
Physics Letters B 823 (2021) 136752

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Constraints on global symmetry breaking in quantum gravity 

from cosmic birefringence measurements

James Alvey a,∗, Miguel Escudero Abenza b

a Department of Physics, King’s College London, Strand, London WC2R 2LS, UK
b Physik-Department, Technische Universität, München, James-Franck-Straße, 85748 Garching, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 August 2021
Received in revised form 20 October 2021
Accepted 25 October 2021
Available online 26 October 2021
Editor: A. Ringwald

All global symmetries are expected to be explicitly broken by quantum gravitational effects, and yet may 
play an important role in Particle Physics and Cosmology. As such, any evidence for a well-preserved 
global symmetry would give insight into an important feature of gravity. We argue that a recently 
reported 2.4σ detection of cosmic birefringence in the Cosmic Microwave Background could be the first 
observational indication of a well-preserved (although spontaneously broken) global symmetry in nature. 
A compelling solution to explain this measurement is a very light pseudoscalar field that interacts with 
electromagnetism. In order for gravitational effects not to lead to large corrections to the mass of this 
scalar field, we show that the breaking of global symmetries by gravity should be bounded above. Finally, 
we highlight that any bound of this type would have clear implications for the construction of theories 
of quantum gravity, as well as for many particle physics scenarios.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Global symmetries are ubiquitous in Particle Physics. Some-
times these symmetries appear accidentally as a consequence of 
gauge symmetries and particle content – such as baryon and lep-
ton number in the Standard Model – but they have also been 
used to address certain open phenomenological issues. For exam-
ple, they have been invoked in the Peccei-Quinn solution to the 
Strong CP problem [1,2], or to understand the masses and mixing 
pattern of fermions [3]. In the context of Cosmology, global sym-
metries can also provide a mechanism to stabilise the dark matter 
of the Universe [4], or to explain the ultra-light nature of a scalar 
field playing the role of dark energy [5].

On the other hand, it is widely believed that all global sym-
metries are explicitly broken by gravitational effects [6,7].1 These 
general expectations are supported by theoretical calculations il-
lustrating the explicit breaking of global symmetries by sources 
such as black holes [11] or wormholes [12]. In addition, it has been 
shown that certain concrete theories of quantum gravity do not ad-
mit exact global symmetries, including holography [13] and string 
theory [14].
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1 Indeed, the non-existence of exact global symmetries in quantum gravity is one 

of the key aspects of the swampland program [8], see e.g. [9,10].
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Despite this recent theoretical progress, there are no definitive 
conclusions regarding the explicit breaking of global symmetries 
by gravity. In particular, as of yet, it is unclear what the actual 
sources, mechanisms or magnitude of this breaking might be in 
reality.2 In this letter, we focus on the last aspect, and use a 
cosmological measurement to motivate how one could set an ob-
servational upper limit on the breaking of global symmetries by 
gravitational effects. Such a bound would have clear implications 
both on the construction of theories of quantum gravity, as well as 
particle physics scenarios that rely on global symmetries.

More specifically, we argue that a measurement of cosmic bire-
fringence could be used to constrain the magnitude of global sym-
metry breaking. This is particularly motivated by a recently re-
ported detection of cosmic birefringence in Planck legacy data [16], 
and by the original description of this phenomenon in terms 
of pseudoscalar fields in cosmology [17–21]. These pseudoscalar 
fields are naturally very light as a result of an approximate global 
symmetry [5], and are also a good fit to the birefringence mea-
surement [22–25]. This second feature arises as a result of a parity 
violating coupling to electromagnetism, something that is not pos-
sible for scalar fields. Here, we point out that this measurement 
could represent the first indication of a well-preserved (although 

2 For example, in contrast to the expectations from string theory, in alternative 
scenarios such as asymptotically safe quantum gravity, there are some indications 
that global symmetries might be preserved [15].
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spontaneously broken) global symmetry in nature. In addition, we 
show how to use it to set an observational bound on gravitational 
global symmetry breaking.

2. Cosmic birefringence

Planck data has provided us with a deep understanding of the 
physics of the Cosmic Microwave Background (CMB) [26]. Impor-
tantly, it has been used to obtain detailed insight into the dy-
namics and content of the Universe, as well as a number of other 
phenomena [27]. In particular, CMB data can be used to constrain 
parity violation on cosmological scales – cosmic birefringence be-
ing one such example which involves photons. Physically, cosmic 
birefringence corresponds to a rotation of the linear polarisation 
of electromagnetic waves as they propagate along a particular line 
of sight from their source. In observational terms, the existence of 
this effect directly translates into an effective power in the EB po-
larisation spectrum of the CMB, which can be parametrised by the 
cosmic birefringence angle β . The detection of a non-zero value for 
β would then correspond to an observation of parity violating in-
teractions in cosmology. Very recently, Minami and Komatsu [16]
have analysed Planck polarisation data and report a measurement 
of this angle β = 0.35◦ ± 0.14◦ , which excludes zero with a signif-
icance of 2.4σ .

Perhaps the best motivated possibility to explain the birefrin-
gence measurement is the existence of a dynamical pseudoscalar 
field φ which interacts with electromagnetism via a coupling 
of the form (1/4)gφγ γ φFμν F̃ μν [17–20].3 In this scenario, the 
temporally-varying scalar field φ permeates the Universe, acting 
as a parity violating medium for CMB photons. In particular, the 
coupling of φ to electromagnetism results in different dispersion 
relations for the left and right circular polarisations, which in turn 
rotates the linear polarisation plane [17–21]. Explicitly, the cosmic 
birefringence angle β can be computed as,

β = 1

2
gφγ γ (φ0 − φ�) , (1)

where φ0 and φ� are the values of the scalar field today and at 
the time of recombination respectively. Given a coupling gφγ γ , and 
once the dynamics of the scalar field have been calculated, this 
value of β can be compared to the measurement given above. In 
practice, the dynamics are controlled by the interplay between the 
Hubble rate H and the potential of the scalar field V (φ), as dic-
tated by the Klein-Gordon equation,

d2φ

dt2
+ 3H(t)

dφ

dt
+ dV (φ)

dφ
= 0 . (2)

Within the context of cosmic birefringence, two key scales rele-
vant to the scalar field dynamics are the Hubble rate today H0 ∼
10−33 eV, and its value at recombination H� ∼ 10−29 eV. These very 
small scales imply that the potential should be extremely flat, 
which in turn means that scalar fields relevant for birefringence 
measurements need to be very light. Indeed, explicit calculations 
show that only for mφ � 10−25 eV are there open regions of pa-
rameter space in gφγ γ that can explain the measurement [22]. 
In the particular case for which φ plays the role of dark en-
ergy, this corresponds to [23]: 10−41 eV � mφ � 10−34 eV with 
10−12 GeV−1 � gφγ γ � M−1

Pl , where MPl = 1.22 × 1019 GeV is the 
Planck mass.

3 We note that there is plenty of theoretical motivation for considering such light 
scalar fields interacting with electromagnetism. For example, a variety of pseudo-
Goldstone bosons coupled to the SM gauge fields are expected to arise from string 
compactifications [28,29].
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3. Global symmetries and light scalar fields

Global symmetries, even if only approximate, provide a way to 
understand the lightness of pseudoscalar fields. The reason for this 
is ultimately that, in the limit in which the symmetry is exact 
but spontaneously broken, the scalar field can be identified as a 
massless Goldstone boson [30,31]. Beyond this, the explicit break-
ing of the symmetry will lead to a small but non-zero mass for 
φ, which could arise from a number of sources. For example, the 
U (1) symmetry invoked in the Peccei-Quinn mechanism is known 
to be explicitly broken by QCD gauge instantons [32], but is also 
expected to be sensitive to additional gravitational sources of sym-
metry breaking [33–36]. In the case of cosmic birefringence, re-
gardless of the dominant source of global symmetry breaking, we 
expect that there will generically be some gravitational contribu-
tion. Any gravitational source should then be small enough such 
that the mass of φ does not exceed mφ ∼ 10−25 eV, allowing us to 
set an observational bound on the breaking of global symmetries 
due to gravity.

In connection with typical axion-like potentials, we parametrise 
the breaking of global symmetries induced by gravity as [37]:

�V (φ)QG = M4
Ple

−SQG [1 − cos (φ/ f )] , (3)

where we have normalised the potential to MPl as we are inter-
ested in gravitational effects. Here, f is the energy scale at which 
the global symmetry would be spontaneously broken, and SQG is 
a dimensionless parameter that quantifies the magnitude of the 
gravitational symmetry breaking – often associated with the ac-
tion of a non-perturbative object [6].

Given this parametrisation, we can expand the potential in 
Eq. (3) and estimate the contribution to the mass of φ from gravi-
tational effects to be:

(�mφ)QG ∼ (M2
Pl/ f ) e−SQG/2 . (4)

This should not exceed mφ ∼ 10−25 eV in order for the dynamics of 
φ to be compatible with the cosmic birefringence measurement. By 
enforcing (�mφ)QG < 10−25 eV, we can then set an observational 
upper bound on the magnitude of global symmetry breaking by 
gravity. This bound, written in terms of SQG, reads:

SQG > 2 log

(
MPl

10−25 eV

)
+ 2 log

(
MPl

f

)
> 250 , (5)

where in the last inequality we have used f < MPl from the gen-
eral expectation that any new force should be stronger than grav-
ity [38]. It can also be seen from Eq. (5) that the bound on SQG is 
only logarithmically dependent on the mass of the scalar field mφ .

One should note that the bound on SQG derived in Eq. (5) is 
dependent on the form of the gravitational corrections to the po-
tential �V (φ)QG. In particular, in Eq. (3), we have assumed that 
the explicit global symmetry breaking contributions are not pro-
tected by any gauge symmetry. This may not be fully generic, 
however the effect of this gauge protection can be characterised 
by an additional suppression factor, ( f /MPl)

n , in �V (φ)QG. The ex-
act power n will of course depend upon the details of the model 
under consideration, and a corresponding bound could be derived 
in each case. On the other hand, in the context of our argument, 
we expect f to lie somewhere between the GUT scale and the 
Planck scale and therefore f /MPl � 10−3. Consequently, we do 
not anticipate that the possible protection by gauge symmetries 
will significantly alter our results for SQG. Similarly, in Eq. (3), 
we have also assumed that there is no additional suppression of 
the global symmetry breaking coming from other effects, such as 
supersymmetry. In such a scenario, the prefactor M4

Pl should be 
replaced by M2 	2 [28,29]. Since experimentally we know that 
Pl SUSY
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	SUSY � 10 TeV, the resulting bound on SQG in scenarios with su-
persymmetry suppression will only be relaxed to SQG > 210.

4. Conclusions and implications

We have derived a bound on the magnitude of global symme-
try breaking by gravity, motivated by a recent detection of cosmic 
birefringence in Planck legacy data. The observational status of this 
detection is currently at the 2.4σ level, however, a similar analy-
sis can be performed with other existing CMB data sets [39–42], 
which may significantly strengthen this claim. In this letter, we 
have shown how such a measurement can be used to provide in-
sight into the breaking of global symmetries by gravity. To do this, 
we have presumed that this measurement is explained by a very 
light pseudoscalar field coupled to electromagnetism. This is sup-
ported by the original description of the phenomenon in terms 
of light scalar fields in cosmology, as well as the prevalence of 
pseudo-Goldstone bosons in many theories beyond the Standard 
Model.

If confirmed, this bound would have clear implications not only 
for the construction of quantum gravity theories, but also for the 
viability of many particle physics models. In terms of quantum 
gravity, a bound of this type would shape the vacuum structure of 
any proposed theory, including the action of any non-perturbative 
instantons breaking global symmetries – such as microscopic black 
holes, wormholes or string instantons. To put this in context, the 
action of an axionic wormhole is SQG � MPl/ f [12]. Taken at face 
value, our bound would therefore disfavour quantum gravity sce-
narios with wormholes that have f > MPl/250. Similarly, in string 
theory there are a variety of instantons breaking global symme-
tries [28], which typically have actions SQG � 300 [43]. A bound of 
the type derived above would then disfavour string theory realisa-
tions where all instantons have SQG < 210.

String theories contain a large variety of axion-like particles, so 
it is interesting to consider the case that one of them is the QCD 
axion that solves the Strong CP problem. A minimal requirement 
for this to be viable is that at least one string instanton should 
have SQG � 190 [28,44]. By comparing this theoretical bound with 
the one derived from cosmic birefringence we can see that if our 
limit holds, then the Peccei-Quinn solution to the Strong CP prob-
lem will not be spoiled by gravitational effects. This is simply 
because additional symmetry breaking contributions will be many 
orders of magnitude smaller than those induced by QCD instan-
tons. In addition, this would imply that if a string theory satisfies 
our bound, then it should automatically be able to contain a vi-
able QCD axion, at least in principle. Of course, there are caveats 
to this comparison in that (i) a given string theory does not nec-
essarily have to contain a QCD axion and (ii) while our bound is 
observational - being based on an experimental measurement - it 
has only a limited statistical significance so far, as discussed above. 
Nonetheless, this discussion highlights the potential of this sort of 
observational limit to connect particle physics phenomenology and 
quantum gravity theories.

To conclude then, confirming the existence of an almost exact 
global symmetry in nature would open an avenue to uncovering 
an important feature of quantum gravity. In this letter, we have 
suggested that the phenomena of cosmic birefringence could be 
the way to establish such an observational pathway.
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