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We derive correlation functions for massive fermions with a complex mass in the presence of a general 
vacuum angle. For this purpose, we first build the Green’s functions in the one-instanton background 
and then sum over the configurations of background instantons. The quantization of topological sectors 
follows for saddle points of finite Euclidean action in an infinite spacetime volume and the fluctuations 
about these. For the resulting correlation functions, we therefore take the infinite-volume limit before 
summing over topological sectors. In contrast to the opposite order of limits, the chiral phases from the 
mass terms and from the instanton effects then are aligned so that, in absence of additional phases, 
these do not give rise to observables violating charge-parity symmetry. This result is confirmed when 
constraining the correlations at coincident points by using the index theorem instead of instanton 
calculus.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The theoretical formulation of the strong interactions in general 
allows for a Lagrangian term

1/(16π2)θ tr F F̃ (1)

that is odd (i.e. it changes sign) under charge-parity (C P ) conjuga-
tion. Here, F is the gauge field strength tensor and F̃ is its Hodge 
dual, with electric and magnetic components being interchanged. 
One may expect in general that this term also leads to phenomena 
that violate C P .

Conceivable in particular is a permanent electric dipole mo-
ment of the neutron [1,2], which, together with other potential 
indications of strong C P -violation, has not been observed to date. 
Since in first place, there is no reason to prefer θ = 0 (or an in-
teger multiple of π ), it is therefore argued that the absence of 
such signals constitutes a shortcoming of the theory, referred to as 
the strong C P problem, and that it requires an extension of the 
Standard Model of particle physics. Theoretical research in this di-
rection is extensive, and there is a number of experiments hunting 
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for a proposed particle, the axion, that arises in many of these ex-
tensions [3].

From the Lagrangian, the action follows by integration over the 
spacetime. Since the C P -odd term (1) turns out to be a total 
derivative, the corresponding contribution to the action is deter-
mined by the boundary conditions on the gauge fields. Taking 
these to be vanishing physical fields, i.e. pure gauge configura-
tions, at the boundary of spacetime, the integrals over the C P -odd 
term yield θ times integer values �n—to be referred to as winding 
number or topological charge—corresponding to so-called homo-
topy classes that categorize maps of a three-dimensional sphere 
onto itself, where maps in different classes cannot be continuously 
transformed into one another [4,5].

This topological quantization is of central relevance when eval-
uating the effects from the term (1). One implication is, for exam-
ple, that if the predictions of the theory depend on θ , they must 
be periodic in this parameter. This is because in the quantized the-
ory, the action enters the path integral as a phase. The theory is 
therefore invariant under replacements θ → θ + 2πn, where n ∈Z. 
Therefore, θ is sometimes referred to as the vacuum angle. Further, 
topological quantization implies that observables are to be calcu-
lated from an interference of amplitudes from different topological 
sectors, i.e. from path integrals for a given �n or homotopy class, 
in the infinite spacetime.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2021.136616
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2021.136616&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:wenyuan.ai@uclouvain.be
mailto:juan.cruz@tum.de
mailto:garbrecht@tum.de
mailto:carlos.tamarit@tum.de
https://doi.org/10.1016/j.physletb.2021.136616
http://creativecommons.org/licenses/by/4.0/


W.-Y. Ai, J.S. Cruz, B. Garbrecht et al. Physics Letters B 822 (2021) 136616
To state a principle leading to vanishing physical boundary con-
ditions and therefore to topological quantization, we note that the 
nonvanishing contributions to the Euclidean path integral arise 
from saddle points of finite action and fluctuations around these. 
Saddle points correspond to solutions to the Euclidean equations 
of motion, and for these to exist in the infinite spacetime volume, 
the physical boundary conditions must vanish. As a consequence, 
the path integrals for the different topological sectors must then 
be evaluated in infinite spacetime volumes first. Otherwise, there 
would be no reason to assume topological quantization. In a sec-
ond step, amplitudes from the different topological sectors are 
then to be interfered.

On the other hand, for boundary conditions imposed on finite 
spacetime volumes, saddle points and solutions to the equations 
of motion exist for nonvanishing physical fields at the boundaries 
as well. Moreover, the ground state configuration, that should de-
termine the boundary conditions on finite spacetime volumes, is 
neither a field eigenstate nor a pure gauge configuration, i.e. it 
does not correspond to vanishing physical fields. In contrast, the 
Euclidean path integral in infinite volumes automatically projects 
the pure gauge field eigenstates on the corresponding accessible 
ground states. Nonetheless, if there were a principle that would 
lead to topological quantization for boundary conditions imposed 
on some finite surface, one could interfere the topological sectors 
prior to taking the spacetime volume to infinity.

Here, we show that the material consequence of the order of 
the limits is as follows: When taking the spacetime volume to in-
finity before interfering the topological sectors, C P -violating phe-
nomena are absent in the strong interactions without extending 
the theory or setting the C P -odd term to zero. On the other hand, 
interfering the topological sectors before taking the spacetime vol-
ume to infinity, one concludes that correlation functions exhibit 
C P -violation that cannot be removed by field redefinitions [6].

The question of whether there is C P violation in general in the 
strong interactions of massive quarks should not be a matter of 
choice but be a prediction of the theory. Appended to this let-
ter is therefore extensive supplementary material that addresses 
many aspects of the limiting procedure as well as pertaining mat-
ters such as the principle of cluster decomposition.

Technically, we arrive at our conclusions by computing the cor-
relation functions for massive fermions, where we keep θ as well 
as the phase of the determinant of the matrix of quark masses gen-
eral. As one of the methods, we use the leading approximation to 
a dilute gas of instantons so that the spacetime-dependence of the 
correlations can be recovered. As an alternative route, using argu-
ments based on factorization properties of path integrals and the 
Atiyah-Singer index theorem [7], we confirm that the coincident 
limit of the fermion correlations does not exhibit C P violation, 
provided the interference of the topological sectors takes place 
among infinite spacetime volumes. Hence, the main results of this 
work hold beyond the perturbative expansion about instanton con-
figurations. They crucially rely on how topological quantization 
emerges in spacetimes of infinite volume and the order in which 
the pertaining limits are carried out.

2. Topological charge, massive quarks, and charge-parity 
violation

In electrodynamics, the topological term (1) is immaterial be-
cause its volume integral can be traded for a surface integral over 
the boundaries of spacetime where it can be shown that finite 
action configurations have fields decaying fast enough such that 
the integral vanishes. This is not true for the strong interactions, 
where, due to the self-interactions, extended field configurations 
with finite action, so-called instantons, exist while the surface term 
2

Fig. 1. For local quantum field theory, an observer is expected to be only sensitive 
to fluctuations in a local subvolume �1 ⊂ � in the limit of an infinite volume of the 
spacetime �. The θ -parameter influences the conditions at the boundary ∂�. It can 
be shown that these do not affect the fluctuations in the subvolume. Fluctuations 
corresponding to instantons and anti-instantons are depicted as blue and orange 
circles, respectively.

no longer vanishes [8]. For this reason, it has been proposed that 
values of θ �= πm (m ∈Z) may imply C P -violation [1,2,4,5].

While the topological term is local in the first place, and while 
in singular gauges the topological flux can be constrained to in-
finitesimal surfaces about the centres of the instantons [9], Eq. (1)
is nonetheless equivalent to a surface term at the boundary of the 
spacetime at infinite distance. It is therefore an essential point 
whether it affects local observables in quantum field theory. The 
standard view is that this is the case because of a change in the lo-
cal vacuum structure imposed by the boundary term. On the other 
hand, as illustrated in Fig. 1, one can approximate observables by 
including the fluctuations in a subvolume of the spacetime with 
all possible boundary conditions on its surface. One may expect—
and it is possible to show this—that the theory in the subvolume 
is then independent of the boundary conditions in the infinite dis-
tance so that these have no material impact.

Intricately related with the topological term are C P -odd contri-
butions to quark masses that can be expressed through
ψ̄ jm jeiα jγ

5
ψ j where j = 1, . . . , N f and N f is the number of quark 

flavours. The quark fields are denoted by the spinors ψ j , γ 5 is a 
matrix in spinor space and the phases α j are C P -odd. The phases 
α j can in principle be removed by redefinitions of the quark fields. 
However, since the so-called chiral symmetry of the quark fields is 
anomalous [10,11], the quark phases are tied to the vacuum-angle 
θ . In particular, θ̄ = θ + ᾱ, where ᾱ = ∑N f

j=1 α j , is a phase that 
remains invariant under field redefinitions.

In order to calculate the most important C P -violating effects 
from the topological term, one derives effective fermion interac-
tions caused by the instantons as Lagrangian terms of the form [6,
12,13]

−
N f eiξ
N f∏
j=1

(ψ̄ j PLψ j) − 
N f e−iξ
N f∏
j=1

(ψ̄ j PRψ j) , (2)

where 
N f is a coefficient and the left and right chiral projectors 
are PL,R = (1 ∓ γ 5)/2.

The interaction (2) implies that there is no chiral symmetry 
with an overall U(1) phase. In the effective chiral Lagrangian for 
low energies, where quantum chromodynamics (QCD) confines, 
there thus is the corresponding term

|λ|e−iξ f 4
π det U + |λ|eiξ f 4

π det U † , (3)
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where fπ is the pion decay constant, U is a field of the form of a 
unitary matrix describing the mesons and λ is a coefficient within 
the effective theory.

The aforementioned invariance of θ̄ under field redefinitions 
leaves two possibilities for the phase ξ compatible with the chi-
ral anomaly (assuming that ξ is a function of α and θ , and that 
the effective action is periodic in these parameters):

• ξ = θ , i.e. in general misaligned with mass terms such that 
there is C P violation,

• ξ = −ᾱ, i.e. aligned with mass terms such that there is no C P
violation.

The restriction to the above choices can be understood in terms of 
a spurious chiral symmetry under which θ transforms or simply 
by demanding that the relative phases between the interactions of 
Eq. (2) and the tree-level mass terms remain invariant under field 
redefinitions. Based on the topological quantization of the path in-
tegral and the ensuing order of limits, we derive here the effective 
operator (2) and show that the second possibility, ξ = −ᾱ, is the 
one that is realized what implies that there is no C P violation in 
the strong interactions.

When relating these remarks to the literature, we note that the 
possibility ξ = θ is implied in most of the papers without dis-
missing ξ = −ᾱ. The early papers, as well as literature following 
these, on phenomenological C P violation in the strong interactions 
make use of the freedom of chiral field redefinitions in order to set 
θ = 0 and attribute the C P -odd phases to the quark masses [1,2]. 
In the context of the present discussion, this corresponds to setting 
ξ = θ = 0 while ᾱ �= 0 in general. The case of ξ = −ᾱ is apparently 
not pursued. Also more recent discussions of the coefficients of the 
operator (3), e.g. Ref. [14], do not mull over this latter possibility.

Reference [6] appears to contain the only direct calculation 
leading to ξ = θ , making use of the dilute instanton gas approx-
imation. As we point out in the present work, this conclusion 
relies on computing the interference among topological sectors in 
finite spacetime volumes and taking these to infinity afterwards. 
Reversing this order of limits, as it is indicated when topological 
quantization emerges from the requirement of finite saddles in the 
action in infinite spacetimes, we show in the present work that 
one is led to conclude that ξ = −ᾱ instead.

The interactions (3) are directly related to C P -violating observ-
ables such as a permanent electric dipole moment of the neutron 
or the decays η′ → 2π (Section S3.6). For ξ = θ , one recovers the 
standard results [1,2,15], while for ξ = −ᾱ, these signals vanish.

3. Fermion correlations in a dilute instanton gas

In this section we show that ξ = −ᾱ by computing the quark 
correlation function in the approximation of a dilute instanton gas. 
In order to simplify notation, we set N f = 1 and drop the index 
for the quark flavour. One should keep in mind that for a single 
quark flavour, the instanton effects amount to an addition to the 
quark mass. However, the generalization to the cases with N f > 1
relevant for the potentially C P -violating phenomenology follows 
along the lines of the simplified analysis.

To compute the correlation function, we use the following 
Green’s function in the background of n instantons (with topologi-
cal charge +1) and n̄ anti-instantons (with topological charge −1) 
located at x0,ν , x0,ν̄ respectively:

iSn,n̄(x, x′) ≈ iS0inst(x, x′)+
n̄∑

ν̄=1

ϕ0L(x − x0,ν̄ )ϕ
†
0L(x′ − x0,ν̄ )

me−iα

+
n∑ ϕ0R(x − x0,ν )ϕ

†
0R(x′ − x0,ν )

meiα
. (4)
ν=1

3

This approximation is valid for a dilute instanton gas and quark 
masses such that m is small compared to 1/�, where � is the ra-
dius of the instantons (which is not fixed). The spinors ϕ0L,R are 
the analytic continuation of the zero modes of the Euclidean Dirac 
operator in the (anti-)instanton background, that determines the 
equation of motion for the quark fields, in the massless limit, and

iS0inst(x, x′) =

(−γ μ∂μ + ime−iαγ 5
)

∫
d4 p

(2π)4
e−ip(x−x′) 1

p2 − m2 + iε
(5)

is the solution in a background without instantons and is approxi-
mately valid at large distances from the individual locations, i.e. in 
between the instantons and anti-instantons.

Further, we readily assume here Minkowski metric. The ap-
proximation (4) has been used e.g. in Ref. [16] for α = 0. The 
generalization to α �= 0 may appear obvious but there are some 
complications when transforming the spectrum of the Dirac op-
erator from Euclidean to Minkowski spacetime. Yet, these can be 
addressed in detail thus confirming the form of the propagator (4)
(Section S2). Note that the Green’s function (4) is independent of 
θ because the topological term has not yet entered the deriva-
tion. However, it needs to be taken into account when summing 
configurations corresponding to different homotopy classes in the 
path-integral expression for the correlation function.

Here, we use the saddle point approximation to the path inte-
gral, where we sum over all instanton and anti-instanton numbers 
n and n̄ and integrate over the locations of instantons and anti-
instantons as well as over the remaining collective coordinates 
such as the radii � and gauge orientations (which are independent 
for each instanton and anti-instanton).

The question of whether ξ = −α or ξ = θ is decided by the 
treatment of the summation over n and n̄ in conjunction with how 
boundary conditions are imposed on the path integral. Let � de-
note the volume of spacetime and first consider Minkowski space 
such that � is infinite. The case of finite � is discussed below. 
Boundary conditions on the path integral are fixed by requiring 
that the physical gauge fields (as well as all other fields) vanish on 
the boundary of ∂�, such that the action takes finite values at its 
saddle points [17] (Section S3.2). For the gauge field, this leaves 
open the possibility of pure gauge configurations.

These remarks apply to field configurations that are regular in 
�. In calculations aiming for interactions beyond the dilute in-
stanton gas [16,18], it can be advantageous to use the singular 
gauge [9] so that one avoids working with integrands that are not 
manifestly square integrable. The price to pay for this is that there 
are singularities at the centres of the instantons or their approx-
imate deformations. While spacetime needs to be punctured at 
these singularities, there are no apparent problems in constructing 
saddle point approximations to the path integral. Since the singular 
contributions at the centres of the instantons are pure gauges, the 
topological flux through an infinitesimal ball around such a point 
is again quantized. Then, for infinite � the fields still must vanish 
on ∂� but there is no topological flux through ∂�, in contrast to 
the regular gauge. In effect, topological quantization results from 
the requirement of finite saddle point configurations in infinite 
spacetime volumes also in the singular gauge. In contrast, when 
restricting spacetime to finite �, there are finite saddle points for 
arbitrary nonsingular boundary conditions on ∂�. Hence, some dif-
ferent principle would again be necessary to impose topological 
quantization for finite boundaries.

Both ∂� and SU(2) ⊂ SU(3) (i.e. the subgroup of the group of 
gauge symmetries of the strong interactions) are homeomorphic 
to the three-dimensional sphere S3 such that the gauge config-
urations fall into classes according to the third homotopy group. 
These characterize the number of times �n a three-dimensional 
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hypersurface can be wrapped around S3. In the context of strong 
interactions, the class of configurations with boundary conditions 
corresponding to a certain �n are sometimes referred to as a topo-
logical sector.

This property is of relevance for the present case because in the 
saddle point approximation �n = n − n̄. Furthermore, it is possible 
to define vacuum states |nCS〉 with a certain integer Chern–Simons 
number nCS. Taking the matrix element characterized by 〈mCS| and 
|nCS〉 corresponds to fixing the topological sector �n = mCS − nCS. 
We also note that the states |nCS〉 are not gauge invariant as 
the Chern–Simons number (defined on a spatial hypersurface) can 
change by all possible integer values through so-called large gauge 
transformations that are not continuously connected to the iden-
tity component. Thus, the true vacuum state should be constructed 
as a superposition of all Chern–Simons numbers of equal weight, 
but there may be relative phases proportional to nCS. These phases 
are effectively equivalent with the topological term in the action 
when calculating expectation values using the path integral ap-
proach. Since different topological sectors are distinguished by the 
boundary conditions which are taken at infinity, contributions to 
the path integral within a fixed topological sector must be eval-
uated for infinite spacetime volumes �. Note that this reasoning 
also applies to spacetime manifolds with compact spatial hypersur-
faces yet with an infinite time direction. The possibility of restrict-
ing the integration to finite subvolumes of spacetime is discussed 
below.

The fermion correlator should therefore be evaluated as

〈ψ(x)ψ̄(x′)〉
= lim

N→∞
N∈N

lim
�→∞

1

Z(N,�)

∑
mCS,nCS|mCS−nCS|≤N

〈mCS|ψ(x)ψ̄(x′)|nCS〉

= lim
N→∞
N∈N

lim
�→∞

∑N
�n=−N

∑
n 〈nCS + �n|ψ(x)ψ̄(x′)|nCS〉∑N

�n=−N Z�n(�)

= lim
N→∞
N∈N

lim
�→∞

N∑
�n=−N

〈ψ(x)ψ̄(x′)〉�n∑N
�n=−N Z�n(�)

, (6)

where Z(N, �) and Z�n(�) are the partition function summed for 
all sectors |�n| ≤ N and that for a single topological sector, respec-
tively. The dependence on N and � needs to be kept before taking 
these parameters to infinity. The order of the two limits in the last 
expression determines whether one arrives at ξ = −α or ξ = θ , as 
we discuss next.

Now we need to consider the fermion correlator in a fixed topo-
logical sector. For a single flavour one has:

〈ψ(x)ψ̄(x′)〉�n

=
∑

n̄,n≥0
n−n̄=�n

1

n̄!n!
[

h̄(x, x′)
(

n̄

me−iα
PL + n

meiα
PR

)
�n̄+n−1

+ iS0inst(x, x′)�n̄+n
]
× (−iκ)n̄+nei�n(α+θ)

=
[(

eiα I�n+1(2iκ�)PL + e−iα I�n−1(2iκ�)PR

) iκ

m
h̄(x, x′)

+ I�n(2iκ�)iS0inst(x, x′)
]

× (−1)�nei�n(α+θ) . (7)

In this expression, h̄(x, x′) is a spinor correlation that remains af-
ter the integration of the instanton and anti-instanton locations 
as well as the collective coordinates and κ includes the exponen-
tial suppression of the instanton action—as these correspond to 
4

tunnelling processes—as well as extra factors that appear when 
evaluating the path integral to one-loop accuracy (Section S3.1). 
Finally, Iα(x) is the modified Bessel function of order α.

It is clear that the dilute instanton gas approximation does not 
apply directly to QCD. Rather, one could think of a nonabelian 
gauge theory whose particle content is made up such that the 
running coupling remains perturbative in the infrared and there 
is asymptotic freedom in the ultraviolet. In such a model, the scale 
invariance is broken radiatively such that there is no dilatational 
modulus and instead a preferred instanton size. That the symme-
try properties with respect to C P of such a theory in principle also 
apply to QCD should therefore be taken as a more or less plausi-
ble assumption. In Section 4, we thus also present a derivation of 
the coincident fermion correlations that does not rely on the dilute 
instanton gas approximation.

The volume factors � in Eq. (7) are resulting here from the 
integration of the instanton locations over the entire spacetime. 
These appear in the same form even when taking these volumes 
to be finite for a given topological sector before interfering be-
tween these [6,16,18]. It is then understood that �, which is 
taken to infinity after interfering the topological sectors, is much 
larger than other scales that appear in the dilute instanton gas. 
This includes the mean separation between instantons and anti-
instantons as well the typical size of these. In fact, restricting � to 
small volumes given by some physical length scale so that these 
only contain few instantons would substantially alter the results 
of e.g. Refs. [6,16,18] that do not impose such truncations on the 
path integral. The fact that the instanton locations are to be inte-
grated over the entire spacetime is tied to translational invariance 
and mathematically derives from trading the translational moduli 
for collective coordinates [13,19]. It can also be seen in analogy 
with the calculation of the partition function for a classical ideal 
gas, where the individual positions of the particles are integrated 
over the entire configuration space. Beyond the dilute gas approx-
imation, the spacetime integrations should be modified to account 
for the overlap of instantons and anti-instantons due to their finite 
size while yet, the individual locations are still to be integrated 
over infinite volumes [16]. For a theory to which the dilute gas ap-
proximation applies, omitting such corrections only amounts to a 
controllable error.

From Eq. (7), we see explicitly that in a fixed topological sec-
tor and large spacetime volumes �, the modulus of the coefficients 
of the left and right chiral contributions tends to the same value. 
In particular, for x → ∞ and | arg(x)| < π/2, Iα(x) ∼ exp(x)/

√
2πx, 

i.e. these functions become independent of their index. As a conse-
quence, for � → ∞, all topological sectors contribute in precisely 
the same way. Moreover, the chiral phases from the mass term 
contained in S0inst (see Eq. (5)) and those induced by instanton ef-
fects are aligned, as a consequence of these phases (that originate 
from the fermion determinants and the topological term) being 
fixed by the boundary conditions on the topological sector �n as 
we illustrate in Fig. 2. When normalizing by the partition function, 
the modified Bessel functions as well as the phase proportional to 
�n cancel and we obtain

〈ψ(x)ψ̄(x′)〉 = iS0inst(x, x′) + iκ

m
h̄(x, x′)e−iαγ 5

, (8)

such that the explicit phase can be identified with ξ = −α. In con-
trast, if we were turning around the order of limits in Eq. (6), we 
would sum over two independent exponential series for n and n̄
and find θ rather than −α in Eq. (8) so that ξ = θ (Section S3.3).

Taking the correct order of limits, i.e. � → ∞ before summing 
over topological sectors therefore explains the absence of C P vio-
lation in the strong interactions. This result can be generalized to 
an arbitrary number of fermion flavours (Section S3.4).
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Fig. 2. Schematically shown are two contributions to a four-point correlation func-
tion in some multi-instanton background. The shaded blobs represent some subdi-
agram. On the left, there is a piece induced by a six-point fermion Green’s function 
in the background of an instanton (corresponding to h̄ in the two-point case). On 
the right, an interaction of the same chiral structure is induced by the fermion mass 
terms m1,2,3 (corresponding to iS0inst in the two-point case). When integrating over 
the subvolumes indicated by the thin grey boxes only, the left piece would acquire a 
relatively misaligned phase θ +α (α being here the sum of the quark mass phases) 
compared to the right piece because the phases come from the topological term and 
the fermion determinants. When instead correctly computing the path integral over 
the full spacetime volume (represented by the thick grey boundaries), the phase for 
both pieces is aligned and given by �n(θ + α). For infinite spacetime volumes, the 
interferences between the different sectors �n moreover are immaterial.

4. Chiral correlations from the index theorem

In this section we provide an alternative derivation of the previ-
ous results without using instantons. The starting point are the fac-
torization properties of the path integration when the full space-
time volume � is divided into subvolumes �1 and �2. Following 
standard textbook arguments used in the context of cluster decom-
position [20], the fact that the topological charge �n is a surface 
flux allows to write the partition function of the full spacetime 
volume � = �1 ∪ �2 as

Z�n(�) =
∞∑

�n1=−∞
Z�n1(�1)Z�n−�n1(�2). (9)

For convenience, in this section we work in Euclidean space, as this 
simplifies the tracking of the complex phases. First we can extract 
the θ -dependent phase, Z�n(�) ∝ ei�nθ . Any additional complex 
phases can only come from the integration over fermionic fluctu-
ations. To leading order in a loop expansion around saddle points, 
these integrations have the form of determinants of the Dirac op-
erator in each saddle-point background. Here we make no approx-
imation of the saddle points in terms of a dilute instanton gas.

Parity transformations relate pairs of eigenfunctions of the mas-
sive Dirac operator with mutually conjugate eigenvalues, except for 
those eigenfunctions that, being zero modes of the massless oper-
ator, have eigenvalues given by the complex fermion masses, re-
sulting in opposite phases for right-handed and left-handed modes 
(Section S2.2). Hence the phase of the full determinant within a 
topological class characterized by �n is determined by the differ-
ence between the number of right and left-handed zero modes of 
the massless Dirac operator, which according to the Atiyah-Singer 
index theorem coincides with �n [7]. This gives a phase of ei�nᾱ

for the product of all fermion determinants. As a consequence, we 
may write

Z�n(�) = ei�nθ̄ g̃�n(�) (10)

with real g̃�n(�). Equation (9) gives then the relations
5

g̃�n(�1 + �2) =
∞∑

�n1=−∞
g̃�n1(�1)g̃�n−�n1(�2). (11)

Setting �i = 0 above can be seen to imply that g̃�n(0) = δ�n,0. 
We next note that parity transformations relate �n with −�n. As 
the g̃�n are real and not sensitive to parity-violating effects from 
the complex fermion masses, one has g̃−�n(�) = g̃�n(�). The for-
mer results motivate the Ansatz

g̃�n(�) = �|�n| f |�n|(�2), f |�n|(0) �= 0. (12)

Remarkably, assuming analyticity in � (and as shown in Sec-
tion S4), there is a unique solution which, upon substitution in 
Eq. (10), gives

Z�n(�) = I�n(2β�)eiθ̄�n , (13)

where β depends on the parameters of the theory and is not de-
termined at the present level of generality. This has the same form 
as the result for the partition function in the dilute gas approxi-
mation (Section S3.1).

Finally we note that since all dependence on the complex 
fermion masses is included in θ̄ , β can only depend on the moduli 
of the complex fermion masses m j ≡ m jeiα j : β = β(m jm

∗
j ). In or-

der to obtain fermion correlators, it suffices to note that m j and m∗
j

can be seen as sources for integrated two-point functions. Within 
a fixed topological sector �n, the volume averages of the fermionic 
correlators can be obtained as

1

�

∫
d4x 〈ψ̄i PRψi〉�n = − 1

�

∂

∂mi
Z�n,

1

�

∫
d4x 〈ψ̄i PLψi〉�n = − 1

�

∂

∂m∗
i

Z�n.

(14)

Using Eq. (13) and summing over topological sectors after taking 
the limit � → ∞ as before gives correlators whose phases are 
aligned with the tree-level masses, leading to no CP violation:

1

�

∫
d4x 〈ψ̄i PRψi〉 = −2m∗

i ∂mim
∗
i
β(mkm

∗
k ),

1

�

∫
d4x 〈ψ̄i P Lψi〉 = −2mi ∂mim

∗
i
β(mkm

∗
k ).

(15)

By taking additional derivatives with respect to the masses m j , m∗
j , 

the results can be extended to correlation functions involving more 
fermion fields.

5. Finite subvolumes, periodic boundary conditions and fixed 
topological sectors

To view this result from additional angles, we discuss what one 
would obtain for fixed topological sectors or for finite spacetime 
volumes. Taking the order of the limits as in Eq. (6), we have seen 
that the modified Bessel functions in Eq. (7) tend to a common 
limit. This can be seen as a consequence of �n/� → 0. Taking 
� → ∞ before summing over different topological sectors may 
therefore be viewed to be equivalent with setting �n = 0 from 
the outset. This explains why taking limits as in Eq. (6) leads to 
the alignment between the various chiral phases. We note that a 
relevant example for finite � and fixed �n is given by boundary 
conditions that are periodic in all four dimensions. This setup is 
mostly chosen in lattice simulations, where �n freezes in the con-
tinuum limit.

In the approximation of the dilute instanton gas, it can be 
shown that fixing �n in an infinite spacetime volume is compliant 
with the principle of cluster decomposition (Section S5.1). In finite 
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spacetime volumes �, corrections to the asymptotic form of corre-
lators required by the cluster decomposition principle then vanish, 
provided � is chosen large enough to meet a given precision (Sec-
tion S5.2). This observation has also been made in Refs. [21,22]
through different calculational methods. We therefore conclude 
that it is possible to describe the strong interactions in a fixed sec-
tor with finite �n, provided � is large enough or infinite, and that 
there are no C P -violating effects in this theory.

With the above observation and working in a single topologi-
cal sector with fixed �n, we can evaluate the path integral in a 
finite subvolume �1 ⊂ � according to Fig. 1, no matter whether 
the full spacetime volume is finite or infinite. For such a setup, 
we need to sum or integrate over boundary conditions of a certain 
winding number �n1 (which is not necessarily integer because in-
stantons can be located at the boundary). The full winding number 
�n is however fixed by the boundary conditions on ∂�. In partic-
ular, let �2 = � \ �1 and �n2 be the winding number within �2. 
Then, �n = �n1 + �n2 remains fixed such that the total phase 
proportional to �n separates just like in Eq. (7) and cancels within 
observables. One can then obtain expectation values from a path 
integration restricted to �1 in which the θ dependence is absent, 
and once more the result (8) is recovered (Sections S5.1 and S5.2).

We emphasize that the fermion correlations evaluated accord-
ing to Eq. (6) are compatible with the enhanced mass of the η′-
meson compared to those mesons associated with spontaneously 
broken symmetries that are not anomalous (Section S3.6). This can 
be explained in more detail when observing that the chiral sus-
ceptibility evaluated in finite subvolumes of spacetime agrees with 
known results from the dilute instanton gas approximation and 
moreover when noting that even within a fixed topological sec-
tor, there is an η′-meson with enhanced mass (Section S5.4). Then 
one can also show that under reasonable assumptions the mass of 
the η′ is proportional to the topological susceptibility of the pure 
gauge theory evaluated in finite subvolumes, which generalizes 
classic results derived for large numbers of colours in Refs. [23,24]. 
Finally, we note that arguments linking the topological suscepti-
bility with C P violation [25] rely on assuming analyticity in θ of 
the partition function for the full volume, which does not apply 
when the infinite volume limit is taken before summing over the 
topological sectors (Sections S3.6 and S5.4).

6. Conclusions

In this work, we have derived fermion correlations in instanton 
backgrounds, investigated the cases of finite and infinite spacetime 
volumes and checked the compliance with cluster decomposition. 
If there were a valid principle that would allow the limit of infinite 
spacetime volume to be taken after the summation over topo-
logical sectors, we would recover C P -violating correlations pro-
portional to the rephasing-invariant parameter θ̄ . However, based 
on the reasoning that the quantization of the topological sectors 
comes from the fact that the path integral receives its nonvanish-
ing contributions from saddle points of finite action and fluctua-
tions about these, boundary conditions in Euclidean space should 
be imposed at infinity before the summation over topological sec-
tors. The conclusion then is that the theory of strong interactions 
with massive fermions does not predict C P -violating phenomena, 
irrespective of the value of θ̄ .
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Appendix A. Supplementary material

Supplementary material related to this article can be found 
online at https://doi .org /10 .1016 /j .physletb .2021.136616. The ref-
erences in this Letter to Sections starting with ‘S’ refer to that 
material.
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