
1) anonymizing critical data streams and
2) ensuring the data sovereignty of the operator’s data in

the cloud.
For this purpose, the collected machine data needs to be

categorized according to the sensitivity and criticality of
the implied information first. Afterwards, the anonymization
process and the method to enable data sovereignty for the
user data in the cloud can be applied.

A. Criticality Analysis

Currently, there are no criticality measures available for
the implications in machine and process data, such as sen-
sitive information regarding the machining process. Thus, a
new criticality measure was developed which is based on a
criticality measure of algorithmic systems published by the
Data Ethics Commission of the Federal Government [12].
This criticality measure links the criticality of a data set to
the potential damage, if this data set would be published
without the consent of the data owner (cf. Figure 1). Such a
criticality assessment ranges from the least critical Level 1
(”no or low potential damage”) up to the most critical
Level 5 (”unacceptable potential damage”). The criticality
assessment can be further utilized as a default level of
anonymization as described in the following section.

Fig. 1. Criticality measure, depending on the potential damage in case of
uncontrolled publication of the data (based on [12]).

B. Anomymization

As a privacy model, DP was chosen. The usage of DP
is motivated by an initial requirements analysis [1]. For the
presented application, DP offers the advantage that it can be
used locally by a data producer, allowing full control over
the data before leaving the company’s premises. DP aimes
at satisfying the Fundamental Law of Data Recovery [6].
Roughly, it states that overly accurate answers to a large
number of questions makes any privacy mechanism obsolete.
Attackers with sufficient background knowledge about a
target (located in a given data set) are able to break any
privacy mechanism imposed to protect the target. DP allows
the target though to deny its own entry in the data set. Thus,
DP works as a formal definition of the principle of plausible
deniability.

The definition of DP is given by Equation 1 [13]:∣∣∣∣∣lnP [R(T1 = U)]

P [R(T2 = U)]

∣∣∣∣∣≤ ε. (1)

T1 and T2 are data sets differing in exactly one record.
R is a random function (depending on the algorithm, see
below) with U being a subspace of possible results of R.
The parameter ε is the adjustable value in the privacy model
of DP allowing for configuration. The left side of Equation 1
quantifies the difference between two (almost identical) data
sets T1 and T2. This difference is expressed by ε that bounds
the level of noise added to T1 and T2 by R. It is worth noting
that DP is a perturbative privacy model, meaning that the
original data is modified [14].

It is worth pointing out that DP is a definition rather than
an algorithm [6]. This means that for every deployment of
DP, a suitable algorithm needs to be chosen. For this solution,
an algorithm based on the Laplace distribution is chosen.
It offers the advantage of only introducing one additional
parameter S for the configuration of the privacy model.
S donates the sensitivity of the Laplacian DP algorithm
and captures the magnitude by which a single data entry
in a dataset can be changed by the randomized statistical
distribution.



The parameters ε and S, thus, describe the level of
perturbation from the original data to the anonymized data.
For further reference, a parameter configuration p = (ε, S)
is defined. A configuration p is applied to a data set and
provides the parameters for privacy-preserving computation
of machine data.

C. Data Sovereignty

Even if data is protected by the presented anonymization
techniques and state-of-the-art security measures, machine
tool operators can still have different requirements regarding
critical data. Furthermore, they might decide that they do
not want to share already uploaded historical data anymore.
The concept of data sovereignty [15] ensures that they have
full control over their data at all points in time. In the
presented implementation, this is realized by the possibility
of fine-grained data sharing configurations via a graphical
user interface (cf. Section V-A) as well as the option to
remove data based on public/private key pairs which are
used as pseudonyms for the operators’ machine tools (cf.
Section V-C).

IV. ENVIRONMENT

The target infrastructure can be roughly divided into
three parts, namely the data and information sources at the
machine tool, the edge computing infrastructure, and the
cloud computing infrastructure (cf. Figure 2). The following
sections further describe each of these these domains as well
as their corresponding components.

A. Machine Tool

In order to provide reliable stability analyses, multiple data
and information sources at the machine are considered. The
data to assess the process stability can be categorized into
the four groups presented in Table I.

TABLE I
DATA SETS TO ASSESS THE MACHINING PROCESS STABILITY.

Type Data Source
Discrete Tool ID internal (OPC UA)
Semantic NC program name internal (OPC UA)
Continuous X / Y / Z position, internal (OPC UA)

spindle speed, torque
Continuous Acceleration, sound pressure external (sensors)

B. Edge Computing Infrastructure

Once the data has been gathered from the machine tool, it
is processed by an edge computing device in the form of an
industrial personal computer (IPC). The proposed solution
was tested with the operating systems Debian GNU/Linux
and Microsoft Windows. This demonstrates the system’s
interoperability with two of the most popular operating
systems, helping to avoid a vendor lock-in.

The software managing the connections with the ma-
chine’s OPC UA server as well as the sensors runs on this
IPC. The IPC also contains software components for data
processing and secure transfer to the cloud infrastructure as

well as a graphical user interface to configure the system.
Additionally to sending data to the cloud, the user can also
choose to keep a copy on the IPC for their own local analy-
ses and to independently trace what has been transmitted
to the cloud. Combining all these functionalities, the IPC
constitutes the experimental setup’s edge infrastructure.

C. Cloud Computing Infrastructure

The cloud computing infrastructure consists of a Debian
GNU/Linux virtual server. It gathers the encrypted data sent
by the IPC by providing a representational state transfer
(REST) interface. Once received, this interface forwards
the data to an Elasticsearch instance indexing the data
and providing it to a Kibana instance, which is in turn
responsible for the visualization and analysis on the user side.
Both Elasticsearch and Kibana run on the same server and
are virtualized employing corresponding Docker containers
using volumes for data persistence.

V. IMPLEMENTATION

As visualized in Figure 2, the environment presented above
is used to run the applications discussed in the following.
The communication between the applications is realized
by employing the JavaScript Object Notation (JSON) data
format if not specified otherwise.

A. Anonymization Manager

In order to enable the machine tool operator to maintain
the data sovereignty, the AnonymizationManager (AM) had
been developed. The AM is written in C++, runs on the
IPC and allows controlling the data flow towards the cloud
platform. Employing the AM, the data selection and parame-
terization of the anonymization of the machine tool data can
be performed. The GUI of the AM is drag-and-drop enabled
to allow for an efficient usage on the shop floor by machine
operators.

B. Chatter Analysis Module

In order to provide a reliable stability analysis, an existing
chatter detection method is used [16]. By applying this
method, the autocorrelation signal of either an acceleration
sensor or a microphone is used to detect a process instability.
In case of a stable machining process, the autocorrelation of
the sensor signal is close to 1, whereas the autocorrelation
coefficient drops below a user defined threshold in case the
machining process becomes unstable. Figure 3 illustrates
the autocorrelation coefficient for such a machining process
considering both signals (the microphone’s audio signal and
the accelerometer’s signal). It is worth mentioning, that the
autocorrelation coefficient can only quantify the process
stability during the tool engagement. In Figure 3, this is
the time between 6 s ≤ t ≤ 20.0 s. As shown in Figure 3,
the microphone’s audio signal contains more noise than the
accelerometer’s signal.

Additionally, the autocorrelation coefficient value is con-
tinuously monitored based on the Infinite Horizon Gaussian
Process (IHGP) algorithm [17]. As the IHGP algorithm
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Fig. 2. Architecture comprising the machine tool (left), the edge computing framework (middle) and the cloud infrastructure (right).

Fig. 3. Comparison between the two signals and their corresponding autocorrelation coefficient as a measure of the process stability.

is based on real-time capable Gaussian process regression,
the algorithm provides an uncertainty estimation of the
autocorrelation coefficient as well. For efficiency reasons,
the algorithm is implemented in C++, based on [17].

It is worth highlighting that the autocorrelation signal
itself is not anonymized, as this signal does not contain any
sensitive information on the machining process.

C. Data Control Module

The Data Control Module (DCM) is the system’s focal
point coordinating all the other components. It comprises an
edge and a cloud component, both implemented in Python 3.

The Edge DCM runs on the IPC and is responsible for the
coordination of communication between the machine tool,
the cloud, as well as other components running on the IPC.

As an input, it takes a JSON based configuration file
generated by the AM. Among other, this configuration file
contains information such as IP addresses, ports, and cre-
dentials necessary to subscribe to the UPC UA server and
to connect to the local Elasticsearch instance as well as to
the Cloud DCM. Furthermore, it contains information about
which OPC UA variables to subscribe for and whether these
variables have to be anonymized before sending them to the
cloud. This is the result of the mapping done by the user
employing the AM.

Each machine tool possesses its own unique public/private
key pair to sign data before the transmission. The com-
bination of a public key and a signature sent with each
datagram serves multiple purposes. First, it ensures that
data has not been tampered with during the transmission.
Second, it provides a pseudonym for the machine tool so that
cohesive data can be identified by the cloud. By utilizing a
newly generated public/private key pair, a new pseudonym
theoretically unlinkable to the former one can be generated
by the machine tool operators. Third, issuing a respective
deletion datagram signed by the corresponding private key,
the machine tool operator is able to delete all data related to
this pseudonym.

The Cloud DCM’s main task is to verify incoming requests
sent by the Edge DCM and forward them to the Elasticsearch
and Kibana stack running in the cloud. In case of an ordinary
datagram, its signature is checked using the corresponding
public key. If the verification is successful, the data is
written into the database. In case of a deletion datagram,
an additional timestamp verification is applied in order to
prevent replay attacks. Once the signature as well as the
timestamp are verified, the entire data record related to this
very public key is removed from the database.



D. Anonymization Module

The Anonymization Module takes raw data provided by
the Edge DCM as input. If the data has been configured
to be anonymized, the Anonymization Module applies the
DP algorithm to this data. Subsequently, it passes the data
back to the Edge DCM’s subscription handler which in turn
transmits it to the Cloud DCM using a connection secured
by Transport Layer Security (TLS).

E. Edge & Cloud User Interfaces

Elasticsearch and Kibana run on both the edge as well
as the cloud device (cf. Figure 2). While Elasticsearch is
used for data storage and indexing, Kibana provides the
actual user interface enabling data visualization and analyses.
Besides employing the most recent Docker images at the
time of the implementation, additional security measures
provided by Elasticsearch’s X-Pack are employed in order
to protect both data in transit as well as data in rest.
These measures include identity management in the form of
role-based access control (RBAC), TLS for the connection
between Elasticsearch and Kibana instances, as well as front
and back end transmission via encrypted and server-side
authenticated Hypertext Transfer Protocol Secure (HTTPS).
As an additional line of defense, devices used to access these
interfaces should only have trustworthy digital certificates
installed in their browsers for the purpose of verification [18,
19].

VI. EVALUATION

For most applications, the anonymization is a two-step
process [20]. The first step is the de-identification, i.e.
the removal of any directly identifying data fields. This
means that discrete and semantic data, such as the variables
presented in Table I, are replaced. The continuous data fields
are then used in the next step. This second step is the actual
anonymization. For this, the presented privacy model DP
with an implementation of the Laplace distribution based
on [21] is applied to the machine data.

In order to find a suitable parameter configuration
p = (ε, S), multiple experiments were conducted using the
data of a productive machine tool (GROB G350). The
variance, which is induced by the randomization of DP, needs
to be handled for usable data analytics whilst still preserving
privacy.

Figure 4 shows the maximum deviation from 100
anonymization operations on the original machine data value
for different sets of p. The deviation is measured absolutely
and depicted as a heatmap with darker fields experiencing
less deviation than brighter fields. There is a low deviation
in the quadrant located at the lower right corner (large values
for ε, small values for S) and a high deviation in the top
left corner (small ε, large S). Thus, a balanced set with
pb = (0.5; 0.5) is chosen for the following analysis.

The practical anonymization capabilities are evaluated for
spatial data points of the toolpath. Figure 5 shows the original
data set and the corresponding toolpath (spelling out the
letters VDW) in black on the left. The anonymized data

Fig. 4. Maximum deviation of the anonymization from the real data
values (depicted over ranges ε = [0; 1] and S = [0; 1]). Green fields show
numerically unstable sets of p.

points accessible by the cloud are shown in red. A detailed
view on the left shows the anonmyization in effect. An
attacker cannot distinguish the correct polynomial order of
the anonymized data points without meeting strong assump-
tions. Thus, it can be concluded, that a position-dependent
chatter analysis without reconstruction of the exact toolpath
is possible.

VII. CONCLUSION
In this paper, an approach to mitigate the dilemma of

cloud-based data processing of potentially sensitive machine
tool data was presented. For this purpose, an edge and cloud
based infrastructure has been designed and implemented.
On the edge device, real-time machine data is captured,
analyzed, and anonymized based on its criticality. In order
to support the user in the configuration process, a scale to
assess the data criticality was developed. The practicability
of this setup was tested using a productive machine tool with
a stability analysis as use case.

VIII. FUTURE WORK
The approach to ensure data sovereignty can be enriched

by cryptographic guarantees provided by trusted execution
environments [22] employed in the cloud. Also, integration
into existing manufacturing processes needs to be consid-
ered [23].

The process for estimating the anonymization parameters
can be further extended. Possible approaches are related to
the automated estimation of anonymization parameters [24]
or using the inherent noise in a given data set [25].

While the presented approach is located in the context of
a machine tool use case, its application to other domains
that share similar properties, e.g. real-time requirements
or extensive usage of embedded systems, is encouraged.
This includes, but is not limited to, smart energy networks,
building automation, or medical technologies.



Fig. 5. Comparison between original spatial data and anonymized spatial data (left) and detailed view (right) with parameters ε = 0.5 and S = 0.5.
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