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Abstract

Spatial metabolomics by mass spectrometry (MS) imaging has significantly improved
the study of challenging biological systems like cancer tissues with unprecedented detail.
Pathological conditions in tissues are inherently linked with the changed metabolome
in the affected cells, which can be exclusively studied in situ by spatial metabolomics.
However, there is often a need for a multimodal approach to detect affected cells using
spatial metabolomics combined with other spatially resolved tissue modalities. Therefore,
spatial metabolomics offers great potential to be improved multimodally to address unmet
clinical needs in cancer therapy and provides new insights into the cancer metabolism of
patients.

An improved method for multimodal spatial metabolomics was developed to access
spatially resolved tissue data at different molecular layers. This improved method enabled
the examination of the cancer metabolism in patient tissues locally at the primary site
and systemically at distant organs to serve answers to unsolved clinical questions for
patient diagnosis and targeted anti-cancer therapies.

This cumulative thesis proves the potential for multimodal spatial metabolomics
in a clinical and preclinical setting by including four publications. Two publications
reveal the methodological requirements for enabling multimodal spatial metabolomics.
The subsequent publication describes the application of the method to improve the
understanding of drivers of cancer pathophysiology and programmed cell death ligand-
1 (PD-L1) expression. Finally, the last publication revealed the potential of the developed
method for a systemic view of cancer metabolism in a preclinical setting.

The presented thesis makes a significant contribution to the applicability of spatial
metabolomics in clinical diagnostics and preclinical research. The publications reveal the
unexploited potential for using spatial metabolomics for clinical decision-making.
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2. Introduction

The following chapter comprises two parts, a biological and technical introduction.

The first biological part introduces the reader to fundamental cancer-associated
metabolic changes which play a role in the embedded publications [1, 2, 3, 4] (see
chapter 3 - First Author Publications).

The second part of this chapter introduces the technical background of spatial
metabolomics. With this, this thesis presents the topic of spatial metabolomics step-wise.
Therefore, this thesis starts by introducing the commonly used bulk metabolomics,
including essential definitions associated with metabolomic analysis. Subsequently, bulk
metabolomics is compared with spatial metabolomics, and the advantages of using the
spatially resolved metabolomics method are highlighted.

The end of the chapter includes the objectives of this thesis.

2.1. Cancer and metabolism

2.1.1. Metabolic changes in cancer tissues

Cancer development requires alterations in expression or mutations of genes, leading
to deranged metabolism within cells [5]. Today, there is an increasing awareness that
cancer is more of a metabolic than a genetic disease (Figure 1) [6]. Cellular metabolism
is heavily affected by oncogenes and tumor suppressors [7]. Massive metabolic changes
were described in cancer cells compared to non-cancerous cells [8]. Due to the enhanced
proliferation rates in cancer cells, there is a need for elevated adenosine triphosphate (ATP)
production and the continuous synthesis of building blocks such as amino acids, nucleic
acids, and lipids [8]. Cancer cells are generally shifting from a catabolic to a more anabolic
state [9]. Challenging aspects such as hypoxic environments, survival in circulation,
and colonizing new metastatic niches are often followed by adapting the cancer cell
metabolism [8]. The term "cancer metabolism" usually indicates a shared set of changed
pathways in highly proliferative tumors or cancer cells [10].
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2. Introduction

In the following, important changes in cancer metabolism are introduced, related to the
embedded publications in this thesis [1, 2, 3, 4] (see chapter 3 - First Author Publications).

Cancer as a
Metabolic
Disease

Sustaining
proliferative

signaling

Evading
growth

suppressors

Avoiding
immune

destruction

Enabling
replicative
immortality

Tumor-
promoting

inflammation

Activating
invasion &
metastasis

Inducing
angiogenesis

Genome
instability &

mutation

Resisting
cell

death

Deregulating
cellular

energetics

Succinate
Mutated

Metabolic Hubs

Lactate

Warburg Effect
Glutaminolysis

Lactate, Low pH
Succinate

Low pH, Low O2

Lactate
Glutamate, Citrate
Lactate, Pyruvate

Onco-
metabolites

Hypermethylation

Cytoplasmic
Metabolism
Antioxidants

Warburg Effect,
Glutaminolysis

Figure 1. Cancer as a metabolic disease. A review of the Hallmarks of Cancer and the impact
of a variety of metabolites or metabolic processes on each of these oncogenic features.
The hallmarks are in the inner circle, while the corresponding metabolic processes
or metabolites are outside of the circle. In accordance with [9]

Glycolysis

Glycolysis is the starting point in glucose metabolism and consists of nine reactions
involving nine enzymes. Hexokinase, phosphofructokinase, and pyruvate kinase are
rate-limiting and highly regulated enzymes, and all were revealed as altered in cancer
[5, 11]. In addition, the uptake of glucose is increased in cancer by a factor of 200
[5, 12]. In non-cancer cells, the produced pyruvate from glucose by glycolysis enters
the pyruvate dehydrogenase complex for the tricarboxylic acid cycle to be further
oxidized to carbon dioxide [5]. During the steps of glycolysis and tricarboxylic acid cycle,
oxidized nicotinamide adenine dinucleotide (NAD) is converted to reduced NAD and
can be reoxidized in the oxygen-dependent electron transport chain to produce ATP. In
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2.1. Cancer and metabolism

contrast, glucose in cancer cells feeds more the aerobic glycolysis for ATP production
rather than oxidative phosphorylation, including the electron transport chain [8]. This
is a central feature of a metabolic reprogramming of cancer cells, the Warburg effect
(Figure 1). Cancer cells also reduce a much higher percentage of pyruvate to lactate
to reoxidize NAD [5, 12]. Specific changes, such as the extracellular signal-regulated
kinase (ERK) dependent phosphorylation of pyruvate kinase M2 (PKM2) and nuclear
translocation of pSer37-PKM2 promote the Warburg effect [13]. The G protein-coupled
receptor 55, among others, is modulating glycolysis by changing the translocation of
pSer37-PKM2 [13]. In our publication [2], we investigated the possible metabolic fate
of glucose depending on the spatial relationship to a protein targeted by trastuzumab
therapy. A ligand of the G protein-coupled receptor 55 was revealed as a possible product
of glucose depending on the spatial relationship to the targeted protein, which could
be a driver of the Warburg effect (see chapter 3.2 for details). Furthermore, lactate
dehydrogenase is an enzyme for reducing pyruvate to lactate and is often increased
in cancer cells [14]. The secretion of lactate is also elevated in cancer cells, which is
associated with an inhibited immune response (Figure 1) [15, 16].

Fatty acids

Just as glycolysis, fatty acids can also provide fuel to address the demanding resources
for high proliferative cancer cells. On the one hand, fatty acid synthesis is described
to be increased in cancer cells [17]. Hereby, the synthesis of fatty acids involves the
repeated addition of two-carbon subunits [5]. Acetyl coenzyme A produced by ATP
citrate lyase illustrates the starting point in this synthesis [5]. The first activation step
of acetyl coenzyme A in the fatty acid synthesis is facilitated by the enzyme acetyl
coenzyme A carboxylase (ACC) and is regulated by the cellular sensor of energy status
adenosine monophosphate-activated kinase (AMPK) [18]. ACC is associated with a
higher expression in multiple tumor types and is burdened with several tumorigenic
mutations [18]. In our publication [1], we raised the question if ligand depending activation
of AMPK is important for patient prognosis (see chapter 3.1 for details). The fatty acid
synthesis is localized at the enzyme fatty acid synthase, which is also highly expressed
in numerous cancers [5]. Previous studies revealed an association between fatty acid
synthase and response to targeted cancer therapies such as trastuzumab in breast cancer
[19]. The fatty acid synthase enzyme is able to synthesize 16-carbon long fatty acids,
which can be further modified or elongated by additional enzymes [5]. The activation
and appendix of coenzyme A to the synthesized fatty acid is facilitated by the acyl
coenzyme A synthetase family, whereby some of these enzymes are reported as increased
in certain cancer types [20]. On the other hand, fatty acid degradation is also changed
in cancer cells. Beta-oxidation is a process that cleaves two carbons from fatty acids
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2. Introduction

until only acetyl coenzyme A remains. In each cleavage step, reduced NAD and reduced
flavin adenine dinucleotide (FAD) are produced. Although cancer cells increase their
lipid content, a lack of ATP can also enhance beta-oxidation [5]. In particular, cancer
cells often increase their ATP content for developing metastasis [20, 21]. Our publication
[3] indicates that in lung cancer, exogenous metabolites are co-drivers for cancer cell
associated changes of the fatty acid profile (see chapter 3.3).

One carbon metabolism

"One carbon metabolism" is also essential for building up nucleotides, proteins, lipids and
balancing redox potential through glutathione synthesis [9]. The pathway "one carbon
metabolism" is often upregulated in cancer cells [22]. In our publication, we investigated
the association of glutathione, a product of the "one carbon metabolism", with other
metabolites in patients with lung cancer [3] (see chapter 3.3 for details). At all, this
pathway focuses on the chemical reactions of folate compounds [5]. Folic acid belongs to
the family of B vitamins and can be obtained from the diet or the production by the
microbiome and will be reduced to synthesize tetrahydrofolate in cells [5]. One carbon
derived from folic acid is transferred over several steps to homocysteine to produce
S-adenosylmethionine (SAM) [5]. SAM is a crucial cosubstrate for methyl group transfers
for modifying histones, nucleic acids, and phospholipids [23]. Therefore, SAM illustrates
a fuel in cancer cells for several pathobiochemical reactions.

DNA and RNA synthesis

High proliferative cancer cells also require a sufficient supply of nucleotides to facilitate
the increased demand for deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)
synthesis. Two basic pathways are available to produce nucleotides: salvage and de
novo synthesis pathways [24]. The salvage pathway involves the recycling of existing
nucleosides and nucleobases [24]. In contrast, the de novo synthesis builds up new
nucleotides using amino acids and other small molecules [24]. Proliferative cells, such as
cancer cells, use the de novo synthesis pathway more dominantly to produce nucleotides
[25, 26]. Cytosolic and mitochondrial enzymes catalyze pyrimidine synthesis; in contrast,
purine synthesis is localized in the cytoplasm [24]. The synthesized ribonucleoside
triphosphates are further reduced to deoxyribonucleoside triphosphates by ribonucleotide
reductases (RRM1, RRM2) for DNA synthesis [24]. The molecular changes driving
de novo synthesis in cancer cells are not fully understood. One associated genetic
modification is found for the tumor suppressor protein 53 (p53), as its mutated form was
revealed to enhance RRM1, RRM2, deoxycytidine kinase (DCK), and thymidine kinase
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2.1. Cancer and metabolism

1 (TK1) expression [27]. All of these enzymes are involved in nucleotide metabolism [24].
Interestingly, we found in all embedded publications [1, 2, 3, 4] associations between
nucleotides and cancer biology.

Oncometabolites

From another point of view, metabolites can also trigger direct effects in cancer biology.
Oncometabolites are endogenous metabolites that initiate or sustain tumorigenesis
(Figure 1) [28, 9]. The past decades have unveiled several metabolites as oncogenic:
fumarate, succinate, L-2-hydroxyglutarate, cystathionine, hypotaurine, sarcosine, and
certain secondary bile acids [9]. It appears that these metabolites can modify hyper-
methylation, gene mutations, epigenetic changes, key signaling proteins, apoptosis, and
induce metabolic reprogramming in cells [9]. Therefore, these metabolites can directly
influence the fate of physiological cells to become cancer cells. Several oncometabolites
were measured in situ in our publication [4] (see chapter 3.4).

However, finding general metabolic changes in cancer cells is challenging for several
reasons. First, cancer cells depend mainly on the same metabolic pathways as the
corresponding non-cancerous cell [10]. Only a few metabolic activities can clearly be
assigned to cancer cell metabolism. Second, it becomes apparent that human tumors are
metabolically heterogeneous, whereby cancer cells are metabolic different depending on
their tissues of origin [29]. Even within the same solid tumor, the metabolic heterogeneity
of cancer cells is apparent [29]. Third, metabolic changes are related to cancer progression.
In more detail, cancer cells from metastatic tumors reveal another metabolic phenotype
as cancer cells from preneoplastic lesions [10]. After all, describing metabolic changes in
cancer cells requires a more detailed view concerning cancer origin and cancer progression
state. Advanced technologies are needed to overcome heterogeneity and detect metabolic
changes sensitively.

2.1.2. Systemic metabolic changes - cancer cachexia

Metabolic changes are not limited to cancer tissues in cancer disease. In fact, cancer is
a systemic disease and is associated with several metabolic changes in multiple tissues
[30]. Cachexia, a multi-organ metabolic disorder, typically occurs in patients suffering
from aggressive cancers such as gastrointestinal and lung cancer [31]. Eighty percent of
patients with advanced cancer are suffering from cachexia [32]. Furthermore, cachexia is
responsible for the death of at least 22 percent of individuals who have cancer [33].
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2. Introduction

An international consensus defined cancer cachexia as

"a multi-factorial syndrome characterized by an ongoing loss of skeletal muscle mass,
with or without a loss of fat mass, that cannot be fully reversed by conventional nutritional
support and leads to progressive functional impairment". [34]

In a clinical setting, the definition for cancer cachexia diagnosis changed over time [35].
Most recently, an expert panel defined cancer cachexia diagnosis regarding three criteria.
One criterion to diagnose a patient as cachectic is a weight loss >5 percent over the past
6 months in the absence of simple starvation. The second criterion for the diagnosis
of cachexia includes patients revealing a body mass index <20 and a weight loss >2
percent. The last criterion for cachexia includes patients with an appendicular skeletal
muscle index consistent with sarcopenia (males <7.26 kg/m2; females <5.45 kg/m2) and
a weight loss >2 percent [34].

The treatment of cachexia is challenging because of the complexity of this multi-factorial
metabolic disorder and the lack of definitive therapies [36]. Current therapies against
cachexia are more related to palliation of symptoms instead of cure [37]. Nowadays,
there exists no usual intervention for cancer cachexia, and some experts suggest that
cachexia is refractory once established [38]. Considering the high complexity, experts
recommend a multimodal intervention to treat cancer cachexia [38]. Nutritional therapies
to increase energy and protein intake, drug therapies to stimulate appetite and decrease
inflammation, and physical exercises are being developed to prevent cachexia [38].

Understanding why cachexia is occurring is an unmet need in cancer biology and
medicine. Despite advanced-stage cancer disease, some patients maintain or gain weight
and skeletal muscle mass [39, 40]. However, it is clear that cancer cachexia is driven
by inflammatory processes triggered by the underlying cancer disease [31]. Possible
triggers of cachexia are introduced in the literature. One study revealed that the presence
of the primary tumor is a basic requirement for ongoing cancer cachexia [41]. The
authors showed that removing the primary tumor can even reverse cachexia [41]. Specific
humoral factors are involved in the maintenance of cachexia. Cachexia-associated humoral
factors originate from tumor cells, non-tumor cells in the tumor microenvironment, or
distant organs [32]. Evidence for humoral factors involved in cachexia is presented by
a study in which the circulation of rats was surgically connected. In this experiment,
pro-cachectic circulating factors could be transferred via circulation [42]. Pro- and
anti-inflammatory cytokines, metal ions, hormones, and growth factors were highlighted
as cachexia-associated humoral factors [32].
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2.1. Cancer and metabolism

Muscle wasting and adipose tissue depletion mainly account for weight loss associated
with cancer cachexia [31], whereby muscle wasting is the leading cause of functional
impairment and death in cancer cachexia [31]. Compared to muscle wasting in cachexia,
sarcopenia is an age-associated decrease of muscle mass, whereby muscle synthesis is
hampered, but protein degradation is unchanged [36]. In cachexia, muscle wasting in
patients influences anti-cancer treatment, survival outcomes, medical costs, and quality
of life [43, 33]. For this reason, causes and important metabolic changes in cancer
cachexia-associated muscle wasting are illuminated in the following sections.

Specific cachexia-associated biochemical changes in muscle cells are described in the
literature. Being the primary site of protein storage in the body, one key fact of cachexia
is that myofibrillar proteins are decreased in muscle tissues [44, 45]. Deranged metabolism
in muscle cells is described as decreased protein synthesis, increased protein degradation,
increased apoptosis, and changed amino acid metabolism [46]. One consequence of the
before mentioned biochemical alterations in cachexia is a negative nitrogen balance
in muscle cells [33]. Therefore, more nitrogen is excreted than ingested in cachectic
skeletal muscle tissues. Protein loss in muscle cells is mainly mediated by ubiquitin-
mediated proteasome degradation and calcium-activated protease calpains [47]. Pro-
cachectic humoral factors were described to change lipolysis, proteolysis, glycolysis,
and mitochondrial oxidative phosphorylation in muscle cells [48]. Precise molecular
changes are responsible for muscle wasting. For example, a futile cycle between fructose
6-phosphate and fructose 1,6-biphosphate in myotubes was described [44]. This futile
cycle is associated with a lower ATP level and muscle tissue wasting. In our publication
[4], we showed for the first time in situ that the energy charge is significantly decreased
in skeletal muscle tissues in cachexia (see chapter 3.4). Two possible mechanisms are
responsible for triggering cachexia through circulating factors. First, humoral factors
can directly enhance muscle cell catabolism or suppress protein synthesis by changing
pathways [49, 50]. Second, the metabolism of other organs can be altered by humoral
factors, which can also trigger muscle wasting [51].

Increased protein breakdown in cancer cachexia raises the question of the metabolic
fate of released amino acids from proteins. The amino acid profile is changed in cachectic
skeletal muscle tissues [52] and in the circulation of affected individuals [53]. Released
amino acids can remain in muscle cells for other purposes instead of protein synthesis. It
has been described that specific amino acids can be used to provide fuel for the citric
acid cycle by cachectic skeletal muscle cells [52]. However, a significant part of the
amino acids was released and recycled in other organs [54]. In our publication [4], we
addressed the question of the fate of amino acids in cancer cachexia by analyzing in situ the

13
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amino acid and protein content in skeletal muscle tissues simultaneously (see chapter 3.4).

Mitochondria play a prominent role in amino acid metabolism and general biochemical
changes in cachectic skeletal muscle tissues; however, there is no consent regarding
changes in mitochondrial content [53]. Mitochondrial density and size were unchanged
in the study of Puig-Vilanova and colleagues regarding 18 patients [55]. Another study
revealed a decrease in the number of mitochondria in skeletal muscle tissues by analyzing
four patients [56]. In addition, the morphology of mitochondria was reported as changed
in cachectic patients [57]. Animal models regarding cancer cachexia often provided
complementary information. Multiple animal model based studies revealed evidence
for mitochondrial dysfunction in cachectic skeletal muscle tissues [53]. In more detail,
metabolic flux throughout the citric acid cycle and important enzyme complexes in the
mitochondrial oxidative pathway are decreased [58, 53]. These biochemical changes are
also associated with a lower ATP content in skeletal muscle cells and could play an
important role in ongoing muscle wasting [53]. Our publication [4] revealed a linkage
between mitochondrial dysfunction and altered amino acid metabolism in cancer cachexia
(see chapter 3.4).

In conclusion, changes in protein synthesis/degradation and amino acid metabolism
in skeletal muscle tissues are considered as crucial for the outcome of late-stage cancer
patients. There is a need for a more comprehensive view provided by advanced omics
technologies to investigate these changes and the reasons for these changes in more detail.
Especially the multimodal combination of proteomics and metabolomics is of the highest
interest in cancer cachexia since protein degradation and changed amino acid metabolism
were reported as mainly altered in skeletal muscle tissues, and these molecular layers are
inherently linked together. Until now, many aspects of the molecular fate of amino acids
as building blocks in cancer cachexia are unclear. Therefore, advanced technologies are
needed to provide a multimodal omics view of skeletal muscle tissues in cancer cachexia.

2.1.3. Cancer metabolism and therapy

In recent years, besides the in-depth study of cancer-associated metabolic changes, more
attention was drawn to metabolic changes in response to anti-cancer therapies [59].
It will be an important insight if the cancer cell metabolism reflects the antitumoral
effect of a treatment [59]. In addition, it would also be important if a metabolic
constitution in cancer tissue before treatment is associated with anti-cancer therapy
response. These insights could create the basis for new personalized therapeutic options
and combination treatments [59]. Especially the interaction of host and cancer, mediated
mainly by the immune system, is reflected in metabolites. The success of many anti-cancer
therapies depends on the constitution of the host immune system [60]. The analysis
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of metabolites following cancer drug administration has already provided important
translational observations [61]. Therefore, metabolomics has a great potential to stratify
patients into subgroups related to anti-cancer therapy response.

Metabolic reprogramming is already illustrating an important issue in chemotherapy
resistance. Changes in glutamine metabolism were demonstrated as an influencing factor
in gemcitabine treatment in pancreatic cancer [62]. In addition, alterations in amino
acyltransfer RNA, glutathione metabolism, phenylalanine, tyrosine and tryptophan
biosynthesis, and glycerophospholipid metabolism is associated with cisplatin resistance
[63]. Van Gastel and colleagues reveal that residual acute myeloid leukemia cells exhibit
transient metabolic adaptations that enable their survival after chemotherapy [64].
Chemotherapy persisting cells preferentially utilized glutamine, fueling pyrimidine and
glutathione generation, but not the mitochondrial citric acid cycle. It can be assumed that
changes in the cancer cell metabolism are also a crucial factor in targeted cancer therapies.

Targeted cancer therapies utilize the fact that cancer development and progression
are driven by the accumulation of molecular features that allow cancer cells to survive,
proliferate and evade immune surveillance, and promote their adaptability in a hostile
environment [65]. The identification of molecular maps of cancers has led to the
development of targeted cancer therapies that specifically inhibit the altered genes
and signaling pathways that determine the malignant phenotype [65]. In particular,
protein kinases can be targeted very sensitively by personalized medicine and play a
prominent role in cell signaling. Inhibition of protein kinases is often relatively well
tolerated by non-cancer cells [59].

The human epidermal growth factor receptor 2 (HER2) encoded by the c-erbB2 proto-
oncogene located on chromosome 17q21 illustrates an important example of a tyrosine
kinase protein [66]. HER2 is often overexpressed in cancer, which is reflected by an
aggressive phenotype and short patient survival [67]. HER2 belongs to the ErbB family
of receptor tyrosine kinases along with three other members, including epithelial growth
factor receptor, ErbB3, and ErbB4 [68]. Current data suggest that HER2 receptors form
homo- and heteromers independent of ligand binding [68]. Subsequently, specific tyrosine
residues in cytoplasmic domains are auto-phosphorylated or trans-phosphorylated to
activate various intracellular signaling pathways [68]. After phosphorylation, several
downstream effectors, such as growth factor receptor-bound protein 2 (Grb2) and
proto-oncogene tyrosine-protein kinase Src homology 2 domain containing transforming
protein (Shc), can bind to HER2 [68]. These effectors play an important role in regulating
the mitogen-activated protein kinase (MAPK) signaling pathway [68]. Several metabolites
are involved in the MAPK pathway and, therefore, this pathway is reflected in the
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metabolome of cancer cells [69].

Trastuzumab, a monoclonal antibody targeted against the HER2 receptor, was
developed. In 1989, trastuzumab was isolated from mice exposed to the HER2 receptor
and later humanized [70, 71]. Several mechanisms have been proposed for the mode
of action of trastuzumab; however, the mechanisms are still not fully understood [68].
Trastuzumab was revealed to inhibit HER2 heterodimerization, activate phosphorylation
of HER2, inhibit MAPK / phosphoinositide 3-kinase (PI3K) / proteinkinase B (AKT)
signaling pathways, inhibit the cell cycle, and activate antibody-dependent cell-mediated
cytotoxicity [68].

From a clinical point of view, trastuzumab represents a crucial milestone in the therapy
of HER2-positive breast cancer that profoundly altered the course of this disease [72].
Targeting HER2 by trastuzumab leads to a 40 percent improved overall survival in
patients with HER2-positive breast cancer [59]. In addition, the treatment of patients
with gastric cancer by trastuzumab revealed success. Trastuzumab in a combined therapy
improves survival outcomes of patients with advanced HER2-positive gastric cancer [73].

To identify patients likely responding to trastuzumab, the analysis of pretherapeutic
patient biopsies by immunohistochemical staining for the HER2 protein is state-of-the-art.
Therefore, the quantity of the drug target HER2 is usually used to stratify patients
into trastuzumab responders and non-responders. However, there is a clinical need for
more accurate trastuzumab response classification in patients. A significant fraction of
HER2-positive breast cancer patients has no benefit from trastuzumab treatment and
relapse within 5 years [74, 75]. In addition, more than half of the patients with advanced
gastric cancer are revealing no benefit from trastuzumab therapy despite having HER2
overexpressing tumors [76]. Other molecular biomarkers may reveal the great potential
to tailor trastuzumab therapy to the individual patient in a more precise way [65]. A
multimodal consideration combining different molecular layers in biomarkers may serve
as a more accurate prediction.

Resistance mechanisms to trastuzumab may play an important role in these new
molecular classification systems to stratify patients into trastuzumab responders and non-
responders. So far, several mechanisms have been suggested to clarify how cancer cells
are resistant to trastuzumab treatment. Activating mutations in the p110alpha subunit
of PI3K and/or inactivating mutations in phosphatase and tensin homolog (PTEN)
were considered crucial for trastuzumab resistance through sustained activation of the
PI3K/AKT signaling pathway [68]. Mutations in PI3K and PTEN reveal a tremendous
effect on cell metabolism since a single DNA base change in a particular gene can lead
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to a 10,000-fold shift in the level of endogenous metabolites [9].

The metabolic analysis could serve as a surrogate for the quantity of the drug target
HER2 and simultaneously detect the before mentioned resistance mechanisms. These
associated changes may illustrate a better possibility to predict trastuzumab response
in contrast to the quantity of the drug target protein. For example, the expression
of the enzyme glutamine synthetase is associated with HER2 protein quantity and,
therefore, could act as a surrogate for the HER2 quantity [77]. A multimodal analysis
may even offer the possibility to measure both drug target and metabolites. However,
utilizing metabolites as predictive biomarkers for trastuzumab treatment is an emerging
field of application. A first study revealed promising potential as the metabolic and
circulating biomarkers spermidine and tryptophan can stratify good and poor responders
to trastuzumab-paclitaxel neoadjuvant therapy in HER2 positive breast cancer patients
[78].

Besides HER2-targeted anti-cancer therapies, immune-checkpoint inhibitors become
crucial in treating diverse tumor entities. Immune checkpoint inhibitors stimulate and
induce therapeutic antitumor immunity more comprehensively, albeit these compounds
can also be regarded as molecularly targeted agents because they bind selectively to
specific targets, such as programmed cell death-1 (PD-1) and PD-L1 [79]. The inhibitory
PD-1-PD-L1 pathway is important for regulating T cell activation and is used by tumor
cells to avoid antitumor responses [80]. Several anti-PD1 and anti-PD-L1 monoclonal
antibodies were approved for advanced non-small-cell lung cancer (NSCLC) [80]. Meta-
analyses in advanced NSCLC indicate that patients with higher tumor PD-L1 expression
respond better to anti-PD-1 and anti-PD-L1 agents than patients with lower PD-L1
expression [80]. Very similar to HER2, it can be assumed that metabolites can also
indicate response to immune-checkpoint inhibitors. Especially for immune-checkpoint
inhibitors, the constitution of the host immune system plays a crucial role in therapy
response. Metabolites reflect the constitution of the host immune system. We showed
for the first time in our publication [3] that PD-L1 expression is associated with the in
situ abundance of metabolites in lung cancer (see chapter 3.3).

In conclusion, metabolites reveal promising potential to serve as new predictive
biomarkers for targeted cancer therapy response. However, it remains challenging since
the clinical setting clearly defines the analysis material. The metabolic investigations
must be implemented in the clinical gold standard, pretherapeutic biopsies, or accessible
patient materials.
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2.2. Metabolomics

The following part of the thesis introduces the technical background of spatial meta-
bolomics, while bulk metabolomics is explained first. This part provides an overview of
technical possibilities for obtaining metabolic data from tissues.

2.2.1. Bulk metabolomics

Metabolomics can be used to analyze cancer-associated metabolic changes in tissues
and is a fast-developing area of life sciences in which advanced analytical techniques
are used in combination with sophisticated statistical methods to fully characterize the
metabolome [9]. Metabolomics is defined as the measurement of all the metabolites in a
given system under a given set of conditions [81]. The metabolome is usually described
as the entire collection of metabolites, or small molecule chemicals, found in a given
organelle, cell, organ, biofluid, or organism [9]. A metabolite can be defined as any
small molecule with a molecular mass of less than 1,500 Da [9]. Next to endogenous
metabolites, this molecule group also comprises more exotic, xenobiotic compounds
derived from food or the environment, such as chemical contaminants, pollutants, and
herbicides [9]. These xenobiotic molecules are frequently termed exogenous metabolites
and are grouped into a single entity called the exposome [9]. The exposome is highly
variable, depending strongly on the dietary habits, environmental influences, and even
the intestinal microflora of an organism [9].

Performing metabolomics means measuring an enormous number of compounds
[82]. The absolute number of metabolites remains unknown in humans. One common
metabolite database lists 220,945 metabolites which is only a fraction of human metabolites
[83]. Experts estimate 1,000,000 metabolites from over 300 chemical classes as an
expectable value for the total amount of metabolites in humans [9]. By comparing the
total amount of metabolites to the human genome (approximately 20,300 genes) or the
human proteome (about 620,000 protein species), the metabolome is both larger and much
more challenging to measure [9]. The chemical complexity arising from approximately
300 different chemical classes means that metabolomic measurements need a much wider
variety of equipment than genomic or proteomic measurements, focusing on two chemical
classes, nucleobases and amino acids [9].

The metabolomics workflow typically begins with a biological sample, such as a tissue
biopsy, metabolically quenched with liquid nitrogen (Figure 2) [9]. For non-spatial
tissue-based approaches, the sample is consequently extracted or homogenized to obtain
a liquid mixture containing hundreds to thousands of metabolites [9]. The biofluid
can be measured through one or more analytical chemistry platforms such as liquid
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chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry
(GC-MS), capillary electrophoresis-mass spectrometry (CE-MS), ion mobility spectro-
metry- MS, or nuclear magnetic resonance (NMR) systems [9]. Although this bulk
metabolomics method is broadly accepted and can successfully detect changes in meta-
bolism in an organism, it is impossible to precisely determine the localization of
metabolites in specific organelles, cells, anatomically or histologically defined parts
of tissues or organs [84]. This is followed by the fact that the biological interpretation of
metabolomics data is challenging and difficult to assign general metabolic changes to a
specific tissue, organ, or spatially restricted abnormality such as a tumor [84].

Tissue Samples Extraction Tissue Extracts

Chemical AnalysisData Analysis

Figure 2. Scheme presenting the typical workflow of a non-spatial metabolomics experiment of a
tissue sample. Tissues can be isolated and extracted. Samples are chemically analyzed
utilizing gas chromatography-mass spectrometry (GC-MS), liquid chromatography-
mass spectrometry (LC-MS), Fourier transform ion cyclotron resonance mass
spectrometry (FT-ICR-MS), or nuclear magnetic resonance spectroscopy (NMR),
and the resulting spectra are processed to provide long lists of significant compounds
or features.

In general, there are different types of metabolomics experiments: 1) targeted meta-
bolomics, 2) untargeted metabolomics, and 3) fluxomics [9]. Untargeted metabolomics
includes LC-MS, GC-MS, or CE-MS in an attempt to characterize as many metabolites
or putative metabolites as possible (often over 10,000 features) [9]. In MS-based
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metabolomics, the expression "feature" typically means a unique m/z ratio and chromato-
graphic retention/elution time [9]. In general, untargeted metabolomics is a semi-
quantitative method and is ideal for metabolite discovery and hypothesis generation [9].

MS is unique among analytical methods since it can directly analyze single molecular
species in complex samples, making a significant contribution to the understanding of
biological molecules [85]. The quest to gain new biological insights has also pushed the
development of novel MS instruments [85]. Several MS techniques have been developed
and used to assess the structure of different metabolites based on their ion mass-to-
charge ratio (m/z) [86]. MS is frequently coupled with separation techniques (e.g.,
chromatography) to better separate and detect metabolites based on their physicochemical
properties [86]. However, certain MS techniques can be used without coupling with
chromatography for metabolite measurement [86]. These techniques include matrix-
assisted laser desorption/ionization (MALDI)-time of flight MS, direct infusion MS,
Orbitrap MS, Fourier transform ion cyclotron resonance (FT-ICR) MS, and secondary
ion MS [86].

Mass spectrometers with high mass resolution are a prerequisite in metabolomics
analysis [82]. This enables to differentiate metabolites at the parts per billion to parts
per million level. The FT-ICR and Orbitrap are superior to any commonly used mass
spectrometer in absolute resolving power [82]. FT-ICR is proven to be one of the best-
performing mass analyzers in resolving power, mass accuracy, and sensitivity [82].

The technical development of the FT-ICR started in the late 1920s when Ernest O.
Lawrence invented the cyclotron, which uses electric and magnetic fields to accelerate
protons along a spiral path to high speeds before colliding with their target [82]. In a
subsequent study, it was also shown that in ICR, the angular frequency of the orbital
motion of ions species is independent of the radius on which they move [82]. John A.
Hipple used this principle to construct the first ICR mass spectrometer [82]. However,
the major breakthrough in this technique was in 1974 when Alan Marshall and Melvin
Comisarow applied FT to ICR [82].

Charged ions are one prerequisite for MS analysis. Individual ionization techniques
were coupled with mass spectrometers to produce charged ions. With the implementation
of ionization techniques, including electrospray ionization [87] and MALDI [88], the area
of MS has grown rapidly driven by the application of MS to biological molecules [85].
The success of the ionization technique MALDI began with biotyping, a popular method
for identifying microorganisms in clinics. Biotyping is facilitated by measuring mostly
ribosomal proteins of bacterial colonies between a mass range of 2,000 - 15,000 m/z using
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MALDI time of flight MS. The obtained data is matched with a mass spectra library from
well-characterized clinically relevant microorganisms [89]. MALDI has been implemented
for research purposes in the metabolite mass range. Since the laser energy is indirectly
transferred to the sample analytes via the UV-ionized matrix, MALDI is regarded as a
soft ionization that results in low ion fragmentation [90]. MALDI enables high sensitive
measurements of biological metabolites in pico- or femtomolar concentrations [82].

By analyzing the mass-to-charge ratio (m/z) of ionized molecules or their ionized
molecular fragments and matching this information to other MS reference spectra of
identified chemical structures, it is often possible to conclude the identity of a particular
structure [9]. Large databases, including MS reference spectra of pure chemical structures,
must be consulted to determine which peaks in these spectra correspond to which chemical
compound [9]. However, it is still challenging to link the amount of known chemical
structures with the data received by mass spectrometers in metabolomics experiments.
Only about 2 percent of spectra can be annotated in an untargeted metabolomics
experiment [91]. This means the vast majority of information obtained by metabolomics
remains uncharacterized. The lack of signal identification at a molecular level is caused
by the structural diversity (isobars and isomers) and dynamic range of metabolites, as
well as the missing availability of analytical standards [91]. Therefore, some m/z values
remain "features" instead of "metabolites with defined chemical structures".

Non-targeted metabolomics data are usually characterized by huge tables containing
tens to hundreds of individual patients concatenated with tens to hundreds of metabolites
or features and the corresponding relative abundance of each metabolite or feature [9].
The data processed by statistical approaches, such as a metabolite set enrichment analysis
or biological network modeling, can enable key insights into how individual metabolites
contribute to specific biological processes or crucial physiological phenomena [9].

Next to MS, NMR spectroscopy is a technique that can reveal specific metabolic
pathways, while global metabolic analysis is used to determine the structure of metabolites
[86]. In contrast to MS, NMR is a non-destructive method [9]. The advantages of MS
over NMR are higher sensitivity, real-time measurement of a wide range of metabolites,
and only the need for a small sample volume in the pico-mole range for the analysis [86].

2.2.2. Spatial metabolomics

Humans are able to recognize relevant information from complex systems by processing
visual information [85]. Novel technologies for acquiring images of biological specimens
have served a key role in maturing our modern understanding of biology [85]. One of
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these novel technologies is MS imaging, which can perform spatial metabolomics directly
from biological specimens to produce chemical and spatially-resolved information and
images [85]. Spatial metabolomics is a technology that enables the mapping of hundreds
to thousands of metabolites within tissues.

The principle of spatial metabolomics differs from the classical bulk metabolomics
workflow. The preparation of the sample and acquisition of the MS data must be done in
such a way that the spatial integrity of the biological sample is maintained [85]. Instead
of homogenizing, the tissue will be sectioned into 3 - 20 µm thick sections and mounted on
glass slides for preserving tissue architecture [85]. The subsequent remaining procedure
is very similar to a classical non-targeted metabolomics approach (Figure 3).

Tissue Samples Sectioning Glass Slides

Chemical AnalysisData Analysis

x

y Metabolite 1 Metabolite 2

Figure 3. Scheme presenting the typical workflow of a spatial metabolomics experiment. Tissue
architecture is preserved by sectioning the tissues instead of extracting the metabolites
into a liquid phase. Samples are mounted on glass slides and chemical analyzed
utilizing mass spectrometers. The resulting spectra are analyzed to examine the
spatial distribution of compounds or features in the tissue and to provide long lists
of significant compounds or features.

Several different spatial metabolomics methods are available. However, the basic
imaging process is shared by all platforms [85]. The ionization source scans over the
tissue section in X, and Y coordinates, while a mass spectrometer acquires a mass
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spectrum for each position [92]. The images are constructed by visualizing the intensities
of a particular ion on a coordinate system corresponding to the relative position of
the mass spectral acquisition in the tissue [85]. The resulting data can be seen as a
hyperspectral image containing multiple ion images or channels, where each ion channel
corresponds to one m/z value and represents the relative intensities of the ions with that
m/z value [84]. The implementation of different ionization techniques and instrumentation
varies for each specific spatial metabolomics experiment [85].
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Figure 4. Workflow for matrix-assisted laser desorption/ionization (MALDI) based spatial
metabolomics. A conventional tissue section is covered with a matrix to extract
molecules from the tissue. The sample is then analyzed in a predefined raster in
the mass spectrometer, yielding spatially resolved mass spectra, while the UV laser
only hits the matrix crystals without affecting the tissue section. Following spatial
metabolomics, histological staining is performed, allowing a histologically oriented
mass spectra evaluation.

MALDI-based spatial metabolomics is an example of a metabolomics experiment and
uses a laser to desorb and ionize metabolites mixed with a matrix [85]. The matrix
is applied to the tissue section mounted on a glass slide via sublimation, spraying
with an artistic airbrush, an automated sprayer, or through a fine stainless steel sieve
[85, 90]. The matrix solution extracts the analytes from the sample and thus supports
desorption/ionization [85]. The selection of the matrix is crucial since the success of
the analysis of a particular molecule class depends on this choice [85]. For negative
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ion mode analysis of metabolites, 9-aminoacridine is typically used [93]. After matrix
application, the laser shoots into the matrix layer in a predefined raster only [94, 85].
The underlying tissue is kept intact, allowing histological examination after measurement
in the very same tissue section [94]. The spatial resolution of the spatial metabolomics
experiment is defined by the ablation area of the laser and the distance between the laser
ablation points (pitch) [93]. While the detailed mechanism of ion formation in MALDI
remains controversial, the simplest description of the procedure is to imagine that laser
irradiation causes an "explosion" at the surface of the sample under the beam [92]. This
explosion produces a plume of material in the gas phase directly above the tissue surface,
containing a mixture of metabolites, matrix ions, and neutral species [92]. The plume of
desorbed material is then accelerated from the source into the mass analyzer by applying
an electric field [92].

Spatial metabolomics can also be merged with other imaging modalities to yield
additional, complementary, and multimodal information about the tissue. For instance,
many cell types and functional cell states are particularly well suited for analysis by
dedicated methods such as immunostaining, and their integration can significantly
improve the molecular specificity of spatial metabolomics [93]. Brightfield microscopy and
histological stains, including hematoxylin and eosin, are commonly used in pathology to
evaluate the integrity, health, and disease of tissues [93]. Following spatial metabolomics,
the very same tissue section can be stained, e.g., with hematoxylin and eosin or
immunostaining, and coregistered with the mass spectrometric analysis [94]. The
combination of stainings and spatial metabolomics allows assigning the visualization
of individual metabolites to specific tissue compartments (e.g., tumor cells and tumor
stroma). The combination also enables the generation of cell type specific molecular
signatures [94]. In principle, this works in the same way as tissue microdissection [94].
In contrary to tissue microdissection, spatial metabolomics conducts microdissection
"virtually" by defining regions of interest (ROI) and extracting mass spectrometric profiles
within these ROI [94].

One of the major assets of spatial metabolomics is that there is only the need
for relatively minimal sample preparation in contrast to more traditional bioassay-
based workflows [90]. Time demanding and error-prone extraction procedures of bulk
metabolomics can be skipped using spatial metabolomics. Second, in comparison to bulk
metabolomics, spatial metabolomics allows assigning metabolic changes to particular
organelles and cells within tissues [84]. This eases the biological interpretation of the
metabolomic data. Third, spatial metabolomics can detect metabolites without labeling
or otherwise structurally modifying them [85]. This prevents potential problems if the
labeling reagent affects or alters the physical, chemical, or biological function of the
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metabolite [85]. Fourth, only a very small amount of tissue is required. One thin tissue
section of a pretherapeutic biopsy is sufficient for performing spatial metabolomics [95].

Taken together, throughout the introduction of this thesis, several challenges were
highlighted for studying metabolic changes in tissues associated with cancer disease.
In particular, there is a need for advanced omics technologies to overcome tissue
heterogeneity, high sensitive detection of metabolic changes, multimodality, and handling
small tissue biopsies. Spatial metabolomics addresses all these issues. Since the possibility
of virtual microdissection, tissue heterogeneity can be overcome. The MALDI approach
reveals high sensitivity for metabolic changes, and multimodality is given since a multitude
of imaging approaches can use the same tissue section. In addition, a recent study revealed
the potential of spatial metabolomics for pretherapeutic tissue biopsies [95]. These are
the reasons for using spatial metabolomics to study cancer-associated metabolic changes
in tissues.
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2.3. Aims of this dissertation

Spatial metabolomics enables a new insight into the cancer metabolism derived from
patient tissues with a so-far unrivaled grade of detail. Metabolomic analysis of cancer
cells can be exclusively performed in situ by spatial metabolomics. However, it can
be challenging to find degenerated cells because of the high complexity of tissues. A
multimodal approach combining spatial metabolomics with other spatially resolved tissue
analytics is often needed to detect altered cells.

This thesis aims to address unmet clinical needs in cancer therapy and provide new
insights into cancer metabolism by initially developing [1, 2] and extensively applying
[3, 4] an improved spatial metabolomics method. The enhanced spatial metabolomics
method will integrate metabolomics, genetics, and protein expression of the same tissue
section while preserving spatial information. As a result, the integration will allow the
analysis of the metabolome of pathologically changed cells selectively and reveal a whole
new insight into cancer metabolism in tissues by simultaneously considering several
molecular layers.

This enhanced spatial metabolomics method will be applied to improve diagnosis
and enable targeted anti-cancer therapies. HER2 and PD-1/PD-L1 were frequently
targeted for anti-cancer therapy; however, not all patients benefit from the treatment.
In addition, so far there is no definitive therapy available against cancer cachexia. For
these reasons, this thesis focuses on developing this improved metabolomics method
[1, 2] and on applying this method for enhancing diagnosis and enabling options for
targeted anti-cancer therapies by analyzing tissues of patients with the aforementioned
pathological conditions [1, 2, 3, 4].
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The next chapter provides the peer-reviewed first author publications that comprise my
work during my doctoral studies and makes this thesis eligible for credit as a cumulative
dissertation. The first two publications [1, 2] focus mainly on developing the improved
spatial metabolomics method, while the last two publications [3, 4] provide in-depth
insights into the cancer metabolism by applying the improved spatial metabolomics
method. Before each embedded publication, a short introduction resuming the respective
work is given, and my individual contributions are mentioned.

3.1. Multimodal analysis of formalin-fixed and
paraffin-embedded tissue by MALDI imaging and
fluorescence in situ hybridization for combined genetic and
metabolic analysis

The publication entitled "Multimodal analysis of formalin-fixed and paraffin-embedded
tissue by MALDI imaging and fluorescence in situ hybridization for combined genetic
and metabolic analysis" [1] represents the beginning of my work to enable an improved
spatial metabolomics method for the multimodal investigation of several molecular layers
to provide new insights into cancer-associated metabolic changes in tissues. We were
interested in the idea of combining spatial metabolomics with in situ hybridization to
access the information of gene copy number and metabolomics simultaneously. The
HER2 gene copy number assessment is an already established clinical procedure for
predicting anti-HER2 therapy response in patients with gastric cancer. We aimed to
add a new layer of a molecular class onto the established clinical prediction system
to increase the accuracy of the anti-HER2 therapy response prediction. This work
presents the proof-of-principle that a multimodal analysis with spatial metabolomics
and in situ hybridization is possible in the very same tissue section. Furthermore, this
work revealed for the first time that the synergism of metabolomics and HER2 gene
copy number improves the prognostic effect of biomarkers in patients with intestinal
tumors. Therefore this work illustrates an important steppingstone for further developing
a multimodal integration method that preserves the spatial information of each molecular
layer. Furthermore, this publication underlines the metabolic heterogeneity of cancer
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cells despite similar HER2 expression, which could be crucial for anti-HER2 therapy
response prediction.

I am sharing the first authorship with my former colleague Katharina Huber. Specifically,
I processed the data using R programming and calculated all statistics included in
this manuscript. Furthermore, I interpreted the data, wrote the original draft of the
manuscript, and prepared all figures together with Katharina Huber. After peer-review,
I was responsible for editing the manuscript and performing new experiments according
to reviewers’ suggestions. In addition, I co-designed this study together with Katharina
Huber and Axel Walch.

We aim to protect the idea behind the presented publication [1] by the following patent
application:

• Walch A, Huber K, Buck A, Kunzke T. IN-VITRO METHOD FOR DIAGNOSIS
AND PROGNOSIS OF A DISEASE (2020), Luxemburg Patent Application
LU101032, published 2020-06.
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Abstract
Multimodal tissue analyses that combine two or more detection technologies provide synergistic value compared to single
methods and are employed increasingly in the field of tissue-based diagnostics and research. Here, we report a technical
pipeline that describes a combined approach of HER2/CEP17 fluorescence in situ hybridization (FISH) analysis with MALDI
imaging on the very same section of formalin-fixed and paraffin-embedded (FFPE) tissue. FFPE biopsies and a tissue
microarray of human gastroesophageal adenocarcinoma were analyzed by MALDI imaging. Subsequently, the very same
section was hybridized by HER2/CEP17 FISH. We found that tissue morphology of both, the biopsies and the tissue
microarray, was unaffected by MALDI imaging and the HER2 and CEP17 FISH signals were analyzable. In comparison with
FISH analysis of samples without MALDI imaging, we observed no difference in terms of fluorescence signal intensity and
gene copy number. Our combined approach revealed adenosine monophosphate, measured by MALDI imaging, as a
prognostic marker. HER2 amplification, which was detected by FISH, is a stratifier between good and poor patient prognosis.
By integrating both stratification parameters on the basis of our combined approach, we were able to strikingly improve the
prognostic effect. Combining molecules detected by MALDI imaging with the gene copy number detected by HER2/CEP17
FISH, we found a synergistic effect, which enhances patient prognosis. This study shows that our combined approach allows
the detection of genetic and metabolic properties from one very same FFPE tissue section, which are specific for HER2 and
hence suitable for prognosis. Furthermore, this synergism might be useful for response prediction in tumors.

Introduction

The present work describes a combined method for the
multimodal analysis of one very same tissue section. The

addition of two or more technologies enables a new way of
analysis, which adds further information for diagnosis,
treatment, and monitoring [1, 2]. It has been demonstrated
that the addition of a further modality can drastically
enhance information gain in tissue-based analysis [3]. In
clinical research, there are numerous developments espe-
cially in the field of multimodal molecular imaging, which
promise to improve treatment strategy, targeted therapy, and
personalized medicine [1].

In this study, MALDI imaging is added as a further
modality to the genetic FISH analysis.

MALDI imaging is an emerging tool for the investiga-
tion of proteins, peptides, lipids, metabolites, small mole-
cules, and many other classes in a spatially resolved
manner [4–6]. Meanwhile, MALDI imaging is a technol-
ogy suitable for diagnostics and for predictive approaches,
which is unique in providing molecular information with
spatial resolution [7]. Previously matrix-assisted laser
desorption ionization (MALDI) imaging was established
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for the metabolic analysis of formalin-fixed and paraffin-
embedded (FFPE) tissues [8]. This achievement enables
analysis of the metabolic content of large tissue banks and
clinical samples, which are usually preserved and stored as
paraffin blocks.

The employment of a further measurement modality
without further need of tissue, but in just using one very
same tissue section for several analyses, seems meaningful,
especially in the context of limited human diagnostic
material. Although method combination with MALDI
imaging seems promising, there are only few studies, which
have already used MALDI imaging for multimodal
approaches. An example is the proteomic analysis by
MALDI imaging combined with receptor staining by
immunohistochemistry using one very same tissue section
for both modalities [7].

In cancer treatment, the examination of drug targets is an
important tool for estimation of drug efficiency and therapy
response [9]. The human epithelial growth factor receptor 2
(HER2) is a receptor, which is overexpressed in several
cancer types such as breast cancer and gastroesophageal
adenocarcinoma [9, 10]. Thus, HER2 serves as a drug target
and the binding antibody, known as Trastuzumab, is in wide
use as a cancer therapeutic [10]. As targeting HER2 is only
successful when overexpressed, HER2 testing by immu-
nohistochemistry (IHC) and fluorescence in situ hybridiza-
tion (FISH) is a routine method in diagnosing the respective
cancer diseases [11].

State of the art in HER2 diagnosis is immunohisto-
chemical staining and in situ hybridization [12]. The
immunohistochemical staining, directly labeling HER2, is
scored as 0, 1+, 2+, or 3+. Score 0 and 1+ are defined as
HER2 negative, which means anti-HER2 treatment is not
considered at all, and 3+ is HER2 positive, an outcome,
which recommends anti-HER2 treatment. The score 2+
represents an intermediate state, which requires further
testing. In this case in situ hybridization is performed as
fluorescence or chromogenic in situ hybridization. Hereby
the signals of labeled gene copies are counted in at least 20
tumor cell nuclei and a ratio of gene copy number and
chromosome number is calculated and defined as amplified
when the ratio is ≥2. Samples with a ratio of 2 or more are
then also defined as HER2 positive and this leads to an
HER2 directed treatment [11–13].

In HER2 testing, FISH is an FDA approved method for
the enumeration of the absolute HER2 gene copy number in
breast cancer and gastroesophageal adenocarcinoma
[11, 14–16]. Nonetheless, there is still potential for
improving diagnostics and response prediction for HER2
directed treatments. There is a subgroup of HER2-positive
cancer patients, which do not respond to anti-HER2 treat-
ment and hence the patients do not profit from yet very cost

intensive medication but undergo the risk of side effects
[17–21].

Thus, the integration of additional metabolic markers
may lead to a better prognosis. Tumor growth and pro-
gression is an energy demanding process, consuming high
amounts of adenosine triphosphate (ATP) [22]. If ATP
supply is not sufficient, adenosine monophosphate levels
rise and activate adenosine monophosphate-activated
kinase (AMPK), which induces catabolic pathways to
support ATP production [22]. High AMP levels are
described to activate AMPK, which further activates
pathways that are involved in tumor growth, autophagy,
and metabolism [23–25]. Hence, the AMP level may reflect
AMPK activation.

HER2-positive breast cancer cells were shown to display
AMPK activation and in 2015 AMPK was found to regulate
HER2 activity [26, 27]. Therefore we focus on measuring
the adenosine monophosphate (AMP) level in the tumor
areas of gastroesophageal adenocarcinomas. So far no
in situ method is suitable for the detection of AMP, this is a
domain of mass spectrometry, more specifically mass
spectrometry imaging. Previous studies showed the feasi-
bility for measuring AMP by MALDI imaging in different
kind of tissues [28–31]. Buck et al. [8] verified the detection
of AMP in FFPE tissues by MSMS experiments. In addi-
tion, a successful analysis was also formerly been per-
formed liquid based for AMP in FFPE tissues [32]. Thus,
we used MALDI imaging as a further modality to increase
the information received from FISH analysis and hence to
get an enhanced disease prognosis.

In the present study, we combined metabolic information
from MALDI imaging data with genetic information from
HER2 FISH analysis of the very same tissue sections and
found that HER2 status testing by FISH and AMP levels
detected by MALDI imaging have a synergistic effect for
prognosis.

Materials and methods

Human tissue samples

At all, 74 human gastroesophageal adenocarcinoma patient
samples were analyzed.

Sixty-nine tissue samples of gastroesophageal adeno-
carcinoma were collected between 1993 and 2010 at the
Department of Surgery, Klinikum Rechts der Isar, Munich,
Germany. This study was approved by the local Ethics
Committees.

Tissue samples were fixed for 12–24 h in 10% neutral
buffered formalin whereafter specimen were embedded in
paraffin using standardized automated procedures. Prior to
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embedding in molten paraffin, the samples were dehydrated
in increasing ethanol series and cleared using xylene. The
resulting paraffin blocks from the cohort collected in
Munich were then used for the preparation of a tissue
microarray (TMA).

Five biopsies of human gastroesophageal adenocarci-
noma, collected at the Institute of Pathology, University of
Bern, Bern, Switzerland, were chosen for the establishment
and validation of the workflow due to the previously found
HER2 gene amplification. The usage of archival FFPE tis-
sue for research was approved by the local ethics com-
mission (Kantonale Ethikkommission Bern, Switzerland,
200/14).

Multimodal tissue analysis by MALDI imaging and
fluorescence in situ hybridization (FISH)

The goal of this methodic work is the combination of two
modalities: metabolites by MALDI imaging and gene copy
number by fluorescence in situ hybridization (FISH) using
one very same formalin-fixed and paraffin-embedded
(FFPE) tissue section for all imaging modalities. The
workflow is depicted in Fig. 1, starting with the MALDI
imaging measurement followed by H&E staining. For per-
forming the second modality, FISH, the coverglass was
removed and a special washing procedure was carried out to
ensure the complete elimination of mounting medium from
the tissue. As a last step, data gained from MALDI imaging

and FISH were fused in order to enhance prognosis pre-
diction in the patient cohort (Fig. 1).

Tissue preparation

Tissue sections of 4 µm thickness were cut using CM1950
cryostat (Leica Microsystems, Wetzlar, Germany) and
mounted onto indium-tin-oxide (ITO) coated glass slides
(Bruker Daltonik GmbH, Bremen, Germany), which were
previously covered with 1:1 poly-L-lysine (Sigma-Aldrich;
Taufkirchen, Germany) and 0.1% Nonidet P-40 (Sigma-
Aldrich; Taufkirchen, Germany). For deparaffinization,
sections were incubated at 70 °C for 1 h and washed twice
in xylene for 8 min. Prior MALDI matrix application, tissue
sections were air-dried on a heating plate at 35 °C for 1 min
and scanned using a flatbed scanner in order to acquire
digital tissue images for co-registration purposes. Subse-
quently, the samples were covered with 10 mg/mL 9-
aminoacridine matrix (Sigma-Aldrich) in 70% methanol
(purity ≥99.9%), using a SunCollect sprayer (Sunchrom,
Friedrichsdorf, Germany) according to Ly et al. [33]. In
detail, the following preferences were applied for the
automatic sprayer: vial distance of 0.50 mm for the X
direction and 2.00 mm for the Y direction, 20 mm Z-
position and offset of the spray head, and medium X/Y
speed. The matrix was deposited in eight layers using
variable increasing spray rates. Following spray rates were
used: Layer 1: 10 µl/min, layer 2: 20 µl/min, layer 3: 30 µl/
min, layer 4–8: 40 µl/min. At all, the whole procedure is
resulting in a total amount of 0.16 mg/cm2 9-aminoacridine.

MALDI imaging

MALDI imaging was performed using a Solarix 7 T FT-
ICR mass spectrometer (Bruker Daltonik GmbH, Bremen,
Germany) at a spatial resolution of 60 µm in negative ion
mode in the mass range of m/z 50–1000, whereby 50 laser
shots were accumulated for each position measured. The
software packages FlexImaging 4.0 and SolarixControl 3.0
(Bruker Daltonik GmbH, Bremen, Germany) were applied
for data generation and visualization as previously descri-
bed [33, 34].

After MALDI measurement, matrix was removed by a
washing step in 70% ethanol for 1 min and subsequently
stained with histological hematoxylin and eosin staining as
described previously. Coverglass was mounted using Pertex
mounting medium (Medite GmbH, Burgdorf, Germany).

For digitalization slides were scanned at 20x objective
magnification with a slide scanner (Mirax Desk, Carl Zeiss
MicroImaging GmbH, Jena, Germany). For co-registration
with MALDI imaging data, the images were imported into
the FlexImaging 4.0 software (Bruker Daltonik GmbH,
Bremen, Germany).

Fig. 1 The workflow of MALDI imaging with H&E staining, followed
by a FISH analysis on the very same tissue section
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FISH experiment

The FISH experiment was performed using the tissue sec-
tions, which were stained with hematoxylin and eosin after
the MALDI imaging measurement (Fig. 1).

Slides were incubated in xylene at room temperature for
12 h before coverglass was removed. Subsequently further
washing steps in xylene and isopropyl alcohol, each for the
duration of 1 h, were carried out. This washing procedure
was followed by a series of decreasing ethanol concentra-
tions from 100% down to 50%, whereas the sections were
immersed for 5 min at each step before they were trans-
ferred into demineralized water.

After incubating for 5 min in PBS (Sigma-Aldrich;
Taufkirchen, Germany) at room temperature, the sections
were boiled in citrate buffer containing 0.1M citric acid
(Sigma-Aldrich; Taufkirchen, Germany) and 0.1 M sodium
citrate (Sigma-Aldrich; Taufkirchen, Germany) for 20 min
using a microwave oven at 350W. Afterwards the sections
were washed in PBS and incubated in Pronase E 0.05 %
(Sigma-Aldrich; Taufkirchen, Germany) for 5 min at 37 °C.
Again one washing step in PBS was performed before the
sections were dehydrated in ascending alcohol series, 5 min
in each concentration, at −20 °C. The sections were then
air-dried at room temperature and heated on a heat plate at
37 °C for 1 min.

HER2-CEP17 probes (PathVysion HER2 DNA Probe
Kit II, Abbott, Illinois, USA) were added to the slide, still
placed on a 37 °C heat plate, covered with Fixogum rubber
cement (Marabu) and stored in the dark. Denaturation
happened simultaneously by increasing the temperature of
the heat plate to 75 °C for 8 min. For hybridization, slides
were kept in a humid atmosphere at 37 °C for 16 h. After the
incubation, slides were washed by short immersion in 2x
SSC (Sigma-Aldrich; Taufkirchen, Germany) containing
0.3% Nonidet P-40 at room temperature and for 2 min in 2x
SSC containing 0.3% Nonidet P-40 at 73 °C. After air-
drying, slides were stained using Hoechst (Sigma-Aldrich;
Taufkirchen, Germany) at room temperature and air-dried
again. Coverglasses were mounted using Vectashield
mounting medium (Biozol, Eching, Germany).

The kit consists of directly labeled, fluorescent DNA
probes specific for the HER2 gene locus (17q11.2-q12) and
a DNA probe specific for the α-satellite DNA sequence at
the centromeric region of chromosome 17 (17p11.1-q11.1).

FISH analysis of the biopsy sections without previous
MALDI imaging was performed in equal manner at Bern
University in Switzerland.

Evaluation of the FISH experiment included counting of
the fluorescent labels for gene copy numbers and cen-
tromeric region. Therefore a Z1 ZEISS Axioimager
microscope (Zeiss, Jena, Germany) with a x63 magnifica-
tion water objective was used.

Data analysis

For processing of the MALDI imaging data a MATLAB
script using the bioinformatics and image processing tool-
boxes (v.7.10.0, MathWorks, Natick, MA, USA) was
employed. Spectra which were exported by the FlexImaging
4.0 software (Bruker Daltonik GmbH, Bremen, Germany)
underwent baseline subtraction, resampling, and smoothing
as described previously [8, 34]. A signal-to-noise threshold
of 2 was used and isotope peaks were excluded auto-
matically. Human Metabolome Database (HMDB, Version
4.0, 114,098 metabolites included) was employed for the
identification of m/z species with a mass tolerance of 3 ppm.
The resulting peak intensity of AMP was exported to
Microsoft Excel for data fusion with the FISH results.

The HER2 FISH approach was evaluated according to
the recent guidelines [11]. The signals for HER2 gene loci
and CEP17 centromere of 20 non-overlapping tumor cell
nuclei were counted manually. The ratio HER2/CEP17 was
calculated using Excel, whereas a HER2/CEP17 ratio ≥ 2.0
was considered as HER2 amplification [11]. Samples dis-
playing a HER2/CEP17 ratio < 2.0 were classified as non-
amplified. Furthermore, we differentiated the non-amplified
samples into two groups. A HER2/CEP17 ratio ≥ 1.1 and
< 2 was classified as low-level copy number gain, whereas a
HER2/CEP17 ratio < 1.1 shows the status of a normal
diploid nucleus [13, 35].

Kaplan–Meier survival tests were performed using R
statistics software and Prism was used for correlation
plotting.

Results

Nuclear morphology of formalin-fixed and paraffin-
embedded (FFPE) tissue is unaffected after MALDI
imaging

Human gastroesophageal adenocarcinoma biopsies, in the
form of formalin-fixed and paraffin-embedded (FFPE) tis-
sues, were used for validation of the fluorescence in situ
hybdridization (FISH) analysis either following MALDI
imaging measurement or without a previous MALDI ima-
ging measurement. One section of each biopsy sample was
processed for MALDI FT-ICR metabolite imaging. Mole-
cule visualizations resulting from the MALDI imaging
approach are displayed in Fig. 2. The molecule signals
follow the tissue morphology and, after co-registration with
the H&E staining, it is possible to precisely allocate mass
signals with tissue structures (Fig. 2). The overlay of
MALDI imaging and H&E enables the identification and
evaluation of specific tissue structures, e.g., tumor cell
regions.
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After analysis of the combined MALDI imaging, the
coverglass was removed and FISH analysis was performed
in order to detect HER2 gene amplification (Fig. 1). Fig-
ure 2 shows the direct allocation of tissue structures, pre-
cisely identifiable in the H&E staining, with the
fluorescence microscopy image of the FISH analysis. In
FISH analysis, nuclei are the only cell components, which
are stained (gray) (Fig. 2). The HER2 gene loci and the
centromere region of chromosome 17 are fluorescent
labeled by hybridization with red fluorescent probe (HER2)
and green fluorescent probe (CEP17), which enables
counting of signal numbers and thusly calculating the
HER2/CEP17 signal ratio. There are two major precondi-
tions for reliable HER2 testing. Nuclei must be stained
clearly in order to allocate all signals belonging to each

nucleus and fluorescence signals for both, HER2 probe and
centromere probe CEP17, have to be clearly visible to
enable distinct recognition of single signals.

The FISH analysis was evaluable even after the MALDI
imaging procedure. Single fluorescence signals, even in
non-amplified tissues were clearly visible and enumeration
was possible just as in tissues, which were not used for the
MALDI imaging procedure. The nuclear morphology was
clear and completely unaffected by MALDI imaging. The
Hoechst nuclear staining allowed the detection of tumor
areas and even cytomorphological details of the nuclear
structure remained unchanged after MALDI imaging.

The ratios of HER2 gene locus (red) and centromeric
region of chromosome 17 (green) signals were calculated,
whereas a ratio ≥2.0 was designated as HER2 amplification

Fig. 2 Biopsies of
gastroesophageal
adenocarcinoma patients were
measured using MALDI FT-ICR
imaging for the analysis of
metabolites followed by H&E
staining. The MALDI
visualization of Hex-P (hexose
phosphate), GDP (guanosine
diphosphate), AMP (adenosine
monophosphate), and further
molecules are depicted using
heatmap coloring in the first
block. The MALDI imaging
heatmap pictures are displayed
as merged figures with the H&E
stainings as background to
enable morphologic correlation.
FISH analysis of both biopsies
was performed subsequent to the
MALDI imaging procedure.
Both biopsies showed HER2
amplification when detected
after the MALDI imaging
workflow or when performed
exclusively. For validation,
consecutive sections of the very
same biopsies were analyzed by
FISH exclusively
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[11]. In the FISH experiment we found high-level amplifi-
cation of HER2 gene copy number in both biopsies (Fig. 2).
The FISH experiment that was performed after MALDI
imaging and H&E staining resulted in excellent signals,
which allowed a very precise detection of gene amplifica-
tions (Fig. 2).

HER2 testing by FISH after MALDI imaging and
without MALDI imaging reveals equal results

In order to validate the findings from the samples, which
underwent the MALDI imaging pipeline, consecutive
reference sections of five biopsies were analyzed by FISH
as a reference, not undergoing the procedure of MALDI
imaging and H&E staining. The FISH experiment was
evaluated identically for the sections, which underwent the
MALDI imaging protocol as for those reference sections

without previous MALDI imaging procedure. All biopsies
after MALDI imaging showed HER2 amplification. The
quantitative evaluation of the approaches is displayed in
Fig. 3. Signal counts of HER2 and CEP17 of five biopsies
were compared after the MALDI workflow and without
previous MALDI and the HER2/CEP17 signal ratio was
calculated. For biopsy 1, an average of 8.0 HER2 signals
was detected after MALDI and 10.0 signals without
MALDI workflow. CEP17 signal count revealed 1.6 and
1.5 signals per nucleus, respectively. The resulting HER2/
CEP17 signal ratios were 5.0 and 6.7. Biopsy 2 showed
HER2 amplification with a mean HER2 signal count of 16.8
after MALDI and 15.4 without MALDI. With a CEP17
number of 2.0 and 1.8, the resulting HER2/CEP17 signal
ratios were 8.4 and 8.6. The results for biopsy 3, 4, and 5
were also equal after MALDI imaging and were shown in
Table 1. Additional exemplary pictures of FISH analysis for

Fig. 3 HER2 signals, CEP17 signals, and HER2/CEP17 ratios derived
from FISH analysis of five human gastroesophageal cancer biopsies.
FISH signals from 20 tumor cell nuclei were enumerated manually in

biopsies, which were analyzed by FISH after the MALDI imaging
procedure or without previous MALDI imaging, respectively. The
shown examples for FISH are referring to Biopsy 3

1540 K. Huber et al.

34



all biopsies can be seen in Supplementary Fig. 1. Com-
paring the quality of the tissue after the combined workflow
with the tissue that underwent only the FISH experiment,
there is no difference in quality and evaluability.

HER2 testing after MALDI imaging allows accurate
disease prognosis prediction

A tissue microarray containing 69 human gastroesophageal
adenocarcinoma patient samples was analyzed using the
established pipeline of MALDI imaging followed by FISH.
Figure 4 displays the distribution of several molecules
measured by MALDI imaging. As established for the
biopsies, the TMA underwent FISH after the MALDI
imaging procedure following the same workflow as
described above. The results from the FISH analysis are
presented in Fig. 5. Tissue cores in Fig. 5a, b showed low/
medium level HER2 amplifications, while the core in
Fig. 5c was a highly amplified sample. The samples in
Fig. 5d, e, f were found to be not HER2 amplified.

In all, nine tissue cores were found to be HER2 ampli-
fied, while 60 were not amplified. In the group of non-
amplified cores, 18 were found to show low-level copy
number gain while 42 where diploid without copy number

gain. Average HER2 signal counts varied from 0.8 to 15.4,
the average HER2 signal count of all observed cases was
2.4 signals per nucleus.

The FISH evaluation of the tissue microarray was ana-
lyzed statistically using the Kaplan–Meier survival test
(Fig. 6). Hereby a significant (p= 0.0350) difference in
patient survival was found, outlining HER2/CEP17 signal
ratio as a marker for patient survival (Fig. 6a).

Adenosine monophosphate is a prognostic factor in
gastroesophageal adenocarcinoma

In the MALDI imaging approach, the H&E staining was
used for the determination of tumor regions. Thus, it was
possible to extract mass spectra specifically from the tumor
areas for analysis. We focused on the peak intensity of
adenosine monophosphate (AMP, m/z 346.0570), which we
expected to serve as prognostic marker. AMP signal
intensity allowed significant prediction of patient survival
(p= 0.00206). Hereby the mass intensity was found to be
higher in the good prognosis group, while signal intensity
was weak in the poor prognosis group (Fig. 6b). In general,
average AMP peak intensities varied between 0 and 7.59. In
39 cases mean AMP intensity was found to be below 1.0
and 2 cases showed an intensity of >5. The intensity of 28
cases was in the medium range between 1.0 and 5.0. The
overall average AMP intensity is 1.42. In the samples,
which were stratified as poor survivers (Fig. 6b), AMP
signal intensity was below 0.15.

Data combination of FISH and MALDI has a
synergistic effect on prognosis

According to our hypothesis, we combined the data
revealed from both approaches, AMP signal intensity by
MALDI imaging and gene amplification by FISH, using the
ratio of the mass intensity and the HER2/CEP17 signal
ratio, lead to an improvement in the significance of survival
analysis with p= 0.000002875. The patients in the good
prognosis group show a higher AMP/FISH ratio than the
patients in the poor prognosis group. The calculated
threshold to stratify patient survival was 0.22 (Fig. 6c).

In Supplementary Fig. 2, AMP signal intensities from
MALDI imaging were plotted against the HER2 signal
count revealed from FISH in order to detect whether there is
a correlation of the abundance of both features. Each
datapoint represents a single patient. The random distribu-
tion of the datapoints in the plot depicts the fact that both
parameters do not correlate with each other (p= 0.5020). In
addition, the HER2/CEP17 ratio was also tested for corre-
lation and reached not a significant level (Supplementary
Fig. 3, p= 0.2183).

Table 1 Comparison of FISH results after and without MALDI
imaging

Characteristic After MALDI
imaging

Without MALDI
imaging

Biopsy 1

HER2 [mean signals] 8.0 10.0

CEP17 [mean signals] 1.6 1.5

HER2/CEP17 ratio 5.0 6.7

Biopsy 2

HER2 [mean signals] 16.8 15.4

CEP17 [mean signals] 2.0 1.8

HER2/CEP17 ratio 8.4 8.6

Biopsy 3

HER2 [mean signals] 13.5 10.4

CEP17 [mean signals] 1.5 1.6

HER2/CEP17 ratio 9.0 6.5

Biopsy 4

HER2 [mean signals] 16.0 18.0

CEP17 [mean signals] 1.5 1.9

HER2/CEP17 ratio 10.7 9.5

Biopsy 5

HER2 [mean signals] 18.0 18.0

CEP17 [mean signals] 2.3 2.2

HER2/CEP17 ratio 7.8 8.2
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Discussion

In this study, we developed a novel combined approach
which, for the first time, allows the direct correlation of
findings from MALDI imaging experiments and essential
histological staining with the outcome of FISH analysis on
the very same tissue section.

As example for the additional value of the method
combination, we focused on measuring the AMP levels
using MALDI metabolite imaging as a surrogate marker for
the activity of AMP-activated kinase (AMPK), which is
known to be stimulated by high AMP levels, which appear
due to a lack of ATP in tumor metabolism [22]. AMPK is
described to impact HER2 and has major influence on

Fig. 4 A tissue microarray (TMA) containing 69 human gastro-
esophageal adenocarcinoma samples was measured by MALDI FT-
ICR metabolome imaging. Molecules, e.g., Hex-P (hexose phosphate),
GDP (guanosine diphosphate), AMP (adenosine monophosphate), are
visualized exemplarily on six tissue cores in heatmap coloring

according to the biopsies, which are displayed in Fig. 2. The samples
are either HER2 amplified (upper panel) or non-amplified (lower
panel). Measured m/z values of the metabolites can be obtained from
the last row. The panels a–f refer to the same tissue cores as shown in
Fig. 5
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tumor growth and progression [23, 27]. Jhaveri et al. [27]
described a decreased activation of HER2 and EGFR
caused by AMPK in human breast cancer cell lines and
xenograft tumors. The mechanistical study in breast cancer
cell lines showed that AMPK directly inhibits the activity of
HER2 via phosphorylation. As AMPK is activated by an
increased cellular AMP level [36], it could be, that an
increased level of AMP can serve as a surrogate marker for

AMPK activity and thus it might also work as a predictor
for tumor cell progression by indirectly reflecting the
activity of HER2. Of note, our results are not able to pro-
vide a causal explanation of an impact of AMP to
HER2 signaling.

As HER2 gene amplification and AMP mass intensity
both have the ability to differ significantly between good
and poor prognosis group in the Kaplan–Meier analysis

Fig. 5 After H&E staining, FISH analysis was performed on the very
same TMA section. The HER2 gene locus carries a red fluorescence
label, while the centromeric region of chromosome 17 is marked with
a green fluorescence label. The nuclei are stained using Hoechst (gray).

The cores shown in a, b show medium level HER2 gene amplification,
whereas the core in c is a high-amplified tissue sample. The cores
displayed in d, e, f are not amplified
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while not correlating to each other, the information of both
parameters was combined as a ratio. Using this ratio it is
possible to increase the significance level of the survival

analysis to p= 0.000002875. Hereby it becomes obvious,
that the information from the gene amplification analysis
and the mass spectrometry imaging approach together sum

Fig. 6 a Kaplan–Meier survival
analysis was performed using
the parameters HER2/
CEP17 signal ratio from FISH
analysis. The image on the top
right corner shows a HER2/
CEP17 FISH sample with a non-
amplified diploid state (image
with red border) representative
for good prognosis and on the
lower right corner a sample with
a HER2 gene amplification
(image with blue border) for
poor prognosis. b AMP mass
signal intensity from the
MALDI imaging approach is
able to separate patient samples
as a prognostic factor. Ion
distribution maps showing
localization of AMP in tissue
cores representative for low-
mass intensity (image with red
border) and high-mass intensity
(image with blue border). c The
ratio of the mass intensity of
AMP and the HER2/
CEP17 signal ratio lead to
significant improvement of
survival analysis
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up to a very precise prognosis, which is strikingly better
than each method alone. The correlation plot depicted in
Supplementary Fig. 2 shows that HER2 signal count and
AMP level do not correlate with each other. Another pos-
sibility might be the analysis of further molecules, which
are involved in this or even other pathways of tumor pro-
gression. As MALDI imaging is widely used for the
detection of proteins, it is another opportunity to combine
protein measurements with FISH analysis in future studies.

This approach was established and validated using
human gastroesophageal adenocarcinoma biopsies. A
comparison of a FISH analysis after MALDI imaging with a
reference FISH analysis without previous MALDI imaging
using consecutive sections of the same biopsies was per-
formed (Fig. 3 and Table 1). Hereby the results from both
approaches revealed were similar. Most notably, after the
performance of the whole protocol, cell structure is still
preserved and FISH results remain as correct and reliable as
when performed exclusively. This result highlights the
robustness of well-prepared FFPE tissues, which proved to
be an outstanding source of information.

Hence, we claim that our MALDI imaging protocol
leaves the tissue intact and does not influence the outcome
of subsequent FISH experiments.

We demonstrate that our protocol does not only keep the
tissue structure intact, but, most remarkably, it even leaves
the DNA structure unimpaired and thus the FISH approach
remains unaffected by the foregoing procedure.

Our results are concordant with the work of Kazdal et al.
[37], which shows the combination of MALDI imaging
with digital PCR, although describing the robustness of the
DNA structure even after undergoing the MALDI ionization
procedure. Regarding the fact, that the molecules are
ionized from the tissue by an UV laser beam, it is a notable
finding that the DNA is still intact to allow reliable FISH
results. A combination of IR spectroscopic imaging and
MALDI imaging was recently described by Neumann et al.
[38], enabling more advanced tissue analysis. Here, MALDI
imaging measurement were carried out before the very same
tissue was analyzed by IR spectroscopic imaging, as the
gently ionization method did not destroy the tissue [38].
Owing to these findings and because we expect a loss of
metabolites during the washing steps of the FISH protocol,
we aimed to develop a protocol, which enables the perfor-
mance of FISH analysis after the MALDI imaging
procedure.

The described combined tissue analysis approach is
established for tissue biopsies. As biopsies represent the
standard material used in clinical diagnostics and our
approach does not require further sections of the anyways
limited material, our combined method is very suitable for
the use in the clinical setting [39]. MALDI imaging was

described as a promising tool for clinical diagnostics, as
well as for clinical research [40, 41].

Our workflow consists of a new multimodal procedure of
tissue analytics, which allows molecular feature extraction
by mass spectrometry imaging, and phenotypic and cyto-
genetic feature extraction by digital image analysis, result-
ing in highly improved prognosis estimation. Thus, the
overall information that can be gained from one tissue
section is extended, and, in combination with clinical data,
including survival and response, this combined workflow
represents a promising tool for further biomarker research.
Additionally, the present work shows the prognostic value
of MALDI imaging. As disease prognosis is significantly
improved by the addition of MALDI imaging data, the
described multimodal method might have potential to
improve response prediction as well.
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3.2. Metabolic heterogeneity with immunophenotype-guided imaging mass spectrometry

3.2. De novo discovery of metabolic heterogeneity with
immunophenotype-guided imaging mass spectrometry

The next publication, entitled "De novo discovery of metabolic heterogeneity with
immunophenotype-guided imaging mass spectrometry" [2], reveals the improved spatial
metabolomics method. This publication presents the spatial correlation image analysis
(SPACiAL) pipeline. The previous embedded publication in this thesis (see chapter
3.1) [1] illustrated the proof-of-principle for performing spatial metabolomics and in
situ hybridization on the very same tissue section. However, there is so far no tool for
integrating both modalities in a spatially resolved manner. Instead of averaging the
information about gene copy number and metabolite quantities of one tissue specimen
as presented in the previous publication (see chapter 3.1) [1], the SPACiAL pipeline
improves this approach by providing a platform for the multimodal integration of spatially
resolved data in the same tissue specimen by keeping the spatial information intact. The
SPACiAL pipeline can integrate most spatially resolved data of a tissue section. For this
publication, we have chosen multiplex immunohistochemistry (IHC) to demonstrate the
advantages of the SPACiAL pipeline. We revealed for the first time the spatially resolved
metabolic heterogeneity considering metabolites related to HER2 protein expression in
situ in gastric cancer tissues. The presented SPACiAL pipeline illustrates an essential
tool for all subsequent publications in this thesis [3, 4] and enables predictive biomarkers
for anti-HER2 and anti-PD-1/PD-L1 therapy by allowing spatial information in different
molecular layers (e.g., genomics, proteomics, metabolomics).

I am sharing the first authorship with my former colleague Verena M. Prade. I
introduced the basic principle for combining the individual spatially resolved data sets
of spatial metabolomics and immunohistochemical staining. I prepared figures and
implemented the algorithms together with Verena M. Prade. In addition, I wrote the
original draft of the manuscript together with Verena M. Prade and Achim Buck, and I
co-designed this study together with Verena M. Prade, Achim Buck, and Axel Walch.

We also try to protect the idea behind this publication [2] by the following patent
application:

• Walch A, Prade VM, Kunzke T, Buck A, Feuchtinger A. METHOD FOR AN
AUTOMATIC, SEMANTIC-BASED, FUNCTIONAL TISSUE ANNOTATION
OF HISTOLOGICAL AND CELLULAR FEATURES IN ORDER TO IDENTIFY
MOLECULAR FEATURES IN TISSUE SAMPLES (2021), Luxemburg Patent
Application LU101644, published 2021-08.
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De novo discovery of metabolic heterogeneity
with immunophenotype-guided imaging mass
spectrometry

Verena M. Prade 1,5, Thomas Kunzke 1,5, Annette Feuchtinger 1, Maria Rohm 2, Birgit Luber 3, Florian Lordick 4,
Achim Buck 1,**, Axel Walch 1,*

ABSTRACT

Background: Imaging mass spectrometry enables in situ label-free detection of thousands of metabolites from intact tissue samples. However,
automated steps for multi-omics analyses and interpretation of histological images have not yet been implemented in mass spectrometry data
analysis workflows. The characterization of molecular properties within cellular and histological features is done via time-consuming, non-
objective, and irreproducible definitions of regions of interest, which are often accompanied by a loss of spatial resolution due to mass spectra
averaging.
Methods: We developed a new imaging pipeline called Spatial Correlation Image Analysis (SPACiAL), which is a computational multimodal
workflow designed to combine molecular imaging data with multiplex immunohistochemistry (IHC). SPACiAL allows comprehensive and spatially
resolved in situ correlation analyses on a cellular resolution. To demonstrate the method, matrix-assisted laser desorption-ionization (MALDI)
Fourier-transform ion cyclotron resonance (FTICR) imaging mass spectrometry of metabolites and multiplex IHC staining were performed on the
very same tissue section of mouse pancreatic islets and on human gastric cancer tissue specimens. The SPACiAL pipeline was used to perform
an automatic, semantic-based, functional tissue annotation of histological and cellular features to identify metabolic profiles. Spatial correlation
networks were generated to analyze metabolic heterogeneity associated with cellular features.
Results: To demonstrate the new method, the SPACiAL pipeline was used to identify metabolic signatures of alpha and beta cells within islets of
Langerhans, which are cell types that are not distinguishable via morphology alone. The semantic-based, functional tissue annotation allows an
unprecedented analysis of metabolic heterogeneity via the generation of spatial correlation networks. Additionally, we demonstrated intra- and
intertumoral metabolic heterogeneity within HER2/neu-positive and -negative gastric tumor cells.
Conclusions: We developed the SPACiAL workflow to provide IHC-guided in situ metabolomics on intact tissue sections. Diminishing the
workload by automated recognition of histological and functional features, the pipeline allows comprehensive analyses of metabolic hetero-
geneity. The multimodality of immunohistochemical staining and extensive molecular information from imaging mass spectrometry has the
advantage of increasing both the efficiency and precision for spatially resolved analyses of specific cell types. The SPACiAL method is a stepping
stone for the objective analysis of high-throughput, multi-omics data from clinical research and practice that is required for diagnostics, biomarker
discovery, or therapy response prediction.

� 2020 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords Imaging mass spectrometry; Multiplex immunohistochemistry; In situ metabolomics; Tissue annotation; Pixel-accurate analysis

1. INTRODUCTION

Computational automation of routine tasks and artificial intelligence
guided analyses rapidly gain significance with the increasing amount
of data generated from single tissue samples [1]. With the rise of digital

pathology, a major objective for precision medicine is the integration of
morphological and molecular imaging data from multi-omics studies
[2]. Matrix-assisted laser desorption-ionization (MALDI) imaging mass
spectrometry (IMS) can be used for in situ imaging of metabolites from
frozen or formalin-fixed, paraffin-embedded (FFPE) tissue samples [3].
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Providing spatially resolved and label-free detection of hundreds to
thousands of molecules within a single tissue section, MALDI imaging
has proven to be an invaluable tool for digital histopathology. However,
the spatial resolution of molecule distributions is often not fully utilized.
For instance, cell- and tissue-specific structures, such as tumors, are
frequently analyzed by manually annotating the respective areas on
whole-slide images to mark so-called regions of interest (ROIs) [4]. The
spatially resolved mass spectra in these regions are lost because only
the mean or representative spectrum of each ROI is used for subse-
quent calculations. Such segmentation approaches fail to preserve
molecular heterogeneity and spatial distribution, while whole-sample-
based classifications fail for tissue sections comprised of cells
belonging to different classes [5]. With the availability of tissue sam-
ples from large-scale clinical cohort studies, manual preprocessing
steps can easily take weeks or months of work. Furthermore, manually
annotating tumor regions is not only time-consuming, non-objective,
and irreproducible, but also requires extensive histology knowledge
that only expert pathologists possess. Additionally, it only permits the
annotation of regions and cell types that are histologically distin-
guishable, while molecular alterations often do not manifest
morphologically. Current efforts to utilize machine learning algorithms
to automatically distinguish cell types [6] based on nothing more than
hematoxylin and eosin tissue staining may work, for example, on tu-
mor and stroma cells, but are not able to identify morphologically
indistinguishable tumor subtypes.
Traditionally, when morphology alone is not sufficient, even clinical
pathologists resort to immunohistochemistry (IHC) to localize proteins
or peptides in a single tissue section [7]. Compared to efforts to define
ROIs or distinguish cell types based on molecular distributions [8e10],
immunostainings represent a method to precisely label specific cell
types [11]. The technique is currently used to classify tumors or to
perform structural tissue analyses to help pathologists establish a
diagnosis [7]. IHC staining is commonly used for cell type labeling [12],
but their potential for automated, semantic-based, functional tissue
annotation and spatially resolved molecular analyses of heterogeneity
is not fully utilized. In recent years, imaging mass spectrometry data
and immunohistochemical staining have been successfully combined
to increase the resolution of MALDI images [13] or to characterize
individual dissociated cells [14], but no in situ tissue analysis with
automatic identification of ROIs and data integration has been pre-
sented. While there is some software available for tissue image
analysis, there currently is no method that integrates and analyzes the
comprehensive molecular data from imaging mass spectrometry in
combination with morphological, proteomic, and genetic information
from other omics fields. The translation of imaging mass spectrometry
into experimental clinical applications requires time-efficient data
post-processing and comprehensive analyses of spatially resolved
molecular information by avoiding expensive manual annotations or
loss of resolution due to the generation of mean or representative
spectra. In research, the use of immunostainings in combination with
molecular data represent a significant improvement in scientific quality
by solving the problem of time-consuming and irreproducible user-
defined ROIs. In particular, the analysis of metabolic heterogeneity is
hampered by pseudoheterogeneity originating from inaccuracies dur-
ing manual annotation or by the use of consecutive tissue sections. The
analysis of metabolic heterogeneity in tissues requires a strict
coherence to consistent tissue and data preprocessing.
Here, we present our Spatial Correlation Image Analysis (SPACiAL)
pipeline, a computational multimodal workflow to integrate molecular
imaging mass spectrometry data with multiplex IHC staining from the
very same tissue section to provide automated and reliable annotations

and allow comprehensive and pixel-accurate correlation analyses of
heterogeneity to combine data from multi-omics studies. The pipeline
represents a starting point for the objective analysis of high-throughput
data from clinical research and practice, which is required for tissue-
based diagnostics and research.
To demonstrate the versatility and analytical power of the SPACiAL
method, we deliberately chose two examples of molecular heteroge-
neity in both a physiological and a pathophysiological application: First,
we performed a high-resolution analysis of islets of Langerhans in
mouse pancreases. Phenotypic and functional beta cell heterogeneity
has been shown to provide pancreatic islets with functional flexibility to
adapt to physiological changes in the environment [15]. The metab-
olomic analysis of islet and islet cell heterogeneity requires in situ
analyses of intact islets within tissue slices [16,17] and it has been
insufficiently studied in their natural histological context. With SPACiAL,
we distinguish alpha and beta cells and investigate the heterogeneity
of different islets within one animal. Second, an analysis of tissue
samples from patients with gastric cancer was carried out. The
metabolomic, intratumoral, heterogeneous nature of the human
epidermal growth factor receptor 2 (HER2/neu) is insufficiently studied
in situeespecially in relation to gastric cancereeven though it is highly
relevant for diagnostics and response to HER2/neu-based treatment.
The SPACiAL pipeline was applied on tissue resection specimens and
on a tissue microarray to distinguish HER2/neu-positive and -negative
tumor cells and to investigate the molecular intra- and intertumoral
heterogeneity. The multimodal approach utilizes pixel-wise molecular
information to investigate metabolic heterogeneity via spatial correla-
tion networks from cell populations automatically identified by multi-
plex immunohistochemical analysis.

2. METHODS

2.1. Tissue specimens and Fourier-transform ion cyclotron
resonance (FTICR) MALDI IMS analysis
Pancreas/islets of Langerhans were obtained from a C57BL/6 N mouse
and the sample was flash frozen in liquid nitrogen until measurement.
The animal was provided ad libitum access to food and water. All
animal studies were conducted in accordance with German animal
welfare legislation and approved by the government of Upper Bavaria.
FFPE tissue patient samples of gastric cancer were collected between
1995 and 2018 at the University of Leipzig and at the Department of
Surgery, Klinikum Rechts der Isar, Munich, Germany. The resection
specimens were processed in a highly standardized manner and fixed
for 12e24 h in 10% neutral buffered formalin, followed by tissue
dehydration and paraffin embedding with fully automated systems.
The study was approved by the local Ethics Committees. All patients
provided informed, signed consent.
Tissue preparation steps for MALDI imaging analysis was performed as
previously described [3,18,19]. In brief, frozen (12 mm, Leica Micro-
systems, CM1950, Germany) and FFPE sections (4 mm, Microm,
HM340E, Thermo Fisher Scientific, USA) were mounted onto indium-
tin-oxide (ITO)-coated glass slides (Bruker Daltonik, Bremen, Ger-
many) pretreated with 1:1 poly-L-lysine (Sigma Aldrich, Munich, Ger-
many) and 0.1% Nonidet P-40 (Sigma). The air-dried tissue sections
were spray-coated with 10 mg/ml of 9-aminoacridine hydrochloride
monohydrate matrix (SigmaeAldrich, Munich, Germany) in 70%
methanol using the SunCollect� sprayer (Sunchrom, Friedrichsdorf,
Germany). Prior matrix application, FFPE tissue sections were incu-
bated additionally for 1 h at 70 �C and deparaffinized in xylene
(2 � 8 min). Spray-coating of the matrix was conducted in eight
passes (ascending flow rates 10 ml/min, 20 ml/min, 30 ml/min for
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layers 1e3, and layers 4e8 with 40 ml/min), utilizing 2 mm line
distance and a spray velocity of 900 mm/min.
Metabolites were detected in negative-ion mode on a 7 T Solarix XR
FTICR mass spectrometer (Bruker Daltonik) equipped with a dual ESI-
MALDI source and a SmartBeam-II Nd: YAG (355 nm) laser. Data
acquisition parameters were specified in ftmsControl software 2.2 and
flexImaging (v. 5.0) (Bruker Daltonik). Mass spectra were acquired in
negative-ion mode covering m=z 75e1,100, with a 1 M transient

(0.367 s duration) and an estimated resolving power of 49,000 at m/z
200,000. The laser operated at a frequency of 1,000 Hz utilizing 200
laser shots per pixel with a pixel resolution of 15 mm (islets of Lang-
erhans) and 60 mm (gastric cancer), respectively. L-Arginine was used
for external calibration in the ESI mode. On-tissue double mass spec-
trometry (MS/MS) was conducted on islets of Langerhans from the
consecutive mouse pancreatic tissue section using continuous accu-
mulation of selected ions’ mode and collision-induced dissociation (CID)
in the collision cell (Supplementary Figure 17). MS/MS spectra were
analyzed by Bruker Compass DataAnalysis 5.0 (Build 203.2.3586).

2.2. Multiplex fluorescent immunohistochemical staining
After MALDI IMS analysis, 9-aminoacridine matrix was removed with
70% ethanol for 5 min from tissue sections followed by immunohis-
tochemical staining. Pancreatic islets were analyzed by double staining
for insulin [Insulin-monoclonal rabbit anti-insulin (1:800), catalog no.
3014, Cell Signaling Technology, Germany; AF750-goat anti-rabbit
(1:100), catalog no. A21039, Thermo Fisher Scientific, US] and
glucagon [polyclonal guinea pig anti-glucagon (1:3,000), catalog no.
M182, Takara, USA; biotinylated goat anti-guinea pig immunoglobulin
G (IgG, 1:100), catalog no. BA-7000, Vector Laboratories, US;
streptavidin-Cy3, catalog no. SA1010, Thermo Fisher Scientific].
Double staining of human gastric cancer tissue specimens and a tissue
microarray was performed using HER2 [polyclonal rabbit anti-human c-
erbB-2 oncoprotein (1:300), catalog no. A0485, DAKO, CiteAb Ltd., UK]
and pan-cytokeratin [monoclonal mouse pan cytokeratin plus [AE1/
AE3þ8/18] (1:75), catalog no. CM162, Biocare Medical, US]. Signal
detection was conducted using fluorescence-labeled secondary anti-
bodies [Goat Anti-rabbit IgG (H þ L)-Cross-Adsorbed Secondary

Figure 1: Workflow of immunohistochemistry-guided in situ metabolomics using the example of an islet of Langerhans. A: MALDI and IHC workflow starting with matrix
application on tissue sections, MALDI imaging and data processing including peak picking and annotation. The matrix is then removed for subsequent multiplex immunohis-
tochemical staining of the very same tissue section using DAPI, glucagon, and insulin. The individual stainings are digitized with a slide scanner. B: The SPACiAL pipeline integrates
molecular MALDI data and immunohistochemical data. The IHC images need to be co-registered to the coordinates of the mass spectra per pixel. The MALDI data file is used to
generate an image of the measurement region, which can be used for precise co-registration with the tissue image and tissue stainings. Once co-registered, the staining images
are scaled to match the resolution of the measurement and color values per pixel are used for the definition of regions or for pixel-accurate analyses of metabolic correlations or
heterogeneity.

MOLECULAR METABOLISM 36 (2020) 100953 � 2020 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

3

44



Antibody-DyLight 633 (1:200), catalog no. 35563; and Goat Anti-Mouse
IgG (H þ L)-Cross-Adsorbed Secondary Antibody-Alexa Fluor 750
(1:100), catalog no. A-21037, both Thermo Fisher Scientific]. Nuclei
were identified with Hoechst 33342 in all stainings. Fluorescence
stainings were scanned with an AxioScan.Z1 digital slide scanner (Zeiss)
equipped with a 20x magnification objective and visualized with the
software ZEN 2.3 blue edition (Zeiss). Multi-images were exported as TIF
files. Additionally, tissue sections were stained with hematoxylin and
eosin after MALDI and IHC for internal visual validation.

2.3. Peak picking
The Bruker software flexImaging (v. 5.0) was used to export all root
mean square normalized mass spectra as processed imzML files. An
in-house python 3 pipeline was written to perform pixel-wise and
parallelized peak picking. For each coordinate (i.e., spectrum), the
peak picking pipeline began by resampling the mass (m=z ) and in-

tensity values between 75 and 1,100 Dalton (Da) with a step size of
0.0005 Da. Intensity values were resampled by choosing the
maximum intensity per window. Noise levels were estimated for
windows of 10 Da, and all peaks falling below their respective noise
level were filtered. The noise level was calculated as 2.2 times the
85th percentile of the intensity values within the window. If fewer
than 200 intensities fell within 1 window, which frequently happens
in the higher mass range, then their neighboring windows are
considered until at least 200 intensities can be used for the calcu-
lation. Since the noise level is expected to increase with the m=z
value and to avoid extreme noise level fluctuations, the level of the
first and last window were used as upper bounds. After noise-
filtering, only local maxima were kept as preliminary peaks.
Preliminary peaks within each spectrum were merged as previously
described [18]. The merged peaks of all coordinates were then
aligned, if their distance did not exceedh�

m=z

�
�delta ppm

i
O1; 000; 000 with delta ppm ¼ 2. Peaks

that occur in less than 0.5% of the spectra were filtered. Picked
peaks were saved as an imzML file. Noise levels and the peak
pickings were verified by manual inspection of random sample
coordinates.

2.4. Metabolite annotation
The Human Metabolome Database [20] (HMDB, v. 4.0) was used to
functionally annotate m=z values. The metabolite XML file was

downloaded for offline use and a local PostgreSQL (v. 11) database
was set up. Molecules were annotated by allowing M�H, MeH2OeH,
Mþ Nae2H, Mþ Cl and Mþ Ke2H as negative adducts with a mass
tolerance of 4 ppm. A keyword search was performed on the
description text to filter compounds with multiple annotations.

Specifically, compounds with indications of being drug-, plant-, food-,
or bacteria-specific were filtered stringently.

2.5. Image co-registration
The imzML file of picked peaks was used to create a master image
of the MALDI measurement region (imzML-grid). All additional im-
ages were precisely co-registered onto this image, allowing an
exact integration and correlation of molecular MALDI data with
immunostainings. The co-registration was done with the Landmark
Correspondences plugin of FIJI ImageJ [21] (v. 1.52p). Alternatively,
co-registration is also feasible with Adobe Photoshop CC 2019 or
the GNU Image Manipulation Program (GIMP, v.2.10.8). A gray-scale
tissue overview image and measurement points were exported with
flexImaging (v. 5.0) and then fitted onto the master image. The
integration of mass spectra and image data is done by co-
registering the tissue scanned subsequent to MALDI imaging
mass spectrometry and mapping the matrix ablation marks to the
imzML-grid. The 40,6-diamidino-2-phenylindole (DAPI) staining and
all other stainings were finally fitted onto the precisely co-registered
tissue image.

2.6. Region inclusion/exclusion criteria
After co-registration, all images had the exact same dimension and
resolution. SPACiAL now offers the option to create a mask, where the
user can manually label regions that should be excluded from sub-
sequent analyses. Such regions may comprise tissue folds, swept
away tissue, artifacts, or regions that are generally of no interest.
To integrate the data from all images, they have to be scaled to the
exact MALDI measurement resolution by averaging the color values
per x/y-coordinate. The IHC images are then converted into nu-
merical matrices comprised of values corresponding to the lightness
values for each pixel. SPACiAL can create images to allow validation
of automatically defined ROIs (e.g., HER2/neu-positive tumor
regions).

2.7. Pixel-accurate definition of HER2/neu-positive tumor regions
FFPE tissue sections of human gastric cancer samples were used to
analyze the metabolic heterogeneity within HER2/neu-positive tumor
regions. Tumor cells were annotated via the pan-cytokeratin staining.
They were then classified as HER2/neu positive, if they also exhibited a
positive signal in the HER2/neu staining. Otherwise, they were clas-
sified as HER2/neu-negative.

2.8. Networks
Correlation networks were created with Cytoscape [22] (v. 3.7.1).
In all networks, nodes represent metabolites with node sizes
corresponding to the mean intensity. Edges represent spatial

Figure 2: Multi-omics data integration via the SPACiAL method. Left: Islet of Langerhans with immunohistochemical staining (glucagon in red, insulin in green). Middle: Spatial
distribution of 3-O Sulfogalactosylceramide (m/z 778.5147). Right: Data integration via SPACiAL, utilizing the IHC stainings to automatically identify alpha cells (semi-transparent,
pixelated staining in red) and correlating metabolites. Lateral MALDI resolution (pixel): 15 mm.
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Figure 3: Metabolic heterogeneity within and between islets of Langerhans in a pancreatic tissue section of one mouse (AeE). The column on the left shows multiplex
immunostainings after MALDI imaging mass spectrometry. Alpha cells (red) and beta cells (green) are stained with glucagon and insulin, respectively. A tissue fold in the fifth islet
(E) was excluded from analyses (dashed). The second and third columns show spatial correlation networks for metabolites in alpha and beta cells, respectively. Nodes and edges
represent compounds and their spatial correlation. The networks shown here only include direct neighbors of the glucose 6-phosphate node and edges representing a correlation
coefficient of at least 0.7. Scale bar, 150 mm. Abbreviations: adenosine monophosphate (AMP), guanosine monophosphate (GMP), phosphatidic acid (PA), phosphatidyletha-
nolamine (PE), lysophosphatidic acid (LPA), lysophospholipid (LPC), lysophosphatidylinositol (LPI), dihydroxyacetone phosphate (DHAP), glycerophosphoinositol (GroPIns), phos-
phodimethylethanolamine (P-DME).

MOLECULAR METABOLISM 36 (2020) 100953 � 2020 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

5

46



correlations with line thickness and opacity increasing with the
correlation coefficient. Nodes were colored red if their metabolites
take part in glycolysis or they were colored depending on the
molecule super class defined in HMDB [lipids and lipid-like mol-
ecules (yellow); nucleosides, nucleotides, and analogs (light red);
organic acids and derivatives (green); organoheterocyclic com-
pounds (lime green); alkaloids and derivatives (pink); organic ox-
ygen compounds (blue); benzenoids (violet); phenylpropanoids and
polyketides (orange); others (gray)]. All networks were either
visualized using the yFiles circular layout or edge-weighted spring-
embedded layout using the absolute value of the correlation co-
efficient. For the pancreatic islet cells, circular networks were
generated by filtering edges with a coefficient smaller than 0.7 and
by only visualizing direct neighbors of glucose 6-phosphate. All
islets were located on the same tissue slide and were analyzed
concurrently. The multiplex staining of the complete tissue is
shown in Supplementary Figure 1. All remaining networks were
generated by showing metabolites with at least one correlation

coefficient larger than 0.5, but without filtering edges. The com-
plete networks are shown in Supplementary Figures 15 and 16.
The multiplex staining of the complete tissues are shown in
Supplementary Figures 8, 10, 12, and 14.

2.9. Statistical analyses
For the networks, pairwise Spearman rank-order correlations (Python
3.7, SciPy 1.2.0) were calculated between annotated metabolites
using their intensities, and the resulting p-values were adjusted with
Benjamini/Hochberg correction (Python 3.7, StatsModels 0.9.0). For
the pancreatic islet cells, circular networks were generated by filtering
edges with a coefficient smaller than 0.7. Network metrics
(Supplementary Tables 1e3) were calculated using Cytoscape’s plugin
NetworkAnalyzer.
Metabolites localized predominantly on alpha or beta cells in islets of
Langerhans were identified by using the ManneWhitney U-test (Py-
thon 3.7, SciPy 1.2.0). The p-values were adjusted with Benjamini/
Hochberg correction (Python 3.7, StatsModels 0.9.0). The number of

Figure 4: Multiplex immunohistochemistry-guided imaging mass spectrometry on islets of Langerhans to automatically distinguish morphologically indistinguishable
cell types (AeE). Alpha and beta cells were stained with glucagon (red) and insulin (green), respectively. The spatial distributions of ADP, cholesterol sulfate and 3-O-sulfo-
galactosylceramide (sulfatide) are visualized (yellow). Pixel-wise intensity distributions are shown for alpha (red) and beta cells (green), respectively. See the methods section for
details about the statistical analysis. Scale bar, 150 mm.
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cell-type specific pixels per islet ranges between 59 and 194 for alpha
cells and between 112 and 228 for beta cells. The Python 3.7 package
NumPy 1.15.4 was used to calculate statistics for the intensity dis-
tributions of ADP, cholesterol sulfate, and 3-O-sulfogalactosylceramide
in the islets of Langerhans (Supplementary Figures 5e7).

3. RESULTS AND DISCUSSION

3.1. The SPACiAL workflow for immunohistochemistry-guided
imaging mass spectrometry
The SPACiAL pipeline comprises a series of MALDI data and image
processing steps to combine molecular data with morphological and
immunophenotypic information from IHC stainings or other imaging
data. Immunostaining following MALDI imaging has previously been
shown to be feasible [23,24]; hence the entire workflow works on
the very same tissue section. Here, we have demonstrated that
even multiplex immunostainings are entirely possible after MALDI
imaging of the very same tissue section, which allows automatic
data integration of morphological and spatially resolved in situ data
of thousands of molecules via the SPACiAL method. The entire
tissue and data pre-processing workflow preceding the application
of the SPACiAL algorithm includes matrix coating of tissue sections,
MALDI imaging, peak picking, matrix removal, IHC staining, and
image digitalization, which is shown schematically for an islet of
Langerhans with glucagon, insulin and DAPI staining (Figure 1A).
SPACiAL then uses MALDI imaging files to create a reference image
for subsequent co-registration of the molecular data with other
image information (Figure 1B). The digitized and co-registered im-
munostaining images are scaled to match the exact MALDI reso-
lution and then converted into numerical data without loss of spatial
resolution. This ultimately allows pixel-accurate, objective tissue
annotations based on semantics and function, which is shown here
as an example for alpha and beta cells stained with glucagon (red)
and insulin (green), respectively, and one metabolite (yellow) co-
localizing with alpha cells (Figure 2). The SPACiAL pipeline paves
the way for further statistical calculations and for the analysis of

tissue heterogeneity and previously infeasible molecular in situ
analyses of cell subpopulations within intact tissue sections. To
illustrate the versatility and analytical power of the SPACiAL pipe-
line, it was applied on two datasets; a physiological use case and a
pathophysiological use case.

3.2. SPACiAL analysis of metabolic heterogeneity within and
between islets of Langerhans
To demonstrate the SPACiAL pipeline, it was applied on islets of
Langerhans in the pancreas of a wild-type mouse to distinguish the
glucagon-releasing alpha and insulin-releasing beta cells and to
investigate the heterogeneity of different islets within one animal.
Previous studies highlight heterogeneity as a fundamental character-
istic of pancreatic islets [25]. Beta cells are functionally heterogeneous
and display different activity patterns in response to glucose stimu-
lation or the ability to secret insulin [26]. The metabolic heterogeneity
within automatically detected alpha and beta cells was analyzed in
detail for the glucose metabolism. The islets of Langerhans e origi-
nating from one tissue section (Supplementary Figures 1e4) e were
imaged with both high lateral (15 mm) and high mass resolution.
Correlation networks were created to identify functional relationships
of metabolites with glucose 6-phosphate and to assess metabolic
heterogeneity within and between individual islets of Langerhans
(Figure 3, Supplementary Table 1). Glucose 6-phosphate was chosen
as a relevant example because it is an important intermediate in the
glycolysis, gluconeogenesis, and pentose phosphate pathways.
Clear differences regarding network size were found between the islets
and islet cell populations, reflecting differential metabolic states
(Figure 3). For example, the alpha and beta cell network of the islet in
Figure 3D indicates a low dependency on glucose metabolism, with
only two metabolites showing a significant correlation to glucose 6-
phosphate. Within networks from other islets, a variety of metabo-
lites, including lipids, nucleotides, amino acid, and analogs, correlate
with glucose 6-phosphate (Figure 3). The highest number of correla-
tions were found in beta and alpha cell populations of the islets A and
E, respectively, indicating a high dependency on glucose metabolism.

Figure 5: Image processing workflow to define HER2/neu positive and negative tumor regions. Pan-cytokeratin (green) as an epithelial marker to stain tumor cells. HER2/
neu positive cells are shown in red. Both stainings are adjusted to match the lateral imaging mass spectrometry resolution (60 mm) and combined to classify HER2/neu positive and
negative tumor cells. Scale bar, 3000 mm.
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Figure 6: Intratumoral heterogeneity of spatially correlating metabolites in three human gastric cancer tissue sections, visualized via spatial correlation networks
(AeC). Left: Close-up of the HER2/neu positive (red) and negative (yellow) tumor regions. Middle: Spatial correlation networks for metabolites. Edges represent positive (blue) and
negative (red) spatial correlations between metabolites. Line thickness and transparency correspond to the correlation coefficient. Right: Zoom-in to glucose 6-phosphate. Ab-
breviations: glucose 6-phosphate (G6P), glycerol 3-phosphate (Gly3P), ribose 5-phosphate (R5P), S-adenosylhomocysteine (SAH), glycerophosphoinositol (GroPIns), adenosine
diphosphate (ADP), guanosine monophosphate (GMP), adenine (Ade), 5-phosphoribosylamine (PRA), reduce flavin adenine dinucleotide (FADH), D-glutamine (DGN), cysteinyl-
methionine (CeM), homocysteine (Hcy), phosphatidic acid (PA), phosphatidylglycerol (PG), cyclic phosphatidic acid (CPA), lysophosphatidic acid (LPA), lysophospholipid (LPC),
lysophosphatidylinositol (LPI), phosphodimethylethanolamine (P-DME), phosphopantothenate (PPA), dimethyl-2-oxoglutarate (MOG), tetrahydrobiopterin (BH4), O-phosphoetha-
nolamine (PEA), stearic acid (SA). Scale bar, 600 mm.
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The spatial distribution of lipid-associated compounds, such as pal-
mitic acid, stearic acid, lysophosphatidylinositol (LPI), and lysophos-
phatidic acid (LPA) were found to be correlated almost consistently.
Other compounds, such as phosphodimethylethanolamine (P-DME) or
glycerophosphoinositol (GroPIns), were found to inconsistently corre-
late with glucose 6-phosphate.
Metabolic signatures related to specific cell types and subpopulations
can now easily be extracted with SPACiAL. Alpha and beta cells were
defined automatically as ROIs, and metabolic differences between
alpha and beta cells were assessed. Significant differences were
detected for adenosine diphosphate (ADP), cholesterol sulfate, and 3-
O-sulfogalactosylceramide (Figure 4). The presence of ADP,
cholesterol sulfate, and 3-O-sulfogalactosylceramide was validated
via MALDI FTICR on-tissue MS/MS using quadrupole collision-
induced dissociation and comparison to standard compounds
(Supplementary Figure 17). Not all islets reveal similar significant
changes, also reflecting inter- and intra-islet metabolic heteroge-
neity. For instance, across four of the five measured islets, signifi-
cantly higher ADP levels were detected in beta cells in comparison to
alpha cells. Thus, the SPACiAL pipeline paves the way for in situ
analyses of individual energy conditions of alpha and beta cells in
each islet due to adenine nucleotide measurements. Cholesterol
sulfate was found abundantly in beta cells, but it also exhibits a
strong heterogeneous distribution between islets and even within
cells of the same islet. Cholesterol sulfate is a component of the cell
membrane [27] and in pancreatic beta cells, elevated intracellular
cholesterol levels have been associated with reduced insulin secre-
tion in mice [27,28]. Correlating with alpha cells, we found the 3-O-
sulfogalactosylceramide. Sulfatides are glycosphingolipids which
have been described in pancreatic islets with different abundances in
alpha and beta cells [29e31].
Finally, pronounced molecular heterogeneity, both within single and
between different islets of Langerhans, is reflected by a varying dis-
tribution of metabolite abundances (Supplementary Figures 5e7).
Between islets and between cell types, the standard deviation of
metabolite intensities differs by a factor of between 2.28 and 14.25
(ADP 0.32e0.73, cholesterol sulfate 0.5e1.52; 3-O-sulfogalacto-
sylceramide 0.04e0.57). Hence, even individual cells within one islet
exhibit different metabolite compositions, possibly reflecting different
metabolic or cell differentiation states.
The in situ analysis of metabolic heterogeneity within pancreatic islets is
just one potential field of application for the SPACiAL pipeline. Metabolic
data together with detailed spatial information can be exploited to assess
the extent and modulation of alpha and beta cells in situ. Because both
insulin and glucagon are dysregulated in pathophysiological conditions,

such as diabetes, our pipeline is valuable for future studies. The analysis
of different subpopulations of islets of Langerhans can help to illuminate
underlying phenotypic mechanisms to expand our knowledge of cell
function and develop new therapeutic strategies.

3.3. Intratumoral metabolic heterogeneity in gastric cancer
The SPACiAL strategy has been shown to be powerful for close-to
single-cell analyses of the metabolome in tissues of animal models,
but it is also valuable for clinically relevant tissue analyses regarding
diagnostics, prognosis, and therapy response prediction. For this
reason, we applied the SPACiAL pipeline for the analysis of intra- and
intertumoral heterogeneity in gastric cancer. While we used glucagon
and insulin to stain alpha and beta cells within a frozen pancreatic
tissue section, here we used pan-cytokeratin as an epithelial marker to
stain tumor cells and HER2/neu for tumor cell classification within
human FFPE tissue sections.
In gastric cancer, intratumoral HER2/neu heterogeneity is frequent,
but its clinical significance remains open in terms of treatment with
trastuzumab-chemotherapy [32e38]. The investigation of HER2/neu
heterogeneity in gastric cancer in relation to the metabolic state of
tumors is completely unexplored and may contribute to the
improvement of treatment success. The SPACiAL pipeline was
applied on tissue samples from three patients with gastric cancer to
evaluate metabolic heterogeneity depending on the HER2/neu state.
SPACiAL automatically determines the HER2/neu-positive and
-negative tumor regions in a standardized way by evaluating
expression values both in quantity on the basis of pixel intensity and
localization by pixel co-localization (Figure 5). Regions displaying
both pan-cytokeratin and HER2/neu signals are defined as HER2/neu-
positive tumor regions, while regions displaying only a pan-
cytokeratin signal are classified as HER2/neu-negative. Whole slide
immunohistochemical stainings and regions defined as HER2/neu-
positive (red) and -negative (yellow) are shown in Supplementary
Figures 8e13. The pixel-accurate annotation allows an unprece-
dented analysis of metabolic heterogeneity within tumor cells based
on metabolic correlation networks that were calculated for annotated
metabolites detected and stringently filtered from gastric cancer
tissue sections (Figure 6). For visualization purposes, a zoom-in of
HER2/neu-positive and -negative tumor regions of Supplementary
Figures 9, 11, and 13 is shown.
Since glucose plays a major role in altered energy metabolism in
cancer [39], focusing on captured glucose as glucose 6-phosphate in
the analysis of correlation networks provides insight into the
complexity of the tumor biology regarding HER2/neu status. The spatial
correlation networks comprise 67 to 171 metabolites (Supplementary
Table 2) in HER2/neu-positive or -negative tumor regions, revealing
intratumoral heterogeneity (Figure 6AeC). The number of correlating
metabolites was identified in samples A and C, but the number and
strength of pairwise spatial correlations differed, leading to different
network structures; in particular, the network density is higher in C by
a factor of approximately four (Supplementary Table 2). A majority of
the correlating metabolites belong to the class of lipids and lipid-like
molecules. In HER2/neu-positive regions of all patients, lysophos-
phatidylinositole (LPI) abundance correlates positively with glucose 6-
phosphate. LPI is a bioactive lipid produced by the phospholipase A
family, which is believed to play an essential role in several physio-
logical and pathological processes [40]. As a ligand for the G-protein-
coupled receptor GPR55, LPI may increase the glycolytic activity, since
a GPR55 antagonist was shown to decrease glycolytic activity in cancer
cell lines [41]. In one sample, glucose 6-phosphate formed a cluster
together with numerous lipids (Figure 6C), while in the other two

Table 1 e Network metrics for the glucose 6-phosphate node. Sample
identifiers (A, B and C) correspond to the samples in Figure 6. The degree of
a node represents the number of neighbors in the network. The average
shortest path length is the average, minimum number of edges between
glucose 6-phosphate node and any other node. The clustering coefficient is
a measure for the connections between neighboring nodes.

Sample HER2/neu state Degree Average shortest
path length

Clustering coefficient

A positive 27 1.697 0.285
A negative 22 1.942 0.398
B positive 54 2.012 0.721
B negative 55 1.964 0.689
C positive 62 1.294 0.733
C negative 41 1.5 0.472
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samples, the neighboring nodes belonged to different metabolic
classes e including carbohydrates, dipeptides and glycosylamines
(Figure 6A,B). The intratumoral heterogeneity was most prominent in
tumor sample C, reflected by the difference in degree, average shortest
path length, and clustering coefficient of HER2/neu-positive and
-negative metabolic networks (Figure 6 and Table 1). Overall, the
degree and clustering coefficient of the glucose 6-phosphate node
varies more strongly between patient samples, than between HER2/
neu-positive and -negative tumor regions within individual patient
samples, reflecting intertumoral heterogeneity (Table 1).

3.4. Intertumoral metabolic heterogeneity in gastric cancer
To additionally demonstrate the compatibility of SPACiAL for high-
throughput multiplex phenotyping, metabolic correlation networks
were created for gastric cancer patient tissues from an FFPE
tissue microarray (Figure 7AeE). Networks on the extracted
HER2/neu-positive tumor regions of 5 gastric cancer patients
comprised 30 to 39 metabolites and exhibited diverse correlation
patterns. Similar to the results from whole gastric cancer
resection specimens, most of the correlating metabolites are
lipids. An altered lipid metabolism has been described previously

Figure 7: Intertumoral heterogeneity of metabolites in five tissue cores from HER2/neu positive patients with gastric cancer, visualized via spatial correlation
networks (AeE). Edges represent positive (blue) and negative (red) spatial correlations between metabolites. Line thickness and transparency correspond to the correlation
coefficient. Right: Zoom-in to glucose 6-phosphate. Abbreviations: glucose 6-phosphate (G6P), glycerol 3-phosphate (Gly3P), phospholipid (PC), phosphatidylinositol (PI), cyclic
phosphatidic acid (CPA), lysophosphatidic acid (LPA), lysophospholipid (LPC), lysophosphatidylinositol (LPI), phosphodimethylethanolamine (P-DME), stearic acid (SA), dihy-
droxyacetone phosphate (DHAP), alanylglutamine (AeQ), histidinyl-glycine (N-HG). Scale bar, 600 mm.
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in a HER2/neu-positive breast cancer model [42]. Thus, a
changed lipid metabolism may be associated with a high positive
correlation of individual lipids to glucose 6-phosphate in human
gastric cancer patients.
The diversity between metabolic correlation networks in individual
patients demonstrates high intertumoral heterogeneity of HER2/neu-
positive gastric cancer tissue (also see network metrics in
Supplementary Table 3). The novel pipeline is a starting point for intra-
and intertumoral heterogeneity analyses, enabling simultaneous
analysis of distinct tissue and cellular compartments. The spatially
resolved information from the molecular analysis has been used in our
study to generate correlation networks between metabolites within
ROIs that are automatically defined by immunohistochemical staining.

4. CONCLUSIONS

Our SPACiAL workflow integrates molecular MALDI imaging mass
spectrometry data with IHC staining to facilitate automatic, reliable,
and pixel-accurate annotation of specific cell types. In this context, the
phenotypical information provided by IHC complements in situ mo-
lecular information for cell type-specific evaluation. The pipeline was
demonstrated for both physiological and pathophysiological applica-
tions to investigate metabolic heterogeneity in alpha and beta cells
from islets of Langerhans of a mouse model and in HER2/neu-positive
tumor cells from patients with gastric cancer.
Glucagon-releasing alpha and insulin-releasing beta cells of different
pancreatic islets within one animal were automatically annotated,
demonstrating the basic functionality of the SPACiAL pipeline as a tool
for objective IHC-guided annotation of otherwise histologically indistin-
guishable cell types. The pixel-accurate annotation and analysis of
metabolites allows previously infeasible assessments of metabolomic
heterogeneity between islets of Langerhans. Additionally, tissue samples
from patients with gastric cancer were chosen to demonstrate the
methodological advantages of SPACiAL for the analysis of intra- and
intertumoral heterogeneity. The SPACiAL strategy can be extended by
integrating other in situ datasets from tissue analytic platforms, since all
spatially resolved information of a tissue section can be integrated in this
pipeline (e.g., morphometrics, fluorescence in situ hybridization, and
imaging mass cytometry). Prospectively, the application can also be
useful for the automatic readout of regions of interest for metabolite
quantification on an absolute, rather than on a relative scale. Quantifi-
cation is a major topic of investigation in the targeted MALDI IMS field
concentrating on the analysis of a subset of metabolites. Furthermore,
the workflow was demonstrated to be compatible with both frozen and
FFPE tissue samples. With SPACiAL, hundreds of distinct samples within
tissue microarrays can be analyzed simultaneously. In contrast to the
traditional analysis of mean spectra per ROI, SPACiAL allows in-depth
and full use of available data without loss of resolution. With the
spatial correlation networks of metabolites and the comparative
approach to investigate islet cell heterogeneity, we demonstrate one of
the many possibilities to utilize MALDI data. Combining the data from
multi-omics studies, the pipeline represents an important starting point
for the objective analysis of high-throughput data from large-scale
clinical cohort studies, which are required for artificial intelligence-
guided diagnostics, biomarker discovery, or therapy prediction.
We expect that further development of computational techniques for
automatic feature identification based on multi-parameter molecular
imaging data will remain an important area of ongoing investigation,
and the results we present provide a useful framework and resource
for advancing future studies.

FUNDING

The study was funded by the Ministry of Education and Research of the
Federal Republic of Germany (BMBF; Grant Nos. 01ZX1610B and
01KT1615), the Deutsche Forschungsgemeinschaft (Grant Nos. SFB
824TP C04, CRC/TRR 205 S01) and the Deutsche Krebshilfe (No.
70112617) to A. Walch. Funding was provided through the Impulse
and Networking Fund of the Helmholtz Association and the Helmholtz
Zentrum München (Helmholtz Enterprise-2018-6) to A. Buck.

DATA AVAILABILITY

Imaging mass spectrometry data for mouse pancreatic islets of
Langerhans are provided at Zenodo.org (DOI:10.5281/zen-
odo.3607915) [43].

ACKNOWLEDGMENTS

We thank Ulrike Buchholz, Claudia-Mareike Pflüger, Andreas Voss, Cristina Hübner

Freitas, and Elenore Samson for excellent technical assistance.

DECLARATION OF INTEREST

The authors declare no conflicts of interest.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data to this article can be found online at https://doi.org/10.1016/j.

molmet.2020.01.017.

REFERENCES

[1] Colling, R., Pitman, H., Oien, K., Rajpoot, N., Macklin, P., Snead, D., et al.,

2019. Artificial intelligence in digital pathology: a roadmap to routine use in
clinical practice. The Journal of Pathology: Path, 5310. https://doi.org/

10.1002/path.5310.

[2] Huang, S., Chaudhary, K., Garmire, L.X., 2017. More is better: recent progress

in multi-omics data integration methods. Frontiers in Genetics 8(JUN):1e12.

https://doi.org/10.3389/fgene.2017.00084.

[3] Buck, A., Ly, A., Balluff, B., Sun, N., Gorzolka, K., Feuchtinger, A., et al., 2015.

High-resolution MALDI-FT-ICR MS imaging for the analysis of metabolites from

formalin-fixed, paraffin-embedded clinical tissue samples. The Journal of

Pathology 237:123e132. https://doi.org/10.1002/path.4560.

[4] Aeffner, F., Zarella, M., Buchbinder, N., Bui, M., Goodman, M., Hartman, D.,

et al., 2019. Introduction to digital image analysis in whole-slide imaging: a

white paper from the digital pathology association. Journal of Pathology

Informatics 10(1):9. https://doi.org/10.4103/jpi.jpi_82_18.

[5] Inglese, P., Correia, G., Pruski, P., Glen, R.C., Takats, Z., 2019. Colocalization

features for classification of tumors using desorption electrospray ionization

mass spectrometry imaging. Analytical Chemistry 91(10):6530e6540. https://

doi.org/10.1021/acs.analchem.8b05598.

[6] Bulten, W., Bándi, P., Hoven, J., van de Loo, R., Lotz, J., Weiss, N., et al.,

2019. Epithelium segmentation using deep learning in H&E-stained prostate

specimens with immunohistochemistry as reference standard. Scientific Re-

ports 9(1):1e10. https://doi.org/10.1038/s41598-018-37257-4.

[7] Ahmed, M., Broeckx, G., Baggerman, G., Schildermans, K., Pauwels, P., Van

Craenenbroeck, A.H., et al., 2019. Next-generation protein analysis in the

pathology department. p. 1e6. https://doi.org/10.1136/jclinpath-2019-

205864.

MOLECULAR METABOLISM 36 (2020) 100953 � 2020 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

11

52



[8] Alexandrov, T., 2012. MALDI imaging mass spectrometry: statistical data

analysis and current computational challenges. BMC Bioinformatics 13(Suppl

1). https://doi.org/10.1186/1471-2105-13-s16-s11 (Suppl 16).

[9] Jansson, E.T., Comi, T.J., Rubakhin, S.S., Sweedler, J.V., 2016. Single cell

peptide heterogeneity of rat islets of Langerhans. ACS Chemical Biology 11(9):

2588e2595. https://doi.org/10.1021/acschembio.6b00602.

[10] Prentice, B.M., Hart, N.J., Phillips, N., Haliyur, R., Judd, A., Armandala, R.,

et al., 2019. Imaging mass spectrometry enables molecular profiling of mouse

and human pancreatic tissue. Diabetologia 62(6):1036e1047. https://doi.org/

10.1007/s00125-019-4855-8.

[11] Feuchtinger, A., Stiehler, T., Jütting, U., Marjanovic, G., Luber, B., Langer, R.,

et al., 2014. Image analysis of immunohistochemistry is superior to visual

scoring as shown for patient outcome of esophageal adenocarcinoma. His-

tochemistry and Cell Biology 143(1):1e9. https://doi.org/10.1007/s00418-

014-1258-2.

[12] Brieu, N., Caie, P., Gavriel, C., Schmidt, G., Harrison, D.J., 2018. Context-

based interpolation of coarse deep learning prediction maps for the seg-

mentation of fine structures in immunofluorescence images (March 2018).

p. 24. https://doi.org/10.1117/12.2292794.

[13] Van De Plas, R., Yang, J., Spraggins, J., Caprioli, R.M., 2015. Image fusion of

mass spectrometry and microscopy: a multimodality paradigm for molecular

tissue mapping. Nature Methods 12(4):366e372. https://doi.org/10.1038/

nmeth.3296.

[14] Neumann, E.K., Comi, T.J., Rubakhin, S.S., Sweedler, J.V., 2019. Lipid hetero-

geneity between astrocytes and neurons revealed by single-cell MALDI-MS

combined with immunocytochemical classification. Angewandte Chemie Inter-

national Edition 58(18):5910e5914. https://doi.org/10.1002/anie.201812892.

[15] Roscioni, S.S., Migliorini, A., Gegg, M., Lickert, H., 2016. Impact of islet ar-

chitecture on b-cell heterogeneity, plasticity and function. Nature Reviews

Endocrinology 12(12):695e709. https://doi.org/10.1038/nrendo.2016.147.

[16] Carrano, A.C., Mulas, F., Zeng, C., Sander, M., 2017. Interrogating islets in

health and disease with single-cell technologies. Molecular Metabolism 6(9):

991e1001. https://doi.org/10.1016/j.molmet.2017.04.012.

[17] Farack, L., Golan, M., Egozi, A., Dezorella, N., Bahar Halpern, K., Ben-Moshe, S.,

et al., 2019. Transcriptional heterogeneity of beta cells in the intact pancreas.

Developmental Cell 48(1):115e125. https://doi.org/10.1016/j.dev-

cel.2018.11.001 e4.

[18] Ly, A., Buck, A., Balluff, B., Sun, N., Gorzolka, K., Feuchtinger, A., et al., 2016.

High-mass-resolution MALDI mass spectrometry imaging of metabolites from

formalin-fixed paraffin-embedded tissue. Nature Protocols 11(8):1428e1443.

https://doi.org/10.1038/nprot.2016.081.

[19] Aichler, M., Borgmann, D., Krumsiek, J., Buck, A., MacDonald, P.E.,

Fox, J.E.M., et al., 2017. N-acyl taurines and acylcarnitines cause an imbal-

ance in insulin synthesis and secretion provoking b cell dysfunction in type 2

diabetes. Cell Metabolism 25(6):1334e1347. https://doi.org/10.1016/

j.cmet.2017.04.012 e4.

[20] Wishart, D.S., Feunang, Y.D., Marcu, A., Guo, A.C., Liang, K., Rosa, V., et al.,

2018. HMDB 4.0 : the human metabolome database for 2018. Nucleic Acids

Research 46:608e617. https://doi.org/10.1093/nar/gkx1089 (November

2017).

[21] Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M.,

Pietzsch, T., et al., 2012. Fiji: an open-source platform for biological-image

analysis. Nature Methods 9(7):676e682. https://doi.org/10.1038/

nmeth.2019.

[22] Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., et al.,

2003. Cytoscape: a software environment for integrated models of biomole-

cular interaction networks. Genome Research 13(11):2498e2504. https://

doi.org/10.1101/gr.1239303.

[23] Kriegsmann, K., Longuespée, R., Hundemer, M., Zgorzelski, C., Casadonte, R.,

Schwamborn, K., et al., 2019. Combined immunohistochemistry after mass

spectrometry imaging for superior spatial information. Proteomics - Clinical

Applications 13(1):1e8. https://doi.org/10.1002/prca.201800035.

[24] Kaya, I., Michno, W., Brinet, D., Iacone, Y., Zanni, G., Blennow, K., et al., 2017.

Histology-compatible MALDI mass spectrometry based imaging of neuronal

lipids for subsequent immunofluorescent staining. Analytical Chemistry 89(8):

4685e4694. https://doi.org/10.1021/acs.analchem.7b00313.

[25] Da Silva Xavier, G., Rutter, G.A., 2019. Metabolic and functional heterogeneity

in pancreatic b cells. Journal of Molecular Biology. https://doi.org/10.1016/

j.jmb.2019.08.005.

[26] Van Schravendijk, C.F.H., Kiekens, R., Pipeleers, D.G., 1992. Pancreatic b cell

heterogeneity in glucose-induced insulin secretion. Journal of Biological

Chemistry 267(30):21344e21348.

[27] Strott, C.A., Higashi, Y., 2003. Cholesterol sulfate in human physiology: what’s

it all about? Journal of Lipid Research 44(7):1268e1278 https://doi.org/

10.1194/jlr.R300005-JLR200.

[28] Dirkx, R., Solimena, M., 2012. Cholesterol-enriched membrane rafts and in-

sulin secretion. Journal of Diabetes Investigation 3(4):339e346. https://

doi.org/10.1111/j.2040-1124.2012.00200.x.

[29] Takahashi, T., Suzuki, T., 2012. Role of sulfatide in normal and pathological

cells and tissues. Journal of Lipid Research 53(8):1437e1450. https://doi.org/

10.1194/jlr.R026682.

[30] Boslem, E., Meikle, P.J., Biden, T.J., 2012. Roles of ceramide and sphingo-

lipids in pancreatic b-cell function and dysfunction. Islets 4(3):177e187.

https://doi.org/10.4161/isl.20102.

[31] Holm, L.J., Krogvold, L., Hasselby, J.P., Kaur, S., Claessens, L.A.,

Russell, M.A., et al., 2018. Abnormal islet sphingolipid metabolism in type 1

diabetes. Diabetologia 61(7):1650e1661. https://doi.org/10.1007/s00125-

018-4614-2.

[32] Lee, H.E., Park, K.U., Yoo, S.B., Nam, S.K., Park, D.J., Kim, H.-H., et al., 2013.

Clinical significance of intratumoral HER2 heterogeneity in gastric cancer.

European Journal of Cancer 49(6):1448e1457. https://doi.org/10.1016/

j.ejca.2012.10.018.

[33] Kurokawa, Y., Matsuura, N., Kimura, Y., Adachi, S., Fujita, J., Imamura, H.,

et al., 2015. Multicenter large-scale study of prognostic impact of HER2

expression in patients with resectable gastric cancer. Gastric Cancer 18(4):

691e697. https://doi.org/10.1007/s10120-014-0430-7.

[34] Ahn, S., Ahn, S., van Vrancken, M., Lee, M., Ha, S.Y., Lee, H., et al., 2015.

Ideal number of biopsy tumor fragments for predicting HER2 status in gastric

carcinoma resection specimens. Oncotarget 6(35):38372e38380. https://

doi.org/10.18632/oncotarget.5368.

[35] Yagi, S., Wakatsuki, T., Yamamoto, N., Chin, K., Takahari, D., Ogura, M., et al.,

2019. Clinical significance of intratumoral HER2 heterogeneity on trastuzumab

efficacy using endoscopic biopsy specimens in patients with advanced HER2

positive gastric cancer. Gastric Cancer 22(3):518e525. https://doi.org/

10.1007/s10120-018-0887-x.

[36] Lee, H.J., Kim, J.Y., Park, S.Y., Park, I.A., Song, I.H., Yu, J.H., et al., 2015.

Clinicopathologic significance of the intratumoral heterogeneity of HER2 gene

amplification in HER2-positive breast cancer patients treated with adjuvant

trastuzumab. American Journal of Clinical Pathology 144(4):570e578. https://

doi.org/10.1309/AJCP51HCGPOPWSCY.

[37] Wakatsuki, T., Yamamoto, N., Sano, T., Chin, K., Kawachi, H., Takahari, D.,

et al., 2018. Clinical impact of intratumoral HER2 heterogeneity on trastuzumab

efficacy in patients with HER2-positive gastric cancer. Journal of Gastroenter-

ology 53(11):1186e1195. https://doi.org/10.1007/s00535-018-1464-0.

[38] Kaito, A., Kuwata, T., Tokunaga, M., Shitara, K., Sato, R., Akimoto, T., et al.,

2019. HER2 heterogeneity is a poor prognosticator for HER2-positive gastric

cancer. World Journal of Clinical Cases 7(15):1964e1977. https://doi.org/

10.12998/wjcc.v7.i15.1964.

[39] Hanahan, D., Weinberg, R.a., 2011. Hallmarks of cancer: the next generation.

Cell 144(5):646e674. https://doi.org/10.1016/j.cell.2011.02.013.

Original Article

12 MOLECULAR METABOLISM 36 (2020) 100953 � 2020 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

53



[40] Arifin, S.A., Falasca, M., 2016. Lysophosphatidylinositol signalling and

metabolic diseases. Metabolites 6(1):1e11. https://doi.org/10.3390/

metabo6010006.

[41] Bernier, M., Catazaro, J., Singh, N.S., Wnorowski, A., Boguszewska-

Czubara, A., Jozwiak, K., et al., 2017. GPR55 receptor antagonist decreases

glycolytic activity in PANC-1 pancreatic cancer cell line and tumor xenografts.

International Journal of Cancer 141(10):2131e2142. https://doi.org/10.1002/

ijc.30904.

[42] Dai, C., Arceo, J., Arnold, J., Sreekumar, A., Dovichi, N.J., Li, J., et al., 2018.

Metabolomics of oncogene-specific metabolic reprogramming during breast

cancer. Cancer & Metabolism 6(5):1e17. https://doi.org/10.1186/s40170-

018-0175-6.

[43] Prade, V.M., Kunzke, T., Feuchtinger, A., Rohm, M., Luber, B., Lordick, F.,

et al., 2020. MALDI FTICR MS imaging data of pancreatic mouse tissue.

https://doi.org/10.5281/zenodo.3607915.

MOLECULAR METABOLISM 36 (2020) 100953 � 2020 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

13

54



3.3. Exogenous compounds in patients with lung cancer

3.3. Patterns of carbon-bound exogenous compounds in
patients with lung cancer and association with disease
pathophysiology

The publication "Patterns of carbon-bound exogenous compounds in patients with lung
cancer and association with disease pathophysiology" [3] examines the cancer metabolism
in tissues derived from patients with lung cancer by applying the improved spatial
metabolomics method [2]. It has been shown that exogenous metabolites derived from
the environment accumulate in a patient’s lungs over time [96, 97]; however, the exact
localization in lung tissues was so far unknown. A multimodal examination of protein
expression by multiplex IHC to automatically distinguish tumor cells from tumor stroma
and spatial metabolomics by MALDI MS imaging was consulted to address the question
of the exact localization of exogenous metabolites in patient’s lungs. We reveal for the
first time that tobacco-associated exogenous metabolites were localized at anthracotic
pigments, and these compounds are significantly correlating with PD-L1 expression and
other tumor biological features. This knowledge substantially improves our understanding
of lung cancer pathophysiology since anthracotic pigments are so far an underrated factor
for disease progression.

I am sharing the first authorship with my former colleague Verena M. Prade. For this
publication, I performed all spatial metabolomics and validation experiments. I calculated
the statistics, prepared all figures, and wrote the original draft of the manuscript with
Verena M. Prade. Furthermore, I conceived the study design with Verena M. Prade,
Sabina Berezowska, and Axel Walch.
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ABSTRACT
◥

Asymptomatic anthracosis is the accumulation of black carbon
particles in adult human lungs. It is a common occurrence, but the
pathophysiologic significance of anthracosis is debatable. Using
in situ high mass resolution matrix-assisted laser desorption/
ionization (MALDI) fourier-transform ion cyclotron resonance
(FT-ICR) mass spectrometry imaging analysis, we discovered
noxious carbon-bound exogenous compounds, such as polycyclic
aromatic hydrocarbons (PAH), tobacco-specific nitrosamines, or
aromatic amines, in a series of 330 patients with lung cancer in
highly variable and unique patterns. The characteristic nature of
carbon-bound exogenous compounds had a strong association
with patient outcome, tumor progression, the tumor immune
microenvironment, programmed death-ligand 1 (PD-L1) expres-
sion, and DNA damage. Spatial correlation network analyses

revealed substantial differences in the metabolome of tumor
cells compared with tumor stroma depending on carbon-
bound exogenous compounds. Overall, the bioactive pool of
exogenous compounds is associated with several changes in lung
cancer pathophysiology and correlates with patient outcome.
Given the high prevalence of anthracosis in the lungs of adult
humans, future work should investigate the role of carbon-bound
exogenous compounds in lung carcinogenesis and lung cancer
therapy.

Significance: This study identifies a bioactive pool of carbon-
bound exogenous compounds in patient tissues associated with
several tumor biological features, contributing to an improved
understanding of drivers of lung cancer pathophysiology.

Introduction
Asymptomatic anthracosis is themacroscopically and histologically

visible black discoloration resulting from the deposition of black
carbon particles in various anatomical locations of human lungs.
Associated with age, environmental pollution, and smoking load,
anthracosis can serve as an index of lifetime exposure to exogenous
factors (1). Studies have shown lungs of heavy smokers to exhibit more
pronounced anthracosis (2) and an association with lung carcinogen-
esis or cancer progression (3, 4). Others have shown cigarette smoke
not to be a risk factor for anthracosis and found no epidemiologic or
etiologic link with lung cancer (5).

The highly complex and heterogeneous chemical composition
of black carbon particles comprises numerous organic and inor-

ganic compounds, including carbon, silica, aluminum, and iron
oxide (5, 6). Black carbon particles can bind potentially toxic or
carcinogenic compounds present in air pollutants, soot, dust, or
tobacco smoke (2, 7, 8). Furthermore, black carbon particles are
carriers of toxic chemicals, such as polycyclic aromatic hydro-
carbons (PAH) and nicotine-derived nitrosamine ketones, to
the lung, immune cells, and systemic blood circulation (9). The
toxins that were originally thought to be chemically inert can be
retained, released, or metabolized over a long period of time (10).
Although extensively researched, the effects and interplay of
carbon particles in anthracosis and exogenous compounds within
their natural cellular and extracellular context of human lung
tissue are unexplored and challenging due to the complex histo-
logic interrelationships.
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Mass spectrometry imaging (MSI) has gained significant relevance
in biomedical research and reveals the discrete distribution of com-
pounds and their related metabolites. MSI has high molecular spec-
ificity and allows comprehensive, multiplexed detection and localiza-
tion of thousands of endogenousmetabolites directly in tissues (11). In
a very recent study, MSI was applied onmice to characterize the in situ
organ distribution of intratracheal-instilled and intravenously injected
carbon particles, revealing surface-adsorbed aromatic hydrocar-
bons (12). The toxicologic and pathologic findings based on studies
of the molecular and cellular processes induced by toxins are impor-
tant to achieve a mechanistic understanding. One of the strengths of
MSI is its ability to directly overlay molecular information with tissue
sections to correlatively compare molecular and histologic informa-
tion. Therefore, MSI can provide novel insights into the effects and
interactions of anthracosis, compounds, and endogenous metabolites
within their natural cellular and extracellular context in human lung
tissue.

Using in situ high mass resolution matrix-assisted laser desorption/
ionization (MALDI) fourier-transform ion cyclotron resonance
(FT-ICR) MSI analysis, we report carbon-bound exogenous com-
pounds in a series of 330 patients with lung cancer. The spatial
distribution of compounds like PAHs, tobacco-specific nitrosamines,
or aromatic amines, as well as their impact on patient outcome, tumor
progression, composition of intratumoral immune cells, programmed
death-ligand 1 (PD-L1) expression, and DNA damage is examined.
Furthermore, we investigatemetabolic differences between tumor cells
and the tumor microenvironment and illuminate the relationship of
concentration and composition of black carbon pigments in patients
with lung cancer.

Materials and Methods
Patients with squamous cell carcinoma and tissues

We retrospectively analyzed 330 consecutive patients with primary
resected squamous cell carcinoma (SCC), diagnosed at the Institute of
Pathology, University of Bern without previous or concomitant diag-
nosis of SCC of other organs, to reliably exclude metastatic lung
disease, as previously described (13). The study was done in accor-
dance with theDeclaration ofHelsinki, and the local Ethics Committee
of the Canton of Bern approved the study and waived the requirement
forwritten informed consent (KEK200/14). The cohort was assembled
according to pathology files and validated according to clinical files.
The histology of all cases was reassessed according to current World
Health Organization (WHO) guidelines for diagnosis of SCC (14).
All tumors were restaged according to the Union for International
Cancer Control (UICC) 2017, 8th edition tumor–node–metastasis
(TNM) classification (15). Overall survival (OS) was defined as the
time from the resection to death of any cause. For baseline char-
acteristics, see Supplementary Table S1. A tissue microarray was
constructed from formalin-fixed, paraffin-embedded (FFPE) tissue
blocks as described before (13). In short, slides were scanned and
digitally annotated with subsequent automatic transferal of the
punches to a tissue microarray (TMA) receptor block, which was
used for further analysis. Additionally, full tissue sections were used
for comparison between tissue microarray cores and full tissue
sections.

Patients with idiopathic pulmonary fibrosis and tissues
Idiopathic pulmonary fibrosis (IPF) tissues were collected at the

Institute of Pathology, HannoverMedical School, Germany (FFPE), as
previously described (16). All patients provided written informed

consent, and the study was done in accordance with the Declaration
of Helsinki. All experiments were performed in accordance with
relevant guidelines and regulations (ethical votes #1691–2013 or
#3381–2016, Hannover Medical School). In brief, the specimens for
primary surgical resection were obtained frompatients diagnosedwith
lung IPF (n ¼ 10) and preserved as FFPE material.

In addition, explanted lung tissue frompatients with IPF (n¼ 4) and
healthy organ donors (n ¼ 4) were inflated with air to a transpul-
monary pressure of 30 cm H2O, then deflated to 10 cm H2O while
freezing in liquid nitrogen vapor; frozen sampleswere stored at�80�C.
This study was approved by the hospital ethics and university biosafety
committees in Leuven, Belgium (ML6385). IPF tissues and healthy
lung tissues were collected at KU Leuven, as previously described (17).
All patients provided written informed consent, and the study was
done in accordance with the Declaration of Helsinki. For baseline
characteristics, see Supplementary Table S2.

Quantification of anthracotic pigment
Tissues were counterstained with nuclear red stain (Fluka, 60700,

0.1%). Stained tissue sections were scanned using an AxioScan.Z1
digital slide scanner (Zeiss) equipped with a 20x magnification objec-
tive. Quantification of the amount of anthracotic pigments was
determined by digital image analysis using the software Definiens
Developer XD2 (Definiens AG), following a previously published
procedure (18). The calculated parameter was the ratio of pigment
area respective to total tissue area for each core.

High mass resolution MALDI FT-ICR MSI
High mass resolution MALDI FT-ICR MSI was performed as

previously described (19, 20). In brief, FFPE sections (4 mm) or fresh
frozen sections (12mm)weremounted onto indium–tin–oxide (ITO)–
coated glass slides (Bruker Daltonik). The air-dried tissue sections
were spray-coated with 10 mg/mL of 9-aminoacridine hydrochloride
monohydrate matrix (Sigma–Aldrich) in methanol (70%) using the
SunCollect sprayer (Sunchrom). Prior to matrix application, FFPE
tissue sections were incubated additionally for 1 hour at 70�C and
deparaffinized in xylene (2 � 8 minutes). Spray-coating of the matrix
was conducted in 8 passes (ascending flow rates 10 mL/minute, 20 mL/
minute, and 30 mL/minute for layers 1–3 and for layers 4–8with 40mL/
minute), utilizing 2-mm line distance and a spray velocity of 900 mm/
minute.

Metabolites were detected in negative-ionmode on a 7 T Solarix XR
FT-ICR mass spectrometer (Bruker Daltonik) equipped with a dual
electrospray ionization MALDI (ESI-MALDI) source and a Smart-
Beam-II Nd: YAG (355 nm) laser. Mass spectra were acquired within
m/z 50 to 1,100 and a lateral resolution of 50 mm. L-Arginine was used
for external calibration in the electrospray ionization (ESI) mode. The
SCiLS lab software 2020b was used to export the picked peaks of the
mass spectra as processed and root mean square normalized imzML
files.

The SPACiAL workflow was used as previously described to
automatically annotate tumor and stroma regions in SCC tissues (21).
In short, after MALDI-MSI analysis, the 9-aminoacridine matrix was
removed with ethanol (70%) for 5 minutes from tissue sections,
followed by IHC staining. Double staining of the TMAwas performed
using pan-cytokeratin [monoclonal mouse pan-cytokeratin plus
(AE1/AE3þ8/18), 1:75, catalog no. CM162; Biocare Medical, RRID:
AB_10582491) and vimentin (Abcam, clone ab92547, 1:500, RRID:
AB_10562134). Regions positive for pan-cytokeratin were defined as
tumor. Regions negative for pan-cytokeratin but positive for vimentin
were defined as stroma.
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Discovery and visualization of exogenous and endogenous
compounds

In order to discover and visualize exogenous and endogenous
compounds, mass spectra in and near anthracotic pigments were
extracted using the SCiLS lab software 2020b. Annotations were
performed using Kyoto Encyclopedia of Genes and Genomes (KEGG,
RRID: SCR_012773; ref. 22), The Human Metabolome Database
(HMDB; RRID: SCR_007712; ref. 23), and Hoffmann analytes (24).

We performed a stringent annotation of molecules using the follow-
ing inclusion criteria: (i) The molecular mass of endogenous and
exogenous compounds must be between 50 Da and 1100 Da; (ii) the
signal to noise ratio must be above 2; (iii) for exogenous compounds,
literature evidence must exist for their presence in tobacco smoke.
Exclusion criteria were: (i) Signals that were annotated as isotopes were
excluded; (ii) as previously published, substances with HMDB descrip-
tions containing a reference to drugs, pesticides, or other implausible
descriptions were excluded (21). M-H, M-H2O-H, and MþCl as
negative adducts with a mass tolerance of 4 ppm were prioritized.

On-tissue measurement of benzo[a]pyrene
Benzo[a]pyrene was purchased from Sigma Aldrich and diluted in

xylene. One microliter benzo[a]pyrene solution was spotted onto
human fresh frozen lung tissue sections between the absolute amounts
of 60 nmol–0.6 nmol benzo[a]pyrene. Matrix application and high
mass resolution MALDI FT-ICR MSI was performed as described
before. Stack plot was created by flexImaging (v. 5.0, Bruker), and
overlayed peak spectra were illustrated in mMass (v. 5.5.0). Curve
fitting was performed with GraphPad Prism (v. 9.2.0).

IHC staining
IHC staining for cluster of differentiation 3 (CD3), cluster of

differentiation 8 (CD8), and PD-L1 was performed as previously
described (13) on consecutive sections. In brief, an automated immu-
nostainer (Bond III, Leica Bio-systems) with anti-CD3 (Abcam Cam-
bridge; clone SP7, 1:400, RRID: AB_443425), anti-CD8 (Dako, clone
C8/144B, 1:100, RRID: AB_2075537), and anti-PD-L1 (Cell Signaling
Technology, clone E1L3N, 1:400, RRID: AB_2687655) was used. The
numbers of CD8þ and CD3þ tumor infiltrating lymphocytes were
determined using image analysis (Aperio Image Scope) and adjusted
for core completeness. PD-L1 expression was assessed as the intensity
of membranous staining by a pathologist (S. Berezowska).

Immunofluorescence analysis of gH2AX
Immunofluorescenceanalysisof gH2AXexpressionwasachievedusing

primary antibodies against pH2A.X (Cell Signaling Technology; catalog
no. 2577, 1:400, RRID: AB_2118010) and pan-cytokeratin [monoclonal
mouse pan-cytokeratin plus (AE1/AE3þ8/18), 1:75, catalog no. CM162;
Biocare Medical, RRID: AB_10582491) on consecutive sections. Slides
were digitized at 20� objective magnification using an Axio Scan.Z1
(Zeiss). Quantification was performed by digital image analysis in Defin-
iensDeveloperXD2, following a previously published procedure (18). The
quantified parameter was the ratio of gH2AX and pan-cytokeratin-
positive cells to the total number of pan-cytokeratin-positive cells.

Statistical analysis
Correlations were calculated using pairwise Spearman rank-order

correlation (Python 3.7, SciPy 1.2.0, RRID: SCR_008058). Spearman P
values were adjusted with Benjamini–Hochberg correction (Python
3.7, StatsModels 0.9.0). To determine significant differences between
UICC TNM stages, Kruskal–Wallis test by ranks (Python 3.7, SciPy
1.2.0) and posthoc Dunnmultiple comparison test (Python 3.7, scikit-

posthocs 0.6.1) were used in conjunction with Benjamini–Hochberg
correction. Cutoff-optimized survival analyses were performed using a
Kaplan–Meier Fitter and log–rank test (Python 3.7, lifelines 0.24.8).
Cutoff-optimized in this context means that the threshold for low and
high abundance of a compoundwas chosen such that the P value in the
resulting Kaplan–Meier curve is minimal, while ensuring robust
results for similar cutoffs.

We investigated the association between the survival time of
patients and several predictor variables. The Cox proportional hazards
model is a regression model commonly used in medical research for
this purpose. The multivariate analysis was performed using the Cox
proportional hazards model (Python 3.8, lifelines 0.25.7) using the
same cutoffs as for Kaplan–Meier Fitter. Categorical data were used for
the Cox proportional hazards model. Compounds that passed the
nonproportional test were included in the model (Python 3.8, lifelines
0.25.7). All survival calculations were based on OS.

Spatial correlation networks
Correlation networks were created with Cytoscape (v. 3.8.0, RRID:

SCR_003032; ref. 25). All networks were visualized using the edge
weighted spring embedded layout and the absolute value of the
correlation coefficient calculated as described above. Compounds with
at least one significant correlation are shown (P < 0.05).

Circular plots
Circular plots were generated using Circos (v.0.69.8, RRID:

SCR_011798; ref. 26). The metabolites of interest and correlations
with the exogenous compounds were extracted from the spatial
correlation networks. Pathway information for each metabolite was
extracted from KEGG (22). If available, common compound name
abbreviations were retrieved from HMDB (23) or KEGG databases.

Results
Carbon pigment is common not only in normal lung tissue, but
also in lung SCC

Carbon deposits can be seenmacroscopically (Fig. 1A), often found
in the center of the tumor (27), beyond parenchymal (Fig. 1B) and
pleural anthracosis (Fig. 1C). They are found intratumorally dispersed
with varying degrees (Fig. 1D and E). Using digital image analysis,
anthracotic pigment was quantified in SCC tissues of 313 patients
(Fig. 1F–H) for subsequent statistical analyses (e.g., correlations with
clinical parameters).

Concentration of carbon pigment in lung SCCdoes not correlate
with smoking, DNA damage, presence of lymphocytes, PD-L1
expression, or patient survival

There is no significant association between the amount of carbon
pigment and smoking behavior (pack-years, P ¼ 0.91), DNA damage
(gH2AX expression, P ¼ 0.61), lymphocyte number (CD3, P ¼ 0.42;
and CD8, P ¼ 0.67), PD-L1 expression (P ¼ 0.07), and patient OS
(P ¼ 0.23, cut-off ¼ 0.005%; Fig. 1I–K). There are no significant
correlations for pigment quantity. Next, the molecular composition
was further investigated.

Exogenous compounds such as PAHs, tobacco-specific
nitrosamines, and aromatic amines are highly abundant in and
nearby carbon pigment

Using high mass resolution MALDI FT-ICR MSI, 11 exogenous
compounds were detected at different abundances throughout the
tissues. Importantly, the abundance is highest in and nearby the
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anthracotic pigment (Fig. 2). The exogenous compounds can be
grouped into four classes: PAHs, tobacco-specific nitrosamines, aro-
matic amines, and organohalogens (Fig. 2A).

Five PAHs, benzo[a]pyrene (m/z: 287.0639), dibenz(a,h)anthracene
(m/z: 313.0800), dibenzo[a,l]pyrene (m/z: 337.0775), benzo[b]pyridine
(m/z: 128.0504), and 7-OH-12-methylbenz[a]anthracene sulfate (m/z:
351.0692) are particularly rich in carbon pigment (Fig. 2). Within
pigment interspersed tissue, 3 tobacco-specific nitrosamines were
detected: 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone [nicotine-
derived nitrosamine ketone (NNK), m/z: 242.0702], 4-(methylnitrosa-
mino)-1-(3-pyridyl)-1-butanol (NNAL, m/z: 208.1091), and NNAL-N-
glucuronide (m/z: 367.1373;Fig. 2B andC).N-hydroxy-4-aminobiphenyl
(m/z: 220.0526) and N-hydroxy-MeIQx (m/z: 264.0650) are aromatic
amines and dichloroethane (m/z: 96.9617) is an organohalogen. To
determine the quantity of benzo[a]pyrene as an example, we performed
a spicking experiment. The minimum amount for detecting ben-
zo[a]pyrene in lung tissues is 2 nmol (Supplementary Fig. S1).

In total, the concentration of exogenous compounds correlates with
the amount of anthracotic pigment for benzo[a]pyrene (P ¼ 0.0009),
dibenz(a,h)anthracene (P¼ 0.0056), dibenzo[a,l]pyrene (P¼ 0.0405),
NNK (P ¼ 0.0316), NNAL (P ¼ 0.0338), and NNAL-N-glucuronide
(P ¼ 0.0257). The correlations between carbon pigment and exoge-
nous compounds are all positive. In the next, we analyzed the patterns
of the exogenous compounds in the carbon pigment within and
between the individual patients.

The chemical composition of carbon pigment is highly variable
and unique for each patient

The chemical composition of carbon pigment is heterogeneous in
terms of the pattern and abundance of the compounds within the
different areas of lung tissue (Fig. 3; Fig. 3A; Supplementary Fig. S2
and S3). The variability of the chemical composition is also visible at
the microscopic scale: Fig. 3B shows SCC regions from two patients
with unique compositions of carbon-bound compounds. Although the
carbon pigments of both regions exhibit a high amount of dibenz(a,h)
anthracene, other compounds are present at very different abun-
dances. A multicolor visualization of NNK, NNAL, and NNAL-N-
glucuronide also shows an entirely different chemical signature
(Fig. 3C; Supplementary Fig. S4). The chemical composition was
shown to be unique and heterogenous within and between patients.
Next, we investigated the differences within the tissue compartments
stratified to tumor cells and tumor stroma.

Different quantities and qualities of carbon-bound compounds
were found within tumor and stroma

We used our recently published SPACiAL method for immuno-
phenotype-guided separation of tumor and stromal tissue compart-
ments (21) to investigate the associated carbon pigment (Supplemen-
tary Figs. S5 and S6). The amount and prevalence of exogenous
compounds differ between tumor and stromal regions (Fig. 4A;
Supplementary Fig. S7). Most exogenous molecules were more fre-
quently measured in tumor pigments. However, PAHs and tobacco-
specific nitrosamines, if present in stroma, are more abundant there.

The abundance of carbon-bound compounds was next correlated to
tumor features and patient characteristics. Figure 4A is a comparative
representation of the abundance of compounds correlating with
smoking behavior, DNA damage, and immunologic features.

NNK and dichloroethane are associated with smoking behavior
Several carbon-bound compounds correlate with smoking behav-

ior, DNA damage, lymphocyte number, PD-L1 expression, and

tumor progression (Fig. 4). In tumor, NNK and dichloroethane are
significantly associated with smoking behavior (Fig. 4B, P ¼ 0.0114
and P ¼ 0.0215, respectively).

DNA damage in cancer cells and high amounts of PAH are
interrelated

A total of 89.7% of the patients have gH2AX-positive tumor cells,
which is indicative of DNA damage. The PAHs benzo[a]pyrene
(P ¼ 0.0020), dibenz(a,h)anthracene (P ¼ 0.0262), and dibenzo[a,
l]pyrene (P ¼ 0.0432) correlate positively with gH2AX (Fig. 4C).

In tumor tissue, PAHs and NNAL are linked to T-cell infiltration
and PD-L1 expression

In tumor regions, dibenz(a,h)anthracene abundance correlates
negatively with both the overall number of tumor infiltrating T cells
(CD3, P ¼ 0.0429) and CD8 (P ¼ 0.0450; Fig. 4D). In stromal
areas, dibenzo[a,l]pyrene correlates positively with CD3 and CD8
(P ¼ 0.0292 and P ¼ 0.0156, respectively). The intensity of tumoral
PD-L1 expression correlates negatively with NNAL abundance
(P ¼ 0.0489).

Tumor stage is associatedwith benzo[a]pyrene anddibenz(a,h)
anthracene

Benzo[a]pyrene in stroma regions (P ¼ 0.0364) and dibenz(a,h)
anthracene in tumor and stroma regions (P ¼ 0.0400, P ¼ 0.0439,
respectively) are associated with UICC tumor stages (Fig. 4E). In
contrast to carbon-bound PAHs, the amount of carbon pigment shows
no association with tumor stage (P ¼ 0.1729).

Patient outcome correlates with amount and spatial location of
PAHs, NNKs, and aromatic amines

Two PAHs, benzo[b]pyridine (tumor, P¼ 0.0103) and dibenz(a,h)
anthracene (stroma, P ¼ 0.0270) correlate significantly with OS
(Fig. 5A, see also Supplementary Figs. S8 and S9). Additionally, two
tobacco-specific nitrosamines, NNK (P ¼ 0.0071) and NNAL-N-
glucuronide (P ¼ 0.0298), are significantly correlated with survival
(Fig. 5B). However, a higher concentration of NNK is associated with
poor OS, while its detoxified form, NNAL-N-glucuronide, is signif-
icantly linked with better OS. In contrast, higher amounts of the two
aromatic amines, N-hydroxy-MeIQx and N-hydroxy-4-aminobiphe-
nyl, are significantly correlated with poor patient outcome, both in
tumor and in stroma (Fig. 5C).

We also tested the correlation of CD3, CD8, PD-L1, and pack-years
with patient survival. High expression of CD3 (P ¼ 0.0139) and CD8
(P ¼ 0.0275) in tumor stroma regions, low expression of PD-L1 in
tumor cells (P ¼ 0.0021), and low pack-years (P ¼ 0.0003) are
associated with good survival (Supplementary Fig. S10).

PAH, NNK, and aromatic amines are independent factors for OS
We investigated the association between the survival time of

patients and several predictor variables and used the Cox proportional
hazardsmodel. Benzo[b]pyridine (P¼ 0.0019), dibenz(a,h)anthracene
(P¼ 0.0150), NNK (P¼ 0.0043), andN-hydroxy-MeIQx (P¼ 0.0008)
are independent factors for OS (Fig. 5D). The highest HR was
determined for NNK in stroma (HR ¼ 5.0263) and N-hydroxy-
MeIQx in tumor (HR ¼ 3.0943), indicating that a higher amount of
these compounds is deleterious.

After finding significant correlations of individual carbon-bound
compounds with tumor features and patient characteristics, we inves-
tigated spatial correlations of exogenous and endogenous compounds
with a focus on pathway and network analyses.
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Spatial correlation networks of metabolites and exogenous
compounds reveal substantially different metabolism in tumor
and stroma regions

To investigate the metabolic changes of tumor cells associated with
exogenous compound quantities, we evaluated the spatial correlation
networks of metabolites in 330 patient tissues. Dense clusters within the

networks indicate stronger spatial correlation, and therefore, dependen-
cies between quantities of exogenous and endogenous compounds. Pixel-
wise spatial correlations within and between metabolites and eleven
exogenous compounds were calculated and filtered (P < 0.05). In the two
resulting networks, the spatial correlation of 133 metabolites within
tumor cells and 159 metabolites in the stroma are visualized (Fig. 6).

Figure 1.

Carbon pigment is abundant in both normal-lung and pulmonary SCC tissue. A, Gross appearance of lung SCC tissue. The tumor tissue has grayish, focal areas with
carbon pigment deposits at the center (a). Additionally, anthracosiswith carbon deposits are seen in lungparenchyma (b) andpleura (c).B andC,Histology of normal
lung tissue exhibiting carbon pigment deposits (hematoxylin and eosin staining). The pigment accumulates in the cytoplasm of macrophages in the bronchial wall.
D and E, Histopathology of lung SCC tissue with dispersed intratumoral carbon deposits. High magnification shows the close spatial relationship of carbon particles
and cancer cells. F andG,Carbon deposits in SCC (nuclear red stain) and segmentation (blue) by image analysis for the quantification of carbon particles. Subsequent
analyses are based on pigment quantification (H–K). H, Distribution of pigment amount within tumor tissue. Patients can be divided into those with no, low, or
high pigment content. I, Distribution of feature characteristics relating to pigment content, smoking behavior, DNA damage, and CD3, CD8, and PD-L1 expression.
J, Spearman rank correlation of the pigment area with feature characteristics, showing no significant correlation. K, Survival analysis showing that pigment
abundance does not correlate with patient survival (n ¼ 234; cutoff ¼ 0.005%).
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Figure 2.

Carbon-bound exogenous compounds detected with high mass resolution MALDI FT-ICR MSI. A, Skyline spectrum showing maximum peak intensities between 90
and 375 dalton. Exogenous compounds are highlighted and colored according to their respective class: PAHs (blue), tobacco-specific nitrosamines (red), aromatic
amines (green), and anorganohalogen (gray).Max.,maximum.B,Tissue region featuring high carbonpigment content (top left; nuclear red stain) and iondistribution
of dibenzo[a, l]pyrene, dibenz(a,h)anthracene, NNK, NNAL, and NNAL-N-glucuronide. Note that all five show a close spatial relationship to the pigment, but also
differing distribution patterns. Although NNK has focal high intensity in dense carbon deposits, NNAL-N-glucuronide is conversely distributed within the pigment.
C, Tumor tissue region featuring extensive intratumoral carbon pigment deposits (top left; nuclear red stain). Spatial organization of dibenzo[a, l]pyrene, dibenz(a,h)
anthracene, NNK, benzo[a]pyrene, and 7-OH-12-methylbenz[a]anthracene sulfate and the intratumoral carbon pigment. There are obvious differences in the
abundance and distribution pattern of PAHs and NNK and that of carbon pigment, indicating intratumoral heterogeneity.
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Figure 3.

Inter- and intratumoral heterogeneity in the chemical composition of carbon pigment in SCC. A, Signal intensities of carbon-bound compounds in the tissues of
10 patients, illustrating the unique and heterogeneous chemical composition of carbon pigment. See Supplementary Fig. S3 for all patients. B, SCC tissues from
twopatientswith comparable intratumoral carbon depositions (nuclear red stains) and distribution of carbon-bound compounds: NNK, NNAL, NNAL-N-glucuronide,
dibenz(a,h)anthracene, benzo[a]pyrene, and 7-OH-12-methylbenz[a]anthracene sulfate. C, Visualization of NNK, NNAL, and NNAL-N-glucuronide demonstrates
heterogeneity within one patient tissue. See Supplementary Fig. S4 for increased visibility.
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In tumor, N-hydroxy-MeIQx is associated with altered lipid and
glutathione metabolism

The spatial correlation network in tumor reveals no distinct cluster
of exogenous compounds (Fig. 6A). N-Hydroxy-MeIQx, which has
the most striking effect on patient survival, was detected in a dense
cluster of metabolites (maximum rS¼ 0.79), featuring a higher spatial
positive correlation with glutathione (GSH, rS ¼ 0.408).

Most endogenous metabolites within the cluster of interest can be
associated with lipid metabolism (41.2%), whereby the strongest,
albeit not very pronounced positive correlations to N-hydroxy-
MeIQx were found for 9 (10)-EpOME (9,10-EOA, rS ¼ 0.166),
sn-glycero-3-phosphoethanolamine (NGPE, rS ¼ 0.173), and sn-
glycerol 3-phosphate (G3P, rS ¼ 0.185). The second most repre-
sented pathway is nucleotide metabolism (17.6%). Higher quantities

Figure 4.

Concentration and prevalence of carbon-bound exogenous compounds and their correlation with smoking behavior, DNA damage, lymphocyte number, PD-L1
expression, and tumor progression.A, Intensity distribution of carbon-bound compounds in the tumor (T) and stromal (S) regions. The noncumulative histograms are
visualized as heatmaps to facilitate visual comparison. Because the logarithmic intensities are shown, the counts of intensity¼ 0 are separately shown on the left of
each row. To the right of each row themaximumnumber of patients in a bin is shown. Min., minimum.B, Significant correlation betweenNNK and dichloroethane and
pack-years (left) and distribution of pack-years (noncumulative histogram, right).C, Significant correlation between PAH and gH2AX (left) and distribution of gH2AX
percent positive cells (noncumulative histogram, right). D, Significant correlation between compounds with immunologic features (top left) and distribution of the
number of positive cells or expression per feature characteristic (histograms). E, Benzo[a]pyrene (S), dibenz(a,h)anthracene (T), and dibenz(a,h)anthracene (S) but
not carbon pigment are associated with the UICC tumor stage.
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Figure 5.

The abundance of carbon-bound exogenous compounds is an independent factor for patient outcome.A–C,Kaplan–Meier survival analyses (left) and distribution of
compound abundance (noncumulative histograms, right), including the intensity threshold used to split the collective (yellow) for PAHs (A), nitrosamines (B), and
aromatic amines (C). On the right, the y-axes are annotated with the maximum frequency per distribution. Only compounds with a significant separation are shown
here (P <0.05). All Kaplan–Meier curves aswell as the histograms for all exogenous compounds can be found in the supplementary data (Supplementary Figs. S8 and
S9). D, Cox proportional hazard model for the shown compounds, with significant separation in the Kaplan–Meier analyses (log–rank test), and which passed the
nonproportional test, as well as the UICC stage. All but two compounds remained significant in multivariate analysis, indicating that they are independent factors for
patient survival. PH, proportional hazards; coef, coefficient.
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of the purine metabolite deoxyinosine-phosphate (dIMP, rS ¼ 0.159)
and the pyrimidine metabolites cytidine (Cyd, rS ¼ 0.127) and
deoxycytidine diphosphate (dCDP, rS ¼ 0.151) are associated with
an increased N-hydroxy-MeIQx concentration (Fig. 6A).

In stroma, PAH and tobacco-specific nitrosamines have a strong
impact on amino acid and nucleotide metabolism

The spatial correlation network for the stroma region differs
substantially from the network for the tumor region (Fig. 6B). Six
exogenous molecules are part of a dense cluster together with endog-
enous metabolites. The highest spatial correlation was found between
the two exogenous compounds dibenzo[a,l]pyrene and dibenz(a,h)
anthracene (rS¼ 0.679). Unlike the network for the tumor region,most
of the correlating metabolites in the main cluster take part in amino
acid or nucleotide metabolism.

Four metabolites with a role in amino acid metabolism are
related to tryptophan metabolism. A high abundance of trypto-
phan metabolites is associated with high PAH and tobacco-specific
nitrosamine concentrations. Deoxyadenosine (dA), deoxyinosine
(D-Ino), deoxycytidine (dC), and deoxyuridine (dU) are two
purine and two pyrimidine metabolites from the nucleotide metab-
olism pathway that correlate positively with the exogenous com-
pounds (Fig. 6B).

Carbon-bound exogenous compounds are also present in IPF
In addition to lung cancer, other respiratory pathophysiologic

conditions, such as interstitial lung diseases, have been linked to
environmental pollutants, e.g., due to epigenetic modification (28).
With the analysis of IPF tissue, we aim to highlight, albeit not in depth,
the presence and possible significance of anthracosis on other respi-
ratory pathophysiologic conditions. Similarly to SCC we found inter-
and intrapatient heterogeneity of carbon-bound exogenous com-
pounds in both normal lung parenchyma and IPF. In contrast to the
tumor and tumor stroma, spatial correlation networks for IPF tissues
reveal two clusters of exogenous compounds and endogenous meta-
bolites. One cluster comprises several PAHs including dibenzo[a,
l]pyrene, dibenz(a,h)anthracene, and benzo[a]pyrene, while the other
is a mixture of two PAHs - benzo[b]pyrene and 7-hydroxymethyl-12-
methylbenz[a]anthracene sulfate, one tobacco-specific nitrosamine
and one aromatic amine. Both the spatially correlating endogenous
and exogenous compounds within the clusters and the biological
pathways they are related to show only minor similarity to the tumor
metabolic networks and pathway analysis. See supplementary infor-
mation for details (Supplementary Fig. S11–S14).

Discussion
We have discovered a biologically active pool of carbon-bound

exogenous compounds in lung cancer tissue. High amounts of these
exogenous compounds in various and patient-unique chemical com-
binations were found in and near anthracotic pigment. Although the
detected exogenous compounds are known carcinogens, we show here
for the first time that these exogenous compounds also have a strong
impact on tumor pathophysiology and survival outcome of patients
with lung cancer.

Carbon particles accumulate in human lungs and exhibit a large
surface area as well as specific surface characteristics for the adsorption
of inorganic and organic exogenous compounds (29–31). In mouse
lungs, carbon particles were shown to persist indefinitely (32). The
long-term persistence and bioavailability of carbon-bound exogenous
compounds is supported by further animal studies showing that the

detection of benzo[a]pyrene was possible up to 5.6 months after
incubation (33).

We used in situ high mass resolution MALDI FT-ICRMSI to show
that the chemical composition of carbon particles in human lung
cancer tissue is much more complex than expected. Each patient
showed a unique chemical signature of carbon particles (Fig. 3A). Even
within 1 patient, carbon particles exhibit high chemical heterogeneity
(Fig. 3B). Both extrinsic factors, such as environmental conditions,
and intrinsic factors, such as metabolism of exogenous compounds,
may play a role for the diverse chemical patterns of carbon pigments.
However, our cohort mainly comprises patients with a history of
smoking and SCC is a clear smoker-associated type of cancer (Sup-
plementary Table S1). Hence, the particles analyzed in this study are
likely smoking related. Certain PAHs accumulate in smokers’
lungs (34, 35), however, their localization and pathophysiologic impact
remains unclear. Nevertheless, Tomingas and colleagues demonstrat-
ed a large increase of benzo[a]pyrene in humanbronchial carcinoma in
contrast to adjacent tissue (36). In contrast, our study localized
exogenous compounds in human lungs and illustrates the significance
of these compounds on SCC depending on their spatial localization. In
our patient cohort, NNK, as the most abundant systemic lung car-
cinogen in cigarette smoke (37), showed the strongest correlation with
pack-years (Fig. 4B). Indeed, NNK is derived mainly from tobacco
smoke. In contrast, PAHs can be derived from numerous environ-
mental sources (38), explaining the lack of a significant correlation.

Unique differences in the metabolism of exogenous compounds are
an intrinsic factor for the chemical signature of carbon particles. This is
known in carcinogenesis research, and crucial pathways in PAH
metabolism arguably differ between patients (39, 40). We found that
carbon-bound exogenous compounds are present and bioactive in
tumor tissue beyond carcinogenesis (Figs. 2, 4 and 5), and their
abundance may strongly depend on the metabolic activity in individ-
ual patients. Our observations revealed a high variation in NNK, its
reduced form NNAL, and its detoxification product NNAL-N-
glucuronide (41), suggesting unique metabolic activities in patients
(Fig. 3A).

In our study, an increased concentration of PAHs was associated
with increased DNA damage in tumor cells (Fig. 4C). Another study
focused on carbon particles in mouse lungs and confirmed our finding
that anthracosis is associated with DNA damage (32). Alexandrov and
colleagues showed that tobacco smoking and PAH exposure cause
specific mutations representing the leading mutation signature of lung
cancer (42). High mutational burden is associated with an improved
objective response to anti–Programmed cell death protein 1 (PD-1)
therapy, patient survival, and durable clinical benefit in non–small cell
lung cancers (43). Tumor mutational burden and PD-L1 are used as
predictive markers for immunotherapies. Thus, our data suggests that
these exogenous molecules may influence SCC therapies.

While we found exogenous compounds as toxic molecules of
tobacco smoke and environmental factors, a recent study found the
presence of an exogenous molecule as a drug in anthracosis. Cisplatin
can be accurately detected in tissues using laser ablation inductively
coupled plasma mass spectrometry (LA-ICP-MS) imaging. Green-
halgh and colleagues (44) applied LA-ICP-MS imaging for 3D ex vivo
human explant model and demonstrated for the first time a spatial
correlation between platinum and anthracosis in lung tissue. The
carbon deposits found in lung tissue may affect the movement and
thus the efficacy of cisplatin treatment. The authors conclude that
cisplatin penetration can be predicted and monitored by LA-ICP-MS
imaging as a screening tool (44). This underlines the potential ther-
apeutic implications of anthracosis in non–small cell lung cancer.
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Figure 6.

Spatial correlation between carbon-bound compounds and endogenous metabolites in tumor (n ¼ 313; A) and stroma (n ¼ 268; B) tissue. Nodes in the spatial
correlation networks (left), endogenousmetabolites (white), and carbon-bound compounds (red); edges, positive (blue) and negative (red) spatial correlations,with
edge opacity increasing with the correlation coefficient. Circular plots (right) focus on the highlighted compounds from the networks and exclusively on correlations
with carbon-bound compounds (middle). Tracks: (i) pathway information; (ii) compound abbreviation; (iii) histogram of the minimum/maximum scaled compound
signal intensities. Note that within the stroma, multiple carbon-bound compounds form a dense cluster with endogenous metabolites mainly involved in amino
acid and nucleotide metabolism, whereas in the tumor, only N-hydroxy-MeIQx is part of a cluster of metabolites involved in lipid metabolism. L-cysteate, cysteate;
D-glucose 6-phosphate, G6P; N-hydroxy-MeIQx, OH-MeIQx; glutathione, GSH; (9Z)-stearic acid, 9Z-SA; stearic acid, SA; palmitic acid, PLM; sn-glycerol 3-phosphate,
G3P; sn-glycero-3-phosphoethanolamine, NGPE; 9 (10)-EpOME, 9,10-EOA; cholesterol sulfate, CholS; cytidine, Cyd; D-40-phosphopantothenate, PanP; inositol
1,3,4,5-tetraphosphate, InsP4; CMP-2-aminoethylphosphonate, CMPciliatine; N-acetylornithine, AOR; L-homocysteine, Hcy; 5-hydroxy-L-tryptophan, 5-HTP;
L-kynurenine, L-KYN; L-formylkynurenine, NFK; formyl-N-acetyl-5-methoxykynurenamine, AFMK; pyridoxamine, PM; sedoheptulose 7-phosphate, Sed-7P; ben-
zo[a]pyrene, BP; dibenz(a,h)anthracene, DBahA; dibenzo[a,l]pyrene, DBP; NNAL N-glucuronide, NNAL-NG; 4a-hydroxytetrahydrobiopterin, 4a-HTHB;
2,5-diaminopyrimidine nucleoside triphosphate, DAPNTP; gamma-L-glutamyl-L-cysteine, g-Glu-Cys; deoxyadenosine, dA; deoxyinosine, D-Ino; deoxycytidine, dC;
deoxyuridine, dU; pantothenate, Vit B5.
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Because LA-ICP-MS imaging is capable of measuring metals, it would
be interesting to apply this MSI technology to measure metals in the
anthracotic pigment, which are also present in cigarette smoke (45).

Lymphocytes are known to be associated with harmful com-
pounds in lung cancer tissues. In our study, the infiltration of CD3þ

and CD8þ lymphocytes was correlated with the concentrations of
dibenz(a,h)anthracene and dibenzo[a,l]pyrene (Fig. 4D). Many
PAHs influence patient immunity, as they are important ligands
of the aryl hydrocarbon receptor (AhR) on several immune
cells (46, 47). Systemic AhR activation by an exogenous compound
triggers the suppression of the CD8þ T-cell response in infected
lungs (48). In our study, a suppression of T cells was observed with a
higher concentration of dibenz(a,h)anthracene in tumor regions.
Another study showed that tobacco smoke and benzo[a]pyrene lead
to CD8þ lymphocyte enrichment in mouse lungs, possibly induced
by AhR (49). In this study, a similar effect of lymphocyte enrich-
ment was seen in the stroma regions for high concentrations of
dibenzo[a,l]pyrene.

We have shown for the first time that exogenous compounds have a
strong impact on patient survival (Fig. 5). The presence of NNK,
NNAL-N-glucuronide, and N-hydroxy-4-aminobiphenyl in SCC tis-
sues was associated with patient outcomes. A study on 770 resected
lung cancers revealed poorer prognosis for smokers (50).We observed
the same effect of smoking on survival (Supplementary Fig. S10). All
substances with a significant effect on survival can be associated with
tobacco smoke. Interestingly, the nonmetabolized primary substance
from tobacco smoke, NNK, was associated with poor OS. In contrast,
the detoxified variant of themetabolite, NNAL-N-glucuronide, was an
indicator of a favorable prognosis (Fig. 5B). Hence, glucuronidation
may be worth investigating in more detail for detoxification of
exogenous compounds. This is underlined by another study, which
revealed that smokers with an increased urinary level of glucuroni-
dated nitrosamine N’-nitrosonornicotine experienced a significantly
reduced risk of esophageal cancer (51). Whether and to what extent
glucuronidation in lungs of human individuals can be specifically
influenced still remains open.

Correlations between endogenous metabolites and exogenous
molecules are fundamentally different between tumor and stroma
regions. Notably, in tumor regions, N-hydroxy-MeIQx alters lipid and
glutathione metabolism. A higher abundance of the metabolite
N-hydroxy-MeIQx is associated with increased lipid species and a
higher concentration of glutathione (Fig. 6A). The effect of MeIQx
on lipid profile, potentially caused by dysregulated maturation of
autolysosomes, has been described in hepatocytes (52). Otherwise,
glutathione has been shown to increase the perceptivity to oxidative
stress (53). The formation of 8-hydroxy-20-deoxyguanosine, an oxi-
dative DNA damage marker, increases in the liver with a specific dose
of MeIQx (54). Oxidative stress caused by N-hydroxy-MeIQx may be
contained by an increase in glutathione in tumor cells.

In tumor stroma, PAHs and tobacco-specific nitrosamines revealed
a strong impact on amino acid and nucleotide metabolism (Fig. 6B).
Notably, the majority of the changed amino acid metabolites can be
associatedwith tryptophanmetabolism, which is of crucial importance
to the immune system as its metabolites orchestrate local and systemic
responses to control inflammation (55). The indole ring of the critical
regulatory molecule tryptophan is cleaved by indoleamine 2,3-dioxy-
genase (IDO; ref. 56). The activation of AhR increases IDO expres-
sion (57). Therefore, PAHs may increase tryptophan metabolism
through the activation of AhR. Our second finding that nucleotide
metabolism is enhanced is most likely associated with DNA damage
and repair caused by these substances.

The effects of carbon-bound exogenous compoundsmight also be of
pathophysiologic significance for other lung diseases. Anthracosis has
been described to be associated with nonneoplastic diseases such as
emphysema (32). We have selected IPF as an example for an explor-
atory analysis of anthracotic pigment in the context of nonneoplastic
diseases. IPF is a lung disease of unknown etiology and is characterized
by progressive scarring. The underlying pathomechanisms of IPF,with
its complex immunologic and inflammatory processes and external
impacts, have been the focus of recent research. Lifestyle and envi-
ronmental influences are held responsible for much of its natural
history. Because smoking, pneumotoxic medications, and inhalation
of dust are known risk factors of IPF (58), we analyzed the presence and
constitution of exogenous compounds within anthracotic tissue of
patients with IPF to uncover differences to the smoking-related SCC.
Indeed, we also found carbon-bound exogenous molecules in IPF
anthracotic pigment. Similarly to SCC we found inter and intrapatient
heterogeneity of carbon-bound exogenous compounds in both, nor-
mal-lung parenchyma and IPF. Furthermore, the network analysis
revealed differences in the affectedmetabolic pathways comparedwith
SCC tissues. We conclude that exogenous compounds could be an
unrecognized factor in the development and progression of IPF. These
preliminary findings warrant further investigation.

When the amount of anthracotic pigment is considered over the
total volume of both lungs, there is a large and persistent pool of
carbon-bound exogenous compounds with possible systemic effects
beyond the lungs. Tobacco smoking is also the leading risk factor for
bladder cancer (41). As a representative of aromatic amines, 4-ami-
nobiphenyl has been extensively studied to understand themechanism
of bladder carcinogenesis (59). We discovered that N-hydroxy-4-
aminobiphenyl, a carbon-bound exogenous compound, was highly
abundant in human lung tissue. Given the potentially large amount of
anthracotic pigment in both lungs, it is possible that 4-aminobiphenyl
is stored in the pigment and released continuously over the long term
and thus may contribute to the development of bladder carcinoma.
Similarly, other carcinogens could be stored and continuously released
via the persistent carbon pool and thus also play a role in the
development of tumors outside the lung.

Since carbon particles and carbon-bound exogenous compounds
are known to be persistent, and the subsequent removal of the carbon
particles from the lung is as of yet not feasible, themost reasonable and
implementable courses of action right now are risk assessment and
prevention. Apart from smoking cessation, a change in smoking
behavior may influence concentrations of biomarkers of exposure.
For example, in a large scale study including 5,105 participants,
e-cigarette users showed a 10% to 98% lower concentration of PAHs
compared with exclusive cigarette smokers– albeit it was still signif-
icantly increased compared to the levels in never smokers (60). Based
on another study, the most significant determinants of PAH exposure
beyond smoking are diet and indoor exposures like coal- or wood-
heaters, cooking, diverse leisure activities, and passive tobacco smoke -
and most of these exposures can be deemed preventable (61). In the
case of PAHs, there are several physical and chemical remediation
strategies to remove PAHs from polluted environments including
membrane filtration, soil washing, adsorption, electrokinetic, thermal,
oxidation, andphotocatalytic treatments (62). Given thatwe here show
that several exogenous compounds are present directly within anthra-
cotic pigment and that they are an unrecognized factor with strong
impact on tumor pathophysiology underlines the importance of risk
assessment and prevention.

In conclusion, the bioactive pool of exogenous compounds in and
nearby the anthracotic pigment is associated with several changes in
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tumor pathophysiology and has adverse effects on patient outcome.
Genome integrity, immune factors, and tumor progression are associated
with specific chemical signatures in the anthracotic pigment. The exact
localization of exogenous compounds influences patient outcome by
altering amino acid, nucleotide, and lipid metabolism. In lung IPF,
exogenous substances can also be found in and nearby anthracotic
pigment, however, thesemolecules affect other pathways (Supplementary
Fig. S11). The exogenous compounds may contribute to the formation
and influence the progression of diseases of the lung and other organs.
Because all healthy lung tissues contained exogenous compounds
(Supplementary Fig. S14), a deeper understanding of the unique
composition and pathophysiologic relevance of anthracosis is needed.
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3. First Author Publications

3.4. Derangements of amino acids in cachectic skeletal muscle
are caused by mitochondrial dysfunction

The last publication in this thesis, entitled "Derangements of amino acids in cachectic
skeletal muscle are caused by mitochondrial dysfunction" [4], focuses on metabolic
alterations in skeletal muscle tissues caused by cancer cachexia and is also based on
the published SPACiAL pipeline to enable improved spatial metabolomics [2]. This
publication highlights the role of mitochondrial dysfunction in the changed amino acid
metabolism of cachectic skeletal muscle tissues. This new insight was provided by the
multimodal measurement of skeletal muscle tissues by spatial metabolomics, spatial
proteomics, and bright field microscopy. We offer the first in situ measurement of the
cachexia-associated change in the amino acid profile of skeletal muscles and reveal specific
amino acids as significantly changed. The altered amino acid profile in cachectic skeletal
muscle tissues is significantly associated with changed expressions of mitochondrial
proteins and the energy charge of muscle fibers. The presented work serves new insights
into the biochemistry of cachexia-associated muscle wasting by illuminating the metabolic
fate of amino acids and could be useful for finding drug targets for treating cancer cachexia.

In this publication, I conducted all spatial metabolomics experiments, wrote the original
draft of the manuscript, calculated all statistics, and prepared figures. I co-conceived
the study design with Axel Walch and Michaela Aichler. Parts of the results of this
publication were already included in my master thesis. In particular, the writing of the
manuscript, the analyses of patients, annotation of proteins, the spatial analysis of the
energy charge, and the major part of the transmission electron microscopy analyses were
performed in my time as a doctoral candidate.

70



Derangements of amino acids in cachectic skeletal
muscle are caused by mitochondrial dysfunction

Thomas Kunzke1, Achim Buck1, Verena M. Prade1, Annette Feuchtinger1, Olga Prokopchuk2, Marc E. Martignoni2,
Simone Heisz3,4, Hans Hauner3,4, Klaus-Peter Janssen2, Axel Walch1* & Michaela Aichler1

1Research Unit Analytical Pathology, Helmholtz Zentrum München, Oberschleißheim, Germany, 2Department of Surgery, Klinikum rechts der Isar, TUM, Munich, Germany,
3Else Kroener-Fresenius-Center for Nutritional Medicine, Klinikum rechts der Isar, TUM, Munich, Germany, 4ZIEL-Institute for Food and Health, Nutritional Medicine Unit,
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Abstract

Background Cachexia is the direct cause of at least 20% of cancer-associated deaths. Muscle wasting in skeletal muscle re-
sults in weakness, immobility, and death secondary to impaired respiratory muscle function. Muscle proteins are massively
degraded in cachexia; nevertheless, the molecular mechanisms related to this process are poorly understood. Previous studies
have reported conflicting results regarding the amino acid abundances in cachectic skeletal muscle tissues. There is a clear
need to identify the molecular processes of muscle metabolism in the context of cachexia, especially how different types of
molecules are involved in the muscle wasting process.
Methods New in situ -omics techniques were used to produce a more comprehensive picture of amino acid metabolism in
cachectic muscles by determining the quantities of amino acids, proteins, and cellular metabolites. Using matrix-assisted laser
desorption/ionization (MALDI) mass spectrometry imaging, we determined the in situ concentrations of amino acids and pro-
teins, as well as energy and other cellular metabolites, in skeletal muscle tissues from genetic mouse cancer models (n = 21)
and from patients with cancer (n = 6). Combined results from three individual MALDI mass spectrometry imaging methods
were obtained and interpreted. Immunohistochemistry staining for mitochondrial proteins and myosin heavy chain expres-
sion, digital image analysis, and transmission electron microscopy complemented the MALDI mass spectrometry imaging
results.
Results Metabolic derangements in cachectic mouse muscle tissues were detected, with significantly increased quantities of
lysine, arginine, proline, and tyrosine (P = 0.0037, P = 0.0048, P = 0.0430, and P = 0.0357, respectively) and significantly
reduced quantities of glutamate and aspartate (P = 0.0008 and P = 0.0124). Human skeletal muscle tissues revealed similar
tendencies. A majority of altered amino acids were released by the breakdown of proteins involved in oxidative phosphoryla-
tion. Decreased energy charge was observed in cachectic muscle tissues (P = 0.0101), which was related to the breakdown of
specific proteins. Additionally, expression of the cationic amino acid transporter CAT1 was significantly decreased in the mito-
chondria of cachectic mouse muscles (P = 0.0133); this decrease may play an important role in the alterations of cationic amino
acid metabolism and decreased quantity of glutamate observed in cachexia.
Conclusions Our results suggest that mitochondrial dysfunction has a substantial influence on amino acid metabolism in
cachectic skeletal muscles, which appears to be triggered by diminished CAT1 expression, as well as the degradation of mito-
chondrial proteins. These findings provide new insights into the pathobiochemistry of muscle wasting.
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Introduction

Cachexia, which is often caused by cancer, leads to massive
loss of total body mass, generalized inflammation, and pro-
nounced muscle wasting, producing a significant decrease in
the quality of life. Loss of skeletal muscle results in weakness,
leading to immobility and eventual death secondary to
impaired respiratory muscle function.1 Muscle wasting is
thereby one of the most devastating characteristics of ca-
chexia in late-stage cancer, for which no specific treatments
are currently available. Several metabolic changes have been
associated with loss of muscle mass in cachexia, including de-
creased protein synthesis, increased protein degradation, and
deranged amino acid metabolism.2

Until now, researchers have focused on understanding the
molecular mechanisms behind protein and amino acid me-
tabolism alterations in cachexia.3 On the one hand, the acti-
vation of the ubiquitin-dependent proteasome pathway
seemed to play a major role in protein degradation in cancer
cachexia.4 Specific ubiquitin ligase enzymes (E3) catalyzing
the movement of the ubiquitin from the E2 enzyme to the
substrate and are strongly up-regulated in an animal model
of cachexia.5 Besides, several proteasome subunits are also
up-regulated in a transcriptional manner in cachexia.6 On
the other hand, protein synthesis is influenced, for example,
by the activity of mechanistic (a.k.a., mammalian) target of
rapamycin complex 1,7 which is progressively decreased in ca-
chectic mice.8 All of these molecular processes are associated
with a changed amino acid turnover. Meanwhile, only a few
studies have reported altered quantities of amino acids in
cachectic skeletal muscle,9–12 and their results have been
conflicting. Furthermore, amino acid quantities in the context
of protein degradation and synthesis and energy metabolism
is a still unexploited topic. Of note, these issues are of utmost
importance, as amino acids and proteins are linked and
individual amino acids contribute to the energy kinetics of
skeletal muscle cells.13 In addition, a massive amino acid
efflux to the circulation can also be occurring by enhanced
protein degradation,2 while a significant part of amino acids
is received by the circulation for skeletal muscles.14

New in situ “-omics” approaches allow the identification of
a broad and comprehensive range of possible alterations in
amino acid and protein metabolism to help generate a more
global picture of the molecular alterations associated with
muscle wasting in cachexia. In the current study, we used
matrix-assisted laser desorption/ionization (MALDI) mass
spectrometry imaging as a sophisticated label-free, non-
targeted, in situ -omics method of examining skeletal muscles
from cachectic and non-cachectic mice and patients. This is
the first time amino acids, energy and other cellular metabo-
lites, and proteins have been simultaneously examined in situ
in the context of cancer cachexia.

Determination of the three classes of molecules enabled
the investigation of functional relationships between and

within amino acids, energy metabolites, and proteins. It
allowed the identification of specific proteins that were po-
tentially degraded and contributing to amino acid release in
cachexia. Because cachexia is characterized by increased rest-
ing energy expenditure and low energy intake,1 the interplay
between specific amino acids and energy metabolites was
examined to detect molecular alterations. The further scope
of the following study was the analysis of derangements of
amino acids, to identify functional relationships with proteins,
and simultaneously examine energy changes in skeletal mus-
cles related to cancer cachexia.

In mice, we found higher quantities of cationic amino acids
and lower quantities of glutamate and aspartate in skeletal
muscle tissues during cachexia, whereas patient tissues
provide first insights in similar molecular changes. Several
protein expression changes in the mitochondria of cachectic
tissues were associated with alterations in energy and amino
acid metabolism. To the best of our knowledge, we herein
present the first in situ study describing molecular alterations
in cachexia caused by functional changes in the mitochondria
of skeletal muscle tissues. Furthermore, we determined that
cationic amino acid transporter 1 (CAT1), a mitochondria-
associated protein, is involved in this process.

Methods

Collection of tissue samples

This study was approved by the Ethics Committee of the
Medical Faculty of the Technical University of Munich
(#4916/S), and written consent was obtained from all pa-
tients before surgery. The compound mutant mouse line
(pVillin-KRASV12G x Apc1638N), with the inbred C57BL/6N back-
ground, was bred at the Zentrum für Präklinische Forschung
at Klinikum rechts der Isar, TUM, Munich. The animals were
assessed at specific timepoints for the presence of intestinal
tumours, as previously described, and their body weights
were determined at the time of sacrifice (see Table 1 for
baseline characteristics).15 The non-cachectic group consisted
of tumour-free wild-type and single transgenic littermates
from the same breedings. Cachectic mice were defined as

Table 1 Baseline characteristics of mouse genetic cancer models

Characteristic Non-cachectic Cachectic

Number 10 11
Gender (n)
Male 9 5
Female 1 6
Age (months)
Mean 8.7 6.6
Range 4–15 4–10
Weight (g)
Mean 31.7 26.7
Range 27.4–36.0 21.7–32.0
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animals with at least a 10% reduction in body weight, com-
pared with the median weight of the non-cachectic group.
All mice were maintained with a 12 hr light-dark cycle and
fed a standard diet and water ad lib. Overall, 21 mice were
analysed, and 11 tumour-bearing mice were classified as ca-
chectic. Ten mice represented the non-cachectic group. Mice
were euthanized via cervical dislocation. The quadriceps mus-
cles were subsequently resected and then immediately shock
frozen and stored until further use in liquid nitrogen.

Patient tissues (samples from the musculus rectus
abdominis) were obtained from patients diagnosed with
pancreatic ductal adenocarcinoma (see Table 2 for baseline
characteristics) during routine surgery. The patients
underwent surgery at the Department of Surgery, TUM,
from 2008 until 2015. Samples were obtained from 36 pa-
tients, 13 of whom exhibited a weight loss of at least 7%
within the 6 months before surgery and were thereby de-
fined as cachectic patients. The remaining 23 patients, with
a weight loss of less than 5%, were considered non-
cachectic. Definition of cachexia was according to an inter-
national consensus.16 Tissues from six patients (three non-
cachectic and three cachectic patients; Supporting Informa-
tion, Appendix S1 for baseline characteristics) were stored
in liquid nitrogen as fresh-frozen samples until MALDI mass
spectrometry imaging analysis. Tissues from the remaining
30 patients were fixed in formalin and embedded in paraf-
fin and then used to construct two-tissue microarrays,
which were stored at room temperature until immunohis-
tochemistry (IHC) analysis.

Matrix-assisted laser desorption/ionization mass
spectrometry imaging

Frozen muscle tissue samples were cryosectioned into 12 μm
sections using Microm560 (Microm International, Walldorf,

Germany) and thaw mounted onto indium tin oxide-coated
conductive slides (Bruker Daltonics, Bremen, Germany). The
slides were pre-treated with 1:1 poly-L-lysine (Sigma-Aldrich,
Munich, Germany) and 0.1% Nonidet P-40 (Sigma) before
mounting. Briefly, the samples were covered with 10
mg/mL 9-aminoacridine (9AA) matrix (Sigma-Aldrich) in 70%
methanol for metabolite analysis or 10 mg/mL 1,5-
diaminonaphthalene (DAN) matrix (Sigma-Aldrich) in 70%
acetonitrile for amino acid analysis, using a SunCollect
sprayer (Sunchrom, Friedrichsdorf, Germany). The following
preferences were used for the automatic sprayer (for both
9AA and DAN): vial distance of 0.50 mm for the X direction
and 2.00 mm for the Y direction, 20 mm Z position and offset
of the spray head, and medium X/Y speed. The matrix was
deposited in eight layers using variable increasing spray rates,
as previously reported by Ly et al..17 For metabolite analysis,
data were acquired in negative ion mode using a Bruker
Solarix 7.0 T Fourier-transform ion cyclotron resonance
(FTICR) mass spectrometer (Bruker Daltonics) over a mass
range of 50–1000 m/z and at a lateral resolution of 100 μm.
Amino acids were analysed over a mass range of 50–250
m/z. Because DAN matrix is not stable in a vacuum, a faster
measurement protocol was established by changing the lat-
eral resolution for amino acids to 150 μm. For protein analy-
sis, 10 mg/mL sinapinic acid matrix (Sigma-Aldrich) in 60%
acetonitrile and 0.2% trifluoroacetic acid was deposited onto
the sections using an ImagePrep automated sprayer (Bruker
Daltonics). Linear positive ion mode over a mass range of
2000–25 000 m/z was used for protein measurements with
the Bruker Ultraflex III MALDI-TOF/TOF MS (Bruker
Daltonics). The lateral resolution for examining intact pro-
teins was predefined as 60 μm. The Smartbeam-II Nd:YAG la-
ser (355 nm) fired 300 times for protein ablation with a
frequency of 200 Hz and a sample rate of 0.50 GS/s. External
calibration was performed with Protein Calibration Standard I
(Bruker Daltonics), mixed 1:1 (v/v) with the matrix solution,
and spotted onto the slide.

Tissue staining and co-registration

After acquisition of the mass spectrometry data, the matrix
was removed with 70% ethanol, and the tissue sections were
stained with haematoxylin and eosin. The sections were
transferred to dH2O for 1 min and then haematoxylin (Carl
Roth, Karlsruhe, Germany) for 1 min; after washing in tap wa-
ter for approximately 5 min, they were transferred to eosin Y
(Sigma-Aldrich) for 1 min. The sections were subsequently
dehydrated using an increasing alcohol solution series [70%,
90%, and 100% ethanol (Merck) and isopropanol (Merck);
30 s each], transferred to xylene (Carl Roth) for at least 2
min, coverslipped, scanned with a Mirax desk slide scanner
(Zeiss, Göttingen, Germany) using a 20× magnification

Table 2 Clinical characteristics of patients with cancer

Characteristic Non-cachectic Cachectic

Number 23 13
Gender (n)
Male 15 4
Female 8 9
Age (years)
Mean 67 65
Range 45–88 44–83
Weight (kg)
Mean 77 64
Range 40–106 41–98
Body mass index (kg/m2)
Mean 25.6 22.5
Range 16.2–34.2 15.8–28.4
Weight loss (%)
Mean 1.0 13.3
Range 0–4.8 7.7–25.5
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objective, and co-registered with the respective mass spec-
trometry imaging data using flexImaging v. 4.0 (Bruker
Daltonics).

Matrix-assisted laser desorption/ionization mass
spectrometry imaging data analysis

flexImaging software was used for normalization against the
root mean square (FTICR) or total ion count [time of flight
(TOF)] of all data points. “Virtual microdissection” was per-
formed, defining regions of interest (ROIs) of cross-sectioned
muscle fibres and excluding non-muscle tissue components.
Specification of ROIs and exportation of spectral data for each
ROI were similarly performed using flexImaging.

MATLAB script, including the bioinformatics and image
processing toolboxes (v.7.10.0, MathWorks, Natick, MA,
USA), was used for subsequent FTICR data processing. In this
script, flexImaging-exported spectra were processed using
the LIMPIC algorithm.18 This algorithm includes a baseline
subtraction (100 data points window size), resampling
(0.001m/z bin width), and smoothing (Kaiser filter with factor
3) to exclude chemical and electronic noise before peak pick-
ing. Peak picking itself was performed with a minimum peak
width of 5.0E – 4 m/z, a signal-to-noise threshold of 2, and
a minimum intensity threshold of 0.01% for the base peak
of each spectrum. To enable direct comparisons between
peak lists from different patients, peaks were clustered with
a specific mass tolerance (5.0E – 8 * (m/z)2.023). TOF peak lists
were generated using SCiLS Lab (v2019a, Bremen, Germany).
Metabolites, amino acids, and proteins were identified by
matching accurate mass data with Metlin (http://metlin.
scripps.edu/index.php),19 the Human Metabolome Database
(http://www.hmdb.ca),20 and the MaTisse database,21

allowing a window of 4 ppm for metabolites or amino acids.
Ion images were exported by flexImaging as single colour

visualizations with a black background. The colour was de-
tected entirely by image processing software and was visu-
alized over the corresponding scanned haematoxylin and
eosin-stained tissue. Adenosine monophosphate (AMP),
adenosine diphosphate (ADP), adenosine triphosphate
(ATP), and energy charge visualization was performed by
an in-house developed python script based on the previ-
ously published MSIdV tool for mass spectrometry imag-
ing.22 The remaining heatmap visualizations were received
from SCiLS Lab.

Transmission electron microscopy

For transmission electron microscopy (TEM) analysis, fresh-
frozen tissues were fixed with 2.5% glutaraldehyde in 0.1 M
sodium cacodylate buffer, pH 7.4, and TEM fixation buffer
(Electron Microscopy Sciences, Hatfield, USA) at 4 °C. The
samples were subsequently post-fixed in 2% aqueous

osmium tetraoxide 44, dehydrated in increasing concentra-
tions of ethanol (30–100%) and propylene oxide, embedded
in Epon (Merck, Darmstadt, Germany), and dried for 24 h at
60 °C. Semithin sections were cut and stained with toluidine
blue. Ultrathin sections of 50 nm were collected on 200-mesh
copper grids and stained with uranyl acetate and lead citrate
before examination by TEM (Zeiss Libra 120 Plus, Carl Zeiss
NTS GmbH, Oberkochen, Germany). Images were acquired
using a Slow Scan CCD camera and iTEM software (Olympus
Soft Imaging Solutions, Münster, Germany). The number of
mitochondria was determined by manually counting the mi-
tochondria per field of view in longitudinally sectioned fibres,
viewed at 1600× magnification.

Immunohistochemistry staining and digital image
analysis

For IHC analyses, parts of the mouse muscle tissues were
fixed in 4% (v/v) neutral-buffered formalin and embedded
in paraffin by an automatic processor. CAT1 analysis of pa-
tient tissues was performed on the formalin-fixed paraffin-
embedded tissues. Expression levels of CAT1 and voltage-
dependent anion channel (VDAC) were analysed on 3 μm
consecutive sections by IHC staining with the CAT1 antibody
[14195-1-AP (Proteintech, Manchester, UK), 1:20] and VDAC
antibody [#4866 (Cell Signaling Technology, Frankfurt am
Main, Germany), 1:100]. For validation purposes of mito-
chondrial proteins, cytochrome c oxidase subunit (COX) 7C
[PA5-51284 (Invitrogen, Carlsbad, CA, USA), 1:10] and
cytochrome c [GTX108585 (GeneTex, Inc., Alton Pkwy Irvine,
CA, USA), 1:25] stainings were performed on 12 μm
cryosectioned mouse skeletal muscle tissues. Used tissues
are representing consecutive tissue sections as analysed in
MALDI imaging. The automated slide processing system
Ventana DISCOVERY XT System (Ventana Medical Systems,
Inc., Tucson, AZ, USA) was used in accordance with the man-
ufacturer’s instructions. All stained slides were digitalized at
20× objective magnification using the Mirax desk slide scan-
ner. IHC staining results were quantified using the image
analysis software Definiens Developer XD2 (Definiens AG,
Munich, Germany). This software allows quantification of
IHC staining intensities within a user-specified ROI. ROIs were
defined in longitudinally sectioned muscle fibres. Algorithms
were developed, modified specifically for CAT1, VDAC,
COX7C, and cytochrome c, and established in semantic and
context-based segmentation processes, which included
staining intensity, shape, area, colour features, and
neighbourhood. In addition, the algorithms were optimized
to consider only mitochondrial staining. The quantified pa-
rameters for CAT1, VDAC, COX7C, and cytochrome c were
values representing a point on a continuous spectrum of pro-
tein expression in relative units.
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Immunofluorescence analysis of myosin heavy
chain expression

Immunofluorescence analysis of myosin heavy chain (MHC)
expression was achieved using primary antibodies against
MHCI (BA-F8, 1:50), MHCIIa (SC-71, 1:600), and MHCIIb
(BF-F3, 1:100) according to Bergmeister et al..23 Primary anti-
bodies were purchased from the Developmental Studies
Hybridoma Bank (University of Iowa), whereas secondary an-
tibodies (AF633 IgG2b, AF488 IgG1, and AF555 IgM, all 1:250)
were purchased from Invitrogen. Slides were digitalized at
20× objective magnification using an Axio Scan.Z1 (Zeiss).
For fibre-type analysis, all fibres within an ROI (as described
for MALDI mass spectrometry imaging) were characterized.
Quantification was performed by digital image analysis in De-
finiens Developer XD2.

Statistical analysis

To determine significant differences between cachectic and
non-cachectic tissues, the rank-based Mann–Whitney U test
was used. Further statistical testing for functional relation-
ships between and within metabolites, amino acids, and pro-
teins was investigated using Spearman’s rank correlation
analysis. Correlation plots and calculations were generated
and performed using R (The R Foundation, Vienna, Austria;
“corrplot” package). P values equal to or less than 0.05 were
considered statistically significant.

Results

Amino acid derangements were detected by in situ
metabolomics in cachexia

Sixteen amino acids were detected in situ in mouse skeletal
muscle tissues. Lysine (P = 0.0037), arginine (P = 0.0048),
tyrosine (P = 0.0357), and proline (P = 0.0430) were signifi-
cantly more abundant in cachectic mouse muscle tissues than
in non-cachectic mice. Alanine, asparagine, glutamine,
leucine/isoleucine, methionine, phenylalanine, threonine,
tryptophan, and valine analysis revealed a higher relative
mean intensity in cachectic mice than in non-cachectic ones,
but the differences were not statistically significant (Figure
1A). In contrast, quantities of glutamate (P = 0.0008) and as-
partate (P = 0.0124) were significantly less in cachectic mouse
skeletal muscle tissues. All intensities and P values of deter-
mined amino acids in non-cachectic and cachectic mice can
be obtained from Supporting Information, Appendix S2.
Figure 1B shows the results of false colour visualization of
amino acids, demonstrating the differences in skeletal muscle
tissues between the cachectic and non-cachectic mice.

Results in skeletal muscle tissues of cachectic patients re-
vealed similar amino acid profiles to those observed in mice
(Supporting Information, Appendix S3); however, the amino
acid differences between cachectic and non-cachectic pa-
tients did not reach statistical significance. As the amino acid
alterations could be due to protein breakdown processes,2

our subsequent investigations examined this issue.

Amino acids are linked to protein breakdown
processes

To detect possible protein breakdown targets, protein ex-
pression was determined by MALDI-TOF and correlated with
the quantities of amino acids. A negative correlation between
amino acids and proteins suggests the presence of protein
breakdown.

We determined the correlations between all detected pro-
teins and the quantities of amino acids. Spearman’s rank cor-
relation analysis revealed 15 annotated proteins, which have
significant negative correlations with amino acid quantities
(Supporting Information, Appendix S4). The proteins for
which significant correlations were detected included thymo-
sin beta-4, individual proteins for oxidative phosphorylation
(OXPHOS), histone H2B, and glutathione S-transferase P.
Specifically, thymosin beta-4 (Figure 2A) correlated negatively
with the quantity of lysine (P = 0.0090), arginine (P = 0.0026),
proline (P = 0.0049), and threonine (P = 0.0431). Cytochrome
c oxidase subunit (COX) 6B1 correlated negatively with lysine
(P = 0.0405), arginine (P = 0.0027), glutamine (P = 0.0209),
and tryptophan (P = 0.0368). Figure 2B shows an example
of the detected proteins: false colour visualization demon-
strated lower expression of COX6B1 in cachectic mouse tis-
sues than in non-cachectic mice. Statistical analysis of the
visualization results showed significantly decreased COX6B1
in cachexia (Figure 2C; P = 0.0008). Supporting Information,
Appendix S5 shows the analyses for three OXPHOS proteins:
COX7C, ATPase F6, and cytochrome c. At this, the abun-
dances of COX7C and ATPase F6 were significantly decreased
(P = 0.0127 and P = 0.0048, respectively), determined by
MALDI mass spectrometry imaging. Interestingly, a majority
of detected proteins that correlated negatively with amino
acids were associated with the mitochondria. In addition, val-
idation experiments were performed by IHC stainings and
confirmed MALDI mass spectrometry imaging analysis results
for COX7C as well as for cytochrome c (Supporting Informa-
tion, Appendix S5). COX7C abundance detected by IHC was
also significantly decreased (P = 0.0159) in cachectic mouse
skeletal muscle tissues in comparison with non-cachectic
mice.

At this stage, the combination of two different measure-
ment techniques—high-resolution mass spectrometry by
FTICR and analysis of proteins by TOF—enabled the detection
of biological relationships and thus, for example, the
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Figure 1 In situ analysis of amino acids in cachectic mouse skeletal muscle tissues. (A) Quantities of amino acids in skeletal muscles from cachectic and
non-cachectic mice. All intensity values were determined by mass spectrometry imaging. Quantities of lysine, arginine, proline, and tyrosine were sig-
nificantly higher in cachectic mice than in non-cachectic ones. The intensities for alanine, asparagine, glutamine, leucine/isoleucine, methionine, phe-
nylalanine, threonine, tryptophan, and valine also revealed a higher relative mean intensity in cachectic mice than in non-cachectic ones. Glutamate
and aspartate intensities were significantly decreased in cachectic mouse muscles. Whiskers of the boxplots illustrate the minimal and maximum in-
tensity values. (B) False colour visualization of amino acids in mouse skeletal muscle tissues. Lysine, arginine, and proline were increased, and gluta-
mate and aspartate were decreased in cachectic mouse muscles, compared with non-cachectic ones. *P < 0.05, **P < 0.01, and ***P < 0.005.
H&E, haematoxylin and eosin.
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potential degradation of OXPHOS proteins. Four of these pro-
teins were highlighted by correlation analysis and seemed to
have enhanced breakdown in cachexia. The involvement of
OXPHOS proteins suggested the possibility of alterations in
energy in cachexia and thereby focused our further investiga-
tions on the mitochondria.

Energy charge is reduced in cachectic muscle
tissues

Because the correlation between amino acid and protein data
suggested degradation of specific OXPHOS enzymes, we con-
ducted metabolite measurements to examine energy alter-
ations in cachectic mouse skeletal muscle tissues. Because
the quadriceps muscle is composed of mixed fibre types, we
examined non-cachectic and cachectic mouse skeletal muscle
tissues for fibre-type composition. This issue is important for
regarding energy aspects, due to the adaption of specific fibre
types to oxidative or glycolytic metabolism.24 No differences
could be detected regarding the individual fibre type composi-
tion between non-cachectic and cachectic mouse skeletal
muscle tissues (Supporting Information, Appendix S6).

Adenosine monophosphate, ADP, and ATP concentrations
were determined as representatives of the energy state in
muscle tissues. To determine the available energy in tissues,
the energy charge was calculated from the AMP, ADP, and
ATP concentrations, using the formula shown in Figure 3A.
The energy charge was lower in cachectic mice than in non-

cachectic mice (P = 0.0101), indicating that energy stores
were reduced in cachectic mouse skeletal muscle tissues.
AMP was slightly increased in the cachectic mouse skeletal
muscle tissues, when compared with non-cachectic mouse
tissues (Figure 3B). ADP concentrations were similar in ca-
chectic and non-cachectic mice, and ATP concentration was
marginally decreased in cachexia.

Reduced energy in cachectic mouse skeletal muscle tissues
could result in changed function of the tricarboxylic acid
(TCA) cycle as a compensatory alteration or as a co-
influencing factor. In cell metabolomics analysis, the majority
of detected TCA cycle molecules did not differ significantly
between cachectic and non-cachectic mouse muscle tissues
(Supporting Information, Appendix S7). However, the quan-
tity of oxaloacetate was significantly decreased (P = 0.0448)
(Figure 3C) and the quantity of malate was significantly in-
creased (P = 0.0295) in cachexia. These results indicate that
cachexia was not associated with a generalized change in reg-
ulation of the TCA cycle, but it did seem to be associated with
alterations of the dicarboxylic acid part.

We next used the energy charge results to examine under-
lying molecular mechanisms. A total of 58 proteins correlated
significantly with the calculated energy charge (Figure 4). Spe-
cifically, COX7C (P = 0.0257) and COX6B1 (P = 0.0052) were all
significantly and positively correlated with the energy charge.
Thymosin beta-4 (P = 0.0054), histone H2B (P ≤ 0.0001), and
redox Cu/Zn superoxide dismutase (P = 0.0059) also corre-
lated positively with the energy charge. Notably, expression
of ubiquitin, which is a marker for protein degradation,

Figure 2 Evaluation of potential protein breakdown targets. (A) Visualization of Spearman’s rank correlation analysis results examining the relation-
ships between amino acids and proteins. Square sizes represent the magnitude of the Spearman’s rank correlation coefficient. Blue squares indicate
positive correlations, and red squares indicate negative correlations. Non-significant correlations (P > 0.05) are indicated by empty squares. Many
OXPHOS proteins seemed to be degraded. (B) False colour visualization of COX6B1. A reduced quantity of COX6B1 was observed in cachectic mouse
tissues, compared with non-cachectic ones. (C) Statistical analysis of the false colour visualization results depicted in (B). COX6B1 intensities were sig-
nificantly lower in cachectic mouse muscle tissues than in non-cachectic ones (P = 0.0008). Boxplot whiskers represent the minimum and maximum
intensities. ***P < 0.005.
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correlated negatively (P = 0.0009) with the energy charge, as
well as with COX7C (P = 0.0216) and other proteins. These
proteins may be tagged for degradation.

Five amino acids were also significantly correlated with the
energy charge, suggesting a functional relationship. For ex-
ample, lysine (P = 0.0122) and arginine (P = 0.0086), the
quantities of which differed significantly between cachectic
and non-cachectic mouse tissues, were correlated negatively
with the energy charge (Figure 4). Glutamine (P = 0.0108) and
leucine/isoleucine (P = 0.0324) were likewise negatively cor-
related with the energy charge. Glutamate, which was signif-
icantly decreased in the cachectic state, correlated positively
with the energy charge (P = 0.0437).

Cationic amino acid transporter 1 is changed in
cachexia

We next focused on examining changes in CAT1, which was
previously identified as an essential factor for L-arginine
transport into mitochondria.25 The potential role of this
transport protein in cachexia was supported by our findings
of prominent alterations in arginine and lysine, both of which
are cationic amino acids.

The quantity of mitochondrial CAT1 in skeletal muscle tis-
sues was lower in cachectic mice than in non-cachectic ones
(Figure 5A). Using digital image analysis of stained mouse
skeletal muscle tissues, significantly less CAT1 was observed
in the cachectic state (Figure 5B; P = 0.0133). There was a
similar tendency towards decreased CAT1 in muscle
tissues of cachectic patients, compared with non-cachectic
patients, but the difference did not reach statistical signifi-
cance (P = 0.5498; Figure 5C). For comparing an equal group
size of patients without gender influence, we also calculated
CAT1 expression for female patients alone, which is margin-
ally improving the statistics (P = 0.2261). CAT1 expression
was significantly correlated with the quantity of lysine (P =
0.0122; negative correlation), proline (P = 0.0266; negative
correlation), and glutamate (P = 0.0106; positive correlation),
suggesting an important influence of CAT1 on amino acid
quantities in cachectic tissues.

The CAT1 expression results could have been influenced by
a change in the number of mitochondria, as fewer

mitochondria would lead to reduced quantities of mitochon-
drial proteins. Therefore, TEM was performed to determine
the number and possible morphological alterations of

Figure 3 Energy changes in cancer cachexia. (A) Heatmap visualization
and statistical analysis of the calculated energy charge. Calculation of
the energy charge revealed a significantly lower charge in cachectic mice
(P = 0.0101). (B) AMP, ADP, and ATP distribution in cachectic and non-ca-
chectic mouse skeletal muscle tissues. No significant differences were de-
tected between cachectic and non-cachectic mouse tissues. (C) Heatmap
visualization and statistical analysis of changes in molecules of the tricar-
boxylic acid cycle. Cachectic mice exhibited significantly higher quantities
of malate (P = 0.0295) and lower quantities of oxaloacetate (P = 0.0448)
than non-cachectic mice. Whiskers of the boxplots represent the lowest
and highest peak intensities in each group. *P < 0.05.
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mitochondria in mouse skeletal muscle tissues. No differ-
ences in mitochondrial morphology were observed between
mitochondria in cachectic and non-cachectic mice; we did
not observe electron-lucent areas, swelling, and fragmenta-
tion of cristae, which were previously reported in the muscles
of mice with cancer cachexia.26 Similarly, the number of mito-
chondria was not significantly decreased in the cachectic
state (Figure 5D and 5E, P = 0.1051). Additionally, there were
no systematic ultrastructural changes between cachectic and
non-cachectic mice.

To provide further evidence of a comparable number of
mitochondria in cachectic and non-cachectic mice, VDAC
expression was determined by IHC. The quantity of VDAC cor-
related significantly with the number of mitochondria deter-
mined by electron microscopy (Figure 5F; P = 0.0033) and
revealed no significant differences between cachectic and
non-cachectic mouse skeletal muscle tissues (Figure 5G; P =
0.5648). Thus, TEM and VDAC expression confirmed the pres-
ence of a similar number of mitochondria in cachectic and
non-cachectic mouse skeletal muscle tissues, thereby sug-
gesting a functional—not quantitative—change in mitochon-
dria in cachectic tissues. CAT1 also seemed to be essential
for specific aspects of amino acid metabolism in skeletal

muscle cells, with significantly lower expression in cachectic
mouse skeletal muscle tissues.

Discussion

In this study, intact skeletal muscle tissues from a murine ge-
netic cancer model were examined for molecular alterations
associated with cancer cachexia. For the first time, a combi-
nation of three different MALDI mass spectrometry imaging
methods was used to explore in situ associations between
amino acids, proteins, and energy and other cell metabolites
in cachectic skeletal muscle tissues. Significant amino acid
alterations were detected in cachectic mice, with higher
quantities of lysine, arginine, proline, and tyrosine and lower
quantities of glutamate and aspartate (Figure 1A).

Changes in the quantities of glutamine, isoleucine, leucine,
and valine in cachectic skeletal muscle tissues were reported
in previous studies.9–12However, the specific results were con-
flicting, as individual studies found lower and/or higher quan-
tities of the same amino acids in cachectic skeletal muscle
tissues. Changes of detected abundances could occur because

Figure 4 Impact of proteins and amino acids on the energy charge. Correlation plot depicting the results of Spearman’s rank analysis examining the
associations between amino acid and protein expression and the calculated energy charge. Square size represents the magnitude of the Spearman’s
rank correlation coefficient. Blue squares indicate positive correlations, and red squares indicate negative correlations. Non-significant correlations
(P > 0.05) are symbolized by empty squares. Energy charge was significantly correlated with 58 proteins and five amino acids
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Figure 5 Changes in CAT1 expression in cachexia. (A) Digital image analysis of the CAT1 immunohistochemistry (IHC) results. Definiens Software De-
veloper XD2 was used to detect the CAT1 expression in all tissue sections. (B) The detected CAT1 abundance was significantly lower in skeletal muscles
of cachectic mice than in non-cachectic ones (P = 0.0133). Whiskers of the boxplots represent the lowest and highest CAT1 expression in each group.
(C) CAT1 expression in skeletal muscle tissues from humans with cancer for all and only female patients. CAT1 was slightly lower in patients with ca-
chexia, compared with non-cachectic patients, but the difference did not reach statistical significance. Horizontal lines represent the mean intensity of
each group. (D) Number of mitochondria in mouse skeletal muscle tissues determined by transmission electron microscopy (TEM) at 1600× magnifi-
cation. The red colour represents the mitochondria. Intact mitochondria were observed in tissues from both cachectic and non-cachectic mice. (E)
Boxplots illustrating the number of mitochondria in mouse skeletal muscle tissues. No significant difference was detected between cachectic and
non-cachectic mice. (F) Correlation analysis between the number of mitochondria determined by electron microscopy and the intensity of voltage-de-
pendent anion channel (VDAC) staining detected by IHC. The number of mitochondria was significantly correlated with VDAC expression (P = 0.0033).
(G) Statistical analysis of VDAC staining in muscle tissues from cachectic and non-cachectic mice. No significant difference was detected. *P < 0.05.
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of different analytic platforms, resulting in specific sample
preparations, and the individual selected skeletal muscles.
Our results in quadriceps muscle tissue and MALDI analysis
showed no significant changes towards a higher quantity of
all of these amino acids in cachectic skeletal muscle tissues
(Figure 1A). Furthermore, among all amino acids detected in
our study, significant changes were especially noted with cat-
ionic amino acids and glutamate. Because lysine, arginine,
and glutamate are connected by a biochemical pathway re-
lated to mitochondria,27,28we focused on mitochondria to un-
derstand the detected amino acid alterations. Of note,
mitochondrial enzymes catalyze the synthesis of glutamate
by transferring the amino group from amino acids such as ly-
sine and arginine to α-ketoglutarate.27,28 Nonetheless, lysine
and arginine must first enter the mitochondria.

CAT1, a transporter molecule in mammalian mitochon-
dria,25 carries arginine and lysine through membranes.29

The presence of CAT1 in mitochondria was confirmed by
western blot analysis of isolated cardiac mitochondria and
by confocal microscopy, and it seemed to be involved in cat-
ionic amino acid transport, mitochondrial stress, survival, and
diminished reactive oxygen species production.25 In our
study, we detected higher quantities of the cationic amino
acids lysine and arginine and a lower quantity of glutamate
in the muscles of cachectic mice, compared with non-
cachectic ones. We also observed lower expression of CAT1
in cachectic mice. Correlation analysis confirmed significant
correlations between CAT1 and lysine, as well as glutamate:
low CAT1 expression was associated with more lysine and
less glutamate in muscle tissues. These findings may be due
to enhanced protein breakdown in cachexia,30 leading to in-
creased levels of certain amino acids, such as arginine and ly-
sine (Figure 6A). Reduced metabolic conversion because of
diminished CAT1 expression could also account for the signif-
icantly higher quantities of arginine and lysine [Figure 6B,
(1)]. Of note, our findings are consistent with the results of
previous studies, which showed that arginine and lysine were
increased in the gastrocnemius of cachectic mice12 and gluta-
mate was reduced in quadriceps muscles of cachectic C26
hosts.11 Decreased production of glutamate from arginine
and lysine because of reduced transamination reactions
could account for the significantly lower quantity of gluta-
mate in cachectic mouse tissues [Figure 6B, (2)]. Glutamate
production could also be hampered by a low NADH/NAD+ ra-
tio in mitochondria, which would favour oxidative decarbox-
ylation of α-ketoglutarate to succinyl-CoA.31 An alteration in
an electron shuttle system through the inner mitochondrial
membrane, for example, could be an explanation for an al-
tered ratio. This may lead to a lower amount of NADH inside
mitochondria.

Reduced expression of CAT1 in the muscles of cachectic
mice and patients could arise from several mechanisms. For
instance, a lower number of mitochondria would reduce mi-
tochondrial CAT1 expression. However, examination of the

tissues with TEM (the gold standard for measuring mitochon-
drial content32) revealed no evidence of a reduced number or
altered structural integrity of mitochondria in cachexia
(Figure 5E). Likewise, examination of mitochondrial content
by staining for VDAC (the most abundant protein in the outer
membrane of mitochondria33) did not show significant differ-
ences between cachectic and non-cachectic mice (Figure 5G).
These results indicate that decreased CAT1 expression is not
the result of an altered number of mitochondria; instead, it
is due to a specific decrease in expression of the CAT1 protein
itself (Figure 5B). Thus, decreased mitochondrial CAT1 ex-
pression has been described for the first time in cancer ca-
chexia, which may be highly relevant to the amino acid
metabolism changes observed in this setting, as discussed
earlier.

Manifestations of cachexia can differ according to the type
of tumour.34 In the current study, colorectal and pancreatic
cancer revealed similar molecular changes during cachexia.
Lysine, arginine, and proline quantities were increased, and
glutamate and aspartate were decreased in skeletal muscle
tissues of both types of tumours during cachexia. Notably,
human material offered only preliminary results in the cur-
rent study due to the small patient number and further stud-
ies, including more patients, are necessary for confirming
these molecular alterations. A recent study comparing lung
carcinoma and colon adenocarcinoma models under cachec-
tic conditions also found molecular similarities between the
two types of malignancies.35 Despite different food intake in
the two models, hypothalamic expression of the orexigenic
neuropeptide Y was increased in both tumour types,
compared with controls. At this point, our data suggest
tumour type-independent molecular alterations, at least for
colorectal and pancreatic cancers. Additional studies are nec-
essary to further explore the influence of tumour type on the
molecular manifestations of cachexia.

Protein breakdown is highly discussed in the context of
cachexia.2 In the present study, simultaneous examination
of proteins and amino acids enabled the identification of
proteins that may be selectively degraded in cachectic skel-
etal muscle tissues. A majority of detected and degraded
proteins in this study were OXPHOS proteins, which were
negatively correlated with an overabundance of certain
amino acids (Figure 2A), thereby suggesting the presence
of a degradation process. Of note, only small undigested
proteins (<25 kDa) are determined by MALDI imaging pro-
tein measurement and released amino acids from muscle
can not be set into relation with proteins and metabolites
in the current study. A recent study of rat gastrocnemius
muscles revealed an accumulation of oxidatively modified
mitochondrial proteins in cachexia.36 Oxidative modifica-
tions can be repaired enzymatically or lead to protein deg-
radation. Both processes are essential for maintaining
homeostasis and survival of cells.37 Oxidative modifications
might also initiate degradation of the OXPHOS proteins
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detected in the current study. A previous study found re-
duced quantity of COX6B1 protein in cachectic mouse tis-
sues, compared with controls,38 which is consistent with
our results (Figure 2C). COX6B1 could be altered by oxida-
tive modification and therefore degraded in cachectic skel-
etal muscle tissues. This degradation could account for
the lower quantity of COX6B1 in cachectic skeletal muscle
tissues (Figure 2C) and the negative correlation between
COX6B1 and individual amino acids (Figure 2A). Of interest,
CAT1 is also involved in reducing oxidative stress.25 Normal
CAT1 expression could help maintain normal protein signa-
tures in mitochondria by preventing oxidative damage and
thereby protecting proteins from degradation.

Mitochondria, as well as OXPHOS proteins, are associated
with ATP production and, therefore, energy generation in
muscle tissues. Given our findings of OXPHOS protein degra-
dation and altered mitochondrial protein signatures during
cachexia, we examined the energy status of cachectic skele-
tal muscle tissues. The energy charge, defined as the mole
fraction of ATP plus half the mole fraction of ADP, is linearly
related to the amount of temporarily stored metabolically
available energy.39 We found that energy charge was signif-
icantly decreased in cachexia. Furthermore, correlation anal-
ysis indicated that higher energy charge was associated with
a lower quantity of individual amino acids, higher expression

of OXPHOS proteins, and lower expression of ubiquitin.
Nonetheless, glutamate correlated positively with the en-
ergy charge (Figure 4). A reduced rate of ATP synthesis (de-
termined by 31P nuclear magnetic resonance spectroscopy)
has been previously described in cancer cachexia.40 Degra-
dation of mitochondrial OXPHOS proteins could at least par-
tially explain the reduced energy stores in cachectic
muscles. As ubiquitin, a marker for protein degradation,
can initiate proteasomal degradation,41 lower ubiquitin tag-
ging could reduce degradation of OXPHOS proteins and the
quantity of amino acids but increase the energy charge. The
positive correlation between glutamate and energy charge
could underlie the anaplerotic processes of glutamate in
cancer cachexia.13

Reduced energy availability in muscle tissues could lead to
higher glycolytic activity, because two NADH and two ATP
molecules are produced from one glucose molecule, and
the NADH can be utilized for ATP synthesis in mitochondria.
However, the inner mitochondrial membrane is impermeable
to NADH, so cytosolic NADH must be transported into the mi-
tochondrial matrix by transport systems, such as the malate-
aspartate shuttle.42 High glycolytic activity has been de-
scribed in cachexia,12,43 which could lead to high quantities
of cytosolic NADH [Figure 6B, (3)]. Pin et al.11 formally de-
scribed an increased reliance on glycolytic metabolism and a

Figure 6 Hypothesis regarding the molecular changes in skeletal muscles during cachexia, focusing on mitochondrial dysfunction. The small red and
green arrows indicate molecules for which significant changes were detected in the current study. (A) Proteins in muscle tissues of cachectic mice
are degraded and subsequently processed to amino acids. Individual amino acids are then transported into the mitochondria for further metabolism.
(B) (1) Lysine (Lys), arginine (Arg), and ornithine (data not shown) are transported via CAT1 into the mitochondria. (2) Specific transaminase proteins
metabolize Lys, Arg, ornithine, and other amino acids and produce glutamate. Glutamate is decreased in cachexia because of reduced CAT1 expression.
(3) Cytosolic NADH reduces oxaloacetate to malate; it is hypothesized that an increased quantity of cytosolic NADH in cachexia increases the quantity
of malate. (4) Malate is exchanged with α-ketoglutarate in the mitochondrial matrix by the malate-α-ketoglutarate transporter.
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reduced flux of glycolysis-derived pyruvate into the TCA cycle,
which might also be followed by reducing energy in cachectic
skeletal muscle tissues. Malate dehydrogenase 1 enzyme can
utilize NADH to reduce oxaloacetate to malate44 for
transporting electrons from NADH across the inner mem-
brane via the malate-α-ketoglutarate transporter [Figure 6B,
(4)]. This could account for the low oxaloacetate and high ma-
late quantities found in the current study (Figure 3C). High
levels of cytosolic NADH may reduce a high amount of oxalo-
acetate to malate, available for carrying electrons across the
inner mitochondrial membrane for ATP synthesis.

To conclude, our data revealed mitochondrial dysfunction
in cachectic skeletal muscle tissue, which appeared to have
a substantial influence on amino acid metabolism and protein
breakdown, based on several lines of evidence. Firstly, we
observed significant accumulation of lysine and arginine in ca-
chexia, which can be metabolized in mitochondria to gluta-
mate.27,28 Secondly, indices of degradation suggested the
presence of degradation of mitochondrial OXPHOS proteins.
Thirdly, the energy charge was reduced in cachexia, which
may be at least partly attributed to mitochondrial dysfunc-
tion. Finally, cachectic muscle tissues exhibited significantly
reduced expression of the mitochondrial protein CAT1, which
may play an important role in the observed molecular
changes associated with cachexia.
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Appendix S1. Advanced baseline characteristics for patients,
which is separating patient material in individual fixation
methods. FFPE tissues were used for immunohistochemical
staining, and fresh frozen tissues were used for the determi-
nation of amino acids.
Appendix S2. Intensities of amino acids in skeletal muscle tis-
sues of cachectic and non-cachectic mice. P values were cal-
culated by Mann–Whitney U test.
Appendix S3. In situ amino acid quantities in skeletal muscle
tissues from cachectic patients with cancer. Changes in lysine,
arginine, proline, glutamate, and aspartate with cachexia in
humans revealed similarities to the changes observed in ca-
chectic mouse skeletal muscle tissues. The horizontal lines
represent the mean intensity of each group.
Appendix S4. P values (Spearman’s rank correlation analysis)
of significant negative correlations between proteins and
amino acids. Included proteins were may degraded in skeletal
muscle tissues of cachectic mice.
Appendix S5. Analysis of mitochondrial proteins in mouse
skeletal muscle tissues (A) Statistical analysis for the
OXPHOS-related proteins COX7C, cytochrome c, and ATPase
F6 determined by MALDI mass spectrometry imaging. COX7C
(P = 0.0127) and ATPase F6 (P = 0.0048) expression was signif-
icantly decreased in cachexia, compared with non-cachectic
skeletal muscle tissues. Cytochrome c was also decreased in
cachectic mouse skeletal muscle tissues, but the differences
did not reach statistical significance (P = 0.1145). (B) Immuno-
histochemistry (IHC) results confirmed changes of mitochon-
drial proteins detected by MALDI mass spectrometry
imaging. Quantification of the IHC, performed by digital im-
age analysis, revealed a lower expression of COX7C in cachec-
tic mouse skeletal muscle tissues (P = 0.0159) and a similar
change of cytochrome c without reaching significance level
(P = 0.2512). * P < 0.05, ** P < 0.01.
Appendix S6. Immunofluorescence analysis of myosin heavy
chain (MHC) expressions. (A) Statistical analysis of the expres-
sion of myosin heavy chains in cachectic and non-cachectic
mouse skeletal muscle tissues. MHC1 expressions were in
both comparison groups 0.02%. The Mann–Whitney U test
was performed for all fibre types and revealed no significant
change between non-cachectic and cachectic mouse compar-
ison groups. (B) Exemplary pictures for immunofluorescence
stained cross-sectioned mouse skeletal muscle tissues. The
left tissue section is representing a non-cachectic mouse,
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whereby the right tissue is belonging to a cachectic mouse.
Shown are type I (blue), type IIA (green), type IIB (red), and
type IIX (unstained) fibres.
Appendix S7. Statistical analysis regarding changes of mole-
cules in the tricarboxylic acid (TCA) cycle. Peak intensity was

significantly higher for malate (P = 0.0295) and lower for ox-
aloacetate (P = 0.0448) in tissues of cachectic mice, compared
with non-cachectic ones. Boxplot whiskers represent the low-
est and highest peak intensities in each group. * P < 0.05.
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4. Discussion and Outlook

This thesis aimed and accomplished to provide new insights into cancer metabolism
and address unmet clinical needs in cancer therapy by initially developing [1, 2] and
extensively applying [3, 4] an improved spatial metabolomics method. Improved spatial
metabolomics was demonstrated to integrate several molecular layers by keeping spatial
information intact and to improve the prognostic effect of biomarkers strikingly [1, 2]. The
improved spatial metabolomics method provided new insights into the cancer metabolism
of patients. It served answers to clinical questions by providing new aspects for targeted
anti-HER2 and anti-PD-1/PD-L1 therapies, and revealing potential therapeutic targets
in cancer cachexia [1, 2, 3, 4].

The publications entitled "Multimodal analysis of formalin-fixed and paraffin-embedded
tissue by MALDI imaging and fluorescence in situ hybridization for combined genetic
and metabolic analysis" [1] and "De novo discovery of metabolic heterogeneity with
immunophenotype-guided imaging mass spectrometry" [2] prove the feasibility and the
importance of combining different molecular layers for biomarker discovery. On the
one hand, the statistical power was significantly improved by combining genetics with
metabolomics. This thesis demonstrated that AMP abundance and HER2/CEP17
gene copy numbers reveal a significant association with patient survival; however, the
combination of both strikingly improves the prognostic effect. On the other hand, spatially
resolved integration of both modalities, genetics, and metabolomics is for the first time
possible by utilizing the newly created SPACiAL imaging pipeline [2]. In contrast,
without this new imaging pipeline, integration of the individual imaging modalities would
be accomplished by visually overlaying the images generated by each technique. However,
simple image overlays hamper quantitative correlations since the images have different
coordinate systems and orientations [98]. The SPACiAL imaging pipeline addressed
this problem. The thesis presents a more sophisticated multimodal registration method
allowing pixel-wise analysis of tissue sections by matching the coordinate systems of each
imaging modality.

The significance of the two publications [1, 2] is underlined by a recent study by Lu
and colleagues [99]. The authors aimed to compare the relative diagnostic performance
of PD-L1 IHC, tumor mutational burden, gene expression profiling, and multiplex
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IHC/immunofluorescence assays to assess pretreatment tumor tissue to predict response
to anti-PD-1/PD-L1 therapies. The authors conducted a search in PubMed, which leads
to the result that multimodality biomarker strategies seem to be associated with improved
performance over PD-L1 IHC, tumor mutational burden, or gene expression profiling
alone. In addition, the authors assume an improved diagnostic benefit by considering
spatial relationships. This thesis describes the same enhancement in performance by using
our multimodal biomarker strategy enabled by the improved spatial metabolomics method.
The synergism between genetics and metabolomics strikingly improves the prognostic
effect in contrast to each modality alone [1]. In addition, the newly created SPACiAL
pipeline enables integrating a multitude of imaging modalities and maintaining the spatial
relationships between each modality, leading the discovery of superior biomarkers for
targeted anti-cancer therapy response prediction [2].

One crucial milestone provided by the SPACiAL pipeline is the feasibility of analyzing
the tumor cell specific metabolome of huge patient cohorts. Tumor and tumor stroma-
specific regions can be detected by IHC and, therefore, virtual microdissection can be
automatically performed on stained areas. Before SPACiAL, tumor and tumor stroma
regions were often defined handish and required strong expertise and considerable time.
Therefore, the SPACiAL pipeline increases the usability of spatial metabolomics in clinics
for decision-making.

An ongoing challenge is finding biomarkers that reflect the exposome of patients [100].
So far, details of the exposome are normally analyzed by questionnaires administered to
patients in the clinic [100]. In particular, for lung cancer, information about smoking
behavior is important to stratify people into subtypes for risk of lung cancer [100].
Unfortunately, questionnaire responses are biased and error-prone [100]. With the
study "Patterns of carbon-bound exogenous compounds in patients with lung cancer
and association with disease pathophysiology" [3], this thesis presents an entirely new
approach that could replace biomarkers in this context. Instead of finding biomarkers
reflecting the exposome, this thesis supposes to measure the lung exposome directly in the
patient’s lung. For the first time, the in situ measurement of the exposome is associated
with several tumor biological features. However, obtaining patient biopsies from the
lung is still a high-risk procedure that could be reduced by advanced methods in the future.

In contrast to cancer, there are no definitive therapies for cancer cachexia. Highlighting
molecular changes in cancer cachexia raises the probability of finding drug targets for
enabling definitive therapies. Our study, entitled "Derangements of amino acids in
cachectic skeletal muscle are caused by mitochondrial dysfunction" [4], illuminates in situ
changes of amino acids in cancer cachexia affected skeletal muscle tissues. In particular,

88



lysine and arginine were revealed to be increased in cachectic skeletal muscle tissues; in
contrast, aspartate was decreased. Sadek and colleagues investigated the mechanism of
action of inducible nitric oxide synthase (iNOS), one of the main effectors of cachexia
[101]. The authors revealed that iNOS knockout mice and mice treated with the clinically
tested iNOS inhibitor are protected against muscle wasting in septic and cancer cachexia
models. Furthermore, the authors discovered that iNOS initiates muscle wasting by
disrupting mitochondrial content, morphology, and energy production processes such
as the TCA cycle and inhibits oxidative phosphorylation. The authors confirmed our
data that arginine and lysine are increased, and aspartate is decreased in cachectic
muscle tissues. Interestingly, the iNOS inhibitor recovers the level of lysine, arginine, and
aspartate in muscle tissues. The effector iNOS could play an important role in triggering
mitochondrial dysfunction in cancer cachexia and illustrates a promising mechanism as a
target for anti-cancer-cachexia therapy.

SPACiAL offers a platform for the integration of multiple spatially resolved tissue
data [2]. The presented work in this thesis could potentially be continued by integrating
new spatial omics technologies as additional molecular layers in the future. Spatial
transcriptomics is one promising option since recent technological developments allow
to measure RNA expression levels of all or most genes systematically in tissue sections
[102]. In more detail, next-generation sequencing (NGS)-based spatial transcriptomics
encodes positional information onto transcripts prior to sequencing [102]. Spatially
barcoded microarray slides are often needed for NGS-based spatial transcriptomics. Since
FT-ICR-based spatial transcriptomics can handle non-conductive slides - e.g., barcoded
microarray slides - it could be worth analyzing a tissue previously measured by spatial
metabolomics using spatial transcriptomics to enable pixel-accurate integration. The
feasibility is underlined by our work, which reveals that the genetic information is still
intact after spatial metabolomics [1]. Spatial metabolomics and spatial transcriptomics
could be integrated by the SPACiAL pipeline [2].

As a new spatial omics technology, Zhao and colleagues recently introduced spatial
genomics, a method for capturing spatially resolved DNA sequences from intact tissue
sections [103]. The method uses barcoded bead arrays to capture spatially resolved
genome-wide expression, similar to slide-RNA-seq. It would be interesting to also combine
spatial genomics with spatial metabolomics. The integration of as many individual
molecular layers as possible could lead to a significant step in understanding cancer by
creating a comprehensive molecular view.
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4. Discussion and Outlook

Improved spatial metabolomics offers a new perspective in the cancer metabolism of
patients through the spatially resolved integration of multiple molecular layers. The
improved method was proven in this thesis to answer unmet clinical needs in cancer
therapy by enabling superior multimodal biomarkers and new knowledge for anti-HER2
and anti-PD-1/PD-L1 treatment and highlights important mechanisms for targeting
cancer cachexia. Therefore, this thesis significantly contributes to the applicability of
spatial metabolomics in clinical diagnostics and preclinical research. The published
studies revealed the potential for spatial metabolomics to assist clinical decision-making.

90



Bibliography

[1] Huber, K. et al. Multimodal analysis of formalin-fixed and paraffin-embedded
tissue by MALDI imaging and fluorescence in situ hybridization for combined
genetic and metabolic analysis. Laboratory Investigation 99, 1535–1546 (2019).

[2] Prade, V. M. et al. De novo discovery of metabolic heterogeneity with
immunophenotype-guided imaging mass spectrometry. Molecular Metabolism 36,
100953 (2020).

[3] Kunzke, T. et al. Patterns of carbon-bound exogenous compounds in patients with
lung cancer and association with disease pathophysiology. Cancer Research 81,
5862–5875 (2021).

[4] Kunzke, T. et al. Derangements of amino acids in cachectic skeletal muscle are
caused by mitochondrial dysfunction. Journal of Cachexia, Sarcopenia and Muscle
11, 226–240 (2019).

[5] Counihan, J. L., Grossman, E. A. & Nomura, D. K. Cancer metabolism: Current
understanding and therapies. Chemical Reviews 118, 6893–6923 (2018).

[6] Wishart, D. S. Is cancer a genetic disease or a metabolic disease? EBioMedicine 2,
478–479 (2015).

[7] Boroughs, L. K. & DeBerardinis, R. J. Metabolic pathways promoting cancer cell
survival and growth. Nature Cell Biology 17, 351–359 (2015).

[8] McGuirk, S., Audet-Delage, Y. & St-Pierre, J. Metabolic fitness and plasticity in
cancer progression. Trends in Cancer 6, 49–61 (2020).

[9] Wishart, D. S. Metabolomics for investigating physiological and pathophysiological
processes. Physiological Reviews 99, 1819–1875 (2019).

[10] Faubert, B., Solmonson, A. & DeBerardinis, R. J. Metabolic reprogramming and
cancer progression. Science 368, eaaw5473 (2020).

[11] Hirschey, M. D. et al. Dysregulated metabolism contributes to oncogenesis.
Seminars in Cancer Biology 35, S129–S150 (2015).

[12] Warburg, O., Wind, F. & Negelein, E. THE METABOLISM OF TUMORS IN
THE BODY. Journal of General Physiology 8, 519–530 (1927).

[13] Bernier, M. et al. GPR55 receptor antagonist decreases glycolytic activity in
PANC-1 pancreatic cancer cell line and tumor xenografts. International Journal
of Cancer 141, 2131–2142 (2017).

[14] Hirschhaeuser, F., Sattler, U. G. & Mueller-Klieser, W. Lactate: A metabolic key
player in cancer: Figure 1. Cancer Research 71, 6921–6925 (2011).

91



Bibliography

[15] Chen, Y.-J. et al. Differential incorporation of glucose into biomass during warburg
metabolism. Biochemistry 53, 4755–4757 (2014).

[16] Fischer, K. et al. Inhibitory effect of tumor cell–derived lactic acid on human t
cells. Blood 109, 3812–3819 (2007).

[17] Ookhtens, M., Kannan, R., Lyon, I. & Baker, N. Liver and adipose tissue
contributions to newly formed fatty acids in an ascites tumor. American Journal
of Physiology-Regulatory, Integrative and Comparative Physiology 247, R146–R153
(1984).

[18] Carracedo, A., Cantley, L. C. & Pandolfi, P. P. Cancer metabolism: fatty acid
oxidation in the limelight. Nature Reviews Cancer 13, 227–232 (2013).

[19] Vazquez-Martin, A., Colomer, R., Brunet, J. & Menendez, J. Pharmacological
blockade of fatty acid synthase (FASN) reverses acquired autoresistance to
trastuzumab (herceptin™) by transcriptionally inhibiting ‘HER2 super-expression’
occurring in high-dose trastuzumab-conditioned SKBR3/tzb100 breast cancer cells.
International Journal of Oncology (2007).

[20] Kwan, H. Y. et al. Dietary lipids and adipocytes: potential therapeutic targets in
cancers. The Journal of Nutritional Biochemistry 26, 303–311 (2015).

[21] Schafer, Z. T. et al. Antioxidant and oncogene rescue of metabolic defects caused
by loss of matrix attachment. Nature 461, 109–113 (2009).

[22] Locasale, J. W. Serine, glycine and one-carbon units: cancer metabolism in full
circle. Nature Reviews Cancer 13, 572–583 (2013).

[23] Ding, W. et al. s-adenosylmethionine levels govern innate immunity through
distinct methylation-dependent pathways. Cell Metabolism 22, 633–645 (2015).

[24] Villa, E., Ali, E., Sahu, U. & Ben-Sahra, I. Cancer cells tune the signaling pathways
to empower de novo synthesis of nucleotides. Cancers 11, 688 (2019).

[25] Tong, X., Zhao, F. & Thompson, C. B. The molecular determinants of de novo
nucleotide biosynthesis in cancer cells. Current Opinion in Genetics & Development
19, 32–37 (2009).

[26] Lane, A. N. & Fan, T. W.-M. Regulation of mammalian nucleotide metabolism
and biosynthesis. Nucleic Acids Research 43, 2466–2485 (2015).

[27] Kollareddy, M. et al. Regulation of nucleotide metabolism by mutant p53 contributes
to its gain-of-function activities. Nature Communications 6 (2015).

[28] Yang, M., Soga, T., Pollard, P. J. & Adam, J. The emerging role of fumarate as
an oncometabolite. Frontiers in Oncology 2 (2012).

[29] Kim, J. & DeBerardinis, R. J. Mechanisms and implications of metabolic
heterogeneity in cancer. Cell Metabolism 30, 434–446 (2019).

[30] Borniger, J. C. et al. A role for hypocretin/orexin in metabolic and sleep
abnormalities in a mouse model of non-metastatic breast cancer. Cell Metabolism
28, 118–129.e5 (2018).

92



[31] Baazim, H., Antonio-Herrera, L. & Bergthaler, A. The interplay of immunology
and cachexia in infection and cancer. Nature Reviews Immunology (2021).

[32] Biswas, A. K. & Acharyya, S. Understanding cachexia in the context of metastatic
progression. Nature Reviews Cancer 20, 274–284 (2020).

[33] Argilés, J. M., Stemmler, B., López-Soriano, F. J. & Busquets, S. Inter-tissue
communication in cancer cachexia. Nature Reviews Endocrinology 15, 9–20 (2018).

[34] Fearon, K. et al. Definition and classification of cancer cachexia: an international
consensus. The Lancet Oncology 12, 489–495 (2011).

[35] Roeland, E. J. et al. Management of cancer cachexia: ASCO guideline. Journal of
Clinical Oncology 38, 2438–2453 (2020).

[36] Siddiqui, J. A., Pothuraju, R., Jain, M., Batra, S. K. & Nasser, M. W.
Advances in cancer cachexia: Intersection between affected organs, mediators, and
pharmacological interventions. Biochimica et Biophysica Acta (BBA) - Reviews on
Cancer 1873, 188359 (2020).

[37] Hopkinson, J. B., Wright, D. N., McDonald, J. W. & Corner, J. L. The prevalence
of concern about weight loss and change in eating habits in people with advanced
cancer. Journal of Pain and Symptom Management 32, 322–331 (2006).

[38] Grande, A. J. et al. Exercise for cancer cachexia in adults. Cochrane Database of
Systematic Reviews 2021 (2021).

[39] Prado, C. M. et al. Central tenet of cancer cachexia therapy: do patients with
advanced cancer have exploitable anabolic potential? The American Journal of
Clinical Nutrition 98, 1012–1019 (2013).

[40] Prado, C. M. M. et al. Skeletal muscle anabolism is a side effect of therapy with the
MEK inhibitor: selumetinib in patients with cholangiocarcinoma. British Journal
of Cancer 106, 1583–1586 (2012).

[41] Ni, X., Yang, J. & Li, M. Imaging-guided curative surgical resection of pancreatic
cancer in a xenograft mouse model. Cancer Letters 324, 179–185 (2012).

[42] Norton, J. A., Moley, J. F., Green, M. V., Carson, R. E. & Morrison, S. D.
Parabiotic transfer of cancer anorexia/cachexia in male rats. Cancer Research 45,
5547–5552 (1985).

[43] Arthur, S. T. et al. Cachexia among US cancer patients. Journal of Medical
Economics 19, 874–880 (2016).

[44] Rohm, M., Zeigerer, A., Machado, J. & Herzig, S. Energy metabolism in cachexia.
EMBO reports 20 (2019).

[45] Stewart, G. D., Skipworth, R. J. & Fearon, K. C. Cancer cachexia and fatigue.
Clinical Medicine Journal 6, 140–143 (2006).

[46] Argilés, J. M., Busquets, S., Stemmler, B. & López-Soriano, F. J. Cancer cachexia:
understanding the molecular basis. Nature Reviews Cancer 14, 754–762 (2014).

93



Bibliography

[47] Porporato, P. E. Understanding cachexia as a cancer metabolism syndrome.
Oncogenesis 5, e200–e200 (2016).

[48] Shyh-Chang, N. Metabolic changes during cancer cachexia pathogenesis. In
Translational Research in Breast Cancer, 233–249 (Springer Singapore, 2017).

[49] Fearon, K. C., Glass, D. J. & Guttridge, D. C. Cancer cachexia: Mediators,
signaling, and metabolic pathways. Cell Metabolism 16, 153–166 (2012).

[50] Argilés, J. M., López-Soriano, F. J. & Busquets, S. Mediators of cachexia in cancer
patients. Nutrition 66, 11–15 (2019).

[51] Argilés, J. M., Stemmler, B., López-Soriano, F. J. & Busquets, S. Nonmuscle
tissues contribution to cancer cachexia. Mediators of Inflammation 2015, 1–9
(2015).

[52] Cui, P. et al. Metabolic profiling of tumors, sera, and skeletal muscles from an
orthotopic murine model of gastric cancer associated-cachexia. Journal of Proteome
Research 18, 1880–1892 (2019).

[53] Martin, A. & Freyssenet, D. Phenotypic features of cancer cachexia-related loss of
skeletal muscle mass and function: lessons from human and animal studies. Journal
of Cachexia, Sarcopenia and Muscle 12, 252–273 (2021).

[54] Singh, J., Grigor, M. R. & Thompson, M. P. Glucose homeostasis in rats bearing
a transplantable sarcoma. Cancer Research 40, 1699–1706 (1980).

[55] Puig-Vilanova, E. et al. Oxidative stress, redox signaling pathways, and autophagy
in cachectic muscles of male patients with advanced COPD and lung cancer. Free
Radical Biology and Medicine 79, 91–108 (2015).

[56] Mendell, J. R. & Engel, W. K. The fine structure of type II muscle fiber atrophy.
Neurology 21, 358–358 (1971).

[57] Zhang, Y. et al. The autophagic-lysosomal and ubiquitin proteasome systems
are simultaneously activated in the skeletal muscle of gastric cancer patients with
cachexia. The American Journal of Clinical Nutrition 111, 570–579 (2020).

[58] TZIKA, A. A. et al. Skeletal muscle mitochondrial uncoupling in a murine cancer
cachexia model. International Journal of Oncology 43, 886–894 (2013).

[59] Poliaková, M., Aebersold, D. M., Zimmer, Y. & Medová, M. The relevance of
tyrosine kinase inhibitors for global metabolic pathways in cancer. Molecular
Cancer 17 (2018).

[60] Griguolo, G., Pascual, T., Dieci, M. V., Guarneri, V. & Prat, A. Interaction
of host immunity with HER2-targeted treatment and tumor heterogeneity in
HER2-positive breast cancer. Journal for ImmunoTherapy of Cancer 7 (2019).

[61] Alvarez-Calderon, F. et al. Tyrosine kinase inhibition in leukemia induces an
altered metabolic state sensitive to mitochondrial perturbations. Clinical Cancer
Research 21, 1360–1372 (2014).

94



[62] Chen, R. et al. Disrupting glutamine metabolic pathways to sensitize gemcitabine-
resistant pancreatic cancer. Scientific Reports 7 (2017).

[63] Shi, Y. et al. Integration of metabolomics and transcriptomics to reveal metabolic
characteristics and key targets associated with cisplatin resistance in nonsmall cell
lung cancer. Journal of Proteome Research 18, 3259–3267 (2019).

[64] van Gastel, N. et al. Induction of a timed metabolic collapse to overcome cancer
chemoresistance. Cell Metabolism 32, 391–403.e6 (2020).

[65] Nicolantonio, F. D. et al. Precision oncology in metastatic colorectal cancer —
from biology to medicine. Nature Reviews Clinical Oncology 18, 506–525 (2021).

[66] Akiyama, T., Sudo, C., Ogawara, H., Toyoshima, K. & Yamamoto, T. The product
of the human c-erbB-2 gene: a 185-kilodalton glycoprotein with tyrosine kinase
activity. Science 232, 1644–1646 (1986).

[67] Necela, B. M. et al. The antineoplastic drug, trastuzumab, dysregulates metabolism
in iPSC-derived cardiomyocytes. Clinical and Translational Medicine 6 (2017).

[68] Maadi, H., Soheilifar, M. H., Choi, W.-S., Moshtaghian, A. & Wang, Z.
Trastuzumab mechanism of action 20 years of research to unravel a dilemma.
Cancers 13, 3540 (2021).

[69] Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M.
KEGG: integrating viruses and cellular organisms. Nucleic Acids Research 49,
D545–D551 (2020).

[70] Hudziak, R. M. et al. p185her2 monoclonal antibody has antiproliferative effects in
vitro and sensitizes human breast tumor cells to tumor necrosis factor. Molecular
and Cellular Biology 9, 1165–1172 (1989).

[71] Carter, P. et al. Humanization of an anti-p185her2 antibody for human cancer
therapy. Proceedings of the National Academy of Sciences of the United States of
America 89, 4285–4289 (1992).

[72] Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against
HER2 for metastatic breast cancer that overexpresses HER2. The New England
Journal of Medicine 344, 783–792 (2001).

[73] Bang, Y.-J. et al. Trastuzumab in combination with chemotherapy versus
chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-
oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled
trial. The Lancet 376, 687–697 (2010).

[74] Krishnamurti, U. & Silverman, J. F. HER2 in breast cancer. Advances In Anatomic
Pathology 21, 100–107 (2014).

[75] Zhang, W., Tian, H. & hong Yang, S. The efficacy of neoadjuvant chemotherapy
for HER-2-positive locally advanced breast cancer and survival analysis. Analytical
Cellular Pathology 2017, 1–5 (2017).

95



Bibliography

[76] Gomez-Martin, C. et al. Level of HER2 gene amplification predicts response and
overall survival in HER2-positive advanced gastric cancer treated with trastuzumab.
Journal of Clinical Oncology 31, 4445–4452 (2013).

[77] Wang, Y. et al. GLUL promotes cell proliferation in breast cancer. Journal of
Cellular Biochemistry 118, 2018–2025 (2017).

[78] Miolo, G. et al. Pharmacometabolomics study identifies circulating spermidine
and tryptophan as potential biomarkers associated with the complete pathological
response to trastuzumab-paclitaxel neoadjuvant therapy in HER-2 positive breast
cancer. Oncotarget 7, 39809–39822 (2016).

[79] Nakamura, Y., Kawazoe, A., Lordick, F., Janjigian, Y. Y. & Shitara, K. Biomarker-
targeted therapies for advanced-stage gastric and gastro-oesophageal junction
cancers: an emerging paradigm. Nature Reviews Clinical Oncology 18, 473–487
(2021).

[80] Garassino, M. C. et al. Durvalumab as third-line or later treatment for advanced
non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study.
The Lancet Oncology 19, 521–536 (2018).

[81] Rochfort, S. Metabolomics reviewed: A new omics platform technology for systems
biology and implications for natural products research. Journal of Natural Products
68, 1813–1820 (2005).

[82] Maia, M., Figueiredo, A., Cordeiro, C. & Silva, M. S. FT-ICR-MS-based
metabolomics: A deep dive into plant metabolism. Mass Spectrometry Reviews
(2021).

[83] Wishart, D. S. et al. HMDB: the human metabolome database. Nucleic Acids
Research 35, D521–D526 (2007).

[84] Alexandrov, T. Spatial metabolomics and imaging mass spectrometry in the age of
artificial intelligence. Annual Review of Biomedical Data Science 3, 61–87 (2020).

[85] Norris, J. L. & Caprioli, R. M. Analysis of tissue specimens by matrix-assisted
laser desorption/ionization imaging mass spectrometry in biological and clinical
research. Chemical Reviews 113, 2309–2342 (2013).

[86] Sailwal, M. et al. Connecting the dots: Advances in modern metabolomics and its
application in yeast system. Biotechnology Advances 44, 107616 (2020).

[87] Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. Electrospray
ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989).

[88] Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular
masses exceeding 10,000 daltons. Analytical Chemistry 60, 2299–2301 (1988).

[89] Freiwald, A. & Sauer, S. Phylogenetic classification and identification of bacteria
by mass spectrometry. Nature Protocols 4, 732–742 (2009).

96



[90] Spraker, J. E., Luu, G. T. & Sanchez, L. M. Imaging mass spectrometry for natural
products discovery: a review of ionization methods. Natural Product Reports 37,
150–162 (2020).

[91] Janda, M. et al. Determination of abundant metabolite matrix adducts illuminates
the dark metabolome of MALDI-mass spectrometry imaging datasets. Analytical
Chemistry 93, 8399–8407 (2021).

[92] Weaver, E. M. & Hummon, A. B. Imaging mass spectrometry: From tissue sections
to cell cultures. Advanced Drug Delivery Reviews 65, 1039–1055 (2013).

[93] Neumann, E. K., Djambazova, K. V., Caprioli, R. M. & Spraggins, J. M. Multimodal
imaging mass spectrometry: Next generation molecular mapping in biology and
medicine. Journal of the American Society for Mass Spectrometry 31, 2401–2415
(2020).

[94] Aichler, M. & Walch, A. MALDI imaging mass spectrometry: current frontiers
and perspectives in pathology research and practice. Laboratory Investigation 95,
422–431 (2015).

[95] Buck, A. et al. High-resolution MALDI-FT-ICR MS imaging for the analysis of
metabolites from formalin-fixed, paraffin-embedded clinical tissue samples. The
Journal of Pathology 237, 123–132 (2015).

[96] Goldman, R. et al. Smoking increases carcinogenic polycyclic aromatic hydrocarbons
in human lung tissue. Cancer research 61, 6367–6371 (2001).

[97] Lodovici, M., Akpan, V., Giovannini, L., Migliani, F. & Dolara, P. Benzo[a]pyrene
diol-epoxide DNA adducts and levels of polycyclic aromatic hydrocarbons in
autoptic samples from human lungs. Chemico-Biological Interactions 116, 199–212
(1998).

[98] Castellanos-Garcia, L. J., Sikora, K. N., Doungchawee, J. & Vachet, R. W. LA-ICP-
MS and MALDI-MS image registration for correlating nanomaterial biodistributions
and their biochemical effects. The Analyst (2021).

[99] Lu, S. et al. Comparison of biomarker modalities for predicting response to
PD-1/PD-l1 checkpoint blockade. JAMA Oncology 5, 1195 (2019).

[100] Vargas, A. J. & Harris, C. C. Biomarker development in the precision medicine
era: lung cancer as a case study. Nature Reviews Cancer 16, 525–537 (2016).

[101] Sadek, J. et al. Pharmacological or genetic inhibition of iNOS prevents cachexia-
mediated muscle wasting and its associated metabolism defects. EMBO Molecular
Medicine 13 (2021).

[102] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using
spatial transcriptomics. Nature 596, 211–220 (2021).

[103] Zhao, T. et al. Spatial genomics enables multi-modal study of clonal heterogeneity
in tissues. Nature 601, 85–91 (2021).

97





Appendix

A.1. Conference contributions

Oral presentations:

1. Kunzke T, Sun N, Sbiera S, Wild V, Aichler M, Ronchi C, Schlegel N, Rosenwald
A, Fassnacht M, Walch A, Kroiss M. High resolution tissue mass spectrometry
imaging: a new tool for identification of prognostic markers in adrenocortical
carcinoma. (2017) 19th European Congress of Endocrinology, Lisbon, Portugal.

2. Ludwig P*, Kunzke T*, Rhayem Y, Feuchtinger A, Heinrich D, Woischke C,
Williams TA, Kirchner T, Hahner S, Knösel T, Reincke M, Walch A, Beuschlein F.
Image Analysis of Morphometric Parameters in Aldosterone-Producing Adenomas.
(2017) Progress in Primary Aldosteronism 5, Munich, Germany.

*) Both authors presented the talk

3. Kunzke T, Buck A, Prade VM, Feuchtinger A, Prokopchuk O, Martignoni ME,
Heisz S, Hauner H, Janssen KP, Walch A, Aichler M. Derangements of amino acids
in cachectic skeletal muscle are caused by mitochondrial dysfunction. (2019) 12th
international SCWD Conference On Cachexia, Sarcopenia And Muscle Wasting,
Berlin, Germany. Young Investigators Award Finalist

Poster presentations:

1. Kunzke T, Buck A, Prade VM, Feuchtinger A, Prokopchuk O, Martignoni ME,
Heisz S, Hauner H, Janssen KP, Walch A, Aichler M. Derangements of amino
acids in cachectic skeletal muscle are caused by mitochondrial dysfunction. (2019)
OurCon VII, Saint-Malo, France.

2. Kunzke T, Buck A, Prade VM, Feuchtinger A, Prokopchuk O, Martignoni ME,
Heisz S, Hauner H, Janssen KP, Walch A, Aichler M. Derangements of amino acids
in cachectic skeletal muscle are caused by mitochondrial dysfunction. (2019) 12th
international SCWD Conference On Cachexia, Sarcopenia And Muscle Wasting,
Berlin, Germany.

99



Appendix

A.2. Approval letters from publishers

Figure A.1. Approval letter for the publication in the Journal Laboratory Investigation. The
article was reproduced with permission from Springer Nature. [1]

Please note that the remaining first author publications embedded in this dissertation
are licensed under the Creative Commons Attribution 4.0 International License (CC
BY-NC-ND 4.0 [2], or CC BY-NC 4.0 [4]) and thus do not require any further permission
to be used in this cumulative dissertation.

100



A.2. Approval letters from publishers

Figure A.2. Approval letter for the publication in the Journal Cancer Research [3]

101





Acknowledgments

First of all, I want to thank my PhD supervisor Prof. Gil Westmeyer for giving me the
unique opportunity to work on these exciting and challenging topics during my PhD. I
thank him for his help in all matters as well as the opened new perspective on exciting
topics.

Furthermore, I would like to thank my mentor, Prof. Axel Walch. I always enjoyed
the scientific discussions with him very much. He gave me extraordinary freedom and
confidence to develop my ideas, which presented many challenges but ultimately made
me a scientist.

I would also like to thank Prof. Bernd Reif, who provided valuable suggestions as a
member of my dissertation committee.

In general, I would like to thank my great colleagues with whom I have shared my
daily life over the years. You have added a lot to my PhD work, and many have become
good friends. Dr. Achim Buck and Dr. Na Sun were essential pioneers in helping me
learn the methodology and develop crucial ideas. I owe my bioinformatics progress and
endlessly creative scientific exchange to Dr. Verena Marina Prade. Dr. Katharina Huber
and Dr. Christian Greunke were important persons not to forget the joy of work and
to improve my LaTeX skills. I would also like to thank Dr. Annette Feuchtinger, who
always provided me with resources from her bustling Core Facility. Not to forget the
participation of Claudia-Mareike Pflüger, Ulrike Buchholz, Elenore Samson, Gabriele
Mettenleiter, and Cristina Hübner Freitas in many funny moments and valuable technical
support. I would also like to thank the unique Andreas Voss for his technological know-
how. I want to thank Dr. Michaela Aichler for electron microscopy and helpful ideas
and suggestions. To my fellow PhD students Jun Wang, Qian Wang, Jian Shen, Lisa
Kreutzer, and Marco Matzka, I owe a hilarious working atmosphere and a lot of joy in
my work. Last but not least, I would like to mention my students, who enriched the
daily routine decisively and made a valuable contribution to the work: Fabian Hölzl,
Adrian Knoll, and Barbara Stöckl.

103



Acknowledgments

I want to thank all my great friends for their support in this challenging time. Primarily
I want to name here Daniel and Manuel.

Above all, however, I would like to thank my family for supporting me unconditionally
throughout my life and during this PhD. My parents, Without you, I would not be the
person I am today, and for that, I would like to thank you from the bottom of my heart.

104


	Abstract
	Contents
	List of Figures
	List of Abbreviations
	Publication Record
	Introduction
	Cancer and metabolism
	Metabolic changes in cancer tissues
	Systemic metabolic changes - cancer cachexia
	Cancer metabolism and therapy

	Metabolomics
	Bulk metabolomics
	Spatial metabolomics

	Aims of this dissertation

	First Author Publications
	Multimodal analysis of formalin-fixed and paraffin-embedded tissue by MALDI imaging and fluorescence in situ hybridization for combined genetic and metabolic analysis
	De novo discovery of metabolic heterogeneity with immunophenotype-guided imaging mass spectrometry
	Patterns of carbon-bound exogenous compounds in patients with lung cancer and association with disease pathophysiology
	Derangements of amino acids in cachectic skeletal muscle are caused by mitochondrial dysfunction

	Discussion and Outlook
	Bibliography
	Appendix
	Conference contributions
	Approval letters from publishers

	Acknowledgments

