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Abstract. A method of path following, utilized in the theory of position dif-

ferential games as a tool for establishing theoretical results, is adopted in this
paper for tracking aircraft trajectories under windshear conditions. It is in-

teresting to note that reference trajectories, obtained as solutions of optimal

control problems with zero wind, can very often be tracked in the presence of
rather severe wind disturbances. This is shown in the present paper for rather

realistic and highly nonlinear models of aircraft dynamics.

1. Introduction. Trajectory tracking represents an essential task for flight con-
trol systems. Under this task, it is vital to ensure that the employed methods are
accurate and in particular robust against disturbances. This is especially impor-
tant for critical phases of flight such as approach and landing due to navigation
in crowded airspace and ground proximity. In these phases, deviations from the
reference trajectory caused by disturbances can lead to catastrophic consequences.
Hereby, wind represents one of the most dangerous disturbances for flight systems
due to its unpredictability and heavy influence on the aircraft dynamics. Consid-
ering the criticality of the control task in the mentioned flight conditions several
approaches have been investigated for this application so far. In [19] the authors
propose a gamma/theta guidance law to follow trajectories derived from optimal
control methods with known wind field. The authors formulate the problem in the
vertical plane and illustrate the developed approach using a numerical example for
the take-off phase. The study in [15] proposes an adaptive control scheme which uses
the idea to control the climb rate of the aircraft in the take-off phase. This feedback
control law does not require a priori knowledge of the wind field. The authors in
[4] apply the method of nonlinear spatial inversion for aircraft trajectory tracking.
A novel guidance scheme for the vertical plane is developed which shows improved
tracking performance compared to the classical nonlinear dynamic inversion based
approach. Similar to [19] an a priori estimate of the existing wind disturbance
is required. The landing flight phase is considered for a two-dimensional tracking
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problem with the ground distance to the landing point as the independent variable
(instead of time). Moreover, in [16] a Lyapunov based trajectory following controller
is developed for a fixed-wing UAV. It is noteworthy that the feedback controller is
designed to follow a pre-defined trajectory, even in the presence of model uncertain-
ties and unknown external disturbances. As for most robust control approaches,
performance is traded against robustness in the control design.

Concerning trajectory tracking problems, it is worth mentioning a differential
game-theoretic method from [11] based on direct aiming to u-stable reference tra-
jectories. This method assumes that the following u-stability property holds. If
the second player (disturbance) shows its constant control on a short time interval
to the first player (pilot), the first player can always force the model to meet the
trajectory at the end of this time interval. Then, if the dynamics of the model
satisfy the Isaacs (saddle point) condition, an extremal aiming procedure (see [11])
enables to follow the reference trajectory without any information about the distur-
bance. It should be noted that the model dynamics can always be slightly relaxed
to fulfill the above mentioned saddle point condition. The extremal aiming proce-
dure proposed in [11] has been adopted in [12] for tracking trajectories of dynamic
systems under time-varying unknown disturbances. This publication has given rise
to many investigations towards an enhancement of the method and extension of its
application area (see e.g. [17] and [13]). In particular, there has been an attempt
to extend the method to the case where only a part of state variables is available
for measurement (cf. [14] and [18]).

Another approach to trajectory tracking is based on introducing a guide model
(or simply guide) [11]. The guide has both control and disturbance at its disposal.
It chooses first a constant disturbance for the current time-sampling interval to
remain close to the state of the primary model, and then it chooses a control to
meet the reference trajectory at the end of the current time-sampling interval. The
primary model chooses a constant control that pushes its state toward the guide, or
simply copies the control of the guide. An unknown disturbance signal affects the
primary model. At the beginning of the next time-sampling interval, this procedure
is being repeated. It should be noted that the dynamics of the guide is, as a rule,
the same as of the primary model. Therefore, the above discussed u-stability of the
reference trajectory and the saddle point condition guarantee that the guide can
track the reference trajectory, and the primary model remains arbitrary close to the
guide if the time-sampling is sufficiently fine.

Note that such a control procedure is robust with respect to small errors in
measuring the state of the primary model. In the current paper, the exact measure-
ment of all state variables of the primary model is assumed. The paper describes
the above outlined guide-based control procedure and presents nontrivial 6D exam-
ples related to aircraft control under windshear conditions. The landing phases and
cruise flight are considered. The aim is to track aircraft trajectories, computed in
the absence of wind disturbances, in the case where windshear is present. In this
connection, it is interesting to note that an aircraft is well controllable, that is, it
can return to the reference trajectory if a constant wind, known to the pilot, affects
the aircraft, which is, roughly speaking, the u-stability condition.

2. Conflict control system and guide model. Consider a conflict control sys-
tem (primary model)

ẋ = f(t, x, u, v), t ∈ [t0, θ], x ∈ Rn, u ∈ P ⊂ Rp, v ∈ Q ⊂ Rq. (1)
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Here x is the state vector, u and v are control inputs of the first (pilot) and second
(wind) players, respectively. Compact sets P and Q describe constraints imposed on
the control inputs. It is assumed that the function f is defined on [t0, θ]×G×P×Q,
where G is a sufficiently large subset of Rn. The function is bounded, continuous
in all variables, and Lipschitzian in x.

Introduce the following guide model:

ẇ = f(t, w, u, v), t ∈ [t0, θ], w ∈ Rn, u ∈ P ⊂ Rp, v ∈ Q ⊂ Rq. (2)

The guide model has the same dynamics as (1), but the controls u and v are now
at our disposal. Moreover, at any time instant tb, we can brake the performance of
(2) and continue it from an initial state wb, where wb 6= w(tb).

It is assumed that the manifold to be tracked (see (25)) is a multivalued map
t→ X(t) ⊂ Rn, t ≥ t0. Usually, X(t) is of the form

X(t) = {x ∈ Rn : [x]r = xref(t)}.
Here, [x]r is the vector consisting of the first r components of x, and t→ xref(t) ∈ Rr
is a given reference trajectory. Note that the case r = n is included. In the examples
below, either a reference trajectory derived from an appropriate optimal control
problem (with zero wind) or a constant one will be utilized.

Our intention is to provide a discrete scheme for computing the control u on the
right-hand side of system (1) such that for any instant ti of an equidistant time
sampling t0 < t1 < ... < ti < ti+1 < ... with ti+1 − ti = δ, the deviation of the
solution x(ti) of (1) from the solution w(ti) of guide system (2) will be small for
any admissible disturbance v in (1), if the step size δ be sufficiently small.

Given that the control in guide model will be chosen to keep the guiding trajec-
tory maximally close to a prescribed manifold, the designed algorithm will provide
tracking the reference trajectory by the primary model under unpredictable wind
disturbances. The efficiency of the constructed control scheme will be demonstrated
on realistic high-dimensional aircraft models, which constitutes a challenging plat-
form for the implementation of this differential game-based approach in flight sim-
ulators.

In the control design the so-called saddle point condition in a small game [11]
will be taken into account:

min
u∈P

max
v∈Q

`′f(t, x, u, v) = max
v∈Q

min
u∈P

`′f(t, x, u, v), (3)

for all ` ∈ Rn, t ∈ [t0, θ], and x ∈ G. Here and in what follows, the symbol “′”
denotes transposition.

It means that the following relations hold:

`′f(t, x, u0, v) ≤ `′f( t, x, u0, v0) ≤ `′f( t, x, u, v0),

where

u0 = arg min
u∈P

max
v∈Q

`′f(t, x, u, v), v0 = arg max
v∈Q

min
u∈P

`′f(t, x, u, v).

If (3) does not hold in pure controls u and v, the counter controls v(u) [11] of
the second player discriminating the first player will be used in guide model. In this
case, the relation

`′f(t, x, u0, v(u0)) ≤ `′f( t, x, u0, v0(u0)) ≤ `′f( t, x, u, v0(u)), (4)

where
v0(u) = arg max

v∈Q
`′f(t, x, u, v),
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will be applied to estimate the distance between the primary and guide trajectories.
This relation means the existence of a saddle point in pure controls u ∈ P of the
first player and counter controls v(u) ∈ Q of the second player.

3. Local estimate. Let t∗ ∈ [t0, θ]. Consider the following initial value problems:

ẋ = f(t, x, u0, v(t)), x(t∗) = x∗, (5)

ẇ = f(t, w, u(t), v0), w(t∗) = w∗. (6)

Here v(t) is an unknown admissible disturbance signal, u(t) is an admissible control
whose choice will be discussed later. The constant vectors u0 and v0 are found from
the relations

max
v∈Q

(x∗ − w∗)′f(t∗, x∗, u
0, v) = min

u∈P
max
v∈Q

(x∗ − w∗)′f(t∗, x∗, u, v), (7)

min
u∈P

(x∗ − w∗)′f(t∗, x∗, u, v
0) = max

v∈Q
min
u∈P

(x∗ − w∗)′f(t∗, x∗, u, v). (8)

Introduce the following function (see [11, p. 65, formulas (15) and (16)]):

β(t, δ) =
1

λ

[
e2λ(t−t0) − 1

]
α(δ), (9)

where
α(δ) = 2[2Λδ + 1][ζ(δ) + λΛδ] + 2Λ2δ. (10)

The constants λ and Λ and the function ζ(δ) are defined in [11, pp.64-65, formulas
(11)-(12)]. Namely, λ and ζ(δ) satisfy the relation

‖f(t1, x1, u, v)− f(t2, x2, u, v)‖ ≤ λ‖x1 − x2‖+ ζ(δ) (11)

for all (t1,2, x1,2, u, v) ∈ [t0, θ] × G × P × Q with |t1 − t2| ≤ δ, and ζ(δ) → 0 as
δ → +0. The constant Λ is the maximum of f over its definition region. Here and
below the notation ‖ · ‖ means the Euclidean norm.

Remark 1. Note that α(δ)→ 0 as δ → 0. Therefore, there exists δ0 > 0 such that
β(t, δ) < 1 for all δ ∈ (0, δ0] and all t ∈ [t0, θ].

It is also worth to note that ζ(δ) ∼ δ, if f is Lipschitz continuous in t. Therefore,
β(t, δ) is of the order of δ in this case. The last claim is also true if f is time
independent.

Lemma 3.1 (Lemma 2.3.1, p. 66 of [11]). Assume that the saddle point condition
(3) is true. Let ‖x∗ − w∗‖2 ≤ β(t∗, δ), δ ∈ (0, δ0). Then the following estimate
holds for any choice of admissible functions v(t) and u(t):

‖x(t)− w(t)‖2 ≤ β(t, δ), t ∈ [t∗, t∗ + δ].

Lemma 3.2. Assume that the function f has the following structure: f(t, x, u, v) =
f1(t, x, u) + f2(t, x, v). Then the saddle point condition holds. Moreover, if the
vector u0 in (5) is replaced with the control u(t) from (6), then the local estimate
from Lemma 3.1 holds for any choice of admissible functions u(t) and v(t).

Proof. The following formulas are true:

x(t) = x∗ +

∫ t

t∗

f(ξ, x(ξ), u(ξ), v(ξ))dξ,

w(t) = w∗ +

∫ t

t∗

f(ξ, w(ξ), u(ξ), v0)dξ.

It is easy to check that
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x(t)− w(t) = x∗ − w∗

+

∫ t

t∗

[
f(t∗, x∗, u(ξ), v(ξ))− f(t∗, x∗, u(ξ), v0)

]
dξ

+

∫ t

t∗

[
f(ξ, x∗, u(ξ), v(ξ))− f(t∗, x∗, u(ξ), v(ξ))

]
dξ ∼ o(t− t∗)

+

∫ t

t∗

[
f(t∗, x∗, u(ξ), v0)− f(ξ, x∗, u(ξ), v0)

]
dξ ∼ o(t− t∗)

+

∫ t

t∗

[
f(ξ, x(ξ), u(ξ), v(ξ))− f(ξ, x∗, u(ξ), v(ξ))

]
dξ ∼ o(t− t∗)

+

∫ t

t∗

[
f(ξ, w∗, u(ξ), v0)− f(ξ, w(ξ), u(ξ), v0)

]
dξ, ∼ o(t− t∗)

+

∫ t

t∗

[
f(ξ, x∗, u(ξ), v0)− f(ξ, w∗, u(ξ), v0)

]
dξ. ∼ (t− t∗)λ‖x∗ − w∗‖

where λ is defined by formula (11). Therefore,

‖x(t)− w(t)‖2 ≤
(
1 + λ(t− t∗)

)
‖x∗ − w∗‖2

+

∫ t

t∗

(x∗ − w∗)′
[
f(t∗, x∗, u(ξ), v(ξ))− f(t∗, x∗, u(ξ), v0)

]
dξ + o(t− t∗). (12)

Obviously,

(x∗ − w∗)′f(t∗, x∗, u(ξ), v(ξ)) ≤ (x∗ − w∗)′f(t∗, x∗, u(ξ), v0), (13)

for all u(ξ) and v(ξ), which is equivalent to the inequality

(x∗ − w∗)′f2(t∗, x∗, v(ξ)) ≤ (x∗ − w∗)′f2(t∗, x∗, v
0) (14)

holding for all v(ξ).
Exactly estimating o(t − t∗) in (12) (see Lemma 2.3.1, p. 68 of [11]) proves the

lemma.

Lemma 3.3. Assume that the saddle point condition does not hold, i.e.

min
u∈P

max
v∈Q

(x∗ − w∗)′f(t∗, x∗, u, v) > max
v∈Q

min
u∈P

(x∗ − w∗)′f(t∗, x∗, u, v). (15)

For any constant vector u ∈ P , let v0(u) be a maximizer in the maximization
problem maxv∈Q (x∗−w∗)′f(t∗, x∗, u, v). If the vector u0 in (5) is replaced with the
control u(t) from (6), and the vector v0 in (6) is replaced with v0(u(t)), then the
local estimate from Lemma 3.1 holds for any choice of admissible functions u(t) and
v(t).

Proof. We have:

x(t) = x∗ +

∫ t

t∗

f(ξ, x(ξ), u(ξ), v(ξ))dξ,

w(t) = w∗ +

∫ t

t∗

f(ξ, w(ξ), u(ξ), v0(u(ξ))dξ.

Hence,

x(t)− w(t) = x∗ − w∗
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+

∫ t

t∗

[
f(t∗, x∗, u(ξ), v(ξ))− f(t∗, x∗, u(ξ), v0(u(ξ)))

]
dξ

+

∫ t

t∗

[
f(ξ, x∗, u(ξ), v(ξ))− f(t∗, x∗, u(ξ), v(ξ))

]
dξ ∼ o(t− t∗)

+

∫ t

t∗

[
f(t∗, x∗, u(ξ), v0(u(ξ)))− f(ξ, x∗, u(ξ), v0(u(ξ)))

]
dξ ∼ o(t− t∗)

+

∫ t

t∗

[
f(ξ, x(ξ), u(ξ), v(ξ))− f(ξ, x∗, u(ξ), v(ξ))

]
dξ ∼ o(t− t∗)

+

∫ t

t∗

[
f(ξ, w∗, u(ξ), v0(u(ξ)))− f(ξ, w(ξ), u(ξ), v0(u(ξ)))

]
dξ, ∼ o(t− t∗)

+

∫ t

t∗

[
f(ξ, x∗, u(ξ), v0(u(ξ)))− f(ξ, w∗, u(ξ), v0(u(ξ)))

]
dξ. ∼ (t− t∗)λ‖x∗ − w∗‖

Therefore,

‖x(t)− w(t)‖2 ≤
(
1 + λ(t− t∗)

)
‖x∗ − w∗‖2

+

∫ t

t∗

(x∗ − w∗)′
[
f(t∗, x∗, u(ξ), v(ξ))− f(t∗, x∗, u(ξ), v0(u(ξ)))

]
dξ + o(t− t∗).

(16)

The term o(t− t∗) in (16) is estimated as in Lemma 2.3.1 (p. 68 of [11]) with the
difference that, instead of the saddle point condition (3), the relation (15) is used.

Finally, applying the inequality

(x∗ − w∗)′f(t∗, x∗, u(ξ), v(ξ)) ≤ (x∗ − w∗)′f( t∗, x∗, u(ξ), v0(u(ξ)) ), (17)

which holds for all u(ξ) and v(ξ), proves the assertion of Lemma 3.3.
4. Global estimate for discrete-time control scheme.
Assume that an equidistant time sampling t0 < t1 < ... < ti < ti+1 < ... is chosen,
and ti+1 − ti = δ for all i.

4.1. The case of general saddle point condition. Consider the case of
Lemma 3.1, where the saddle point condition holds. Let v(i)(t) and u(i)(t) be arbi-
trary admissible disturbances and controls affecting the primary and guide models,
respectively, on time intervals [ti, ti+1), i = 0, 1, ..., cf. (5) and (6). Define trajecto-
ries of the models on each time interval [ti, ti+1) as follows:

ẋ = f(t, x, u0(i), v(i)(t)), ẇ = f(t, w, u(i)(t), v0(i)), (18)

where the vectors u0(i) and v0(i) are defined by the relations

max
v∈Q

`′if(ti, x(ti), u
0(i), v) = min

u∈P
max
v∈Q

`′if(ti, x(ti), u, v), (19)

min
u∈P

`′if(ti, x(ti), u, v
0(i)) = max

v∈Q
min
u∈P

`′if((ti, x(ti), u, v), (20)

with `i = x(ti)− w(ti). The following lemma is true.

Lemma 4.1 (Estimate (16), p. 73 of [11]). If w(t0) = x(t0), then the following
estimate holds:

‖x(t)− w(t)‖2 ≤ β(t, δ), δ ∈ (0, δ0), t ∈ [ti, ti+1], i = 0, 1, ... . (21)
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Thus, trajectories x(t) and w(t) track each other independently on the choice of
admissible inputs v(i)(t) and u(i)(t), i = 0, 1, ... .

Proof. The proof is performed using Lemma 3.1 (local estimate) and mathematical
induction.

For i = 0 we have ‖x(t0)−w(t0)‖2 = 0 = β(t0, δ), which means that the assertion
of lemma is true. Assume that the estimate (21) holds for some i = k > 0, i.e.
‖x(t)−w(t)‖2 ≤ β(t, δ), δ ∈ (0, δ0), t ∈ [tk, tk+1]. Then the conditions of Lemma 3.1
are satisfied for tk+1, which implies the fulfillment of (21) for all i > 0.

Remark 2. Note that β(t, δ) exponentially grows with t − t0, and, therefore, the
trajectories may diverge with time. To correct this effect, the following trick may
be used. If ‖x(ti)−w(ti)‖2 > ε0 for the current index i, then w(ti) will be forcibly
pushed to the vector x(ti). I.e., it will be forcibly set w(ti) = x(ti). This is not a
violation of reality because the guide model (2) is completely at our disposal.

4.2. The case of additively separable controls. Consider the case of Lemma 3.2,
where f(t, x, u, v) = f1(t, x, u)+f2(t, x, v). Let v(i)(t) and u(i)(t) be arbitrary admis-
sible disturbances and controls affecting the primary and guide model, respectively,
on time intervals [ti, ti+1), i = 0, 1, ..., cf. (5) and (6). Define trajectories of the
models on each time interval [ti, ti+1) as follows:

ẋ = f(t, x, u(i)(t), v(i)(t)), ẇ = f(t, w, u(i)(t), v0(i)), (22)

where the vectors v0(i) are defined in the same way as in (20), and the primary
model uses the same control u(i)(t) as the guide one.

Then, all the conditions of Lemma 3.2 are satisfied and the local estimate from
Lemma 3.1 is true, which implies the fulfillment of the estimate (21) for all admis-
sible disturbances and controls, v(i)(t) and u(i)(t), i = 0, 1, ... .

4.3. The case of absence of the saddle point condition. Consider the case of
Lemma 3.3, where the saddle point condition does not hold. Let v(i)(t) and u(i)(t)
be arbitrary admissible disturbances and controls affecting the primary and guide
model, respectively, on time intervals [ti, ti+1), i = 0, 1, ... . Define trajectories of
the models on each time interval [ti, ti+1) as follows:

ẋ = f(t, x, u(i)(t), v(i)(t)), ẇ = f(t, w, u(i)(t), v0(i)(u(i)(t))), (23)

where the function u→ v0(i)(u) is given by the relation

(x(ti)− w(ti))
′f(ti, x(ti), u, v

0(i)(u)) = max
v∈Q

(x(ti)− w(ti))
′f(ti, x(ti), u, v).

Thus, the primary model copies the control u(i)(t) of the guide one, and the
guide model uses the counter disturbance v0(i)(u(i)(t)). Then, all the conditions
of Lemma 3.3 hold and the local estimate from Lemma 3.1 is true, which implies
the fulfillment of the estimate (21) for all admissible disturbances and controls,
v(i)(t) and u(i)(t), i = 0, 1, ... .

5. Choice of functions v(i)(t) and u(i)(t) on each time-sampling interval.
Functions v(i)(t), i = 0, 1, ..., affecting the primary model, represent the time re-
alization of external disturbances, and, therefore, they are not at our disposal.
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Nevertheless, in simulations, these functions may be chosen from the condition of
extremal repulsion from the manifold to be tracked. That is,

v(i)(t) ≡ v(i) = arg max
v∈Q

(
x(ti)− x̂[x(ti), X(ti)]

)′
f(ti, x(ti), u

0(i), v), t ∈ [ti, ti+1),

(24)

where x̂[x,X] denotes the closest point of X to x. Here it is assumed that the
saddle point condition holds, and u0(i) is chosen according to (19).

A function u(i)(t), which plays a role of control in the guide model on the time
interval [ti, ti+1), is chosen to minimize the deviation of the guide model from the
manifold at ti+1, that is, to solve the problem

dist
(
w(ti+1), X(ti+1)

)
→ min (25)

under the condition that the disturbance v0(i), or counter disturbance v0(i)(u(i)(t)),
is used in the guide model on the interval [ti, ti+1). Numerically, the function u(i)(t)
can be searched as a step function with three values, that is,

u(i)(t) =


u1, t ∈ [ti, ti + δ/3),

u2, t ∈ [ti + δ/3, ti + 2δ/3),

u3, t ∈ [ti + 2δ/3, ti + δ).

(26)

Thus, the minimization in (25) runs over all possible combinations of u1, u2, u3.
Numerical simulations show that the ansatz (26) is not effective because the

interval [ti, ti+1) is too small, so that the minimizing control u(i)(t) switches very
often and does not show the direction of optimal shift. To stabilize it, the following
heuristic trick is used. A relatively large time step length τ > δ (for example,
δ = 0.005 s and τ = 0.05 s) is chosen. The minimization problem

dist
(
w(ti + 3τ), X(ti + 3τ)

)
→ min

u(i)(·)
(27)

is considered, and the following ansatz is used for the minimization:

u(i)(t) =


u1, t ∈ [ti, ti + τ),

u2, t ∈ [ti + τ, ti + 2τ),

u3, t ∈ [ti + 2τ, ti + 3τ).

(28)

The disturbances v0(i), or counter disturbance v0(i)(u(i)(t)), is now used on the
interval [ti, ti+ 3τ). After finding a minimizing triple u1, u2, u3, the first vector, u1,
is used as control on the interval [ti, ti+1).

Remark 3. Note that the ansatz (27), (28) can be reduced to the two-interval one:

dist
(
w(ti + 2τ), X(ti + 2τ)

)
→ min

u(i)(·)
, (29)

u(i)(t) =

{
u1, t ∈ [ti, ti + τ),

u2, t ∈ [ti + τ, ti + 2τ),
(30)

enlarging the step length τ . Numerical experiments show a good control quality in
this case.
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A basic prototype algorithm for the tracking procedure using the choice of func-
tions described in this section is provided in Alg. 1. Observe that the primary model
copies the control of the guide and uses an external disturbance v(i) which is not
at our disposal. The value of this external disturbance depends on the application
under consideration and is represented by the wind velocity in the context of the
aircraft trajectory tracking problem. For testing purposes it may be chosen based on
the condition of extremal repulsion (cf. (24)) or other disturbance models (e.g. the
Dryden wind turbulence model used in cf. Section 6.1). It is important to note that
if the minimization and maximization operators are evaluated using values from a
grid for the admissible controls and disturbances each step of the algorithm requires
a finite number of operations.

Algorithm 1 Tracking

1: procedure Tracking(X, δ, t0, θ, x0, Q, P, ε0) . Prototype tracking procedure
2: x0 ← x0
3: w0 ← x0
4: i← 0
5: while iδ < θ do
6: ti ← t0 + iδ
7: if ‖xi − wi‖2 > ε0 then
8: wi ← xi . reset w, see Remark 2
9: end if

10: v0(i) ← arg max
v∈Q

min
u∈P

(xi − wi)′f(ti, x
i, u, v) . cf. (20)

11: u
(i)
1 ← arg min

u(·)
dist (w(ti + δ), X(ti + δ)) . alternatively use (27) or (29)

12: v(i) ← getDisturbance(·) . get external disturbance (e.g. using (24))

13: wi+1 ← wi + δf(ti, w
i, u

(i)
1 , v0(i)) . move w using u

(i)
1 and v0(i)

14: xi+1 ← xi + δf(ti, x
i, u

(i)
1 , v(i)) . move x using u

(i)
1 and disturbance v(i)

15: i← i+ 1
16: end while
17: end procedure

6. Examples.

6.1. Tracking a landing trajectory. A nonlinear point mass model of the Boeing
707 jet is under consideration. The model structure is described in Section 8 (the ap-
pendix). The derivation is based on data provided in [5] for the holding flight phase.
The state vector of the aircraft model is defined as x = [VK , γK , χK , xN , yN , zN ]

′

including the kinematic velocity VK , the kinematic flight path angle γK , the kine-
matic course angle χK , and the aircraft position states (xN , yN , zN ) denoted in a
local frame. The control vector u = [αK , µK , δT ]′ contains the kinematic angle of
attack αK , the kinematic bank angle µK , and the thrust setting δT . The wind
disturbance vector has three components v = [Wx,Wy,Wz]

′
given in the North-

East-Down (NED) frame. The wind disturbances and the controls are subject to
box constraints:

|αK | ≤ 15 deg, |µK | ≤ 15 deg, δT ∈ [0, 1],

|Wx| ≤ 10 m/s, |Wy| ≤ 10 m/s, |Wz| ≤ 5 m/s.
(31)
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The reference trajectory xref(t) is obtained in the absence of wind disturbances
(i.e. v ≡ 0) from the numerical solution of an appropriate optimal control problem.
At the initial point of the trajectory the following boundary conditions for this
optimal control problem are defined for the position, velocity, and flight path angles:

(xN )initial = 0 m,

(yN )initial = 0 m,

(zN )initial = −400 m,

(VK)initial = 110 m/s,

(γK)initial = 0 deg, (32)

(χK)initial = 0 deg.

Similarly, the final boundary conditions are represented by the landing position and
constraints on the terminal velocity and the flight path angles:

(xN )landing ≈ 14985 m,

(yN )landing ≈ 65 m,

(zN )landing ≈ −20 m,

(VK)landing ∈ [70, 100] m/s,

(γK)landing ≈ 0 deg, (33)

(χK)landing ≈ 0 deg.

The following cost function J is used for the optimal control problem

J =

∫ tlanding

t0

γKdt, (34)

which supports monotonicity of the landing trajectory.
This optimal control problem is solved using a direct method (cf. [1]). Under

this approach the continuous time optimal control problem is transcribed into a
nonlinear programming (NLP) problem of the following form:

minimize
z

F (z)

subject to

h (z) = 0,

g (z) ≤ 0.

(35)

In the transcribed problem formulation, z is a vector containing the optimization
variables, F (z) represents the scalar cost function, h (z) collects all equality con-
straints, and g (z) collects all inequality constraints. In case of a full discretization,
which is used in this study, z collects variables for the inputs u and the states
x corresponding to each discrete time point tk, k = 0, . . . ,m. In this paper, the
number of discrete points on the equidistant time grid is set to m = 5000. The
trapezoidal collocation method is employed to discretize the model dynamics which
yields equality constraints of the following form:

0 = xk+1 − xk −
tk+1 − tk

2
(f (uk, xk) + f (uk+1, xk+1)) , k = 0, . . . ,m− 1. (36)

Note that equality and inequality constraints related to the boundary conditions
can be directly considered using the state and control variables at the discretization
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time points. For all numerical examples the optimal control toolbox Falcon.m1 is
used to model the optimal control problem and the resulting NLP (35) is solved
with the interior point solver Ipopt [21].

It is numerically proven that the saddle point condition holds for this aircraft
model, so that the control scheme corresponds to Subsection 4.1. The saddle point
condition was tested on the reference trajectory by evaluation of the min max and
max min operators (cf. Eq. (3)) and comparing the results. The choice of the
controls u(i)(t) in the guide model has been implemented according to the ansatz
(29) and (30). Regarding the implementation of Alg. 1 for this particular example
the controls are determined in two sequential steps. First, the thrust command is
determined by tracking the reference velocity. From an aircraft control perspec-
tive this approach represents a natural strategy considering the fact that the thrust
command can be used for acceleration and deceleration of the system. In a sec-
ond step the angle of attack and the bank angle commands are determined using
all reference states. Disturbances are simulated using a Dryden turbulence model
outlined in Subsection 8.2.

The time step lengths are chosen as: δ = 0.005 s and τ = 0.1 s. Resetting of the
state vector of the guide model (see Remark 2) is performed with the threshold ε0
equal to 0.01. It it noteworthy, that for the simulations the covered distance xN
is used instead of time, observing that dx/dt = dx/dxN · dxN/dt and dxN/dt ≥
const > 0. These simulations are performed on the interval xN ∈ [0, 14887] m with
a runtime of about 100 s using an OMP parallelization over 11 threads.

The simulation results are depicted in Figures 1-10. Figures 1-5 correspond to
the characteristic value of 30 m/s in the Dryden model, whereas Figures 6-10 show
numerical results for the characteristic value of 45 m/s. Additionally, the absolute
values of the deviation between the reference states and aircraft states are presented
in the lower plots of Figures 2-4 and Figures 7-9.

Figure 1. Tracking of the landing trajectory in the case of a Dry-
den disturbance model with the characteristic value of 30 m/s. The
black line presents the aircraft motion, and the grey line shows the
reference trajectory.

1http://www.falcon-m.com

http://www.falcon-m.com
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Figure 2. The angle γK [deg] in the case of a Dryden disturbance
model with the characteristic value of 30 m/s. In the upper plot
the black line corresponds to the aircraft motion, and the grey line
stands for the reference trajectory. The solid line in the lower plot
shows the absolute tracking error using a semi-logarithmic scale.

Figure 3. The angle χK [deg] in the case of a Dryden disturbance
model with the characteristic value of 30 m/s. In the upper plot
the black line corresponds to the aircraft motion, and the grey line
stands for the reference trajectory. The solid line in the lower plot
shows the absolute tracking error using a semi-logarithmic scale.
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Figure 4. The velocity VK [m/s] in the case of a Dryden distur-
bance model with the characteristic value of 30 m/s. In the upper
plot the black line corresponds to the aircraft motion, and the grey
line stands for the reference trajectory. The solid line in the lower
plot shows the absolute tracking error using a semi-logarithmic
scale.

Figure 5. The wind components Wx [m/s], Wy [m/s], and
Wz [m/s] in the case of a Dryden disturbance model with the char-
acteristic value of 30 m/s.
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Figure 6. Tracking of the landing trajectory in the case of a Dry-
den disturbance model with the characteristic value of 45 m/s. The
black line presents the aircraft motion, and the grey line shows the
reference trajectory.

Figure 7. The angle γK [deg] in the case of a Dryden disturbance
model with the characteristic value of 45 m/s. In the upper plot
the black line corresponds to the aircraft motion, and the grey line
stands for the reference trajectory. The solid line in the lower plot
shows the absolute tracking error using a semi-logarithmic scale.
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Figure 8. The angle χK [deg] in the case of a Dryden disturbance
model with the characteristic value of 45 m/s. In the upper plot
the black line corresponds to the aircraft motion, and the grey line
stands for the reference trajectory. The solid line in the lower plot
shows the absolute tracking error using a semi-logarithmic scale.

Figure 9. The velocity VK [m/s] in the case of a Dryden distur-
bance model with the characteristic value of 45 m/s. In the upper
plot the black line corresponds to the aircraft motion, and the grey
line stands for the reference trajectory. The solid line in the lower
plot shows the absolute tracking error using a semi-logarithmic
scale.
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Figure 10. The wind components Wx [m/s], Wy [m/s], and
Wz [m/s] in the case of a Dryden disturbance model with the char-
acteristic value of 45 m/s.

6.2. Tracking a cruise flight trajectory. A point-mass model describing the dy-
namics of a generic modern transport aircraft is considered. This model is carefully
presented in paper [2] (the only difference is that the kinematic angle of side-slip
is not a control input there), so that it is not necessary to repeat its derivation.
The state vector of the model is x = [VK , γK , χK , xN , yN , zN ]

′
, where VK is the

kinematic velocity, γK the kinematic inclination angle, χK the kinematic course
angle, and (xN , yN , zN ) represent the position states in a local coordinate system.

On the one side, the vector of control inputs u = [αK , βK , µK , δT ]′ collects the
kinematic angle of attack αK , the kinematic angle of slide-slip βK , the kinematic
bank angle µK , and the thrust setting δT . On the other side, the wind velocity
components Wx, Wy, and Wz are regarded as disturbances. These controls and
disturbances are bounded by

|αK | ≤ 15 deg, |βK | ≤ 5 deg, |µK | ≤ 5 deg, δT ∈ [0.3, 1],

|Wx| ≤ 10 m/s, |Wy| ≤ 10 m/s, |Wz| ≤ 5 m/s,
(37)

and the manifold to be tracked (reference trajectory) is given as:

VK = 150 m/s, γK = 0 deg, χK = 0 deg, yN = 0 deg, zN = −5000 m.

It is numerically proven that the saddle point condition does not hold, so that the
control scheme corresponds to Subsection 4.3. The saddle point condition is evalu-
ated on the reference trajectory in the same way as described in the first numerical
example. The choice of the controls u(i)(t) in the guide model is implemented
according to the ansatz (29) and (30). Moreover, disturbances are simulated as re-
pulsive pushes defined by formula (25). For this example the controls in Alg. 1 are
not computed in a sequential manner as it was done in the first example due to the
fact that the reference velocity is held constant. The time step lengths δ = 0.005 s
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and τ = 0.05 s are chosen and the state vector of the guide model (see Remark 2) is
reset with the threshold ε0 = 0.01. The simulations are performed on the time inter-
val of 100 s. The runtime is about 150 s with OMP parallelization over 11 threads.
It should be noted that stable tracking appears to hold for any time interval (tested
up to 3600 s). The simulation results are depicted in Figures 11-15.

time [s]

V
K

[m
/s

]

Figure 11. The kinematic velocity VK [m/s] for the case of re-
pulsive disturbance, see (24). The straight line at VK = 150 m/s
corresponds to the reference.

time [s]

γ
K

[d
eg

]

Figure 12. The angle γK [deg] for the case of repulsive distur-
bance, see (24). The straight line at γK = 0 deg corresponds to the
reference.

time [s]

χ
K

[d
eg

]

Figure 13. The angle χK [deg] for the case of repulsive distur-
bance, see (24). The straight line at χK = 0 deg corresponds to the
reference.
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time [s]

y N
[m

]

Figure 14. The position component yN [m] for the case of repul-
sive disturbance, see (24). The straight line at yN = 0 m corre-
sponds to the reference.

time [s]

h
[m

]

Figure 15. The altitude h = −zN [m] for the case of repulsive
disturbance, see (24). The straight line at h = 5000 m corresponds
to the reference.

7. Conclusion. The examples presented in this paper show that the differential
game based tracking method can be applied to the aircraft trajectory following task
under rather severe and unpredictable windshear conditions. It should be stressed
that the current choice of control is only based on the current state of the aircraft and
a measurement of the wind disturbance is not required. The drawback of the method
is that the resulting controls are of bang-bang type with very frequent switches. In
this context, it is important to mention that the control inputs of point-mass models
are in fact states of full aircraft models which are controlled by the primary control
surfaces such as the aileron, rudder, and elevator. In order to apply the controls
obtained from a point-mass model under the approach proposed in this paper to the
full model the principle of nonlinear dynamic inversion [20] may by used in order
to restore the actuator signals based on the resulting (smoothed) trajectory. A
similar idea has been implemented by the authors (see [8]) in the context of tracking
controls computed from a point-mass model by solving appropriate Hamilton-Jacobi
equations.

8. Appendix.

8.1. Model Dynamics. A nonlinear point mass model of the Boeing 707 jet is
under consideration. Conventional notations for reference frames, see [10] and [3],
are used. Matrices defining the transformations between reference frames are de-
scribed in Subsection 8.3. Here, it should be mentioned that the kinematic angle of
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sideslip βK of the aircraft is assumed to be zero and the corresponding rotation is,
as such, neglected in all transformation matrices.

The dynamic equations of the aircraft read as follows:

V̇K =
1

m
[XK −mg sin(γK)] ,

γ̇K = − 1

mVK
[ZK +mg cos(γK)],

χ̇K =
1

mVK cos(γK)
YK ,

ẋN = VK cos(γK) cos(χK),

ẏN = VK cos(γK) sin(χK),

żN = −VK sin(γK).

In these equations, m is the aircraft mass, g the gravitational acceleration, VK the
kinematic velocity, γK the kinematic flight path angle, χK the kinematic azimuth
angle, and (xN , yN , zN ) the aircraft position in a local reference frame. Moreover,
XK , YK , and ZK are components of the sum of aerodynamic and propulsion forces
in the kinematic frame: XK

YK
ZK

 = (FA)K + (F P )K .

The aerodynamic force (FA)K denoted in the kinematic frame is defined as

(FA)K = MKB (µK , αK)MBA (αA, βA)

 −CD q̄CYββAq̄
−CLq̄

 , (38)

with the drag coefficient CD, the side-force coefficient CYβ , and the lift coefficient
CL. The matrix MKB represents the transformation matrix from the body-fixed
to the kinematic reference frame and depends on the kinematic angle of attack αK
and the kinematic bank angle µK . Moreover, the matrix MBA denotes the trans-
formation matrix between the aerodynamic and the body-fixed frame depending
on the aerodynamic angle of sideslip βA and the aerodynamic angle of attack αA.
These two aerodynamic angles are computed based on the formulas

αA = arctan

(
(wA)B
(uA)B

)
,

βA = arctan

 (vA)B√
(uA)

2
B + (wA)

2
B

 ,

where (uA)B , (vA)B and (wA)B are the components of the aerodynamic velocity

(V A)B = [(uA)B , (vA)B , (wA)B ]
′

in the body-fixed frame. The propulsion force
vector is obtained as

(F P )K = MKB (µK , αK)

δTTmax0
0

 , (39)

under the assumption that the propulsion force of the aircraft is aligned with the
xB-axis of the body-fixed frame.
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Furthermore, the dynamic pressure q̄ in equation (38) is defined as

q̄ =
1

2
ρV 2

A, VA = ‖(V K)O − (V W )O‖, (40)

with the kinematic velocity (V K)O = MOK (χK , γK) [VK , 0, 0]′ and the wind ve-
locity (V W )O, both denoted in the NED frame. The matrix MOK represents the
transformation matrix from the kinematic frame (K) to the NED frame (O) and
depends on the kinematic course angle χK as well as the kinematic climb angle γK .

It is assumed that the air density ρ varies with the altitude h according to the
International Standard Atmosphere (ISA), as described in [6] for the troposphere
layer. In the current work, the air density is set to 1.0581 kg m−3 at the altitude
h = 400 m.

The lift and drag coefficients are of the form

CL = CL0
+ αACLα , CD = CD0

+ αACDα ,

and the values of the aerodynamic parameters CD0
, CDα , CL0

, CLα , CYβ , as well
as other model data corresponding to the landing configuration, can be found in
[5]. Increased values of CL0 and CD0 reflect the effects of the configuration of the
aircraft during the landing phase.

The variable Tmax, appearing in equation (39), denotes the maximum thrust
produced by the engines at the current velocity and altitude, whereas δT ∈ [0, 1] is
the thrust setting. Depending on the flight condition, the maximum thrust Tmax is
given by the equation

Tmax = Tmaxref

(
VA
VAref

)nV ( ρh
ρref

)nρ
, (41)

where nV and nρ are empirical values corresponding to the engine type. The ansatz
(41) and the values nV = −0.1 and nρ = 0.7 are chosen based on the methods
described in [6] for turbofan engines with a low bypass ratio. The other parameters
are chosen as ρref = 1.0581 kg m−3, VAref = 130 m s−1, and Tmaxref = 320800 N.

Summarizing, the state and control vectors of the aircraft model are defined as
x = [VK , γK , χK , xN , yN , zN ]

′
and u = [αK , µK , δT ]′. Moreover, the disturbances

are represented by the components of the vector (V W )O, i.e. the wind velocities
denoted in the NED frame.

8.2. Dryden Disturbance Model. In order to generate realistic wind distur-
bances along the landing trajectory, the Dryden turbulence model (see [7]) is uti-
lized. Roughly speaking, this model applies an adaptive filter on band-limited white
noise to generate disturbances that take eigenfrequencies of the aircraft dynamics
into account. This model is considered because these wind disturbances are deemed
more realistic compared to e.g. a constant wind field, purely random signals or repul-
sive gusts defined by (24). It is important to mention that only turbulence velocities
are considered in our study, whereas the turbulence angular rates are neglected.

For the Dryden model, the wind velocity at 6 m represents the characteristic
value of the turbulence intensity in lower altitudes (under 1000 ft). In the present
study, the values of 30 m/s and 45 m/s are considered for the low altitude intensity.

8.3. Transformation matrices. In order to define the transformation matrices
used for the flight mechanical model it is useful to introduce the following elementary
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rotation matrices around the x-, y-, and z-axis for a generic angle φ:

Mx (φ) =

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 ,
My (φ) =

cos(φ) 0 − sin(φ)
0 1 0

sin(φ) 0 cos(φ)

 ,
Mz (φ) =

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1

 .
Based on these definitions the transformation matrices appearing in the model

description can be composed as follows:

MOK = Mz (−χK)My (−γK) , (42)

MBA = My (αK)Mz (−βA) , (43)

MBK = My (αK)Mx (µK) . (44)

For the construction of the transformation matrix MBK the rotation with the
kinematic angle of side-slip βK is neglected as this angle is assumed zero.
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