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ABSTRACT
Due to the adjustable geometry, pintle injectors are especially suitable for liquid rocket engines, which require a widely throttleable range.
However, applying the conventional computational fluid dynamics approaches to simulate the complex spray phenomenon in the whole range
still remains a great challenge. In this paper, a novel deep learning approach used to simulate instantaneous spray fields under continuous
operating conditions is explored. Based on one specific type of neural network and the idea of physics constraint, a Generative Adversarial
Networks with Physics Evaluators framework is proposed. The geometry design and mass flux information are embedded as inputs. After
the adversarial training between the generator and discriminator, the generated field solutions are fed into two physics evaluators. In this
framework, a mass conversation evaluator is designed to improve the training robustness and convergence. A spray angle evaluator, which
is composed of a down-sampling Convolutional Neural Network and theoretical model, guides the networks to generate the spray solutions
more closely according to the injection conditions. The characterization of the simulated spray, including the spray morphology, droplet
distribution, and spray angle, is well predicted. This work suggests great potential for prior physics knowledge employment in the simulation
of instantaneous flow fields.
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0056549

I. INTRODUCTION

Due to their wider throttling range and greater combustion sta-
bility, pintle injectors are especially suitable for liquid rocket engines
that require deep, fast, and safe throttling,1–3 such as the descent
propulsion system in the Apollo program4 and the reusable Merlin
engine of SpaceX.5

In practical throttleable engine applications, the pintle is mov-
able to alter the injection area so that the mass flow rate of the
injected propellants can be varied continuously according to the
economical and safe thrust curve in a given situation.6 However,
in the previous spray simulations of pintle injectors, the changes
were only considered under discrete condition combinations over
a limited number of select operating points.7–9 For the tradi-
tional discrete methods they used, simulations have to be con-
ducted repeatedly to vary the operating conditions and the com-
putational cost becomes prohibitively expensive.10 Innovations for

the spray simulation of the pintle injector are needed to address this
issue.

Contrarily, the machine learning approach, especially the Neu-
ral Network (NN), has demonstrated its efficiency to predict the flow
fields under different conditions with a single surrogate model.11,12

Previous research studies on flow field prediction using the NN are
mainly focused on the data-driven method. In addition to the indi-
rect way using the closure model,13,14 the field solution can also be
directly obtained from the network model, which is trained with
a large number of samples.15–18 However, some predictive results
obtained by data-driven methods may still exhibit considerable
errors against physics laws or operating conditions.19–21 In addi-
tion, in some sparse data regimes, some machine learning techniques
lack robustness and fail to provide guarantees of convergence.22

For the purpose of remedying the above-mentioned shortcomings
of data-driven methods, the physics-driven/informed methods are
proposed recently.23,24 By providing physics information, NNs are
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FIG. 1. Schematic of the experimental facilities. The test bench is composed of
a gas–liquid pintle injector, a propellant feed system, and a control system. The
spray visualization system includes a LED lamp and a high-speed camera.

able to directly obtain field solutions that obey physical laws and
operating conditions.25 In these works, Partial Differential Equations
(PDEs) were employed in the loss function to explicitly constrain the
network training.26,27

In the state-of-the-art neural network methods, Generative
Adversarial Networks (GANs) proposed by Goodfellow et al.28 are
efficient to generate the instantaneous flow fields.29,30 Despite the
impressive performance for unsupervised learning tasks, the qual-
ity of generated solutions by GANs is still limited for some realistic
tasks.31 In addition, as shown in the training results later, the tran-
sient nature of the spray injection and liquid sheet break results in
the extreme difficulty of usual networks to qualify the place and
intensity of dominating characterizations.

In this paper, based on one specific type of GAN and the
idea of physics constraint, a novel Generative Adversarial Net-
works with Physical Evaluators (GAN-PE) framework is proposed.
By introducing mass conversation and spray angle models as the
two evaluators, this framework has a better training convergence
and predictive accuracy. The trained model is able to simulate

the macroscopic morphology and characterization of the instanta-
neous flow fields under different conditions. This paper is orga-
nized as follows: We first introduce the experimental settings and
dataset acquisition. Second, the architecture of GAN-PE and the
detailed parts are described. Then, the learning results of numeri-
cal experiments are presented for validation. Finally, conclusions are
drawn.

II. DATASET FROM EXPERIMENTS
Our training data are extracted from the spray experimental

results of the pintle injectors.

A. Experimental facilities
The non-reactive cold experiments were conducted at atmo-

spheric pressure. The dry air is used for axial flows and filtered water
for radial flows. The schematic of experimental facilities is shown
in Fig. 1. A back-lighting photography technique is used for instan-
taneous spray image visualization. The image acquisition system
consists of a light-emitting diode (LED) light source, a high-speed
camera, and a computer. The exposure time is 10 μs, and the frame
rate is 50k fps.

The detailed gas–liquid pintle injector is shown in Fig. 2. In
order to study the influence of the momentum ratio on the spray
angle, the experimental device is designed to use the replaceable
parts. In the experiment, the height of the radial liquid jet outlet Lopen
and the thickness of the axial gas sheet Tgs are adjusted by chang-
ing the height of the sleeve and the axial gap distance, respectively.
When the liquid propellant is injected radially from the two sides of
the pintle end through the manifold, the liquid columns are formed.
These columns are broken by the axial gas propellant injection from
the gap cling to the pintle. Finally, due to impingement and colli-
sion, the liquid columns break and form a plane conical spray like
a hollow-cone atomizer. This design induces vigorous mixing of
the gaseous and liquid propellants, which yields a high combustion
efficiency.32

B. Dataset acquisition
The spray experiments are carried out with the throttling level

Lt of 40%–80%. Lt is varied by the linear adjustment of the height
of the radial liquid jet outlet and the thickness of the axial gas sheet.
The radial liquid jet outlet heights at throttling levels of 40%, 60%,

FIG. 2. Gas–liquid pintle injector. (a) Pin-
tle injector within manifolds. The exper-
imental injector consists of a gas man-
ifold, a replaceable liquid manifold, a
replaceable axial gas sheet adjustment
annular, a central cylinder, and a sleeve.
(b) Schematic of the replaceable parts in
the red square of (a). In order to facilitate
the optical observation about the spray
angle, two symmetrical radial liquid jet
orifices are designed on the replaceable
central cylinder. Lopen and Tgs are the
injector opening distance and gas sheet
thickness, respectively.
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TABLE I. Experimental operating conditions. mg and ml are the mass flow rate of
gaseous and liquid propellants, respectively. CTMR is the momentum ratio of the two
propellants.

Lt (%) Lopen (mm) Tgs (mm) mg (g/s) ml (g/s) CTMR

80 4.0 4.0 22.17 18.55–40.54 1.01–4.92
60 3.0 3.0 15.70 14.85–30.46 1.22–5.14
40 2.0 2.0 9.85 8.85–20.45 0.98–5.21

and 80% are 2, 3, and 4, respectively. When Lt is fixed, the height of
the radial liquid jet outlet is fixed and equal to the thickness of the
axial gas sheet. Table I shows the operating conditions of the exper-
imental campaign and the corresponding key specifications of the
pintle injector. The temperature of the liquid and gas is 298.15 K.
The mass flow rate ml is determined by the variation of liquid pres-
sure upstream. Eventually, 35k raw images were captured and 29k of
them were used for training and the others for validation.

As shown in Fig. 3, to measure the spray angle, the spray images
obtained in the experiment are post-processed to clarify the spray
boundary. The average of ten images with the same time interval is
used to measure the spray angle manually. Every operation condi-
tion has 1k raw images, so the 100th, 200th, . . ., 900th, and 1000th
images are averaged. Then, the spray angles of the time-averaged
spray images, defined as θ = 1

2(θ1 + θ2), are manually measured.
Since the raw images are all captured in the steady injection stage
and no temporal fluctuations, the measured angle value is unique
per operating condition. Note that the average images and the corre-
sponding manually measured angles are only used to train the spray
angle estimator, i.e., the down-sampling CNN in the spray angle
evaluator. The raw images are used in the training of GAN-PE.

The resolutions of the instantaneous spray image are 640 × 480.
In order to reduce the training cost, the images are interpolated to
the images with a resolution of 128 × 128. While the measured angle

values, which represented the nature of the spray phenomenon, are
fixed despite the image scaling.

III. METHODOLOGY
A. Overview

Here, a Generative Adversarial Networks with Physical Evalu-
ators (GAN-PE) framework is proposed. As shown in Fig. 4, the
GAN-PE is composed of four parts: generator (G), discriminator
(D), and two physical evaluators. The field solutions are generated
by G, and the other three parts are employed to guarantee that the
outputs catch the spray morphology and obey the operating con-
ditions. The GAN is the base of the proposed network framework;
the G captures the real spray data distribution, which corresponds
to the operation conditions; and the D estimates the probability that
a condition–sample pair came from the training data rather than G.
There are also two evaluators designed to improve the performance
of GANs. The first evaluator, Mass Conservation Evaluator (EMC),
is used to improve the generation robustness by calculating the ring
error between output and the corresponding average target. The sec-
ond evaluator, spray angle evaluator (ESA), is used to improve the
predictive accuracy in the specific operating conditions by compar-
ing the output angle with the theoretical one. Fed with the outputs
from G, the losses of D, EMC, and ESA are calculated, respectively.
After that, backpropagation is applied to adjust the U-net Convo-
lutional Neural Network (CNN) of G to generate a new spray field
that more satisfies the conditions and prior physics knowledge. After
enough iterations, the network will be able to generate a “correct”
spray field.

B. GAN
1. Generator

From inputs toward outputs, the network of G consists of
two parts: encoding and decoding.33 In the encoding process, the

FIG. 3. Data acquisition. The resolution of the images is 640 × 480. The raw monochrome pictures are processed as 8-bit gray images in which every pixel has a gray value
and the range is 0–255. The average is obtained by calculating the mean gray value of raw images. The images are regarded as the 2D matrices whose dimensions are
640 × 480.
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FIG. 4. Schematic of the proposed network framework. Fed with the operating conditions, the U-net generator outputs a field solution of the spray. The discriminator, mass
conservation, and spray angle losses are utilized to update the generator by backpropagation.

operating conditions Lopen, Tgs, mg, and ml are resized as four fea-
ture channels of the input tensor for convolutional down-sampling
with corresponding kernels.34,35 After that, the matrices with a size
of 128 × 128 are progressively reduced to 512 single-value vectors.
Each layer of the network consists of a convolution operation, batch
normalization, and a non-linear activation function. By the convo-
lutional calculation, along with the increasing number of feature
channels, the matrix size is down-sampled by a factor of 2. In this
way, the information of operating conditions is translated into the
extracted features in the next layer. In addition, skip-concatenations
from input to output feature channels are introduced to ensure
that operating condition information is available in the following
up-sampling process for inferring the solution. Then, the decod-
ing part works in an opposite way, which can be regarded as an
inverse convolutional process mirroring the behavior of the encod-
ing part. Along with the increase in spatial resolution, the spray fields
are reconstructed based on the single-value vectors by up-sampling
operations. For more details of the U-net architecture and convo-
lutional block, including active function, pooling, and dropout, see
Ref. 27.

The weighted loss function considering the following discrimi-
nator and evaluators is written as

ℒ (D, EMC, ESA) =ℒ D + αℒ EMC + βℒ ESA , (1)

where ℒ D, ℒ EMC , and ℒ ESA are the loss terms that are calculated by
D, EMC, and ESA, respectively. In addition, α and β are the constant

hyperparameters that are manually tuned before training to adapt
the scales of these loss terms. Here, the orders of magnitude of α and
β are 2 and 1, respectively. After proper training, both generator and
discriminator losses remain stable and the generator is able to map
a spray sample from a random distribution to the desired one that
obeys the physical knowledge and conditions.

2. Discriminator
The discriminator in a GAN is simply a classifier. It tries to dis-

tinguish real samples from the data created by the generator, i.e.,
fake data. The discriminator’s training data come from two sources.
One consists of the real data instances, here are the real experi-
mental images. D uses these instances as positive examples during
training. The other are the fake data instances created by the gen-
erator. The discriminator uses these instances as negative examples
during training. Then, D is used to feed the possibility that samples
come from the targets rather than generation distribution back to G.
We use Least Squares Generative Adversarial Networks (LSGANs)
settings to train the D and the G simultaneously.36 This special
type of GAN helps to remedy the gradient vanishing by using the
least squares loss function instead of the sigmoid cross entropy loss
function.37

Here, D is modified by the encoder of the G, which means
that the generating solutions from G are down-sampled by the re-
convolutional calculation so that the spray field information is con-
cluded into the linear 1D tensor. Then, this 1D tensor will be used to
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be trained to maximize the probability of assigning the correct label,
real or fake, to both training targets and generating solutions. Simi-
lar to the work in Ref. 38, we use the input–output and input–target
pairs to feed D instead of only output and target in the random image
generation tasks. The operating conditions and the outputs/targets
are concatenated as the different feature channels in a 4D data ten-
sor. In this way, D not only discriminates between the real and
fake but also helps to judge whether the outputs accord with the
corresponding conditions.

The loss functions for LSGANs are defined as

min
D

VGAN(D) =
1
2
Ex∼pdata(x)[(D(x) − b)2]

+ 1
2
Ez∼pz(z)[(D(G(z)) − a)2], (2)

min
G

VGAN(G) =
1
2
Ez∼pz(z)[(D(G(z)) − c)2],

where x is the training data and z is the input variables. In addition,
a and b are the labels for fake data and real data, respectively; and c
denotes the value that G wants D to believe for the generated solu-
tions. Here, we apply a = 0 and b = c = 1. Therefore, ℒ D is equal to
the second part of Eq. (2).

C. Evaluators
1. Mass conservation evaluator

As shown in Fig. 5, we assume that there are a few spherical vol-
umes with different diameters that are tangent at the middle point
of the upper boundary in both generating images and the average
images. The idea originates from that the spray phenomenon obeys
the mass conservation law. Because the propellants are injected from
the two flanks of the central pintle and the width of the image’s

normal direction is fixed, the 3D effect is ignored and the spheres are
simplified to the 2D rings. The mass fluxes of droplets through one
specific ring in every instantaneous frame are equivalent. The spray
field generation is indeed a 2D image reconstruction task. There-
fore, the “mass” here is a broader concept, which also involves the
background shadow, i.e., the quasi-mass in one position is repre-
sented by the gray value of the corresponding pixel. Following the
definition of “L1loss” that is widely used in the machine learning
community, we define a mass conservation loss here. The differ-
ence is that the former measures the sum of absolute errors between
each element in the generation and target,39 but ours first calcu-
lates a gray value summation of every element in one concerning
ring and then compares absolute error between the corresponding
rings in the generation and target and, at last, the summation of the
errors.

The mass conservation error, i.e., the loss term from EMC, is
defined as

ℒ EMC =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m

∑
k=1

RRRRRRRRRRR

n

∑
i=1

xi −
n

∑
j=1

yj

RRRRRRRRRRRk
, E ≥ Ethr,

0, E < Ethr,
(3)

where x and y are the gray values in generated images and aver-
age targets, respectively. In addition, m is the number of concerning
rings and n is the number of data points in one concerning ring in
the matrix. E is the error between the output and average matrix and
defined as

E =
N

∑
i=1
∣xi − yi∣, (4)

where N is the number of all the data points in the matrix. To
improve the generation randomness and in view of the error caused

FIG. 5. Mass conservation. The resolution of the images is 128 × 128. The rings remain tangent at the central point of the top edge.
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by light transmission and reflection, the loss threshold Ethr is intro-
duced herein. Once the loss is less than the threshold, this loss term
will be ignored.

2. Spray angle evaluator
The present evaluator is composed of two parts: one is the the-

oretical model of the spray angle and the other is a CNN encoder to
estimate the spray angles from the generated field solutions.

The schematic diagram of the theoretical model of the spray
angle is shown in Fig. 6. Several basic hypotheses must be declared
before carrying out the theoretical analysis: (a) An element of fluid
emerging from the jet exit is assumed to have the constant length
and width equal to the jet exit length Lopen and width W, as it moves
along the trajectory; (b) liquid jet deformation, evaporation, and
droplet dispersion are ignored; (c) the fluid element has a constant
y-component velocity and an initial angle equal to the central pro-
pellant deflection angle φ; (d) the spray angle is assumed to be equal
to the slope of the liquid jet at the position where it passes through
the gas film; and (e) surface tension, gravity, friction, heat transfer,
and phase change are ignored.

Following the definition in Ref. 40, the aerodynamic drag Fd of
the liquid element in the x-direction is

Fd =
1
2

Cdρg(vg − vl cos φ)2WH, (5)

where Cd is the drag coefficient. vg and vl are the gas velocity and
initial liquid element velocity, respectively. According to Newton’s
second law in the x-direction, there is

1
2

Cdρg(vg − vl cos φ)2WH = mla = ρlWLopenH
dvx

dt
, (6)

where ml and a are the mass and acceleration of the liquid element,
respectively. vx is the x-component of the liquid element velocity. It

FIG. 6. Schematic of the spray angle model. Lopen and W are the length and width
of the radical rectangular section, respectively. H is the axial height of the liquid
element.

can be rewritten as

dvx

dt
= Cd

2
ρg

ρl

(vg − vl cos φ)2

Lopen
. (7)

Then, the integration of Eq. (7) with respect to time is

∫
t

0

dvx

dt
dt = ∫

t

0

Cd

2
ρg

ρl

(vg − vl cos φ)2

Lopen
dt, (8)

and then,

vx∣t0 =
Cd

2
ρg

ρl

(vg − vl cos φ)2

Lopen
t. (9)

Since vx(0) = vlcosφ, there is

vx =
Cd

2
ρg

ρl

(vg − vl cos φ)2

Lopen
t + vl cos φ. (10)

As vx = dx/dt, the integration with respect to time is

x = Cd

4
ρg

ρl

(vg − vl cos φ)2

Lopen
t2 + vl cos φt, (11)

where x is the x-coordinate of the element’s trajectory. Since the
y-component velocity remains constant and vy = vlsinφ = y/t, where
y is the y-coordinate, the mathematical expression of the element
trajectory is derived as

x = Cd

4
ρg

ρl

(vg − vl cos φ)2

Lopen
( y

vl sin φ
)

2

+ vl cos φy
vl sin φ

. (12)

For the collision between the gas sheet and the rectangular liquid jet,
the momentum ratio is

CTMR =
ṁlvl

ṁgvg
= ρlv2

l Al

ρgv2
gAg
= ρlv2

l WLopen

ρgv2
gWH

= ρlv2
l Lopen

ρgv2
gH

. (13)

Therefore, Eq. (12) is expressed in terms of the momentum ratio
CTMR as follows:

x = Cd

4CTMRHsin2φ
(1 − vl cos φ

vg
)

2

y2 + cos φ
sin φ

y. (14)

At the position of penetrating through the gas sheet where y = H, the
trajectory expression is modified to

x =
⎡⎢⎢⎢⎢⎣

Cd

4CTMRsin2φ
(1 − vl cos φ

vg
)

2

+ cos φ
sin φ

⎤⎥⎥⎥⎥⎦
y, (15)

and the slope of the liquid jet θ is obtained as

θ = 90○ − arctan
⎡⎢⎢⎢⎢⎣

Cd

4CTMRsin2φ
(1 − vl cos φ

vg
)

2

+ cos φ
sin φ

⎤⎥⎥⎥⎥⎦
. (16)

The theoretical model assumes that the liquid jet does not
deform, but in reality, it will deform under aerodynamic forces,
which results in a reduction of the effective momentum of the
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FIG. 7. Comparison of the CNN gen-
erator and original GAN. The operat-
ing condition is Lopen = Tgs = 4 mm,
ml = 35.81 g/s, and mg = 22.17 g/s.

FIG. 8. The comparison between the
results of with or without EMC. Compared
with the results without EMC, GAN with
EMC has a clearer and more regularizing
reconstruction of the spray field.

TABLE II. Spray angle estimation by the manual measurement and CNN.

Lt = 80% Lt = 60% Lt = 40%

CTMR MM CNN Error (%) MM CNN Error (%) MM CNN Error (%)

0.52–0.56 31.27 29.70 5.0 29.31 28.04 4.3 26.05 27.57 5.8
0.79–0.86 36.32 35.10 3.4 33.12 34.54 4.3 31.59 32.61 3.2
0.98–1.22 40.67 41.98 3.2 34.89 35.60 2.0 34.67 35.15 1.4
1.29–1.34 41.98 40.37 −3.8 39.21 39.34 0.3 36.36 37.0 1.75
1.50–1.70 44.37 45.99 3.7 42.87 43.37 1.2 39.43 38.08 −3.4
1.98–2.04 45.28 47.45 4.8 43.43 44.62 2.7 41.01 41.47 1.1
2.56–2.69 49.88 49.43 −0.9 47.34 45.46 −4.0 44.64 44.39 −0.6
2.90–3.22 50.36 50.02 −0.7 48.13 47.07 −2.2 44.98 45.64 1.5
3.33–3.39 51.32 52.92 3.1 48.12 48.75 1.3 46.01 46.64 1.4
3.83–4.12 52.18 52.55 0.7 48.84 51.09 4.6 47.64 48.98 2.8
4.50–4.88 54.39 53.92 −0.9 49.34 50.57 2.5 48.80 49.60 1.7
5.12 54.55 55.96 2.6 49.41 50.75 2.7 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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liquid jet. Consequently, the liquid jet deformation factor γ, which
is obtained through the experimental results, is introduced to mod-
ify the spray angle theoretical model. In this way, Eq. (16) is modified
to

θ = γ
⎧⎪⎪⎨⎪⎪⎩

90○ − arctan
⎡⎢⎢⎢⎢⎣

Cd

4CTMRsin2φ
(1 − vl cos φ

vg
)

2

+ cos φ
sin φ

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
. (17)

Note that the spray angle model derived above has been demon-
strated by the experimental results. In fact, when there is no central
propellant deflection and φ = 90○, Eq. (17) could be simplified as θ
= γ[90○ − arctan(Cd/4CTMR)]. It formally corresponds to the exper-
imental fitting model θ = C1 arctan(C2CTMR) of the liquid–liquid
pintle injector in Ref. 41, where C1 and C2 are the fitting parameters.

In the field of medical image analysis, the machine learning
approach, especially the deep neural networks, has been employed
for automated scoliosis assessment.42–44 In these publications, the
x-ray images are fed into the neural network estimator and the spinal
Cobb angles are obtained. Similarly, inside the ESA, there is a well-
trained spray angle estimator to output the angle values from the
predictive images. The architecture of this down-sampling CNN is
like D, except the addition of one fully connected layer in the end to
output the estimated spray angle θ′.

The loss term from ESA is calculated as

ℒ ESA = ∣θ′ − θ∣. (18)

IV. RESULTS
A. Model validation

Figure 7 shows the generated results in one typical operating
condition of the CNN generator and original GAN, which consist of
only G and D. The L1 loss used by the CNN generator compares
the difference between the generations and targets. This absolute
error loss performs very well in some steady or mean state field
prediction tasks, such as the work in Refs. 21 and 27. However,
when the training cases have a multi-modal distribution, this loss
will fail. In our spray field prediction task, although the morphol-
ogy under one specific operating condition is similar, the detailed
droplets are distinguishable. Therefore, the instantaneous spray field
solution has many possibilities, which are like the various frames
at different times. However, the L1 loss averages all the possibili-
ties and produces a very blurry average image instead. However, the
discriminator in GANs, which can be regarded as the loss of gener-
ator, is not an explicit loss function. Instead of the pixel-wise loss, D
is an approximation loss, which discriminates between the real and
fake data distributions and guides the spray generation with detailed
morphology.

However, in the training process of GANs, the generator and
discriminator have to be balanced trained and the convergence is
often an unstable state. The discriminator and generator are always
in a seesaw battle to undercut each other. Similar to the work in
Ref. 45, we maintain a dynamic ratio between the number of gradi-
ent descent iterations on the discriminator and the generator using
Exponential Moving Average (EMA).

For the spray simulation task, the discriminator has difficul-
ties capturing the detailed feature of the small droplets. The ℒ D

has a possibility of becoming less meaningful through the train-
ing process. G will update itself based on the random feedback
and the quality of generation may collapse. The G outputs low-
quality images through many epochs, and some of them show faint
spray patterns in the background but are easily identified as fake.
It will be very easy for the discriminator to distinguish the tar-
gets and generation so the values of the loss from D drop to zero
rapidly.

The comparison of generated spray images from different
frameworks demonstrates the superior performance of the mass
conservation evaluator as shown in Fig. 8. In some generated images,

FIG. 9. Comparison of the predicted spray angle between the model with and with-
out ESA. The red lines indicate the experimental results. The blue point markers
indicate the angle values predicted by the model with ESA. The magenta circle
markers indicate the ones predicted by the model without ESA.
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the background does not agree with the real target; the introduction
of ℒ EMC helps G identify the position and intensity of the droplet as
well as the background shadow.

In the machine learning field, the parallel training usually is
conducted with a batch form. Inputting a certain number of samples
to the neural networks in a batch, the solutions are parallel gener-
ated and compared to the targets and an error is calculated. In our
framework, when obtaining the predicted spray field, all the out-
puts, ten generated images, in one training batch will be averaged to
one image. Then, this average image will be used to feed the down-
sampling CNN to obtain the spray angle of this batch. To validate
the spray angle estimator, we use the average images from exper-
iments as test samples to output the angle values. Table II shows
the comparison of spray angles obtained by Manual Measurements
(MM) and CNN estimator. With the increase of CTMR, the deviations
between the two tend to be smaller. The error of all the test cases is
less than 5.8%.

After this CNN estimator is trained, it only takes some mil-
liseconds to output an angle value, which is according to the operat-
ing conditions of this batch. Then, the estimated value is employed
in ℒ ESA to update G. Due to the quick decrease at the beginning
of the training, this error no longer affects G, only except for the
abnormal generated solutions with angles diverged awfully from the
theoretical model.

As shown in Fig. 9, the results predicted by the model with-
out ESA have large value ranges. The difference between maxi-
mum and minimum angles in a small momentum ratio level, CTMR
∈ [0.78, 0.80], even approach 12○. Meantime, the predicted angles
have an “even-bias.” Compared with the experimental measure-
ments, all values are closer to the mean value of the whole domain.
For small momentum ratios, as shown in Fig. 9(a), most of the pre-
dicted angle values are larger than the experimental results. For large
momentum ratios, as shown in Fig. 9(b), most of the values are
smaller than the experimental results. With the help of ESA, this phe-
nomenon is reduced and all three groups with different momentum
ratios have the predicted angles closer to the experimental results. In
addition, the predicted values of spray angles have narrower ranges.

B. Predictions
The literature showed that the macroscopic morphology study

is important to characterize a spray.46,47 Here, the simulated spray
morphology is analyzed and compared with the experimental
results.

Figure 10 compares the simulated and experimental spray mor-
phology under different operating conditions. The typical spray
morphology, i.e., liquid column formation, breakup of the col-
umn, and lateral expansion of the spray, can be clearly noted. The

FIG. 10. Simulated and experimental
spray morphology under different throt-
tling levels and momentum ratios. The
left half part is the simulated spray
obtained by GAN-PE, and the right half
part is the corresponding experimental
high-speed image with the same size
scale.
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FIG. 11. The comparison of the spray angle between GAN-PE and experiments.
The red circles show the cases that are out of the learning domain.

generated spray field shows that the droplets experience a size reduc-
tion before approaching a uniform tiny size distribution because of
the impingement and collision. As shown in Fig. 10, the generated
spray is fairly comparable with the experimental results; meanwhile,
the hollow-cone-shaped profiles with a specific spray angle are well
reproduced. For those cases that are out of the training domain, the
last column in the figure, the generation also presents a similar good
quality compared with those insides. Imperfectly, the background
still represents grainy and the values of adjacent data points are not
as continuous as those in the real images. However, all in all, the
simulation succeeds to report the macroscopical morphology of the
spray.

Figure 11 shows the curves of the spray angle vs momentum
ratio at different throttling levels; it can be observed that the GAN-
PE results coincide with the experimental results well in a wide
momentum ratio range. According to theoretical analysis that has
been explained in Sec. III C, the spray angle is mainly determined by
the momentum ratio, and the simulated solutions also represent this.
Due to the difficulties of ESA to estimate the small angles, the predic-
tions of the cases with small momentum ratios have relatively large
errors. The values of different throttling levels are close to each other.
For the test cases that are not in the learning domain, the results have
a small deviation and all the predicted angle values are less than the
manually measured ones. It is because these test cases are not con-
strained by the targets so the prediction has a trend to approach the
mean value of the adjacent operating points, which is happened to
be larger.

V. CONCLUSION
In this paper, we proposed a novel deep learning framework

constrained by physical evaluators to directly predict spray solutions
based on generative adversarial networks. The normal discriminator
and the mass conservation and spray angle evaluators are used to
constrain the CNN to generate the spray solution, including macro-
scopical morphology and spray angle. The former evaluator is able
to improve the training convergence and the latter one helps to

obtain more accurate spray angles that are consistent with the oper-
ating conditions. It is noteworthy that the related network architec-
ture and spray problem are generic and the proposed framework is
potentially suitable for other fluid field simulations that have proper
prior physics knowledge. Further research will be carried out for
spray droplet size analysis and prediction with the present network
framework.
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